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Abstract 

NC-1007 (CK4-M2GlyR) (PARVGLGITTVLTMTTQSSGSRAKKKK) is a synthetic peptide 

modeled after the second transmembrane segment of the spinal cord glycine receptor’s α-subunit, 

and has demonstrates the capacity to oligomerize to form transmembrane channels with Cl- 

permselectivity. While studies into the effects of truncation on both CK4 (C-terminal tetra-lysl 

adducted) and NK4 (N-terminal tetra-lysl adducted) led to more control over solution aggregation 

in the NK4 variant, the work presented explore whether C-terminal sequential substitutions with 

a tryptophan residue could similarly stabilize the aqueous structure in monomeric form or further 

define the pore registry in such a way as to promote an increase ion permeability. Tryptophan 

was substituted for amino acids in the 18th, 19th, 20th, and 21st positions of the peptide sequence 

(SSGS, respectively), and changes in aggregation profiles, secondary structure, and channel ion 

permeability were observed. Synthesized peptides show circular dichroism spectral profiles 

indicating that the studied tryptophan substitutions did not result in a reduction of the 

characteristic helicity of the peptide; however, the tryptophan substitution also did little to 

decrease solution aggregation as demonstrated by comparative studies by reverse-phase high-

performance liquid chromatography. All peptides demonstrated channel activity, directly 

measured by recordings of transepithelial short-circuit current. with profiles that suggest trends 

in electrostatic interactions and membrane registry relative to substitution position. One peptide 

in particular, NC-1007 S21W displayed atypical activity, which could not be effectively 

described by the standard Hill-based model but may be indicative of an ill-defined registry due to 

the substituted peptide’s proximity to another strongly pore-defining residue. Further studies in 

the effects of sequence modification to channel-forming peptides will elucidate how sequences 

may be altered to optimize synthetic peptide solubility, resistance to in-solution aggregation, and 

ability to form selective and permeable ion channels. The understanding gained from this study 

will improve our ability to develop peptides that could serve as a therapeutic treatments for a 

number of endogenous channelopathies.  
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Chapter 1 - Background and Introduction 

 Ion Channels 
Ion channels are protein complexes that allow for the movement of ions across cellular 

membranes. Ion channels often employ gating mechanisms dependent on ligands or voltage, and 

are defined by a number of characteristics of the pore that they form, including conductance, 

length, and dielectric constant (Futaki 1998; Stoikov et al., 2003). Ion channels are generally 

composed of proteins, some of which assemble to form a permeable pore. Pore size and residue 

type at or near the narrowest part of the channel, known as the selectivity filter, affect which ions 

can permeate through the channel (Ashcroft, 2000; Hille, 2001).  

 Amino acid residues can be positively or negatively charged (and therefore hydrophilic), 

uncharged but polar, or non-polar. Hydrophobic nonpolar residues tend to comprise the 

transmembrane domain of the protein, while hydrophilic residues tend toward the extra- or intra-

cellular space. Certain amino acid residues have somewhat predictable effects on the pore 

structure. For example, proline, due to its cyclic side-chain, displays notable conformational 

rigidity, and is frequently found at the terminus of the peptide’s α–helix, and therefore often 

defines the boundary of the transmembrane domain in membrane-spanning peptides and proteins 

(Ashcroft, 2000). Serine, threonine, and tyrosine can be phosphorylated to induce a negative 

charge, potentially altering the structure and function of the peptide or channel through this 

change in electrostatic interactions. Extracellular residues also may undergo glycosylation, 

adding mass that may have an effect on structure or function of the channel. It is generally 

assumed that transmembrane segments are often α–helical in secondary structure, comprised of 

16-20 amino acids, and often contain many alanine, glutamate, methionine, or leucine residues, 

which have a greater propensity for the formation of α–helical structures. 

This opening and closing mechanism of ion channels is known as gating, and can be 

driven by voltage changes or covalent modification of the peptide or protein. Single channel 

recordings can determine the channel’s opening and closing rates as well as conductance. The 

ratio of the time the channel is open to the total duration of the recording is known as the open 

probability, and can be used to calculate macroscopic current from single-channel current data if 

the number of channels and single channel current is known. This value can be obtained using 

the following equation:  

 

I=inPo 
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Where I is macroscopic current; i, single-channel current; n, the number of active channels; and 

Po, the probability of any given channel being open.  

The majority of channels have a single conductance state, meaning that during times 

spent open, given that the membrane potential is constant, the amplitude of current through the 

channel is consistent. In some cases, however, certain channels can demonstrate multiple 

conductance states. Current through a single channel varies with intra- and extra-cellular 

concentrations of present ion species, membrane voltage potential, and solubility. 

Electrochemical gradients determine the direction of movement through the pore, as well as flow 

rate (Ashcroft, 2000). 

 Ion Flux Across Epithelia 
A number of different ions flow into and out of an epithelial cell, impacting the 

membrane potential that serves as the driving force for ion movement. In order to understand Cl- 

transport through CFTR or M2GlyR peptides, it is important to understand the complex interplay 

of other transporters that affect net driving forces.  

Na+/K+ ATPase (a.k.a. Na+/K+ pump) contributes substantially to cellular energy 

expenditure, accounting for roughly 2/3 of ATP utilization. It is electrogenic, moving 3 Na+ and 

2 K+ against their concentration gradients (out of and into the cell, respectively). This plays a 

fundamental role in maintaining cellular potential and the electrochemical gradients that serve as 

the driving force for the secretion of other ions, such as Cl- (Skou, 1998). Similarly, K+ channels 

such as TWIK (two-pore domain weak inward rectifying K+ channel) related channels, such as 

TASK (TWIK-related acid-sensitive K+ channel) and TREK (TWIK-related K+ channel) and an 

abundance of Ca2+ activated K+ channels play a key role in maintaining voltage potential of the 

epithelial cell. In order to maintain polarization of the cellular resting potential, positively 

charged ions must be pumped out of the cell at a steady rate, counterbalancing the influx of 

positively charged Na+. This efflux of K+ thereby repolarizes the cell so as to promote anion 

efflux. The Na+/K+/2Cl- cotransporter (epithelial isoform NKCC1) mediates the uptake of 2 Cl- 

ions into the cell, driven by its coupled influx with one K+ and one Na+ ion (Frizzell & 

Hanrahan, 2012; Wills et al., 1996). In the typical epithelial cell, the concentrations of 

predominant ions Na+, K+, Ca2+, Cl-, and HCO3- play the most significant role in ion transport.  

Diffusive forces will generally drive ions to move down a gradient from high to low 

concentration. However, in biological systems electrical gradients can oppose those of diffusion, 

and depending on the system, there exists a certain equilibrium potential at which these forces 

are perfectly opposed such that there is no net ionic flux. Ohm’s law relates the electrical driving 
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forces and movement for ions current through a conductive pathway, and is defined in terms of 

current (I), conductance (G) and voltage (V), such that: 

 

 I = G*V  

 

The Nernst equation defines this voltage with respect to the ion’s valence and 

transmembrane concentration gradient. The Nernst equation can be expressed as:  

 

Ex = (RT/(z)F)*ln([X]ext/[X]int) or alternatively, 

Ex = (2.3RT/(z)F)*log([X]ext/[X]int) 

 

Where Vx is the equilibrium potential for the given ion; R is the universal gas constant, 8.314 

J/(mol*K); T is temperature in Kelvin (assumed at 310K for body temperature); z is ion valence 

(negative for anions, positive for cations); F is Faraday’s constant (9.6484 x 104 coulombs/mol); 

X is the given ion being evaluated (e.g. Cl-) and its extracellular ([X]ext) and intracellular ([X]int) 

concentrations.  

 The Nernst equation, however, is limiting in that it can only express the equilibrium 

potential relative to the intra- and extra-cellular concentrations of a single ion. In actuality, 

however, the membrane is permeable to multiple ions that contribute to the electrochemical 

gradient that drives ion flux. In the case of multiple ion transport, equilibrium potential is 

reached when the current relative to all ions in flux rests at zero. The Goldman-Hodgkin-Katz 

(GHK) equation can be used to calculate the membrane potential of a cell that is permeable to 

more than a single ion species, and is given as:  

 

,   
 
 
Where Vm is membrane potential; R, the universal gas constant; T, temperature in Kelvin; F, 

Faraday’s constant; px, the permeability of a given ion (in cm/sec); [X]o, the extracellular, and 

[X]i, the intracellular concentrations of the given ion; and K (K+), Na (Na+), and Cl (Cl-), the ions 

in question for epithelial membranes.  
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 The Glycine Receptor (GlyR) 
Cl- channels play functional roles in transepithelial transport as well as membrane 

excitability and cellular pH modulation. At least three distinct families of Cl- channel exist 

(Jentsch and Günther, 1997): voltage-gated channels, CFTR-like channels, and ligand-gated 

channels such as those activated by opened by GABA and glycine. The binding of the 

neurotransmitter glycine to the receptor opens the pore and allows for Cl- secretion. The glycine 

receptor, like most ion channels, is composed of several subunits that assemble to form a 

selective pore. The channel pore is formed at the center of the cluster that consists of both α and 

β subunits.  A variant containing only α-subunits of GlyR combine to form homopentameric 

pores that expressed functionality in Xenopus oocytes (Schmeiden et al., 1989).  The fact that a 

single M2 sequence can form a chloride channel made this an obvious choice for further 

investigations. 

 

 An Introduction to Cystic Fibrosis   
Epithelia, composed of numerous tightly packed cells, serve as barriers that employ 

diverse channels and transporters to regulate the movement of solutes and solvents into and 

between different body compartments. Epithelial barriers protect organs and the body as a whole 

from unregulated penetration of harmful substances and also serve to sustain the necessary 

concentrations of various chemicals within those compartments. Improper function of the 

channels that contribute to solute and solvent transport can lead to illness or death. 

Cystic fibrosis is a recessive autosomal genetic channelopathy (Becq, 2010); the result of 

dysfunctional CFTR, or cystic fibrosis transmembrane conductance regulator, which contributes 

to the permeation of anions across epithelial membranes (Zhang, 2000). CFTR is encoded by its 

eponymous gene, and is itself indirectly regulated by cyclic adenosine monophosphate (cAMP) 

(Sheppard and Welsh, 1999; Davis 2006). The protein is composed of two nucleotide-binding 

domains, two membrane-spanning domains, and a regulatory domain, which contains sites that 

can be phosphorylated by protein kinase A (Riordan, 2008; Devidas and Guggino, 1997; 

McCarty, 2000; Zhang et al., 2000). Protein kinase C has also been reported to modify CFTR 

function (Jia et al., 1997). CFTR is an adenosine triphosphate (ATP) binding cassette transporter, 

a member of a family of transmembrane proteins that use ATP as an energy source in carrying 

out their respective functions (Higgins, 1995). CFTR is the only member of this superfamily that 

acts as an ion channel, primarily serving to facilitate anion transport across epithelia throughout 

the body (Quinton, 1999; Davis 2006).  
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Mutations responsible for malfunctions in CFTR that lead to cystic fibrosis are 

categorized into five classes relative to their respective mechanisms of disruption (Pilewski and 

Frizzell, 1999). Classes 1 and 2 lead to disease across multiple organs, most notably pancreatic 

insufficiency, male infertility, bowel obstruction, and progressive lung disease (Rowntree and 

Harris, 2003). Class 1 comprises all mutations that result in abnormal biosynthesis and/or 

disrupted translation of CFTR. Class 2 contains mutations that affect the folding and trafficking 

of the protein. The most common mutation to CFTR, ΔF508, which represents a deletion of 

phenylalanine at position 508 of the protein, is a class 2 mutation. ΔF508 CFTR is recognized by 

the cell as a defective protein, and is endosomally degraded before it can form a channel in the 

cell membrane (Mall et al., 2004; Kopito, 1999; Pilewski and Frizzell, 1999). Class 3 is virtually 

indistinguishable from class 1 and class 2 type mutations with respect to its resulting symptoms 

in the lungs and pancreas (Pilewski and Frizzell, 1999; Rowntree and Harris, 2003). However, 

this class includes mutations that affect regulation of channel gating (Pilewski and Frizzell, 

1999) and is typified by the well-characterized G511D mutation. Classes 4 and 5 of CFTR-

disrupting mutations lead to partial function in CFTR channel activity at the cell membrane. 

With class 4 mutations, an otherwise normally developed CFTR protein forms a channel that 

exhibits decreased gating or transport ability of chloride relative to its fully-functional 

counterpart. Class 5 mutations characterize those that result in the alternative splicing of mRNA 

sequences, which leads to an alternate transcript, and therefore a reduction in expressed CFTR. 

Class 5 mutations can result in pancreatic disease and congenital bilateral absence of the vas 

deferens (CBAVD; Pilewski and Frizzell, 1999; Rowntree and Harris, 2003). 

Compromised CFTR function can cause a wide variety of maladies by way of insufficient 

ion transport in a number of corporeal systems, including the sweat glands, pancreas, and 

airways. Pulmonary disease is perhaps the most widely recognized symptom of cystic fibrosis 

that results from recurrent or chronic bacterial infection by Pseudomonas aeruginosa, 

Staphylococcus aureas, Burkholderia cepacia, and Haemophilis influenza (Rowe et al., 2006). 

These bacteria thrive in the thick, sticky mucus that accumulates due to reduced fluid secretion in 

the lungs and remains uncleared from the airways (Quinton, 1999; Planells-Cases and Jentsch, 

2009). Activation of nuclear factor kappa B by neutrophils and macrophages leads to 

inflammation and scarring, which is typical of the disease (Rowe et al., 2006). Furthermore, 

studies suggest also that inflammatory response regulation may be impaired by defective CFTR 

(Pilewski and Frizzell, 1999). The thick, viscous mucus that supports the infection is the result of 

leukocyte apoptosis and abnormal, dehydrated mucin glycoproteins that fail to fully unfold when 

secreted (Davis, 2006). Not only does the fluid on the surface of the airways aid in the hydration 



 6 

of the system and facilitate the clearance of mucus, it also contains neutrophils and macrophages 

that help reduce infections (Tarran, 2004).  

In addition to lung infections and bronchiectasis, mutations of CFTR and dysfunctional 

CFTR protein can result in a wide range of symptoms, due in part to its role in regulating 

concentrations of Cl- and bicarbonate (HCO3
-), and subsequently, concentrations of counter-ions 

and fluid volume. Normally Na+/K+-ATPase moves Na+ out of the cell from the basolateral 

membrane, creating a driving force for apical Na+ uptake. Adrenaline stimulates receptors that 

increase cellular cAMP, releasing sweat from the duct and increasing the uptake of extracellular 

salts. In CF epithelia, however, inadequate Cl- uptake leads to depolarization as sodium is still 

absorbed into the epithelium. This ultimately leads to a reduction in driving force for continued 

sodium absorption, resulting in the excess salt in human sweat, which serves as the basis of the 

common “sweat test” for CF (Ashcroft, 2000; Rowe et al., 2006). The transport of HCO3
- can 

also be impacted by abnormal CFTR, through which it permeates, or indirectly by way of the 

effect of Cl- concentration imbalances on the Cl-/HCO3- exchange transporter present in the 

lungs and ducts of the pancreas (Kim and Steward, 2009). Impaired transport of Cl- in biological 

epithelia is a direct result of malfunctioning CFTR, and often results in abnormal or reduced 

fluid secretion (Welsh, 1987; Li et al., 1989, Anderson et al., 1992; Smith et al., 1994; Zhou et 

al., 2002).  

 

 Current Palliative Options and Experimental Therapies 
The majority of present therapies for cystic fibrosis are palliative in nature. Patients 

suffering from cystic fibrosis-related diabetes are generally given insulin to compensate for the 

resistance and decreased production of the hormone. Dietary supplements, such as Yasoo Health 

Inc’s compound, AquADEKs® restore necessary vitamins deficient in those with the disease and 

have been shown to reduce several cystic fibrosis associated pulmonary symptoms (Sagel et al., 

2011). The USFDA has approved several therapies for the replacement of pancreatic enzymes, 

which aid in vitamin and nutrient absorption. These include Zennen® (Eurand Pharmaceuticals), 

Creon® (Abbott Laboratories) and Pancreaze™ (Ortho-McNeil Pharmaceutical). Several others 

are still in the pipeline, but require additional clinical trials for approval (Lowry, 2011). Insulin 

supplements are used to restore function for those who suffer from cystic fibrosis related 

diabetes.   

Antibiotics and anti-infectives such as Aztreonam-based Cayston® (Gilead Sciences), 

tobramycin-based TOBI® are used to target Pseudomonas aeruginosa, a common bacteria in CF 

airways, and have been reported to improve lung function (Cheer et al., 2003). Antibiotics can be 
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administered via a wide range of delivery systems (Gibson et al., 2003). Azithromycin (Pfizer, 

Inc.) has also been explored as an antibiotic for CF patients. While it initially showed great 

promise in reducing infections of Pseudomonas aeruginosa (Saiman et al., 2003), more recent 

studies suggest that prolonged use may contribute to heart disease (Ray et al., 2012) and chronic 

infection by other bacteria (Renna et al., 2011). Anti-inflammatories fight the pulmonary 

inflammation that leads to fibrosis and a decrease in lung function in CF patients. Twice-daily 

ibuprofen was shown to slow the rate of deterioration of the pulmonary systems of those with CF 

(Konstan et al., 1995). KB001 (Kalobios Pharmaceuticals) moderates virulence factors of 

Pseudomonas aeruginosa that play a role in inflammation (Baer et al., 2008).  

A number of approaches target viscous pulmonary mucus to address CF symptoms. 

These include airway rehydrating agents, which work to flush extant mucus in the lungs and 

promote expectoration (Pettit and Johnson, 2011) and mucolytics, which reduce mucosal 

viscosity. Dornase alfa-based Pulmozyme® (Genentech) is a recombinant human 

deoxyribonuclease, which acts to decompose mucus-thickening DNA, and has been shown to 

reduce infection rates and increase lung function in those with CF (Fuchs et al., 1994); Moli1901 

(Lantibio Pharmaceuticals) works by Cl- conductance via alternate channels to improve lung 

function (Grasemann et al., 2007); and GS9411 (Gilead Sciences) acts to inhibit the absorption 

of sodium via epithelial Na+ channels (ENaC) (Sears et al., 2011; clinicaltrials.gov). A mist of 

nebulized hypertonic saline was shown to improve pulmonary function, presumably by 

safeguarding healthier airways from continued infection (Elkins et al., 2006; Donaldson et al., 

2006), and inhaled mannitol acts by osmosis to increase airway hydration (Jaques et al., 2008; 

Bilton et al., 2011).  

 Alternative and Experimental Therapies 

Several experimental therapies demonstrate potential as alternatives to palliative 

treatment and aim to replace dysfunctional CFTR or restore function to mutated forms. 

PLASmin® compacted DNA (Copernicus Pharmaceuticals) is a gene therapy that avoids some 

common difficulties presented by viral vectors through the use of polycation-condensed DNA 

(which condenses DNA by roughly 1000x), and is capable of membrane permeation (Chen et al., 

2007). Intra-nasal application showed tolerability and increased function, but evidence of gene 

expression was absent (Konstan et al., 2004). 

Ivacaftor (Kalydeco; VX-770; Vertex Pharmaceuticals) is noted as one of the first FDA-

approved non-palliative therapies for CF. VX-770 decreases the high closing rate of CFTR 

channels resulting from the G551D mutation. VX-770’s potentiating action requires no ATP, but 

depends on phosphorylation (Eckford et al., 2012). It has also been shown to improve pulmonary 



 8 

function and normalize Cl- levels in human sweat (Sheridan, 2011). Ivacaftor has also been used 

in combination with Lumicaftor (VX-809; Vertex Pharmaceuticals), which corrects trafficking of 

CFTR in CF patients with common mutation ΔF508 (Thibodeau et al., 2010). As with the 

G551D mutation, VX-770 maintains the pore’s open conformation (Pollack, 2011; and 

http://investors.vrtx.com/releasedetail.cfm?releaseid= 583683). This combination therapeutic has 

recently passed all clinical trials, and Vertex will be submitting a new drug application to the 

USFDA by the end of the year for potential approval in 2015 

(http://investors.vrtx.com/releasedetail.cfm?ReleaseID=856185).  

 Small-molecule therapeutic, Ataluren® (PTC Therapeutics) restores full-length CFTR 

from those harboring harboring nonsense mutations. Clinical trials demonstrated increased ion 

transport in nasal epithelia (Wilschanski et al., 2011; and http://www.ptcbio.com/ 

3.1.1_genetic_disorders.aspx), but there is debate about the credibility of the assay in these trials 

(Auld et al., 2010; Peltz et al., 2009). 

 

 Ion Channel Replacement Therapy 
The subsequent experiments explore what is believed to be a more straightforward and 

optimizable approach to CFG therapy: the use of synthetic peptide channels as a substitute for 

naturally produced CFTR. This method of ion channel replacement therapy avoids many pitfalls 

of gene therapy, including difficulty with viral vectors, transformation, subsequent functionality 

of the protein. The aim is to develop easily deliverable, anion selective pore-forming peptides 

with maximal ability to regulate ion flow and minimal antigenic effects.  

This laboratory’s aim has long been the production and optimization of synthetic peptides 

capable of forming ion-penetrable pores modeled after an ion channel found in the glycine 

receptor of the spinal cord. These peptides, classified as M2GlyR peptides, are modeled after the 

second transmembrane segment (M2) of the glycine receptor alpha-subunit (GlyR), which was 

initially characterized by Reddy et al. (1993). Those studies demonstrated anion-selective 

transport across lipid membranes, showing similarity to the native Glycine receptor. This model 

has served as the foundation for subsequent studies on various permutations of the original 

M2GlyR sequence (PARVGLGITTVLTMTTQSSGSRA; from amino acid 250-272 of GlyR). 

Further studies explored the effects of addition, elimination, and substitution of amino acids in 

the sequence on structure, channel-forming ability, and subsequent ion conduction. Numerous 

CFTR transmembrane segments (M1-6; M10-12) have been implicated as playing a role in the 

formation of the Cl- selective pore (Montal, et al., 1994; Zhang et al., 2000; Linsdell, 2006), and 

the channel’s selectivity filter is associated with the M6 segment (Zhou et al., 2002; Beck et al., 
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2008; Alexander et al., 2009). The relative simplicity, yet similar conductive ability of M2GlyR 

makes it an optimal platform sequence from which synthetic peptides might be modeled.  

The beauty of this approach lies in its direct, yet relatively simple methodology. Unlike 

palliative options, which merely treat the symptoms of the disease, our peptides have the 

capacity to restore ion transport across epithelia by delivery (most effectively via aerosolized 

inhalants) directly into the airways, allowing the peptide to insert in the apical membrane and 

auto-assemble to form de novo anion selective channels. In addition, as discussed above, unlike 

gene therapy and similar methods, this method circumvents many of the difficulties in associated 

with DNA delivery and protein expression. 

An optimized channel-forming peptide will exhibit a number of distinct characteristics. 

Peptides should exhibit solubility in aqueous solution and retain the capacity to form anion 

conducting channels in epithelial membranes utilizing as little peptide as possible to achieve 

desired ends. One facet of this faculty requires that the majority of peptide in solution should 

remain in monomeric form. Peptides that bind cellular membranes in monomeric form have been 

shown to form functional channels. This factor also contributes to the ability to accurately 

calculate requisite quantity and concentration of the effectively binding peptide for therapeutic 

use. Previous studies demonstrated that M2GlyR peptides are generally well-tolerated by mice, 

eliciting no detectible detectable antigenic effects (Van Ginkel et al., 2008). Because natural 

electrochemical gradients across cell membranes serve as the driving force for channel 

permeation, there is little risk of excess secretion.  

 M2GlyR-altered sequences 
Beginning with the M2GlyR sequence, single and multiple amino acid substitutions were 

explored to improve the properties of the peptide as a potential therapeutic agent.  Initial studies 

with M2GlyR sequences explored both monomeric and tetrarameric templated structures 

following previous general protocols (T4-M2GlyR) (Mutter et al., 1989; Iwamoto et al., 1994), 

but the latter was ultimately rejected in favor of the more efficiently synthesized and purified 

monomer, which showed an increase in short circuit current (Isc) in Manin-Darby canine kidney 

(MDCK) epithelial monolayers. However, the change in Isc was not immediate and occurred only 

in a percentage of all monolayers tested. Furthermore, low solubility and uncontrolled orientation 

of inserted peptide led to the exploration of modified sequences.  

In an attempt to better control solubility and insertional orientation, second-generation 

sequences incorporated terminal oligo-lysine residues. C-terminal pentameric-lysine adducted 

variants demonstrated the most notable solubility increase, while tetrameric-lysine adducts to 

either terminus yielded the most optimal balance in solubility and increase in Isc (Tomich et al., 
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1998). Furthermore, the C-terminal lysine adducted peptide allowed for the same transmembrane 

orientation as the corresponding segment in the native glycine receptor, and provided stability in 

supramolecular assembly of channel formation.   

Later studies demonstrated that the modulation of K+ secretion via Ca2+-dependent 

channels in the basolateral membrane of epithelia affected the transport elicited by apically-

inserted CK4-M2GlyR in T84 cells. K+-channel inhibition by clotrimazole and charybdotoxin 

resulted in a reduced Isc elicited by the peptide, whereas activators, such as 1-ethyl-2-

benzimidazolinone (1-EBIO) amplified the Isc response to equal concentrations of peptide, 

suggesting coordination between K+ efflux across the basolateral membrane and fluid as a 

consequence of Cl- release. (Wallace et al., 2000). In the presence of 1-EBIO, ion transport by N-

terminal lysine-adducted sequences was significantly larger than that of CK4 peptides at identical 

concentrations (Broughman et al., 2001; Wallace et al., 1997), and led to the exploration of NK4-

M2GlyR as the lead peptide in the class to develop as a potential therapeutic. Additional studies 

explored the effect of CK4-M2GlyR and NK4-M2GlyR on nasal potential difference (PD) in 

ΔF508 transgenic mice. Data suggested that pre-exposing murine nasal epithelia to one of the 

two tetralysine-adducted peptides led to near normalization of Cl- and fluid secretion relative to 

CF mice in control groups (in which the expected response was null) and those without treatment 

(Tomich, Unpublished results).  

However, higher Isc at low concentration was not the sole determining factor in selecting 

a lead sequence and in many regards NK4-M2GlyR was observed to be suboptimal. Chemical 

cross-linking, nuclear magnetic resonance (NMR) imaging and computer modeling studies were 

used to examine the effects of different points of adduction of poly-lysine residues. As 

hydrophobic residues tend to condense together in solution, aggregation can become problematic 

with higher peptide concentrations. Ideally, as discussed previously, the majority of the peptide 

should be monomeric in aqueous solution, without sacrifice of its channel formation and 

conductance properties. In order to study solution aggregation, bis [sulfosuccinimidyl] suberate 

(BS3) was used as a cross-linking reagent to lock aggregates into oligomeric form through the 

use of its free-amine binding molecules. Silver-stained sodium dodecyl sulfate polyacrylamine 

gel electrophoresis (SDS-PAGE) gels were then used to visualize molecular aggregation in 

solution (Broughman et al., 2002b). These studies determined that CK4-M2GlyR sequences 

exhibit lower aggregation in solution relative to their NK4 counterparts, with predominant 

aggregates being those of trimmers and dimers, with much of the peptide remaining monomeric. 

NK4-M2GlyR, on the other had, demonstrated considerably greater aggregation, showing 

oligomers increasing from non-aggregated peptide through 20-mers, as shown in fig. 1.1. 
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Figure 1.1: Association profile of CK4- and NK4-M2GlyR p27 

tricine polyacrylamide gel, silver stained, of NK4-M2GlyR and CK4-M2GlyR peptides. Lanes 1 

and 10 hold standards for molecular weight; lanes 2– 4, NK4-M2GlyR treated with cross-linking 

reagent in 40-fold excess (100, 200, and 300 µM, respectively); lane 5, untreated NK4-M2GlyR 

boiled in sample buffer containing SDS; lanes 6–8, CK4- treated with cross-linking reagent in 

40-fold excess (100, 200, and 300 µM, respectively); lane 9, untreated CK4-M2GlyR, boiled in 

sample buffer containing SDS (reprinted with permission from Broughman et al., copyright 

2002b, American Chemical Society). 

 

Further studies sought to determine residues of NK4-M2GlyR that contributed to 

aggregation of the peptide in solution. Both NK4-M2GlyR and CK4-M2GlyR were truncated at 

various points and results indicated that truncation of NK4-M2GlyR’s five C-terminal residues 

(SGSRA) decreased aqueous peptide aggregation (fig. 1.2) without inducing a notable reduction 

in Isc (fig. 1.3). In contrast, there was little change in aggregation of CK4-M2GlyR when residues 

were truncated from the N-terminal end, but there was a negative effect on ion transport. 

Ultimately, a truncated form of NK4-M2GlyR, p22, was adopted as the lead peptide for further 

study. Furthermore, this shorter peptide was more easily synthesized due to a reduced number of 
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amino acid additions and therefore more cost-effective to manufacture than any of its 

counterparts.  

 
Figure 1.2: Cross-Linked M2GlyR Truncated Peptides  

Tricine polyacrylamide gel, visualized with silver stain, of cross-linking patterns for truncated 
CK4- M2GlyR and NK4-M2GlyR. X-axis demonstrates truncation points of the given peptide 
e.g. p27, truncated at 27 residues, and so on). All samples were treated with a 40-fold excess of 
crosslinking reagent (Broughman et al., 2002b) 
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Figure 1.3: Activity of Truncated M2GlyR Segments NK4- and CK4-M2GlyR 

Isc given by truncated and full-length peptide sequences of NK4- and CK4-M2GlyR peptides at 

500 µM in MDCK monolayers. Symbols represent mean and standard error of three to seven 

observations. (Broughman et al., 2002b) 

 

In eliminating several hydrophilic residues from NK4-M2GlyR to make its p-22 truncated 

sequence, the overall hydrophobicity of the peptide was increased, making it less soluble in 

solution (Wimley and White, 2000; Jayasinghe et al., 2001). This truncation included the 

elimination of the C-terminal arginine in the truncated NK4-M2GlyR-p22 sequence, which, as 

suggested by previous NMR studies on native sequence M2, plays a role in defining the 

transmembrane domain due to its propensity to lie at the membrane’s lipid/water interface (Tang 

et al., 2002; Yushmanov et al., 2003; Vogt et al., 2000; Harzer and Bechinger, 2000; Mitaku et 

al., 2002). Subsequent studies were undertaken to explore whether an arginine insertion at the C-

terminal end of the truncated NK4-M2GlyR-p22 might affect solubility, transmembrane 

positioning and channel conductance (Shank et al., 2006). Results indicated that this arginine 

substitution at position 19 and beyond dramatically increased aqueous solubility without 

drastically affecting aggregation patterns or Isc values relative to the parent p22 sequence.  

According to several studies, not only arginine, but also tryptophan (Trp; W) has a 

demonstrated preference to position itself at the lipid/water interface and may therefore play a 

role in defining transmembrane domains (Braun and von Heijne, 1999; Mall et al., 2004; 

Demmers et al., 2001; de Planque et al., 2003; Granseth et al., 2005; van der Wel et al., 2007; 

Hong et al., 2007). A more clearly defined boundary for the transmembrane domain limits 

peptide mobility within the membrane, restricting its position and reducing deviations in 

angulation of peptides forming the channel and thereby reducing degrees of freedom. Studies 

into the substitution of the C-terminal serine of NK4-M2GlyR-p22 with a Trp demonstrated a 

notable change in IMAX (maximal short-circuit current observed), K½ (concentration at ½ IMAX, and 

Hill coefficient as given by the Hill equation. Though IMAX elicited was reduced somewhat from 

the parent sequence and similar truncated forms (Broughman et al., 2002b), a significant increase 

in Hill coefficient and decrease in K½ suggests that such Trp-substituted peptides are notably 

more effective than their unsubstituted counterparts at much lower concentrations (fig. 1.4). 

Cross-linking studies indicated that the S22W form (in which the serine at position 22 is replaced 

with a Trp residue) was primarily monomeric (Cook et al, 2004). As a bonus, the addition of the 

280nm light-absorbing Trp allowed for more accurate concentration determinations via 

spectrophotometry.   
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Figure 1.4: Peptide concentration dependence on ISC in MDCK monolayers 

Concentration-dependence of Isc by NK4-M2GlyR-p22 derived peptides with Trp and Arg 
substitutions on MDCK monolayers. Symbols represent the mean and standard error of 6 or 
greater observations for each concentration tested. Solid lines represent the best fit of a modified 
Hill equation to each data set, given by ΔIsc = (ΔIMAX*xn)/(EC50

n + xn) (further explained in 
Chapter 2). Letters indicate the final four amino acids for the peptide given by each plot, and is 
given along with the number code for each given sequence. (Broughman et al., 2002) 

 

 The Trp-substituted peptide’s ability to resist solution aggregation is an ideal endpoint in 

the development of a potential therapeutic. As discussed previously, the ability to accurately 

calculate the concentration of monomeric peptide available for channel formation and utilize as 

much of the delivered peptide as possible results in lower dosages, minimized excess, and 

confers economic advantages.  

The reintroduction of a positively-charged arginine residue in addition to the tryptophan 

substitution was hypothesized to affect anion conductance. Further experiments explored the 

effects of residue substitutions by phenylalanine and tyrosine in place of Trp, and found Trp to 

remain the optimal aromatic residue for promoting channel assembly. Results indicated that 

while NK4-M2GlyR-p22 T19R, S22W and NK4-M2GlyR-p22 Q21W, S22R demonstrated 

optimal decreases in K½, the likely membrane-thinning effects of a C-terminal arginine led its 
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alternate, NK4-M2GlyR-p22 T19R, S22W to surface as a lead compound for future study (Cook 

et al, 2004). 

While Trp and Arg-substituted NK4-M2GlyR p-22 sequences have demonstrated a great 

deal of promise, relatively reduced aggregation in CK4-M2GlyR also suggested that the tetra-lysl 

adduct to the C-terminus likely plays a role in countering the nucleation effect of the residues 

truncated in NK4-M2GlyR-p22. Despite its apparent advantages in other endpoints, NK4-

M2GlyR is notably less soluble than its CK4 counterpart in aqueous solution. In an attempt to 

determine whether CK4-M2GlyR could elicit similar optimization in kinetic parameters, 

aggregation, and selectivity when substituted with a pore-defining Trp residue, further study, as 

presented in the following work, explores whether any of several subsequent Trp-substituted 

CK4-M2GlyR sequences might, when explored and modified, warrant further investigation and 

perhaps demonstrate similar promise as a therapeutic agent for cystic fibrosis.  
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Chapter 2 - Materials and Methods 

 Syntheses 
NC-1007 (CK4-M2GlyR) and its related tryptophan-substituted peptides were constructed 

using N-α-Fmoc protected amino acids (AnaSpec Inc., San Jose, CA) on CLEAR amide resin 

(0.3 mmol g–1; Peptides International, Louisville, KY) scaled to 0.5 mmol per synthesis.  All 

amino acids were double-coupled. Piperidine (99%) was used for the Fmoc deprotection step, 

and a solution of 0.225 M for both O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyl-uronium 

hexafluorophosphate (HBTU) and hydroxybenzotriazole (HOBt) solubilized in 

dimethylformamide (DMF) was used for the activation step. For capping, 19 ml acetic 

anhydride, 9 ml N, N-diisopropylethylamine (DIEA), and 6 ml of 1 M HOBt in N-Methyl-2-

pyrrolidone (NMP) were combined and further diluted with NMP to 400 ml. Chemicals used 

were obtained as follows: DMF, NMP, and DIEA from American Bioanalytical, Inc. (Natick, 

MA), and HBTU and HOBt from Anaspec. Reactions were conducted using 9-

fluorenylmethoxycarbonyl (Fmoc) chemistries (Carpino, 1972; Fields, 1990) on a 431A peptide 

synthesizer (Applied Biosystems, Foster City, CA).  

 

 Cleavage, Deprotection and Characterization 
The completed peptide bound to resin was suspended in 10 mL of 95% trifluoroacetic 

acid (TFA) and 5% distilled water and left to set at room temperature for three hours to cleave 

the peptide from the support and deprotect all side-chain protecting groups (King, 1990).  The 

cleaved peptide was then washed with 30 mL diethyl ether four times, the first of which 

precipitated the peptide. After being washed with diethyl ether, the precipitated peptide was 

reconstituted in distilled water, and subsequently extracted by precipitating twice and a final 

wash with diethyl ether. The peptide was then freeze dried to be used for subsequent 

experiments.  A portion of the dried material was dissolved in 50% trifluoroethanol/water 

solution and analyzed by Mass Spectrometry using CHCA matrix on a Bruker Ultraflex II 

MALDI TOF/TOF (Bruker Daltronics, Billerica, MA) 

 

 

 Concentration Determination 
For all studies, peptide concentrations were determined spectrophotometrically to a 

precision of 0.05 µM using Beer’s Law: A = εbc (where A represents absorbance value as given 
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by the spectral report, ε is molar extinction coefficient of a given residue or residues in L mol-1 

cm-1, b represents the path length in cm, and c is the peptide molar concentration). The 

substituted tryptophan, present in four of the five studied peptides (those altered from the native 

sequence) provided the chromophore for this application. Because of its aromatic side-chain, a 

Trp residue absorbs wavelengths in the electromagnetic spectrum at 280 nm, and has a molar 

absorptivity of 5540 (Edelhoch, 1967; Mach et al., 1992). Absorbance was measured at 280 nm 

using a Varian Cary WinUV 50 Bio UV spectrophotometer (Palo Alto, CA). Stock samples were 

diluted by 20-fold for determination, then adjusted to the desired concentrations. In the case of 

the Trp-free native NC1007, a Bradford Colorimetric Protein Assay kit (Thermo Fisher 

Scientific, Inc., Rockford, Illinois) was used for concentration determination, the Trp-containing 

peptide NC1007 G20W was used as a reference for the assay. 

 

 Circular Dichroism 
In order to evaluate the secondary structure of the peptide NC-1007 (CK4-M2GlyR) and 

its Trp-substituted analogs, circular dichroism (CD) studies were undertaken to determine 

whether the peptide maintained its characteristic alpha-helical structure  in both 50% 

trifluoroethanol (TFE) solution. Prior to characterization, the system was first blanked with 50% 

TFE solution in which the peptide was to be profiled, absent the peptide itself. This spectra was 

subtracted from subsequent spectra.  

Peptides were first characterized at 100 µM dissolved in 50% TFE in order to record the 

spectra. TFE acts by stabilizing peptide secondary through the tight association of the TFE 

molecules with the peptide, displacing water and eliminating the ability of the peptide to form 

hydrogen bonds with water, thus promoting hydrogen bonding within the peptide, without 

affecting intra-molecular interaction of nonpolar residues (Roccatano et al., 2002). 

Spectropolarimeter recordings were performed on a J-720 instrument (Jasco USA; Eaton, MD), 

and samples were placed in a 1.0 mm cylindrical quartz cuvette. Each recording is a machine-

calculated average of five scans per sample. Spectra were assessed from 260 to 190 nm 

wavelengths at a rate of 20 nm per minute with a 0.2 nm step resolution and 1.0 nm spectral 

bandwidth and data analysis was performed with software included. Data were recorded in 

observed ellipticity (θ, in millidegrees, mdeg). However, accounting for peptide concentration, 

path length, and residue number, mean ellipticity per residue can be calculated using the 

following equation: 

 

[θ] = (100* θ)/([x]n*l)  
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Where [θ] is the mean residue ellipticity (deg cm2 decimole-1); θ is the observed ellipticity value 

recorded by the instrument (mdeg); [x], peptide molar concentration; n, total number of amino 

acid residues comprising the peptide; and l is the path length through the cuvette (cm) (Myers et 

al., 1997). 

 

 Cell Culture 
Madin-Darby canine kidney (MDCK) epithelial cells, were originally the generous gift of Dr. 

Lawrence Sullivan (University of Kansas Medical Center, Kansas City, KS). Cells with passage 

numbers from 26-41 were cultured on solid substrate culture flasks (T25 Cellstar 25 cm2 flasks; 

Frickenhausen, Germany). Culture medium was composed of a 1:1 ratio of Dulbecco’s Modified 

Eagle Medium and Ham’s F-12 nutrient mixture (F-12; Invitrogen, Carlsbad, CA), with the 

addition of 5% heat-inactivated fetal bovine serum (FBS; BioWhittaker, Walkersville, MD), and 

1% penicillin/streptomycin mixture (Life Technologies, Invitrogen). FBS contains a number of 

hormones and nutrients as well as attachment, growth and spreading factors that promote cell 

growth and proliferation (Gstraunthaler, 2003). The penicillin/streptomycin mixture protects the 

culture from gram-positive and gram-negative bacterial contamination by disrupting cell wall 

turnover (penicillin; Doyle et al, 1988), and inhibiting bacterial protein synthesis by binding to 

bacterial ribosomes, (streptomycin; Cox et al., 1964). 

After seeding, MDCK cells were left to proliferate in a 37° C incubator set to contain 5% 

carbon dioxide. T25 culture flasks that demonstrated 70-90% cellular confluence (roughly four 

days post-seeding) were subcultured into T25 flasks for further growth or on permeable supports 

(Snapwell; Costar, Cambridge, MA). Transfer of cells from a given flask was conducted by 

aspirating medium and rinsing cells with a solution of phosphate-buffered saline (PBS: 137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4). After aspirating the PBS, 0.2 mL of 

0.25% trypsin, containing 2.6 mM ethylenediaminetetraacetic acid (EDTA; which acts to break 

inter-cellular adherence by interrupting the junction of calcium dependent cadherins which form 

adheren junctions between cells). Remaining solution was immediately aspirated and cells were 

placed in a 37° C incubator until dissociation was largely complete. Dissociated cells could then 

be re-seeded into flasks or on permeable supports as mentioned above. Media were refreshed 

every other day and experiments were conducted within one day of feeding. Permeable supports 

prepared for Ussing experiments were cultured for a minimum of two weeks (allowed to reach a 

confluent density of approximately 1*106 cells per well) before use. 
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                       Transepithelial Electrical Measurements 

In order to evaluate the propensity of each given peptide to form pores capable of 

supporting transcellular ion transport across the epithelial cell membranes, electrical currents 

were recorded using a modified Ussing chamber (Navicyte DCV9; San Diego, California) were 

vertically mounted into vertical diffusion chambers and exposed bilaterally to 10 ml (5 ml each 

apically and basolaterally) of freshly made Ringer solution (120 mM NaCl, 25 mM NaHCO3, 3.3 

mM KH2PO4, 0.8 mM K2HPO4, 1.2 MgCl2, 1.2 mM CaCl2; Misfeldt, 1976; Hille, 2001). All 

chemicals used in the production of Ringer solution were acquired from Sigma-Aldrich (St. 

Louis, MO). Chambers were maintained at physiological temperature (37°) and aerated with a 

gas mixture of 5% CO2 and 95% O2 in order to provide solution mixing in addition to 

maintaining pH. Each of six MDCK epithelial monolayers, all grown on the same permeable 

supports as discussed above were measured their initial transepithelial resistance. Monolayers 

with initial resistance values of less than 200 Ohms cm2 were excluded from further testing. 

 Drugs added during the course of the assay included 1-ethyl-2-benzimidazolinone (1-

EBIO; Acros Organics, Morris Plains, New NJ) in dimethyl sulfoxide (DMSO) from Sigma 

Chemical. Forskolin (Coleus forskohlii) was acquired from Calbiochem (La Jolla, CA), and 

prepared at 10 mM in ethanol.  

 Transepithelial voltage across the monolayer was clamped at zero using a 558C-model 

voltage clamp apparatus made by the University of Iowa’s Department of Bioengineering (Iowa 

City, IA), and Isc was recorded continually (Broughman et al., 2001; 2004). Monolayers were 

exposed to a 5 second 2 mV bipolar pulse between clamped intervals of 90 seconds. Data were 

aquired at 1 Hz by (Aqknowledge software, version 3.2.6; BIOPAC Systems, Santa Barbara, 

CA) with an MP100A-CEinterface. 

 During each experiment, each of the six chambers was allowed to establish stable 

parameters, and then was exposed to 1-EBIO (100 µM) to maximize driving force for anion 

secretion. EBIO hyperpolarizes the epithelia through the activation of Ca2+ dependent K+ 

channels in the basolateral cell membrane (Devor, 1996). Although 1-EBIO is capable of 

stimulating endogenous CFTR, concentrations used in study were significantly lower than those 

required to increase CFTR channel activity. After establishing a stable baseline Isc , one of five 

peptide concentrations (30 µM, 60 µM, 100 µM, 200 µM, and 300 µM) or a control (300 µL 

H2O) was added apically to each of the six chambers. After recording the changes in Isc for a 

prescribed period, forskolin (1 µM) was added to test for cell viability. Forskolin activates 

adenylate cyclase, an enzyme responsible for the conversion of adenosine triphosphate (ATP) 

into cyclic adenosine monophosphate (cAMP).  Protein kinase A, a phosphorylating agent which 
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indirectly activates CFTR, increases the secretion of any remaining intracellular Cl- as well as 

extracellular uptake through the activation of the Na+/K+/Cl- cotransporter, inducing an 

observable increase in Isc for intact cells (Carlin et al. 2006; Andrea-Winslow et al., 2001). 

 Analysis of Isc Data 
In order to evaluate the propensity of each peptide to form functional anion-selective 

channels, ion transport across epithelial cell membrane were analyzed using Microsoft Excel 

software (Redman, WA). Each data point represents the mean peak change in Isc from baseline 

(post-EBIO) elicited by each peptide at each concentration from a minimum of five independent 

observations, where vertical bars represent the standard error of the mean (SEM). Statistical 

significance was defined relative to a type I error probability of 0.05 or less, as determined via 

Student’s t-test or analysis of variance (ANOVA) assessments in Microsoft Excel. 

 

Lines shown represent the best fit of a modified Hill equation to the data points given:  

 

ΔIsc = (ΔImax*xn)/(EC50
n + xn), 

 
   
In which EC50 is the peptide concentration at which 50% of maximal Isc is attained; x is the 

concentration of peptide; and n is the Hill coefficient. In each case, the fit was constrained  

and n represents the Hill coefficient. In optimizing the fit to the data sets, Imax was constrained to 

a maximum of the mean value for the maximal peptide concentration observed (300 µM) + one 

standard deviation of that data set.  

 

 Reverse Phase High Performance Liquid Chromatography (RP-HPLC) 

Studies 
Lyophilized stock peptide was dissolved in 100 µl trifluoroethanol and diluted with 100 

µl of ultrapure deionized water for a final concentration of approximately 3 mg/ml in a solution 

of 50% TFE. The peptide was assessed by HPLC (System Gold HPLC; Beckman Instruments, 

Fullerton, CA) using a reverse-phase C-18 column (Phenomenex, Torrance, CA). Two solvents 

were gradated with one another to elute peptide from the column: Solvent A, composed of 0.1% 

trifluoroacetic acid (TFA) in ultrapure deionized water, and solvent B, consisting of 0.1% TFA 

in 90% acetonitrile, 10% water. Successive gradation, sustention, and re-equilibration 

characterize the course of the HPLC profile. Free salts elute first from the system with peptides 

remaining bound to the column’s solid phase during the five-minute stable flow of 10% Solvent 
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B and 90% Solvent A. Next, the peptide was eluted during the course of a linearly increasing 30-

minute graduation of the ratio of solvent B (TFA in ultrapure water) to solvent A (acetonitrile) 

from 10:90 to 90:10 during which peptides are generally released with the mobile phase near the 

20-minute mark. After the gradient stage, the end ratio of 90:10 solvent B: solvent A was 

maintained for five minutes to elute any remaining substances in the column. Elution was 

monitored by the UV detector at 220 nm 

  UV/Vis Spectrometry 
Absorbance spectra were employed to determining whether the peptide demonstrated a 

patterned violet shift characteristic of tryptophan (standard absorbance, 280 nm) protected within 

the hydrophobic environment of the aggregate for peptides (one each in which the substituted 

tryptophan was located within the hydrophobic or hydrophilic faces of the helix as determined by 

helix wheel modeling described in the next chapter) as compared to that of the free amino acid 

from Sigma-Aldrich. Samples of NC1007 S18W and NC1007 G20W (selected for the clearly 

defined location of the w-substitution in the hydrophobic and hydrophilic regions, respectively), 

as well as free tryptophan were prepared (5 mM in water) and profiled from 200 to 400 nm at a 

rate of 300 nm/min using a Varian Cary WinUV 50 Bio Ultraviolet/Visible spectrophotometer 

(Palo Alto, CA).  
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Chapter 4 - Results and Discussion 

 Characterization 
The purpose of the following studies was to assess whether alterations to the CK4-

M2GlyR peptide sequence, initially modeled after the second transmembrane segment of the 

spinal cord glycine receptor, via the sequential substitution of a Trp residue for C-terminal 

residues would affect secondary structure, solution aggregation, channel formation, and ion 

permselectivity.  

The peptides are denoted as derivatives of the NC-1007 sequence.  The control and 

modified sequences, with the substituted Trp in bold typeface are shown in Table 4.1 along with 

molecular weights.  These positions were selected with the hypothesis that the added Trp would 

serve as the interfacial residue for the C-terminal portion of the peptide. Previous work showed 

that Trp substitutions in N-K4-M2GlyR eliminated solution aggregation (Broughman et al., 

2002). Thus we anticipate a similar effect for one or more of the peptides prepared in this study.     

 

Peptide Conventional 

Name 

Sequence Molecular 

Mass (Da) 

CK4-M2GlyR- 

 

NC-1007  

 

PARVGLGITTVLTMTTQSSGSRAKKKK 2815.6 

CK4-M2GlyR-

S18W 

NC1007  

S18W 

PARVGLGITTVLTMTTQWSGSRAKKKK 2914.6 

CK4-M2GlyR-

S19W 

NC1007  

S19-W 

PARVGLGITTVLTMTTQSWGSRAKKKK 2914.6 

CK4-M2GlyR-

G20W 

NC-1007 

G20W 

PARVGLGITTVLTMTTQSSWSRAKKKK 2944.6 

CK4-M2GlyR-

S21W 

NC1007  

S21W 

PARVGLGITTVLTMTTQSSGWRAKKKK 2914.6 

 

Table 4.1 Conventional name, sequence, and molecular mass of experimental w-substituted 

variants of NC1007 

 

 The sequence in which the C-terminal serine21 was substituted with Trp posed the most 

abnormal behavior in several aspects, and had to be synthesized multiple times to obtain an 

effective batch of the proper sequence. Arginine-containing sequences are often pose difficulties 
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in synthesis due to poor coupling efficiencies of bulky amino acids that are added immediately 

after the arginine.  This is true in the case of the S21W sequence.  It is important to note that 

peptide synthesis occurs in the C- to N- direction so in the case of S21W the tryptophan is added 

after the arginine. 

After synthesis, peptides were characterized by MALDI-TOF spectrometry. Results are 

shown in Fig. 4.1.  In all of the MS tracing the desired product is observed for all of the 

syntheses as well as a number of other peaks generally of lower mass. Due to differences in 

moving the different components of the synthetic mixture into the gas phase this method is not 

quantifiable. Peak heights bear no relationship to relative concentrations, and unlabeled peaks are 

remnants of failed sequences, commonly those with amino acid deletions. 

 

 

 

 

 

  



 24 

 
 
 
 
 
 

 
 

 

  

 

 

 

 
 

 
 

 

 

 

 

 
 

 

  
 

28
15

.1
 D

a 
A

: N
C

10
07

 



 25 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

29
17

.2
 D

a 

 

 
  

 
  

 
 

 

29
20

.0
 D

a 

 

 

 

 
B

: N
C

10
07

 

S1
8W

 

C
: N

C
10

07
 

S1
9W

 



 26 

 

 

 

 

  

 

 
 

 
 

 

 

  
 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

29
44

.9
 D

a 
D

: N
C

10
07

 

G
20

W
 



 27 

Figure 4.1 (A-E) MALDI-TOF spectral profiles for experimental peptides 

A: NC-1007, MW 2815.1 Da; B: NC-1007 S18W, MW 2917.2 Da; C: NC-1007 S19W, MW 

2920.0 Da; D: NC-1007 G20W, MW 2944.9 Da; E: NC-1007 S21W, MW 2914.7 Da 

X-axis indicates mass/charge ratio, and Y-axis indicates intensity, in arbitrary units (x104). 

 Circular Dichroism 
Circular dichroism (CD) studies were undertaken to determine whether the Trp-

substituted peptides maintained characteristic alpha-helical structure both in solution. After 

determination of effective synthesis by MALDI-TOF spectrometry, peptides were reconstituted 
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at 100 µM in 50% TFE for the CD structural determination experiments. All peptides, including 

NC-1007 S21W adopted α-helical conformations both in micelles and in solution as judged by 

the presence of characteristic minima at approximately 222 and 208 nm. TFE acts to stabilize 

secondary structure by hydrophobic interaction, preventing the peptide from forming inter-

peptidyl hydrogen bonds, and promoting intra-peptide bonding. Shown in Fig. 4.2. are data 

presented in mean molar residue ellipticity versus wavelength. From these results it is apparent 

that the introduction of the Trp residues does not affect the ability of the peptides to adopt a 

characteristic helical structure in membrane-like environments. Previous studies have suggested 

that peptides that fail to form helical structures in TFE also were ineffective at stimulating Isc. 

(Broughman, 2002)   

 

 
Figure 4.2: Circular Dichroism profiles of NC1007 W-substituted peptides 

Spectral profiles indicate characteristic α-helical structure with local minima at around 208 and 

220 nm at 100 µM in 50%TFE  
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Measurements of ISC were used to determine the concentration-dependent effects of Trp-

substituted NC-1007 sequences on ion transport. After establishing a consistent baseline, cells 

were exposed to 1-EBIO, and allowed to achieve a new stable baseline. ISC was recorded for the 

EBIO treated monolayers immediately prior to peptide exposure. 1-EBIO works by stimulating 

potassium (K+) channels in the basolateral membrane. The resultant movement of this positively 

charged ion acts to further hyperpolarize the cell, stimulating increased flux of Cl- by amplifying 

electrochemical driving force for anion secretion, and therefore, the measured response (Devor, 

1996; Broughman et al., 2001).  

 In each at least five independent trials per concentration (30 µM, 60 µM, 100 µM, 200 

µM, and 300 µM) per peptide, NC-1007 and its tryptophan containing variants were added to the 

bathing solution of the apical portion of the chamber. Immediately upon peptide addition, a 

response in ISC was clearly noticeable at the higher concentrations, uniformly peaking within the 

first two to three minutes after exposure, and in some cases eliciting currents greater than 25-30 

µA. In these cases after reaching the peak current a gradual decline in ISC was seen, most likely 

due to a partial polarization of the cells, conditions that would reduce the driving force for 

chloride efflux. After a minimum of 10 minutes of recording the peptide induced ISC, forskolin (2 

µM) was added both apically and basolaterally to the chamber to test for post-treatment viability 

and membrane integrity. The course of additions in a typical Ussing run is shown in Fig 4.3.  

 

       

 
Figure 4.3 Course of a typical Ussing chamber experiment 

1) post-mount equilibration 2) addition of 100 µM 1-EBIO 3) establishment of baseline current 

4) addition of peptide 5) addition of 2 µM Forskolin 
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consisting of one peptide tested at five concentrations), and cumulatively used to determine the 

best fit in the modified Hill equation after subtraction of post-EBIO baseline values.  

 Generally, as shown in the plots of peptide concentration relative to Δ ISC (Fig. 4.4), 

complete saturation was not reached using the concentrations tested. In all cases except in that of 

NC1007 S21W, constraining the IMAX value to the mean ISC value at 300 µM + one standard 

deviation produced the best fit of a Hill equation to the data. The ISC value of constrained fits as 

well as values for K½, and the Hill coefficient (n) were determined by the best fit of the modified 

Hill equation given in Chapter 3, as obtained using SigmaPlot (Systat Software, San Jose, CA) 

and presented with their respective standard error of the mean (SEM) in Table 4.2.  

 

 

 

 

  
Figure 4.4: Concentration-dependence of peptide on peak ΔIsc across MDCK epithelial cells 

Symbols represent the mean, and error bars represent ± SEM for a minimum of four observation 

per data point. Solid lines represent the best fit of a modified Hill equation to the data. Note that 

though data points are presented, there is no demonstrated fit of the mathematical model given to 

the data derived from NC-1007 S21W.  
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Table 4.2 Kinetic Parameters of W-Substituted NC1007 Peptides 

* IMAX values were constrained to less than or equal to the mean value at the highest 

concentration tested for each peptide (300 µM in all cases) + 1 standard deviation. It is assumed 

for the sake of the experiments conduced that IMAX approximates ΔISC values observed at the 

highest tested concentration.   

**Kinetic parameter data not available for NC-1007 S21W 

Peptide IMAX (µA)* K½  (µM) Hill coefficient (n)  

NC-1007 WT 25.4 ± 9.4 

 

178 ± 79 

 

2.07 ± 0.77 
 

NC-1007 S18W 28.2 ± 21.6 

 

195 ± 187 

 

1.84 ± 1.15 

 

NC-1007 S19W 36.7 ± 17.9 

 

176 ± 111 

 

1.86 ± 0.87 

 

NC-1007 G20W 32.3 ± 8.2 

 

149 ± 50 

 

1.98 ± 0.62 

 

NC-1007 S21W n/d** 

 

n/d** 

 

n/d** 

 

 

Despite multiple attempts, NC-1007 S21W data could not reasonably be fit by the Hill 

equation presented. Attempted fits using SigmaPlot software yielded results with kinetic 

parameters vastly different than any related sequences. All modified peptides appeared to be best 

fit with a higher IMAX value than their unmodified counterpart. Interestingly, while unconstrained 

K½ and Hill values given in Table 4.2 remain roughly in the same range for all peptides 

excepting NC-1007 S21W (ranging from around 150 to 200 µM and 1.84 to 2.1, respectively), 

there appears to be uniquely consistent patterns in some cases. Substituting a Trp for serine at 
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position 18 in the sequence, while slightly increasing K½ and decreasing the Hill coefficient, 

produced an overlay to the line of fit rendered for the data of the native sequence peptide, 

suggesting that this slight decrease in Hill and increase in K½ have a net effect of a very similar 

concentration-dependence curve as shown in Fig. 4.4 below. Similarly, a tryptophan substitution 

in either the 19th or the 20th position in the peptide sequence (for serine and glycine, 

respectively), produced a similar net effect in either case, though clearly distinct from those of 

the unmodified sequence or NC-1007 S18W.  

 Though the Hill coefficient is generally assumed to be an indicator of cooperativity in 

channel formation, the data presented with Hill coefficients in all cases exceeding a value of one 

are alone insufficient to characterize channel formation, but do reflect that the channel 

structuring process is more complicated than a simple bimolecular interaction.  

 

 RP-HPLC Studies 
Peptide samples were analyzed by HPLC. Monomers elute as sharp peaks while 

aggregates elute as broad poorly defined humps. Fig. 4.5 shows the chromatographic profiles of 

all peptides tested, including that of a previously studied peptide, NC-1120, known to be in a 

predominately monomeric form (Broughman, 2002). Previous studies showed that CK4-M2GlyR 

(NC-1007) adopted multiple assemblies in water. The three major species observed were 

monomer, dimer and some higher form, perhaps tetramer. We hypothesized that the substitution 

of a Trp near the C-terminus may reduce the aggregation propensity of the carboxy-teminal lysl-

adducted peptides. Results indicate, however, that this substitution had little effect on the 

maintenance of a monomeric solute, and subsequent reanalysis of various obtained fractions 

along the HPLC profile simply produces an identical chromatograph to the sample from which 

such fractions were initially obtained. These results suggest that aggregate dominates all tested 

variants of NC-1007 in solution, as no amount of collection and reanalysis of peptide sample was 

capable of reducing the profile to a well-defined peak such as that demonstrated in the 

comparison sequence, NC-1120 (Broughman et al., 2002).  
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A: NC-1120 

B: NC-1007 
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C: NC-1007 S18W 

D: NC-1007 S19W 
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Figure 4.5 (A-F): HPLC chromatographs of Trp-substituted peptides  

E: NC-1007 G20W 

F: NC-1007 S21W 
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All experimental peptides demonstrate aggregation relative to a known monomeric sequence (A: 

NC-1120), and the unmodified sequence, known to form solution aggregates (B: NC-1007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Discussion 
 The aim of these studies was to explore whether tryptophan residue substitutions in the 

C-terminal region of NC-1007 (CK4-M2GlyR; PARVGLGITTVLTMTTQSSGSRAKKKK) 

would ameliorate solution aggregation while optimizing positioning of the transmembrane 

portion of the sequence such as to induce desirable changes in kinetic parameters of ion flux 

(e.g., increase in IMAX, reduced K½). Such an approach was employed successfully on peptides 

containing the N-terminally adducted lysines. Peptides such as NC-1130 (NK4-M2GlyR T19R, 
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S22W; KKKKPARVGLGITTVLTMRTQW) showed little solution aggregation and showed an 

increased IMAX and a reduced K½ relative to the native sequence. Unfortunately this sequence was 

no longer anion selective. NC-1007 is anion selective and by incorporating these substitutions in 

the region known to promote aggregation we hypothesized that aggregation could be reduced 

without reducing selectivity. 

The Trp-substituted variants of the peptides analyzed in this study, produced mixed 

effects with regard to their electrophysiological properties. One unexpected outcome 

demonstrated by electrophysiological studies, is the approximate overlap of data fit to a modified 

Hill plot between peptide pairs. The S18W substitution gave results similar to the unmodified 

sequence.  The S19W and G20W sequences produced slightly higher currents but their 

concentration for half-maximal currents were unchanged over the unmodified NC-1007.  The 

S21W variant gave atypical results in that at lower concentrations it behaved more like NC-1007 

but at the highest concentration it produced currents even higher than any of the other sequences. 

These complementary profiles suggest an interesting correlation between concentration-

dependent effects on ion flux and placement of tryptophan in the peptide sequence. As discussed 

previously, a typical membrane-spanning helical domain is composed of about 18-20 amino acid 

residues. However, the membrane can “thin” such that as few as 14 residues may span the 

membrane in helical structure (Hille, 2001). Though Arg has been noted to play a role in 

defining the barrier of the transmembrane segment, hydrophobic Trp has also been shown to be 

important in defining pore registry within the membrane. It is possible that the similar kinetic 

profile of S18W to that of the wild type may be explained by the propensity of the peptide to 

span the membrane from Arg to Arg (18 intermediate residues), rather than sufficiently driving 

the membrane to “thin” to its minimal capacity in order to contain merely the 14 residues 

between the registry-defining N-terminal Arg and the Trp in the 18th position in the sequence. 

Setting aside any assumptions about how the bulky aromatic Trp residue might affect the channel 

structure and kinetics, this identification in registry could explain the similar overlay of NC1007 

S18W to that of NC1007. 

 It is also conceivable that an elongating shift in tryptophan position from the 18th to the 

19th or 20th sequential position might allow for a more energetically favorable conformer in 

which the tryptophan was sufficiently distant from the N-terminal arginine to define the span as 

hypothesized. Such a schema may explain the similarity in profile between NC1007 S19W and 

NC1007 G20W (a single amino acid shift). Notably, however, NC1007 S21W behaved like none 

of its Trp-substituted counterparts, defying the mathematical model used to describe all other 

experimental peptides studied, suggesting a more complicated interaction than that described by 

the model. The proclivity of both Arg and Trp to lie at the membrane interface could perhaps 
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shed light on one facet of this notable difference. Notably, NC1007 S21W is the only peptide 

studied in which the C-terminal Arg and substituted Trp are adjacent to one another. It may be 

problematic in that neither of the two residues clearly and consistently defines the registry in this 

sequence, leading to inconsistency not only in the membrane placement of each peptide forming 

the channel, but also the position of a single peptide (or channel) over time. 

 Trp-substituted variants had no measurable effect on solution aggregation. Solution 

aggregation prevents HPLC purification of the desired product since any purified and dried 

material upon redissolving in water regenerates the aggregated state and produces a replicate 

profile identical to the initial profile. The similarity in profile upon repeat runs suggests not only 

that the peptide is likely to continue aggregating after fractionation, but also that there appears to 

be no concentration-dependent change in the relative amount of aggregate peptide in solution.  

 To further characterize the aggregate form of the peptides, the UV absorbance properties 

of the Trp-containing sequences were analyzed. The free Trp control, which is completely 

solvent accessible, gives a sharp absorbance peak centered around 278-280 nm. In contrast all of 

the peptides show much broader peaks with the added absorbance extending into the lower 

wavelengths, suggest of a blue shift for some of the tryptophan residues. One could conceivable 

image two peaks merging to give the resultant peak. Since there are no other chromophores in 

the peptides, this result indicates that the Trps are present both in solvent exposed and buried 

environments. All of the profiles look similar suggesting that the location of the added 

tryptophan relative to the hydrophobic and hydrophilic faces of the helices has no bearing on 

their solvent accessibility in the aggregate state. 

To examine potential positional effects of the tryptophan substitutions in the amphiphilic 

helix, the sequences were examined visually with regard to their location in the hydrophic face, 

or the hydrophilic face that would exist when the helices self-assemble to form the channel pore.  

Under these conditions. helix wheel representations of NC-1007 and Trp-substituted variants 

were modeled using Emboss Pepwheel software from Alan Bleasby (European Bioinformatics 

Institute, Hinxton, Cambridge, United Kingdom; Rice et al., 2000), omitting the C-terminal tetra-

lysyl tail. Residues were plotted with an 18-step, 5-turn output with the hydrophilic residues 

(VMCILYFW) indicated as blue squares,  the hydrophobic residues (EDKRHQPNATSG) by 

black octagons, and the highly-hydrophobic substituted tryptophan (W; in relevant sequences) by 

a red diamond for clarity. All determinations of hydrophobicity/hydrophilicy were determined 

based upon the Wimley-White hydrophobicity index (Wimley & White, 1996).  The wheels are 

arbitrarily bisected into the hydrophobic quadrant (B) (5/11 residues) and the hydrophilic 

quadrant (L) (11/12 residues). 
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Figure 4.6 (opposite): Helix Wheel models of w-substituted NC1007 variants.  

Helical wheel models are shown with hydrophilic residues highlighted in blue squares and 

hydrophobic residues noted in black circles. Red diamonds represent the location of the 

substituted tryptophan residue in the α–helix. Sequences are read beginning with the bottom 

residue at 12 o’clock (P in all presented cases), and following the connecting lines 

counterclockwise through the helix. The bisectional divide represents approximations of the 

hydrophilic (L) and hydrophobic (B) faces of the helix.  

All hydrophilicity/hydrophobicity data collected from the Wimley-White hydrophobicity index 

(Wimley & White, 1996).  

 

 

 
Figure 4.7  UV/Vis spectrophotometric profiles  

Profile of free tryptophan (w; red), and its placement in the hydrophobic (NC1007 S18W; blue) 

or hydrophilic (NC1007 G20W; black) face of the transmembrane α-helix.  

 

 

 UV/Vis spectrometric profiles, when compared to free tryptophan in 50% TFE solution, 

demonstrate a merged peak including a violet shift, presumably caused by protection of 

tryptophan residues within the hydrophobic center of peptide aggregates. The effect was virtually 

identical regardless of the highly hydrophobic tryptophan residue’s position in either the 

hydrophobic or hydrophilic face of the native peptide’s α-helix. This suggests that at least some 

(and possibly all) aggregating peptide will orient such that the pore-defining tryptophan faces 

into the core of the aggregate, but roughly to the same extent regardless of position in the helix. 

The latter may be possible if the notable hydrophobic force of tryptophan is sufficient, even 
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when located among hydrophilic residues, to drive peptide orientation during aggregation such 

that it consistently faces inward. Extended studies into aggregate structure such as molecular 

modeling experiments will provide further evidence as to the mechanism behind aggregate 

peptide orientation.  

In summary, although C-terminal tryptophan substitutions to NC1007 appeared to 

produce mild effects on kinetic parameters, the substitutions did little to reduce the propensity of 

the peptide to aggregate in solution and instead remain monomeric. This endpoint is vital from a 

drug-development perspective, and further study into the reduction of aggregation propensity in 

CK4-M2GlyR peptides or the increase of NK4-M2GlyR selectivity still shows potential in 

leading to the development of a peptide capable of effectively and reliably serving as a 

replacement for defective ion channels in patients expressing, in particular Cl- specific 

channelopathies, such as those which result in cystic fibrosis.   
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