SOME EFFECTS OF FOWL ASCARID PARASITISM UPON HOST RESISTANCE TO A BACTERIAL TOXIN

by

JOHN RICHARD EGERTON
B. S., Colorado Agricultural and Mechaniaal College, 1951

A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Zoology

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE

TABLE OF CONTENTS

INTRODUCTI ON AND REVIEW OF LITERATURE

Within the past two decades much experimentation has been undertaken to gain a better understanding of the factors involved in host resistance to parasitism. Ackert (1942) presented a summarization of the work to that date dealing with the factors affecting parasitism and natural host resistance.

That dietary constituents may influence the natural resistance of animals to helminthic infections was reported by Zimmerman, Vincent and Ackert (1926). Ackert et al. (1927, 1931) presented evidence that vitamin A deficiency lowered the resistance of fowls to Ascaridia galil (Syn. A. perspicillum, A. linoata). Further evidence of vitamin B (complex) as a factor in host resistance to parasitism was presented by Ackert and Nolf (1931).

Evidence that the age of a fowl is a factor in the resistance of a host to parasitism was presented by Ackert, Porter and Beach (1935), Ackert and Edgar (1938), and Ackert, Edgar and Frick (1939). These workers have shown that the resistance of a fowl to the large intestinal roundworm increased with the age of the chicken and reached a maximum at about 17 weeks of age. That the genetic make up of the host animal may be an important factor in host resistance to parasitic infections was shown by Ackert, Eisenbrandt, Glading and Wilmoth (1933); Ackert and Wilmoth (1934); Ackert, Eisenbrandt, Wilmoth, Glading and Pratt (1935); and Ackert, Pratt and Froeman (1936). As to the resistance of a parasitized host to a secondary
pathogenic entity very few experiments have been reported. Ackert and Folse (1946), working with a bacterial toxin, presented experimental evidence that a moderate infection of A. galli will predispose chickens to the effects of type A botuliam toxin. Injection of botulinus toxin into both parasitized and nonparasitized chickens resulted in higher morbidity and mortality in the parasitized groups than in the nonparasitized groups, indicating a predisposition to the botulinus toxin In the parasitized chickens. Riedel (1950) working with Asoaridia galli and Eimeria tenella showed that chickens infected with A. galli were not predisposed to infection with E. tenella to any significant degree. Chicks infected with both the nematode and the protozoan showed a higher morbidity and a more retarded growth rate than did chicks infected only with E. tenella. However, the mortality and the number of caecal lesions were about the same in both groups of chicks, thus indicating no predisposition of ohickens infocted with A. galli to infection with E. tenella.

Since chickens reared under usual barnyard or range conditions usually are, or have been parasitized, it is desirable to know the factors influencing the resistance of a parasitized host to a secondary pathogen. This study was undertaken to determine relationships between fowl parasitism and host resistance to a bacterial toxin.

MATERIALS AND METHODS

The chickens used in this atudy were Single Comb White Leghorns purchased from approved commercial hatcheries. The chicks were obtained in three lots, one lot for each experiment, placed in electrically heated brooders and fed standard rations. Within a week's time all chickens were banded, and when sufficientIy matured, the chickens were placed in larger growing batteries. At four weeks of age the chickens were weighed and separated into four groups by selecting four birds of approximately equal weights and placing one into each of Groups I, II, III and IV until the desired number of chicks were included.

Egg cultures of Ascaridia galli were propared from gravid females collected from the small intestines of chickens that were being dressed at a local packing plant. The anterior end of each worm was excised and the body contents squeezed out into a Petri dish. The uteri were then isolated and placed into another dish and covered with a few millimoters of tap water. The uteri were broken by mixing the contents of the dish with shapp strokes of a teasing needle. The entire dish was covered and placed in a constant temperature incubator at $28^{\circ} \mathrm{C}$. and the ova allowed to mature. The ova used to infect the experimental chickens were allowed to incubate fron 18-60 days.

At the age of four woeks and immediately following weighing and grouping, all chickens in Groups III and IV were fed $200{ }^{\mathbf{m}} 10$ embryonated eggs of A. galli utilizing a modification
of the method of Riedel (1947). Ova were removed from the culturing dishes and placed in a small, cork stoppered shell vial containing a small amount of fine, clean sand. Water was added and the contents of the vial thoroughly mixed by agitation to enable the sand particles to break apart any clumps of ova, thus insuring an even distribution of ova throughout the liquid. A calibrated pipette was then quickly inserted Into the suspension and the proper amount of suspension was drawn up into the pipette. This suspension was then delivered onto a glass microslide and the number of embryonated ova present were tabulated. The suspension was altered by the addition of water, or ova from the culture, until the proper number of ova were delivered from the pipette consistentiy. When the dosage had been standardized at 200 ± 10 embryonated ova per each delivery of the pipette, all chickens of Groups III and IV were exposed to the ova by holding the beak open and delivering the contents of the pipette well back into the oral cavity. The vial was thoroughly agitated immediately preceding the extraction of each dose. In order to insure more uniform exposure of all individuals, five chickens from one group and then five from the other were exposed, alternately, until all animals had been dosed. The chickens were then replaced in the batteries for two weeks and left there except for obtaining the weekly weight records.

The toxin used in this study was dried botulinus toxin (Type A) which was supplied by the National Institutes of Health Laboratories, Bethesda, Maryland. In preparing the
toxin solutions, sterile physiological saline was used. As a preliminary experiment ten healthy chickens six weeks of age were injected with varying amounts of toxin in order to determine the amount of toxin which would produce clinical symptoms up to and including total prostration. For this experiment five groups of two animals each were injected with $0.015,0.020,0.025,0.030$ and 0.035 mg of toxin per kilogram of fowl body weifht. Por one weck subsequent to these injections, observations were made periodically upon the clinical symptoms exhibited by the experimontal chickens. The chickens which had been injected with 0.015 mg of toxin per kilogran of body weight showed total prosiration but no fatalities, while chickens which had been injected with groater amounts succumbed to the effects of the toxin in most cases, death occurring sooner as the toxin dosage increased. Therefore, $0.015 \mathrm{mg} / \mathrm{Kg}$ of body weight was chosen as the experimental dosage to be used in the present study.

The toxin solution was prepared as follows an excess of the dried toxin was placed upon the pan of an analytical balance, 10 mg was removed from the pan, and the toxin which had been removed was placed in a sterile, cotton plugged test tube. Using sterile technique, 10 ml of sterile physiological saline was then added to the tube containing the toxin. This solution now contained 1 mg of toxin per cubic milliliter of saline. Next, 1.5 ml of the above solution was added to 98.5 ml of sterile saline and thoroughly mixed. The resulting solution, containing 0.015 mg of toxin per cubic milliliter, was placed
into sterile rubber stoppered vaccine bottles for ease of handling during the injection of the fowl. When the chickens to be injected were weighed and their weights recorded in grams, it was necessary only to transpose grams to kilograms in order to determine the amount of toxin solution to be injected so that each individual received $0.015 \mathrm{mg} / \mathrm{Kg}$ of body weight. For example, a 650 gm chicken would weigh 0.650 Kg , and at the rate of $0.015 \mathrm{mg} / \mathrm{Kg}$ of body weight would require $0.015 \mathrm{mg} / \mathrm{Kg}$ $X 0.650 \mathrm{Kg}$ or 0.00975 mg of toxin to be injected. Since the toxin was in the concentration of $0.015 \mathrm{mg} / \mathrm{ml}$, using the equation $\frac{0.00975 \mathrm{mg}}{0.015 \mathrm{mg} / \mathrm{ml}}=0.65 \mathrm{ml}$ to obtain the milliliters of solution to be injected, the calculated answer will be equivalent to the weight of the chicken as expressed in kilograms. This method of deriving the volume of toxin solution appropriate for each individual eliminated the necessity of an individual calculation for each injection, thus reducing the possibility of experimental error. All injections were made utilizing a 1 cc tuberculin syringe graduated in $1 / 100 \mathrm{cc}$. The weight in Kg of the chicken to be injected was reduced to two significant figures which gave the volume of toxin to be injected. At six weoks of age, $2 l l$ chickens were weighed, their weights recorded, and chickens from Groups II and III were injected with the chosen amount of a freshly prepared solution of the toxin. Each chicken to be injected was held ventral side up with wings and legs held securely. The area just posterior to the sternum was swabhed with disinfectant, and the toxin injection was made directly into the peritoneal cavity
at a point just posterior to the sternux.
In order to obtain the maximum effects from the toxin injection, it was decided to give the injections 14 days following exposure of the chickens to 200 ± 10 embryonated ova of A. galli. At this time the greater number of larvae are In the tissue phase (Tugwell and Ackert, 1950), and this is the time at which the host suffers the greatest damage (nckert and Herrick, 1928).

Quin (1946) reported that the heart rates of experimental animals injected with botulinus toxin increased, at times nearly doubled, their normal ratos. Consequently, it was decided to record the heart rate of oach experimontal chicken to be used as a possible criterion for judging the effect of the toxin on the injectred chickens. Just prior to the injection of the toxin the heart rate of each chicken was taken with the aid of a stetioscope, and for a period of one weok until the termination of the experiment the heart rate of each chicken was taiken twice daily.

Other criteria used for judging the effects of the toxin upon the experimental chickens were general weakness, inability to rise, and death. At the time when heart rates were taken, observations were made upon the chickens and data on their clinical appearance were recorded. The weight gain or loss of each group was also chosen as a possible added criterion for judging the effects produced by the toxin, so weekly weight records of all chickens were made from the tine of exposure of Groups III and IV to embryonated ova of A. galli until the
termination of the experiment.
Three weeks following the exposure of Groups III and IV to the ova of A. galli, and one week following the injection of Groups II and III, the experiments were terminated. The parasitized chickens from Groups III and IV were killed, and the small intestine from the gizzard to the yolk sac diverticulum was excised and flushed under hydraulic pressure into glass containers according to the method of Ackert and Nolf (1929). The intestine was then opened with an enterotome and the intestinal mucosa soraped free and added to the flushings. The wing band of each chicken was removed and placed in the appropriate containers with the intestinal contents and scrapings. After allowing a time lanse of about eight hours for the worms to relax and straighten out, concentrated formaldehyde was adied to each container in sufficient quantity to kill and preserve all nematodes. Collection of the nematodes was accomplished by pouring the contents of each container into a shallow, wide bottom glass dish and picking each nematode out with a small curved teasing needie. The nematodes and the wing band of the chicken from which they were collected were placed in small glass vials containing 10 per cent formalin.

Measurement of the worms was done by projecting the image of each worm, magnified six times to reduce error, upon a ground glass and making pencil tracings of the outline of the worm upon paper. The pencil tracings were then traversed with a milled wheel calibrated in millimeters. The results were then divided by a factor of six to obtain the true length of each specimen.

The sex of the worms being measured was determined with the aid of a compound dissecting microscope and a notation of the sex of each worm was placed beside its appropriate pencil tracing.

Because of the results which had been obtained in experiments I and II, it was decided at the termination of experiment III to collect blood serum samples from representative chickens of all four groups for the purpose of conducting precipitin tests. Four chickens from each group were selected at random and blood was collected from them by severing a large vein in the neck and allowing the blood to run into large, clean test tubes. The blood was allowed to clot at room temperature, and then the clots were ringed and centrifuged to separate the blood serum. The serum was then drawn off with sterile pipettes, placed in sterile stoppered test tubes, and put into a deep freeze unit for preservation at $-40^{\circ} \mathrm{C}$.

Antigen used in conducting precipitin tests in the present study was prepared from living specimens of A. galli and from dried botulinus toxin. The worms were collected from the intestines of freshly drawn chickens, placed in physiological saline, and washed in five successive changes of saline to remove any clinging foreign matter. The worns were then passed briefly through a distilled water rinse bath and placed into a small vial. A one hole rubber stopper with a short length of glass tubing protruding was then firmly inserted into the vial and the vial partially immersed in a bath containing 95 per cent ethyl alcohol and solidified carbon dioxide. This treatment caused instantaneous freezing of the worms and kept
any denaturization of the protein which might have occurred to a minimum. The vial containing the worms was then attached to a vacuum pump and a partial vacuum was created. A condensation chamber consisting of an outer insulated chamber and an inner metallic chamber was in position between the pump and the vial containing the frozen worms. The inner container, which served to catch and hold the moisture which was drawn off from the specimens being lyophilized, was imersed in a bath of ethylene glycol monomethyl ether and solidified carbon dioxide contained within the outer insulated chamber. Desiccation was continuous for a period of 24 hours and continued at slightly under 200 microns for that period. At the termination of lyophilization the vial was sealed under a partial vacuum by fusing the glass tubing under a torch flarae. The tube containing the desiccated worms was then weighed on an analytical balance, the worms removed to a sterile mortar, and the tube and stopper weighed again. The difference between the two weighings was equivalent to the dry weight of the worm protein. The worms were next macerated in the mortar and then returned to the vial. The mortar and pestie were rinsed with two washes of sterile saline using 5 cc for each rinse. The rinse was added to the contents of the vial, and an additional 12 cc of sterile saline was added to the macerated worms making a total of 22 cc . The resulting mixture was thoroughly agitated and then centrifuged at 30,000 R.F.M. for 20 minutes. Following centrifugation, a sterile pipette was used to remove 20 cc of the supernatant fluid. This antigen, containing 2.6 mg of protein per cc, was
placed into rubber stoppered tubes and placed in a doep freeze unit until used in the tests.

The botulism toxin used as antigenic matorial in conducting the precipitin test was mixed in the same rammer as the toxin used in the injection of the fowl. The antigen was made in the concentration of 1 mG of toxin in 1 cc of saline, placed in rubber stoppered tubes and then in a deep freeze unit until used.

The tests were set up by cutting lengths of capillary tubing about one inch long and fusing one end in a bunsen burner flame. The tubes were set into small wooden blocks in an upright position and a sample of the serum being tested was placed in each by means of a long finely drawn pipette. The serum was then overlayed with appropriate antigens in varying dilutions.

The blocks containing the tubes were next placed in an incubator at $37^{\circ} \mathrm{C}$. for one-half hour, removed, and placed in a refrigerator over night. The tubes were then examined for the typical "ring" formation and the results recorded.

EXPERIMENTAL RESULTS

Experiment I

Examination of the clinical symptoms of botulism exhibited by Groups II and III (Table 2) shows the relative effects the toxin produced. The unparasitized chickens (Group II) had one chicken weak at 19 hours following the toxin injection, two

$$
300
$$

Key:

200

Hours following toxin injection
190.
20
$40 \quad 60$
30
100
120
160

Fig.l. Average heart nates of chickens in Experiment Z
more at 30 hours, another at 43 hours, and a total of 5 by the fifty-third hour. At that time two chickens were unable to rise. At 67 hours following injection the third and last chicken was prostrate, but four additional fowls became weakened by the ninety-first hour. In contrast to this the parasitized chickens (Group III) exhibited no symptoms of botulism.

Figure 1 and Table 1 show that the average heart rate of the parasitized fowls (Group III) began increasing sooner than that of the unparasitized ones (Group II). But the average heart rate of Group II reached a peak exceeding that of Group III and returned to normal sooner than did that of Group III.

Examination of the weekly weight records reveals that the average weight gain of the chickens in Group II was exceeded by that of Group III following the toxin injections.

As to worm infections, Group III yielded a total of 169 worms (79 males and 90 females) and Group IV (parasitized but uninjected) harbored a total of 132 worms (78 males and 54 females). The average number of worms per chicken in Group III was 8.1 as compared to an average of 6.2 in Group IV. The average lengths of the worms recovered from Group III were 3.96 mm for the males and 4.79 mm for the females as compared to 3.44 mm for the males and 6.71 for the females in Group IV. The female A - galli from Group IV averaged slightly larger than those in Group III while the males varied only to a small degree.

The results from injecting Group II (unparasitized) and Group III (parasitized) with botulinus toxin (Type A) at the rate of $0.015 \mathrm{mg} / \mathrm{Kg}$ of fowl body weight showed that the Group

III (parasitized) chickens were affected first by the toxin as indicated by the heart rate increasing at an earlier time than did that of the unparasitized group. However, when clinical symptoms are considered, the parasitized chickens (Group III) were more resistant to the toxin than the unparasitized chickens (Group II) since they lacked the morbidity shown by the latter in which a total of nine fowls exhibited clinical symptoms of botulism.

Experiment II

The results of the observations made upon the injected chickens in this experiment are recorded in Table 4. The unparasitized chickens (Group II) manifested the first observable clinical symptoms at 19 hours following the injection of the toxin, at which time four individuals exhibited a weakened condition. Twenty-eight hours following injection three chickens from this group were prostrate, and by the forty-third hour two more, making a total of five, were unable to rise. The last animal to be affected was prostrate at 52 hours, but no deaths had occurred as yet. The first fatality occurred by the sixty-seventh hour, and the last deaths of a total of six were observed 72 hours later at 139 hours subsequent to the initial toxin injection.

In comparison to this, only four individuals of the parasitized fowls in Group III exhibited any symptoms of botulism which were observable, and the toxin produced no
effects beyond a weakened condition in any one of the four. The first observable symptom appeared at 43 hours, 24 hours following the first symptom exhibited by Group II.

As in the preceding experiment, the average heart rate of the parasitized group increased sooner than that of the unparasitized group (Fig. 2 and lable 3). Cortrary to Experiment I, however, was the peak reached by the two groups. Group III reached a peak in the average heart rate which exceeded that of Group II. The return to normal was similar in both groups.

The weekly weight records following the toxin injection show that the parasitized Group III, on the average, weighed less than the nonparasitized Group II (Table 4).

Data from the same table show that the chickens (Group III) injected with the botulinus toxin harbored a total of 297 worms (166 males and 131 females) and the uninjected chickens (Group IV) harbored a total of 176 worms (82 males and 94 females). The average number of worms per chicken recovered from Group III was 16.5 as compared to an average of 8.8 worms per chicken in Group IV. The average length of the male worms recovered from Group III was 19.3 mm as compared to an average length of 19.6 mm for the males of Group IV; while the average length of the females in Group III was 19.9 mm and that of Group IV was 25.5 mm . In this experiment the male worms from both groups were similar with regard to average lengths, but the average length of the females from Group IV was greater than that of the females from Group III.

The results of this experiment show that effects of the

270

Hours following toxin injection

Fig.2. Average heart rates of chickens in Experiment II.
botulinus toxin are manifested first in the group of chickens harboring the fowl nomatode Ascaridia galif as indicated by the rise in heart rate occurring at an oarlier hour following injection of the toxin, but that the most severe effects of the toxin occur in the unparasitized group as indicated by the higher morbidity shown in this group then in the parasitized group.

Experiment III

This oxperiment was similar in all respects to the two preceding experiments with the exception of the collection of blood samples from some chickens from all four groups at the termination of the experiment.

Examination of the cilnical aymptoms as recorded in Table 6 reveals that the groups injeoted with the botulinus toxin exhibited the severest symptoms of botulism of all the experiments. Seventeen chickens of a total of 21 in Group II suffered from the toxin to such an extent that the ciinical picture was observable as a weakened condition, 10 of these chickens were prostrate at some time subsequent to the toxin injection, and eight of these cases onded fatally. Weakness of the chickens was first observed 19 hours following the injection of the toxin and appeared periodically up to and including 52 hours. The first chicken exhibiting an inability to rise was observed at 28 hours following the injection.

Six individuals were prostrate by the forty-third hour, an additional two by the fifty-second hour, and the last of the total of ten was prostrate by the ninety-first hour. The first fatality occurred by the ninety-first hour following the toxin injection, with a total of efght ohickens succumbing from that time including the final one by the hour at which the experiment was terminated.

Of a total of 21 chickens in Group III, 16 exhibited recognizable symptoms of weakness, nine of these 16 were so affected as to be unable to rise, and 5 of these 9 chickens succumbed to the effectis of the toxin. Weakness was first observed periodically throughout the course of the experiment up to the one hundreth hour, at which time the last chicken exhibiting weakness was observed. The initial appearance of an inability to rise was at the forty-third hour following the injection at which tine five chickens were affected. Four additional chickens were unable to rise through the period up to 148 hours. The first fatality occurred at this time. By the termination of the experiment four additional chickens had succumbed.

The average heart rates of Groups II and III, as shown in Figure 3 and Table 5, began to increase at about the same time with that of Group II slightly ahead of Group III. The peaks in the average rate of each group were for all practical purposes identical, but Group III began the descent toward normal slightly ahead of Group II.

The average weight of the chickens in Group II remained

$$
310
$$

Hours following toxin injection

Fig. 3. Average heart rates of chickens in Experiment $\mathbb{\pi}$.
the same as it had been before the toxin injection while the chickens in Group III suffered a weight loss on the average, as shown in Table 6.

The total number of worms harbored by Group III was 264 (139 malos and 125 females) with an average of 12.6 worms per chicken. Group IV fielded a total of 184 worms (112 males and 72 females) with an average of 8.8 worms per chicken. The average lengths of the males in Group III was 8.1 mm as compared to an average length of 9.9 mm for the males of Group IV. The females of Group III averaged 10.5 mm , but the females of Group IV were larger in that they measured 16.1 mm on the average.

Preoipitin tests were run utilizing a saline extract of lyophilizod Ascaridia gaili and a saline solution of botulinus toxin Type A as antigen. The tests were set up with a seven tube series for each antigen. Dilutions of each antigen were made from 1:10 to $1: 320$ with an additional test utilizing the undiluted antigen. The results of the precipitin testa were negative in all of the serum samples in both the worm extract antigen and the botulinus toxin antigen.

The results of this experiment indicate that the effects of the botulinus toxin were manifested in the nomparasitized group and the parasitized group at about the same time as indicated by the average heart pate of both groups increasing at approximately the same time. The effects of the toxin were most severe in the group which was free from any nematode parasitism as evidenced by the greater morbidity and mortality

Groups II (umparasitized)
Groups III (parasitized)

Fig. 4. Comparative morbidity and mortality of chickens injected
with botulinus toxin.
occurring in Group iI as compared with that of Group III.

DISCUSSION

During the course of this study it was observed that chickens which had been injected with botulinus toxin and were affected by the toxin did not consume feed and water at the aame rate as did the chickens which had not been injected with the toxin. The amount of feed and water consumed was about inversely proportional to the effect produced by the toxin upon the fowl; $1 . e$. , the chickens most severeiy affected consumed the least food and water, while the ohickens least affected consumed the larger anount.

Parasitized chickens manifested symptoms of botulism prior to, or at about the aame time, as did the unparasitized chickens, as evidenced by the comparative heart rates of the ohickens in the present study. With regard to the severity of the toxic effects, however, the situation was different. In all three of the experiments performed, the most severe effects of the toxin were exhibited by the group of ohickens which harbored no parasites as evidenced by the morbidity and mortality of the parasitized group in comparison with those of the unparasitized group. The results obtained from these experiments indicated the possibility that the presence of a moderate infection of the fowl nematode A. galli, rather than decreasing the resistance of a chicken to $0.015 \mathrm{mg} / \mathrm{Kg}$ of botulism toxin, actually enhanced
the chance of survival of the animal. It was for this reason that blood serum samples were collected from the chickens used in Experiment III. If the presence of the nematode increased the host resistance to the botulism toxin injected at the experimental level, it was probable that the basis for such resistance was an antigen-antibody relationship. The precipitin tests which were run on the blood sera of the experimental chickens were to search for an antibodymantigen reaction. The results were negative in all tests.

Even though no antibodies could be demonstrated by the precipitin test used in the present study, one cannot conclude that such antibodies did not exist. Sadun (1949) reported that the antibody basis for immuity in chickens to A. galli was dependent upon antigenic stimulation by a metabolic product of the nematode. He could not demonstrate any antibody reaction when a whole worm extract was used as the antigen. The present study complements his results in this respect. He did, however, demonstrate an antibody reaction in an in vitro test which utilized living larvae of the nematode and serum from infected ohickens.

The fact that the unparasitized chickens were more susceptible to the experimental dosage of botulinus toxin than were the parasitized chickens might be explained on an antigenantibody basis. The presence of the nematodes and the production of a metabolic product from these nematodes stimulates the immunological system, generally regarded to be the reticulo-
endothelial system, to the production of antibodies against the antigenic metabolic product, or products, of the worms. These antibodies are normally utilized in aiding the fowl to resist the invasion and subsequent development of the parasite. If a similarity between the antigenic fraction, or haptophor, of the botulinus toxin and the antigenic fraction of the metabolic product of the nematode is hypothesized, a similarity between the antibodies which are produced in response to the two antigens can be assumed. Therefore, when the botulinus toxin was injected into the parasitized chickens which already possessed antibodies against A. galli, these antibodies could have combined to some extent with the haptophor fraction of the toxin, thus neutralizing a portion of the botulinus toxin. The lower mortality and morbidity among the chickens in the parasitized groups as compared to the nonparasitized groups (Fig. 4) suggests that the toxin was, to some extent, neutralized in the parasitized chickens. Furthermore, at the time of injection of the toxin the reticuloendothelial system, once having produced antibodies against the nematode antigen, would be stimulated quickly to produce more of the same type of antibodies by the anamnestic reaction. This phenomenon would increase the rate of antibody production well above that which would be found in a chicken previously unexposed to the parasite. While the toxin was affecting the host which had not been previously exposed to the parasitic infection and subsequent antibody production, the antibody present in the blood plasma of the parasitized host was neutralizing the toxic effects normally manifested in the injected animal.

Table 7. Statistical data on worm longths and worm numbers of combined experiments.

* Significant, five per cent level. ** Highly significant, one per cent levol.

That the nematodes themselves were affected to some extent by the toxin can be reasoned from the evidence dealing with the comparative worm lengths and worm numbers from the two parasitized groups of the three experiments. The total number of worms harbored by the parasitized groups which were injected with the botulinus toxin (Groups III) exceeded that of the uninjected ones (Group IV). Analysis of variance of the data dealing with total numbers of worms gave an F value which was significant at the 5 per cent level (Table 7). This indicates that the normal resistance of the host to the invading parasite was altered in some manner by the presence of the botulinus toxin. Reverting to the hypothesis of a similarity of antigen-antibody structure between the toxin and a metabolic product of the nematode, one can suggest that antibodies which normally would be used in combatting the parasites are diverted to the neutralization of the toxin, thereby allowing a significantly greater than normal number of the nematodes to develop.

A comparison of the data dealing with the lengths of the nematodes recovered from Groups III and IV shows another interesting feature regarding the effect of the toxin upon the nematodes. Taken by sexes, the males from Groups III were slightly longer, on the average, than were those from Groups IV. In contrast, the females recovered from Groups IV were much longer on the average than the females from Groups III (Tables 2, 4, 6). Analysis of variance of these data (Table 7) showed that the difference between the males of the two groups yielded an F value that was not statistically
significant while the difference between the females of both groups gielded an F value that was highly significant: ioe., beyond the 1 per cent level. Analysis of the data of the two groups, obtained by combining the lengths of the males and females in each group, yielded an F value that was aignificant at the 5 per cent level. This indioates that the presence of the botulism toxin had a detrimental effect upon the growth of the female nematode. Possibly the fact that the chickens which were injected with botulism toxin did not maintain the nommal intake of feed and water would explain the shorter lengths of the female nematodes in Group III than in Group IV (Ackert, Whitlook and Freeman, 1940). Inasmuch as the femalo worm is normally longer than the male, any metabolic interference which would inhibit the normal growth would be more obvious first in the fomale, since the length of the female must increase at a more rapid rate than that of the male, assuming that maturation of males and fomales ocours at approximately the same time.

In view of the results of the statistical analyses conducted upon the lengths of the worms, by sexes, it may not be advisable to combine the lengths of both sexes when using worm lengths as a criterion for determining the relative resistance of a host animal to a parasite.

SUMMARY

Three experiments involving 242 chickens were conducted
to determine the effect of a moderate fowl ascarid infection upon host resistance to a bacterial toxin. The ohickens in each experiment were divided into four groups: Group I. controls; Group II. injected with 0.015 mg of botulinus toxin per kilograns of fowl body weight at six weeks of age; Group III, fad $200{ }^{+} 10$ ombryonated ova of A. galli per chicken at four weeks of age and injected with 0.015 mg of botulinus toxin per kilogram of fowl body weight at six weeks of agos and Group IV, fed 200 ± 10 embryonatied ova of A. galli pex chioken at fous weeks of age. Heart bat records of each ohicken were made following the toxin injections until the termination of the experiment.

A total of 1,222 nematodes was collected from the intestines of the parasitizad groups of chickens. The nemstodes were measured and the sex of each was determined. Blood serum for preoipitin teats was colleoted from all groups at the texmination of Experiment III. Statistioal treatment; i.e., analysis of variance, was made on the data on worm lengths and worm numbers. The results of the experiments were as followa:

1. The comparative neart rates of Groups II and III showed that ohickens infected with A. gaili and then injected with botulimus toxin 14 days following exposure to the embryonated ove showed the affects of the toxin somewhat sooner than did chickens whioh had no parasitio infection and were injected with botulinus toxin.
2. Chickens harboring A. galli manifested leas severe syaptoms of botulism than did chickens without a parasitic
infoction, as shown by the greater morbidity and mortality exhibited by the groups harboring no parasites.
3. Precipitin tests mun to determine whether or not the Increased resistance shown by the parasitized chickens to the effects of botulinus toxin was an antigen-antibody reaction yielded negative results.
4. Chickens harboring A. galli and injected with botulinus toxin (Group III) had more worms than did the parasitized chickens unexposed to botulinus toxin (Group IV). The difference which was statistically significant indicates an interference with host resistance to the nematodes in the injected groups.
5. Statistical analysis of the lengths of the male worms recovered from these groups which harbored A. galli showed that the difference between the lengths of the male nematodes collected from Groups III and Groups IV was not significant.
6. Statistical analysis of the lengths of the female nematodes collected from Groups III and IV yielded an F value which was significant beyond the one per cent level. The female worms from the botulinus injected Groups III were shorter on the average than the females from Groups IV, indicating a metabolic disturbance which affected the normal growth rate of the females recovered from the botulinus injected chickens.
7. Statistical analysis of the lengths of the combined males and females from Groups III and IV showed that the A. galli from Groups IV were longer than those from Groups III. The difference in length was significant at the 5 per cent level.
8. An hypothesis is presented which suggests the possibility of an antigenic similarity between a metabolic product of the nematode A. galli and botulinus toxin (Type A).

ACKNOWLEDGEMENTS

Indebtedness is expressed to Dr. J. E. Ackert and Dr. M. F. Hansen, major instructors, for suggesting the problem and for counsel during the course of the study; to Dr. M. F. Hansen, also, for aid in the performance of the statistical analyses; to Dr. J. O. Harris for the lyophilization of the nematodes used for the preparation of the antigenic material utilized in performing the precipitin tests; and to Professor V. D. Foltz for his counsel on, and criticism of, the immunom logical aspects of this study.

Ackert, J. E.
Natural resistance to helminthic infections. Jour. Parasitol. 28(1):1-24. 1942.

Ackert, J. E., and S. A. Edgar.
Goblet cells and age resistance to parasitism. Jour. Parasitol. 24 Suppl.:13-14. 1938.

Ackert, J. E., and D. S. Folse. Moderate fowl ascarid infection predisposing chickens to bacterial toxin. Jour. Parasitol. 32 Suppl.:15. 1946.

Ackert, J. E., and C. A. Herrick. Effects of the nematode Ascaridia lineata (Schneider) on growing chickens. Jour. Parasitol. I5:1-13. 1928.

Ackert, J. E., and L. O. Nolf. New technique for collecting intestinal roundworms. Science. 70:310-311. 1929.

Ackert, J. E., and L. O. Nolf. Resistance of chickens to parasitism affectod by vitamin B. Amer. Jour. Hyg. 13:337-344. 1931.

Ackert, J. E., and J. H. Wilmoth. Resistant and susceptible strains of white minorca chickens to the nematode Ascaridia lineata (Schneider). Jour. Parasitol.

Ackert, J. E., S. A. Edgar, and L. P. Frick. Goblet cells and age resistance of animals to parasitism. Amer. Micro. Soc. Trans. 58:81-89. 1939.

Ackert, J. E., M. L. Fisher, and N. B. Zimmerman. Resistance to parasitism affected by the fat-soluble vitamin A. Jour. Parasitol. 13(3):219. 1927.

Ackert, J. E., M. F. McIlvaine, and N. Z. Crawford. Resistance of chickens to parasitism affected by vitamin A. Amer. Jour. Hyg. 13:320-326. 1931.

Ackert, J. E., D. A. Porter, and T. D. Beach. Age resistance of chickens to the nematode Ascaridia lineata (Schneider). Jour. Parasitol. 21:205-213. 1935.

Ackert, J. E., I. Pratt, and A. H. Freeman, Jr. Resistant and susceptible groups of white leghorn chickens to the nematode Ascaridia lineata (Schneider). Anat. Rec. 67(1 Suppl):130. 1936.

Ackert. J. . J. I. Whitlock, and A. Freeman. The food of the fowl nematode, Ascaridia lineata (Schneider). Jour. Parasitol. 26(1):17-32. 1940.

Ackert, J. T., L. I. Eisenbrandt, B. Clading, and J. II. Wilmoth. On the comparative resistance of six breeds of chickens to the nomatode Ascaridia IIneata (Schnoider). Joun. Parasitol. 20:127. 1933.

Ackert, J. E., L. L. Eisenbrandt, J. H. Wilmoth, B. Glading, and I. Pratt. Comparative resistance of five breeds of chickens to the nomatode Ascaridia lineata (Schneider). Jour. Agr. Res., J. S. Dept. Agr. 50:607-624. 1935.

Quin, T. I.
The biological action of botulinus C. (Lamsiekte) toxin. So. Afr. Jour. Sci. 62:157-161. 1946.

Riedel, B. B.
New technique on culturing and feeding ascarid eggs. Amer. Micros. Soc. Trans. 66:396-397. 1947.

Riedel, B. 3.
The effect of ascarid infections on the susceptibility of chickens to coccidiosis. Poult. Sci. 29(2):201-203. 1950.

Sadun, T. H.
The antibody basis of immunity in chickens to the nematode Ascaridia galli. Amer. Jour. HyE. 49:101-116. 1949.

Tugwell, R. L., and J. E. Ackert.
Further studies on the tissue phase of the life cycle of Ascaridia galli. Jour. Parasitol. 36(6, Sect. 2):16. 1950.

Zimmerman, N. B., L. B. Vincent, and J. E. Ackert. Vitamin B a factor in the resistance of chickens to Ascaridia perspicillum (Rud.). Jour. Parasitol. 12:164. 1926.

SONE EFFFSOTS OF FOWL ASCARID PARASITISM UPON HOST RESISTANCE TO A BACTERIAL TOXIN
by

JOHN RICHAFD EGERTON
B. S., Colorado Agricultural and Mechanieal College, 1951

AN ABSTRAOT OF A THESIS

submitted in partial fulfiliment of the
requirements for the degree

MASTER OF SGIENCE

- Department of Zoology

KANSAS STATE COLLEGE
OF AGRICULIURE AND APPLIED SCIENCE

Three experiments involving 242 ohiokens were conducted to detemine the effects of a moderate fowl asoarid infection upon host resiatance to a bacterial toxin. who chickens in each experiment were divided into four groups: Group I, controls; Greap II, injected with botuilnus toxin; Group III, fed 200 ± 10 ombryonated ova of Ascapidia galli and injected with botulimus toxin; and Group IV, fed 200*10 embryonated ova of A g galli.

A groifminary experiment was conducted to determine the level at which the toxin was to be injected. The result of the experiment indieated that the desired experimental level was 0,015 mg of botulinus (Type A) toxin per kilogram of fowl body weight.

Ora of A. galli wore obtained frem live gravid females. The uteri containing the ova were removed and allowed to mature in Potri dishos half filled with water. At the time of experimental infeetion of Groups III and IV embryonated ova were placed in a vial containing sand and water, agitated, and delivered by calibrated pipette onto a glass miorosilde. The ova were counted, and adjustments mado until the desired number of embryonated ova were delivered consiatentiy.

At fous weeks of age the ohickens frem Groups III and Groupa IV were fed 200*10 embryonated ove of A. gelli per chicken by delivering the contents of the calibrated pipette into the oral cavity.

The toxin solutions prepared for use were froshly mixed from dried tozin prior to each exporiment. The toxin was
weighed on an analytical balance and added to sufficient sterile saline to make a solution containing 0.015 mg of toxin per mi of solution. At this concentration it was nesessary oniy to weigh the chickens to be injected, transpese the weights to kilograms, and use this valuo in oubic centimetern as the amount to be injected.

At six weeks of age the ahickens from Groups II and Greups III were injected with $0,015 \mathrm{mg}$ of toxin per kilogram of body weight. The injection was mado juet posterior to the atermum and direotiy into the peritoneal savity.

A record of the heart beat of each ohicken was made with the aid of a stethoscope immediately prior to the toxin injection and continued throughout each experiment. Observations upon the botulism symptome axhibited by the ohickens injected with the toxin were rade throughout the experiments.

At the termination of the experiments the chiekene were killed, the mall intestine rrom the gissard to the Jolk mae diverticulum was removed, fluehed with water under presaure and the mucosa was scraped free and added to the fluvingen. The woms were allowed to atretoh out and ale, at whioh time quantities of concentrated formalin were added as a preservative. The woxas were then collested, counted and placed in vials containing 10 per cont formalin.

Measurement of each woym was done by projecting its image, magnified six times, upon a ground glass plato. The outile of the projected image was traced upon papor, and then the pencil drawing was traced with a calibrated wheel. The results
were then divided by a factor of $s i x$ to obtain the tive lengths of the nematodes.

At the termination of Experiment III blood serum samples were collested from all four axperimental groups. The results of Experiments I and II showed an increased resistance of the parasitised hosts to the toxin, so precipitin tests were run upon the blood serum for the purpose of determining whother or not this resistance was an antigenmantibody reaction.

Statistical treatment; i.e., analysis of variance, was made upen the data relative to worm lengths and worm numbers. The reauits of the experimenta are as follows:

1. The comparative heart rates of Groupa II and III showed that aniokens infected with A. gelli and then injected with botulimus toxin 14 days following exposure to the embyyonated ova showed the efrects of the toxin somewhat sooner than did chickens injected with botulimus toxin but umparasitized.
2. Chickens harboring Ae galli manifested less severe symptems of botuliam than did chickens without a parasitic infection, as shown by the greater morbidity and mortality exhibited by the groups harboring no parasites.
S. Precipitin teats mun to determine whether or not the increased resistance shown by the parasitised chickens to the effects of botulimus toxin was an antigenmantibody roaction yielded negative reaults.
3. Chickens harboring A. galli and injected with botulinus toxin yiolded a statistically significant greater number of worm
than did parasitized chickens unexposed to botulinus toxin, indicating an interference with host resistance to the nematodes in the injected groups.
4. Statistical analysis of the lengths of the male worms recovered from both groups which harbored A. galli showed that the difference between the lengths of the male nematodes colleoted from Groupe III and IV was not significant.
5. Statiatical analyais of the lengths of the famale nomatodes collected from Groups III and IV yielded an F value which was algnificant beyond the one por cent level. The female worms from the botulinus Injected Groupa III were shorter on the average than the fomalos of Group IV, indicating a metabolic disturbance which affected the normal growth rate of the females recovered from the botulinus injected ohickens.
6. Statistical analysis of the lengths of the combined males and fomales from both groups showed the difference in length to be significant at the five per cent level.
7. An hypothesis is presented which suggests the posaibility of an antigenis similarity between a metabolic product of the nematode A. galli and botulinus (Type A) toxin.
