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Quantum state tomography is both a crucial component in the field of quantum information and computation,

and a formidable task that requires an incogitable number of measurement configurations as the system dimen-

sion grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme,

inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the num-

ber of configurations needed to uniquely reconstruct any given quantum state without any additional a priori

assumption whatsoever (such as rank information, purity, etc) about the state, apart from its dimension.

Introduction.—The characterization of an unknown (true)

quantum state ρt ≥ 0 of Hilbert-space dimension d is a sub-

ject of immense study in quantum information [1–3]. To fully

reconstruct an arbitrary ρt, one may perform a set of mea-

surements that is enough to characterize all d2 − 1 indepen-

dent parameters that define ρt. Unfortunately, the number of

such measurements generally grows polynomially with d, or

exponentially with the number of subsystems that determine

the quantum-source complexity. This poses a technical lim-

itation on how far conventional quantum tomography can go

in practical experiments [4, 5].

If we know a priori that rank{ρt = ρr} ≤ r is extremely

small, r ≪ d, then the concept of compressed sensing (CS),

whose foundation was first mathematically laid in the context

of imaging [6–8], facilitates the search for a unique estimator

by measuring much fewer configurations [9–12]. We say that

the corresponding data are informationally complete (IC) for

ρr. The state-of-the-art CS measurements to be performed

given such a prior information have been constructed in [13].

The standard CS procedure, nevertheless, has two impor-

tant issues that need to be addressed. Firstly, an a priori

knowledge about r is necessary to establish a preliminary

order-of-magnitude estimate for the number of configurations

needed to fully characterize ρr of rank no larger than r. Ac-

curacy of the final estimator is hence highly dependent on the

validity of this a priori guess. Secondly, one has no means

of verifying whether the measurement data at hand are truly

IC for ρr in the standard scheme. Typically, accuracy surveys

with target states are employed [10–12] and the value of such

a survey relies on the precision of these target states. There-

fore, the decision of a priori rank information and presumed

choices of target states are ultimately debatable in the pres-

ence of experimental errors, rendering the reliability of any

related tomography scheme questionable.

∗ ys teo@snu.ac.kr

In this Letter, we establish a new adaptive tomography

paradigm that completely removes the need for any sort of

a priori information about ρr (except for its dimension d).

Our proposed adaptive compressive tomography (ACT) also

includes an efficient recipe to determine informational com-

pleteness of the collected data. No target states are ever re-

quired to validate the resulting state estimator. The convex

boundary of the quantum state space and the positivity con-

straint plays the principal role in checking whether the accu-

mulated data are IC and adaptively choosing measurements

efficiently to uniquely reconstruct ρr, the two of which com-

pletely define the purpose of ACT.

To demonstrate ACT, we perform an experiment with the

orbital angular momentum (OAM) of single photons and ap-

ply ACT to states of various ranks engineered in these de-

grees of freedom. Both experimental and simulated results

show that ACT requires a smaller number of measurements

to reconstruct rank-deficient quantum states as compared to

conventional CS tomography with known types of CS mea-

surements.

The quantum state space and ACT.—In the absence of sta-

tistical fluctuations, we measure a randomly chosen compu-

tational basis {|0〉 , |1〉 , . . . , |d− 1〉} on ρr of Hilbert-space

dimension d. The corresponding Born probabilities p j =
〈 j|ρr | j〉 (0 ≤ j ≤ d − 1) specify only the diagonal elements

of ρr, and there is in principle a data convex set C = {ρ |ρ ↔
p j ∀ j} comprising infinitely many estimators ρ̂ that are con-

sistent with p j. Evidently, ρr ∈ C , and so the only fundamen-

tal objective of ACT is to shrink C to a single point with only

kIC ≪ d + 1 IC measurement bases for r ≪ d. For noiseless

situations, this point must be ρr.

To gain insights into how quantum positivity constraint

plays a major role in shrinking C , we argue in Appendix A

that if one methodically measures k0 = ⌈(r2 − r)/(d−1)⌉+1

orthonormal bases, one of which being the eigenbasis Bρr of

ρr, then ρ̂ =ρr is the unique positive estimator consistent with

all measured probabilities. For r ≪ d, the regime of our inter-
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FIG. 1. Schematic diagram of a particular adaptive step in ACT to-

mography. In a clockwise flow, ACT first performs ICC to check

whether data (blue) collected from measuring B are IC or not. If

not, it proceeds to choose a good basis to measure in the next step.

est, k0 = 2. It is however clear that kIC > 2 in real-world set-

tings where ρr is completely unknown (apart from its dimen-

sion d), so the famous no-go answer to Pauli’s phase-retrieval

problem [14, 15] still stands. Regardless the positivity con-

straint can still ensure an efficient compression of the IC to-

mography procedure solely by data analysis.

The goal of ACT is to uniquely reconstruct any given

unknown ρr through adaptively measuring one orthonormal

basis at a time according to collected data, as sketched

in Fig. 1. In the kth step of the adaptive scheme,

ACT performs two main procedures. (I) First, ACT

checks whether the probabilities p j′k′ = tr
{

ρrΠ j′k′
}

ob-

tained from outcomes Π j′k′ > 0
(
Π j′k′Π j′′k′ = δ j′, j′′

)
of all

the measured orthonormal bases B = {B1,B2, . . . ,Bk} =
{Π01, . . . ,Πd−1 1, . . . ,Π0k, . . . ,Πd−1 k} so far are IC. Since the

accumulated data define a data convex set Ck of size sk that

contains all quantum states ρ consistent with p j′k′ , this proce-

dure is tantamount to finding out whether sk is zero or not. If

sk=kIC
= 0, then the estimator ρ̂k=kIC

≥ 0 consistent with the

IC data is unique by definition, and equal to ρr when statisti-

cal fluctuation is absent. (II) If sk 6= 0, the accumulated data

collected are not IC and ACT shall choose the next basis by

analyzing Ck. Beginning with k = 1, a “good” adaptive bases

sequence should lead to a quick convergence of C → ρr as

ACT progresses.

(I) Informational completeness certification (ICC).—To

certify whether all collected data are IC or not in the kth adap-

tive step, it suffices to note that since Ck is convex, maxi-

mizing and minimizing the linear function fZ(ρ) = tr{ρZ}
for some operator Z over ρ ∈ Ck respectively give unique so-

lutions ρmax and ρmin to the corresponding maximum fmax,k

and minimum fmin,k. Without loss of generality, Z is taken

to be a random full-rank state. We may define the quantity

sCVX,k = ( fmax,k − fmin,k)/( fmax,1 − fmin,1) that is a size mono-

tone (see Appendix B) for Ck in the sense that sk < sk−1 if

FIG. 2. Schematic of the OAM-based experimental setup. A 16-

dimensional OAM state is generated at SLM-A using a holographic

technique that allows the tailoring of the intensity and phase profile

of the incoming beam. The modulated first-order of diffraction is

filtered out using an iris (I) and a pair of lenses (f1 and f2). A similar

holographic technique is used at the second SLM-B to measure the

state in a given basis. The first measurement basis, B1, is given by

the OAM computational basis. In the case of the rank 1 state shown

on SLM-A, the corresponding eigenbasis is achieved after the fourth

iteration.

sCVX,k < sCVX,k−1—it is a witness for the shrinkage of Ck.

As more linearly independent bases are measured, sCVX,k ≥
sCVX,k+1, and sCVX,kIC

= 0 implies that skIC
= 0 and that all data

collected are IC for a unique reconstruction of ρr. Therefore,

at every adaptive step in ACT, we run:

ICC in the kth step

1. Maximize and minimize fZ(ρ) = tr{ρZ} for a

fixed, randomly-chosen full-rank state Z 6= 1/d

to obtain fmax,k and fmin,k subject to

• ρ ≥ 0 , tr{ρ}= 1 ,

• tr
{

ρΠ j′k′
}
= p

(ML)
j′k′

for 0 ≤ j′ ≤ d − 1 and

1 ≤ k′ ≤ k .

2. Compute 0 ≤ sCVX,k ≤ 1 and check if it is smaller

than some threshold ε .

3. If sCVX,k < ε , terminate ACT. Continue otherwise.

The aforementioned strategy is, as a matter of fact, a

semidefinite program (SDP) [16] that can be efficiently solved

by a variety of numerical methods. We should clarify here

that while determining whether a set of measurement bases B

possesses the conventional CS property for the entire class of

rank-r states is an NP-hard problem [17], ascertaining whether

B gives a unique estimator for one unknown ρr with the mea-

surement data is, on the other hand, only as computationally

difficult as carrying out the semidefinite program in ICC with

a worst-case polynomial complexity [16].

For experimental data ∑ j′ ν j′k′ = 1 (1 ≤ k′ ≤ k) with sta-

tistical noise, Ck is defined as the maximum-likelihood (ML)

convex set in which all ρ ∈ Ck satisfy the physical constraints

p
(ML)
j′k′

= tr
{

ρΠ j′k′
}

imposed by the ML principle for quan-
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tum states
[

p
(ML)
j′k′

→ p j′k′ for N → ∞
]

[2, 3, 18, 19]. All ar-

guments for noiseless data hold exactly for the ML probabil-

ities, so that the working principle of ICC is perfectly robust

against arbitrary noise in the sense that sCVX,kIC
= 0 still im-

plies skIC
= 0 for noisy data owing to the preserved convexity

of the newly defined Ck. Noise only affects the reconstruction

accuracy of the final unique estimator relative to ρr, which is

a different subject matter for discussion.

(II) Adaptive selection of measurement bases.—The opti-

mal orthonormal basis to pick in the kth step and measure in

the (k + 1)th step is the one that minimizes sCVX,k+1. Since

ρr is unknown, we can treat some a posteriori estimator ρ̂k

from Ck as a guess for ρr to generate simulated data during

the minimization of sCVX,k+1 over all future basis choices. The

complicated dependence of sCVX,k+1 on the future basis how-

ever makes its brute-force optimization computationally ex-

haustive for large d.

For a more tractable approach to adaptively measure good

bases, we first note that Ck<kIC
essentially contains states

with eigenbases that are distinct from {B1 . . .Bk} (see Ap-

pendix C). So even if we know nothing about ρr, if it is

rank-deficient, then taking Bk+1 to be the diagonal basis of

a rank-deficient ρ̂k ∈ Ck ensures a distinct measurement basis

in each step that generates a reasonably fast converging se-

quence Bk → Bρr as k increases since Ck → ρr at the same

time. There is more than one approach to pick eigenbases

of rank-deficient states from Ck, and as an example we shall

consider the minimization of von Neumann entropy function

S(ρ) = −tr{ρ logρ}. A superfast algorithm suitable for min-

imizing S over Ck exists [19, 20]. Incidentally, it was reported

in [21, 22] that entropy minimization also offers high com-

pressive efficiencies in both sparse-signal and low-rank matrix

recovery.

Complete ACT protocol.—All aforementioned arguments

can accommodate real experimental situations, where the rel-

ative frequency data do not typically correspond to physical

quantum states for k > 1. The data convex sets contain states

that are now consistent with the corresponding physical ML

probabilities derived from data, which are statistically consis-

tent with the true probabilities. The final unique estimator ρ̂kIC

would then incur a statistical bias from ρr that drops as N in-

creases. For many-body quantum sources, the bases generated

by ACT are entangled. In practice, product bases are typically

much more practical to implement for such sources. While

verifying if a rank-deficient ρ̂k ∈ Ck can possess a product

eigenbasis is computationally difficult, ACT can still be ad-

justed to feasibly generate near-optimal product bases (pACT)

by defining Bk+1 to be the product basis that is nearest to

the eigenbasis of ρ̂k with respect to some given norm using a

nonlinear optimization routine. Both ACT and pACT for any

experimental setting are summarized:

ACT/pACT

Beginning with k = 1 and a random computational basis

B1:

1. Measure Bk and collect the relative frequency

data ∑d−1
j′=0

ν j′k = 1.

2. From {ν0k′ , . . . ,νd−1 k′}
k
k′=1, obtain kd physical

ML probabilities.

3. Perform ICC with the ML probabilities and com-

pute sCVX,k:

• If sCVX,k < ε , terminate ACT and take

ρmax ≈ ρmin as the estimator and report

sCVX,k.

• Else Proceed.

4. Choose a rank deficient ρ̂k ∈ Ck [for instance by

minimizing the von Neumann entropy S(ρ) in

Ck].

5. Define Bk+1 to be the eigenbasis of ρ̂k for ACT,

or a basis close to it for pACT via some prechosen

distance minimization technique.

6. Set k = k+ 1 and repeat.

Analysis and experiments.—We put both ACT and pACT

tomography schemes to the experimental test by comparing

their results with those from measuring random Pauli (RP)

bases considered in [10–12], the Baldwin–Goyeneche (BG)

bases in [13] that generalizes a known five-bases construc-

tion for r = 1 to an IC set of kIC = 4r + 1 bases for rank-r

quantum states, and the set of random orthonormal bases of

kIC ≈ ⌈4r(d − r)/(d − 1)⌉ studied in [23]. This exact scaling

shall be used to benchmark the experimental kICs.

To demonstrate all three schemes (see Fig. 2), we experi-

mentally emulate a 4-qubit (d = 16) quantum system and both

entangled and product measurement bases using an OAM-

based setup. In particular, we consider the Laguerre-Gauss

(LG) modes with azimuthal and radial mode indices ℓ and

p = 0, respectively. Hence, OAM states correspond to a

sub-space of the LG modes and are characterized by a heli-

cal wavefront given by eiℓφ , where ℓ is the azimuthal index

that corresponds to the OAM value, and φ is the azimuthal

coordinate. The appropriate phase and intensity patterns are

realized using a holographic technique called intensity mask-

ing, which is readily achieved by a programmable spatial light

modulator (SLM) [24]. By doing so, we can prepare any

many-body state and measurement basis. The generated pho-

tons are detected using the projective technique of intensity-

flattening [25], where any arbitrary spatial mode can be mea-

sured using an SLM followed by a single mode fiber (SMF).

A heralded single photon source is achieved by pumping a

3 mm β -barium borate type I nonlinear crystal with a quasi-

continuous wave laser at a wavelength of 355 nm, produc-

ing photon pairs at 710 nm via spontaneous parametric down-

conversion. A coincidence rate of 40 kHz, within a coinci-
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FIG. 3. Plots of simulation (noiseless) and experimental values of

sCVX and ρ̂k fidelity against the measured basis number k for d = 16,

where ρ̂k := ρmin for the RP scheme. Estimated experimental er-

ror bars reflect the propagated Poissonian-source standard deviations.

All plot markers are averaged over five ρrs. The filled markers repre-

sent results for rank-1 ρrs whereas the unfilled ones represent those

for rank-3 ρrs. The insets showcase simulation performances of

rank-6 states as a demonstration of high-rank (r ≈ D/2) compres-

sive tomography, with 1 ≤ k ≤ (D+1) = 17 restricted to the minimal

bases number for arbitrary-state tomography. The lower experimen-

tal fidelities for RP and pACT are due to a technical bias of the OAM

setup for finite N, where bases close to the eigenbasis of ρr tend to

give estimated Born probabilities that are relatively more accurate

than those that are not. So for OAM sources, ACT is the most fa-

vorable option, as both pACT and RP correspond to measurement

bases that are never close to the eigenbasis of ρr. Even with noisy

data, ICC can still validate whether the resulting ML probabilities

obtained from data are IC (left panels), which is the point of ACT.

dence time window of 5 ns, is measured after filtering the

photons to the fundamental Gaussian modes using SMF. Sub-

sequent to the generation and detection of the photonic states,

explained above, coincidence measurements are recorded us-

ing single photon detectors and a coincidence logic.

All results are summarized in Figs. 3 and 4, and the mes-

sages conveyed are succinctly stated here: For noiseless sim-

ulated data, in terms of average kIC over uniformly (Hilbert-

Schmidt) distributed rank-r true states, ACT is the most effi-

cient, since it guides the measurement basis to the eigenbasis

of ρr. The more many-body-suited pACT that adaptively gen-

erates product bases requires a larger kIC to yield IC data, but

the average performance margin with ACT is narrow for low-r

states and is on par with the scaling of entangled Goyeneche-

type bases (kIC = 4r+ 1) for larger r. RP turns out to be least

efficient amongst all tested schemes. Even in the presence of

real data noise, both ACT and pACT remain the more favor-

able candidates for tomography on general complex systems.

Concluding remarks.—The feasible concept of adaptive

compressive tomography developed here provides a powerful

method to reconstruct any unknown rank-deficient quantum

1 2 3
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FIG. 4. Plots of simulation (noiseless) and experimental values of

kIC and the ρ̂k=kIC
fidelity against the rank 1 ≤ r ≤ 3 of ρr. All kIC

values ascertained using ICC are averaged over five ρts per rank.

Otherwise all specifications are the same as Fig. 3. Although for

real data, positivity modifies the kIC performances with ML, pACT

achieves informational completeness much quicker than RP as far as

local bases are concerned. A comparison with random IC orthonor-

mal bases shows that ACT gives a much lower value owing to the

additional assessment of and optimization over C .

state with optimally chosen entangled or product orthonormal

measurement bases, especially for quantum sources of com-

plex degrees of freedom, which includes many-body systems.

More importantly, the adaptive scheme requires no a priori

knowledge or assumptions about the state or near-proximity

target states because it can self-sufficiently validate whether

the measured data are informationally complete or not us-

ing semidefinite programming, so that reliable compressive

tomography can now be carried out in real experimental situa-

tions with noisy data. The superior compressive efficiencies of

both entangled and product versions of our adaptive schemes

are confirmed experimentally and demonstrated with respect

to other established protocols.
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Appendix A: Uniqueness property induced by the state-space

boundary

Suppose that the eigenbasis {
∣∣λ j

〉
} of a rank-r

ρ = ρr =
r−1

∑
j=0

∣∣λ j

〉
p j

〈
λ j

∣∣ (A1)

is measured and the probabilities ∑r−1
j=0 p j = 1 are collected,

the estimator ρ̂ = ρr is one solution that is consistent with the

Born probabilities
〈
λ j

∣∣ ρ̂
∣∣λ j

〉
= p j. If ρ̂ is only required to be

Hermitian, then the general solution is in fact given by

ρ̂ = ρr +
r−1

∑
j 6=k=0

∣∣λ j

〉
c jk 〈λk|+W , (A2)

where W is a traceless Hermitian operator outside the support

of ρ (Wρ = 0 = ρW ). Moreover, p j≥r = 0 =
〈
λ j≥r

∣∣ ρ̂
∣∣λ j≥r

〉

implies that W is represented by a hollow (all diagonal entries

equal to zero) Hermitian matrix in the basis {
∣∣λ j≥r

〉
} with ar-

bitrary off-diagonal entries. The Hermitian solution subspace

for ρ̂ has thus a nonzero volume under some metric.

It is now obvious that if one chooses |φ〉 to be the eigenket

of W that gives a negative eigenvalue, one expects 〈φ | ρ̂ |φ〉=
〈φ |W |φ〉 < 0. This implies that any such nonzero traceless

W always results in a nonpositive ρ̂ . If the quantum positivity

constraint is imposed on the solution for the Born probabili-

ties, we must necessarily have W = 0.

This leaves the operator A = ∑r−1
j 6=k=0

∣∣λ j

〉
c jk 〈λk| in the

right-hand side of Eq. (A2). For pure states (r = 1), A is

clearly zero, so that ρ̂ = ρ1 = |λ1〉〈λ1| is the unique pos-

itive estimator after measuring ρ1 as we expect. For 1 <
r ≤ d, we note that if ρ̂ is to be consistent with probabilities〈
w j

∣∣ ρ̂
∣∣w j

〉
=

〈
w j

∣∣ρr

∣∣w j

〉
obtained from any other orthonor-

mal measurement basis {
∣∣w j

〉
}, then

〈
w j

∣∣A
∣∣w j

〉
= 0 for all

1 ≤ j ≤ d − 1. As A has exactly r2 − r free parameters, it fol-

lows that measuring k0 = ⌈(r2 − r)/(d−1)⌉+1 linearly inde-

pendent bases results in the unique solution A = 0 to k0(d−1)
(pseudo-)invertible linear equations. When r2 − r ≤ d − 1,

measuring just one basis other than the eigenbasis will result

in a unique ρ̂ . If r = d, we then obtain the familiar minimal

bases number k0 = d+ 1.

To summarize, the quantum positivity constraint restricts

the possible solution set consistent with probabilities derived

from any given rank-r state ρr to a unique state estimator if

the eigenbasis of ρr and ⌈(r2 − r)/(d−1)⌉ other orthonormal

bases are measured. The method of ACT strives to achieve

a small number kIC of optimal IC bases that is bounded from

below by k0. Looking at two extremal cases, measuring Bρr

immediately gives us the unique estimator for any pure state,

whereas the minimal number of bases needed to characterize

a full-rank state is certainly k0 = d + 1.

Appendix B: The size monotone

The size monotone 0 ≤ sCVX,k ≤ 1 for the data convex set

Ck is a (non-strict) monotonically increasing function with its

size sk (sCVX,k > sCVX,k+1 =⇒ sk > sk+1).

To define a size monotone for any data convex set Ck, we

first pre-choose a concave function f (ρ) of a unique maxi-

mum to characterize Ck. In the absence of statistical fluctua-

tion, we have the set inequality chain C1 ⊇C2 ⊇ . . .⊇Cd+1 as

linear independent bases are sequentially measured: states in

the data convex set are ruled out as more information is gained

through measurements. By the concavity of f (ρ) we have

fmax,1 ≥ fmax,2 ≥ . . . ≥ fmax,d+1 and fmin,1 ≤ fmin,2 ≤ . . . ≤
fmin,d+1. It is clear that if fmax,k+1− fmin,k+1 < fmax,k − fmin,k,

then Ck+1 ⊂ Ck or sk+1 < sk.

It follows immediately that if sCVX,k ≡ ( fmax,k −
fmin,k)/( fmax,1 − fmin,1), then sCVX,k is a size monotone

that decreases with increasing k. When sCVX,k=kIC
= 0, the

convexity of CkIC
implies that skIC

= 0 as CkIC
must contain

only ρr due to the unique maximum possessed by f . Similar

arguments hold for a convex f . Since fZ(ρ) is a positive

linear function it can also be used to formulate the size

monotone as it facilitates the class of semidefinite programs

known to give a unique maximum as well as minimum in the

quantum state space.

It is easy to see that sCVX,kIC
= 0 still implies that skIC

=
0 with noisy data that may come from statistical fluctua-

tion or other systematic errors. For this, we can define Ck

to be the set of states that maximizes the likelihood func-

tion, of the exemplifying multinomial form L(n j′k′ |ρ
′) =

∏k
k′=1 ∏d−1

j′=0
p′

j′k′
n j′k′ for typical physical problems involving

independent single-copy sampling up to a fixed total sam-

ple size ∑k
k′=1 ∑d−1

j′=0
n j′,k′ = N derived from the observed fre-

quencies n j′k′ labeled by the outcome j′ and basis k′ num-

bers. It is clear that if the data are noiseless, the maximum

of L gives precisely ρ̂ML = ρr, so such a definition is a valid

generalization to real experimental scenarios. It is important

to note that while the set inequality chain “Ck+1 ⊂ Ck” is

in general broken, that is sCVX,k no longer behaves as a size

monotone in k, the newly defined Cks are still convex sets

because logL(n j′k′ |ρ
′) is a concave function and hence pos-

sesses a convex plateau structure for non-IC data. The con-

vexity of Ck arises more generally from any kind of con-

cave logL(n j′k′ |ρ
′), which behavior is common in experi-

ments. This is the only crucial property to again conclude

that sCVX,kIC
= 0 =⇒ skIC

= 0. It therefore follows that the

ICC protocol introduced in the main article for ACT is per-

fectly robust to noisy data, in the sense that the set of mea-

surement bases B = {B1,B2, . . . ,BkIC
}, along with their col-

lected data, always give a unique state reconstruction for the

value of kIC decided by ICC even with noisy data. No pre-

mature termination of ACT will occur. On the other hand,

the final unique state estimator, of course, will have a lower

statistical accuracy because of data noise.

Appendix C: The spectral decomposition of states in C

For an integer k and a noiseless scenario, the data convex

set Ck contains all quantum states that are consistent with the

bases measurements B = {B1 . . . ,Bk}. Suppose that Ck 6=



6

{ρ̂ML} We would like to check how frequently a randomly

chosen state ρ ′ ∈ Ck possesses an eigenbasis equal to B j for

some 1 ≤ j ≤ k.

It is easy to see that if ρ ′ = ∑l

∣∣λl j

〉
λl j

〈
λl j

∣∣ ∈ Ck where

B j = {
∣∣λl j

〉〈
λl j

∣∣}, then we must have the eigenvalues λl j =

p′l j =
〈
λl j

∣∣ρ ′
∣∣λl j

〉
according to the definition of Ck. A trivial

example occurs when k = 1, where C1 contains exactly one

diagonal state in the measurement basis. It follows immedi-

ately that there can exist at most k states in Ck that possesses

eigenbases overlapping with B, which are clearly measure

zero compared to the infinitely many states in Ck. This im-

plies that Ck for k < kIC contains states with eigenbases that

are distinct from B as the only measurable states. We add

that the actual number of states with such eigenbases is gener-

ally much lower than k since for k > 1, every state in Ck must

satisfy all probability constraints.
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[5] J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Sza-

meit, and A. A. Sukhorukov, “Scalable on-chip quantum state

tomography,” NJP Quantum Inf. 4, 19 (2018).

[6] D. Donoho, “Compressed sensing,”

IEEE Trans. Inf. Theory 52, 1289 (2006).

[7] E. J. Candès and T. Tao, “Near-optimal signal recovery

from random projections: Universal encoding strategies?”

IEEE Trans. Inf. Theory 52, 5406 (2006).

[8] E. J. Candès and B. Recht, “Exact matrix completion via convex

optimization,” Found.Comput.Math. 9, 717 (2009).

[9] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eis-

ert, “Quantum state tomography via compressed sensing,”

Phys. Rev. Lett. 105, 150401 (2010).

[10] A. Kalev, R. L. Kosut, and I. H. Deutsch, “Quantum tomog-

raphy protocols with positivity are compressed sensing proto-

cols,” NJP Quantum Inf. 1, 15018 (2015).

[11] A. Steffens, C. A. Riofro, W. McCutcheon, I. Roth, B. A. Bell,

A. McMillan, M. S. Tame, J. G. Rarity, and J. Eisert, “Experi-

mentally exploring compressed sensing quantum tomography,”

Quantum Sci. Technol. 2, 025005 (2017).

[12] C. A. Riofrı́o, D. Gross, S. T. Flammia, T. Monz,

D. Nigg, R. Blatt, and J. Eisert, “Experimental quan-

tum compressed sensing for a seven-qubit system,”

Nat. Commun. 8, 15305 (2017).

[13] C. H. Baldwin, I. H. Deutsch, and A. Kalev, “Strictly-complete

measurements for bounded-rank quantum-state tomography,”

Phys. Rev. A 93, 052105 (2016).

[14] W. Pauli, Die allgemeinen Prinzipen der Wellenmechanik,

Handbuch der Physik, edited by H. Geiger and K. Scheel,

Vol. 24 (Springer-Verlag, Berlin, 1933).

[15] C. Carmeli, T. Heinosaari, J. Schultz, and A. Toigo, “How

many orthonormal bases are needed to distinguish all pure

quantum states?” Eur. Phys. J. D 69, 179 (2015).

[16] L. Vandenberghe and S. Boyd, “Semidefinite programming,”

SIAM Review 38, 49 (1996).

[17] A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F.

Sawin, “Certifying the restricted isometry property is hard,”

IEEE Trans. Inf. Theory 59, 3448 (2013).
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