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The hyperfine splitting of the 5g → 4f transitions in muonic 185,187Re has been measured using
high resolution HPGe detectors and compared to state-of-the-art atomic theoretical predictions.
The spectroscopic quadrupole moment has been extracted using modern fitting procedures and
compared to the values available in literature obtained from muonic X rays of natural rhenium. The
extracted values of the nuclear spectroscopic quadrupole moment are 2.07(5) barn and 1.94(5) barn,
respectively for 185Re and 187Re.
This work is part of a larger effort at the Paul Scherrer Institut towards the measurement of the
nuclear charge radii of radioactive elements.

I. INTRODUCTION

It is well known that muonic X rays can be used as
a sensitive means to determine the charge radius of a
nucleus. Moreover if the hyperfine structure (hfs) can
be resolved, then the distribution of the magnetic dipole
(MD) and electric quadrupole (EQ) moments in the nu-
cleus can be investigated as well. All stable elements and
few unstable elements have been studied by muonic X-ray
spectroscopy. Rhenium is the last stable element whose
nuclear charge radius has not been measured with muonic
X rays [1]. Since Re is a strongly-deformed nucleus, the
muonic X-ray spectrum is complicated by the so-called
dynamic hyperfine splitting [2, 3]. This effect is particu-
larly sizeable in muonic atoms and is due to the fact that
the quadrupole interaction between muon and nucleus
has non-vanishing off-diagonal elements which link the
ground state and low-lying excited states of the nucleus.
The effect leads to a mixing of the nuclear states due to
the similar energy scale between the atomic binding ener-
gies and the nuclear excitation energies resulting in a dy-
namic hyperfine splitting even for nuclei which have zero
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spin in the ground state where no hfs is to be expected.
As a result of the dynamic hyperfine splitting, the extrac-
tion of the nuclear charge parameters from the 2p → 1s
transition in deformed nuclei requires a more elaborated
analysis compared to spherical nuclei as shown in [4–6]
and references therein.

The only existing measurement of muonic X rays of
rhenium was performed on a natural rhenium target and
aimed at the extraction of the spectroscopic quadrupole
moment from the analysis of the hyperfine splitting of
the 5g → 4f transitions [7].
The full muonic X-ray spectrum of isotopically pure tar-
gets of 185Re and 187Re has been recently measured by
the muX collaboration at the Paul Scherrer Institut (PSI)
for the first time, with the aim to extract the main prop-
erties of the nuclear charge distribution from muonic
spectroscopy, which are still missing in literature. In this
paper we present the analysis of the hyperfine splitting
of the 5g → 4f muonic transitions yielding the spectro-
scopic quadrupole moment of 185,187Re. The analysis of
the 2p → 1s and 3d → 2p muonic transitions and the
extraction of the nuclear charge radius will be reported
elsewhere.
The muonic X-ray spectra of the two isotopically pure
rhenium targets, a major improvement over the analysis
presented in Ref. [7], analysed with state-of-the-art the-
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oretical predictions and fitting procedures have shown
that the fit of the hfs of the 5g → 4f transitions, and
consequently the extracted value of the quadrupole mo-
ment, is very sensitive to the inclusion of weaker muonic
transitions not included in the analysis of Ref. [7]. Partic-
ular care has also been taken on the determination of the
peak shape of the germanium detectors from muonic X-
ray data, while in [7] off-line calibration runs with sources
were used. The measurements reported in this article are
part of a larger effort going on at PSI (muX project) to
perform muonic atom spectroscopy on radioactive ele-
ments (usually available only in microgram quantities)
aiming, as first test cases, at the precise measurement of
the nuclear charge radius of 226Ra and 248Cm [8, 9].

Section II reviews the theory of the muonic atoms in
order to establish the notation used in the hfs formal-
ism and also includes a discussion of the various correc-
tions to the energy levels beyond the predictions of the
Dirac equation. Section III A describes the apparatus
used in obtaining the X-ray spectra, Section III B de-
scribes the data-reduction methods and also includes the
208Pb muonic X-ray results which where used as a cal-
ibration standard for the 185,187Re spectra. Section IV
details the fit of the 5g → 4f transitions of the 185,187Re
spectra using the hfs formalism of Section II B and the
extraction of the nuclear quadrupole moments.

II. THEORY

A. Fine structure

In order to predict the transition energies and prob-
abilities as well as their dependence on the nuclear
quadrupole moment theoretically, the bound muon is de-
scribed as a Dirac particle. As the mass of the muon
mµ is about 207 times larger than the electron’s mass
me, the energy scale for muonic atoms is a factor ∼207
larger than regular electronic atoms. The Bohr radius of
the muon is smaller than the one of the electron by the
same factor, which leads to a significant enhancement of
nuclear effects.

The bound muon is described by the Dirac equation

[α · p + βmµ + Vnucl(r)] |nκm〉 = Enκ |nκm〉 , (1)

where α, β are the Dirac matrices, Vnucl is the electro-
static potential caused by the nuclear charge distribution,
and Enκ and |nκm〉 are muonic energies and wavefunc-
tions, correspondingly. Here n stands for the principal
quantum number, while the relativistic angular quantum
number κ is introduced as a bijective function of the or-
bital angular momentum l and the total muon angular
momentum j as κ = (−1)j+l+1/2(j + 1/2), and m is the
z component of j. For a spherically symmetric potential,
the radial components Gnκ(r), Fnκ(r) and the angular
part Ω±κm can be separated, and therefore the solution

can be written as [10]

|nκm〉 =
1

r

(
Gnκ(r)Ωκm(n)

iFnκ(r)Ω−κm(n)

)
, (2)

The angular part of the wave function is described by
spherical spinors Ωκm, and the radial wave functions are
normalised with an integral∫ ∞

0

dr[G2
nκ(r) + F 2

nκ(r)] = 1. (3)

For a Coulomb potential V C
nucl(r) = −αZ/r, Eq. (1)

can be solved analytically and gives the well-known for-
mula for the Dirac-Coulomb energies

EC
nκ =

1 +
(αZ)2(

n− |κ|+
√
κ2 − (αZ)2

)2


−1/2

(4)

where α is the fine-structure constant and Z the nuclear
charge. However, predictions of the muonic spectra have
to include the finite size of the nucleus already in the
Dirac equation. The deformed Fermi distribution

ρcaβ(r) =
N

1 + exp[(r − c[1 + βY20(ϑ)])/a]
(5)

has proven to be very successful in the description of the
level structure of heavy muonic atoms, see e.g. [6, 11, 12],
and is also used in this work. Here, a is the skin thick-
ness parameter, c the half-density radius, β the defor-
mation parameter, N a normalisation constant and Y20

the spherical harmonics. The corresponding spherically
symmetric part of the nuclear potential is

Vnucl(r) = −α
∫

d3r′
ρcaβ(r′)

max(r, r′)
. (6)

It has been shown, that a = t/(4 log3), with t = 2.30 fm,
is a good approximation for most of the nuclei [13]. Then,
c and β are chosen such that the root-mean-square ra-
dius rRMS of the distribution agrees with the literature
value [1] and the quadrupole moment agrees with a given
value, which is obtained by fitting to the experimental
data as described in Section II E. The connection between
the charge distribution of Eq. (5) and the spectroscopic
quadrupole moment is

Q =
2I(2I − 1)

(I + 1)(2I + 3)

∫
d3r′ r′2ρcaβ(r′)P2(cosϑ′), (7)

where I is the nuclear angular momentum number and
Pl(x) are the Legendre polynomials.

With the potential of Eq. (6), Eq. (1) can be solved
only numerically. For this purpose the dual-kinetic-
balance method [14] has been used in this work. For
the muon in the 1s state the binding energy including
finite-size effect is almost 50% smaller than the value EC

nκ
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assuming a point Coulomb potential. For the 4d states
the reduction is on a level of 0.1%, and even smaller for
the 4f states.

The order-α quantum electrodynamics contributions
are the self-energy (SE) and the vacuum polarisation
(VP) corrections. For atomic electrons they are usually
of the same order of magnitude. For muons, however,
the VP correction is much larger as the virtual electron-
positron pair production is less suppressed due to their
low mass compared to the muon’s mass [15]. The domi-
nant VP contribution (first order in α and αZ) is called
Uehling correction, and can be described by the poten-
tial [16]

VUehl(r) = −α2α

3π

∫
d3r′ ρcaβ(r′)

∫ ∞
1

dt

(
1 +

1

2t2

)
×
√
t2 − 1

t2
exp(−2me|r − r′|t)− exp(−2me(r + r′)t)

4mert
.

(8)

This potential can be directly included into the Dirac
equation of Eq. (1) by adding it to Vnucl(r), therefore
directly accounting all iterations [17] of the Uehling po-
tential into the muonic binding energies. In the same
way, the higher-order contributions to the VP correc-
tion, namely the Wichmann-Kroll (order α(αZ)3) po-
tential [18, 19] in the point-like approximation and the
Källen-Sabry (order α2(αZ)) potential [20] for a spher-
ically symmetric nuclear charge distribution were in-
cluded in the Dirac equation, using the expressions
from [17]. Since both the Wichmann-Kroll and the
Källen-Sabry corrections to the energy levels of muonic
atoms are small, the neglected nuclear model dependence
was estimated to be insignificant.

The recoil correction, i.e., the effect of finite nuclear
mass and the resulting motion of the nucleus, was ac-
counted following the approach used in Refs. [15, 21, 22].

The effect of the surrounding electrons on the binding
energies of the muon, commonly referred to as electron
screening, was estimated following Ref. [22, 23] by cal-
culating an effective screening potential from the charge
distribution of the electrons and using this potential in
the Dirac equation for the muon. The atomic electrons
primarily behave like a charged shell around the muon
and the nucleus; thus every muon level is mainly shifted
by a constant term, which is not observable in the muonic
transitions. The main contribution to the screening po-
tential comes from the 1s electrons, since their wave func-
tions have the largest overlap with the muonic wavefunc-
tions.

The results of our calculations for rhenium for the total
binding energies and for the individual contributions are
presented in Table I.

B. Hyperfine structure

The hyperfine splitting appears as a result of the in-
teraction of the bound muon with the magnetic dipole

Table I. Contribution to the binding energy of the muonic
rhenium assuming the charge distribution of Eq. (5) with the
parameters c=6.3500 fm, a=0.5234 fm, β=0.2343, which cor-
responds to Q=2.21 barn and rRMS= 5.3596 fm. For a given
nuclear charge distribution, the numerical uncertainties are
estimated to be below 1 eV. EC

nκ are the point-like Dirac-
Coulomb binding energies and δEfs the finite nuclear size cor-
rection. δEuehl, δEks, and δEwk are the corrections due to the
Uehling-, Källen-Sabry-, and Wichmann-Kroll potential, re-
spectively. δEscreen is the non-constant part of the screening
correction due to the surrounding 1s electrons. All energies
are in keV.

EC
nκ δEfs δEuehl δEks δEwk δEscreen

4d3/2 1013.125 -1.175 3.547 -0.067 0.026 -0.062
4d5/2 1000.021 -0.478 3.374 -0.065 0.024 -0.064
4f5/2 1000.021 -0.004 2.930 -0.064 0.021 -0.048
4f7/2 993.697 -0.001 2.859 -0.063 0.020 -0.049
5f5/2 640.055 -0.003 1.459 -0.035 0.010 -0.123
5f7/2 636.806 -0.001 1.425 -0.034 0.010 -0.125
5g7/2 636.806 -0.000 1.215 -0.033 0.009 -0.098
5g9/2 634.883 -0.000 1.199 -0.033 0.009 -0.099

(MD) and electric quadrupole (EQ) moments of the nu-
cleus. In contrast to the electronic atom, where the MD
splitting dominates over the EQ splitting (see e.g. [24]),
the muonic MD splitting is suppressed because the mag-
netic moment of the muon is mµ/me times smaller than
the electronic one.

As the hyperfine splitting mixes the nuclear and
muonic quantum numbers, they are not conserved any-
more and cannot be used for a proper description of the
energy levels. Therefore, a combined mixed state with
total angular momentum F and its projection MF is in-
troduced as

|FMF I nκ〉 =
∑
MI ,mj

CFMF

IMI jmj
|IMI〉|nκmj〉, (9)

where Cjmj1m1 j2m2
are the Clebsch-Gordan coefficients.

The diagonal matrix elements of the EQ hyperfine op-

erator ĤEQ [22, 24, 25] are determined by the formula:

EEQ = 〈FMF Inκ|ĤEQ|FMF Inκ〉 (10)

= αQ(−1)j+I+F
{
j I F
I j 2

}
×

√
(2I + 3)(2I + 1)(I + 1)

4I(2I − 1)

√
(2j + 3)(2j + 1)(2j − 1)

16j(j + 1)

×
∫ ∞

0

[
G2
nκ(r) + F 2

nκ(r)
] FQD(r)

r3
dr.

Here, FQD is the quadrupole distribution function, which
describes the deviations from a point-like quadrupole and
depends on a deformed charge distribution as

QFQD(r)

r3
=

2I(2I − 1)

(I + 1)(2I + 3)

∫
d3r′ ρ(r′)

r2
<

r3
>

P2(cosϑ′)

(11)
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where r< = min(r, r′) and r> = max(r, r′). Similarly,
the MD hyperfine splitting can be calculated by the for-
mula [22, 24, 25]

EMD = 〈FMF Inκ|ĤMD|FMF Inκ〉 (12)

= [F (F + 1)− I(I + 1)− j(j + 1)] (13)

× α

2mp

µ

µN

κ

Ij(j + 1)

×
∫ ∞

0

Gnκ(r)Fnκ(r)
FMD(r)

r2
dr,

with the proton mass mp, nuclear magneton µN , nuclear
magnetic dipole moment µ, and its distribution function
FMD(r). For the simple model of a homogeneous dis-
tribution of the dipole moment inside the nucleus, FMD

reads

FMD(r) =


(

r

RN

)3

r ≤ RN

1 r > RN

. (14)

where for RN the nuclear charge radius is commonly
used. In practice, both the electric FEQ and magnetic
FMD distribution functions were calculated for several nu-
clear models to estimate the model uncertainty using the
values of the nuclear magnetic moment µ/µN = 3.1871
for 185Re and µ/µN = 3.2197 for 187Re [26].

C. Dynamical splitting

For the 2p states in heavy muonic atoms, the EQ hy-
perfine splitting, the fine-structure splitting, and the low-
lying nuclear rotational band can be on the same energy
scale of few hundreds of keV. This leads to a strong mix-
ing of the muonic and nuclear levels caused by the EQ
hyperfine interaction, commonly called dynamic hyper-
fine splitting [11].

For the analysis of the transitions from n=5 to n=4 in
this work, the hyperfine splitting is much smaller than
the nuclear transitions between low-lying nuclear states,
hence the excited nuclear states do not need to be con-
sidered. However, there is still a residual mixing of the
muonic states of Eq. (9) due to higher-order hyperfine
interaction. This can be included by rediagonalisation of
the EQ and MD interaction in the considered initial and
final states.

For the set of all considered initial/final states, the non-

diagonal EQ and MD matrix elements of the ĤEQ and

ĤMD operators have been calculated [25, 27]. Then, the
rediagonalisation has been performed separately for each
value of F , since the MD and EQ interaction are diagonal
in F . After the rediagonalisation, the unperturbed states
|FMF I nκ〉 are mixed and can be described as

|FMF , i〉 =

d∑
k=1

c
(i)
k |FMF I nkκk〉 , (15)

where d is the number of initial/final states, and the co-

efficients c
(i)
k diagonalise the hyperfine interaction. The

quantum numbers F and MF , describing the total an-
gular momentum of the nucleus-muon system, are still
well-defined. In this work, the EQ matrix elements were
also corrected with the order α(Zα) VP contribution us-
ing the approach of [25].

D. Transition probabilities and line intensities

The muonic transition rates due to spontaneous emis-
sion of a photon between states with defined total an-
gular momentum F from an initial state |FiMi, ii〉 to a
final state |FfMf , if 〉, summed over the projections Mi

and Mf (to simplify the formalism M ≡ MF from now
on), are [28]

A
(λ)
J =

2α(2J + 1)(J + 1)

J
∆Eif (16)

×
∑

M,Mi,Mf

∣∣∣〈FfMf , if

∣∣∣t̂(λ)
JM

∣∣∣FiMi, ii

〉∣∣∣2 .
Here, ∆Eif is the energy difference between the initial
and final state, J is the total angular momentum of the

photon and t̂
(λ)
JM [28] is the multipole transition operator.

λ = 1 corresponds to an electric transition, whereas λ = 0
stands for a magnetic transition.

In the experimental spectra, the number of counts mea-
sured in the peak is proportional to the transition inten-
sities, which are the product of the transition probability
and the population of the initial states. The transition
probability per unit time can be calculated ab initio with
Eq. (16). In this work, the relative population of the
muonic fine structure states within a l state was assumed
statistical, i.e. proportional to j(j + 1), whereas the rel-
ative population of the 5g and 5f states was left as free
parameter and determined by fitting the experimental
spectra (see Section IV B).

E. Dependence of observables on quadrupole
moment

After a muon is captured in a highly excited state and
starts cascading towards its ground state, there is an in-
termediate region, (n ≈ 5) where finite nuclear size effects
are still rather small while the muon is not significantly
influenced by the surrounding atomic electrons. This in-
termediate region (in our case n=5→ n=4) is well suited
for the extraction of quadrupole moments [29, 30].

Four fine-structure states 5g9/2, 5g7/2, 5f7/2, 5f5/2 to-
gether with the nuclear ground state with I = 5/2 define
the initial states. The energies were calculated as de-
scribed in Section II A, II B, and II C; including finite
size effects, VP (Uehling, Källen-Sabry, Wichmann-Kroll
in point-like approximation, quadrupole electronic-loop
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Uehling), SE, electron screening, and recoil effect; with
the rediagonalisation of the EQ and MD hyperfine in-
teraction. The same procedure was repeated for the fi-
nal states with n=4, i.e. 4f7/2, 4f5/2, 4d5/2, 4d3/2 and
I = 5/2. The transition probabilities were calculated
from each initial to each final state with Eq. (16) for E1
(λ=1, J=1) and M1 (λ=0, J=1) transitions, assuming a
statistical initial population in Mi and Mf . With this ap-
proach, the entire spectrum of interest can be calculated
for a given spectroscopic quadrupole moment Q.

For the comparison of the theoretical predictions with
the measured experimental spectra, the full calculations
for each transition were performed for several values of
the quadrupole moment Q in the proximity of the ex-
pected value and a quadratic function is fitted for every
transition energy and intensity as

∆Eif (Q) = ∆Eif0 + ∆Eif1 Q+ ∆Eif2 Q
2,

Iif (Q) = Iif0 + Iif1 Q+ Iif2 Q2.

In this way, the fitting coefficients, in addition to the first-
order EQ splitting, contain also the information about
MD splitting and higher-order EQ interaction, whereas
in Ref. [7] only the term linear in the quadrupole mo-
ment Q was considered. The resulting dependencies for
the transition energies and for the relative intensities are
given in Table III, in Table IV, respectively for 185Re and
187Re, and in Table V.

III. EXPERIMENTAL SETUP AND ANALYSIS

A. Setup

The experiment was performed at the HIPA facility
of the Paul Scherrer Institut and is part of the ongoing
muonic X-ray study of radioactive elements. The nega-
tive muon beam was obtained from the decay of pions
produced in the collisions of 590 MeV protons on a thick
graphite target. The momentum-analysed muon beam
was transported to the πE1 area and consisted mostly of
muons and electrons. The electron contamination, which
can be a source of background, was efficiently removed
using a Wien filter separator placed at around 15 m
before the target. As a result, a high purity negative
muon beam could be obtained. The energy of the muon
beam was tuned to a momentum of around 29 MeV/c
in order to maximise the stopping in the targets. The
typical intensity at the detection setup at the given
momentum was in the order of 104 µ− per second.
The beam exits the beam line through a 75 µm thick
mylar window and travels in air for around 10 cm before
being stopped in the target. The incoming negative
muons and electrons were identified before impinging
on the target by the muon counting detector, a 500 µm
thick plastic scintillator with a 6×6 cm2 active area
read out by photomultipliers and placed in air in close
vicinity to the end of the beam line. Given the small

Figure 1. Rhenium target (black disk) glued on a Kapton foil
(orange) and mounted on the target holder at the centre of
the detector arrangement.

thickness, the signals induced by the muons could be
easily separated with a threshold cut from the much
smaller signals induced by the electrons. The muon
counting detector was used as start detector for the
coincidence measurements (see Section IV). In addition,
at the same position, a second scintillator, 2 mm thick
with a 9×9 cm2 active area and a central hole of 45 mm,
so that the muon beam was passing through this hole
before being stopped in the target, was used as veto
detector to produce anti-coincidence conditions on the
muonic X-ray spectra.

Measurements were done with three isotopically
pure targets of 185Re (97.6%), 187Re (99.4%) and
208Pb (99.6%). The 208Pb target was used for the en-
ergy calibration and served as a means of checking drifts
and possible malfunctions.
The isotopes were purchased in the form of a powder
(500 mg) in the case of rhenium and in the form of an
irregularly shaped ingot (1g) in the case of lead. The rhe-
nium powder was first finely ground in a mortar and then
mixed with 60 to 70 mg of epoxy on a Kapton foil. The
mixture was subsequently covered with a Teflon foil and,
loaded with some weights, slowly brought into a disk-like
shape of around 30 mm diameter. The lead piece was
cold-pressed and hammered into a disk of 40 mm diam-
eter.
The targets were then glued onto a Kapton foil and
mounted on a PVC frame which was inserted in a target
holder at 45◦ with respect to the direction of the beam.
A picture of one of the rhenium targets mounted on the
target holder can be seen in Fig. 1. Typical muon stop-
ping rates were 2500/s for the 208Pb target and 900/s for
the rhenium targets.

The muonic X rays following the muonic cascade were
detected by two single crystal high-purity germanium
(HPGe) coaxial detectors with relative efficiency of 20%
and 75% placed in close vicinity to the target at 90◦
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(GeR) and -90◦ (GeL), respectively, with respect to the
direction of the incoming beam. Fig. 2 shows the detec-
tor arrangement. Two more HPGe detectors and a LaBr3

scintillator were also operated but they are not used for
the analysis presented here. The typical energy resolu-
tion for 1.3 MeV γ radiation was 2.1 keV and 2.9 keV
(FWHM), for the 20% and 75% detector, respectively.
The absolute photo-peak efficiency for the 359.8 keV line,
the most intense transition in the 5g9/2 → 4f7/2 hfs ob-

served in 185Re, was ∼0.2% and ∼0.5% for GeR and GeL,
respectively, for the given geometry. The efficiency cali-
bration was performed using standard sources of 137Cs,
60Co, 88Y and 152Eu. Typical single rates in the ger-
manium detectors were 500 and 1000 counts per second,
respectively.
Finally four plastic scintillator counters 5 mm thick and
18 × 18 cm2 large were placed around the target in a
box-like structure. The signals from these plastic scintil-
lator counters were used in anti-coincidence with the ger-
manium detectors signals and allowed removal of back-
ground events in the X-ray spectra mainly produced by
the electrons emitted in the muon decay.

The readout system was based on the STRUCK
SIS3316 digitiser and the MIDAS data acquisition sys-
tem [31]. This is a VME module providing 16 spectro-
scopic channels with a 250 MHz 14 bits sampling ADC
each. The signals from each of the detector preampli-
fiers are passed directly to the SIS3316 modules. The
smaller signals from GeL were routed through a fast am-
plifier in order to match better the dynamic range of the
digitiser. The filtering is performed digitally using algo-
rithms implemented on field programmable gate arrays
(FPGA) on the SIS3316 board, a fast filter being used for
triggering, timing and pile-up rejection and a slow filter
for energy determination. With a data acquisition run-
ning in trigger-less mode, time and energy were recorded
for all detector signals above a certain threshold. Addi-
tionally, for the germaniums and LaBr3 scintillator, the
traces were also read out. Prompt and delayed muonic
X-ray spectra of the germanium detectors were built by
imposing conditions in the time difference between the
germanium detector and the muon counter. In a simi-
lar way the anti-coincidence conditions of the germanium
signals with the signal of the other scintillator counters
were built and applied to reduce background in the X-ray
energy spectra.

B. Calibration

The usual experimental sequence involved collecting
data from a rhenium target for 4 hours (4 runs), with
two hours calibration runs with the lead target directly
preceding and following each group of 4 runs with rhe-
nium. The main purpose of these calibration runs was
to verify that there had been no substantial gain shift
during the target runs which might cause loss of energy
resolution.

Figure 2. Detection setup and target holder mounted at the
end of the πE1 area of the HIPA facility at the Paul Scherrer
Institut. The last quadrupole of the muon beam line is visible
at the back of the detection setup. The four plastic scintillator
counters are mounted in a box-like structure surrounding the
target holder. Four HPGe detectors and a LaBr3 scintillator
(top) were used to detect the muonic X rays.

Line shifts due to electronic instability were checked using
a 60Co radioactive source and the 2614.5 keV γ ray in the
natural radioactive background. The source was placed
near the target and its γ-rays appeared in the muonic X-
ray spectrum. In order to sum all individual calibration
runs, each run must be corrected for any relative gain
shift and shift of the base line. This was done by first lo-
cating the centroids of the 1332.5 and 2614.5 keV γ rays
appearing in all runs. By comparing the centroids of the
peaks from these runs with a preselected run, one can
determine the gain shift and the shift of the zero offset.
To ensure sufficient statistics the spectra were evaluated
every two runs. After correcting gain shifts, the spectra
of the different runs were summed. Typical gain shifts
were in the order of 0.03%. In the energy calibration the
well-established energies of the muonic X rays in 208Pb,
16O and 12C were used. Muonic X rays from oxygen
and carbon were observed in the prompt energy spectra
due to the accidental hit of the muon beam on materials
surrounding the targets.

IV. RESULTS

By applying time conditions in the coincidence events
between the Ge detectors and the entrance muon counter,
it was possible to select prompt Ge events such as muonic
X rays, where the muon stop and the subsequent atomic
X rays are instantaneous within the time resolution of the
detectors, and nuclear γ rays resulting from the muon-
capture process which exhibits a characteristic lifetime of
about 80 ns at Z∼75 [32]. Fig. 3 shows a portion of the γ-
ray spectrum in the energy region of interest measured in
the Ge detector positioned at 90◦ (GeR) with the 185Re
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(top) and 208Pb (bottom) targets in prompt coincidence
(400 ns) with the entrance muon counter. In addition
Ge detector events not in coincidence with the entrance
muon counter within 2 µs were selected to produce room
background γ-ray spectra, as shown in Fig. 4. In Fig. 3
the transitions belonging to muonic 208Pb and 185Re are
indicated together with the muonic X rays of 35Cl, 27Al,
16O, 14N and 12C. The assignment of γ lines was based
on previously known transitions [33, 34]. Other strong
lines in Fig. 3 and Fig. 4 come from the decay of nu-
clei produced in the muon capture reaction or from room
background. One of the strongest lines in the spectrum
is the 511 keV γ ray, originating mainly from the annihi-
lation of the positrons produced in the electromagnetic
cascade of the high-energy electron emitted in the muon
decay.
Data for around 60 hours were collected with muons
on the 208Pb target, 38 hours on the 185Re target and
59 hours on the 187Re target.
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Figure 3. The γ-ray energy spectra obtained with the 185Re
target (top) and the 208Pb target (bottom) in GeR in prompt
coincidence (0-400 ns) with the muon entrance counter.

Figure 4. Background γ-ray energy spectrum obtained in
GeR.

A. Line shape

Since the hyperfine splitting is the result of the convo-
lution of many transitions, particular care has to be taken
in describing the experimental line shape of each transi-
tion. The mathematical form of the line shape should
represent the response of the Ge detector plus a back-
ground term.
In this respect, the model used consists of a Gaussian
peak g(E), a step-like shelf s(E), and a Hypermet func-
tion t(E) [35, 36]. The latter is added to account for a
possible tail, which decays exponentially below the peak’s
centroid and is produced by incomplete charge collec-
tion and ballistic deficits. The model function was fitted
to the shape of the peak by using RooFit [37]. RooFit
implements its data models in terms of probability den-
sity functions (PDFs), which are by definition unit nor-
malised. The model function describing the number of
counts in the peak at energy x0 may be written as

f(E) = Nsignal

× [fgauss · g(E) + ftail · t(E) + s(E)]

+B (17)

where

g(E) =
1√
2πσ

· exp

(
− (E − x0)2

2σ2

)
t(E) =

1

2β
· exp

(
E − x0

β
+

σ2

2β2

)
· erfc

(
E − x0√

2σ
+

σ√
2β

)
s(E) =

A

2
· erfc

(
E − x0√

2σ

)
In these formulae x0 is the mean of the Gaussian, σ the

Gaussian width and β the slope of the exponential tail.
fgauss denotes the fraction of the line shape having the
Gaussian form and ftail = (1- fgauss) the fraction having
the exponential tail. The parameter A denotes the am-
plitude of the step which is proportional to the number
of events in the signal. The parameter B is introduced
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to describe a constant background. This description was
valid for most of the transitions except for the few cases
where a linear function provided a better description.
The variables σ, x0, β, the number of events in the signal
Nsignal, fgauss, and the two amplitudes A and B are free
parameters of the model. Since the response of the ger-
manium detector is energy dependent, a consistent set of
parameters (σ, β, fgauss, A) describing the experimental
line shape was obtained by fitting four nuclear transi-
tion lines which lie close in energy to the muonic transi-
tions of interest. These are the 265.8 keV transition from
muon capture in 208Pb observed in the prompt spectrum
with the 208Pb target and the 351.9 keV, 583.2 keV and
609.3 keV transitions observed in the room background.
The natural line width of these lines is assumed to be
negligible compared to the experimental resolution. The
four transitions were fitted simultaneously with the Gaus-
sian width σ expressed as a linear function of the peak
position σ(E) = aσE + bσ [38]. The set of line-shape
parameters obtained with this procedure are reported in
Table II. Fig. 5 shows the 351.9 keV transition observed
in the spectrum of the GeR and the GeL detectors to-
gether with the fit function described in Eq. (17). Similar
fits were obtained for the 265.8, 583.2 and 609.3 keV tran-
sitions.
It is important to note that by determining the line
shape from the set of data collected with beam on target,
we ensure the appropriate representation of the detector
response in the presence of beam. In previous analy-
ses [7, 39] the line shape used to determine the position
of the muonic X rays was the same as the one used for
the calibration source lines collected in dedicated runs.
With this procedure one relies on the strong assumption
that the detector response stayed unchanged between the
X-ray runs and the calibration runs.

Table II. Set of parameters resulting from the simultaneous
fit of four γ-ray transitions (see text).

Fit parameter GeL GeR
aσ 0.00024(1) 0.00034(1)
bσ (keV) 0.918(7) 0.466(4)
β (keV) 2.2(2) 5.0(8)
fgauss 0.893(6) 0.93(1)
A (1/keV) 0.0137(7) 0.010(1)

The muonic X-ray peaks are broader than the cal-
ibration source lines or background lines due to the
natural width of the muonic energy states. Since the
intrinsic X-ray line shape is Lorentzian, the muonic X
rays were fitted using the experimental line shape of
Eq. (17) where the Gaussian component is modified into
a Gaussian-convoluted Lorentzian (resulting in a Voigt
profile) with calculated transition widths. The typical
natural line widths are ∼80 eV for the 5g9/2 → 4f7/2,
5g7/2 → 4f5/2 and 5g7/2 → 4f7/2 transitions and
∼150 eV for the 5f7/2 → 4d5/2 and 5f5/2 → 4d5/2

transitions.
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Figure 5. [color online] The 351.9 keV γ-ray line of 214Pb
decay (natural background) observed in the spectrum of the
GeR (a) detector and the GeL (b) detector and the different
components of the peak shape model.

B. The hyperfine splitting in 185,187Re

The analysis of the hyperfine splitting was performed
in higher muonic levels n=5 and n=4. The 5g9/2 → 4f7/2

and 5g7/2 → 4f5/2 hfs complexes appear as two bumps
located at around 360 keV (see Fig. 3) and they have been
analysed together. The 5g and the 4f levels of 185,187Re
are sixfold split as in this case I = 5/2 and l = 5, 4. Tak-
ing the selection rules into account for transitions within
both hf complexes, the resulting X-ray pattern consists
of thirty members.
In the analysis of the hfs spectrum the correction for the
presence of the weaker 5f7/2 → 4d5/2, 5g7/2 → 4f7/2 and
5f5/2 → 4d5/2 multiplets has to be taken into account,
as they coincide in energy. The hfs spectra analysed con-
sisted therefore of 76 lines originating from five multi-
plets which were fitted using for each line the empirical
line shape described by Eq.(17) corrected for the radia-
tive width. The background constant B was common for
all the lines.
The intensity and energy position of the individual mem-
bers of the hf multiplets relative to the most intense tran-
sition for each multiplet were calculated using the formal-
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ism described in Section II B and in Section II E. The val-
ues are given in Table III and in Table IV for 185Re and
187Re, respectively. The multiplets were then correlated
in energy to the F = 7 → 6 transition in 5g9/2 → 4f7/2

using the values given in Table V.
It should be noted that the energy splittings of the hyper-
fine transitions in the 5f7/2 → 4d5/2 multiplet are around
a factor three larger than the values given in Ref. [7]
whereas the calculations for the other multiplets agree.
The difference can be due to a mistake in reporting the
values. The intensity of the three multiplets originating
from the 5g state has been correlated to the intensity
of the most intense F = 7 → 6 hyperfine transition in
5g9/2 → 4f7/2 assuming the hypothesis that the states
within a l multiplet are statistically populated; similarly
the intensity of two multiplets originating from the 5f
has been correlated to the intensity of the most intense
F = 6 → 5 hyperfine transition in 5f7/2 → 4d5/2. The
relative intensity of the lines within a l multiplet does
not depend on the initial distribution of the cascade and
therefore they were kept fixed in the fitting procedure.
On the other hand, no assumption can be made on the
relative population of the 5g9/2 and 5f7/2 states as it
depends on the details of the atomic cascade of muons
which are still rather uncertain, particularly as to the ex-
act beginning of the cascade.
Following this procedure, the description of the hfs could
be reduced to five parameters which are the energy of
the F = 7→ 6 hyperfine transition in 5g9/2 → 4f7/2, the
quadrupole moment, the two intensities of the 5g9/2 →
4f7/2 and 5f7/2 → 4d5/2 transitions and the number of
background events. They were used as free parameters
and varied until the best fit to the spectra was found.
Fig. 6 shows the theoretical prediction of the hfs of the
five multiplets considered in the present analysis calcu-
lated for Q = 2.21 barn. In the figure the intensity ratio
5f7/2 → 4d5/2 over 5g9/2 → 4f7/2 is set equal to 0.06 as
obtained from a cascade calculation [40] with initial sta-
tistical distribution at N = 20 and width of the K-shell
refilling process of 25 eV. Different initial conditions of
the cascade calculations give a range of values between
0.06 and 0.08.

The measured 5g → 4f spectrum of 185Re together
with the result of the fit is shown in Fig. 7 for the two
Ge detectors used. The fit for 187Re is shown in Fig. 8.
Tables VI and VII summarise the values of the fit param-
eters. The isotopic impurity of the targets was included
in the fitting procedure by having the hfs spectrum de-
scribed by a double complex (one for each isotope) with
one multiplet slightly shifted with respect to the other.
The value of the shift is proportional to the ratio of the
quadrupole moments of the two isotopes which was taken
from literature. In the case of the 187Re, the fit parame-
ters were not affected by the inclusion of the small impu-
rity of 185Re and it was therefore neglected in the final
fit.
In addition to the five parameters mentioned above to
describe the structure of the hfs, the step A of the line
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Figure 6. [color online] Relative positions and intensities of
the transitions between the 5g and 4f multiplets and 5f and
4d (see also Table III) in 185Re considered in the present anal-
ysis. The energy displacements and heights are calculated for
Q=2.21 barn. The height of the lines is proportional to the
intensity of the transitions.

shape was also left as free parameter. This because it
was not possible to reproduce the hfs with the value ex-
tracted from the line shape analysis. This effect might
be due to the very different background between the de-
layed spectrum (where the line shape analysis has been
performed) and that of the prompt spectrum.
Reasonably good fits were obtained with χ2 per degree
of freedom of 2.5 and 1.5 for GeR and GeL in 185Re and
1.8 and 1.1 in 187Re. The energy of the F = 7 → 6
hyperfine transition in 5g9/2 → 4f7/2 multiplet obtained
from the fit is 359.9(1) keV for GeL and 359.8(1) keV
for GeR. These values are the same for the two rhenium
isotopes and show that, with the procedure described in
Section III B, a very good energy calibration with preci-
sion at the level of 100 eV can be achieved.
The intensities of the 5f7/2 → 4d5/2 transition relative
to the 5g9/2 → 4f7/2 obtained from the fits are higher
compared to the value of 6% obtained from the calcula-
tion of the muonic cascade. Such discrepancies are not
surprising given the approximation of the cascade cal-
culations and were observed in similar analyses [29, 41].
Moreover, possible resonance effects between nuclear and
muonic states could modify significantly the muonic cas-
cade leading to anomalous intensity ratios. Such reso-
nance effects are more likely to occur in very deformed
nuclei due to the dense nuclear excitation spectrum. On
the other hand, in the same isotope, the relative inten-
sities deduced from the two detectors differs up to 50%.
This inconsistency in the fitted relative intensities has
been taken into account by adding a systematic error to
the extracted quadrupole moment (see Section IV C).
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Table V. Theoretical parameters describing the dependence upon the quadrupole moment Q (barn) of the energy ∆E (eV)
of the most intense hyperfine transitions in each of the five hf complexes fitted in 185,187Re. For each transition the values of
the parameters ∆E0,1,2, calculated as described in Section II E, are reported, respectively, in subsequent rows. The relative
intensities are taken from cascade calculations [40] with initial statistical distribution at N = 20 and a width of the K-shell
refilling process of 25 eV.

5g9/2 → 4f7/2 5g7/2 → 4f5/2 5g7/2 → 4f7/2 5f7/2 → 4d5/2 5f5/2 → 4d5/2
7→ 6 6→ 5 6→ 6 6→ 5 5→ 5

I = 0.333 I = 0.257 I = 0.0095 I = 0.020 I = 0.001
185Re

∆E0,1,2 ∆E0,1,2 ∆E0,1,2 ∆E0,1,2 ∆E0,1,2

360.214 364.663 358.280 364.417 361.141
-0.174 -0.160 -0.178 -0.440 -0.448

0.0 0.004 -0.000 -0.002 -0.004
187Re

∆E0,1,2 ∆E0,1,2 ∆E0,1,2 ∆E0,1,2 ∆E0,1,2

360.215 364.663 358.280 364.412 361.136
-0.175 -0.160 -0.178 -0.439 -0.448

0.0 0.004 -0.000 -0.002 -0.004

Table VI. Spectroscopic quadrupole moments Q, intensity RI of the 5f7/2 → 4d5/2 transition relative to the 5g9/2 → 4f7/2,

step A and centroid energy E7→6 obtained from the fit of the hfs of the 5g → 4f transition in muonic 185Re. The influence on
the extracted quadrupole moment of weak transitions is analysed.

Fit GeR GeL
Q (barn) RI E7→6 (keV) A (1/keV) χ2

red Q (barn) RI E7→6 (keV) A (1/keV) χ2
red

Full a 2.11(2) 0.090(8) 359.8(1) ≤10−9 2.39 2.04(5) 0.139(7) 359.9(1) 0.0051(4) 1.51
no 5f5/2 → 4d5/2 2.11(2) 0.090(8) 359.8(1) ≤10−9 2.34 2.06(4) 0.137(7) 359.9(1) 0.0051(4) 1.50
no 5g7/2 → 4f7/2 2.18(3) 0.074(9) 359.7(1) 0.0009(6) 3.85 2.17(4) 0.122(7) 359.8(1) 0.0057(4) 2.28

no weak transitions b 2.18(3) 0.076(9) 359.7(1) 0.0011(5) 3.80 2.19(4) 0.121(7) 359.8(1) 0.0058(4) 2.22
fix 5g/5f populationc 2.03(2) 0.139 359.8(1) 0.0014(4) 2.85 2.12(4) 0.090 359.8(1) 0.0037(3) 2.06

a Full fit as described in Section IV B.
b The 5f5/2 → 4d5/2 and 5g7/2 → 4f7/2 multiplets are removed from the fit.
c Relative intensity fixed to 0.14 for GeR and 0.09 for GeL.

Table VII. Spectroscopic quadrupole moments Q, intensity RI of the 5f7/2 → 4d5/2 transition relative to the 5g9/2 → 4f7/2 ,

step A and centroid energy E7→6 obtained from the fit of the hfs of the 5g → 4f transition in muonic 187Re. The influence on
the extracted quadrupole moment of weak transitions is analysed.

Fit GeR GeL
Q (b) RI E7→6 (keV) A (1/keV) χ2

red Q (b) RI E7→6 (keV) A (1/keV) χ2
red

Full a 1.97(2) 0.118(7) 359.8(1) ≤10−11 1.72 1.93(5) 0.17(1) 359.9(1) 0.0043(6) 1.25
no 5f5/2 → 4d5/2 1.98(2) 0.118(7) 359.8(1) ≤10−10 1.62 1.96(4) 0.168(9) 359.9(1) 0.0044(5) 1.22
no 5g7/2 → 4f7/2 2.04(3) 0.099(8) 359.7(1) 0.006(5) 3.07 2.05(5) 0.155(14) 359.8(1) 0.0050(6) 1.92

no weak transitions b 2.05(2) 0.097(7) 359.7(1) 0.0001(3) 2.99 2.07(5) 0.154(9) 359.8(1) 0.0051(6) 1.86
fix 5g/5f populationc 1.90(2) 0.170 359.8(1) 0.0013(5) 2.22 1.99(8) 0.118 359.9(1) 0.0026(5) 1.62

a Full fit as described in Section IV B.
b The 5f5/2 → 4d5/2 and 5g7/2 → 4f7/2 multiplets are removed from the fit.
c Relative intensity fixed to 0.17 for GeR and 0.12 for GeL.

C. Quadrupole moments and uncertainty

The values of quadrupole moments with their statis-
tical errors are collected in the Tables VI and VII. To
evaluate possible systematic errors of different parame-
ters, like the line shape, the σ of the experimental line
shape, and the description of the background, their influ-
ence on the extracted value of the quadrupole moments

was studied separately in a systematic way and is re-
ported in Table VIII for the two targets. The effects
were checked for small variations of the χ2 with respect
to the values reported in the Tables VI and VII.
The effect of variation in the modeling of the background
and the line shape turned out to be negligible with re-
spect to the value of the quadrupole moment. The sensi-
tivity of our results to the assumed background was ex-
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Figure 7. [color online] Prompt γ-ray spectrum of 185Re ob-
tained by GeR (a) and GeL (b) showing the 5g → 4f hf com-
plex. The black line shows the best fit to the data. The lines
predicted by the hfs formalism are shown below the spectra.

amined by comparing the hfs parameters obtained with
our constant background model with those using a linear
or quadratic form of the background.
The influence of the experimental line shape was inves-
tigated by sampling the parameters describing the line
shapes. Out of 1000 sampled line shapes, around 300
could simultaneously fit the shape of the background
lines with reasonable values of χ2. Each of these line
shapes was then used in the fit of the hf complex and the
distribution of the extracted values of the quadrupole
moments was fitted with a Gaussian. The centroid of
the quadrupole moment distribution showed no variation
with respect to the quadrupole moment given by the best
line shape and the sigma of the Gaussian distribution was
taken as uncertainty.
In a similar way, the effect of the σ was checked by sam-
pling the values within its statistical uncertainty while
leaving fixed the other parameters of the line shape. Also
in this case the centroid of the distribution of the ex-
tracted quadrupole moments showed no variation with
respect to the value of the best line shape but with a
larger uncertainty.
Finally, most sensitive was the relative intensity of the
5g9/2 → 4f7/2 versus 5f7/2 → 4d5/2 transition. As de-
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Figure 8. [color online] Prompt γ-ray spectrum of 187Re ob-
tained by GeR (a) and GeL (b) showing the 5g → 4f hfs
complex. The black line shows the best fit to the data. The
individual lines of the hfs formalism are shown below the spec-
tra.

Table VIII. The variation of the extracted quadrupole mo-
ment ∆Q in barn due to various systematics effects and its
uncertainty is analysed on the data of 185Re/ 187Re. In the
cells where only one value is reported, the effect is the same
for the two isotopes.

Effect GeR GeL
∆Q (b) error (b) ∆Q (b) error (b)

Bkg model 0.0 0.01 0.0 0.01/ 0.03
Line shape 0.0 0.01 0.0 0.01/ 0.02

σ 0.0 0.02/ 0.03 0.0 0.07/ 0.06
RI -0.04/ -0.03 0.04/ 0.03 0.03/ 0.03 0.03/ 0.03

Total -0.04/ -0.03 0.05 0.03/ 0.03 0.08

scribed in Section IV B the fits of the two detectors do
not converge to the same ratio. In Table VIII the vari-
ation of the quadrupole moment obtained when the ra-
tio 5g9/2 → 4f7/2 versus 5f7/2 → 4d5/2 is fixed to the
medium value of the two detectors is reported. This vari-
ation has been added in the systematic uncertainty.

The final quadrupole moments with their uncertainty
are
185Q = 2.07 ± 0.02 (stat) ± 0.05 (syst)
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187Q = 1.94 ± 0.02 (stat) ± 0.05 (syst)
and
185Q = 2.07 ± 0.05 (stat) ± 0.08 (syst)
187Q = 1.96 ± 0.05 (stat) ± 0.08 (syst)
for GeR and GeL, respectively. Given the larger uncer-
tainty in GeL, a combined analysis of the two detectors
is clearly not worthwhile. The ratio of the quadrupole
moments was not fixed in our fits and amounts to
2.07(5)/1.94(5) = 1.067(35) in very good agreement with
the very precise value of 1.056709(17) reported by S.L.
Segel [42].
The extracted Q-values are smaller compared to the val-
ues of 185Q = 2.21(4) barn and 187Q = 2.09(4) barn re-
ported in Ref. [7]. Two weak multiplets namely 5g7/2 →
4f7/2 and 5f5/2 → 4d5/2 have been introduced in the
present analysis which were not included in the previous
work. Their effect on the extracted quadrupole moment
is reported in Table VI and Table VII. While the inclusion
of the very weak 5f5/2 → 4d5/2 does not modify the re-
sults of the quadrupole moment, the 5g7/2 → 4f7/2 mul-
tiplet has stronger influence and it leads to a lower value
of quadrupole moment explaining the discrepancy to the
values reported in [7]. The addition of the 5g7/2 → 4f7/2

multiplet in the fitting of the hfs was necessary in or-
der to properly reproduce the rising slope at low energy
of the experimental spectrum as can be inferred by the
significantly higher value of reduced χ2 obtained when
this transition is removed from the fit. This effect clearly
shows that the isotopically pure muonic X-ray spectra
could be sensitive to transitions of relative intensity of
only a few %. Since the fitted hfs spectrum is not re-
ported in [7] neither are the values of χ2, we cannot judge
the quality of the fit and consequently the sensitivity of
that experimental spectrum to weaker transitions.

V. CONCLUSIONS

The hfs of the 5g → 4f X-ray transition in muonic
185,187Re has been investigated. The extracted values of
the quadrupole moments have been determined based
on high-quality isotopically pure muonic X-ray spectra
of 185,187Re and state-of-the-art theoretical calculations
and fitting procedures. The quadrupole moments
Q = 2.07(5) barn and Q = 1.94(5) barn are measured
for 185,187Re, respectively. The disagreement with values

in literature extracted with the same procedure has
been understood from the higher sensitivity of the
muonic X-ray spectra of isotopically pure targets to
weak hyperfine transitions.
The measurement of the hyperfine splitting of muonic X
rays allows the extraction of the quadrupole moment of
the nucleus to a rather high precision compared to the
hyperfine splitting in electronic systems because they
do not suffer from the uncertainty in the calculation
of a multi-electron system for the determination of the
electric field gradient at the nucleus and the polarisation
of the electron core. Nevertheless, we have pointed out
that particular care has to be taken in the estimation of
the systematic errors for what concerns the description
of the detector response and the relative intensity of the
muonic transitions.
This work is part of the muX project which currently
pursues at PSI the possibility to extend muonic atom
spectroscopy to elements available in microgram quanti-
ties, with a special emphasis on 226Ra.
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