
HEEGAARD FLOER HOMOLOGY AND CONCORDANCE
BOUNDS ON THE THURSTON NORM

DANIELE CELORIA AND MARCO GOLLA,
WITH AN APPENDIX WITH ADAM SIMON LEVINE

Abstract. We prove that twisted correction terms in Heegaard Floer homology
provide lower bounds on the Thurston norm of certain cohomology classes deter-
mined by the strong concordance class of a 2-component link L in S3. We then
specialise this procedure to knots in S2 × S1, and obtain a lower bound on their
geometric winding number. We then provide an infinite family of null-homologous
knots with increasing geometric winding number, on which the bound is sharp.

1. Introduction

Consider a 2-component link L = K0∪K1 ⊂ S3, such that lk(K0, K1) = 0. Recall
that two such links are strongly concordant if they are the boundary of a pair of
disjoint properly embedded smooth annuli in S3 × [0, 1].

In this note we are going to show that twisted correction terms, defined by Behrens
and the second author in [1], can be used to give lower bounds on the Thurston
norm [35] x of certain cohomology classes, determined by the strong concordance
class of the link L. More specifically, call µi the meridian of the component Ki; one
can consider the minimum attained by x on the classes PD[µ′i] ∈ H2(S3, L′) over all
links L′ = K ′0∪K ′1 strongly concordant to L. As a notational shortcut we will always
assume that the each connected component of the concordance cobounds Ki∪−K ′i.

Theorem 1.1. Let L = K0 ∪K1 be a 2-component link, with lk(K0, K1) = 0. Let
Y be the 3-manifold obtained as 0-surgery along K0 and 1-surgery along K1. Then

(1) min
L′∼L

⌈
x(PD[µ′0]) + 1

4

⌉
≥ d(Y ) + d(−Y ) + 1

2
.

Here d(Y ) denotes the correction term of HF+(Y ), the Heegaard Floer homology
with fully twisted coefficients, in the unique t ∈ Spinc(Y ) with vanishing Chern
class. We are actually going to prove a slightly stronger result (Theorem 4.1) in
Section 4.

In what follows we specialise Theorem 1.1 to 2-component links with one trivial
component, on which we perform a 0-framed surgery. Note that, by the positive
solution to the Property R conjecture [11] this is the only possible case in which the
image of the other component becomes a knot in S2 × S1 after the surgery.

In their seminal work [26] Ozsváth and Szabó define knot Floer homology for
(null-homologous) links in a general 3-manifold, by a process they call knotification;
this procedure associates to a n-component null-homologous link L in the 3-manifold
Y , a null-homologous knot in Y#n−1S2 × S1.
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Recently, this construction has been exploited by Hedden and Kuzbary [12] to
provide a further way of defining a concordance group of links in S3 (see also [13]
and [8] for previous approaches to the definition of such a group).

Now consider a link L = © ∪ K ⊂ S3, with lk(©, K) = 0; by doing 0-surgery
on ©, the other component becomes a knot in S2 × S1. Following [7] we define
the geometric winding number t(K); this is just the minimal geometric intersection
number between a knot K ⊂ S2 × S1 and a 2-sphere generating H2(S2 × S1;Z);
this invariant was called wrapping number in [17]. We can state the bound given
by Theorem 1.1 in this case, and obtain an obstruction to being knotified, up to
concordance in S2 × S1.

Theorem 1.2. Let K be a null-homologous knot in S2 × S1, and let YK the 3-
manifold obtained as +1-surgery along K. Then

(2) min
K′∼K

⌈
t(K ′)

4

⌉
≥ d(YK) + d(−YK) + 1

2
.

Note that if the right-hand side of Equation (2) is greater than 2, then the knot
is not concordant to the knotification of a 2-component link.

In the case of essential knots in S2 × S1, we will obtain a similar bound (The-
orem 5.2) on the geometric winding number, building on earlier work by Levine,
Ruberman and Strle [16]. An analogous result, expressed explicitly as a bound on
the non-orientable Thurston norm, was discovered by Ni and Wu [19].

Previous bounds on the geometric winding number can be given in the topological
locally flat category using an invariant defined by Schneiderman [34]; in fact, this
observation was not made explicitly in his paper, so we provide a short proof below.
Then we compare our bound to his, and provide an infinite family of knots in S2×S1

which are not concordant to knotified 2-component links, and where the bound (2)
is stronger.

We note that one should not expect to obtain inequalities analogous to (1) and
(2) by means of the ordinary correction terms for rational homology spheres, at least
not using arguments akin to the one we exploit in this paper. Indeed, it appears that
it is the lack of symmetry under orientation-reversal of d (or, indeed, of the bottom-
most correction term db) that allows for the right-hand side of both inequalities to be
non-trivial. For ordinary correction terms, an analogue of the right-hand side of (1)
would be a multiple of d(Z) + d(−Z), which vanishes since d(Z) = −d(Z) for any
integral homology sphere. Twisted correction terms seem also hard to replace with
the more classical bottom-most correction terms, as surfaces with trivial normal
bundle naturally appear in this context, and their boundaries do not have standard
HF∞ (and in particular bottom-most correction terms are not defined). This lack of
symmetry was already exploited in a different context by Levine and Ruberman [15].

Finally, in the appendix (with Adam Levine), we show that correction terms give
a lower bound on the 0-shake-slice genus of a knot. To this end, let XK denote the
trace of the 0-surgery along K, i.e. the 4-manifold obtained from B4 by gluing a
0-framed 2-handle along K.

Definition 1.3. The 0-shake-slice genus g0
sh(K) of K is the minimum of g(F ) as F

varies among all smoothly embedded surfaces representing a generator of H2(XK).

Piccirillo recently proved that the 0-shake-slice genus can be strictly less than the
4-ball genus [29], which resolves a problem of Kirby [14, Problem 1.41]. Moreover,
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it was previously known that d(S3
1(K)) bounds the 4-ball genus [32]; our theorem

shows that correction terms bound the 0-shake-slice genus as well.

Theorem 1.4. For any knot K ⊂ S3, we have g0
sh(K) ≥ d(S3

0(K))− 1
2
.

In fact, as we shall see in Proposition 3.4 below, d(S3
0(K))− 1

2
= d(S3

−1(K))− 1.

Organisation of the paper. The paper is structured as follows. We will give a
few preliminary topological definitions in Section 2, while the relevant notions on
Heegaard Floer homology with twisted coefficients will be recalled in Section 3. We
will then give the proof of Theorem 4.1 in Section 4, and deduce Theorems 1.1
and 1.2 from it. We prove a version of the bound (2) for essential knots in Section 5.
We explicitly compute the obstruction on a family of examples in Section 6, and
compare our bounds to a bound derived from an invariant of topological concordance
due to Schneiderman. Finally, in the appendix we prove Theorem 1.4.

Notation. Unless explicitly stated, all manifolds will be smooth and oriented, and
all submanifolds will be smoothly embedded; (singular) homology and cohomology
will be taken with integer coefficients. In the Heegaard Floer context, we will work
over the field F = Z/2Z with two elements. The unknot will be denoted by ©, and
if L is a link, ν(L) will denote a regular tubular neighbourhood of L.

Acknowledgments. We would like to thank Agnese Barbensi, András Juhász,
Miriam Kuzbary, and Marc Lackenby for their comments and support. A special
thanks to Marco Marengon, for his constant support and interest in the project.
We also thank Mark Powell and JungHwan Park for referring us to Schneiderman’s
work and sharing their expertise and ideas. We want to thank the authors of [10] for
pointing out a wrong citation in the first version of this paper. Theorem 1.4 arose
from a conversation during a conference at the Max Planck Institute in October 2016;
we are grateful to MPI for fostering this collaboration. The authors acknowledge
support from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme (grant agreement No 674978).
Finally, we thank the referee for their useful comments.

2. Preliminaries

Two knots K0, K1 in a closed, orientable and connected 3-manifold Y are said
to be concordant if there exists a smooth and properly embedded cylinder A ∼=
S1× [0, 1] ⊂ Y × [0, 1], transverse to the boundary, and such that A∩(Y ×{i}) = Ki

for i = 0, 1. Concordance is an equivalence relation on the set of knots in Y ; the
equivalence classes under this relation can be given a group structure if Y = S3,
with the operation induced by connected sum. Also, in this special case, we can
equivalently say that two knots K0, K1 ⊂ S3 are concordant if and only if K0#−K1

is slice, i.e. it is the boundary of a smooth and properly embedded disk in D4. Here
by −K1 we mean the mirror of K1, with its orientation reversed. Correspondingly,
we say that two links L0, L1 ⊂ S3 (with the same number of components) are strongly
concordant if there exist two disjoint proper embeddings of S1 × [0, 1] in S3 × [0, 1]
interpolating between the two links. We write L0 ∼ L1 if L0 and L1 are strongly
concordant.
Ln will always denote a n-component link in S3. A link Ln+1 naturally gives a

knot in #nS2×S1 through the Ozsváth–Szabó knotification construction, which we
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will briefly recall here. Choose 2n distinct points {pi, qi}i=1,...,n on Ln+1, such that
if we identify each pi with qi we obtain a connected graph.

These points will be the attaching loci of n 1-handles; inside each of them, attach
an oriented band connecting the two corresponding points. Denote by κ(L) the
resulting knot in #nS2 × S1. Using isotopies and handleslides, it is not hard to
show (see [26, Prop. 2.1]) that the diffeomorphism class of the knot κ(L) does not
depend upon the specific choice of the points, hence knotification is well defined. It
is immediate to note that a knotified link will be null-homologous in #nS2 × S1:
indeed, by construction it intersects the co-core of each 1-handle exactly twice, and
the intersections have opposite signs; since the co-cores generate H2(#nS2×S1;Z),
κ(L) is null-homologous.

Definition 2.1. Given a knot K ⊂ #nS2 × S1, denote by Sn any set of n embedded
and pairwise disjoint 2-spheres {S1, . . . , Sn}, generating H2(#nS2 × S1;Z) ∼= Zn.
Then define the geometric winding number of K as

t(K) = min
Sn

n∑
i=1

|K ∩ Si|.

Clearly, the knotification κ(L) ⊂ S2×S1 of a 2-component link L will necessarily
have t(κ(L)) ≤ 2, and more generally t(κ(Ln)) ≤ 2(n − 1). Given K ⊂ S2 × S1,
the connected sum with a local knot K ′ ⊂ S3 does not alter the geometric winding
number. Hence any concordance bound obtained on t(K) is in fact an almost-
concordance bound, using the terminology of [5].

Recall that the Thuston norm is a seminorm x on H2(Y, ∂Y ;R) for a compact 3-
manifold Y , introduced in [35]; the value of x on a class h ∈ H2(Y, ∂Y ;Z) is given by
x(h) = minχ−(S), where S ranges over all properly embedded surfaces representing
h, and χ−(S) = max{−χ(S), 0}.

We will be mostly dealing with 2-component non-split links L ⊂ S3; in this
case, by excision, we can view the Thurston norm as a map x : H2(S3, L;R) → R.
Moreover, since H2(S3, L;Z) ∼= H1(S3 \L;Z) ' H1(S3 \L;Z), we will sometimes be
sloppy and denote by [h] both the classes in H1 or H1 (identified by the universal
coefficients theorem using the basis of H1(S3 \ L) given by the meridians), and
reserve the notation PD[h] for the Poincaré–Lefschetz dual of [h] ∈ H1(S3 \ L) in
H2(S3, L). With this convention, H2(S3, L;R) ∼= R2, with the basis given by the
Poincaré–Lefschetz duals of the meridians of the components.

Another seminorm that can be considered on H1(S3 \ L) is given by link Floer
homology, introduced by Ozsváth and Szabó in [21], and recalled below. In its most
basic form, link Floer homology is an homological invariant of links L ⊂ S3, which
categorifies the multivariable Alexander polynomial.

If L = K0∪K1 and lk(K0, K1) = 0, then the corresponding groups split according
to a Z2-grading induced by elements of H = H1(S3 \ L;Z):

ĤFL(L) =
⊕
h∈H

ĤFL(L, h).

To get a seminorm y on H, given h′ ∈ H1(S3 \ L) define

y(h′) = max
{h∈H|ĤFL(L,h)6=0}

|〈h′, h〉|.
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These two seminorms are closely related; in fact [23, Theorem 1.1], states that
the Thurston polytope (and thus, the entire seminorm) of a link is determined by
the link Floer polytope on H1(S3 \ L;R). More precisely:

(3) x(PD[h]) + |〈µ0, h〉|+ |〈µ1, h〉| = 2y(h),

where µi is the meridian of Ki for i = 0, 1.

We can express the quantity x(PD[µ0]) in more familiar terms.

Lemma 2.2. Let L = K0 ∪K1 ⊂ S3 be a link as above. Then

(4)
1 + x(PD[µ0])

2
= y(µ0) = min{g(Σ) | Σ ↪→ S3 \K1, ∂Σ = K0}.

Proof. The first equality follows immediately from Equation (3), so we are going
to prove double inequalities between the first and last elements. For convenience,
denote the term on the right in Equation (4) by g̃(K0, K1).

Consider an embedded Σ minimising g̃(K0, K1) (so cobounding K0 in the exterior

of K1); clearly [Σ] = PD[µ0], hence g̃(K0, K1) = g(Σ) = 1−χ(Σ)
2
≥ 1+x(PD[µ0])

2
.

For the other direction, consider a surface S realising x(PD[µ0]); S might be dis-
connected, and have multiple boundary components, which are simple and disjoint
closed curves on ∂S3 \ ν(L). Since the two components satisfy lk(K0, K1) = 0, up
to isotopy and attachments of annuli along boundary components, we can assume
that these curves are a Seifert longitude on ∂ν(K0) and a collection of meridians on
∂ν(K1).

The signed count of these meridians needs to be 0, in view of the condition
lk(K0, K1) = 0. By attaching other annuli connecting meridians with opposite signs
(these annuli might be nested) we get a properly embedded surface S ′. By adding
(possibly nested) annuli in near ∂ν(K0) we can further assume that ∂S ′ is connected,
i.e. it is a Seifert longitude of K0.

Note that adding annuli does not change the Thurston norm, so that x(S ′) =
x(S) = x(PD[µ0]). Moreover, S ′ cannot have closed components that are not
spheres or tori, since otherwise discarding them would decrease x(S ′); we discard all
spheres and tori in S ′, so that S ′ is now connected.

The genus of S ′ is precisely 1+x(PD[µ0])
2

. �

As an aside, recall that the concordance genus of a knot K ⊂ S3 is the minimal
Seifert genus among all representatives in the concordance class of K. The left-hand
side of Equation (1) is an analogue of the concordance genus for 2-component links.

3. Heegaard Floer homology

Let (Y, t) be a spinc closed and orientable 3-manifold, such that c1(t) is a torsion
element in H2(Y ;Z); such a pair will be called a torsion spinc 3-manifold. We will
only work with torsion spinc 3-manifold in the paper, so (Y, t) will always denote a
torsion spinc 3-manifold, unless explicitly stated otherwise.

To (Y, t), Oszváth and Szabó associate two Q- and Z/2Z-graded F[U ]-modules,
HF+(Y, t) and HF+(Y, t) [28, 27]. The latter denotes (the plus flavour of) Heegaard
Floer homology of (Y, t) with fully twisted coefficients, while the former denotes (the
plus flavour of) Heegaard Floer homology of (Y, t). When Y is a rational homology
sphere, there is no twisting, and HF+(Y, t) = HF+(Y, t).
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We write HF+
even(Y, t) and HF+

odd(Y, t) for the parts of Z/2Z-degree 0 and 1 re-
spectively. We also write HF+(Y ) as a shorthand for

⊕
t∈Spinc(Y ) HF+(Y, t), and

HF+(Y ) as a shorthand for
⊕

t∈Spinc(Y ) HF+(Y, t) (here we are summing over all

spinc structures, not just the torsion ones). Moreover, there is a well-defined quo-
tient HFred(Y, t) of HF+(Y, t), called the reduced part of HF+(Y, t); if a rational
homology sphere Y has HFred(Y, t) = 0 for each spinc structure t, we say that it is
an L-space.

A spinc cobordism (W, s) from (Y, t) to (Y ′, t′) induces a map FW,s : HF+(Y, t)→
HF+(Y ′, t′); there is an analogue for the fully twisted version as well. To the under-
lying smooth cobordism W we can associate FW : HF+(Y )→ HF+(Y ′), by summing
over all spinc structures on W .

Let M be a compact 3-dimensional manifold with torus boundary; consider three
slopes s0, s1, s∞ on ∂M such that s0·s1 = s1·s∞ = s∞·s0 = −1; the three 3-manifolds
Y0, Y1, Y∞ obtained by filling M with slopes s0, s1, s∞ respectively, are said to form a
triad. The key example of triad is when M is the complement of a null-homologous
knot K in a 3-manifold, s∞ is the slope of the meridian of K, and s0 and s1 = s0+s∞
are consecutive integral slopes. A triad gives rise to three cobordisms W∞,W0,W1,
where W∞ : Y0  Y1 is obtained from Y0 by attaching a single 2-handle (W0 and
W1 are defined analogously, cyclically permuting the indices). The associated maps
fit into an exact triangle:

HF+(Y1)
FW0 // HF+(Y∞)

FW1xx
HF+(Y0)

FW∞

ff

If b1(Y0) = 1 and b1(Y1) = b1(Y∞) = 0, there is also a twisted coefficient version of
the triangle above:

HF+(Y1)[t, t−1]
FW0 // HF+(Y∞)[t, t−1]

FW1ww
HF+(Y0)

FW∞

gg

in which the maps FW0
, FW1

, FW∞ are a suitably adapted version of the maps
FW0 , FW1 , FW∞ , and HF+(Y )[t, t−1] is a shorthand for HF+(Y )⊗F F[t, t−1].

When (Y, t) is a rational homology sphere, from HF+(Y, t) Ozsváth and Szabó
extract a numerical invariant d(Y, t), the correction term of (Y, t) [24]; this was also
extended to 3-manifolds ‘with standard HF∞’, to define the bottom-most correction
term db(Y, t); e.g. if b1(Y ) ≤ 2, Y automatically has standard HF∞ [27, Theorem
10.1].

Stefan Behrens and the second author generalised this construction using twisted
coefficients [1]; from HF+(Y, t) one can then define the twisted correction term d(Y, t).
This is a rational number associated to (Y, t); it is invariant under spinc rational
homology cobordism, and additive under connected sums; that is, d(Y#Y ′, t#t′) =
d(Y, t) + d(Y ′, t′). Moreover, it agrees with the usual untwisted version for rational
homology spheres.

We will be using the following additional property of twisted correction terms.
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Theorem 3.1 ([1, Proposition 4.1]). Let (Y, t), (Y ′, t′) be torsion spinc 3-manifolds,
and (W, s) a negative semi-definite spinc cobordism from (Y, t) to (Y ′, t′). Assume
moreover that the inclusion Y ↪→ W induces an injection H1(Y ;Q) → H1(W ;Q).
Then

c1(s)2 + b−2 (W ) + 4d(Y, t) + 2b1(Y ) ≤ 4d(Y ′, t′) + 2b1(Y ′).

We will also use the following computations; we will omit the spinc structure from
the notation when there is a unique torsion spinc structure, i.e. when H1 of the
3-manifold is torsion-free.

Proposition 3.2 ([1, Theorem 6.1]). If Σ is a closed orientable surface of genus g,
then d(Σ× S1) = (−1)g+1/2; in particular,

4d(Σ× S1) + 2b1(Σ× S1) = 8
⌈g

2

⌉
.

We now give a way to index torsion spinc structures on certain 3-manifolds, fol-
lowing [22, Section 2.4]; we will abide by this labelling convention for the rest of the
paper.

Suppose Z is a closed 3-manifold with torsion-free H1(Z) (e.g. Z = S3), and
that K ⊂ Z is a null-homologous knot. Consider the 4-manifold Xn(K) obtained by
attaching a 2-handle to Z× [0, 1] along K×{1}, with framing n; for convenience, we
let Z0 = Z ×{0}. An orientation of K determines a generator A of H2(Xn(K), Z0);
the spinc structure ti on S3

n(K) is the restriction of the unique spinc structure si
on Xn(K) such that 〈c1(si), A〉 = n − 2i and si|Z0 is torsion. (While, a priori,
this construction depends on the choice of an orientation on K, this choice turns
out to be immaterial; this is because of conjugation symmetry in Heegaard Floer
homology.) Note that, when Z is an integer homology sphere, the last condition is
automatically satisfied.

Finally, we recall a way to compute correction terms of positive surgeries along
knots (and especially along connected sums of torus knots).

Theorem 3.3 ([31, 20]). Fix a knot K and a positive integer n. There is a non-
increasing sequence of non-negative integers {Vi(K)}i≥0 such that:

d(S3
n(K), ti) = −2 max{Vi(K), Vn−i(K)}+

(n− 2i)2

4n
− 1

4
.

In the notation of the latest theorem, we have the following.

Proposition 3.4 ([1, Example 3.9]). Let K be a knot in S3; then d(S3
0(K)) =

db(S
3
0(K)) = −1

2
+ 2V0(−K).

For positive torus knots, the sequence {Vi(Tp,q)} can be computed in terms of the
arithmetics of p and q as follows (see [4, Equation (5.1)]): let Γp,q be the semigroup
generated by p and q, i.e. Γp,q = {hp+ kq | h, k ∈ Z≥0}; then

(5) Vi(Tp,q) = |Γp,q ∩ [0, g(Tp,q)− i)|,

where g(Tp,q) = (p−1)(q−1)
2

is the genus of Tp,q, and | · | denotes the cardinality of a
set.

More generally, a similar computation works for connected sums of torus knots,
of which we will only be using a special case; specifically, we claim that for every
choice of positive integers a, b, and n > 1, Vi(Tn,an+1#Tn,bn+1) = Vi(Tn,(a+b)n+1). For
completeness, we sketch the proof.
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To any algebraic knot one can associate the multiplicity sequence: in brief, this
is a non-increasing sequence of positive integers that keeps track of how the knot
is resolved by blowups. The multiplicity sequence of Tn,kn+1 is of length k, and its
entries are all n, i.e. the sequence is [n, . . . , n]; then, the concatenation of the multi-
plicity sequences of Tn,an+1 and Tn,bn+1 is the multiplicity sequence of Tn,(a+b)n+1; in
the notation of Bodnár–Neméthi [2, Theorem 5.1.3], this says HTn,an+1 �HTn,bn+1

=
HTn,(a+b)n+1

; since the function HK determines the sequence {Vi(K)}i≥0, the claim is
proved.

We state this explicitly when a = b = 2.

Lemma 3.5. For each m > 0 and 0 ≤ i < m,

d(S3
m(Tn,2n+1#Tn,2n+1), ti) = d(S3

m(Tn,4n+1), ti).

We conclude the section with another lemma that will be useful later on.

Lemma 3.6. The following equalities hold:

(I) V0(T2n,2n+1) = 1
2
n(n+ 1);

(II) V0(T2n,8n+1) = 2n2;
(III) V0(T2n+1,8n+5) = 2n(n+ 1).

Proof. We prove the first equality, and only sketch the proofs of the other two.
Since the genus of T2n,2n+1 is n(2n − 1), from Equation (5) above we know that
we must count how many elements in the semigroup generated by 2n and 2n + 1
are strictly smaller than n(2n − 1). For elements in Γp,q that are less than pq, the
representation hp + kq is unique, therefore we only need to count pairs (h, k) such
that 2hn+ k(2n+ 1) < n(2n− 1). One easily shows that this number is

|Γ2n,2n+1 ∩ [0, 2n2 − n)| =
n−1∑
k=0

⌈
2n2 − n− k(2n+ 1)

2n

⌉
=

n−1∑
k=0

(n− k) =
1

2
n(n+ 1).

For points (II) and (III), the computation is very similar; in the first case, one
has

|Γ2n,8n+1 ∩ [0, 8n2 − 4n)| =
n−1∑
k=0

⌈
8n2 − 4n− k(8n+ 1)

2n

⌉

=
n−1∑
k=0

2(2n− 1− 2k) = 2n(n+ 1)− 2n = 2n2.

In the second case, one has

|Γ2n+1,8n+5 ∩ [0, 8n2 + 4n)| =
n−1∑
k=0

⌈
8n2 + 4n− k(8n+ 5)

2n+ 1

⌉

=
n−1∑
k=0

4(n− k) = 2n(n+ 1). �

4. Bounds on the Thurston norm

The goal of this section is to prove the following generalisation of Theorem 1.2.
The setup is the following: L = K0 ∪ K1 is a link with lk(K0, K1) = 0 in S3, and
YL,n is the 3-manifold obtained by doing n-surgery along K1, and 0-surgery on K0;
as before, recall that µ0 is the meridian of K0.
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Theorem 4.1. If YL,n is obtained by doing (0, n)-surgery along L as above, then:

(6) min
L′∼L

⌈
x(PD[µ′0]) + 1

4

⌉
≥ 1

2
max

t∈Spinc(YL,n)
{d(YL,n, t) + d(−YL,n, t) + 1}.

We state here the specialised version in which K0 is the unknot; if we perform
0-surgery on K0, K1 becomes a null-homologous knot in S2 × S1, that we denote
with K. In this case, YL,n is also obtained as n-surgery along K; since we want to
emphasise that YL,n should be regarded as a surgery along K ⊂ S2 × S1, we write
YK,n instead of YL,n.

Theorem 4.2. If YK,n is obtained by doing n-surgery along K, then:

(7)

⌈
t(K)

4

⌉
≥ 1

2
max

t∈Spinc(YK,n)
{d(YK,n, t) + d(−YK,n, t) + 1}.

We also observe that Theorems 1.1 and 1.2 are an immediate corollary of Theo-
rem 4.1, obtained by setting n = 1 and using Lemma 2.2.

Finally, we show that, in some special cases, we can compute the right-hand side
of (2) more explicitly.

Corollary 4.3. Suppose YK,1 is obtained as 0-surgery along a knot J ⊂ S3. Then

(8)

⌈
t(K)

4

⌉
≥ V0(J) + V0(−J).

Proof. If YK,1 = S3
0(J), then, by Proposition 3.4:

d(YK,1, t0) = d(S3
0(J)) = db(S

3
0(J)) = d−1/2(S3

0(J)) = −1

2
+ 2V0(−J).

Since −YK,1 = S3
0(−J), one also has

d(−YK,1, t0) = −1

2
+ 2V0(J),

and substituting them in (2) yields the desired inequality. �

We now turn to the proof of Theorem 4.1. To this end, we set up some notation
and give some preliminary constructions.

Suppose that Σ′ is the closed surface obtained by capping off a minimal genus
surface cobounding K0 in the complement of K1 with the core of the 0-framed
handle.

To shorten up the notation, we also let Y := YL,n = S3
(0,n)(K0 ∪K1).

Since Σ′ ⊂ S3
0(K0) is disjoint from K1, Σ′ survives in Y , and its homology class

generates H2(Y ) ∼= Z. With a slight abuse of notation, we still denote it with
Σ′ ⊂ Y .

Consider now the trivial cobordism Y ×I; then Σ′×{1/2} is a surface in Y ×I with
trivial normal bundle (e.g. because it is trivialised by ∂/∂t, where t parametrises
the interval I). We denote Σ′ × {1/2} by Σ. Call W the 4-manifold Y × I \ N ,
where N is a regular neighbourhood of Σ; since Σ has trivial normal bundle, N is
diffeomorphic to Σ×D2, and −∂N is diffeomorphic to Σ× S1.

We view W as a cobordism from Y t−Y to Σ×S1. We want to apply Theorem 3.1;
in order to do so, we need the following lemma.
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0

Figure 1. The closed surface Σ1, in the case of a link K ∪© with 0
linking number. K intersects the sphere obtained by capping off the
disk bounded by © four times. Note that some nesting of the tubes
might be necessary.

Lemma 4.4. In the notation above, the inclusion Y t−Y ↪→ W induces an injective
map H1(Y t −Y ;Q)→ H1(W ;Q).

Proof. Identify H1(Y t−Y ;Q) with H1(Y ;Q)⊕H1(Y ;Q) in the natural way, using
the inclusions Y × {0}, Y × {1} ↪→ Y × I. Suppose H1(Y t −Y ;Q) 3 (a, b) 7→ 0 ∈
H1(W ;Q) under map induced by the inclusion. Taking a multiple if necessary, we
can assume that (a, b) is in fact an integral class.

Since W ⊂ Y × I, in particular (a, b) vanishes in H1(Y × I;Q) = H1(Y ;Q);
however, with the choice we made, the map H1(Y t −Y ;Q) → H1(Y ;Q) can be
identified with the map (a, b) 7→ a+ b, and therefore we obtain that b = −a.

Since a is integral, we can represent a by a simple closed curve α which meets
Σ ⊂ Y transversely in a collection of signed points P . Call p the signed count of
points in p, and note that p 6= 0, since a is a non-zero class in H1(Y × I;Q), which
therefore pairs nontrivially with [Σ]; in fact, changing the sign of a, we can assume
that p > 0. The surface α× I bounds (a,−a), and meets Σ ⊂ Y × I transversely in
P×{1/2}. It follows that α× I∩W gives the relation H1(∂W ;Q) 3 (a,−a, p·m) 7→
0 ∈ H1(W ;Q), where m is the meridian of Σ, i.e. (up to orientation) the curve
{∗} × S1 ⊂ Σ × S1 = ∂N . In particular, there is a surface (F0, ∂F0), properly
embedded in (W,∂W ), whose boundary is (α,−α,m1 ∪ · · · ∪mp) ⊂ Y t Y t ∂N .

Since we assumed that (a,−a) vanishes in H1(W ), there exists a surface (F1, ∂F1)
properly embedded in (W,Y t−Y ), whose boundary is (α,−α) ⊂ Y t−Y . Gluing
F0 and F1 along their common boundary, we obtain a surface (F, ∂F ), properly
embedded in (W,∂N). Capping off F with p disc fibres {q} ×D2 ⊂ N , we obtain

that Σ has a (rationally) dual surface F̂ in Y × I, i.e. F̂ and Σ meet transversely p
times.

But then [Σ] and [F̂ ] are two homology classes in H2(Y × I) intersecting non-
trivially, which is clearly a contradiction, since the intersection form on H2(Y × I)
is trivial. �

Proof of Theorem 4.1. We start by observing that the right-hand side of (6) is an
invariant of the strong concordance class of L; in fact, if L′ is concordant to L,
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then YL′,n is (integrally) homology cobordant to YL,n, and therefore d(±YL′,n, ti) =
d(±YL,n, ti).

We view W as a cobordism from Y t−Y to Σ×S1. Let γ ⊂ W be an embedded
arc connecting the two boundary components Y and −Y , and remove a small regular
neighbourhood of γ from W , to obtain W ′. This is now a cobordism from Y#− Y
to Σ×S1, and Lemma 4.4 above implies that the inclusion of Y#−Y in W ′ induces
an injective map at the level of H1 with rational coefficients.

Now call si the restriction to W ′ of the unique spinc structure on Y × I that
restricts to ti on Y ×{0}. Note that si is uniquely defined, since Y × I is a product,
and that si also restricts to ti on Y ×{1}. Observe also that si restricts to the unique
torsion spinc structure on ∂N , and that c2

1(si) = 0, since the intersection form of W ′

is trivial.
Thanks to Lemma 4.4, and since W is negative semidefinite, we are in the as-

sumptions of Theorem 3.1 to the spinc structures si; this yields:

4d(Y, ti) + 4d(−Y, ti) + 4 = c2
1(si) + b−(W ′) + 4d(Y#− Y, ti#ti) + 2b1(Y#− Y ) ≤

≤ 4d(Σ× S1) + 2b1(Σ× S1) = 8
⌈g

2

⌉
;

where the last equality is Proposition 3.2. �

The proof of Theorem 4.2 is a special case of the previous one, in which the
component K0 is assumed to be unknotted, hence S3

0(K0) = S2 × S1. We can
assume that K1 intersects the sphere Σ′′ = S2 × {1} transversely in 2g = t(K)
points; by tubing Σ′′ along K, we obtain a surface Σ′ ⊂ S2×S1 disjoint from K, as
in Figure 1. We note here that Σ′ has genus g, and that it represents the generator
of H2(S2 × S1)

Proof of Theorem 4.2. The proof is readily obtained by applying Theorem 4.1, and
reinterpreting the result in the light of Lemma 2.2. �

4.1. The case of knots in #mS2 × S1. Theorem 4.2 extends to the case of null-
homologous knots in #mS2 × S1 as follows. Given a null-homologous knot K
in #mS2 × S1, let {S1, . . . , Sm} be a collection of m pairwise disjoint spheres in
#mS2× S1 whose homology classes generate H2(#mS2× S1); suppose K intersects
Si transversely for each i; denote with ti(K) the geometric intersection of K and
Si, and t(K) =

∑m
i=1 ti(K).

Theorem 4.5. Let K be a null-homologous knot in #mS2 × S1, Then
n∑
i=1

⌈
ti(K)

4

⌉
≥ 1

2
max

t∈Spinc(YK,n)
{d(YK,n, t) + d(−YK,n, t) + 1}.

Note that this can be used to give a (quite coarse) concordance lower bound on
t(K). Indeed, if {S1, . . . , Sm} is a collection of spheres that minimises the total
geometric intersection, then

t(K) =
m∑
i=1

ti(K) ≥
m∑
i=1

4

(⌈
ti(K)

4

⌉
− 1

2

)
= 4

m∑
i=1

⌈
ti(K)

4

⌉
− 2m,

so that

t(K) ≥ 2 max
i=0,...,n−1

{d(YK,n, ti) + d(−YK,n, ti) + 1} − 2m.
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As above, the right-hand side of the latter inequality is invariant under concordance,
so we get a concordance lower bound. The proof is very similar to the proof of
Theorem 4.2, therefore we only outline the differences here.

Proof (sketch). From the collection {S1, . . . , Sm} we construct m pairwise disjoint,
orientable surfaces Σ1, . . . ,Σm in YK,n×{1/2} ⊂ YK,n× I by tubing S1, . . . Sm along
K, as in the proof of Theorem 4.2. The genus of Σi, which is obtained from Si by

tubing along K, is exactly gi := ti(K)
2

.
We construct a cobordism W from YK,n t −YK,n to tiΣi × S1 by removing the

tubular neighbourhood of Σ1, . . . ,Σm from YK,n × I.
We now claim that Lemma 4.4 still holds for the cobordism W we just constructed.

Again, we can suppose that we have a class a 6= 0 ∈ H1(YK,n) such that (a,−a) ∈
H1(YK,n)⊕H1(YK,n) vanishes under the map induced by the inclusion YK,nt−YK,n ↪→
W , and that a is represented by a curve α. The only difference in the two proofs is
the following: in the proof of Lemma 4.4 we had only one surface Σ, and we argued
that the algebraic intersection number between Σ and α× I ⊂ Y × I was non-zero
by assumption that [α] 6= 0 ∈ H1(Y ); in the new setup, we know that for some
index i, the intersection between Σi and α× I ⊂ YK,n × I is non-zero; now work in
YK,n × I \N(Σi), and run the same argument.

The rest of the proof applies verbatim. �

5. The essential case

In this section, we will see how to deal with the case of K essential in S2 × S1,
and more specifically when [K] = w · [{∗}×S1] ∈ H1(S2×S1), for some even integer
w; without loss of generality, we assume that w is positive. To get a knot in a class
divisible by 2, one can simply take a satellite of K using a pattern with even winding
number, e.g. a 2-cable. To this end, we will combine the topological construction
from the previous section with arguments from [16]. As in the null-homologous case,
this will turn out to be a concordance bound for K, i.e. a lower bound for tC(K).

We note that the setup is slightly different in this case; for instance, we do not
have a well-defined way to associate an integer to a framing. To remedy this, we fix
a handlebody presentation of (S2×S1, K), where S2×S1 is viewed as the boundary
of D3×S1, and the latter is obtained by carving a disc from B4; as usual, the carved
disk will be denoted by a dotted circle. Such a presentation for (S2 × S1, K) gives
a bijection between framings of K and the integers; we will be sloppy and use this
bijection without explicitly mentioning the presentation.

Let Yn(K) be the 3-manifold obtained by doing n-surgery along K. The following
proposition is well-known, and we shall omit the proof.

Proposition 5.1. The 3-manifold Yn(K) is a rational homology sphere; its first
homology group H1(Yn(K)) is generated by the classes of the meridians of the at-
taching curve of the dotted circle and of K; H1(Yn(K)) ∼= Z/dZ ⊕ Z/d′Z, where
d = gcd(n,w), and dd′ = w2.

We note here that, in fact, gcd(n,w) is independent of the chosen presentation
of (S2 × S1, K). From now on, we restrict to the case when gcd(n,w) = 1, and
hence H1(Yn(K)) is cyclic of order w2. Moreover, since the exact value of n will not
play any significant role, we drop it from the notation, and we write Y in place of
Yn(K). In fact, under the assumption above, H1(Y ) is generated by the class [µ] of
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the meridian of K; the meridian of the 2-handle is homologous to w[µ]. (The latter
class is always the generator of the metaboliser of H1(Y ) associated to the obvious
rational homology ball filling of Y .)

Since we assumed that w is even, H1(Y ) is cyclic of even order, and thus every
element has an opposite: the opposite of the element k[µ] ∈ H1(Y ) is the element
(k + w2/2)[µ] ∈ H1(Y ). This gives an involution of H1(Y ) without fixed points,
and, correspondingly, the set of spinc structures on Y comes equipped with a fixed-
point–free involution, that associates to t ∈ Spinc(Y ) the spinc structure top =
t + w2/2 · PD([µ]).

In the notation of [16], w2/2·PD([µ]) is called ϕ, i.e. a 2-torsion class in H2(Y ); in
our setting, this characterises ϕ uniquely. Incidentally, we note here that c1(top) =
c1(t). We remark here that being opposite is not to be confused with being conjugate;
both conjugation and opposition are involutions on the set of spinc structures of Y ,
but the former has fixed points (the two spin structures on Y ), preserves the value
of the correction term, and changes the sign of the first Chern class.

Theorem 5.2. With the notation set up as above, we have:

t(K) ≥ 2 max
t∈Spinc(Y )

{d(Y, t)− d(Y, top)}.

Proof. Consider a sphere Σ′′ = S2 × {1}, and suppose that it meets K transversely
h := t(K) times. Note that h is even, since t(K) ≡ w ≡ 0 (mod 2) by assumption.

By tubing along K we can construct a surface Σ′ ⊂ S2 × S1 \ K from Σ′′ by
tubing along K as in the proof of Theorem 4.2. (Note that we are using in a crucial
way that the class of K is even.) Here, however, Σ′ will be non-orientable, and
b1(Σ1;F2) = h; h is referred to as the non-orientable genus of Σ′.

Since Σ′ lives in the complement of K, we can view Σ′ as lying in any surgery
along K, and in particular in Y . As we did above, we push it in Y × I at level 1/2,
obtaining Σ ⊂ Y × I.

We can now apply [16, Theorem A], which asserts that h ≥ 2∆, where 2∆ is
exactly the right-hand side of the inequality we want to prove. Since h = t(K)/2,
we are done. �

We note here that, in the notation of the proof above, [16, Theorem A] also asserts
that 2h ≥ 4∆ + |e(Σ)|, where e(Σ) is the Euler number of Σ; however, since Σ lives
in Y × {1/2}, it is displaceable, and in particular e(Σ) = 0. In particular, the
seemingly stronger inequality does not give a better lower bound.

6. Examples

This section is devoted to some sample computations of the obstruction from
Equation (2). After warming up with a baby-case, we obtain an example where the
lower bound 4.2 is sharp and non-trivial, while Schneiderman’s obstruction (whose
definition is recalled below) vanishes; then, we construct an infinite family of knots
such that the lower bound of Theorem 4.2 is sharp and unbounded.

We start by considering the knot W in S2×S1 obtained by doing 0-surgery along
one of the components of the Whitehead link. Equivalently W can be thought of as
the knotification of the Hopf link.

We say that a knot is local if it is contained in a 3-ball in S2 × S1.

Proposition 6.1. The knot W is not concordant to a local knot.
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0

Figure 2. The knot W ⊂ S2 × S1.

Proof. Obviously, a knot K is a local knot if and only if t(K) = 0. As noted above,
our lower bound on t is a concordance invariant, therefore it suffices to prove that
the lower bound for W does not vanish. To this end, we observe that +1-surgery
along W yields the 3-manifold obtained as 0-surgery along the trefoil knot T . Since
V0(T ) = 1, V0(−T ) = 0, by Corollary 4.3 the lower bound on t(W ) ≥ 2, and
therefore W is not concordant to a local knot. �

6.1. Comparing with Schneiderman’s bound. We recall the construction of
Schneiderman’s invariant µ from [34]. While his setup is more general, we restrict
to the case of knots in S2 × S1. Here, the invariant of a null-homologous knot
K ∈ S2 × S1 takes the form of a polynomial µ(K) ∈ t · Z[t]. It is an invariant of
(locally flat) topological concordance, and it can be computed in the following way.

Since K is null-homologous, there is a regular homotopy of K to the unknot. This
gives rise to an immersed disc j : D # S2×S1× I; generically, such a disc will have
only double points. To each double point p correspond a sign σ(p) and a generator
γ(p) of π1(j(D)), determined up to inverse. The generator γ(p), in turn, gives a
homotopy class in S2 × S1 × I, and hence an element w(p) in π1(S2 × S1 × I) = Z,
well-defined up to sign. The invariant µ(K) is computed as

µ(K) =
∑

p |w(p)6=0

σ(p) · t|w(p)|.

The following proposition was suggested to us by Mark Powell.

Proposition 6.2. The degree of µ(K) gives a lower bound for t(K). More precisely,

t(K) ≥ 2 deg µ(K).

Proof. Choose a representation of K as one component of a 2-component link, one of
whose component is a dotted unknot; since K is null-homologous, there is a sequence
of crossing changes in this projection, involving only crossings of K with itself, that
changes the link to the unlink. Associated to this sequence of crossing changes,
comes a regular homotopy from K to the unknot in S2 × S1, and a corresponding
immersed disc D. We use this disc D to compute µ(K).

The loop corresponding to a double point arising from a crossing change consists
in following the knot around, until we return to the double point. The inverse loop
is just the loop obtained by following the knot in the other direction.

Since K intersects a 2-sphere t(K) times, one of the two loops will meet the two
spheres at most t(K)/2 times, and hence |w(p)| ≤ t(K)/2. Therefore, the degree
of µ(K) is at most t(K)/2. �

We now give a general computation of µ(K) for a very special family of knots. All
Whitehead and Bing doubling operations will be positively clasped and untwisted.
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Fix a knot T , and let W be its Whitehead double; let also L = L1 ∪ L2 and J be
the Bing and Whitehead double of W , respectively. An observation that will be
useful later is that L is a symmetric link; i.e. there is an isotopy exchanging the two
components.

Finally, let K ⊂ S2 × S1 be obtained by doing 0-surgery along L2, as shown in
Figure 3.

T

0

K

Figure 3. The knot K. The two arcs a1 and a2 are in black and red respectively.

The following lemma was suggested to us by JungHwan Park.

Lemma 6.3. The knot K described above has µ(K) = 0.

Proof. The projection of L1 is split into two arcs by the projection of L2; this divides
K into two arcs, K = a1 ∪ a2 (these are displayed in red and black in Figure 3).

Suppose that we have an unknotting sequence of u crossing changes for T . This
corresponds to an unknotting sequence for K comprising 16u crossing changes.
These crossing changes give an immersed disc in S2 × S1 × I, which we will use
to compute µ(K); we will show that each crossing change in T corresponds to a
trivial contribution from the corresponding sixteen crossing changes in K.

To this end, refer to Figure 4. A crossing change can be between a strand in a1

and a strand in a2, or between two strands on the same arc, say a1. In the latter
case, we can connect the two lifts of the double point by an arc in a1, and the
corresponding loop is null-homotopic in S2 × S1 × I, so it does not contribute to
µ(K). Vice versa, if the two strands belong to two different arcs, when we connect
them we cross a generating 2-sphere exactly once, and hence w(p) = ±1; that is,
each of the corresponding double points contributes with σ(p) · t.

By counting directly around each crossing of K, as in Figure 4, we see that there
are four positive and four negative crossings, corresponding to four positive and four
negative points in the immersed concordance. Thus, the total contribution vanishes,
and µ(K) = 0. �

We now look at the 3-manifold YK obtained as +1-surgery along K. That is, YK
is obtained by doing +1-surgery on L1 and 0-surgery on L2; since L is a symmetric
link, we can blow down L1, and the blowdown of L2 will be J , the Whitehead double
of W . Therefore, we are in the assumption of Corollary 4.3, and we want to compute
V0(J) and V0(−J).

Lemma 6.4. If the maximal Thurston–Bennequin number of T is positive, then
V0(J) = 1.
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Figure 4. The multiplication of crossings: on the left, a crossing in
T ; on the right, the corresponding sixteen crossings in K. We labelled
the positive and negative crossings of ‘mixed types’ (i.e. those where
two strands of different colour meet).

Proof. By construction, J has unknotting number 1 (by changing a crossing in the
clasp); more precisely, once can change a positive crossing into a negative one, and
obtain an unknot. Therefore, V0(−J) = 0, and V0(J) ≤ 1, by [3, Theorem 6.1];
to prove that V0(J) = 1, we use the slice Bennequin inequality [30]: namely, it
is well-known that W has a Legendrian representative with Thurston–Bennequin
number 1, and that (untwisted, positively clasped) Whitehead doubling preserves
this property [33]; hence, also J has such a Legendrian representative, and this
proves that τ(J) > 0, which in turn proves that V0(J) > 0 [31, Proposition 7.7]. �

Let now T be any knot satisfying the assumption of Lemma 6.4; for instance, T
can be chosen to be the right-handed trefoil.

Proposition 6.5. The Schneiderman invariant µ(K) of K vanishes, but t(K) = 2.

Proof. The Schneiderman invariant µ(K) vanishes, thanks to Lemma 6.3.
Evidently, t(K) ≤ 2. The converse inequality follows from Corollary 4.3 and

Lemma 6.4: indeed, doing +1-surgery along K yields 3-manifold Y that is obtained
as 0-surgery along J ; by Lemma 6.4, V0(J) = 1, so Corollary 4.3 implies t(K) ≥ 2,
as desired. �

Note that by combining [6, Corollary 1.3], and the fact that Whitehead doubles
are always topologically slice by a result of Freedman [9], we obtain that the knot
K is topologically slice in S2 × S1 = ∂S2 ×D2.

In particular this implies that the bound (7) detects the difference between topo-
logically and smoothly slice.

6.2. Sharp, arbitrarily large bounds. As promised, we construct an infinite
family of knots Kn, indexed by positive integers; the knots will be given by the
diagram in Figure 5.

Proposition 6.6. The knot in Kn has t(Kn) = 4n+ 2.

Note that the obstruction of Theorem 4.2 or Theorem 1.2 cannot see the difference
between t(Kn) = 4n + 2 or t(Kn) = 4n + 4; that is to say, if t(Kn) is in fact
equal to 4n + 4, this cannot be detected by our results, which can only guarantee
t(Kn) ≥ 4n + 2. As a consequence, this family consists of pairwise mutually non
smoothly almost-concordant knots in the trivial free homotopy class of S2 × S1;
the existence of such a family of knots in arbitrary 3-manifold was enstablished by
Friedl–Nagel–Orson–Powell [10, Theorem 1.6], and later on by Yildiz [36].
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Kn

0

1

2n+ 1

2n+ 1

Figure 5. The knot Kn. The figure represents a (4n+ 3)-braid, the
box is a full twist. The closure of the braid has two components, one
of which (in red, at the top of the figure) is an unknot, along which
we do 0-surgery; the other component, Kn, has linking number 0 with
the first component, and hence represents a null-homologous knot in
S2 × S1.

Kn

0

1

Figure 6. This is the knot Kn, where we singled out the unknotted
strand from the full twist. The disc is shaded, and the points of
intersections are marked with a bullet.

The strategy of proof is quite straightforward: we need to exhibit a 2-sphere
representing the generator of H2(S2 × S1) that meets Kn in 4n + 2 points, and we
want to apply Theorem 4.2 to some spinc structure on some positive surgery along
Kn. The 2-sphere is in fact easy to spot, as shown in Figure 6.

On the other hand, computing correction terms is not an easy task. For the
manifold at hand, that is m-surgery on Kn for some m, we proceed as follows. We
start with the Kirby diagram for Kn of Figure 6, which comprises a 0-framed unknot
© and a torus knot J = T4n+2,4n+3, and we observe that this manifold fits into a
triad, corresponding to doing surgery along © with coefficients −1, 0, and ∞. Call
(S3, J ′) the knot obtained by doing −1-surgery along © ⊂ (S3, J).

Doing ∞-surgery along © gives back S3, together with the knot J ⊂ S3. The
3-manifold S3

m(J) is an L-space when m ≥ (4n + 1)(4n + 2)− 1, and its correction
terms are well understood in terms of the semigroup generated by 4n+ 2 and 4n+ 3
in the non-negative integers (see [4]).

The following two lemmas are the key topological observation underpinning the
proof of Proposition 6.6.

Lemma 6.7. The knot J ′ is T2n+1,4n+3#T2n+1,4n+3.



18 DANIELE CELORIA AND MARCO GOLLA

Lemma 6.8. The 3-manifold S3
(4n+2)(4n+3)(J

′) is M(−2; 2n
2n+1

, 2n
2n+1

, 2
4n+3

, 2
4n+3

), a

Seifert fibred space over S2 with four singular fibres.

That is, if we choose m = (4n + 2)(4n + 3), S3
m(J) is an L-space (in fact, it

is L(4n + 3, 1)#L(4n + 2, 4n + 1)) and S3
m(J ′) is a Seifert fibred space with Euler

number

−2 + 2

(
1− 1

2n+ 1

)
+ 2 · 2

4n+ 3
= 2

(
2

4n+ 3
− 1

2n+ 1

)
< 0.

From [25, Corollary 1.4] we deduce that HF+
odd(S3

(4n+2)(4n+3)(J
′)) = 0.

We defer the proof of the lemmas above, and we patch the argument together to
prove Proposition 6.6 first.

Proof of Proposition 6.6. There is an obvious 2-sphere intersecting geometrically Kn

exactly 4n+2 times, obtained by capping off the 2-disc shaded in Figure 6. Therefore,
t(Kn) ≤ 4n+ 2. We now set out to prove the opposite inequality.

Let m = (4n + 2)(4n + 3), and let us look at the surgery exact triangle for the
triad Y∞ = S3

m(J), Y−1 = S3
m(J ′), and Y0 = (S2 × S1)m(K) above.

HF+(Y∞)[t, t−1]
F // HF+(Y−1)[t, t−1]

Gvv
HF+(Y0)

H

hh

Since the cobordism Y∞  Y−1 inducing F is obtained by attaching a (−1)-
framed 2-handle along a null-homologous knot in Y∞, F maps HF+(Y∞, ti)[t, t

−1]
to HF+(Y−1, ti)[t, t

−1] for each i. The same holds for the cobordism inducing G.
For each i, the map Fi : HF+(Y∞, ti)[t, t

−1]→ HF+(Y−1, ti)[t, t
−1] is, up to higher

order terms in U , Uk · (1 − t): indeed, the tower in HF+(Y0) is isomorphic to
F[U,U−1]/U · F[U ], with all elements of H2(Y0) acting as the identity on it, so H
vanishes on the towers, and G surjects onto them.

Since Y∞ is an L-space, the tower in HF+(Y−1)[t, t−1]/(1 − t) maps injectively
into HF+(Y0, ti), so that G is surjective on the tower. In particular, no tower in
HF+(Y∞, ti) is in the image of H, so that each tower in HF+(Y∞, ti) maps injectively
into HF+(Y−1, ti). Computing the gradings of the maps involved, this proves that

d(Y0, t0) = −2V0(J ′) +
m− 3

4
.

Let us now look at the triad −Y∞, −Y0, −Y−1.

HF+(−Y−1)[t, t−1]
F ′

// HF+(−Y∞)[t, t−1]

G′vv
HF+(−Y0)

H′

hh

The key observation that makes the same argument run is that HFred(−Y−1) is now
supported in odd degrees, while the map F ′ is a sum of maps of even degree; it
follows that each tower HF+(−Y∞, ti)[t, t−1]/(1 − t) is mapped isomorphically into
HF+(−Y0, ti), and therefore

d(−Y0, t0) = 2V0(J)− m+ 1

4
.
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(c) (d)

(e) (f)

(g)
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−2

2n+ 1

2n+ 1

−1

0
11
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-1

0
1

2 −1 −2

0

0

1

2 −1

−2

0

2 −1

−2

−1

−2 −1

−2

2

2

Figure 7. The proof of Lemma 6.7.

Applying Theorem 4.2, Lemmas 3.5 and 3.6, we obtain that

d(Y0) + d(−Y0) + 1 = 2V0(J)− 2V0(J ′) = 2V0(T4n+2,4n+3)− 2V0(T2n+1,8n+5)

= 2(n+ 1)(2n+ 1)− 4n(n+ 1) = 2n+ 2 ≤ 2

⌈
t(Kn)

4

⌉
,

from which t(Kn) ≥ 4n+ 2 follows. �

We end this section with the proofs of the two lemmas above.

Proof of Lemma 6.7. We give a diagrammatic proof, following Figure 7. From top
to bottom:

(a) This is obtained from (S3,©∪ J) by blowing up along the blue curve.
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(b) This is obtained from (a) by blowing up along the purple curves and blowing
up negatively along the green curves.

(c) This is obtained from (b) by sliding one of the green curves over the other,
and one of the purple curves over the other.

(d) This is obtained from (c) by sliding the blue curve over the +1-framed green
curve.

(e) This is obtained from (d) by doing a slam dunk of the 0-framed red curve;
this amounts to cancelling both the red component and the +1-framed green
component.

(f) This is obtained from (e) by doing a Rolfsen twist along the green curve.
(g) This is obtained from (f) by blowing down the blue curve and the −1-framed

purple curve, and then the green curve and the remaining purple curve.

Note that (g) displays exactly the connected sum T2n+1,4n+3#T2n+1,4n+3: the dashed
line exhibits the 2-sphere giving the connected sum decomposition. �

While it is not necessary for the proof, as a litmus test, we also check that the
framing of J ′ is preserved in the sequence of moves above. Indeed, following each
of the steps, the framing decreases by (4n+ 2)2 in the first step, and stays constant
until the last, when it increases again by 4 · (2n+ 1)2.

Proof of Lemma 6.8. We start from (f) in Figure 7; note that the framing on (the
component corresponding to) J ′ is now (4n+ 2)(4n+ 3)− 4(2n+ 1)2 = 4n+ 2. We
then refer to Figure 8.

(a′) This is just obtained from (g) in Figure 7 by an isotopy; the blue component
correspond to J ′, and has framing 4n+ 2.

(b′) This is essentially (f) in Figure 7.
(c′) Is obtained by an isotopy from (b′).
(d′) This is obtained from (c′) by blowing up the (2n+ 1) + (2n+ 1) twists, and

sliding each new −1-framed unknot over the next, as done to go from step
(b) to (c) in the proof of Lemma 6.7.

(e′) This is obtained by sliding one of the −1-framed curves over the other, and
by doing 0-dot surgery on the 0-framed component.

We can now cancel the 1-handle in Figure 7 with the −1-framed knot, and therefore
obtain a presentation of S3

(4n+2)(4n+3)(J
′) as a Seifert fibred space over S2 with four

singular fibres. The corresponding Seifert invariants are easily computed from the
(negative) continued fraction expansions [2, . . . , 2]− = 2n+1

2n
and [2n+ 2, 2]− = 4n+3

2
.
�

We note that that (c′) in Figure 8 gives a plumbed presentation of S3
(4n+2)(4n+3)(J

′);
the final presentation can also be obtained in the plumbing language by doing a 0-
absorption move [18].

Appendix A. The 0-shake-slice genus (with Adam Levine)

The goal of this appendix is to prove Theorem 1.4. The techniques are similar to
the ones employed in the rest of the paper.

Let us start by setting up some notation. If K is a knot in S3, denote with XK

the trace of the 0-surgery along K, which is B4 with a 2-handle attached along K
with framing 0; we write YK = S3

0(K) for the boundary of XK . We also denote with
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(a′)

(4n+ 2)(4n+ 3)

2
2

(b′)

4n+ 2

−1

−1

(c′)

4n+ 2−1 −1

2n+ 1 2n+ 1

(d′)

0−2(n+ 1) −2(n+ 1)
−1 −1

(e′)

−2(n+ 1)

−2(n+ 1)

−1

−1

Figure 8. The proof of Lemma 6.8. We abide by the convention
that we do not label −2-framed components. In (b′) the two “outer”
unknots are −2-framed; in (d′) and (e′), each of the two chains of
(unlabelled, hence −2-framed) unknots has length 2n.

−K the mirror of K, with its orientation reversed. (However, the orientation will
not play any role.)

Recall that the 0-shake-slice genus g0
sh(K) of K is the minimal genus g(F ) of a

smoothly embedded surface F representing a generator of H2(XK).
In the proof, we will let F be a surface whose fundamental class generates H2(XK).

Let W = −(XK \N), where N is an open regular neighbourhood of F ; notice that
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since F ·F = 0, N ∼= F ×D2 and ∂W = −YK tS, where S ∼= F ×S1. We will view
W as a cobordism from YK to S.

We want to apply Theorem 3.1; the following lemma is the analogue of Lemma 4.4
above.

Lemma A.1. The inclusion YK ↪→ W induces an isomorphism H1(YK)→ H1(W ).

Proof. The Mayer–Vietoris long exact sequence for the decomposition XK = W ∪N
reads:

H2(W )⊕H2(N)
α // H2(XK) // H1(S)

β // H1(W )⊕H1(N) // H1(XK).

Since [F ] is a generator of H2(XK) by assumption, the map H2(N) → H2(XK)
induced by the inclusion is surjective, and therefore so is α. This implies that the
map β is injective, and hence, since H1(XK) = 0, an isomorphism.

Recall now that H1(S) = H1(F ) ⊕ Z[f ], where f is the S1-fibre. The map β
is an isomorphism onto H1(N) when restricted to the summand H1(F ) of H1(S);
moreover, the fibre f is in the kernel of the inclusion H1(S)→ H1(F ), and hence β
maps [f ] to a generator of H1(W ).

By construction, though, [f ] ∈ H1(S) is homologous in W to a generator of
H1(YK), and hence the inclusion YK ↪→ W induces an isomorphism on H1. �

As we did above, we will omit the spinc structure from the notation, when there
is a unique torsion spinc structure.

Proof of Theorem 1.4. By the lemma above, the inclusion YK ↪→ W induces an
injection H1(YK)→ H1(W ). Moreover, since the intersection form of XK is (0), W
is a negative semi-definite cobordism.

The assumptions to apply Theorem 3.1 are satisfied, and we can write the in-
equality

4d(YK) + 2b1(YK) + c1(s)2 + b−(W ) ≤ 4d(S) + 2b1(S).

By Proposition 3.2, d(S) = 1
2
(−1)g+1. Since W has trivial intersection form, c1(s)2 =

0, and therefore

4d(YK) + 2 ≤ 8
⌈g

2

⌉
,

from which the statement follows. �

We can also apply the same theorem to −K; this, and the fact that d(YK) =
2V0(−K)− 1

2
(Proposition 3.4), allows us to recast the statement of Theorem 1.4 as

follows:
g0

sh(K) ≥ 2 max{V0(K), V0(−K)} − 1.
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