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Abstract 

Differences in pharmacokinetics and drug disposition exist between young and adult 

animals which become especially important for drugs with a narrow therapeutic index. While the 

pharmacokinetics and plasma concentrations of intravenous lidocaine have been studied in adult 

horses, determination of the disposition in foals is necessary before appropriate clinical use can 

be determined. This study examined the disposition of intravenous lidocaine in healthy (phase I) 

and hospitalized (phase II) foals. Phase I consisted of 6 healthy 4-10 week old foals administered 

a 6-hour intravenous lidocaine infusion. Phase II consisted of 8 hospitalized foals (2-136 days 

old) administered intravenous lidocaine. A bolus (1.3 mg/kg) of lidocaine was administered 

intravenously to all foals followed by a 50 µg/kg/min infusion. Plasma lidocaine and 

monoethylglycinexylidide (MEGX) concentrations were determined. In phase I, plasma 

lidocaine concentrations remained below the suggested adult target range of 1-2 µg/mL with 

MEGX concentrations approximately half that of the parent drug. Total body clearance of 

lidocaine was 72.2 ± 7.8 mL/min/kg, elimination half-life (t1/2) was 26.3 ± 3.7 min, peak 

concentration (Cmax) was 0.79 ± 0.07 µg/mL, and the volume of distribution (Vd) was 1.8 ± 0.4 

L/kg. The Cmax for MEGX was 0.36 ± 0.11 µg/mL, t1/2 was 60 ± 6 min and time to peak 

concentration (Tmax) was 279.6 ± 90.3 min. In phase II, the severely compromised foals that were 

eventually euthanized had the largest fluctuations in plasma lidocaine and MEGX 

concentrations; foals that were discharged from the hospital had plasma concentrations below the 

target adult range similar to foals in phase I. In conclusion, despite low plasma lidocaine 

concentrations, the clinical benefits observed in foals may be due to the presence of metabolites. 

Further research in a larger population of unhealthy foals is required before comprehensive 

dosing recommendations can be made.
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Chapter 1 - Introduction 

Lidocaine is an aminoamide local anesthetic with effects mediated through sodium 

channel blockade thereby inhibiting the action potential and stabilizing excitable membranes 

(Riviere and Papich 2009). Lidocaine is used intravenously in human and veterinary medicine as 

a treatment for ventricular arrhythmias and for its potential benefits as an analgesic, prokinetic, 

and anti-inflammatory as well as for its anesthetic sparing effects. While controversy exists over 

the proposed applications in human and veterinary medicine, its frequent use in foals makes it 

imperative to gain a complete understanding of the pharmacokinetics and plasma concentrations 

using the currently accepted adult dosage.  

Evidence supports the use of intravenous lidocaine for analgesia in human medicine after 

abdominal surgery (Marret et al. 2008; Yardeni et al. 2009; Swenson et al. 2010). Similarly, 

intravenous lidocaine is currently used, many times in combination with other analgesics, to 

manage a number of painful conditions in foals including colitis, enteritis, meconium impactions, 

and for post-operative abdominal surgical pain. Intravenous lidocaine may also be used as a 

diagnostic tool to help differentiate certain painful conditions in foals. The authors’ clinical 

impression is that non-surgical pain (due to colitis or enteritis) is often times controlled with 

administration of a continuous rate infusion (CRI) of lidocaine in combination with a non-

steroidal anti-inflammatory (NSAID), but foals requiring surgical intervention remain painful 

with the same treatment.   

The literature review to follow (chapter 2) focuses on the clinical applications of 

intravenous lidocaine, the pharmacology and pharmacokinetics of intravenous lidocaine in adult 

horses and other species, and comparative pharmacokinetics between adult horses and foals. 

While it seems plausible to extrapolate what we know about lidocaine from adult horses or 
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neonates of other species to young foals, it is never recommended to extrapolate drugs with a 

narrow therapeutic index as differences between age groups and species do exist. For example, 

differences in drug clearance, volumes of distribution, protein binding, concurrent hepatic or 

renal disease and the effects of other treatments administered may affect the pharmacokinetics 

and plasma concentrations of lidocaine.  

Therefore, the purpose of this investigation was to determine the pharmacokinetics and 

plasma concentrations of intravenous lidocaine and its primary metabolite, 

monoethylglycinexylidide (MEGX), in healthy young foals as well as the plasma concentrations 

in hospitalized, unhealthy foals using the recommended adult horse dosage (1.3 mg/kg followed 

by 50 µg/kg/min). In phase I, healthy foals were used to determine the pharmacokinetics and 

plasma concentrations of lidocaine and MEGX during a CRI of lidocaine administered for 6 

hours. In phase II, the plasma concentrations of intravenous lidocaine and MEGX in unhealthy 

foals admitted to a referral hospital were determined. We hypothesized that foals would have 

lower plasma concentrations than adult horses administered the same dose due to an increased 

clearance from a higher basal metabolic rate (Taira et al. 1992). For unhealthy foals, we 

hypothesized that higher plasma concentrations would be evident, compared to healthy foals, due 

to variations in hepatic function and perfusion and the effects of other treatments administered on 

drug clearance. From this information, we determined that foals do have lower lidocaine plasma 

concentrations compared to adult horses however further work is needed in a larger population of 

unhealthy foals (the target population) to determine if a dosage adjustment is necessary.  
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Chapter 2 - Literature Review 

 Clinical applications of intravenous lidocaine 

Lidocaine has become the most widely used local anesthetic agent in medical and 

veterinary practice (Riviere and Papich 2009). Besides its well-known use as a local anesthetic 

and treatment for ventricular arrhythmias acting as a class IB antiarrhythmic (Riviere and Papich 

2009) the pharmacokinetics and clinical applications of CRIs of lidocaine in adult horses have 

been studied extensively for a number of other applications. Investigators have explored the anti-

inflammatory (Cook et al. 2008; Cook et al. 2009a; Peiro et al. 2010; Williams et al. 2010; 

Wilson et al. 2012), prokinetic (Nieto et al. 2000; Brianceau et al. 2002; Malone et al. 2006; 

Milligan et al. 2007; Guschlbauer et al. 2011; Tappenbeck et al. 2013a; Tappenbeck et al. 

2013b; Tappenbeck et al. 2014a; Tappenbeck et al. 2014b), and analgesic (Murrell et al. 2005; 

Robertson et al. 2005) properties as well as its use during general anesthesia (Doherty and 

Frazier 1998; Dzikiti et al. 2003; Valverde et al. 2005; Enderle et al. 2008; Rezende et al. 2011; 

Wagner et al. 2011; Nannarone et al. 2014).  

 Anti-inflammatory properties  

The anti-inflammatory properties of intravenous lidocaine in horses have shown the most 

promise in cases of endotoxemia. Intravenous lidocaine has been shown to have beneficial 

effects on the severity of clinical signs and cytokine expression in horses exposed to 

lipopolysaccharide (LPS) and appears to have beneficial effects on transepithelial electrical 

resistance (TER) in horses concurrently administered flunixin meglumine (Cook et al. 2008; 

Cook et al. 2009a; Peiro et al. 2010). Lipopolysacharide signals through a toll like receptor 

(TLR-4) thereby activating the genes responsible for production of inflammatory mediators. 
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When LPS was injected intraperitoneally in horses and a CRI of lidocaine initiated 20 minutes 

later, horses treated with lidocaine had significantly lower clinical scores (comprised of fever, 

restlessness, muscle fasciculations, lethargy, yawning, hyperemic mucous membranes, 

respiratory and heart rate and behavioral evidence of abdominal pain or discomfort) at 180, 240 

and 300 minutes as well as lower post-infusion serum and peritoneal fluid tumor necrosis factor-

α activity compared to control horses. However, lidocaine did not attenuate the increase in 

microvascular permeability or leukocyte migration into the abdominal cavity. One limitation of 

this study was that a low dose of endotoxin was used in order to evaluate the inflammatory 

response without causing severe clinical disease or death, therefore the classic neutropenia and 

severity of clinical signs and hematologic variables (RBC count, HCT, and hemoglobin) were 

not appreciated (Peiro et al. 2010).  

Cook and colleagues further evaluated the effects of lidocaine administration prior to an 

ischemic event in horses also administered flunixin meglumine (Cook et al. 2008; Cook et al. 

2009a). Flunixin meglumine is commonly used in post-operative colic patients for its analgesic 

and anti-inflammatory properties. However, by inhibiting beneficial prostaglandins essential for 

repair of ischemic injured mucosa, flunixin meglumine impairs recovery of barrier function, 

decreases TER and increase permeability to LPS (Tomlinson et al. 2004; Tomlinson and 

Blikslager 2005). While Peiro et al (2010) did not observe a significant benefit of lidocaine 

administration alone on TER, when lidocaine was administered in combination with flunixin 

meglumine and prior to an ischemic event, the deleterious effects on TER, permeability to LPS, 

and the increase in mucosal neutrophil counts caused by flunixin meglumine administration were 

ameliorated. Cook et al also observed beneficial effects of lidocaine on cyclooxygenase-2 (COX-

2) expression, further supporting its anti-inflammatory properties (Cook et al. 2009a). 
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Immediately after an ischemic event, lidocaine administration led to a significant decrease in 

western blot COX-2 expression compared to saline or flunixin meglumine administration; the 

combination of lidocaine and flunixin meglumine also decreased COX-2 expression, although 

the decrease was not significant. Further support for COX-2 inhibition was evidenced by 

lidocaine inhibiting the increase in prostaglandin E2 (PGE2) that occurs after an ischemic event 

and the combination of lidocaine with flunixin meglumine actually decreasing PGE2. Lidocaine 

however, does not appear to affect COX-1 expression as lidocaine alone had no effect on 

thromboxane B2 expression, a specific indicator of COX-1 expression, and only flunixin 

meglumine alone or with lidocaine inhibited the increase in plasma thromboxane B2 as would be 

expected with a non-selective COX inhibitor (Cook et al. 2009a). 

Contrary to the purported beneficial findings in cases of endotoxemia, especially when 

co-administered with flunixin meglumine, lidocaine was not found to have anti-inflammatory 

effects in a black walnut model of laminitis or during episodes of recurrent airway obstruction 

(RAO), and evidence may in fact suggest a pro-inflammatory effect (Williams et al. 2010; 

Wilson et al. 2012). Similar to the findings by Peiro et al who found that intravenous lidocaine 

did not decrease neutrophil migration into the peritoneal cavity in horses after intraperitoneally 

injected LPS, lidocaine did not inhibit neutrophil migration into the laminar interstitium in 

experimentally induced laminitis or in bronchoalvelolar lavage fluid in horses with RAO (Peiro 

et al. 2010; Williams et al. 2010; Wilson et al. 2012). This is in contrast to findings by Cook et al 

who found that lidocaine appeared to inhibit the mucosal neutrophil influx that occurs after 

flunixin meglumine administration in cases of ischemia (Cook et al. 2009a). Williams et al 

treated horses with lidocaine (1.3 mg/kg bolus followed by 50 µg/kg/min) or saline for 10 hours 

after inducing laminitis and found no differences between groups with regard to mRNA 
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concentrations of IL-1β, IL-6, IL-8, COX-2 or white blood cell counts within the laminar 

interstitium or skin dermis. In contrast, they found an inflammatory/activating effect of lidocaine 

on the endothelium evidenced by an increased expression of laminar E-selectin responsible for 

the initial attachment/rolling of neutrophils and other leukocytes (Williams et al. 2010). These 

findings are in agreement with in vitro data evaluating lidocaine exposure to neutrophils in which 

neither neutrophil migration nor adhesion were inhibited at therapeutic lidocaine concentrations 

and higher dosages, consistent with toxicity, actually led to increased transendothelial migration 

and adhesion (Cook et al. 2009b). Similarly, horses with acute exacerbation of RAO treated with 

a CRI of lidocaine, starting 4 hours before challenge and lasting during the entire 68 hour 

challenge period, had significantly increased total number of white blood cells in 

bronchoalveolar lavage fluid due to an increased neutrophil and macrophage cell count compared 

to horses treated with saline (Wilson et al. 2012). Taken together, these results suggest that 

lidocaine administration does have beneficial effects when administered concurrently with 

flunixin meglumine, however there appear to be anti-inflammatory and pro-inflammatory 

properties suggesting its use may be beneficial in cases of endotoxemia but further research 

should be done before it can be recommended in other inflammatory disorders.   

 Inhalant sparing and anesthetic effects 

Horses are especially sensitive to the cardiovascular and respiratory depressant effects of 

inhalation anesthetics (Wagner 1995) and it is presumed that lidocaine may be of benefit in not 

only decreasing the dose-dependent cardiovascular depressant effects by lowering the minimum 

alveolar concentration (MAC) but also by effecting the metabolic profile and recovery from 

anesthesia. The dosage commonly used in conscious horses (1.3 mg/kg followed by 50 

µg/kg/min) appears to be a starting place for anesthesia for many clinicians, however dosages as 
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high as 100 µg/kg/min have been used, resulting in serum concentrations up to 7 µg/mL 

(Doherty and Frazier 1998). While recommendations have been made to decrease the dosage in 

anesthetized horses, there is not a general consensus as to the appropriate dose of lidocaine to be 

administered during anesthesia and each patient should be evaluated individually. 

The hemodynamic status of each patient must be evaluated before establishing a dose as 

the clearance of lidocaine is dependent on hepatic blood flow and extraction of lidocaine from 

the plasma by hepatocytes (Brianceau et al. 2002). When cardiac output decreases, potentially 

during anesthesia or hypovolemia, hepatic blood flow decreases thereby decreasing lidocaine 

clearance and potentially leading to toxic drug concentrations (Brianceau et al. 2002). When 

cardiac output increases, for instance in painful conditions or during painful procedures, drug 

clearance may increase resulting in lower lidocaine plasma concentrations.  

Two groups of investigators evaluated the effects of general anesthesia on serum 

lidocaine concentrations and both suggested a decreased dosage in anesthetized horses 

(Brianceau et al. 2002; Feary et al. 2005). After an initial pilot study showed that general 

anesthesia may have profound effects on the serum concentrations of lidocaine, Brianceau and 

colleagues sought to investigate the effects in clinical patients undergoing surgical intervention 

to correct an intestinal disorder (Brianceau et al. 2002). The authors confirmed that halving the 

dosage while under anesthesia (0.65 mg/kg followed by 25 µg/kg/min) led to the same mean 

serum lidocaine concentrations as conscious horses that received 1.3 mg/kg followed by 50 

µg/kg/min (Fig. 2-1). The authors concluded that this lower dosage should not be exceeded in 

anesthetized horses, even though concentrations >1 µg/mL were not achieved in all horses, as 

one horse had a serum concentration approaching the reported toxic range (2.27 µg/mL). Feary 

and colleagues compared conscious versus anesthetized healthy horse and found marked 
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pharmacokinetic differences attributed to changes in the volume of distribution (Vd) and 

clearance (Cl) due to a decreased hepatic blood flow secondary to decreased cardiac output. The 

smaller Vd and decreased Cl in anesthetized horses led to an increased peak concentration (Cmax) 

and area under the curve (AUC). The authors concluded that a change in dosing during 

anesthesia should be considered (Feary et al. 2005). However, in a follow up study evaluating a 

population of anesthetized horses with gastrointestinal lesions undergoing an exploratory 

laparotomy, the same group concluded that a dose modification was not necessary; however the 

authors caution extrapolating the results to all horses requiring gastrointestinal tract surgery 

because the influence of severe disease on drug disposition remains unclear (Feary et al. 2006). 

 

Figure 2-1 Mean ± SD serum lidocaine concentrations in horses administered lidocaine 

intraoperatively (0.65 mg/kg followed by 25 µg/kg/min) and postoperatively (1.3 mg/kg 

followed by 50 µg/kg/min) (Brianceau et al. 2002).  

This material is reproduced with permission of John Wiley and Sons, Inc. 
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Many clinicians administer a loading dose of lidocaine over 10-15 minutes prior to 

initiating a CRI as clinical observations and published data have both reported severe 

hypotension with rapid administration (Doherty and Frazier 1998). However, in conscious 

healthy adult horses administered 50 µg/kg/min, steady state without administration of a bolus 

was achieved in only 3 hours with a mean concentration of 0.934 (± 0.252) µg/mL (Dickey et al. 

2008). A lidocaine bolus (1.5 mg/kg over 15 minutes) prior to a CRI (50 µg/kg/min) of lidocaine 

in anesthetized horses also did not lead to any advantages in isoflurane requirement, mean 

arterial pressure, end tidal CO2, respiratory rate, blood gas data, ECG findings or recovery from 

anesthesia compared to horses not administered a bolus. The only significant finding was that the 

mean heart rate during the lidocaine bolus and during the infusion at 25, 35 and 95 minutes was 

lower than the group not administered lidocaine (Nannarone et al. 2014). These results question 

to use of a lidocaine bolus as part of an anesthetic protocol in horses undergoing colic surgery. 

The most well-known advantage of using a lidocaine CRI during anesthesia is to decrease 

the MAC of inhalant anesthetics, namely halothane, isoflurane, and sevoflurane. Doherty and 

Frazier investigated the inhalant sparing effects of lidocaine (50 or 100 mg/kg followed by 50 or 

100 µg/kg/min, respectively) in combination with halothane and found that lidocaine decreased 

halothane MAC in a linear fashion (P<0.0003, r=0.86) up to serum concentrations of 7 µg/mL 

(Doherty and Frazier 1998). Lidocaine concentrations less than 2 µg/mL decreased MAC by as 

much as 20%, between 2.1-3.5 µg/mL decreased MAC by 30-50% and between 5-7 µg/mL 

decreased MAC by 50-70%; the decrease in halothane MAC was dependent on the serum 

lidocaine concentration (Fig. 2-2) according to the equation y= 1.94 + 0.0093x (y=percentage 

decrease in halothane MAC and x= serum lidocaine concentration). In contrast, the metabolites 

MEGX and GX were not correlated with a MAC reduction. Dzikiti et al evaluated lidocaine (2.5 
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mg/kg bolus followed 50 µg/kg/min) in combination with isoflurane administered to horses 

(American Society of Anesthesiologists class I or II) anesthetized for elective procedures (Dzikiti 

et al. 2003). The results showed that lidocaine decreased the end-tidal isoflurane concentration 

(mean ± SD) by 25% compared to controls (0.96 ± 0.06 vs. 1.28 ± 0.06%; P < 0.05) with plasma 

lidocaine concentrations ranging from 0.03 to 4.23 µg/mL (Fig. 2-3). Lastly, the inhalant sparing 

effects of lidocaine (1.3 mg/kg followed by 50 µg/kg/min) in combination with sevoflurane were 

investigated in healthy horses and revealed a mean MAC reduction of 26.7 ± 12% with mean 

plasma lidocaine concentrations ranging from 2.6 ± 8.1 to 2.1 ± 4.4 µg/mL (Rezende et al. 

2011).  

 

Figure 2-2 Correlation between serum lidocaine concentration and percent decrease in halothane 

MAC (r=0.86, P<0.0003) (Doherty and Frazier 1998).  

This material is reproduced with permission of John Wiley and Sons, Inc. 
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Figure 2-3 End-tidal isoflurane concentration (ETISO-L) and plasma lidocaine concentration 

trend in 6 horses administered a loading dose (2.5 mg/kg over 10 minutes) followed by a 75 

minute CRI (50 µg/kg/min) during general anesthesia for an elective procedure (Dzikiti et al. 

2003).  

        This material is reproduced with permission of John Wiley and Sons, Inc. 

 

There also appears to be beneficial cardiopulmonary effects in anesthetized horses 

administered intravenous lidocaine. Similar to conscious horses administered lidocaine at 

dosages approaching toxicity with no significant changes in heart rate, electrocardiogram, blood 

pressure or respiratory rate (Meyer et al. 2001), anesthetized horses administered clinical 

dosages of lidocaine do not appear to have changes in cardiovascular parameters different from 

what is generally expected to occur during anesthesia (Doherty and Frazier 1998; Feary et al. 

2005). In fact, lidocaine appears to have a stabilizing effect on heart rate. Healthy horses 

undergoing isoflurane anesthesia for elective procedures administered lidocaine (2.5 mg/kg 

followed by 50 µg/kg/min) had consistent, stable heart rates over time compared to control 

horses that developed an increase in heart rate throughout the anesthetic period (Dzikiti et al. 
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2003). However, contrary to most other reports, Dzikiti et al reported an increase in blood 

pressure in the lidocaine treated horses compared to baseline which was attributed to an increase 

in systemic vascular resistance (Dzikiti et al. 2003).  

While lidocaine appears to decrease the MAC of inhalant anesthetics and may have 

beneficial cardiopulmonary effects, it has not been confirmed that the decreased MAC will 

negate the hypotension that occurs from general anesthesia. Similar to other investigators, 

Wagner and colleagues found that lidocaine did not significantly alter heart rate, cardiac output, 

blood pressure, or blood gas parameters in healthy anesthetized horses compared to horses not 

treated with lidocaine (Wagner et al. 2011). However, lidocaine administration resulting in a 

decreased MAC was not associated with a significant improvement in blood pressure. The 

authors therefore concluded that at 1.5 MAC sevoflurane, lidocaine should be used for its other 

purported benefits as clinically important hypotension is likely to develop with or without the use 

of lidocaine. To obtain the benefits of decreasing MAC and stabilizing heart rate while at the 

same time having a positive effects on blood pressure, lidocaine may have to be combined with 

other cardiostimulating drugs, such as ketamine. Healthy horses undergoing elective surgery 

with isoflurane anesthesia and a CRI of lidocaine (1.5 mg/kg followed by 40 µg/kg/min) and 

ketamine (60 µg/kg/min) had significantly lower heart rates and end-tidal concentrations of 

isoflurane with fewer horses requiring dobutamine and lower dobutamine infusion rates (Enderle 

et al. 2008). 

Other areas investigated in horses undergoing anesthesia with intravenous lidocaine 

administration include evaluation of physiologic and metabolic parameters, the effects on stress 

hormones and recovery from anesthesia. Dzikiti and colleagues evaluated pH, PaO2, PaCO2, 

concentrations of lidocaine, cortisol, lactate dehydrogenase, creatine kinase, aspartate 
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aminotransferase, and non-esterified fatty acids in horses undergoing surgery for an elective 

procedure. Anesthesia with isoflurane and lidocaine (2.5 mg/kg bolus followed by 50 µg/kg/min) 

revealed no significant differences compared to the control group in any parameter evaluated 

with the exception of insulin, which was significantly different between groups at baseline. The 

authors therefore concluded that the use of lidocaine during general anesthesia does not have 

subsequent effects on physiological and metabolic parameters or stress-related hormones (Dzikiti 

et al. 2003). 

Investigations into the recovery from general anesthesia after lidocaine use found that 

when lidocaine is discontinued prior to the end of anesthesia, there does not appear to be an 

effect on the quality or length of recovery. Dzikiti and colleagues determined that lidocaine (2.5 

mg/kg followed by 50 µg/kg/min) could be administered during the entire anesthetic period 

without affecting the length or behavior of recovery. However, these horses required 25% less 

isoflurane than control horses which may have partially contributed to the differences (Dzikiti et 

al. 2003). Rezende et al also found that healthy horses administered lidocaine (1.3 mg/kg 

followed by 50 µg/kg/min) with sevoflurane anesthesia had a “good quality” recovery (mean ± 

SD, 3.5 ± 1.0; median 3.3/5) when the lidocaine was administered up until 15 minutes before the 

end of anesthesia (Rezende et al. 2011). Wagner et al evaluated the same dose of lidocaine 

discontinued 20 minutes before the end of surgery, also with sevoflurane anesthesia, and 

similarly found no difference in recovery time or quality; horses administered lidocaine tended to 

have longer times to standing (P= 0.056) which most likely led to better recoveries than had they 

stood at earlier times (Wagner et al. 2011). Valverde and colleagues evaluated horses undergoing 

general anesthesia with isoflurane or sevoflurane along with a placebo or CRI of lidocaine (2 

mg/kg bolus followed by 50 µg/kg/min) discontinued at the end or 30 minutes before the end of 
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surgery. Similar to other investigations, discontinuing the infusion 30 minutes prior to the end of 

surgery led to similar recoveries compared to placebo horses. However, horses that received 

lidocaine until the end of surgery had a significantly higher degree of ataxia with a tendency 

towards significance for a lower quality of recovery. There was no correlation between lidocaine 

plasma concentrations at recovery and the quality of recovery and horses in both groups received 

similar dosages of inhalant anesthesia in contrast to the study performed by Dzikiti et al 

(Valverde et al. 2005). Lastly, when lidocaine and ketamine were administered together during 

isoflurane anesthesia and discontinued at least 15 minutes before the end of surgery, recovery 

times and quality were comparable to horses only administered isoflurane (Enderle et al. 2008). 

Taken together, the data suggests that lidocaine alone, or in combination with ketamine, should 

not have a negative effect on recovery especially if the CRI is discontinued at least 15 minutes 

prior to the end of anesthesia. 

 Prokinetic properties 

The beneficial prokinetic properties of lidocaine reported in humans had many equine 

clinicians interested in its potential use in colic patients. The human investigations led to meta-

analyses that further supported its use. One meta-analysis, of 8 randomized double blinded 

controlled trials in humans, showed a significant reduction in ileus (P<0.001) in patients treated 

with a CRI of lidocaine during or after abdominal surgery compared to controls (Marret et al. 

2008). A second meta-analysis, of 29 randomized controlled trials, found that in patients 

receiving a CRI of lidocaine during general anesthesia for any type of surgery, the time to first 

flatus and first feces were reduced (Vigneault et al. 2011). The beneficial effects may be from 

directly stimulating the intestinal smooth muscle or indirectly by acting as an analgesic, anti-
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inflammatory including inhibition of free radical formation, or reduction in circulating 

catecholamines (Rimback et al. 1990).  

In horses, post-operative ileus (POI) is one of the most common complications resulting 

in death of surgical colic patients and accounts for upwards of 43% of postoperative fatalities 

(Hunt et al. 1986; Blikslager et al. 1994). Lidocaine has become the most commonly used drug 

as a potential prokinetic for postoperative management of horses with colic (Van Hoogmoed et 

al. 2004). In vitro data evaluating healthy equine muscle strips showed that lidocaine increased 

the contractile amplitude in tissues from the proximal portion of the duodenum but not the 

pyloric antrum or middle portion of the jejunum (Nieto et al. 2000). Further in vitro research 

revealed that lidocaine increased intrinsic smooth muscle contractility by directly affecting the 

smooth muscle cells or the interstitial cells of Cajal when tetrodotoxin was used to block 

participation of the enteric nervous system. However, extremely high concentrations of lidocaine 

(>100 mg/L) by itself decreased enteric nervous system activity which may lead to impaired 

intestinal motility in vivo (Tappenbeck et al. 2014a). A third study found that administration of 

lidocaine during anesthesia in horses in which artificial ischemia and reperfusion injury of 

jejunal segments was induced had beneficial effects on smooth muscle motility when evaluated 

in vitro; specifically, lidocaine infusion significantly improved the frequency of contractions in 

muscle samples compared to samples without lidocaine treatment, ameliorating the negative 

contractility effects of ischemia and reperfusion injury. These findings indicate a direct effect on 

the interstitial cells of Cajal pacemaker function (Guschlbauer et al. 2011). When additional 

lidocaine was added to the muscle samples, lidocaine was also able to decrease membrane 

permeability, however the underlying mechanism responsible for this decrease in permeability 

remains unknown. The authors concluded that initiating lidocaine during surgical correction of 
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colic lesions may improve lidocaine’s prokinetic features by protecting the smooth muscle from 

effects of ischemia and reperfusion. 

While the in vitro evidence of lidocaine appears promising, in vivo data for a direct 

prokinetic effect of lidocaine in horses remains inconclusive. More recent research suggests that 

lidocaine may mediate its prokinetic effects indirectly via its analgesic or anti-inflammatory 

properties. Three recent publications found varying results, however all included different 

populations of horses and differing study designs (Brianceau et al. 2002; Malone et al. 2006; 

Milligan et al. 2007). The first report included horses requiring surgical intervention for any type 

of colic (Brianceau et al. 2002). In this study, lidocaine-treated horses had significantly 

decreased jejunal cross-sectional area scores, jejunal diameter scores, and abdominal fluid as 

well as improved ultrasonographic intestinal function index (determined by duodenal and jejunal 

wall thickness, minimum and maximum duodenal and jejunal diameter, minimum and maximum 

duodenal and jejunal cross sectional area, small intestinal contractions per minute, and duodenal 

and jejunal intraluminal echogenicity) but increased abdominal fluid protein. There was no 

difference between groups in the presence of gastrointestinal sounds, time to passage of 1st feces, 

number of defecations in the 1st 24 hours, presence of gastric reflux, duodenal or jejunal wall 

thickness, maximum duodenal or jejunal diameter or cross sectional area, minimum duodenal 

diameter or cross-sectional area, duodenal and jejunal intraluminal echogenicity, small-intestinal 

contractions per minute, rate of complications, or outcome. However the low incidence of small-

intestinal lesions (29%) and gastric reflux made it difficult to assess the use of lidocaine in the 

prevention of POI. Malone et al evaluated horses with POI or enteritis that refluxed >20 L or had 

been refluxing for >24 hours (Malone et al. 2006). Horses in the treatment group were 

administered lidocaine (1.3 mg/kg followed by 50 µg/kg/min) for 24 hours. Lidocaine treated 
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horses refluxed significantly fewer hours and were hospitalized for shorter durations, however 

overall outcome was the same between groups with no significant differences between groups in 

the amount of reflux per 24 hour or 6 hour period, physical or laboratory variables or 

complications. Horses treated with lidocaine did have a significantly decreased reflux rate after 

treatment compared to before treatment. It should be noted that 4/15 horses in the placebo group 

were given lidocaine after the 24 hour treatment period which may have affected survival scores 

and 3 horses (18%) developed muscle fasciculation’s, 1 during the bolus and 2 during infusion. 

Lidocaine serum concentration determined during the episode in one horse during infusion was 

only 2.4 µg/mL, however this horse had a decreased serum protein concentration potentially 

leading to an increased proportion of free drug resulting in signs of lidocaine toxicity (Malone et 

al. 2006). The final study evaluated healthy horses with 4 electrodes sutured to the proximal 

jejunum to record electrical activity postoperatively (Milligan et al. 2007). Duration of the 

migrating myoenteric complex (MMC), the most common method for measuring small intestinal 

motility, remained unchanged in horses administered lidocaine (1.3 mg/kg bolus followed by 50 

µg/kg/min) compared to placebo as did spiking activity and the number of phase III events 

(responsible for aboral propulsion of food), suggesting lidocaine does not influence proximal 

jejunal motility in healthy horses. While significance was not achieved, the data trended towards 

an increased MMC duration and a decreased number of phase III events which would be 

detrimental to motility. Taken together, while the in vitro evidence for the use of lidocaine to 

stimulate gastrointestinal motility appears promising, the data does not appear to correlate 

strongly with a clinical benefit. However, further research should be done in larger populations 

of post-operative clinical cases as the effects of lidocaine may be due to the analgesic and/or 

anti-inflammatory effects rather than a direct effect on motility.  
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 Analgesic properties 

One of the earliest reports in humans for the use of intravenous lidocaine during general 

anesthesia leading to reduced post-operative pain dates back to 1954 when investigators 

evaluated a lidocaine CRI in combination with a continuous infusion of succinyldicholine 

chloride, an ultra-short acting muscle relaxant, during general anesthesia with nitrous oxide in 

900 patients (De Clive-Lowe et al. 1954). Despite not having a control group, the authors 

concluded that the infusion provided post-operative analgesia in 77% of cases with 25% having 

analgesia for up to 10 hours. Since that time, multiple investigations in humans have evaluated 

intravenous lidocaine and its effects on painful conditions including postoperative pain, 

neuropathic pain, burn patient pain, and renal colic pain. Two recent meta-analyses evaluated 

post-operative pain after intravenous lidocaine. The first included eight randomized controlled 

trials, 161 treated patients and 159 controls, administered a CRI of lidocaine or placebo during or 

after abdominal surgery; the analysis concluded that pain intensity 24 hours post-operation was 

significantly decreased (P=0.002) (Marret et al. 2008). The second included 29 randomized 

controlled trials and 1,754 patients which compared a lidocaine CRI to placebo or any 

comparative drug during anesthesia for any type of surgery; the analysis concluded that the 6-

hour post-operative pain score was decreased at rest, during a cough and during movement and 

there was also a reduced opioid requirement in patients administered lidocaine (Vigneault et al. 

2011). In 2005 a meta-analysis was performed evaluating neuropathic pain. Ten randomized 

controlled trials in humans were evaluated and concluded that systemically administered 

lidocaine was superior to placebo and equal to morphine, gabapentin, amitriptyline and 

amantadine for chronic neuropathic pain and more consistent for peripheral versus central pain. 

There has been minimal work evaluating burn patients, renal colic patients, and post-amputation 
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pain in humans after CRIs of lidocaine. A prospective randomized double-blinded clinical trial 

observed beneficial effects of CRIs of lidocaine for patients with renal colic (Soleimanpour et al. 

2012). Another randomized double blinded crossover trial evaluating a CRI of morphine 

compared to lidocaine determined that lidocaine significantly diminished stump pain (P<0.01) 

but not phantom pain in human amputees. However, the evidence for burn patients has not 

revealed significant benefits compared to placebo (Wasiak and Cleland 2007; Wasiak et al. 

2011).  

While evidence for the use of lidocaine as an analgesic in humans is promising, minimal 

research has been done in horses despite a need for alternative pain medications due to 

potentially severe unwanted side effects of opioids and NSAIDs. Opioids are well known for 

their inhibitory effects on gastrointestinal motility, especially in the horse. Butorphanol and 

morphine are both commonly used in horses however both have been shown to decrease 

borborygmi and defecation, especially when administered as a single injection (Sellon et al. 

2001; Boscan et al. 2006). The most commonly used NSAIDs in equine medicine include 

flunixin meglumine, phenylbutazone and to a lesser extent, ketoprofen, firocoxib, and 

meloxicam all of which can lead to adverse effects including gastric glandular ulceration, right 

dorsal colitis and renal medullary crest necrosis. Gastric ulceration occurs in the glandular 

portion of the stomach due to decreased mucosal blood flow, decreased mucous production and 

increased hydrochloric acid secretion from prostaglandin inhibition (Videla and Andrews 2009). 

Right dorsal colitis is characterized by mucosal ulceration, edema, neutrophilic inflammation, 

and mural thickening of the right dorsal colon (Karcher et al. 1990; Jones et al. 2003). Renal 

medullary crest necrosis is characterized by sharply demarcated focal medullary necrosis that 

results in sequestration of fragments of the renal crest with secondary cortical segmental pallor 
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from tubular dilation, filtrate retention and interstitial edema (Read 1983; Black 1986). In 

contrast to the potentially life-threatening side effects of opioids and NSAIDs, the toxic effects 

of lidocaine are most commonly reported after administration errors and are transient, self-

resolve, and include muscle fasciculations, ataxia, and occasional recumbency (Meyer et al. 

2001).  However human injuries may occur in cases of lidocaine toxicity in horses. 

Pain is difficult to assess in animals and experimental pain models do not necessarily 

correlate with clinical pain, however, researchers have attempted to characterize the analgesic 

properties of lidocaine in horses. In 2005, a randomized, blinded cross-over trial compared a CRI 

of lidocaine (2mg/kg bolus followed by 50 µg/kg/min for 2 hours) to saline in 6 horses to 

determine the effect on visceral and somatic nociception (Robertson et al. 2005). It was 

concluded that lidocaine may play a role in somatic analgesia as the thermal threshold of a 

heating element placed over the withers was increased significantly; however there were no 

significant differences in colorectal or duodenal distention threshold pressure indicating minimal 

effects of lidocaine on visceral nociception. That same year, there was another report on the use 

of lidocaine in anesthetized ponies undergoing castration procedures (Murrell et al. 2005). The 

authors determined that the median frequency (F50), an electroencephalographic variable used as 

a monitor of anesthetic depth, increased with castration suggesting that it may be a specific 

marker for nociception in the horse (Murrell et al. 2003). Two years later, the same authors 

published their findings that horses undergoing the same castration procedure with a CRI of 

lidocaine did not have the same increase in F50 suggesting that lidocaine prevented a cortical 

response and may therefore be antinociceptive and contribute to the depth of anesthesia (Murrell 

et al. 2005).  
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While lidocaine by itself has not proved to be an effective analgesic for intensely painful 

conditions, there may be a synergistic effect when combined with other drugs such as flunixin 

meglumine. Lidocaine administration alone (1.3 mg/kg followed by 50 µg/kg/min) did not have 

an effect on behavioral pain scores in horses after undergoing a 2-hour ischemic event and was 

no different than saline treated horses. However when lidocaine was combined with flunixin 

meglumine, a significant decrease in pain scores was observed at 4, 8, and 16 hours post-

ischemia compared to saline treated horses while flunixin meglumine alone was only different at 

4 hours (Fig. 2-4) (Cook et al. 2008). While minimal research is available for the use of 

lidocaine as an analgesic in horses, these findings, taken together with human studies, suggests 

that lidocaine may have analgesic properties in certain situations and should be considered when 

formulating a pain management plan.   
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Figure 2-4 Behavior pain scores for horses treated with saline 1 mg/50 kg (S), flunixin 

meglumine 1 mg/kg (F), lidocaine 1.3 mg/kg followed by 50 µg/kg/min (L), or both flunixin 

meglumine and lidocaine (L + F) at 4, 8, and 16 hours after an ischemic event (Cook et al. 2008).   

This material is reproduced with permission of John Wiley and Sons, Inc. * Is significantly 

(P<0.05) increased from preoperative score.    Is significantly lower (P <0.05) than score for 

saline treated horses at that time point 

 

 Lidocaine pharmacology and pharmacokinetics in adult horses 

The disposition of lidocaine in healthy and unhealthy adult horses has been evaluated 

with a single bolus administration or a continuous infusion and in fed and fasted horses 

(Engelking et al. 1987; Feary et al. 2005; Feary et al. 2006; Milligan et al. 2006; Waxman et al. 

2012). The most commonly studied dosage of intravenous lidocaine in horses is an initial bolus 

of 1.3 mg/kg followed by a continuous infusion of 50 µg/kg/min with a target steady state 

concentration of 1-2 µg/mL. This dosage led to mean plasma concentrations ranging from 1.37 
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to 1.78 µg/mL in healthy adult horses (Waxman et al. 2012), 1.50 ± 0.24 to 2.61 ± 0.38 µg/mL in 

healthy postoperative horses (Milligan et al. 2006), 0.891 ± 0.34 to 1.64 ± 0.85 µg/mL in post-

operative colic patients (de Solis and McKenzie 2007), and from 1.46 ± 0.385 to 2.18 ± 0.263 

µg/ml in horses undergoing general anesthesia with gastrointestinal disease (Feary et al. 2006). It 

should be noted that in the report by de Solís and McKenzie, there were multiple instances where 

the infusion was intermittently discontinued to walk the patient, therefore steady state 

concentration was not reached in these horses. Also, all reports included horses that received 

various other treatments that may affect the protein binding of lidocaine. In vitro research 

evaluating the effects of protein binding by other drugs (Table 2-1) revealed competition for 

protein binding sites with concurrently administered flunixin meglumine and ceftiofur (Milligan 

et al. 2006). While lidocaine alone was only moderately protein bound (53.1 ± 10.3%), the 

addition of the other highly protein bound drugs enhanced the amount of unbound free drug 

available to exert a pharmacologic effect and potential toxicity (Milligan et al. 2006). However, 

in vivo data in healthy horses determined that flunixin meglumine in conjunction with lidocaine 

did not lead to plasma concentrations of either drug outside their expected ranges (Waxman et al. 

2012). 

 

Table 2-1 In vitro percent protein binding of lidocaine alone and with flunixin meglumine and 

ceftiofur (Milligan et al. 2006).  

 

Lidocaine Protein Bound (%) SD (%) 

Lidocaine 53.1 10.3 

Lidocaine + flunixin 34.1 21.5 

Lidocaine + ceftiofur 27.3 9.72 

Lidocaine + flunixin + ceftiofur 29.5 6.4 
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Engelking and colleagues evaluated the effects of fasting on serum lidocaine 

concentrations after a single intravenous bolus of 0.424 mg/kg. The authors determined that 

fasting for 3 days led to a decrease in clearance from 52.0 ± 11.7 to 43.7 ± 8.47 mL/min/kg when 

compared to fed horses and that plasma clearance in fed horses was more than twice estimated 

hepatic blood flow of 22.4 mL/min/kg (Engelking et al. 1985; Engelking et al. 1987). The 

authors explained the rapid clearance by four possibilities: intravascular degradation of lidocaine, 

lidocaine concentrated in erythrocytes, irreversible extrahepatic extravascular removal of 

lidocaine, or the estimated equine hepatic blood flow is low.  

 Lidocaine metabolites 

While the pharmacokinetics, disposition, and clinical effects of lidocaine have been 

studied extensively in adult horses, there is limited information regarding the effects of the 

metabolites. Validated techniques to measure certain metabolite concentrations have only 

recently been developed, therefore it is impossible to draw conclusions related to their 

pharmacologic effects. Lidocaine undergoes extensive metabolism before being excreted in the 

urine (Fig. 2-5). It is metabolized in the liver by cytochrome P450 oxidative dealkylation 

resulting in MEGX and glycine xylidide (GX). Monoethylglycine xylidide is then broken down 

to monoethylglycine and xylidide, which have sodium channel activities of 75% and 10% 

respectively (Riviere and Papich 2009). Further metabolism occurs resulting in a number of 

metabolites that are excreted in the urine with the primarily metabolites in the horse being 

MEGX, GX, 3-hydroxyliodcaine (3-OH-LID) and 4-hydroxylidocaine (4-HO-LID) (Nelis et al. 

2010). Studies evaluating the clearance of lidocaine and its metabolites found that serum 

lidocaine concentrations decreased below detectable limits by 4-6 hours after discontinuation in 

adult horses with the most noticeable difference in the first 30 min explained by a rapid 
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distribution and elimination (Feary et al. 2005; Feary et al. 2006; Dickey et al. 2008). On the 

other hand, the concentrations of MEGX and GX were not below detectable limits until 24 hours 

after discontinuing the infusion (de Solis and McKenzie 2007; Dickey et al. 2008).  

In evaluating the accumulation of lidocaine and its metabolites over time, three reports 

advised caution when using intravenous lidocaine for prolonged periods. Milligan et al evaluated 

a 12-hour intravenous lidocaine infusion (1.3 mg/kg followed by 50 µg/kg/min) to postoperative 

healthy horses and found a significant increase in plasma concentrations from 4-12 hours 

compared to hours 1-3; the authors concluded that a lower lidocaine infusion rate may be needed 

when administered to horses for a prolonged period of time (Milligan et al. 2006). Another 

report found a steady increase in the mean concentrations of lidocaine, MEGX and GX when 

evaluating infusions lasting over 12 hours in post-operative colic patients and also concluded that 

prolonged infusions should be used with caution (de Solis and McKenzie 2007). The third report 

evaluated a 96-hour lidocaine infusion to healthy horses and found that while lidocaine and 

MEGX did not accumulate, GX did accumulate significantly up to 48 hours after which time the 

concentration remained constant (Dickey et al. 2008). The authors in this study concluded that 

while prolonged infusions appear safe in healthy horses, the accumulation of GX is cause for 

concern. 
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Figure 2-5  Structure of lidocaine and its metabolites (Harkins et al. 1998).  

This material is reproduced with permission of John Wiley and Sons, Inc. 
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 Lidocaine toxicity 

While the target steady state concentration in horses is reported to be between 1-2 µg/mL, 

clinical signs of toxicity have been observed at serum concentrations as low as 1.85 µg/mL 

(range 1.85-4.53 µg/mL; mean 3.24 ± 0.74 µg/mL) (Meyer et al. 2001). Toxicity may not only 

result from overdoses but also from the accumulation of metabolites, rapid exposure of brain 

cells to lidocaine, increases in unbound lidocaine and acidosis (Blumer et al. 1973; Narang et al. 

1978; Scott 1986; de Solis and McKenzie 2007). Milligan et al evaluated a loading dose of 1.3 

mg/kg over 15 minutes followed by a 12-hour infusion of 50 µg/kg/min to 6 postoperative 

healthy horses. While the infusion was well tolerated in 5/6 horses, one horse developed tremors 

and collapsed 5.5 hours into the infusion (Milligan et al. 2006). The corresponding serum 

concentration at 6 hours in that horse was only 2.74 µg/mL. Waxman et al evaluated the same 

dosage over a 6-hour infusion to 6 horses. Five of the six horses did not display sings of toxicity. 

One horse experienced an episode of Hyperkalemic Periodic Paralysis 2.5 hours after 

discontinuing the infusion; it was unclear whether the response was triggered by the study 

protocol or if it was a random occurrence (Waxman et al. 2012). In another report of 10 horses 

administered prolonged lidocaine infusions after an exploratory laparotomy, 2 horses 

experienced an episode of moderate ataxia during the infusion with serum concentrations at the 

time of occurrence under the reported toxic concentrations (de Solis and McKenzie 2007). While 

lidocaine does display a narrow therapeutic index, the drug is redistributed from the plasma after 

approximately 8 minutes (Roden 1996), therefore, the side effects resolve rapidly after the drug 

is discontinued. 



28 

 

 Lidocaine pharmacokinetics in adults and neonates of other species 

The pharmacokinetic properties of intravenous lidocaine have been evaluated in newborn 

piglets (Satas et al. 1997), sheep (Morishima et al. 1979) and children (Finholt et al. 1986) and 

differences and similarities exist between and amongst species. For example, newborn sheep are 

reported to have a 20 percent greater clearance of lidocaine compared to adult sheep (Morishima 

et al. 1979). This finding is in contrast to newborn piglets, who have a significantly decreased 

clearance (Satas et al. 1997), and humans, who have no difference in clearance compared to their 

adult counterparts (Finholt et al. 1986). With regard to half-life, neonatal piglets and sheep have 

a longer half-life of intravenously administered lidocaine compared to adults; this finding has 

been attributable to a larger volume of distribution due to a higher percentage of body water 

(Morishima et al. 1979; Satas et al. 1997). The exact age at which the pharmacokinetics in young 

animals behave similar to adults will vary amongst species. Finholt and colleagues found that 

once children were over 6 months of age there were no significant differences compared to 

adults when evaluating the pharmacokinetics of lidocaine and concluded that both age groups 

distribute and eliminate intravenous lidocaine in the same manner (Finholt et al. 1986). 

Protein binding is another important component of the volume of distribution of lidocaine 

as only unbound drug is available to exert its pharmacological effects (Satas et al. 1997). 

Milligan et al found that at serum concentrations of 2µg/mL, the in vitro plasma protein binding 

of lidocaine in adults is 53 percent (Milligan et al. 2006). Lidocaine in the plasma is mainly 

bound to α1-acid glycoprotein and different concentrations of this protein in neonatal circulation 

leads to differences in free lidocaine concentrations. At birth, piglets were reported to have 

14,263 µg/mL of α1-acid glycoprotein (Itoh et al. 1992) compared to an undetectable (<20 

µg/mL) concentration in newborn foals (Taira et al. 1992). The concentration increases in foals 
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throughout the first year of life to reach detectable concentrations by 14 days of age and a 

concentration of 99.23 ± 26.90 µg/mL by one year. Significant differences in clearance, half-life, 

volume of distribution and protein binding in adults versus neonates necessitates determination 

of serum concentrations and pharmacokinetics of intravenous lidocaine infusions to foals.  

 Pharmacokinetic differences in adult horses and foals 

While the data specific to foal physiology is scarce, a few generalizations have been 

made and should be considered when a dosing regimen is developed for use in foals (Magdesian 

2015). Foals are rapid growing creatures gaining 1.15 ± 0.17 kg/day and therefore constant 

dosage adjustments must be made, especially in drugs with a narrow therapeutic index. As with 

most young animals, the volume of distribution in foals is larger when compared to adults due to 

a relatively high water content and minimal fat, which results in lower plasma concentrations of 

drugs in foals compared to adults. Foals generally have lower total serum protein concentrations 

which may lead to more free drug and greater risk for toxic concentrations. Foals also have a 

decreased metabolic and excretory capacity compared to adults as maturation of hepatic function 

primarily occurs in the first 1-2 weeks postpartum. This is especially important for drugs that are 

metabolized by the liver as the hepatic microsomal enzyme pathways are not completely 

developed at birth which could result in longer elimination half-lives and decreased clearance. In 

contrast, the renal function in foals is fully functioning by 1-2 days of age however, foals 

generally have more acidic urine than adults, therefore tubular resorption of weak acids readily 

occurs and weak bases may be trapped in the urine. All of these factors should be considered as 

they may affect distribution, metabolism and excretion of drugs.  

The pharmacokinetics for a variety of drugs have been evaluated in both foals and adult 

horses although there are limited studies directly comparing the two groups. Prescott et al 
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compared a 5 mg/kg dosage of erythromycin in foals ranging from 1-7 weeks of age to adult 

horses (Prescott et al. 1983). Foals had an increased clearance, larger volume of distribution and 

similar half-lives (Table 2-2). Cummings et al compared the pharmacokinetics of gentamicin (4 

mg/kg) in foals throughout the first 30 days of life to mares (Table 2-3) (Cummings et al. 1990). 

While the volume of distribution decreased over time, as expected in young animals, the half-life 

also decreased with age. Finally, indirect comparisons of flunixin meglumine in newborn foals 

revealed a larger volume of distribution, increased clearance and a longer half-life in foals 

compared to adults (Table 2-4) (Semrad and Moore 1987; Toutain et al. 1994; Crisman et al. 

1996; Coakley et al. 1999).  

 

Table 2-2  Pharmacokinetic parameters in 1-7 week old foals compared to adults administered a 

single intravenous injection of erythromycin (5 mg/kg) (Prescott et al. 1983). 

Parameter Foals Adults 

Cl (mL/kg/h) 2.9 ± 1.0 1.9 ± 0.4 

Vd (L/kg) 3.7 ± 1.1 2.3 ± 0.6 

t1/2 (h) 1.0 ± 0.4 1.0 ± 0.5 

Cl= clearance, Vd= volume of distribution, t1/2= elimination half life 
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Table 2-3  Pharmacokinetics of gentamicin (4 mg/kg) in neonatal foals after a single intravenous 

injection compared to adults (Cummings et al. 1990). 

Cl= clearance, Vd(ss)= volume of distribution at steady state, Ht1/2= harmonic mean half life 

 

 

Table 2-4  Pharmacokinetics of flunixin meglumine (1.1 mg/kg) in neonatal foals less than 24 

hours old compared to adults (Semrad and Moore 1987; Toutain et al. 1994; Crisman et al. 1996; 

Coakley et al. 1999). 

 Foals Adults Adults Adults 

Cl (mL/kg/hr) 17 63 ± 12 59 ± 20 66 ± 12 

Vd (mL/kg) 220 154 ± 51 199 ± 28 117 ± 16 

t1/2 (hr) 8.5 4.2 ± 2.1 2.5 ± 0.6 N/A 

Cl= clearance, Vd= volume of distribution, t1/2= half-life

  Foals Adults 

 1 day 5 days 10 days 15 days 30 days  

Cl 

(mL/kg/min) 
1.75 ± 0.47 2.98 ± 1.48 2.60 ± 0.96 2.4 ± 0.87 3.66 ± 1.93 1.69 ± 0.65 

Vd(ss)  

(mL/kg) 
306 ± 30 350 ± 66 344 ± 95 325 ± 48 279 ± 34 155 ± 22 

Ht1/2  

(min) 
127 ± 23 90 ± 32 101 ± 33 106 ± 33 60 ± 31 65 ± 55 
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Chapter 3 - Materials and Methods 

All procedures were approved by the Kansas State University Institutional Animal Care 

and Use Committee.  

 Phase I 

The objective of this phase was to determine the pharmacokinetics and plasma 

concentrations of lidocaine and MEGX in healthy foals less than three months of age. 

 Experimental design and sample collection 

Healthy foals less than 3 months of age were used. Foals were weighed and determined to 

be healthy based on a physical examination, complete blood count, serum biochemistry analysis 

and assessment of adequate passive transfer of maternal antibody performed in the first week of 

life. Foals were maintained in a divided stall with their dam and not allowed to nurse during the 

6-hour treatment period, although milk was provided in a bucket and free access to water and 

hay were available at all times.  

A double lumen (16 gauge) over the wire catheter was aseptically placed in the left 

jugular vein using 2 mL of bupivacaine as a local anesthetic. One port was designated for the 

lidocaine infusion and the other port for sampling of lidocaine plasma concentrations. A single 

lumen short term (16 g, 5-inch) catheter was placed in the right jugular vein in the same fashion 

as the double lumen catheter; the right-sided catheter was only used for plasma lidocaine 

concentration sampling. The purpose of having two catheters was to determine the accuracy of 

obtaining samples from the same catheter (different lumen) as the lidocaine infusion. The results 

were used to determine accuracy of samples obtained in phase II.   
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Lidocaine hydrochloride was administered as a loading dose (1.3 mg/kg) intravenously 

over 15 minutes followed by an intravenous infusion of 50 µg/kg/min. An infusion pump was 

used to administer the lidocaine for a period of 6 hours. Blood, 5 mL per time point, was 

collected from the single lumen catheter into heparinized tubes before (time 0), at the midpoint 

(0.125 h), and at completion (0.25 h) of the loading dose, during the infusion at time points 0.5, 

1, 1.5, 2, 3, 4, and 6 hours, and after discontinuation of the infusion at time points 6.25, 6.5, 7, 

7.5, 8, and 10 hours. Blood, 5 mL per time point, was also collected into heparinized tubes from 

the port designated for sampling on the double lumen catheter at time points 1, 2, 4, and 6 hours 

after initiation of the lidocaine infusion. Plasma lidocaine concentrations from both catheters 

were compared.  Heart rate and respiratory rate were also recorded at each time point. Foals were 

subjectively evaluated for adverse effects such as skeletal muscle fasciculations, anxiety, ataxia, 

and/or collapse. 

 Phase II 

The objective of this phase was to determine plasma concentrations of lidocaine and 

MEGX in unhealthy foals less than 6 months of age presented to a referral hospital or academic 

institution. Owner consent was obtained prior to inclusion of all foals.  

 Experimental design and sample collection 

Foals less than 6 months of age admitted to a private equine practice or Kansas State 

University from March 1 through September 1, 2013 necessitating lidocaine treatment were 

included in the study. Older foals were included in this part of the study to increase sample size. 

A physical examination, complete blood counts and serum biochemistry analysis were performed 

prior to lidocaine administration. A weight tape or visual assessment was used to determine the 
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weights of foals at the private practice as it was not feasible to weigh the foals in this clinical 

setting. A scale was used to weigh foals at Kansas State University. Foals were not allowed to 

nurse during the treatment period, instead they were supplemented nutritionally with intravenous 

dextrose formulations, total parenteral, or partial parenteral nutrition.  

A double lumen, over the wire catheter was aseptically placed into either the right or left 

jugular veins using 1-2 mLs of lidocaine. At least 20 minutes elapsed between catheter 

placement and initiation of lidocaine treatment.  Lidocaine hydrochloride was administered as a 

loading dose (1.3 mg/kg) intravenously over 15 min followed by an intravenous infusion of 50 

µg/kg/min using the estimated or actual weight as described above. An infusion pump was used 

to administer the lidocaine. Blood, 5 mL per time point, was collected from the port designated 

for sampling into heparinized tubes after administration of the lidocaine infusion (between 0.25-

0.75 h) and then between 4-12 hours, 12-24 hours, and 24-48 hours during the infusion. Foals 

were subjectively evaluated for adverse effects such as skeletal muscle fasciculations, anxiety, 

ataxia, and collapse. The breed, gender, age, diagnosis, outcome and other treatments 

administered were also recorded. 

 Plasma Drug Analysis and Pharmacokinetic Determinations 

Plasma was separated and stored frozen at -70°C before analysis. Plasma was analyzed 

for lidocaine concentrations by high pressure liquid chromatography (HPLC) with mass 

spectrometry. Plasma samples and standards (0.1mL) were treated with 0.4 mL methanol 

containing mepivacaine (250 ng/mL) as the internal standard (IS). The mass spectrometry 

determined lidocaine (m/z 235→86) and MEGX (m/z 207→58), quantitatively using 

mepivacaine as the IS (m/z 247→98), and GX (m/z 179→122), 3-OH-L and 4-OH-L (m/z 

251→86) were qualitatively evaluated. The m/z is the mass to charge ratio and (XX→XX) are 
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the qualifying and quantifying ions, respectively. The mobile phase consisted of acetonitrile and 

0.1% formic acid with a phenyl column achieving separation (150x3mm, 5 µM, Thermo 

Hypersil, ThermoFisher, Waltham, MA, USA). Plasma parameters were calculated using non-

compartmental analysis. The pharmacokinetic parameters that were calculated were AUC, 

AUMC, Cmax, Tmax, MRT, ʎ, and elimination t ½.  
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Chapter 4 - Results 

 Phase I 

Six healthy Quarter Horse foals (3 fillies and 3 colts) between 4-10 weeks of age and 93-

142 kg were used. All foals were determined to be healthy prior to inclusion into the study with 

no adverse effects observed during lidocaine administration. Lidocaine was well tolerated in all 

foals during the study. Heart rate and respiratory rate remained consistent and within normal 

reference ranges for all foals during the infusion. Difference in the plasma concentrations 

between the double lumen and single lumen catheter were minimal (mean 98.2% ± 13%); the 

largest difference was observed at 1 hour at which time the single lumen catheter was 86% of the 

concentration of the double lumen catheter (Table 4-1). Steady state was reached by 1.5 hours 

with a mean plasma concentration of 0.670 µg/mL ± 0.074 (min 0.484 µg/mL; max 0.785 

µg/mL) from 1.5-6 hours. The metabolites MEGX, GX, and 4-hydroxy-2,6-xylidine were 

present; only MEGX was quantified (Table 4-2; Fig. 4-1). Mean plasma lidocaine concentration 

was undetectable by 2 hours after discontinuation of the CRI while the MEGX concentration 

decreased at a slower rate (Table 4-3; Fig. 4-2). Pharmacokinetic parameters were determined 

using non-compartmental analysis (Table 4-4).  
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Table 4-1 Mean plasma lidocaine concentration comparison between a catheter designated only 

for sampling (single lumen) compared to a double lumen catheter used for sampling and infusion 

of a continuous intravenous infusion of lidocaine (1.3 mg/kg followed by 50 µg/kg/min) to 6 

healthy young foals.  

 Mean Plasma Lidocaine Concentration (µg/mL)  

Time (h) 
Double Lumen 

(Infusion and Sampling) 

Single Lumen 

(Sampling) 
Difference (%) 

1 0.690 0.594 86% 

2 0.677 0.659 97% 

4 0.684 0.626 92% 

6 0.684 0.626 92% 
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Table 4-2 Raw mean, SD, and range of lidocaine and MEGX plasma concentrations following a 

lidocaine CRI (1.3 mg/kg followed by 50 µg/kg/min) for 6 hours in 6 healthy young foals  

 
Lidocaine Plasma Concentration 

(µg/mL) 

MEGX Plasma Concentration 

(µg/mL) 

Time (h) Mean ± SD Min Max Mean ± SD Min Max 

0 0.000 ± 0.000 0.000 0.000 <0.010 0.000 <0.010 

0.125 0.388 ± 0.119 0.232 0.550 0.016 ± 0.008 <0.010 0.025 

0.25 0.782 ± 0.088 0.636 0.902 0.063 ± 0.015 0.038 0.080 

0.5 0.557 ± 0.062 0.474 0.628 0.131 ± 0.033 0.089 0.166 

1.0 0.594 ± 0.076 0.465 0.681 0.183 ± 0.051 0.121 0.241 

1.5 0.653 ± 0.088 0.503 0.744 0.238 ± 0.074 0.153 0.335 

2.0 0.659 ± 0.060 0.546 0.727 0.270 ± 0.075 0.181 0.379 

3.0 0.669 ± 0.057 0.568 0.727 0.314 ± 0.095 0.209 0.436 

4.0 0.699 ± 0.075 0.602 0.785 0.335 ± 0.117 0.197 0.477 

6.0 0.672 ± 0.099 0.484 0.762 0.340 ± 0.143 0.190 0.574 

 

Figure 4-1  Mean ± SD plasma concentrations of lidocaine and MEGX following a lidocaine 

CRI (1.3 mg/kg followed by 50 µg/kg/min) for 6 hours to 6 healthy young foals 
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Table 4-3  Mean ± SD and range of lidocaine and MEGX plasma concentrations after 

discontinuation of a 6-hour lidocaine CRI (1.3 mg/kg followed by 50 µg/kg/min) in 6 healthy 

young foals 

 
Lidocaine Plasma Concentration 

(µg/mL) 

MEGX Plasma Concentration 

(µg/mL) 

Time (h) Mean ± SD Min Max  Mean ± SD Min Max 

6.25 0.414 ± 0.065 0.325 0.495  0.302 ± 0.122 0.162 0.505 

6.5 0.291 ± 0.060 0.191 0.372  0.267 ± 0.125 0.120 0.487 

7.0 0.111 ± 0.058 0.000 0.155  0.196 ± 0.094 0.091 0.349 

7.5 0.015 ± 0.037 0.000 0.091  0.139 ± 0.070 0.060 0.258 

8.0 0.000 ± 0.000 0.000 0.000  0.095 ± 0.050 0.040 0.179 

10.0 0.000 ± 0.000 0.000 0.000  0.028 ± 0.017 <0.010 0.054 

 

Figure 4-2  Mean ± SD plasma concentrations of lidocaine and MEGX following 

discontinuation of a 6-hour lidocaine CRI (1.3 mg/kg followed by 50 µg/kg/min) to 6 healthy 

young foals 
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Table 4-4 Pharmacokinetic parameters of lidocaine and MEGX after administration of a 

lidocaine bolus (1.3 mg/kg) followed by a CRI of lidocaine (50 µg/kg/min) for 6 hours to 6 

healthy young foals.  

 Lidocaine MEGX 

 Mean ± SD Min Max Mean ± SD Min Max 

AUC0∞ (µg·min/mL) 259.27 ± 25.02 212.63 283.40 n/a n/a n/a 

Cl (mL/min/kg) 72.17 ± 7.83 65.45 87.24 n/a n/a n/a 

Cmax (µg/mL) 0.794 ± 0.067 0.706 0.902 0.361 ± 0.141 0.209 0.574 

t1/2 (min) 26.3 ± 3.7 21.9 29.7 62.5 ± 6.0 54.0 68.8 

Terminal rate (L/min) 0.027 ± 0.004 0.023 0.032 n/a n/a n/a 

MRT0∞ (min) 26.06 ± 6.86 15.50 34.00 n/a n/a n/a 

Tmax (min) 72.5 ± 140.8 15.0 360.0 280.0 ± 90.3 180.0 360.0 

Vd(ss) (L/kg) 1.85 ± 0.41 1.35 2.47 n/a n/a n/a 

Values were generated using noncompartmental analysis. AUC0∞= area under the plasma 

concentration-time curve from time 0 to infinity, Cl= clearance, Cmax= maximal plasma 

concentration, t1/2= terminal half-life, MRT= mean residence time, Tmax= time of maximal plasma 

concentration, Vd(ss)= apparent volume of distribution at steady stat
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 Phase II 

One Quarter Horse and 7 Thoroughbred foals were included in the study. There were 3 

fillies and 5 colts ranging from 2-136 days of age. The seven Thoroughbred foals were estimated 

to weigh between 52- 227 kg; the Quarter Horse foal weighed 82 kg. Six foals survived to 

discharge and 2 were euthanized. There were a variety of diagnoses and concurrent treatments 

administered (Table 4-5). Lidocaine appeared to be well tolerated in all foals during the study. 

No adverse effects were observed, however foal #8 presented recumbent and never stood without 

assistance; therefore, the ability to monitor for adverse effects in this foal was difficult. A 

complete blood count and serum biochemistry analysis were performed in all cases except foal 

#6 in which only a complete blood count and electrolyte concentrations were performed (Table 

4-6). Plasma lidocaine concentrations and MEGX concentrations are reported in Table 4-7 and 

Fig. 4-3 and Fig. 4-4. Plasma lidocaine concentrations for foals #1-7 were within or below the 

ranges reported for healthy horses (Fig. 4-3). Foal #8 had a peak plasma lidocaine concentration 

of 8.43 µg/mL after the bolus infusion, however, the bolus was administered to this foal over 5 

minutes.  

 

 

 

 

 

 



42 

 

Table 4-5  Description, concurrent treatments administered, diagnosis and outcome in 8 

unhealthy foals administered a CRI (1.3 mg/kg followed by 50 µg/kg/min) of lidocaine  

* Estimated weight performed; foal #8 was weighed. TB= Thoroughbred, QH= Quarter Horse, 

TPN= total parenteral nutrition, LRS= lactated ringers solution, K-pen= potassium penicillin, 

DC= discharged, E= euthanized. 

Foal Age 

(d) 

Weight 

(kg) 

Breed Gender Other treatments Diagnosis Outcome 

#1 79 227* TB Filly 

LRS, K-pen, gentamicin, 

flunixin meglumine, 

omeprazole, probiotic paste 

Enteritis, 

pneumonia 
DC 

#2 31 114* TB Colt 

LRS + dextrose, sucralfate, 

ranitidine, metronidazole, 

omeprazole, biosponge, 

probiotic paste, gastrocote 

Colitis DC 

#3 70 140* TB Colt 

LRS + dextrose, K-pen, 

gentamicin, flunixin 

meglumine, hyaluronate 

sodium, sucralfate, lactaid, 

omeprazole, probiotic paste  

SI 

volvulus 
DC 

#4 2 52* TB Filly 

LRS, TPN, ceftiofur 

sodium, sucralfate, 

biosponge, gastrocote, 

ketoprofen, lactaid, 

probiotic paste, 

metronidazole, pysillium 

Enteritis DC 

#5 61 122* TB Colt 

LRS + dextrose, probiotic 

paste, ketoprofen, 

sucralfate, omeprazole  

Enteritis DC 

#6 136 181* TB Colt 

LRS + dextrose, dopamine 

CRI, equioxx, ranitidine, 

omeprazole, sucralfate 

Gastric 

ulceration 
E 

#7 4 69* TB Colt 

LRS + dextrose, 

oxytetracycline, lactaid, 

metronidazole, sucralfate, 

probiotic paste, ketoprofen 

Salmonella 

Unilateral 

CNS signs 

DC 

#8 47 82 QH Filly 

TPN, LRS, K-pen, 

gentamicin, famotidine, 

sucralfate, omeprazole, 

flunixin meglumine, 

metoclopramide  

SI 

volvulus, 

mesenteric 

rent 

E 
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Table 4-6  Important complete blood count and serum biochemistry findings in 8 unhealthy foals administered a CRI of lidocaine (1.3 

mg/kg followed by 50 µg/kg/min) during hospitalization.  

 

* Indicates value outside of the reference range. WBC= white blood count, PCV= packed cell volume, TP= total protein, AST= 

aspartate transaminase, CK= creatine kinase, SDH= sorbitol dehydrogenase, GGT= gamma glutamyltransferase, BUN= blood urea 

nitrogen 

 

 

 

 

 

 

 Reference 

Range (#1-7) Foal #1 Foal #2 Foal #3 Foal #4 Foal #5 Foal #6 Foal #7 Foal #8 
Reference 

range (#8) 

WBC x 103 7.0-12.0 6.4 10.8 9.7 8.9 10.0 74.6* 10.5 7.4 6.0-12.0 

PCV (%) 30-44 38.3 35.4 31.9 35.8 29.7* 54.4* 35.7 43 32-48 

Fibrinogen (mg/dL) 200-400 500* 600* 500* 400 600* 600* 300 200 100-400 

TP (g/dL) 5.4-7.6 6.6 6.0 5.6 6.0 6.0 9.3* 5.3* 5.9* 6.0-8.5 

Albumin (g/dL) 2.4-5.0 3.0 2.8 2.7 2.8 2.5 N/A 2.8 2.8 2.7-3.7 

AST (U/L) 80-250 316* 223 215 161 191 N/A 108 400 244-543 

CK (U/L) 50-250 264* 176 790* 212 278* N/A 88 1218* 192-565 

SDH 0.8-4.2 12.3* 2.3 3.4 5.6* 8.7* N/A 9.2* <0.3 N/A 

GGT (U/L) 6-24 13 36* 14 25* 30* N/A 12 17 6-24 

Creatinine (mg/dL) 0.8-2.0 1.1 0.8 1.3 1.0 1.1 9.9* 1.0 1.7 0.8-1.8 

BUN (mg/dL) 8-26 17 12 16 6 11 N/A 6 21 9-22 
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Table 4-7  Plasma lidocaine and MEGX concentrations in 8 unhealthy foals administered a CRI of lidocaine (1.3 mg/kg followed by 

50 µg/kg/min) during hospitalization  

 

  Sample #1 Sample #2 Sample #3 Sample #4 

Foal Time 

(hr) 

Lidocaine 

(µg/mL) 

MEGX 

(µg/mL) 

Time 

(hr) 

Lidocaine 

(µg/mL) 

MEGX 

(µg/mL) 

Time 

(hr) 

Lidocaine 

(µg/mL) 

MEGX 

(µg/mL) 

Time 

(hr) 

Lidocaine 

(µg/mL) 

MEGX 

(µg/mL) 

#1 0.30 0.523 0.139 4.50 0.455 0.261 18.50 0.867 0.573 38.00 0.478 0.285 

#2 0.50 0.284 0.090 6.50 0.538 0.385 17.50 0.761 0.620 42.00 0.301 0.411 

#3 0.50 0.379 0.244 4.75 0.599 0.476 19.00 0.671 0.524 43.50 0.768 0.547 

#4 0.25 0.180 0.032 5.50 0.602 0.787 15.50 0.456 0.629 43.75 0.745 0.857 

#5 0.25 0.270 0.049 4.25 0.586 0.317 15.75 0.417 0.256 38.75 0.725 0.239 

#6 0.30 0.365 0.054 9.00 0.865 0.541 23.25 1.160 1.130 42.00 1.450 1.560 

#7 0.30 0.144 0.061 5.50 0.481 0.562 17.75 0.597 1.180 42.00 0.558 1.140 

#8 0.60 8.430 0.215 5.00 0.958 0.582 22.00 1.080 0.504 45.50 3.130 0.449 
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Figure 4-3 Plasma lidocaine concentrations in 8 unhealthy foals administered a CRI (1.3 mg/kg followed by 50 µg/kg/min) of 

lidocaine during hospitalization 
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Figure 4-4  Plasma MEGX concentrations in 8 unhealthy foal administered a CRI (1.3 mg/kg followed by 50 µg/kg/min) of lidocaine 

during hospitalization 
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Chapter 5 - Discussion 

In the clinical setting, intravenous lidocaine is used in foals for any one of its purported 

properties. The most common clinical dosage used is a loading dose of 1.3 mg/kg followed by a 

CRI of 50 µg/kg min. While there are no data on plasma concentrations or pharmacokinetics 

with the use of this dosage in foals, clinicians commonly use the same adult dosage in younger 

patients. As this is a logical starting place, lidocaine has a narrow therapeutic index and therefore 

caution is advised when extrapolating to younger animals.  

Despite the narrow therapeutic index, in this study using the adult dosage, no adverse 

effects were observed in any of the healthy foals and the heart rate and respiratory rates 

monitored during each sampling in these foals remained within normal limits consistent with 

previously published data (Meyer et al. 2001). Clinical signs of toxicity would not be expected to 

occur at the plasma concentrations achieved in foals #1-7 (phase II) as they were well below the 

reported toxic range of 1.85-4.53 µg/mL (Meyer et al. 2001). Foal #8 was recumbent with 

altered mention at presentation and throughout hospitalization, therefore signs of toxicity were 

difficult to assess due to confounding clinical signs from the foals primary disease. The most 

likely explanation for the high plasma concentration in this foal was that the bolus was 

administered over 5 minutes rather than the suggested10-15 minutes. However, this would not 

explain the increased concentration after the third sample. Therefore, other possible explanations 

include a dose miscalculation, a malfunctioning infusion pump, altered hemodynamics affecting 

hepatic blood flow and therefore lidocaine extraction (clearance), protein binding by other 

concurrent medications, increased vascular permeability or decreased drug clearance despite 

normal hepatic and renal enzymes (Milligan et al. 2006; Riviere and Papich 2009). It is also 

possible this is an artifact of sampling. For example, if the sample was obtained immediately 
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after the bolus then the local concentrations within the vasculature and tissues immediately 

surrounding the infusion may not be representative of systemic plasma concentrations and biased 

high. Interestingly, the concentration of MEGX in this foal did not appear different from the 

other clinical foals supporting the fact that further studies evaluating the behavior and effects of 

lidocaine metabolites are needed. 

Variations in dosing and protocols have been suggested in adult horses including halving 

the lidocaine dosage during general anesthesia to maintain the same plasma concentrations as in 

conscious horses, not administering a loading dose as steady state is reported to occur within 3 

hours, and decreasing the infusion rate after 3-4 hours to decrease the risk for accumulation and 

toxicity (Brianceau et al. 2002; Milligan et al. 2006; Dickey et al. 2008). While there did not 

appear to be accumulation of lidocaine or its metabolites in healthy foals or foals that survived to 

discharge in phase II, the results of this study suggest that further research evaluating 

accumulation in diseased/compromised foals is needed (Fig. 4-3, foals #6 & #8). Evaluating 

larger populations of hospitalized foals would allow dosage recommendations to be made for 

foals during anesthesia or during prolonged infusions, however eliminating the loading dose 

should be considered as this would eliminate concerns for toxicity during rapid administration.  

Phase I confirmed that plasma concentrations in healthy foals administered a dose of 1.3 

mg/kg followed by 50 µg/kg/min were lower than the targeted adult concentrations of 1-2 

µg/mL. Steady state concentrations were also lower than those reported in adult horses (Milligan 

et al. 2006; de Solis and McKenzie 2007; Waxman et al. 2012) with the highest plasma 

concentration achieved during steady state of only 0.785 µg/mL. While different analytical 

methods were used to determine mean plasma concentrations in healthy adult horses (Milligan et 

al. 2006), the data suggest that mean plasma concentrations in foals may vary by up to 40% from 
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those reported in adult horses (Table 5-1). However since these were 2 different studies 

extrapolation between them should be done cautiously. 

 

Table 5-1 Comparison of mean plasma concentrations between healthy adult horses (Milligan et 

al. 2006) and healthy foals 4-10 weeks of age.  

 

Mean Plasma Concentration  (µg/mL) ± SD 

 Time (hr) Adults Foals % Difference 

0.5 2.25 ± 0.47 0.56 ± 0.06 25% 

1 1.50 ± 0.24 0.59 ± 0.08 40% 

2 1.70 ± 0.17 0.66 ± 0.06 39% 

3 1.72 ± 0.18 0.67 ± 0.06 39% 

4 2.45 ± 0.40 0.70 ± 0.08 29% 

6 2.30 ± 0.49 0.67 ± 0.10 29% 

This table is only to illustrate the reported differences between adults and foals and care should 

be taken when making direct comparisons as different analytical methods were used. 

 

The pharmacokinetic parameters reported in adult horses vary from the findings in 

healthy foals reported here (Table 5-2). Healthy foals in this study had an increased clearance, 

decreased Cmax, shorter t1/2, longer time to peak concentration (Tmax) and a larger volume of 

distribution at steady state which would all be expected as younger animals tend to have higher 

metabolic rates, increased volumes of distribution and lower total protein concentrations. Despite 

the difference in pharmacokinetic parameters between foals and adult horses, similarities exist in 

terms of elimination times for lidocaine and MEGX (de Solis and McKenzie 2007; Dickey et al. 

2008) (Fig. 5-1). 
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Table 5-2 Pharmacokinetic parameters in foals 4-10 weeks of age compared to adult horses (Feary et al. 2005; Feary et al. 2006).  

    
Foals+

 Adultsa+ Anesthetized adultsa+ 
Anesthetized adults with 

gastrointestinal diseaseb+ 

  Units Mean ± SD+ Mean ± SD Mean ± SD Mean ± SD 

Cl mL/min/kg 72.2 ± 7.8 29 ± 7.6 15 ± 3.3 25 ± 3 

Cmax µg/mL 0.79 ± 0.07 2.0 ± 0.27 3.8 ± 0.55 2.3 ± 0.4 

t1/2 min 26.3 ± 4 79 ± 41 54 ± 14 65 ± 33 

MRT0-∞ min 26.0 ± 6.9 28 ± 7.8 27 ± 5.4 27 ± 10 

Tmax min 72.5 ± 140.8 22 ± 28 23 ± 21 48 ± 44 

Vd(ss) L/kg 1.8 ± 0.4 0.79 ± 0.16 0.40 ± 0.09 0.70 ± 0.31 

AUC0-∞  (µg•min/mL) 259 ± 25 210 ± 52 410 ± 84 184 ± 31 

This table is only to illustrate the reported differences between adults and foals and care should be taken when making direct 

comparisons as different analytical methods were used. + Non compartmental analysis, a(Feary et al. 2005), b(Feary et al. 2006) 75-105 

min infusion; horses also received other treatments. Cl= clearance, Cmax= peak concentration of the drug, t1/2= terminal half-life, 

MRT∞= mean residence time, Tmax= time to peak concentration, Vd(ss)= apparent volume of distribution at steady state, AUC= area 

under the curve 
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Figure 5-1  Mean ± SD concentrations of lidocaine and its metabolites GX and MEGX over time 

following discontinuation of a lidocaine CRI in adults (left) and foals (right) (Dickey et al. 

2008).  

This material is reproduced with permission of John Wiley and Sons, Inc. Left values reported in 

ng/mL; right values reported in µg/mL. 

 

In this study, the primary lidocaine metabolites, MEGX and GX, were present in healthy 

and unhealthy foals, however only MEGX was quantified as a reference standard for GX was 

unavailable at the time of analysis. A review of the literature suggests that lidocaine metabolites 

are inconsistently present in horses following lidocaine administration. The metabolites MEGX 

and GX have been detected in the plasma of adult horses administered lidocaine for acute onset 

abdominal pain (mean ± SD peak MEGX: 1.379 µg/mL ± 0.896; mean ± SD peak GX: 1.166 ± 

0.900 µg/mL) (de Solis and McKenzie 2007) and in the serum of healthy horses administered 

prolonged infusions (mean ± SD peak MEGX: 0.529 µg/mL ± 0.063; mean ± SD peak GX: 

1.234 µg/mL ± 0.221) (Dickey et al. 2008). The metabolites MEGX, GX, 3-HO-LID, and 4-HO-

LID have also been detected in the urine and plasma of a healthy adult Thoroughbred and 3-HO-

LID in the urine of Thoroughbred mares as an indicator of illegal lidocaine use in racehorses 

(Nelis et al. 2010). 

GX 

MEGX 

Lidocaine Lidocaine 

MEGX 
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Limitations to phase II of this study include a small sample size with a relatively wide 

age and weight range, a variety of different concurrent treatments administered and multiple 

clinical diseases in the foals included. Ideally, a larger number of hospitalized foals would have 

been included to determine clinical significance in this population as well as pharmacokinetic 

determination by including samples during the elimination phase. The other major limitation 

during phase II was the inability to accurately weigh all but one of the foals. While the 

accurateness of the clinicians’ visual assessment and weight tape measurement in this population 

has not been determined, the clinician is confident from previous experience that her estimations 

were reasonably close to the true weight of each foal. The plasma concentrations were within a 

similar range as healthy foals which may also suggest the weights were reasonably accurate, 

however it is also possible that true PK differences were present but not detected due to 

inaccurate weights.  

In conclusion, the data obtained from these investigations suggest that lidocaine can be 

safely administered to healthy foals and the majority of hospitalized foals had plasma lidocaine 

concentrations within normal ranges with no adverse effects observed. One of the hospitalized 

foals, however, did have much higher than expected lidocaine concentrations. Therefore, further 

studies in larger populations are needed to assess if this is a true finding or an artifact of the 

study design and methodology as well as further characterize the disposition of lidocaine and its 

metabolites in clinical patients to determine if a dose adjustment is necessary. In the meantime, 

evaluating each patient on an individual basis, especially in terms of the hemodynamic status and 

hepatic and renal function, in conjunction with the results of this report and monitoring for 

adverse effects should help guide practitioners in their usage of intravenous lidocaine in foals.
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