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Estimating Mixture of Gaussian Processes by
Kernel Smoothing

Mian Huang, Runze Li, Hansheng Wang, and Weixin Yao

October 20, 2013

Abstract

When the functional data is not homogeneous, e.g., there exist multiple classes of func-
tional curves in the dataset, traditional estimation methods may fail. In this paper, we
propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate
both functional and inhomogeneous properties of the data. Our method can be viewed as a
natural extension of high-dimensional normal mixtures. However, the key difference is that
smoothed structures are imposed for both the mean and covariance functions. The model
is shown to be identifiable, and can be estimated efficiently by a novel combination of the
ideas from EM algorithm, kernel regression, and functional principal component analysis.
Our methodology is empirically justified by Monte Carlo simulations and illustrated by an
analysis of a supermarket dataset.
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1 Introduction

The rapid development of information technologies enables researchers to collect and store func-

tional data at a low cost. As a result, the quantitative analysis of functional data becomes prac-

tically feasible; see Ramsay and Silverman (2005) for a comprehensive and excellent treatment.

The basis of functional data analysis consists of the estimations of the mean function and the

covariance structure. Among many approaches, functional principal component (FPC) analysis

serves as a key technique in functional data analysis. Rice and Silverman (1991) and James et al.

(2000) studied the spline smoothing methods in FPC analysis; Staniswalis and Lee (1998) and

Yao et al. (2003) applied kernel-based smoothing methods for FPC analysis in irregular and sparse

longitudinal data. The asymptotic properties of principal component functions are investigated

in Yao et al. (2005) and Hall et al. (2006).

For an illustration of functional data, Figure 1 depicts the plot of a set of collected curves. This

dataset contains the number of customers who visited a particular supermarket in China on each

of 139 days. For each day, the number of customers shopping in the supermarket is observed every

half hour from 7:00am to 5:30pm. Thus, there are 22 observations for each day. The collected

time was coded as 1 for 7:00am, 2 for 7:30am, and so on. In the analysis of this dataset, we regard

each day as one subject. Thus, we have a total of 139 subjects. Figure 1 shows that the variability

may be large in certain time periods. Intuitively, the customer flow (i.e., the number of customers)

may show different patterns in weekdays, weekends and holiday season, and hence the data are

likely inhomogeneous. Although the nominal identity (weekday, weekend, or holiday) of a subject

is known, they may switch to form a long-holidays by national or local government policies, e.g.,

the holiday week of national day. In this paper, we will treat the identities as unknown. To

statistically model such inhomogeneity for the multivariate response, we may simply consider a

mixture of 22-dimensional multivariate normal distributions. Nevertheless, we find this method

less effective because the 22 × 22 covariance matrices for each component have to be estimated.

This has been an inevitable step for a general normal mixture model. With such a limited sample

size (i.e, 139), the estimated covariance matrices are likely to be ill-conditioned. As a consequence,

the estimation accuracy of its inverse is very poor. In addition, if the data are collected at irregular

time points, the covariance structure will be different for different subjects and thus the mixture

of multivariate normal distribution cannot be applied, even when the sample size is large. This
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Figure 1: Plot of supermarket data.

motivates us to develop new methods for analysis of inhomogeneous functional data.

Mixture of Gaussian processes is an interesting and useful alternative to mixture of high-

dimensional normals. In this paper, we propose a new smooth estimation procedure for mixture of

Gaussian processes. Compared with a general normal mixture, the major advantage of our method

is that smoothed structures are imposed for both the mean and covariance functions. Within

this new framework, the unknown functions can be estimated efficiently by a novel combination

of the ideas from EM algorithm, kernel regression, and functional principal component analysis.

Therefore, the challenging task of high-dimensional covariance matrix estimation can be completely

avoided. In addition, the proposed mixture models can deal with data collected at irregular,

possibly subject depending time points. It is clear that a mixture of multivariate normals is not

applicable for such data.

James and Sugar (2003) considered a general functional model for clustering functional data,

which is indeed a mixture of Gaussian processes. In their approach, they represented individual

curves by natural cubic splines, and imposed some parametric assumptions and restrictions on

the spline coefficients. This version of the mixture of Gaussian processes is casted as a structural

parametric finite mixture of normals, which is referred to as the functional clustering model.

3



Maximum likelihood and EM algorithm are developed for model estimation. Functional clustering

models have been studied and applied in literature. In genetic research, Luan and Li (2003)

considered a functional clustering model for time-course gene expression data, in which B-spline

are used to model the mean and covariance function of each component. Bayesian approaches for

functional clustering models are studied in Heard et al. (2006), and Ma and Zhong (2008).

In this paper, we shall systematically study the mixture of Gaussian processes. We first prove

that the the mixture of Gaussian processes is identifiable under mild conditions. We propose

new estimation procedures using kernel regression and modified EM-type algorithms. We intro-

duce functional principal component analysis for the estimation procedure, which provides the

advantage of effective computation, e.g., avoids the inverse of high-dimensional covariance matrix,

and facilitates the covariance estimation. Functional principal component analysis also provides

a powerful tool to interpret the results via the eigenvalue and eigenfunctions. Practical guides for

model selection are addressed, and a bootstrap procedure for constructing confidence intervals is

proposed. We empirically justify these estimation procedures by Monte Carlo simulations, and an

illustration in real data analysis, including a detailed interpretation of the estimated functional

principal components.

The rest of this paper is structured as follows. We present the definition of mixture of Gaussian

processes and give the identifiability result in Section 2. In Section 3, we develop estimation proce-

dures for the newly proposed models. Simulation results and an empirical analysis of supermarket

dataset are presented in Section 4. Concluding remarks and some discussions are given in Section

5. Proof is given in the appendix.

2 Model and Identifiability

Let C be a latent class variable with a discrete distribution P (C = c) = ρc for c = 1, 2, · · · , C. It

is assumed in this paper that C is fixed and known. We will briefly discuss how to determine C in

Section 3. Given C = c, {X(t), t ∈ T} follows a Gaussian process with mean µc(t) and covariance

function Cov{X(s), X(t)} = Gc(s, t). We refer to {X(t) : t ∈ T} as a mixture of Gaussian

processes. Typically, T is a closed and bounded time interval [0, T ]. It is assumed throughout this

paper that µc(t) is a smooth function of t, and Gc(s, t) is a positive definite and bivariate smooth

function of s and t. Thus, the path of X(t) indeed is a smooth function.
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We first study the identifiability of the proposed mixture of Gaussian processes (Proof is given

in the Appendix).

Theorem 1 Suppose Gc(s, t) is a positive definite and bivariate smooth function of s and t and

µc(t) is a smooth function of t for any c = 1, . . . , C. Let S = {t ∈ T : (µi(t), Gi(t, t)) =

(µj(t), Gj(t, t)) for some 1 ≤ i ̸= j ≤ C}. If the complement of S is not empty, then the above

proposed mixture of Gaussian processes is identifiable.

The covariance function Gc(s, t) can be represented as

Gc(s, t) =
∞∑
q=1

λqcvqc(t)vqc(s),

where λqc’s are eigenvalues, and vqc(·)’s are eigenfunctions. Furthermore, we have λ1c ≥ λ2c ≥ · · · ,

and
∑

q λqc < ∞, for c = 1, · · · , C. By the Karhunen-Loève theorem, if the i-th subject Xi(t) is

from the c-th component, then it can be represented as follows

Xi(t) = µc(t) +
∞∑
q=1

ξiqcvqc(t),

where the functional principal component score ξiqc is considered as independent random variables

with E(ξiqc) = 0, and Var(ξiqc) = λqc.

Since the sample path of Xi(t) is a smooth function of t, Xi(t) is termed a smooth random

function (Yao et al., 2005) . As depicted in Figure 1, the collected sample of random curves are

typically not smooth in practice. Following Yao et al. (2003), it is assumed that the observed

curve {yi(t), t = tij, j = 1, · · · , Ni} is

yi(t) = Xi(t) + ϵi(t),

where ϵi(t) is additive measurement error, and it is assumed that ϵi(tij), for all i and j, are inde-

pendent and identically distributed as N(0, σ2). Denote yij = yi(tij) and ϵij = ϵi(tij). Throughout

this paper, it is assumed that conditioning on C = c, the observations yij, j = 1, · · · , Ni and

i = 1, · · · , n, follows

yij = µc(tij) +
∞∑
q=1

ξiqcvqc(tij) + ϵij, (2.1)

where ϵijs are independent and identically distributed of N(0, σ2).
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We also consider a reduced model from model (2.1), where the data within subjects are in-

dependent. This means that Gc(s, t) = 0 if s ̸= t. Let σ∗2
c (t) = Gc(t, t) + σ2, it follows that

conditioning on C = c

yij = µc(tij) + ϵ∗ij, (2.2)

where ϵ∗ij are independent with E(ϵ∗ij) = 0 and Var(ϵ∗ij) = σ∗2
c (tij). This is equivalent to treating

yijs sampled from the following distribution:

y(t) ∼
C∑
c=1

ρcN{µc(t), σ
∗2
c (t)}. (2.3)

Theorem 2 Suppose µc(t) and σ∗
c (t) are smooth functions of t for any c = 1, . . . , C. Let S∗ =

{t ∈ T : (µi(t), σ
∗
i (t)) = (µj(t), σ

∗
i (t)) for some 1 ≤ i ̸= j ≤ C}. If the complement of S∗ is not

empty, then the mixture model (2.3) is identifiable.

The proof of Theorem 2 (omitted) is similar to Theorem 1.

3 Estimation Procedures

3.1 Estimation of Model (2.3)

Denote by ϕ(y|µ, σ2) the density function of N(µ, σ2). Then for model (2.3), the log-likelihood

function of the collected data is

n∑
i=1

log

[
C∑
c=1

ρc

Ni∏
j=1

ϕ
{
yij|µc(tij), σ

∗2
c (tij)

}]
. (3.1)

We now propose an EM-type algorithm to maximize (3.1). Define the membership identity

random variables

zic =

 1, if {Xi(t), t ∈ T} is in the cth group,

0, otherwise.

Thus, the complete likelihood of {(yij, zic), j = 1, · · · , Ni, i = 1, · · · , n, c = 1, . . . C} is

n∏
i=1

C∏
c=1

[
ρc

Ni∏
j=1

ϕ{yij|µc(tij), σ
∗2
c (tij)}

]zic

.
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After the l-th iteration of the EM algorithm, suppose that we have ρ
(l)
c , σ

∗2(l)
c (·), and µ

(l)
c (·). Thus,

in the E-step of the (l + 1)-th iteration, the expectation of the latent variable zic is given by

r
(l+1)
ic =

ρ
(l)
c

[∏Ni

j=1 ϕ{yij|µ
(l)
c (tij), σ

∗2(l)
c (tij)}

]
∑C

c=1 ρ
(l)
c

[∏Ni

j=1 ϕ{yij|µ
(l)
c (tij), σ

∗2(l)
c (tij)}

] . (3.2)

In the M-step of the (l+1)-th iteration, we would maximize the logarithm of complete log-likelihood

function with zic replaced by r
(l+1)
ic , which is

n∑
i=1

C∑
c=1

[
r
(l+1)
ic log(ρc) + r

(l+1)
ic

Ni∑
j=1

log ϕ{yij|µc(tij), σ
∗2
c (tij)}

]
.

This leads to

ρ(l+1)
c =

1

n

n∑
i=1

r
(l+1)
ic . (3.3)

Note that both µc(·) and σ∗2
c (·) are nonparametric smoothing functions. Here we use kernel

regression to estimate µc(·)’s and σ∗2
c (·)’s. For any t0 ∈ T , we approximate µc(tij) by µc(t0) and

σ∗2
c (tij) by σ∗2

c (t0) for tij in the neighborhood of t0. Thus, the corresponding local log-likelihood

function is
n∑

i=1

C∑
c=1

r
(l+1)
ic

Ni∑
j=1

[log ϕ{yij|µc(t0), σ
∗2
c (t0)}]Kh(tij − t0), (3.4)

where Kh(t) is a rescaled kernel function h−1K(t/h) with a kernel function K(t). Maximizing

(3.4) with respect to µc(t0) and σ∗2
c (t0), c = 1, · · · , C, yields

µ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1w
(l+1)
ijc yij∑n

i=1

∑Ni

j=1w
(l+1)
ijc

, (3.5)

σ∗2(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1w
(l+1)
ijc {yij − µ

(l+1)
c (t0)}2∑n

i=1

∑Ni

j=1w
(l+1)
ijc

, (3.6)

where w
(l+1)
ijc = r

(l+1)
ic Kh(tij − t0). In practice, we evaluate the estimates at a set of grid points for

the given label in the E-step. Let {u1, · · · , ungrid
} be a set of grid points at which the estimated

functions are evaluated, where ngrid is the number of grid points. If the total number of observa-

tions J =
∑n

i=1Ni, is not very large, we can directly use all the time points as the grid points.

Otherwise, we update µc(tij) and σ∗2
c (tij), i = 1, · · · , n, j = 1, · · · , Ni by linearly interpolating

µ
(l+1)
c (uk) and σ

∗2(l)
c (uk), k = 1, · · · , ngrid. Denote by ρ̃c, µ̃c(·), and σ̃∗2

c (·) the resulting estimate of

ρc, µc(·), and σ∗2
c (·), respectively.
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3.2 Estimation of Model (2.1)

3.2.1 Initial Estimation

For a Gaussian process, it is inevitable to estimate the mean functions first, and then estimate the

covariance function based on the residuals. As demonstrated in Lin and Carroll (2000), the kernel

generalized estimating equation (GEE) method for repeated measurement data yields an optimal

estimate in a certain sense by pretending the data within subjects are independent. Furthermore,

kernel GEE method with working independent covariance structure is easy to implement. There-

fore for the mixture of Gaussian processes, it is natural to adapt the estimation procedure of model

(2.3), and pretending that the data within subjects are independent. We refer to this procedure

as an initial estimation with working independent correlation. This yields the initial estimation

of the mean functions and probability identities of each subject.

3.2.2 Estimation of Covariances

We now deal with estimation of covariance functions using functional principal analysis. Let

Ḡic(tij, til) = {yij − µ̃c(tij)}{yil − µ̃c(til)}. Note that given C = c, Cov{Y (t), Y (t)} = Gc(t, t) + σ2,

and Cov{Y (s), Y (t)} = Gc(s, t) for s ̸= t. If zic were observable, then the covariance function

Gc(s, t) could be estimated by a two-dimensional kernel smoother, which is to minimize

n∑
i=1

zic
∑

1≤j ̸=l≤N

[Ḡic(tij, til)− β0]
2Kh∗(tij − s)Kh∗(til − t), (3.7)

with respect to β0. In practice, zic is a latent variable. Following the idea of the EM algorithm,

we replace zic by its expectation ric given in (3.2), which was obtained in the initial estimation

procedure with working independent correlation. Thus, we minimize

n∑
i=1

ric
∑

1≤j ̸=l≤N

[Ḡic(tij, til)− β0]
2Kh∗(tij − s)Kh∗(til − t), (3.8)

with respect to β0. The minimizer Ĝc(s, t) ≡ β̂0 of (3.8) has a closed form solution, given by

Ĝc(s, t) =

∑n
i=1 ric

∑
1≤j ̸=l≤Ni

Ḡic(tij, til)Kh∗(tij − s)Kh∗(til − t)

n∑
i=1

ric
∑

1≤j ̸=l≤Ni

Kh∗(tij − s)Kh∗(til − t)
. (3.9)
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Following Rice and Silverman (1991), the estimation of eigenvalues and eigenfunctions are based on

discretizing the covariance estimate Ĝc(s, t). The estimates of eigenvalues λ̂qc and eigenfunctions

v̂qc(·) are determined by eigenfunctions∫
T

Ĝc(s, t)v̂qc(s)ds = λ̂qcv̂qc(t), (3.10)

where v̂qc(t) satisfies
∫
T
v̂2qc(t)dt = 1, and

∫
T
v̂pc(t)v̂qc(t)dt = 0 if p ̸= q. Then, in order for the

resulting estimate of Gc(s, t) to be positive definite, we set

Ĝc(s, t) =
∑
q

λ̂qcI(λ̂qc > 0)v̂qc(s)v̂qc(t).

3.2.3 An Iterative Estimation Procedure

Given µ̂c(t) and v̂qc(t), the functional principal component score ξiqc can be estimated by

ξ̂iqc =

∫
T

{yi(t)− µ̂c(t)} v̂qc(t)dt. (3.11)

Furthermore, for j = 1, · · · , Ni and i = 1, · · · , n, define

η̂ic(tij) =
∑
q

ξ̂iqcI(λ̂qc > 0)v̂qc(tij), (3.12)

which is an estimate of ηic(tij) =
∑

q ξiqcI(λqc > 0)vqc(tij). Let

y∗c (tij) = yij − η̂ic(tij). (3.13)

Then, conditioning on C = c, model (2.1) can be approximated by

y∗c (tij) ≈ µc(tij) + ϵij, (3.14)

where ϵij’s are independent and identically distributed as N(0, σ2). Hence, with the aid of func-

tional PCA, we can transform the correlated data to uncorrelated data with a few eigenvalues

and eigenfunctions from the estimate of Gc(s, t). Based on {y∗c (tij), i = 1, . . . , n, j = 1, . . . , Ni, c =

1, . . . , C}, the EM-type algorithm for model (2.2) can be adapted to further improve the estimate

of µc(t), σ
2, and ρcs. Slight revision is made according to the constant variance of (3.14), which

is different from (2.2). Specifically, in the E-step we find the probability

r
(l+1)
ic =

ρ
(l)
c

[∏Ni

j=1 ϕ{y∗c (tij)|µ
(l)
c (tij), σ

2(l)}
]

∑C
c=1 ρ

(l)
c

[∏Ni

j=1 ϕ{y∗c (tij)|µ
(l)
c (tij), σ2(l)}

] . (3.15)
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In the M-step, we update the estimates of µc(t), ρc, and σ2. For t0 ∈ {u1, · · · , ungrid
},

µ(l+1)
c (t0) =

∑n
i=1

∑Ni

j=1w
(l+1)
ijc y∗c (tij)∑n

i=1

∑Ni

j=1w
(l+1)
ijc

, (3.16)

where w
(l+1)
ijc = r

(l+1)
ic Kh(tij − t0), and

ρ(l+1)
c =

1

n

n∑
i=1

r
(l+1)
ic , (3.17)

σ2(l+1) =
1∑n

i=1Ni

n∑
i=1

C∑
c=1

Ni∑
j=1

r
(l+1)
ic {yij − µ(l+1)

c (tij)}2. (3.18)

Furthermore, we update {µ(l+1)
c (tij), i = 1, · · · , n, j = 1, · · · , Ni} by linearly interpolating µ(l+1)

c (uk),

k = 1, · · · , ngrid.

To improve the estimation, we further propose an iterative estimation procedure, which iterates

between one cycle of the above procedure, and the estimation of the covariance structure. The

proposed estimation procedure can be summarized as follows:

An Iterative Estimation Procedure

Step 1: Calculate µ̃c(·) using the EM-type algorithm of (3.2)–(3.6).

Step 2: Given µc(·), and rics, obtain Ĝc(s, t) using (3.9) and calculate η̂ic(tij) using (3.10), (3.11),

and (3.12).

Step 3: Calculate y∗c (tij) in (3.13), update µc(t), σ
2, ρc, and rics using (3.15)–(3.18).

Iteratively calculate Step 2 and Step 3 until convergence. It is worth noting that this procedure is

easy to implement, since it avoids the disadvantages of high-dimensional mixture of normals, i.e.,

the calculation of inverse of the covariance matrix.

Remark. For model (2.1), when the components are well separated, the initial estimation proce-

dure estimates the mean functions almost as well as the iterative procedure which incorporates the

correlations. When the components are very separated, the component identities of the samples

can be considered as known. Therefore, the problem is similar to the traditional homogenous

functional data analysis. Typically, the estimated covariance has a slower convergence rate than

the estimated mean function, and the convergence rate of the eigenfunctions relates to rate of

10



estimated covariance (Yao et al., 2005). Hence, estimating mean function by incorporating corre-

lation via the estimated eigenfunctions can not be more efficient. However, when the components

are overlapped, estimation with incorporating correlation can improve the estimation of compo-

nent identities, and therefore improve both estimations of mean and covariance functions of each

component. We will design simulation study to illustrate this point in Section 4.

3.3 Practical Implementation Issues

Now we address some important practical issues, including the choice of the number of components,

bandwidth, and number of eigenfunctions. In practice they may be determined in the following

sequence. The number of components shall be determined before the bandwidth and number

of eigenfunctions. Once we choose number of components, we select the bandwidths for model

(2.2) and the covariance estimates. With the selected bandwidths, we then choose the number of

eigenfunctions for each component. Finally we select the bandwidths for the refined estimation

procedure for mean functions, and the iterative estimation procedure.

Choice of the number of components. Choosing the number of components C is a critical

issue for mixture models. This paper assumes the number of components is known. But when the

observations are dense, we may use a simple approach to determine C by using the information

criteria for finite mixture of low dimensional multivariate normals. Direct implementation of the

information criteria for mixture of Gaussian processes is difficult since the degrees of freedom

for mixture of Gaussian processes is not well defined. As a practical alternative, we recommend

applying the AIC or BIC with a finite mixture of multivariate normals for part of the observed

data. Specifically, for the supermarket data introduced in Section 1, if the data are observed at

(t1, · · · , tN) for all subjects, then we may take the partial data observed at (tk1 , · · · , tkN′ ), a subset

of (t1, · · · , tN). In practice, the subsect (tk1 , · · · , tkN′ ) can be every d points of (t1, · · · , tN) for

some d ≥ 2. For irregular and unbalanced data, one may either bin the data over the observed

times or interpolate the data over a regular grid points, and then further use the AIC or BIC to

the selected part of the binned data or interpolated data. By using partial data, we are able to

determine C before analysis using the proposed procedure, and avoid the disadvantages of high-

dimensional mixtures of normals. This has been implemented in the real data analysis in Section

4.2. For sparse data, further research is needed.
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Bandwidth selection. Bandwidth selection is another important issue to be addressed.

For initial estimation based on model (2.2), we use the same bandwidth for mean and variance

functions for simplicity of computation, and the optimal bandwidth can be determined via multi-

fold cross-validation (CV) method. For the covariance functions in Section 3.2.2, we may use one-

curve-leave-out cross-validation to choose this smoothing parameter, which has been suggested in

the literature of covariance function smoothing (Rice and Silverman, 1991; Yao et al., 2005). We

also consider the generalized cross-validation (GCV) method given by the released codes associated

with Yao et al. (2005). The bandwidth selection in the refined estimation in Section 3.2.3 only

involves the mean function, and it can be determined by CV or GCV method. The simulation

results in Section 4 demonstrate that the proposed estimation procedure works quite well in a

wide range of bandwidths.

Choice of the number of eigenfunctions. A proper number of eigenfunctions is vital

to provide a reasonable approximation to the Gaussian process in each component. Rice and

Silverman (1991) suggested using the cross-validation method based on the one-curve-leave-out

prediction error. Yao et al. (2005) investigated AIC-type criteria in functional principal compo-

nent analysis, and found that while the AIC and cross-validation give similar results, the AIC is

computationally more efficient than cross-validation method. In practice, empirical criteria are

also useful to select the number of eigenfunctions. We may choose the number of eigenfunctions so

that the percentage of total variation explained by the eigenfunctions is above a certain threshold,

e.g., 85 percent or 90 percent.

4 Simulation and Application

In this section, we conduct numerical simulations to demonstrate the performance of the proposed

estimation procedures. To assess the performance of the estimates of the unknown regression

functions µc(t), we consider the square root of the average squared errors (RASE) for mean

functions,

RASE2
µ = n−1

grid

C∑
c=1

ngrid∑
j=1

{µ̂c(uj)− µc(uj)}2,

where {uj, j = 1, · · · , ngrid} are the grid points at which the unknown functions µc(·) are evaluated.

For simplification, the grid points are taken evenly on the range of the tijs. In the simulation, we

12



set ngrid = 50. Similarly, we can define the RASE of the eigenfunctions for the c-th component,

which is

RASE2
vc = n−1

grid

Qc∑
q=1

ngrid∑
j=1

{v̂qc(uj)− vqc(uj)}2.

where Qc is the number of eigenfunctions chosen as discussed in Section 3.4. We are also interested

in the average of mean square of predicted error, given by

MSE = (
n∑

i=1

Ni)
−1

n∑
i=1

Ni∑
j=1

{
yij −

C∑
c=1

r̂icX̂ic(tij)

}2

,

where X̂ic(tij) = µ̂c(tij) + η̂c(tij). MSE can be considered as a natural estimate of σ2.

For confidence intervals and standard errors, we consider a bootstrap procedure. Given the ob-

served time {tij, j = 1, · · · , Ni}, we generate a multivariate normal bootstrap sample {yb(tij), j =

1, · · · , Ni} with probability ρ̂c, where Ey
b(t) = µ̂c(t), and Cov(yb(t), yb(s)) = Ĝc(t, s)+ σ̂2I. Then

we obtain the standard errors and confidence intervals by using our estimation procedures in each

of the bootstrapped samples.

4.1 Simulation Study

In the following example, we generate data from a two-component mixture of Gaussian processes

with

ρ1 = 0.45, ρ2 = 1− ρ1 = 0.55, and σ2 = 0.01,

µ1(t) = sin(πt), and µ2(t) = δ + 1.5 sin(πt),

v11(t) =
√
2 sin(πt), and v12(t) =

√
2 cos(πt),

v21(t) =
√
2 sin(4πt), and v22(t) =

√
2 cos(4πt).

The simulated data with sample size n = 100 are observed at grid points {k/N, k = 1, · · · , N}

for both components, where N is set to be 20 and 40. Note that in this example, the data are

balanced. However, the computation will be similar for unbalanced data. Let the eigenvalues for

both components be λ11 = 0.04, λ12 = 0.01, λ21 = 0.04, λ22 = 0.01, and λqc = 0, for q > 2,

c = 1, 2, and let the principal component scores ξiqc be generated from N(0, λqc), q = 1, 2, and

c = 1, 2.

13
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Figure 2: (a) Typical sample data for the well-separated setting, δ = 0.5; (b) Typical sample data for

the heavy-overlap setting δ = 0.

We consider two scenarios of simulation data sets from the above data generation scheme. In

the first scenario, we set δ = 0.5. As demonstrated in the typical sample depicted in Figure 2 (a),

the subjects from the two components are well separated for this scenario. In the second scenario,

we set δ = 0, and the mean functions of the two components are close to each other. Thus, the

subjects from the two components are heavily overlapping. A typical sample generated from this

scenario is depicted in Figure 2 (b). We compare the performance of two estimation procedures: the

estimation of (2.3) using the EM-type algorithm, referred to as procedure of ‘working independent’;

and the estimation of (2.1) using the iterative estimation procedure, referred to as procedure of

‘incorporating correlation’. The comparisons are conducted in both the well-separated setting, and

the heavy-overlap setting. For the heavy-overlap setting, we further investigate the performance

of eigenfunction estimation.

In the simulation, we assume that the number of components C is known, and use the Epanech-

nikov kernel for functional smoothing. The bandwidths of mean functions and covariance functions

are obtained by CV methods. In simulation we used a fixed bandwidth pair (ĥµ, ĥcov) for each

simulated data. This pair was selected as the average of optimal CV bandwidths of several sim-

ulated dataset. Our experience shows that for a wide range of ĥcov including the optimum one,
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Table 1: Estimation of Mean functions and ρ1

Working independent Incorporating correlation

N δ RASEµ ρ1 = 0.45 RASEµ ρ1 = 0.45

20 0.5 0.059(0.012) 0.441(0.049) 0.058(0.012) 0.448(0.049)

0 0.128(0.035) 0.301(0.048) 0.059(0.012) 0.465(0.050)

40 0.5 0.053(0.014) 0.443(0.047) 0.052(0.014) 0.450(0.047)

0 0.113(0.031) 0.317(0.048) 0.052(0.014) 0.457(0.048)

Table 2: Estimation of Eigenfunctions and Measurement Error (δ = 0)

N δ RASEv1 RASEv2 MSE σ̂2 = 0.01

20 0.5 0.1682(0.0866) 0.2042(0.0624) 0.0102(0.0003) 0.0102(0.0003)

0 0.1526(0.0684) 0.2042(0.0625) 0.0102(0.0003) 0.0102(0.0003)

40 0.5 0.1481(0.0855) 0.2122(0.0506) 0.0111(0.0003) 0.0111(0.0003)

0 0.1394(0.0756) 0.2121(0.0506) 0.0111(0.0003) 0.0111(0.0003)

the estimation procedure ‘incorporating correlation’ selected similar optimal bandwidth ĥµ to the

estimation procedure of ‘working independent’. Hence, for the simplicity of our simulation study,

we use the same bandwidth for the mean functions in the two estimation procedures. For the

number of eigenfunctions, since both CV and pseudo-AIC did not work well in our simulation, we

considered the rule-of-thumb criterion. In 500 simulations for both cases δ = 0 and δ = 0.5, the

threshold of 85 percent explained variance selected the correct number of eigenfunctions for each

component in more than 90% runs. For computational consideration we also assume that number

of eigenfunctions are known in our simulation.

Table 1 displays the simulation results for both the cases of δ = 0.5 and δ = 0 over 500

simulations. The mean and standard deviation of RASEµ, and the estimate of ρ1 are recorded

for both estimation procedures. The bandwidths are chosen as (ĥµ = 0.11, ĥcov = 0.10) when

N = 20, and (ĥµ = 0.08, ĥcov = 0.08) when N = 40. For the δ = 0.5 setting, the results

show that the proposed procedures perform quite well for the selected bandwidths in the two
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Table 3: Bootstrap standard error (N = 20, δ = 0.5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.028 0.037 0.044 0.048 0.050 0.049 0.044 0.036 0.028

µ1(·) SE 0.027 0.032 0.038 0.043 0.045 0.043 0.039 0.033 0.027

Std 0.005 0.007 0.007 0.008 0.008 0.008 0.007 0.006 0.005

SD 0.032 0.025 0.025 0.031 0.020 0.033 0.026 0.026 0.031

µ2(·) SE 0.033 0.025 0.024 0.031 0.019 0.032 0.024 0.025 0.033

Std 0.005 0.004 0.004 0.005 0.004 0.005 0.005 0.004 0.004

SD 0.150 0.123 0.094 0.059 0.044 0.062 0.092 0.128 0.154

v11(·) SE 0.143 0.116 0.089 0.063 0.048 0.061 0.087 0.114 0.141

Std 0.036 0.029 0.023 0.015 0.010 0.014 0.023 0.032 0.038

SD 0.096 0.115 0.138 0.170 0.174 0.149 0.143 0.115 0.089

v12(·) SE 0.111 0.119 0.140 0.157 0.164 0.158 0.143 0.122 0.112

Std 0.020 0.019 0.025 0.031 0.033 0.030 0.026 0.020 0.021

SD 0.163 0.170 0.115 0.054 0.160 0.184 0.177 0.122 0.074

v21(·) SE 0.095 0.161 0.157 0.098 0.177 0.098 0.159 0.157 0.096

Std 0.060 0.073 0.081 0.089 0.091 0.089 0.081 0.069 0.061

SD 0.198 0.108 0.173 0.158 0.123 0.189 0.120 0.169 0.182

v22(·) SE 0.229 0.181 0.181 0.234 0.203 0.237 0.180 0.183 0.226

Std 0.057 0.034 0.046 0.043 0.044 0.054 0.036 0.046 0.053

estimation procedures. This suggests that when the components are well separated, the estimation

procedure incorporating correlations does not provide significant improvements compared to the

working independent procedure. For the δ = 0 setting, the estimation procedure for working

independent correlation performs quite poorly, and the estimate of proportion parameter ρ1 has

large bias. However, the estimation procedure incorporating correlations does give much better

results: smaller RASEµs for the mean functions, and more accurate estimates of ρ1. The results

agree with the explanations in the remark of Section 3.2.3 as expected. For the iterative estimation

procedure, we further summarize the RASE of the eigenfunctions for each component, the MSE,
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Table 4: Bootstrap standard error (N = 40, δ = 0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SD 0.024 0.030 0.037 0.043 0.044 0.043 0.039 0.032 0.026

µ1(·) SE 0.022 0.028 0.034 0.038 0.040 0.038 0.034 0.028 0.022

Std 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.003

SD 0.037 0.026 0.027 0.037 0.017 0.037 0.025 0.027 0.036

µ2(·) SE 0.035 0.027 0.027 0.035 0.020 0.035 0.026 0.027 0.035

Std 0.004 0.004 0.005 0.006 0.005 0.005 0.005 0.004 0.005

SD 0.143 0.123 0.093 0.055 0.035 0.056 0.093 0.126 0.146

v11(·) SE 0.120 0.104 0.079 0.051 0.039 0.053 0.081 0.104 0.120

Std 0.029 0.027 0.021 0.014 0.009 0.014 0.020 0.026 0.030

SD 0.072 0.110 0.135 0.156 0.164 0.154 0.130 0.104 0.074

v12(·) SE 0.087 0.104 0.124 0.139 0.144 0.139 0.123 0.102 0.084

Std 0.013 0.015 0.022 0.025 0.026 0.026 0.022 0.016 0.013

SD 0.060 0.121 0.122 0.053 0.145 0.054 0.122 0.120 0.055

v21(·) SE 0.077 0.137 0.138 0.079 0.165 0.080 0.141 0.135 0.078

Std 0.051 0.057 0.059 0.080 0.077 0.085 0.069 0.049 0.051

SD 0.153 0.105 0.105 0.150 0.063 0.153 0.105 0.110 0.147

v22(·) SE 0.185 0.145 0.145 0.192 0.137 0.196 0.146 0.147 0.184

Std 0.075 0.068 0.068 0.090 0.117 0.110 0.084 0.063 0.068

and the estimate of σ2 in Table 2. The results show that both the σ̂2 yielded by the iterative

procedure and the MSE are good estimates of σ2. In the heavy overlap setting, the proposed

iterative procedure is able to provide good estimate of the eigenfunctions as well as the separated

setting.

The accuracy of the standard error via bootstrap method can be assessed by Monte Carlo

method. Table 3 and Table 4 summarize the performance of the standard errors of the mean

functions and principal component functions at t = 0.1, 0.2, · · · , 0.9. Denoted by SD the standard

deviation of 200 estimates, which can be viewed as the true standard errors. The average and
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Table 5: Comparisons for different error distributions

Working independent Incorporating correlation

Distribution δ RASEµ ρ1 = 0.45 RASEµ ρ1 = 0.45

t(3) 0.5 0.062(0.014) 0.442(0.049) 0.066(0.021) 0.459(0.052)

0 0.134(0.032) 0.301(0.050) 0.064(0.015) 0.485(0.055)

Laplace 0.5 0.060(0.013) 0.442(0.051) 0.059(0.012) 0.448(0.050)

0 0.131(0.032) 0.305(0.049) 0.058(0.011) 0.466(0.053)

Exp(1) 0.5 0.060(0.014) 0.443(0.049) 0.058(0.012) 0.449(0.049)

0 0.133(0.034) 0.303(0.051) 0.058(0.012) 0.466(0.052)

standard deviation of the 200 estimated standard errors via bootstrap, denoted by SE and Std,

respectively, are recorded in rows. The result shows that the proposed standard error method

works well for the mean functions and the eigenfunctions of the first component. However, it does

not give very good result for the eigenfunctions of the second component. In simulation we use the

same bandwidth hcov in both covariances smoothing for simplicity of computation and bandwidth

selection. The estimation may be improved by using different bandwidths in each component.

It is of interest to investigate whether the proposed model still works fine if the data do not

follow Gaussian process. To this end, we consider three non-Gaussian distributions for the error

term in model (2.1): (i) t-distribution with 3 degrees of freedom 0.1×t(3); (ii) Laplace distribution

0.1× Laplace(0, 1); (iii) centralized exp(1) distribution 0.1× (exp(1)− 1). In this simulation, we

take the same setting as before except for the three error distributions. For the case N = 20, we

report the mean and standard deviation of RASEµ, and the estimate of ρ1 over 500 simulations.

The results summarized in Table 5 demonstrate that our estimation procedure is not very sensitive

to the Gaussian assumption.

To investigate the performance of the proposed methodologies under large C, we conduct

simulation studies by using C = 20 and 50. In the simulations, random observations are generated
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Table 6: Simulation results for large C

Working independent Incorporating correlation

C δ∗ RASEµ ||ρ̂− ρ|| RASEµ ||ρ̂− ρ||

20 2 0.194(0.013) 0.030(0.005) 0.188(0.013) 0.030(0.005)

4 0.186(0.013) 0.029(0.005) 0.186(0.013) 0.029(0.005)

50 2 0.415(0.031) 0.031(0.003) 0.402(0.026) 0.031(0.003)

4 0.401(0.026) 0.031(0.003) 0.401(0.026) 0.031(0.003)

from a mixture of Gaussian processes with the following setting: ρc = 1/C, σ2 = 0.01,

µc(t) =

 sin(πt) + (c− 1)δ∗, if c is odd,

1.5 sin(πt) + (c− 1)δ∗ + 1, if c is even.

v1c(t) =


√
2 sin(πt), if c is odd,

√
2 sin(4πt), if c is even.

v2c(t) =


√
2 cos(πt), if c is odd,

√
2 cos(4πt), if c is even.

The eigenvalues for all components are set as λ1c = 0.04, λ2c = 0.01, and λqc = 0, for q > 2. The

principal component scores ξiqc are generated from N(0, λqc), q = 1, 2, and c = 1, · · · , C.

For both cases C = 20 and 50, the simulated data with sample size n = 1000 are observed at

grid points {k/N, k = 1, · · · , N} for both components, where N = 20. We consider two scenarios:

δ∗ = 4 for well separated components, and δ∗ = 2 for heavily overlapping components. We ran

100 simulations for both scenarios, and the detailed results are given in Table 6. The results show

that the proposed procedures still perform well when C is large.

4.2 Analysis of Supermarket Data

We use the proposed mixture of Gaussian processes and estimation procedure to analyze the

supermarket dataset, which is depicted in Figure 1. We determine the number of component C

using some partial sparse data. Since BIC often chooses simple models with finite sample, we

consider the AIC for multivariate mixture of normals with one, two, three and four components.
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Figure 3: (a)Estimated mean functions and clustering results based on posteriors; (b)Estimated

variance functions

We choose 4 sparse datasets, which are taken from the original data for every 4, 5, 6 time locations.

The AIC scores achieve the minimum at C = 3 for all the sparse datasets; thus, it is reasonable

to select a 3-component model for analysis.

We first analyze the data using the working independent correlation model (2.2) with three

components. Without loss of information, we transform the time interval of the data to [0, 1].

The smoothing parameter chosen by CV selector is hµ = 0.07. The estimated proportions of

the three components (from up to down) are 0.1632, 0.4311, and 0.4057. The estimated mean

functions and a hard-clustering result are shown in Figure 3(a). The hard-clustering is obtained

by assigning component identities according to the largest ric, c = 1, · · · , C. From this result and

the original data with actual calender dates, we found that the days in the upper class are mainly

from the month of Chinese spring festivals. Most Saturdays and Sundays fall in the middle class,

and the weekdays generally fall in the lower class. The estimated mean functions can be viewed

as estimated average customer flows of the three classes. We observed that there are two peaks of

customer flows for 3 components. The first peak occurs around 9:00 am in all components. The

second peak occurs around 2:00 pm for the first component, and 3:00 pm for the second and third

component. This pattern may indicate that people tend to buy earlier in the afternoon during the

days of spring festival. We further plot the estimated variance functions of the three components

in Figure 3(b). Combining Figure 3(a) and Figure 3(b), we observed that the variance functions
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Figure 4: (a) First two eigenfunctions of the upper class; (b) First two eigenfunctions of the middle class;

(c) First two eigenfunctions of the lower class.

followed a similar pattern with the mean functions in three components, in that a higher mean

was associated with a higher variance.

The next step is to analyze the data by using functional principal component analysis. The

selected bandwidth for the covariance function is hcov = 0.065. Based on the estimated posterior,

we estimate the covariance functions and obtain estimates of the eigenfunctions of all components.

We plot the first two eigenfunctions of the three components in Figure 4. For the upper class,

the first eigenfunction explains 51.70% of the total variation, and has a negative value along its

time interval from 9:00 am to 5:30 pm. It means that a subject of this class (i.e., a day) with a

positive (negative) functional principal component score on this direction tends to have smaller

(larger) customer flows than the population average in a whole observed time interval. We also
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observe that there are two negative peaks (corresponding to two lowest local minimums) in the

first eigenfunction, which occurs around 9:00 am and 2:00 pm. It means that the variations of

the customer flows are large in the two peaks, especially for the peak at 9:00 am. Note that

these peaks are also observed in the first estimated variance function; therefore the results agree

with each other as we expected. The second eigenfunction, which explains 22.80% of the total

variation, has relatively small negative values in the morning and large positive values in the

afternoon. This means that a subject with a positive functional principal component score on

this direction tends to have smaller customer flow in the morning and a higher customer flow in

the afternoon. The variation characterized by the second eigenfunction has a minor magnitude

compared to the variation in the first eigenfunction, where the magnitude is determined by the

eigenvalues. The third and fourth eigenfunction explains 7.58% and 4.28% of the total variation,

and is of little interest. The first four principal components explain more than 85% percent of the

total variation. Therefore, we think that using 4 eigenfunctions is enough for the analysis of the

upper class. Similarly, we can analyze and interpret the eigenfunctions of the second component.

5 Discussion

Finite mixture models are particularly useful as a flexible modeling approach. In this paper, we

proposed new estimation procedures for mixture of Gaussian processes. We imposed smoothed

structures for both mean and covariance functions in each component, and showed that the mixture

of Gaussian processes is identifiable under certain conditions. We further developed estimation

procedures using kernel regression, EM algorithm, and functional principal component analysis.

The proposed procedure overcomes several disadvantages of mixture of multivariate normals, such

as “curse of dimensionality”, and computational instability. It is easy to show that the computa-

tional complexities are O(n×N ×C×ngrid) and O(n×N2×C×n2
grid+C×n3

grid) for model (2.3)

and model (2.1), respectively. The finite sample performance of the proposed method is examined

by Monte Carlo simulation.

The selection of the number of components is a challenging problem. In this paper, we con-

sidered a computationally simple approach by fitting a multivariate normal mixtures to a partial

data and demonstrated its effectiveness through supermaket data application. It requires further

research to adaptively select the number of mixture components using some more complicated
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methods. We may start with some likelihood-based approaches such as the information criterion

method or penalized likelihood, however, a critical issue is to assess the model complexity, i.e., the

effective number of parameters. In the nonparametric mixture of regression models, model com-

plexity can be defined, e.g., Huang et al. (2013). However, in the proposed framework, there are

still difficulties to obtain degree of freedom when we implement kernel regression and functional

PCA for covariance estimation. Further researches on model complexity are needed. In addition

to the primary interests of model estimation, testing in mixture models is also a very important

issue. One may be interested in testing whether the mean functions are constant, or of a linear

form. This issue can be further studied along the lines of nonparametric likelihood ratio test, e.g.,

Fan et al. (2001). It is interesting to study whether the Wilks Phenomenon still holds for the

mixture of Gaussian processes.

In real application, data may not follow Gaussian process. We conducted some simulation to

investigate whether the proposed model still works if the data do not follow Gaussian process. The

results demonstrate that our method still works well when the error term in model (2.1) follows

some other finite-moment distributions, such as t-distribution, Laplace distribution, and central-

ized exponential distribution. When there are additional functional covariate inputs, mixture of

Gaussian process regression (Shi et al., 2005, 2007) can be used. It will be interesting to study

how the proposed estimation methods in this article can be extended to the regression setting.

Appendix

Proof of Theorem 1

Suppose that {X(t), t ∈ T} admits another representation such that given D = d, {X(t), t ∈

T} follows a Gaussian process with mean νd(t) and covariance function Cov{X(s), X(t)} =

Hd(s, t), d = 1, . . . , D. In addition, P (D = d) = πd. Therefore,

X(r) ∼
D∑

d=1

πdN(νd(r), Hd(r, r)) =
C∑
c=1

ρcN(µc(r), Gc(r, r)).

Since the complement of S is not empty, there exists r ∈ T such that for any 1 ≤ j ̸= k ≤

C, (µj(r), Gj(r, r)) ̸= (µk(r), Gk(r, r)). Based on the identifiability of finite mixture of normal

distribution (see Titterington et al. (1985), p. 38, Example 3.1.4), D = C and there exists a
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permutation w = (w(1), . . . , w(C)) such that

πw(c) = ρc, νw(c)(r) = µc(r), Hw(c)(r, r) = Gc(r, r), c = 1, . . . , C. (5.1)

Then for any pair (s, t) such that r ̸= s, r ̸= t, and s ̸= t,

(X(r), X(s), X(t))T ∼
C∑
c=1

ρcN3 (νc(r, s, t),Hc(r, s, t)) =
C∑
c=1

πcN3 (µc(r, s, t),Gc(r, s, t)) ,

where

νc(r, s, t) =


νc(r)

νc(s)

νc(t)

 , Hc(r, s, t) =


Hc(r, r) Hc(r, s) Hc(r, t)

Hc(s, r) Hc(s, s) Hc(s, t)

Hc(t, r) Hc(t, s) Hc(t, t)

 ,

µc(r, s, t) =


µc(r)

µc(s)

µc(t)

 , Gc(r, s, t) =


Gc(r, r) Gc(r, s) Gc(r, t)

Gc(s, r) Gc(s, s) Gc(s, t)

Gc(t, r) Gc(t, s) Gc(t, t)

 .

Note that (µc(r), Gc(r, r))s are different for different components. Based on Yakowitz and Spragins

(1968), the above multivariate normal mixture model is identifiable. Therefore, there exists a

permutation ws,t = (ws,t(1), . . . , ws,t(C)) such that

πws,t(c) = ρc,νws,t(c)(r, s, t) = µc(s, t),Hws,t(c)(r, s, t) = Gc(r, s, t), c = 1, . . . , C.

Noting that (µc(r), Gc(r, r))s are different for different components, based on (5.1),

ws,t(c) = w(c), c = 1, . . . , C, for any (s, t),

where w(·) is defined in (5.1). Therefore, for any (s, t), such that r ̸= s, r ̸= t, and s ̸= t, we have

πw(c) = ρc, νw(c)(t) = µc(t), Hw(c)(s, t) = Gc(s, t), c = 1, . . . , C. (5.2)

In addition, since µc(·) and Gc(·) are continuous functions, νw(c)(t) = µc(t), Hw(c)(r, t) = Gc(r, t),

and Hw(c)(r, r) = Gc(r, r). Therefore, there exists a constant permutation w = (w(1), . . . , w(C)),

which is independent of (s, t), such that

πw(c) = ρc, νw(c)(r) = µc(r), Hw(c)(r, s) = Gc(r, s), c = 1, . . . , C. (5.3)

This completes the proof of identifiability.
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