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Highlights
Due to risk gene pleiotropy, difficulty in
finding functional variants, and poor
reflection of physiological complexity
in genetic analysis, translation of new
genetic findings for Alzheimer disease
(AD) into functional mechanisms has
been difficult.

Transcriptomic analysis has provided
additional support for previously iden-
tified risk genes while also identifying
novel associated genes, helping to elu-
cidate mechanisms of disease.

Refinement of transcriptomics through
2nd and 3rd generation sequencing,
single-cell sequencing and bioinfor-
matics is revealing mechanisms
Over 25 genes are known to affect the risk of developing Alzheimer
disease (AD), the most common neurodegenerative dementia. However,
mechanistic insights and improved disease management remains limited,
due to difficulties in determining the functional consequences of genetic
associations. Transcriptomics is increasingly being used to corroborate or
enhance interpretation of genetic discoveries. These approaches, which
include second and third generation sequencing, single-cell sequencing,
and bioinformatics, reveal allele-specific events connecting AD risk genes
to expression profiles, and provide converging evidence of pathophysiologi-
cal pathways underlying AD. Simultaneously, they highlight brain region- and
cell-type-specific expression patterns, and alternative splicing events that
affect the straightforward relation between a genetic variant and AD,
re-emphasizing the need for an integrated approach of genetics and
transcriptomics in understanding AD.
involved in AD in previously unattainable
detail, including brain region- and cell-
type-specific expression changes and
molecular processes such as transcript
rescue events, challenging the direct
interpretation of an association between
genetic variant and phenotype.

Transcriptome analysis in postmortem
brain has uncovered central biological
pathways and central regulator ‘hub’
genes in disease, for example, SPI.1
and TYROBP in the brain immune
response.
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Alzheimer Disease: Common and Complex
Alzheimer’s disease (AD) is a genetically complex, multifactorial disease that leads to
neurodegenerative dementia. There is no cure for AD yet, and due to a high prevalence
and continuously increasing incidence it poses a major threat to personal health as well as to
the health care system. Patients display a progressive decline of cognitive capabilities, with
characteristic early loss of episodic memory, eventually resulting in complete dependency
and death. The disease is preceded by a long prodromal phase [1,2]. Neuropathological
changes in the AD brain include progressive hippocampal and cortical atrophy, visible upon
neuroimaging and macroscopic examination. Characteristic microscopic features are intra-
cellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein and extracellular
depositions of Amyloid-b (Ab)1–42 peptide, accompanied by neuronal and synapse loss and
reactive gliosis [3].

Initial evidence of a genetic etiology of AD was presented by the observation of families with
multiple generations affected by a rare early onset form of AD (EOAD, <65 years). Molecular
genetic investigation of these pedigrees resulted in the identification of the amyloid precursor
protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes as disease genes in AD.
Pathogenic mutations in these genes converge to a general mechanism of increased Ab1-42

accumulation or increased Ab1–42/Ab1–40 ratio. Hundreds of dominantly inherited pathogenic
mutations have since been described for these genes, mostly in EOAD patients, although only
explaining up to 10% of EOAD (reviewed in [4]).
(K. Sleegers).
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Glossary
APOE e4 allele: APOE is the gene
encoding Apolipoprotein E. The e4
allele is one of three possible
isoforms, determined by two single
nucleotide polymorphisms resulting in
arginine residues at positions 112
and 158.
Cell type marker genes: canonical
genes whose expression is
associated with a specific cell (sub)
type, used to identify and quantify
cell types within tissue samples.
ChIP-Seq: sequencing approach
applying chromatin
immunoprecipitation to elucidate
genetic regions interacting with
proteins, applied in the identification
of DNA regulatory regions.
Epigenome-wide association
studies (EWAS): a genome-wide
analysis of the association between
epigenetic marks, such as DNA
methylation, and a phenotype.
Expression quantitative trait loci
(eQTL): genetic loci associated with
regulation of gene expression levels.
Gene coexpression networks:
construction of networks of genes
with correlating expression direction
across samples, applied to identify
gene modules and the underlying
biological mechanisms associated
with a phenotype.
Genome-wide association studies
(GWAS): a statistical approach to
identify single-nucleotide
polymorphisms associated with a
phenotype, typically investigating
millions of variants across the
genome in very large cohorts.
Hub genes: central regulator genes
with high connectivity in gene
coexpression networks.
Meta-analysis: an epidemiological
approach to combine and analyze
results from previous studies. Is often
performed to increase statistical
power.
Splice quantitative trait locus
(sQTL): a genetic locus causing a
specific splice event of a gene
Transcriptome-wide association
studies (TWAS): statistical analysis
to identify genes whose expression is
associated with the disease or trait of
interest at transcriptome-wide scale,
but without gene expression
quantification. Gene expression levels
are imputed based on a reference
dataset.
Most patients have late-onset AD (LOAD). While a pathogenic mutation in APP, PSEN1 or
PSEN2 is infrequently identified in LOAD patients, LOAD is typically considered multifactorial,
with a strong polygenic component and an estimated heritability of up to 80%. The most well-
known genetic risk factor for AD is the APOE e4 allele (see Glossary), explaining approximately
25% of the heritability of liability [5]. Over the past decade, complex genetic research on AD has
been successful in identifying additional genetic risk factors for AD, both low-penetrant
common risk factors (e.g., [6]) and rare alleles with intermediate to high penetrance (e.g.,
[7–9]). While the amyloid cascade hypothesis has long dominated the efforts towards devel-
opment of diagnostics and therapeutics for AD, gene discovery studies and pathway-based
analysis of genome-wide studies shed light on a range of additional biological processes
contributing to AD, proposing new targets for therapy development. Translational impact of
these findings is still limited however, owing to – amongst others – pleiotropy of risk genes,
limited understanding which genetic variants in identified risk genes or loci actually affect AD risk
and how, and the physiological complexity of tissues which is insufficiently represented in
genetic analysis.

While the field of AD genetics is still in active pursuit of additional genetic risk loci through
genome-wide association studies (GWAS) and next generation sequencing studies on
increasingly large AD cohorts, a trend is emerging of simultaneous interrogation of transcrip-
tomics data to study the effect of newly identified genetic risk factors at the level of the
transcriptome (e.g., [10]). In parallel, refinement of transcriptomics through second and third
generation sequencing methodology, single-cell sequencing and bioinformatics analysis allows
investigating functional mechanisms involved in AD in previously unattainable detail. Here, we
review the state-of-the-art of genetic discovery and transcriptome investigations in multifacto-
rial AD, with emphasis on the insights emerging at their interface.

Genetic Risk Loci and Pathways in Polygenic AD
Common Genetic Risk Factors
The search for genetic risk factors for polygenic AD was initially dominated by studies
querying common genetic variation, most successfully through GWAS. At least 42
genes/loci have been associated with LOAD at genome-wide significance in at least one
GWAS [6,11–20], of which ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1,
EPHA1, FERMT2, HLA-cluster, INPP5D, MEF2C, MS4A6A, NME8, PICALM, PTK2B,
SLC24A4/RIN3, SORL1, CELF1, NME8, FERMT2, CASS4, DGS2, and ZCWPW1 have been
identified or confirmed in GWAS meta-analysis, and are since regarded as established risk
genes/loci for LOAD. CD33 and DSG2 did not show genome-wide significance in the
replication phase of the largest AD GWAS meta-analysis published to date [6]. Family-based
GWAS approaches reported significant loci overlapping with those in case-control GWAS,
including APOE, BIN1, CLU, and CD33. In addition, PLXNA4, CUGBP2, TRPC4AP, ATXN1,
and APOC1 as well as uncharacterized chromosome 14 locus 14q31.2 were reported [18–
20] but not replicated in case-control approaches. Alternative analytical approaches of case-
control GWAS detected additional risk loci such as FRMD4A in a sliding window haplotype-
based approach [21], and TP53INP1 and IGHV1-67 in gene-wide analysis [22]. Expanding
analysis of genome-wide variant data beyond single-variant or single-gene level to pathway-
based analysis revealed common pathways associated with AD, despite differences in
analytical approach and pathway definition between studies. Common biological pathways
emerging from these studies are immune response, lipid metabolism, endocytosis, and cell
adhesion molecule (CAM) pathways [10,23–29] (Table 1). A study using the methodologically
distinct approach of genome-wide heritability partitioning confirmed enrichment of the
adaptive and innate immune response in AD [30].
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Table 1. Significantly Enriched Pathways in GWAS Meta-analysis Studies on ADa

GWAS data sets analyzed Consulted database Lipid metabolism Immune response Endocytosis Synaptic
transmission

Cell adhesion
molecules

Miscellaneous

GERAD/EADI [23] ALIGATOR/GSA:
KEGG, GO
databases

Sterol transport
(P = 0.0079),
cholesterol transport
(P = 0.0079)

Immunoglobulin
mediated immune
response
(P = 4 � 10�3),
immune response
(P = 3 � 10�3)

Synaptic
transmission,
cholinergic
(P = 5.0 � 10�3)

EADI [24] KEGG, GO
databases

RIG-I-like receptor
signaling
(P = 3 � 10�2)
Antigen processing
and presentation
(P = 2.0 � 10�2)

Regulation of
autophagy
(P = 0.007)

EADI [25] Gencodis/DAVID:
GO database

Intracellular
transmembrane
protein transport
(P = 7.2 � 10�6)

Discovery
data EADI,
replication
data ADNI [26]

IGSEA: KEGG
database.
WebGestalt/DAVID:
GO database

RIG-I-like receptor
signaling
(P = 7.00 � 10�4),
Natural killer cell
mediated
cytotoxicity
(P = 8.56 � 10�5),
Antigen processing
and presentation
(P = 3.50 � 10�7)

Cell adhesion
molecules KEGG
(P = 1.84 � 10�6)

Regulation of
autophagy
(P = 6.22 � 10�5)

ADNI, composite
measure of
memory as
phenotype [27]

GSA-SNP: BioCarta,
KEGG, GO,
Reactome
databases

Allograft rejection
(P = 3.9 � 10�2)

Transmission across
chemical synapses
(P = 1.77 � 10�4)

Focal adhesion
(P = 0.006), Cell
adhesion molecules
(CAMs)
(P = 2.9 � 10�2)

Calcium signaling
pathway
(P = 1.17 � 10�4),
Viral myocarditis
(P = 0.039), Long-
term depression/
potentiation
(P = 8.0 � 10�3)/
(P = 1.9 � 10�2)

Combined TGen1,
NIA-LOAD/NCRAD,
ADNI replication
data [28]

KEGG, GO
databases

Lipid transport
(P = 8.12 � 10�9)

Endocytosis
(P = 2.24 � 10�6)

Glutamate receptor
signaling pathway
(P = 1.86 � 10�11),
axon guidance
(P = 1.20 � 10�9)

Focal adhesion
(P = 2.63 � 10�10)

Protein
autophosphorylation
(P = 2.30 � 10�12),
transmembrane
receptor protein
kinase activity
(P = 1.18 � 10�12),
Calcium signaling
pathway
(P = 1.27 � 10�11)
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Table 1. (continued)

GWAS data sets analyzed Consulted database Lipid metabolism Immune response Endocytosis Synaptic
transmission

Cell adhesion
molecules

Miscellaneous

IGAP [10] ALIGATOR/GSEA:
KEGG, GO
databases

Cholesterol transport
(P = 2.96 � 10�9),
sterol transport
(P = 3.91 � 10�9)

Humoral immune
response mediated
by circulating
immunoglobulin
(P = 3.27 � 10�12),
regulation of immune
response
(P = 3.27 � 10�12)

Regulation of
endocytosis
(P = 1.31 � 10�11)

Clathrin adaptor
complex
(P = 1.20 � 10�3),
protein folding
(P = 1.60 � 10�3)

GERAD integrated
with transcriptome
profiling data of
temporal cortex [29].

KEGG Axon guidance
(P = 3.03 � 10�3)

Cell adhesion
molecules (CAMs)
(P = 1.04 � 10�5)

Calcium signaling
pathway
(P = 2.08 � 10�3),
Viral myocarditis
(P = 4.00 � 10�4),
Purine metabolism
(P = 4.00 � 10�4)

aP values indicate multiple-testing corrected values according to respective studies for terms showing strongest interaction within each pathway. Abbreviations: ADGC, Alzheimer’s Disease Genetics
Consortium; CHARGE, Cohorts for Heart and Aging in Genomic Epidemiology; EADI, European Alzheimer’s Disease Initiative; GERAD, Genetic and Environmental Risk in Alzheimer’s Disease; IGAP,
International Genomics of Alzheimer’s Project.
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Rare Genetic Risk Factors
The investigation of rare variants in susceptibility of AD has gained significant momentum after
the identification through combined whole genome (WGS) and whole exome sequencing (WES)
of a rare non-synonymous mutation, p.R47H, in TREM2 that increases risk of AD [7,31], which
has since been widely replicated. Numerous independent studies further reported an enrich-
ment of rare coding variants among AD patients in SORL1 and ABCA7, which were already
known to be implicated in AD risk through common risk factors. In SORL1, both heterozygous
missense and premature termination codon (PTC) mutations were found, most notably in
patients with EOAD and/or familial disease [32]. For ABCA7, strongest evidence of association
was found for heterozygous PTC mutations, with widely varying onset age among carriers but
an increased proportion of positive family history [8,33]. Large-scale sequencing efforts, such
as the Alzheimer Disease Sequencing Project (ADSP) which includes �11 000 participants, are
providing further evidence of rare risk variants in genes initially identified in GWAS [34]. These
studies are likely to provide insight into novel risk genes for AD in the near future. An exome-
wide association analysis on rare and low-frequency variants using exome chip genotyping
proposed rare variants in two additional genes, that is, ABI3 and PLGC2, the latter being
protective for AD [9].

Understanding AD through Transcriptome Analysis
Both classical gene discovery and pathway-based analysis of AD GWAS shed light on the
range of biological processes that contribute to AD in addition to amyloid pathology. The
straightforward interpretation and functional investigation of the association between a genetic
variant and AD remains challenging, however, due to difficulty in identifying disease variants,
pleiotropy of risk genes, and pathophysiological complexity. Hundreds of molecular factors
putatively interact in multiple networks at different time points and at distinct biological levels
including subcellular, cellular, tissue, and organic level. Increasingly, studies address this
complexity by combining genetic data with gene expression studies. This allows studying
the effect of genetic risk factors at the level of the transcriptome in a tissue, topology, time and
cell-type-dependent manner, to identify similarities between disease networks, and uncover
molecular interactors that relate to hub nodes connecting pathways. Transcriptome profiling is
commonly performed by either microarray hybridization or next-generation RNA sequencing.
Although both methods enable large-scale investigation of gene expression, the underlying
principles of expression profiling differ fundamentally (Box 1).

AD Risk Genes and Loci at the Transcript Level
In an endeavor to provide insight in the molecular mechanisms underlying the association
between a risk gene or locus and AD, numerous studies have investigated differential expres-
sion of these genes, motivated in part by the observation that many GWAS signals were
strongest in noncoding – thus potentially regulatory – regions of the genome. Targeted studies
in postmortem cortical tissue observed differential expression for a range of AD risk genes,
including genes within the HLA-cluster, MS4A-cluster genes, FRMD4A, CLU, SORL1, ABCA7,
PTK2B, BIN1, TREM2, and CD33 [35–37]. Transcriptome-wide microarray studies and meta-
analyses of these studies on AD and control brain largely corroborate these findings (Table 2).
However, inconsistencies exist between studies, which could in part be due to technological
variances and small differences in expression between phenotypes, but also to variation in
investigated brain regions and cellular composition between samples.

For several of these loci genetic risk variants have been found associated with or directly
affecting gene expression, indicating that the observed differences in expression are not merely
by-products of the disease process. For example, a 30 risk haplotype in SORL1 has been
438 Trends in Genetics, June 2018, Vol. 34, No. 6



Box 1. Common Methods for Transcriptome Profiling

Microarray transcriptome profiling provides a cost-efficient approach to quantification of thousands of transcripts in
parallel. Complementary DNA (cDNA) libraries reverse transcribed from RNA samples are introduced to the array prior to
further analysis such as differential gene expression. However, the necessity of correcting for nonbiological effects on
signal output represents a drawback. Microarray profiling is further confounded by variations in probe hybridization
sensitivity within and between array platforms. Additionally, quantification of very low or very highly expressed
transcripts proves problematic [77]. As probes cannot be designed for unknown sequences, microarray profiling is
unable to identify novel transcripts. Probe design is restricted to knowledge of the genome at the time of array design.
Human reference genome builds have been updated multiple times over the last ten years [78], which should be kept in
mind when interpreting meta-analyses of several independent datasets.

By contrast, RNA sequencing (RNA-Seq) represents a hybridization-free method allowing massive parallel sequencing
of cDNA using next-generation sequencing platforms. Selection of subset of RNAs from a total RNA sample is
performed prior to reverse transcription to obtain a cDNA library enriched for RNAs, such as miRNA or (poly-adenylated)
mRNA. Common procedures for enrichment involve removal of highly abundant ribosomal RNA by depletion of
ribosomal RNA or pull-down of poly-adenylated (poly-A) RNAs by oligo-dT beads. Of note, RNAs lacking a poly-A
tail including small mRNAs and non-coding RNAs (ncRNAs) are not retained with poly-A pulldown, while these
molecules have been shown relevant to AD. For example, the poly-A tail lacking ncRNA 51A maps to intron 1 of
the SORL1 gene in antisense direction. ncRNA 51A is upregulated in AD frontal cortex and regulates SORL1 expression
and splicing [79]. Known degradation of poly-A sequences in postmortem tissue presents a limitation for use of poly-A
selected RNA-Seq in the context of AD, which can be overcome by 30 mRNA-sequencing, where oligo-dT annealing is
performed on the 30 UTR, circumventing loss of non-polyadenylated transcripts. A disadvantage of this method is the
inability to discriminate between different transcript isoforms. Quantification of transcripts generated by RNA-Seq
involves read alignment and quality control filtering, where the number of reads aligned to each transcript represents a
measure of transcript abundance. The RNA-Seq approach enables directional sequencing of cDNA, generating reads
spanning multiple exons while maintaining directional information of reads. This allows for identification of novel splice
events, which are of specific interest in the understanding of complex diseases [80].
associated with downregulation of SORL1 expression [48], and rare loss-of-function mutations in
SORL1 have been identified in EOAD patients [49]. A three-nucleotide insertion near BIN1,
rs59335482, increases BIN1 expression, as well as risk of AD and NFT pathology in brain
[50]. The HLA locus harbors a large cluster of genes involved in immune response modulation
which includes HLA-DRA, HLA-DRB5 and HLA-DRB1. HLA locus genes are commonly upregu-
lated in AD brains, specifically HLA-DRA, which was found to be upregulated by microarray meta-
analysis and studies investigating specific AD risk genes [39]. A risk variant, rs9271192, in HLA-
DRB1 is associated with increased expression of this gene [51]. The immune response locus
MS4A includes ADriskgenes MS4A4Aand MS4A6A,amongothers.BothMS4A4AandMS4A6A
are upregulated in AD brain [37,43,44]. AD risk variants have been associated with increased
expression of MS4A4A [35]. PICALM transcripts have been found to be both upregulated [45] as
well as downregulated in AD brains [40]. However, the GWAS index SNP rs3851179 which is
associated with decreased risk of AD has been associated with increased PICALM expression
[52]. Similarly, expression studies on ABCA7 have been inconsistent, yet rare loss-of-function
mutations have been associated with increased disease risk, suggesting reduced dosage of
ABCA7 increases risk of AD [33]. An AD risk allele, rs7143400-T, in the 30 untranslated region (30

UTR) of FERMT2 creates a canonical binding site for microRNA miR-4505, resulting in allele-
specific downregulation of FERMT2 in the presence of miR-4505 in vitro [53].

In addition to allele-specific differences in expression, alternative splicing of AD risk genes has
been associated with the disease. Alternative splicing results in the production of distinct mRNA
isoforms from one genetic locus, and is a widespread phenomenon, with reported rates of up to
95% of human multiexon genes undergoing splicing [54]. It represents an important part of
gene product diversity and acts as a mechanism of regulating transcript expression levels by
priming transcripts for nonsense-mediated mRNA decay. Gene products are regulated differ-
entially between tissues and cell types, with the number of tissue-specific splice isoforms
reported highest in the brain [55].
Trends in Genetics, June 2018, Vol. 34, No. 6 439



Table 2. Expression Regulation of AD Risk Genes in Braina

Gene Primary associated
pathway

Primary expressed
brain cell type

Differential expression
direction in targeted
AD risk gene studies

Differential expression
direction in
microarray
meta-analyses
[43–46]

ABCA7 Immune response/
Lipid metabolism

Microglia +/� [38] + + ? +

BIN1 Endocytosis/Synaptic
transmission

Oligodendrocytes + [37] ? + ? ?

CD2AP Endocytosis Endothelia + ? ? ?

CD33 Immune response Microglia + [37] + + ? ?

CLU Immune response/Lipid
metabolism

Astrocyte + [36,37] + + ? ?

CR1 Immune response Microglia + [37] ? + ? ?

EPHA1 Endocytosis/Synaptic
transmission

Endothelia ? + ? ?

HLA-locus Immune response Microglia HLA-DRA: + [39] HLA-DRA:
+ ? + ?

MEF2C Immune response/
Synaptic transmission

Endothelia/Microglia � � � �

MS4A-cluster Immune response Microglia MS4A4A
and MS4A6A: + [37]

MS4A
4A/6A:
+ + ? ?

PICALM Endocytosis/Synaptic
transmission

Endothelia � [40] + [45] ? ? + ?

PTK2B Immune response/
Synaptic transmission

Microglia ? � ? ?

SORL1 Endocytosis Astrocyte/Neuron � [41] ? � ? ?

TREM2 Immune response Microglia + [36,42] + ? ? ?

aSignificant differential expression results are provided for targeted AD risk gene studies and meta-analysis. Direction of
expression symbols +/�/? indicate upregulated/downregulated/missing expression direction in disease versus control.
Meta-analysis incorporated samples derived from: Frontal cortex [43], temporal pole [44], frontal and temporal cortical
regions [45], and frontal, temporal and entorhinal cortical regions [46]. Primary expressing cell types were based on data
from Darmanis et al. 2015 [47], and the Barres lab brain RNA-seq webpageiv.
A recent RNA-Seq study reported up to 91% of differentially expressed isoforms in AD
postmortem brain to be unannotated [56]. Differential exon usage was reported for �25%
of genes analyzed in two separate studies on postmortem AD brain [44]. A novel method
applying local splice variation (LSV) as a model for alternative splicing detection reported around
200 splice events distinct between AD and non-demented control brains [54]. Exon-array
profiling of brain transcriptome in AD reported 22 candidate alternatively spliced genes relevant
to disease [57]. RNA-Seq of frontal cortex showed a higher proportion of reads mapping to
intronic regions in AD patients compared to controls, indicating differential alternative splicing
events such as intron retention in disease. In particular, splice efficiency reduction was reported
for several known AD genes including APOE, BACE1, CLU, BIN1, PICALM, PSEN1, and
SORL1 [58]. Targeted gene approaches further elucidated alternative splicing events relevant
to disease in a number of genes involved in tau and amyloid processing, and several AD risk
genes identified through GWAS approaches [59] (Box 2).
440 Trends in Genetics, June 2018, Vol. 34, No. 6



Box 2. Alternative Splicing Events in AD Risk Genes

Alternative transcript isoform generation by alternative splicing arises through the inclusion or exclusion of exons during pre-
mRNA processing to result in functionally distinct RNA and protein products. Several mechanisms of splicing exist, including
exon skipping, alternative donor or acceptor splice site usage, mutually exclusive exon usage, and intron retention. Of these,
exonskipping ismost prominent and isestimatedtounderlieup to30%ofASevents invertebrates [81].FornumerousADrisk
genes, alternative splicing events have been associated with AD risk or disease progression. For example, splicing of SORL1
is regulated by an intron-1 antisense noncoding RNA. AD brains show overexpression of the resulting SORL1 51A isoform
and corresponding decrease in SORL1 protein [79]. CD33 shows alternative splicing controlled by a variant in linkage
disequilibrium with the GWAS index variant in this gene. The CD33 splice variant, lacking exon 2, alters CD33 function and is
associated with decreased risk of AD [82]. Up to ten BIN1 isoforms have been reported, along with numerous splice variants.
Tissue-specific alternative splicing events regulate interaction of BIN1 relevant to AD, with seven isoforms specific to brain
[83]. AlternativesplicingofCLU generatesan intracellular isoform,which ismoreabundant inthepresenceofAb invitro,and is
associated with amyloid pathology [84]. Interaction between the intracellular CLU isoform and BIN1 is regulated by one of the
BIN1 splice variants [85]. A coding SNP in the splice enhancer site of exon 5 in the PICALM gene regulates splicing of exon 5.
This splicevariant is in linkage disequilibrium with the observedGWASsignal inPICALM [86]. Expression ofan isoform lacking
exon 13 has further been associated with the same GWAS signal SNP in AD [52]. Third generation, long-read, cDNA
sequencing of ABCA7 revealed numerous previously unobserved alternative splicing events that rescued the truncating
effect of PTC mutations in the same gene, which might have phenotype-modifying effects [87]. By shedding light on a greater
extent of gene product diversity than previously considered, 2nd and 3rd generation RNA sequencing studies further
challenge the straightforward interpretation of the effect of genetic risk variants on disease, warranting deeper investigation.
Transcriptome-wide Profiling of Postmortem AD Brain
Correlation between variants within GWAS loci and transcriptome regulation are typically
investigated by expression quantitative trait loci (eQTL) and splice QTL (sQTL) analysis.
QTLs have been reported for variants in CR1, HLA-DRB1, ZCWPW1, SLC24A4, CLU and
MS4A4A. However, the identified QTLs are not always within the GWAS haplotype, hence may
not be relevant for the disease process, and replication of QTL findings remains inconclusive.
One drawback of some genome-wide expression profiling studies is the relatively limited
number of samples included in analyses. This is partly due to sparse availability of suitable
source tissue, such as clinically characterized postmortem human brain. Due to the huge
multiple testing burden of genome-wide and transcriptome-wide analyses, and the presence of
potentially high-impact low-frequency variants, integrative analysis of DNA and RNA sequenc-
ing requires large well-characterized cohorts. Investigating e- and s-QTL effects in AD risk
genes could further benefit from increased resolution introduced by multiple-tissue sequenc-
ing. In recent years, the extent of data generated by RNA sequencing is rapidly increasing.
Access to large scale transcriptome profiling studies, such as through the Synapse platformi,
the Brain eQTL Almanac web serverii, and the Genotype-Tissue expression (GTEx) projectiii

greatly facilitates genome-transcriptome integrated analysis. Recently, GWAS methods have
been extended to enable transcriptome-wide association studies (TWAS), through impu-
tation of eQTL and sQTL data from these reference datasets onto large-scale GWAS data. A
TWAS on AD revealed 61 sQTLs in known genes including CLU, PTK2B, and CR1; it also
proposed novel candidates, including AP2A1 which is an interactor of PICALM [60]. With rapid
increase in sequencing depth and cohort size in RNA sequencing, eQTL and sQTL analysis is
anticipated to elucidate additional genetic regulation of expression of risk genes.

Beyond hypothesis-driven expression studies focusing on known AD risk genes, microarray
and RNA-sequencing based transcriptome studies of postmortem brain in AD and healthy
controls have identified a myriad of differentially expressed genes and associated functional
pathways. This yielded a core set of differentially expressed pathways including immune
response, apoptosis, cell proliferation, energy metabolism, and synaptic transmission
[43,46]. RNA-Seq of human AD postmortem brains additionally showed a large fraction of
novel isoforms deregulated in parietal cortex and enrichment of pathways associated with
neurite differentiation, immune response, and lipid metabolism [59]. These analyses thus
corroborate findings of GWAS pathway analyses (Table 1).
Trends in Genetics, June 2018, Vol. 34, No. 6 441



Gene Coexpression Networks and Hub Genes
Unlike manually curated pathways of biological mechanisms and disease networks, gene
coexpression networks are not restricted by previous findings, thus reducing the effect of
literature bias and theoretical framework. An estimated 20–50% of transcripts detectable
though RNA sequencing cannot be functionally annotated using public databases. Gene
coexpression networks enable the identification of novel gene interactions and networks
unrelated to currently known gene network clusters. Gene–gene correlation alterations or
differential gene coexpression can be identified in absence of significant differential expression
association. This holds the potential for identifying new ‘hub genes’ in disease susceptibility
and progression, that is, genes with many connections in the gene network which are
considered crucial in maintaining network functionality. Genetic variants in hub genes are
predicted to have a more profound effect on network dysfunction and disease than other genes
in the network. TYROBP was identified as a central regulator of the top-ranked immune/
microglia networks, also including TREM2, MS4A4A, MS4A6A, and CD33 [61]. TYROBP is a
binding partner of TREM2, and a genetic variant (p.D50_L51ins14) in TYROBP is reported to
regulate TREM2 expression levels [62]. Upregulation of TYROBP in AD brains and interaction
with TREM2 expression has been validated by independent studies [63]. TYROBP has been
suggested to function in neuronal pruning and stimulation of microglial phagocytosis of
amyloid-b, although the exact function of TYROBP in AD susceptibility and progress remains
unclear [63]. Additionally, PTK2B has been reported as a hub regulator identified through
microarray meta-analysis in the frontal cortex [43]. Protein–protein interaction analysis pro-
posed PTK2B as a regulator of several differentially expressed genes, most of which are
upregulated in AD and associated with the immune response including TREM2, suggesting an
overlap between regulatory functions for TYROBP and PTK2B. The SPI1 gene located within
the CELF1 GWAS risk locus has recently been identified as a regulator of the microglial activity
pathway including ABCA7, TREM2 and TYROBP (Box 3).

Epigenetic Regulation of Gene Expression
Epigenetic mechanisms, such as DNA methylation, histone modification and chromatin regu-
lation by long noncoding RNAs, are known to regulate dynamic changes in gene expression in a
cell-type- and tissue-specific manner. In postmitotic neurons, for example, epigenetic tran-
scriptional regulation is involved in synaptic activity, learning and memory (reviewed in [64]).
Epigenetic mechanisms have also been implicated in AD. The most studied epigenetic
Box 3. SPI1 as Hub Gene in the Microglial Activity Pathway in AD

The identification of the role of the SPI1 gene in AD exemplifies the added value of integrating findings at the genetic level
with emerging insights from transcriptome profiling to provide insight in the biological mechanisms associated with AD.
The protective rs1057233-G allele within the GWAS haplotype at the CELF1 locus is reported to decrease SPI1
expression in monocytes and macrophages and delay AD onset age [88]. The proposed functional mechanisms by
which rs1057233 regulates SPI1 expression is through altering the binding region of microRNA miR-569. SPI1 encodes
the PU.1 protein, which acts as a transcription factor in myeloid cells, including microglia and monocytes. PU.1
regulates gene expression by interaction with purine-rich regions in promotor regions. Binding of SPI1 has been
reported for genes ABCA7, CD33, MS4A4A, MS4A6A, TREM2 and TYROBP, among others [88]. ChIP-Seq on mouse
microglial cells identified Trem2 and Tyrobp as spi1 target genes, with spi1 binding to intron 1 in Trem2 and the
promotor region of Tyrobp [89]. Combined RNA-Seq in mouse cell lines and human hippocampal neurons indicated
expression of SPI1 in neurodegeneration. Integrated epigenetic analysis of promotor regions proposes SPI1 as
increased-level expression enhancer [90]. SPI1 putatively serves as a central hub in myeloid immune response in
neurodegeneration, and regulates the balance between protective and pathogenic microglial activation in AD. Follow-
up investigation of the role SPI1 in AD could entail single-cell RNA sequencing to uncover cell-type-specific responses to
SPI1 network activation in early stages of disease, and the eQTL effects of the protective allele on neuronal, endothelial
and microglial expression profiles. This knowledge could be beneficial to development of potential markers of
inflammation, and present strategies to dampen early microglial inflammatory activation in disease.
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mechanism in AD involves methylation of the 5th position of the cytosine base (5-methylcy-
tosine, 5mC) in CpG dinucleotides. Epigenome-wide association studies (EWAS) that
allow the simultaneous interrogation of methylation state at many hundred thousands of CpG
sites across the genome have proposed several differentially methylated genes in AD patho-
genesis. Although these analyses come with limitations [65], they have resulted in compelling
findings for ANK1, RHBDF2, RPL13, and CDH23 in association with AD neuropathology, as
they were identified in two independent large-scale studies [66,67]. In line with the anticipated
transcriptional regulation of cytosine methylation, these genes also showed changes in expres-
sion in AD brains [66]. Differential methylation has also been reported for several known AD risk
genes, of which ABCA7 is most consistently found between studies [44,66,68,69]. In line with
evolving possibilities in imputation of gene expression data using public repositories, epige-
nomic imputation using publicly accessible reference data into large GWAS cohorts enables
larger scale investigations. These studies may suffer a loss of statistical power due to imputa-
tion, and may be sensitive to issues such as size and quality of the reference dataset, and
limited cross-tissue or cell-type predictability due to the dynamic nature of the epigenome,
warranting caution in interpretation [70,71].

Hurdles in Interpretation
As AD is a neurodegenerative brain disease, many AD transcriptome studies have investigated
transcriptional regulation in the brain. However, studies on human brain tissue are generally
restricted to postmortem material, which represents an end-stage reflection of AD. In addition,
postmortem interval and storage conditions of brain material influence transcriptome stability
and preservation. Moreover, differences in cellular composition between diseased and healthy
brain tissue may confound the interpretation of differential expression of cell-type-specific
genes, such as genes implicated in synapse function in neurons, or inflammatory response
genes in microglia. Due to neuronal loss and reactive gliosis, the observed changes in gene
expression could be reflective of differences in cellular composition between affected and
healthy tissue, or between different disease stages, rather than being indicative of disease-
causing differences in transcriptional regulation. Different approaches exist to control for
different cellular composition, for example through controlling for expression levels of cell-
type-specific genes in the statistical framework, although a validated consensus set of cell
type marker genes remains absent. A digital deconvolution of different brain cell types has
been proposed, using reference panels of cell-type specific expression profiles [72]. Mean-
while, it will not be straightforward to untangle biologically relevant effects (cf. the genetic
association of genes implicated in the immune response and endocytosis with AD risk) from
side effects of neuronal loss or reactive gliosis. Indeed, ongoing work suggests that the immune
response may act early in the disease process [73]. Studies on model systems offer an
opportunity to distinguish between early and late (probably secondary) changes in gene
expression. A systematic transcriptome-wide investigation of different transgenic mouse
models harboring human APP, PSEN1, and MAPT mutations throughout the development
of amyloid or tau pathology demonstrated, amongst others, a strong correlation between
increased expression of immune response genes and amyloid pathology [74]. This included
numerous known AD risk genes, as well as genes that were only later identified to be risk genes
in genetic studies (Abi3 and Plcg2) [9].

The dynamic character of the transcriptome and heterogeneity between tissues and cell types
further stresses the complexity of elucidating molecular mechanisms contributing to AD. Brain-
region specific expression profiles of AD have been highlighted by comparative analysis of brain
regions. Weighted gene coexpression network analysis (WGCNA) on 19 brain regions in 125
AD patients identified primary vulnerability of the temporal gyrus [45]. Gene coexpression
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Outstanding Questions
Can interindividual variation in risk
allele expression, for example, through
unmapped alternative splicing events,
contribute to reduced penetrance of
AD in variant carriers?

Can expression analysis segregate
patients based on affected disease
pathways, for example, between amy-
loid-negative, limbic-dominant, and
hippocampal-sparing subcohorts?

Should outcomes of early comparative
transcriptomics analyses of AD be
revisited to control for confounding
due to disease-stage-related changes
in cell type composition of the tissue
from which RNA was extracted?

Is it possible to reliably distinguish
between primary changes in gene
expression of immune response genes
and neuronal genes on the one hand,
and secondary changes in cell type
composition of brain samples due to
neuronal and synaptic loss and reac-
tive gliosis on the other hand, when
controlling for this confounding factor
in comparative transcriptomics
analyses?

Can an enhanced knowledge of the
temporal, topological and cell-type-
specific changes in gene expression
and splicing further our understanding
of the genetic contributors to AD?

Can disease-relevant cell-type-spe-
cific changes in gene expression be
pharmacologically modulated?
analysis of laser captured neurons in hippocampus, posterior cingulate cortex, and middle
temporal gyrus elucidated distinct differences in onset and extent of AD pathology between
these regions, suggesting a direct relation between brain topology and disease severity effects
[75]. Single-cell RNA sequencing of adult and fetal non-demented temporal cortex cells
identified distinct gene expression patterns between age, glial and neuronal cells types and
between neuronal excitatory and inhibitory subtypes [47]. Neuronal subtype profiling on sorted
cortical neurons revealed distinct differences in gene expression between excitatory and
inhibitory neuronal subpopulations, and topology-specific neuronal composition between
cortical regions [76]. Relative presence of excitatory and inhibitory subtypes varied between
cortical regions, elucidating distinct neuronal subtype composition profiles between Brodmann
areas. Since pathways involving inflammation are commonly identified upregulated in AD
transcriptome analysis, investigating cell-type-specific signatures in AD could shed light on
confounding variables in AD transcriptome profiling.

Concluding Remarks and Future Perspectives
Genetic investigation on AD susceptibility is uncovering a growing number of risk genes. In addition
to rare variants with large effect sizes, over 25 risk genes have been identified through GWAS
approaches, commonly exerting only moderate risk of AD. Pathway analysis of GWAS data has
derived valuable insights and uncovered central roles for immunity, lipid metabolism, synaptic
function and cell adhesion molecules in AD. Integration of gene expression data enables the
identification of hub genes from these networks that may provide targets for biomarker or therapy
development. While transcriptome profiling of AD brain has detected converging evidence of
pathways involved in AD, it also highlights various levels of complexity in translating genetic findings
into mechanistic insights. This includes brain-region- and cell-type-specific expression patterns,
and alternative splicing events thatmay affect the straightforwardrelation between agenetic variant
and aphenotype. Conversely, identification ofgenetic driversofdisease-relateddifferences ingene
expression patterns and molecular networks may help to delineate subgroups of individuals who
could benefit from targeted clinical approaches. These observations re-emphasize the need for an
integrated approach of genetics and transcriptomics (see Outstanding Questions).

While postmortem human brain material is relatively sparse and has inherent limitations as
discussed above, additional investigations could benefit from analysis of in vitro cellular models
to corroborate findings in patient material. Generation of neuronal cultures derived from reprog-
rammed patient material will allow for integrated analysis of postmortem brain material and living
cultures from the same individual or group of individuals, for example, carrying a similar genetic risk
variant. This may reveal molecular mechanisms specific to a genetic subtype. Nevertheless, it will
be challenging to mimic the effects of a senescent or degenerative central nervous system in vitro.
Ongoing refinements in iPSC and organotypic culture and RNA sequencing methods could
corroborate postmortem brain studies in AD by providing a living model of matching genetic
background and cellular composition for in depth investigation of disease mechanisms in AD.
Importantly, evaluation of potential therapeutic agents could be performed using in vitro cultures.

The topological complexity in neuropathological vulnerability and transcriptional regulation in
AD in the brain proposes a need to characterize in more detail the molecular mechanisms
underlying disease susceptibility and progression. Additional experiments are warranted to
elucidate local and regional brain cell (sub) type diversity in further detail to inform functional
specialization of brain regions and regional susceptibility to disease. A comprehensive overview
of cell-type-specific expression profiles in disease, and topological composition of cell types
holds the potential to shed light on the diversity in brain deterioration and spread of neuropa-
thology observed between AD patients.
444 Trends in Genetics, June 2018, Vol. 34, No. 6



Acknowledgments
The research in the authors’ team is funded in part by the European Commission Seventh Framework Programme for

research, technological development and demonstration under grant agreement No. 305299 (AgedBrainSYSBIO), the

Flanders Impulse Program on Networks for Dementia Research, the Alzheimer Research Foundation (SAO-FRA), and the

University of Antwerp Research Fund.

Resources
iwww.synapse.org/
iiwww.braineac.org/
iiiwww.gtexportal.org/
ivhttps://web.stanford.edu/group/barres_lab/brain_rnaseq.html

References

1. Jack, C.R., Jr et al. (2011) Introduction to the recommendations

from the National Institute on Aging-Alzheimer’s Association
workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 257–262

2. McKhann, G.M. et al. (2011) The diagnosis of dementia due to
Alzheimer’s disease: recommendations from the National Institute
on Aging-Alzheimer’s Associationworkgroupson diagnostic guide-
lines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269

3. Braak, H. and Braak, E. (1991) Neuropathological stageing of
Alzheimer-related changes. Acta Neuropathol. 82, 239–259

4. Cacace, R. et al. (2016) Molecular genetics of early-onset Alz-
heimer’s disease revisited. Alzheimers Dement. 12, 733–748

5. Cuyvers, E. et al. (2016) Genetic variations underlying Alzheimer’s
disease: evidence from genome-wide association studies and
beyond. Lancet Neurol. 15, 857–868

6. Lambert, J.C. et al. (2013) Meta-analysis of 74,046 individuals
identifies 11 new susceptibility loci for Alzheimer’s disease. Nat.
Genet. 45, 1452–1458

7. Guerreiro, R. et al. (2013) TREM2 variants in Alzheimer’s disease.
N. Engl. J. Med. 368, 117–127

8. Steinberg, S. et al. (2015) Loss-of-function variants in ABCA7
confer risk of Alzheimer’s disease. Nat. Genet. 47, 445–447

9. Sims, R. et al. (2017) Rare coding variants in PLCG2, ABI3, and
TREM2 implicate microglial-mediated innate immunity in Alz-
heimer’s disease. Nat. Genet. 49, 1373–1384

10. Jones, L. et al. (2015) Convergent genetic and expression data
implicate immunity in Alzheimer’s disease. Alzheimers Dement.
11, 658–671

11. Lambert, J.C. et al. (2009) Genome-wide association study iden-
tifies variants at CLU and CR1 associated with Alzheimer’s dis-
ease. Nat. Genet. 41, 1094–1099

12. Harold, D. et al. (2009) Genome-wide association study identifies
variants at CLU and PICALM associated with Alzheimer’s dis-
ease. Nat. Genet. 41, 1088–1093

13. Seshadri, S. et al. (2010) Genome-wide analysis of genetic loci
associated with Alzheimer disease. J. Am. Med. Assoc. 303,
1832–1840

14. Naj, A.C. et al. (2011) Common variants at MS4A4/MS4A6E,
CD2AP, CD33 and EPHA1 are associated with late-onset Alz-
heimer’s disease. Nat. Genet. 43, 436–441

15. Hollingworth, P. et al. (2011) Common variants at ABCA7,
MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated
with Alzheimer’s disease. Nat. Genet. 43, 429–435

16. Lee, J.H. et al. (2011) Identification of novel loci for Alzheimer
disease and replication of CLU, PICALM, and BIN1 in Caribbean
Hispanic individuals. Arch. Neurol. 68, 320–328

17. Miyashita, A. et al. (2013) SORL1 is genetically associated with
late-onset Alzheimer’s disease in Japanese, Koreans and Cau-
casians. PLoS One 8, e58618

18. Bertram, L. et al. (2008) Genome-wide association analysis
reveals putative Alzheimer’s disease susceptibility loci in addition
to APOE. Am. J. Hum. Genet. 83, 623–632
19. Jun, G. et al. (2014) PLXNA4 is associated with Alzheimer disease
and modulates tau phosphorylation. Ann. Neurol. 76, 379–392

20. Wijsman, E.M. et al. (2011) Genome-wide association of familial
late-onset Alzheimer’s disease replicates BIN1 and CLU and
nominates CUGBP2 in interaction with APOE. PLoS Genet. 7,
e1001308

21. Lambert, J.C. et al. (2013) Genome-wide haplotype association
study identifies the FRMD4A gene as a risk locus for Alzheimer’s
disease. Mol. Psychiatry 18, 461–470

22. Escott-Price, V. et al. (2014) Gene-wide analysis detects two new
susceptibility genes for Alzheimer’s disease. PLoS One 9, e94661

23. Jones, L. et al. (2010) Genetic evidence implicates the immune
system and cholesterol metabolism in the aetiology of Alzheimer’s
disease. PLoS One 5, e13950

24. Lambert, J.C. et al. (2010) Implication of the immune system in
Alzheimer’s disease: evidence from genome-wide pathway anal-
ysis. J. Alzheimers Dis. 20, 1107–1118

25. Hong, M.G. et al. (2010) Genome-wide pathway analysis impli-
cates intracellular transmembrane protein transport in Alzheimer
disease. J. Hum. Genet. 55, 707–709

26. Liu, G. et al. (2012) Cell adhesion molecules contribute to Alz-
heimer’s disease: multiple pathway analyses of two genome-wide
association studies. J. Neurochem. 120, 190–198

27. Ramanan, V.K. et al. (2012) Genome-wide pathway analysis of
memory impairment in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort implicates gene candidates,
canonical pathways, and networks. Brain. Imaging Behav. 6,
634–648

28. Perez-Palma, E. et al. (2014) Overrepresentation of glutamate
signaling in Alzheimer’s disease: network-based pathway enrich-
ment using meta-analysis of genome-wide association studies.
PLoS One 9, e95413

29. Xiang, Z. et al. (2015) Integrating genome-wide association study
and brain expression data highlights cell adhesion molecules and
purine metabolism in Alzheimer’s disease. Mol. Neurobiol. 52,
514–521

30. Gagliano, S.A. et al. (2016) Genomics implicates adaptive and
innate immunity in Alzheimer’s and Parkinson’s diseases. Ann.
Clin. Transl. Neurol. 3, 924–933

31. Jonsson, T. et al. (2013) Variant of TREM2 associated with the
risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116

32. Pottier, C. et al. (2012) High frequency of potentially pathogenic
SORL1 mutations in autosomal dominant early-onset Alzheimer
disease. Mol. Psychiatry 17, 875–879

33. Cuyvers, E. et al. (2015) Mutations in ABCA7 in a Belgian cohort of
Alzheimer’s disease patients: a targeted resequencing study.
Lancet Neurol. 14, 814–822

34. Beecham, G. (2017) Whole-genome sequencing in familial late-
onset Alzheimer’s disease identifies rare variation in AD candidate
genes, Alzheimer’s Association International Conference | July
16-20, 2017, Alzheimer’s & Dementia: The Journal of the Alz-
heimer’s Association. London, England
Trends in Genetics, June 2018, Vol. 34, No. 6 445

http://www.synapse.org/
http://www.braineac.org/
http://www.gtexportal.org/
https://web.stanford.edu/group/barres_lab/brain_rnaseq.html
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0005
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0005
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0005
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0005
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0010
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0010
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0010
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0010
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0015
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0015
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0020
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0020
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0025
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0025
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0025
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0030
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0030
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0030
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0035
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0035
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0040
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0040
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0045
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0045
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0045
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0050
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0050
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0050
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0055
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0055
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0055
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0060
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0060
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0060
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0065
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0065
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0065
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0070
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0070
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0070
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0075
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0075
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0075
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0080
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0080
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0080
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0085
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0085
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0085
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0090
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0090
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0090
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0095
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0095
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0100
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0100
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0100
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0100
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0105
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0105
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0105
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0110
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0110
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0115
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0115
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0115
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0120
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0120
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0120
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0125
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0125
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0125
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0130
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0130
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0130
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0135
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0135
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0135
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0135
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0135
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0140
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0140
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0140
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0140
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0145
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0145
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0145
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0145
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0150
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0150
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0150
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0155
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0155
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0160
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0160
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0160
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0165
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0165
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0165


35. Allen, M. et al. (2012) Novel late-onset Alzheimer disease loci
variants associate with brain gene expression. Neurology 79,
221–228

36. Martiskainen, H. et al. (2015) Transcriptomics and mechanistic
elucidation of Alzheimer’s disease risk genes in the brain and in
vitro models. Neurobiol. Aging 36, 1221.e15–28

37. Karch, C.M. et al. (2012) Expression of novel Alzheimer’s disease
risk genes in control and Alzheimer’s disease brains. PLoS One 7,
e50976

38. Zhao, Q.F. et al. (2015) ABCA7 in Alzheimer’s disease. Mol.
Neurobiol. 51, 1008–1016

39. Yokoyama, J.S. et al. (2016) Association Between Genetic Traits
for Immune-Mediated Diseases and Alzheimer Disease. JAMA
Neurol. 73, 691–697

40. Zhao, Z. et al. (2015) Central role for PICALM in amyloid-beta
blood-brain barrier transcytosis and clearance. Nat. Neurosci. 18,
978–987

41. Scherzer, C.R. et al. (2004) Loss of apolipoprotein E receptor
LR11 in Alzheimer disease. Arch. Neurol. 61, 1200–1205

42. Lue, L.F. et al. (2015) TREM2 protein expression changes corre-
late with Alzheimer’s disease neurodegenerative pathologies in
post-mortem temporal cortices. Brain Pathol. 25, 469–480

43. Li, X. et al. (2015) Integrated genomic approaches identify major
pathways and upstream regulators in late onset Alzheimer’s
disease. Sci. Rep. 5, 12393

44. Humphries, C. et al. (2015) Alzheimer disease (AD) specific tran-
scription, DNA methylation and splicing in twenty AD associated
loci. Mol. Cell. Neurosci. 67, 37–45

45. Wang, M. et al. (2016) Integrative network analysis of nineteen
brain regions identifies molecular signatures and networks under-
lying selective regional vulnerability to Alzheimer’s disease.
Genome Med. 8, 104

46. Ciryam, P. et al. (2016) A transcriptional signature of Alzheimer’s
disease is associated with a metastable subproteome at risk for
aggregation. Proc. Natl. Acad. Sci. U. S. A. 113, 4753–4758

47. Darmanis, S. et al. (2015) A survey of human brain transcriptome
diversity at the single cell level. Proc. Natl. Acad. Sci. U. S. A. 112,
7285–7290

48. Caglayan, S. et al. (2012) Identification of Alzheimer disease risk
genotype that predicts efficiency of SORL1 expression in the
brain. Arch. Neurol. 69, 373–379

49. Verheijen, J. et al. (2016) A comprehensive study of the genetic
impact of rare variants in SORL1 in European early-onset Alz-
heimer’s disease. Acta Neuropathol. 132, 213–224

50. Chapuis, J. et al. (2013) Increased expression of BIN1 mediates
Alzheimer genetic risk by modulating tau pathology. Mol. Psychi-
atry 18, 1225–1234

51. Allen, M. et al. (2015) Late-onset Alzheimer disease risk variants
mark brain regulatory loci. Neurol. Genet. 1, e15

52. Parikh, I. et al. (2014) Genetics of PICALM expression and Alz-
heimer’s disease. PLoS One 9, e91242

53. Delay, C. et al. (2016) miRNA-dependent target regulation: func-
tional characterization of single-nucleotide polymorphisms iden-
tified in genome-wide association studies of Alzheimer’s disease.
Alzheimers Res. Ther. 8, 20

54. Vaquero-Garcia, J. et al. (2016) A new view of transcriptome
complexity and regulation through the lens of local splicing var-
iations. eLife 5, e11752

55. Xu, Q. et al. (2002) Genome-wide detection of tissue-specific
alternative splicing in the human transcriptome. Nucleic Acids
Res. 30, 3754–3766

56. Mills, J.D. et al. (2012) Alternative splicing of mRNA in the molec-
ular pathology of neurodegenerative diseases. Neurobiol. Aging
33, 1012.e11–24

57. Lai, M.K. et al. (2014) Genome-wide profiling of alternative splic-
ing in Alzheimer’s disease. Genom. Data 2, 290–292

58. Bai, B. et al. (2013) U1 small nuclear ribonucleoprotein complex
and RNA splicing alterations in Alzheimer’s disease. Proc. Natl.
Acad. Sci. U. S. A. 110, 16562–16567
446 Trends in Genetics, June 2018, Vol. 34, No. 6
59. Mills, J.D. et al. (2013) RNA-Seq analysis of the parietal cortex in
Alzheimer’s disease reveals alternatively spliced isoforms related
to lipid metabolism. Neurosci. Lett. 536, 90–95

60. Raj, T. (2017) Genetically Regulated Transcriptomic Study of
Alzheimer’s Disease Yields Mechanistic Insights, Alzheimer’s
Association International Conference, July 16-20, 2017, Alz-
heimer’s & Dementia: The Journal of the Alzheimer’s Association.
London, England

61. Zhang, B. et al. (2013) Integrated systems approach identifies
genetic nodes and networks in late-onset Alzheimer’s disease.
Cell 153, 707–720

62. Pottier, C. et al. (2016) TYROBP genetic variants in early-onset
Alzheimer’s disease. Neurobiol. Aging 48, 222 e9–222.e15

63. Ma, J. et al. (2015) TYROBP in Alzheimer’s disease. Mol. Neuro-
biol. 51, 820–826

64. Christopher, M.A. et al. (2017) Neuroepigenetic mechanisms in
disease. Epigenetics Chromatin 10, 47

65. Lord, J. and Cruchaga, C. (2014) The epigenetic landscape of
Alzheimer’s disease. Nat. Neurosci. 17, 1138–1140

66. De Jager, P.L. et al. (2014) Alzheimer’s disease pathology is
associated with early alterations in brain DNA methylation at
ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17,
1156–1163

67. Lunnon, K. et al. (2014) Cross-tissue methylomic profiling strongly
implicates a role for cortex-specific deregulation of ANK1 in
Alzheimer’s disease neuropathology. Nat. Neurosci. 17, 1164–
1170

68. Chibnik, L.B. et al. (2015) Alzheimer’s loci: epigenetic associa-
tions and interaction with genetic factors. Ann. Clin. Transl. Neu-
rol. 2, 636–647

69. Yu, L. et al. (2015) Association of Brain DNA methylation in
SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with patho-
logical diagnosis of Alzheimer disease. JAMA Neurol. 72, 15–24

70. Rawlik, K. et al. (2016) Imputation of DNA methylation levels in the
brain implicates a risk factor for Parkinson’s disease. Genetics
204, 771–781

71. Ernst, J. and Kellis, M. (2015) Large-scale imputation of epige-
nomic datasets for systematic annotation of diverse human tis-
sues. Nat. Biotechnol. 33, 364–376

72. Harari, O. (2017) Cell-Type Profiling to Identify the Transcriptomic
Downstream Events Triggered By Early-Onset Autosomal Domi-
nant AD Mutations Alzheimer’s Association International Confer-
ence | July 16-20, 2017, Alzheimer’s & Dementia: The Journal of
the Alzheimer’s Association, London, England

73. Hong, S. et al. (2016) Complement and microglia mediate early
synapse loss in Alzheimer mouse models. Science 352, 712–716

74. Matarin, M. et al. (2015) A genome-wide gene-expression analy-
sis and database in transgenic mice during development of
amyloid or tau pathology. Cell Rep. 10, 633–644

75. Ray, M. et al. (2010) Analysis of Alzheimer’s disease severity
across brain regions by topological analysis of gene co-expres-
sion networks. BMC Syst. Biol. 4, 136

76. Lake, B.B. et al. (2016) Neuronal subtypes and diversity revealed
by single-nucleus RNA sequencing of the human brain. Science
352, 1586–1590

77. Shendure, J. (2008) The beginning of the end for microarrays?
Nat. Methods 5, 585–587

78. Tyner, C. et al. (2017) The UCSC Genome Browser database:
2017 update. Nucleic Acids Res. 45, D626–D634

79. Ciarlo, E. et al. (2013) An intronic ncRNA-dependent regulation of
SORL1 expression affecting Ab formation is upregulated in post-
mortem Alzheimer’s disease brain samples. Dis. Model Mech. 6,
424–433

80. Sutherland, G.T. et al. (2011) Understanding the pathogenesis of
Alzheimer’s disease: will RNA-Seq realize the promise of tran-
scriptomics? J. Neurochem. 116, 937–946

81. Blencowe, B.J. (2006) Alternative splicing: new insights from
global analyses. Cell 126, 37–47

http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0175
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0175
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0175
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0180
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0180
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0180
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0185
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0185
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0185
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0190
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0190
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0195
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0195
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0195
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0200
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0200
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0200
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0205
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0205
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0210
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0210
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0210
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0215
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0215
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0215
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0220
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0220
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0220
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0225
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0225
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0225
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0225
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0230
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0230
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0230
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0235
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0235
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0235
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0240
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0240
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0240
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0245
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0245
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0245
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0250
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0250
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0250
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0255
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0255
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0260
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0260
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0265
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0265
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0265
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0265
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0270
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0270
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0270
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0275
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0275
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0275
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0280
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0280
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0280
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0285
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0285
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0290
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0290
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0290
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0295
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0295
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0295
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0305
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0305
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0305
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0310
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0310
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0315
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0315
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0320
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0320
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0325
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0325
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0330
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0330
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0330
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0330
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0335
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0335
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0335
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0335
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0340
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0340
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0340
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0345
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0345
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0345
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0350
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0350
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0350
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0355
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0355
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0355
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0365
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0365
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0370
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0370
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0370
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0375
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0375
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0375
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0380
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0380
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0380
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0385
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0385
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0390
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0390
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0395
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0395
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0395
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0395
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0400
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0400
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0400
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0405
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0405


82. Malik, M. et al. (2013) CD33 Alzheimer’s risk-altering polymor-
phism, CD33 expression, and exon 2 splicing. J. Neurosci. 33,
13320–13325

83. Tan, M.S. et al. (2013) Bridging integrator 1 (BIN1): form, function,
and Alzheimer’s disease. Trends Mol. Med. 19, 594–603

84. Killick, R. et al. (2014) Clusterin regulates beta-amyloid toxicity via
Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol.
Psychiatry 19, 88–98

85. Zhou, Y. et al. (2014) Intracellular clusterin interacts with brain
isoforms of the bridging integrator 1 and with the microtubule-
associated protein tau in Alzheimer’s disease. PLoS One 9,
e103187

86. Schnetz-Boutaud, N.C. et al. (2012) Identification and confirma-
tion of an exonic splicing enhancer variation in exon 5 of the
Alzheimer disease associated PICALM gene. Ann. Hum. Genet.
76, 448–453
87. De Roeck, A. et al. (2017) Deleterious ABCA7 mutations and
transcript rescue mechanisms in early onset Alzheimer’s disease.
Acta Neuropathol. 134, 475–487

88. Huang, K.L. et al. (2017) A common haplotype lowers PU.1
expression in myeloid cells and delays onset of Alzheimer’s
disease. Nat. Neurosci. 20, 1052–1061

89. Satoh, J. et al. (2014) A comprehensive profile of ChIP-Seq-
based PU.1/Spi1 target genes in microglia. Gene Regul. Syst.
Biol. 8, 127–139

90. Gjoneska, E. et al. (2015) Conserved epigenomic signals in mice
and humans reveal immune basis of Alzheimer’s disease. Nature
518, 365–369
Trends in Genetics, June 2018, Vol. 34, No. 6 447

http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0410
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0410
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0410
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0415
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0415
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0420
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0420
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0420
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0425
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0425
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0425
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0425
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0430
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0430
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0430
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0430
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0435
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0435
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0435
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0440
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0440
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0440
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0445
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0445
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0445
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0450
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0450
http://refhub.elsevier.com/S0168-9525(18)30042-8/sbref0450

	Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics
	Alzheimer Disease: Common and Complex
	Genetic Risk Loci and Pathways in Polygenic AD
	Common Genetic Risk Factors

	Rare Genetic Risk Factors
	Understanding AD through Transcriptome Analysis
	AD Risk Genes and Loci at the Transcript Level

	Transcriptome-wide Profiling of Postmortem AD Brain
	Gene Coexpression Networks and Hub Genes
	Epigenetic Regulation of Gene Expression
	Hurdles in Interpretation

	Concluding Remarks and Future Perspectives
	Acknowledgments
	Resources
	References


