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“Sometimes science is more art than science, Morty.
Lot of people don’t get that.”
— Rick Sanchez, Rick And Morty (Season 1, Episode 6)





A B S T R A C T

Considering the ultimate limit of molecules interacting with a few photons,
the classical description of the electromagnetic field does not suffice anymore
and the quantum nature of light needs to be taken into account. Moreover, to
describe chemical processes mediated by quantum light, an accurate, flexible
and computationally efficient treatment of light-matter interactions is required.
Therefore the present work focuses on the theoretical approaches of light-matter
interaction in cavity quantum electrodynamics. In particular, we investigate the
extension of mixed-quantum classical trajectory methods as well as the concept
of time-dependent potential energy surfaces, both traditionally introduced for
electron-nuclear problems, to the photonic degrees of freedom. The goal is to
pave the way for a full ab initio and computationally feasible description of quan-
tum effects in strongly correlated light-matter systems. We find, that classical
Wigner dynamics for photons can be used to describe quantum effects such as
spontaneous emission, correlation functions, bound photon states and cavity-
induced suppression of proton-coupled electron transfer by properly account-
ing for the quantum statistics of the vacuum field while using classical/semi-
classical trajectories to describe the time-evolution. Additionally, this classical
Wigner treatment for the photons allows us to go beyond the usual single-mode
picture, and to include the many photon modes supported in most realistic cav-
ities, in a numerically efficient way. Here, we find that as more photon modes
are included, cavity-modified phenomena can significantly change and the self-
polarization, which is often neglected, has an increasingly crucial impact on the
dynamics and even more so presents a potential new tool to control and change
chemical reactions. To this end, we introduce the concept of self-polarization-
modified Born-Oppenheimer surfaces as an instructive tool for analysis. Further-
more, in order to gain a fundamental understanding of the dynamics obtained
by the mixed-quantum classical methods, we investigate the time-dependent po-
tential energy surfaces within the exact factorization framework. Here we find
on the one hand that the corresponding time-dependent potential energy sur-
faces for photons show significant differences to the harmonic potentials used
in conventional approaches. On the other hand, analyzing the time-dependent
potential energy surface driving the proton motion of a cavity-induced chemical
suppression, we show how its features directly correlate to the proton dynamics,
in contrast to the polaritonic surfaces. Particularly, within the mixed-quantum
classical methods for photons we identify a promising route towards describing
quantum effects in realistic correlated light-matter systems. Especially, combin-
ing the introduced methods with an existing ab initio electronic structure meth-
ods such as time-dependent density functional theory would provide an ab initio
computationally feasible way to simulate photon-field fluctuations and correla-
tions in realistic three-dimensional systems.

vii





Z U S A M M E N FA S S U N G

Zur Analyse der Wechselwirkung von Molekülen mit nur wenigen Photonen, ist
die klassische Beschreibung des elektromagnetischen Feldes unzureichend und
die Quanteneigenschaften des Lichts müssen berücksichtigt werden. Darüber
hinaus erfordert die Simulaton chemischer Prozesse mit starker Quantenlicht-
Wechselwirkung eine genaue, flexible und rechnerisch effiziente Beschreibung
von Licht-Materie-Wechselwirkung. Die vorliegende Arbeit untersucht daher
Theorien der Licht-Matrie-Wechselwirkung für Resonatorquantenelektrodyna-
mik an der Schnittstelle von Quantenoptik und Quantenchemie. Insbesondere
betrachten wir die Erweiterung der gemischt quanten-klassischen Trajektorien-
methoden, sowie das Konzept der zeitabhängigen Potentialenergieflächen, bei-
des ursprünglich für Elektron-Kern Systeme entwickelt, auf die photonischen
Freiheitsgrade. Wir stellen fest, dass die klassische Wigner-Dynamik für Photo-
nen gut geeignet ist, um Quanteneffekte wie spontane Emission, Korrelations-
funktionen, gebundene Photonenzustände und resonatorinduzierte chemische
Suppression des Proton-Elektron gekoppelten Ladungstransfers zu beschreiben.
Hierbei berücksichtigen wir einerseits die Quantenstatistik des Vakuumfeldes
und verwenden andererseits klassische/semi-klassische Trajektorien zur Beschrei-
bung der Zeitevolution. Geht man außerdem über die üblicherweise verwendete
Kopplung zu nur einer Photonenmode hinaus, verändern sich die beobachteten
resonatormodifizierten Phänomene erheblich und die oft vernachlässigte Selbst-
polarisation hat einen immer wichtigeren Einfluss auf die Dynamik und stellt
darüber hinaus ein potenzielles neues Werkzeug zur Kontrolle und Verände-
rung chemischer Reaktionen dar. Zu diesem Zweck stellen wir das Konzept der
selbstpolarisationsmodifizierten Born-Oppenheimer-Potentialenergieflächen als
instruktives Analysewerkzeug vor. Um ein grundlegendes Verständnis der si-
mulierten Dynamik innerhalb der gemischt quanten-klassischen Trajektorienme-
thoden zu erhalten, untersuchen wir weiterhin die zeitabhängigen Potentialener-
gieflächen. Wir stellen fest, dass sich diese für Photonen signifikant von dem
üblicherweise verwendeten harmonischen Bild unterscheiden. Darüber hinaus
analysieren wir die zeitabhängige Potentialenergiefläche, die die Protonenbewe-
gung einer resonator-induzierten chemischen Suppression des Proton-Elektron
gekoppelten Ladungstransfers antreibt, und zeigen wie ihre Charakteristik, im
Gegensatz zu polaritonischen Potentialenergieflächen, direkt mit der Protonen-
dynamik zusammenhängen. Wir kommen zu dem Schluss, dass die gemischt
quanten-klassischen Methoden für Photonen ein vielversprechender Weg zur
Beschreibung von Quanteneffekten in realistischen korrelierten Licht-Materie-
Systemen darstellen. Insbesondere die Kombination der vorgestellten Methoden
mit einer schon bestehenden ab initio elektronischen Strukturmethode, wie zum
Beispiel der zeitabhängigen Dichtefunktionaltheorie, eröffnet die Möglichkeit so-
wohl Photonenfeldschwankungen als auch Photonkorrelationen in realistischen
dreidimensionalen Systemen zu simulieren.
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P R E FA C E

This cumulative dissertation is based on the publications [O1–O5]. In these pa-
pers we investigate theoretical approaches for light-matter interaction in cavity
quantum electrodynamics at the interface of quantum optics and quantum chem-
istry. In particular, we focus on extending mixed quantum-classical trajectory
methods as well as the concept of time-dependent potential energy surfaces, tra-
ditionally introduced for electron-nuclear problems, to the photonic degrees of
freedom, in order to develop ab initio and computational feasible descriptions of
cavity modified chemical systems and processes. In Chapter 1 we first provide an
introduction to the field of cavity quantum electrodynamics and the current the-
oretical state of the art. Furthermore, we include an outline and brief discussion
of our scientific contribution i.e. the extension of the methods to the photonic
degrees of freedom and the main findings. The corresponding research papers
can be found in Chapter 2 and 3. A conclusion and brief outlook on future work
is provided in Chapter 4. Furthermore, when referring to the scientific contribu-
tions throughout this thesis the reference index of the corresponding publication
is used as below.
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Part I

I N T R O D U C T I O N





1
T H E O R E T I C A L B A C K G R O U N D A N D C O N T R I B U T I O N

This thesis is about fundamental research in quantum physics. Therefore, let us
first answer the question: What does quantum mean? In general, quantum me-
chanics can be roughly thought of as the study of systems on small (atomic)
length scales. Early work setting the foundations of quantum theory e.g. [1–3],
already showed that the continuous and deterministic picture of physical pro-
cesses does not hold for atomic length scales. But what does this mean exactly?
On the one hand, non-continuous refers to quantities that can only take discrete
values and also motivates the name quantum, which means how much. On the
other hand, non-deterministic means that observables in quantum mechanics
are only given by their probability. More precisely, in classical mechanics, we
can consider a particle at a given position and time. Once we obtained this in-
formation we can directly determine the velocity, momentum, energy or other
dynamical variables of interest by applying Newton’s second law. Quantum me-
chanics, in contrast, treats these problems quite differently. Here, in order to
determine the dynamics of the particle, one has to solve the Schrödinger equa-
tion [4], where its position is now deduced by a wave function. This means that
the position of the particle is not localized but spread over the space according
to its wave function. Therefore, in order to determine the actual position of the
particle (or as it is called in quantum mechanics, the state of the particle) we
have to calculate its probability at a given position and time [5].

Although the Schrödinger equation might in itself be a simple equation, it is
unfortunately exceedingly difficult to solve for more than a few particles [6]. For
example, assume we want to calculate, disregarding spin and time, the ground-
state wave function of an oxygen atom. And, in order to solve this problem, we
use a rather moderate grid of ten grid-points for each direction in three dimen-
sions and, since the oxygen atom has eight electrons, we will need to store 1024

numbers to calculate the full goundstate wave function. Now, assuming each
number requires one byte of physical memory and a typical workstation has
a hard-drive storage of around one Terabyte, we will need the incredibly large
number of one Trillion hard-drives just to store the groundstate wave function.
Therefore, including even more degrees of freedom such as spins, larger grid
sizes, full molecules or even time dynamics will make this problem impossible
to solve. However, this problem is already very well known as the so-called ex-
ponential wall of the quantum many-body problem [7] and is the reason why
in the past much effort has been invested into solving the Schrödinger equation.
Moreover, it is important to note that the full wave function also contains far
more information than one could possibly need or even want. Therefore, indeed,
in many instances a fully quantum mechanical treatment is probably unneces-
sary, and numerous approximate quantum theories such as Density Functional
Theory (DFT) [8], Time-Dependent Density Functional Theory (TDDFT) [9], Cou-

3



4 theoretical background and contribution

pled Cluster [10] or Quantum Monte Carlo [11] to name a few, have allowed
deep insights into a broad range of physical and chemical problems.

One trajectory-based approach that allows a treatment of a large number of
atoms is the Molecular Dynamics method [12, 13]. It leverages two underlying
approximations. First, the Born-Oppenheimer (BO) approximation [14], which
exploits the fact that the nuclei and the electrons have disparate masses and
allows the separation of the coupled electron-nuclei motion and, thus, reduces
the dynamics of the nuclei to a single adiabatic Potential Energy Surface (PES).
Second, the nuclei motion is treated by classical mechanics. However, there are
a lot of applications that require either more PESs with transitions among them
(break-down of BO approximation), or quantized vibrational levels (break-down
of the classical treatment). Therefore, Mixed-Quantum Classical (MQC) methods
were developed to overcome these problems by bringing in non-adiabatic effects
with treating only a few crucial degrees of freedom quantum mechanically while
still applying a multi-dimensional classical treatment for most of the system [15,
16]. The crucial point within these methods is self-consistency. On the one hand,
the quantum mechanical degrees of freedom must evolve correctly under the
influence of the surrounding classical motions, whereas, in turn, the classical
degrees of freedom must respond correctly to quantum transitions.

Available techniques in the family of the trajectory-based MQC approaches
are, for example, Ehrenfest mean field dynamics [15, 17–19], fully linearized
and partially linearized path integral methods [20–26], forward-backward tra-
jectory methods [24, 25, 27], and trajectory surface-hopping algorithms [28–34].
All these techniques have some ability to describe essential quantum mechani-
cal effects, such as tunnelling, interference, and zero-point energy conservation.
Further, they typically do not exhibit the exponential scaling with respect to the
nuclear degrees of freedom, as all trajectories are treated independently, and,
thus, allow to reduce the computational effort via parallelization. Finally, these
methods provide an intuitive qualitative understanding of nonadiabatic molecu-
lar dynamics and their applicability has been demonstrated for a wide range of
physical phenomena and parameter regimes.

In addition to their valuable properties for practical calculations, trajectory-
based methods provide much intuition through their central concept of PESs.
One of the rigorous PES approaches is the so called Exact Factorization (EF),
which is formally exact and, moreover, introduces time dependency via Time-
Dependent Potential Energy Surface (TDPES). Therefore, a single TDPES replaces
the manifold of static PESs, represents the exact potential in which the nuclear
wave packet evolves, and exactly contains the effects of electron coupling [35,
36]. Thus, the TDPES allows to obtain fundamental and valuable information for
adiabatic and nonadiabatic molecular dynamics. Furthermore, for calculations
of complex realistic systems, a well-defined single classical force obtained by the
TDPES is highly desirable and, thus, a TDPES-based MQC method [37–39] paved
the way to determine nonadiabatic dynamics in such systems.

Both the MQC method and the EF approach were traditionally introduced for
molecular dynamics, i.e. pure electron-nuclear interaction. Considering the wide
range of photoinduced phenomena, the interaction of the particles with electro-
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magnetic fields needs to be taken into account, too. The latter interaction, is, if at
all, commonly described by the coupling of the matter to the Maxwell’s equation,
i.e. an interaction of the matter with classical light fields. However, with respect
to the ultimate limit of single molecules interacting with a few photons, as it is
the case in cavity Quantum Electrodynamics (QED) [40], the classical description
of the electromagnetic field does not suffice anymore. In this case, the quantum
nature of the electromagnetic field has to be taken into account.

Therefore, in the present thesis we face the question, whether and to what extent
does the analysis and simulation of photoinduced processes change by going beyond the
classical Maxwell description?

Objectives of this thesis

We generalize the idea of the trajectory-based MQC methods, traditionally intro-
duced for electron-nuclear problems, to electron-nuclei-photon correlated sys-
tems by incorporating the quantized light fields explicitly and highlighting the
possibilities and theoretical challenges of these methods. Furthermore, we ex-
tend the EF approach, also traditionally introduced for electron-nuclei interac-
tion, to the electron-nuclei-photon case for further analysis of the MQC approach.
Our work and findings include:

(i) We find that the Multi-Trajectory Ehrenfest (MTEF) approach can be used
to describe quantum effects in correlated light-matter systems (here an
electron-photon correlated system) by properly accounting for the quan-
tum statistics of the vacuum field while using mean field trajectories to
describe the time-evolution [O1].

(ii) We extend the EF approach to the photonic degrees of freedom and show
that the TDPES for photons exhibits significant differences to the common
harmonic approaches, especially for strong coupling [O2].

(iii) We benchmark a selection of MQC methods and perturbative dynamic tech-
niques in its applicability to strong light-matter interaction (here an electron-
photon correlated system) [O3].

(iv) We analyze the exact TDPES driving the proton motion of a cavity-induced
chemical suppression of Proton-Coupled Electron Transfer (PCET) and show
how its features directly correlate to the proton dynamics, in contrast to
the polaritonic surfaces, and discuss cavity-modifications of its structure
responsible for the suppression [O4].

(v) We extend the introduced MTEF approach to the full electron-nuclei-photon
system and analyze the process of cavity-induced chemical suppression of
PCET. Here, we find that cavity-modified phenomena and self-polarization
effects can significantly change as more photon modes are included and
introduce the new tool of self-polarization-modified Born-Oppenheimer
(spBO)-surfaces [O5].
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In summary, our work is concerned with the extension of two methods: On
the one hand, we extent the MQC methods to the photonic degrees of freedom in
order to enable ab initio calculations in complex realistic systems. On the other
hand, we investigate the TDPES in the EF approach in order to obtain a fundamen-
tal understanding of the results found in the MQC methods and to set a starting
point for the development of new MQC methods. While the first three cases (i)–
(iii) explore these methods for electron-photon coupled systems, the latter two
(iv)–(v) focus on the full electron-nuclei-photon correlated system.

The remainder of this chapter is structured as follows. In Sec. 1.1 we briefly
review the realm of light-matter interaction in cavity QED, provide an overview
on the quantum chemical and quantum optical paradigms and introduce the full
QED Hamiltonian and our model systems. We then outline the methodological
extension to the photonic degrees of freedom for the MQC methods in Sec. 1.2
and the EF approach in Sec. 1.3. In Sec. 1.4 we recapitulate our contribution and
discuss it relative to the existing state of the art research.

In the subsequent chapters we provide the papers corresponding to the sci-
entific contributions, where Chap. 2 collects the work on electron-photon corre-
lated systems [O1–O3], and Chap. 3 the work on the full electron-nuclei-photon
system [O4, O5]. Chap. 4 concludes and gives an outlook on future work.

1.1 cavity quantum electrodynamics

Recently, rapid experimental and theoretical advances have drawn attention to
fascinating phenomena that depend on the quantization of the light field and its
interaction with matter. This includes few-photon coherent nonlinear optics with
single molecules [40], direct experimental sampling of electric-field vacuum fluc-
tuations [41, 42], multiple Rabi splittings under ultrastrong vibrational coupling
[43], exciton-polariton condensates [44, 45], polaritonically enhanced supercon-
ductivity in cavities [46], and frustrated polaritons [47], among others. Therefore,
we first consider the question, what the quantization of the light field, i.e. few
photon limit, means exactly and how it can be achieved.

1.1.1 Towards Quantized Light Fields

maxwell field equations In general, the propagation of classical light
fields is described by the well-known Maxwell’s equations [48]:

∇ · E(r, t) =
ρ(r, t)
ε0

(1)

∇ ·B(r, t) = 0 (2)

∇× E(r, t) = −
∂B(r, t)
∂t

(3)

∇×B(r, t) = ε0µ0
∂E(r, t)
∂t

+ µ0j(r, t), (4)
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where E(r, t) is the electric field, B(r, t) the magnetic field, r the three-dimensional
position vector, t the time and ρ(r, t) and j(r, t) the electronic charge density and
current density, respectively. Furthermore, µ0 describes the magnetic permeabil-
ity and ε0 the vacuum permittivity with ε0µ0 = 1

c2
, where c denotes the speed

of light.

riemann-silberstein vector Besides the standard representation, the prop-
agation of the classical electromagnetic field can also be rewritten in terms of the
Riemann-Silberstein vector F(r, t) [49, 50]:

F(r, t) =
√
ε0
2

E(r, t) + i

√
1

2µ0
B(r, t). (5)

Consisting only of the electric and magnetic field components, this notation has
the advantage of being gauge independent. More precisely, the two Gauss Laws,
Eqs. (1), (2), can be rewritten in terms of F such that

∇ · F(r, t) =
1√
2ε0
ρ(r, t). (6)

Furthermore, re-arranging Faraday’s Law, Eq. (3), and Ampere’s Law, Eq. (4), in
Riemann-Silberstein form yields

i∂tF(r, t) = ±c0∇× F(r, t) −
i√
2ε0

j(r, t). (7)

Finally, multiplying Eq (6) and Eq. (7) with  h and rewriting the curl operator in
Eq. (7) in terms of spin-1 matrices S for photons (see detailed derivation in [51])
then yields a Schrödinger-like expression for the Maxwell’s equation

i h∂t F(r, t) = c0
 h

i

(
S ·∇

)
F(r, t) −

i h√
2ε0

j(r, t). (8)

Successful implementations using this formulation for real-time solutions of cou-
pled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations were done in [51]. Note
that we discuss a connection of this application with the multi-trajectory ap-
proach for photons introduced in Chap. 4 to outline possible future extensions.

coulomb gauge Generally, the electric and magnetic field may be expressed
in terms of a scalar potential Φ(r, t) and vector potential A(r, t), which yields

E(r, t) = −∇Φ(r, t) −
∂A(r, t)
∂t

(9)

B(r, t) = ∇×A(r, t). (10)

The potentials Φ(r, t) and A(r, t) define the gauge freedom [52, 53]. More pre-
cisely, these potentials are, in contrast to the electric and magnetic field, non-
measurable and also unphysical, since two different pairs of vector and scalar
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potentials can yield identical electric and magnetic fields. However, fixing the
gauge removes all unphysical degrees of freedom and yields a unique vector
potential. Throughout this thesis we apply the Coulomb gauge

∇ ·A = 0. (11)

Now, assuming no sources of radiation and charges, the Maxwell’s equations in
terms of the vector potential can be written as

∇2A −
1

c2
∂2A
∂t

= 0, (12)

which satisfies the wave equation.

quantization of light fields Let us now turn our attention to the main
question, how to quantize light fields. Technically, the quantization of the light
field can be achieved by optical cavities, an arrangement of mirrors, which devel-
ops standing light waves. These standing waves are called modes and appear in
a discrete, though infinite, set and yield the quantization of the electromagnetic
field [54]. Assuming a cubic cavity with length L and perfectly reflecting mirrors,
one can impose periodic boundary conditions

k =
2π

L
(nx,ny,nz), (13)

where nx,y,z defines the normal mode of the field, with the total number of
modes given as

N = 2

(
L

2π

)3
∆kx∆ky∆kz, (14)

with ∆kx,y,z characterizing the k-space intervals. Furthermore, the magnitude of
k is related to the frequency ωk = kc [52, 53]. The quantization of the light field
can be achieved by associating each mode ks, depending on two independent
polarizations s = {1, 2}, with a quantum mechanical harmonic oscillator and
demanding the canonical variables to satisfy the commutation relations

[âks, âk ′s ′] = 0 = [â+ks, â
+
k ′s ′] (15)

[âks, â+k ′s ′] = δkk ′δss ′ , (16)

where â+ks denotes the creation operator of the radiation field and âks the annihi-
lation operator. As a result, the field amplitudes also become operators and have
the form

Âks =

(
 h

2ωkε0V

)1
2

âks. (17)
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Cavity

Mirror Mirror

Molecule

Photon

Figure 1: A Naphthalene molecule trapped in a cavity.

Furthermore, the energy of the field becomes a Hamiltonian operator

Ĥ = ε0V
∑
ks

ω2kÂksÂ
∗
ks =

∑
ks

 hωk(â
+
ksâks +

1

2
), (18)

where E0 = 1
2

∑
ks  hωk is denoted the zero-point or vacuum energy, which is a

real property of the quantum electromagnetic field and does not have a classical
analog. This term becomes especially important for the work presented in this
thesis, when considering the initial state sampling and normal ordering within
the MQC approach for photons. Finally, the vector field, electric field and mag-
netic field also take an operator form and are given by

Â(r, t) =
∑
ks

(
 h

2ωkε0V

)1
2

eks

[
âkse

i(k·r)−ωkt + â+kse
−i(k·r)−ωkt

]
(19)

Ê(r, t) = i
∑
ks

(
 hωk
2ε0V

)1
2

eks

[
âkse

i(k·r)−ωkt − â+kse
−i(k·r)−ωkt

]
(20)

B̂(r, t) =
i

c

∑
ks

(κ× eks)

(
 hωk
2ε0V

)1
2

eks

[
âkse

i(k·r)−ωkt − â+kse
−i(k·r)−ωkt

]
,

(21)

respectively, where V = (L)3 is the quantization volume, eks denotes the polar-
ization vector and κ = k

|k| .

zero-boundary conditions Considering the cavity QED set-ups investi-
gated throughout this thesis, we impose the so-called zero-boundary conditions
[55, 56] such that Eq. (13) changes to

k =
π

L
(nx,ny,nz), (22)
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where by introducing the normalized mode function as

S(k · r) =
(
2

L

)3/2 3∏
i=1

sin(kiri), (23)

the vector field operator yields

Â(r, t) =
∑
ks

(
 h

2ωkε0V

)1
2

eks
[
âks + â

+
ks
]
S(k · r). (24)

Furthermore, with the matter-photon coupling strength λ ∝ S(k · r), one remark-
able advantage of cavity QED is the possibility of tuning the interaction strength
just by changing the quantization volume V via the mirror distances. Thus, a cav-
ity set-up allows to control and measure a quantum system simply by coupling
it to a finite volume (cavity) defined by walls (mirrors) instead of using com-
plex and expensive external laser set-ups. A schematic of such a cavity set-up
is depict in Fig. 1 exemplary for a trapped Naphthalene molecule. This set-up
is commonly referred to as microcavity, i.e. photonic crystals [57, 58] or other
semiconductor structures [59, 60], where the coupling to the outside mode is
mediated by mirrors and cavity-length scales are in the micrometer regime. Al-
ternatively, there are also nanocavities, i.e. plasmonic cavities [61–64], which have
a reduced spatial dimension in the nanometer regime. Due to the reduced size,
these types of cavities allow higher confinement and, thus, are especially im-
portant for single-molecule strong-coupling [65]. However, the consideration of
losses is substantial in these cases and therefore in this work we, for now, only
focus on microcavity-like set-ups with no losses.

1.1.2 Bridging Quantum Chemistry and Quantum Optics

The interaction between photons and quantum systems is the foundation of an
incredibly wide spectrum of phenomena, ranging from spontaneous emission to
quantum sensing and quantum communication [66]. Although the forefront of
the rapidly expanding domain of cavity-modified chemistry has been strongly
driven by experiments, recent theoretical investigations have revealed comple-
mentary insights [67–71]. The description of chemical processes that are strongly
correlated with quantum light [72–74], requires an accurate and flexible, and
computationally efficient, treatment of the light-matter interactions. Thus, to de-
velop an ab initio theoretical description of cavity modified chemical systems,
extensions to the traditional theoretical tool-kits of quantum optics and quan-
tum chemistry are required.

In Fig. 2 we schematically illustrate the relation between quantum chemsitry
and quantum optics over the level of matter system complexity and the quan-
tumness of the light field. Quantum chemistry (green area in Fig. 2), is able to
handle realistic and large quantum systems, i.e. multi-molecular systems and
solids, by using well known methods like Hartree-Fock, DFT and Coupled Clus-
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Few-Level
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Molecules
and Solids

Matter Theory
 [Complexity]

 Light Theory
 [Quantumness]Classical Light Fields Quantized Light Fields

Quantum Chemistry

Quantum mechnics for complex
systems (electrons + nuclei)

Maxwell's equation
∇⋅E  = ρ/ε0
∇⋅B  = 0
∇×E = - ∂B/∂t
∇×B = µ0j + µ0ε0∂E/∂t 

Quantum Optics
Few-level approximate systems

Quantized photonic fields

|e0>

|e1>

+

Cavity Quantum
Electrodynamics

Complex systems (electrons + nuclei)

Quantized light fields (photons)

Photon

Photon

Figure 2: A schematic overview of the relation between quantum chemsitry and quan-
tum optics over the level of matter system complexity and the quantumness
of the light field. The green area characterizes theory-levels, which can treat
complex matter systems. The blue area contains theory-levels which are able
to take the quantum nature of the light into account. The overlap of both areas
renders the field of interest of this thesis.

ter Theory. However, these methods, if at all, take classical light fields into ac-
count via Maxwell’s equation. Quantum optics (blue area in Fig. 2), on the other
hand, captures the quantum nature of light in great detail. However, quantum
optical models of the matter system are typically over-simplified (few-level) and
therefore break down for realistic systems. Thus, we have to face the question:
Is there a way to bridge quantum chemistry and quantum optics (green-blue
intercept in Fig. 2) in order to treat realistic systems, ideally ab initio, but retain
the quantum nature of light?

Due to the similarity of electron-photon and electron-nuclear problems, simu-
lation methods that are established in the quantum chemistry community, such
as MQC methods and the EF approach, may offer an interesting lead towards
finding a feasible intercept between quantum chemistry and quantum optics.
Recall that MQC methods treat only a few crucial degrees of freedom quantum
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mechanically and apply a classical treatment to the rest of the system. Typically,
the electronic system is treated quantum mechanically, e.g. via Hartree-Fock or
TDDFT, and the nuclei system classically, e.g. via Wigner-dynamics. This builds
on the assumption of the nuclei moving slow compared to the electrons, which
allows the negligence of the nuclear kinetic-energy contribution. However, this
assumption can not be made for an electron-photon system, as photons move,
by far, faster than electrons. Yet, considering that the photonic Hamiltonian in a
matter-free system is a sum over harmonic Hamiltonians for each mode, a classi-
cal Wigner treatment of the photonic system is reasonable and a potential route
to introduce quantized light fields to MQC methods. In the following, we show
how to extend traditional MQC methods to the photonic degrees of freedom, i.e.
quantized light fields. For further analysis, we also extend and investigate the
corresponding exact TDPES within the EF approach for the applied systems.

1.1.3 Hamiltonian and Model Systems

Before we proceed with a discussion of the extension of MQC methods and the
TDPES, we first turn our attention to the Hamiltonian and model systems used
in these approaches. The starting point for our full QED Hamiltonian is the non-
relativistic Pauli-Fierz Hamiltonian in minimal coupling [56, 75]

ĤPF =

Ne∑
l=1

1

2me

[
σl ·

(
−i h∇rl +

|e|

c
Âtot(rl, t)

)]2

+

Nn∑
l=1

1

2Ml

[
S
nl
2
l ·

(
−i h∇Rl +

Z|e|

c
Âtot(Rl, t)

)]2

+
1

2

Ne∑
l6=m

w(|rl − rm|) +
1

2

Nn∑
l6=m

ZlZmw(|Rl − Rm|)

+

Ne∑
l=1

Nn∑
m=1

Zm(|rl − Rm|) +
∑
k,s

 hωkâ
+
k,sâk,s,

(25)

where R, eZ, M, Snl/2 denote the nuclear, and r, e, me, σl the electronic coor-
dinates, charge, mass and spin, respectively. Here, Snl/2 characterizes a vector
of spin nl/2 matrices reflecting the nl/2-value of the spin of the l-th nucleus.
The internal transversal and classical external vector potentials are aggregated
in Âtot.

The minimal coupling in QED is introduced in order to take into account
the influence of charged particles on the electromagnetic field and vice versa.
Therefore, within the minimal coupling p̂l → p̂l − eÂ(rl) the charge current be-
comes the source of the electromagnetic field, while simultaneously modifying it,
where p̂ denotes the momentum operator. This and the analogous formulation
for the nuclei gives rise to the structure of the first and second term in Eq. (25).
However, it is known that this coupling causes local photon-matter interactions,
which, even in a perturbative regime, diverges beyond first order approximation
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and leads to unphysical results [76]. To overcome this issue we assume an en-
ergy cut-off [77] well below 1MeV [75], which is reasonable for the processes
investigated in this thesis, and also neglect the creation of electron pairs, i.e. the
non-relativistic limit. Furthermore, it is also sufficient to assume that the nuclei
can be approximated by positive point charges with spin, since in the low energy
regime only the nuclear motion and not the internal structure (proton, neutrons)
is relevant.

Moreover, as already introduced in Sec. 1.1, we consider the Coulomb gauge,
i.e. the photons only have transversal polarizations s = {1, 2}, for all calculations.
This gives rise to the Coulomb interaction w(|r − r ′|) = e2

4πε0
|r − r ′| (analogously

for the nuclei) among particles, i.e. the interaction of the charge-density operator
and the longitudinal part of the field.

Furthermore, we consider the dipole approximation, where the wavelength of
the electromagnetic field is assumed to be much larger than the spatial extension
of the matter system. As a result, we can treat the mode functions as constant
and expect only the total dipole element of the matter and the uniform electric
field to contribute to the coupling.

Next, instead of describing the free photonic field in terms of creation and an-
nihilation operators we rewrite the last term of Eq. (25) in terms of displacement
q̂ and momentum p̂ operators via

q̂ks =

√
 h

2ωk
(â+ks + âks) (26)

p̂ks = i

√
 hωk
2

(â+ks − âks). (27)

Finally, with the assumption of no classical external fields and no spin-coupling,
the non-relativistic Hamiltonian in dipole approximation and Coulomb gauge
for Ne electrons, Nn nuclei, and Np quantized photon modes is defined as [53,
56, 70, 75, 78–82]:

Ĥ(q, r,R) = Ĥp + Ĥe + Ĥn + Ĥen + Ĥnp + Ĥep + Ĥpen. (28)

The first term of Eq. (28) is the free photonic field and characterizes the cavity-
photon Hamiltonian

Ĥp =
1

2



2Np∑
α=1

p̂2α +ω
2
αq̂

2
α


 = T̂p + V̂p, (29)

where α denotes the photon mode and α = {1, ..., 2Np} due to the two polariza-
tion possibilities. The second term of Eq. (28) denotes the electronic Hamiltonian
given as

Ĥe =

Ne∑
i=1

p̂2i
2me

+
e2

4πε0

Ne∑
i>j

1

|ri − rj|
= T̂e + V̂ee. (30)
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Similarly structured, the third term of Eq. (28) describes the nuclear Hamiltonian
given as

Ĥn =

Nn∑
I=1

P̂2I
2MI

+
e2

4πε0

Nn∑
i>j

ZIZJ
|RI − RJ|

= T̂n + V̂nn. (31)

The remaining terms of Eq. (28) denote the couplings between the subsystems.
Specifically, the electron-nuclear coupling, in the Coulombic interaction, is given
as

Ĥen = −

Ne∑
i=1

Nn∑
J=1

e2Z

|ri − RJ|
, (32)

the nuclear-photon coupling, in dipole approximation, is given as

Ĥnp =

2Np∑
α=1

ωαq̂αλα ·
Nn∑
I=1

eZIRI, (33)

and the electron-photon coupling, in dipole approximation, is given as

Ĥep = −

2Np∑
α=1

ωαq̂αλα ·
Ne∑
i=1

eri. (34)

with the matter-photon coupling strength given as

λα =
√
4πSα(kα ·X)eα, (35)

where Sα denotes the mode function, e.g. a product of sine-functions for the case
of a cubic cavity [56, 79], kα the wavevector, and X the total dipole of the system.
In particular, these mode functions introduce a dependence of the coupling con-
stants on the quantization volume of the electromagnetic field. Finally, the last
term of Eq. (28) represents the self-polarization of the matter in the radiation
field given as

Ĥpen =
1

2

2Np∑
α=1

(
λα ·

(
Nn∑
I

ZIRI −
Ne∑
i

eri

))2
, (36)

which is essential for a mathematically well-defined light-matter interaction.
Without Ĥpen the Hamiltonian is unbounded from below, and, additionally, looses
its translational invariance [83, 84]. In Sec. 3.2, we further emphasize its increas-
ing significance on chemical reactions the more photon modes are included.

To evaluate qualitative and quantitative properties and potential theoretical
challenges of the MQC methods and the EF approach, we require credible bench-
marks. However, benchmarking both extended methods, demands an exact refer-
ence solution and, thus, at first, restricts the applicable Hilbert-space of interest.
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To focus on the evolution of the photonic degrees of freedom, we start by re-
stricting our matter part to a two and three level atomic system, as detailed in
[O1–O3] and, then, extend this to a full molecular model system, i.e. the Shin-
Metiu model [85], as presented in [O4, O5]. The following paragraphs explain
the applied model systems more detailed. Note that the following equations are
given in atomic units ( h = e2 = me = 1).

coupled electron-photon model system The work in [O1–O3], see
Chap. 2, investigates correlated electron-photon systems by considering an one-
dimensional model of a cavity in which a few-level (two and three levels) system
interacts with either one [O2] or 400 [O1, O3] cavity modes in dipole approxima-
tion [70, 86]. Fig. 3 shows a schematic of the applied model.

The Hamiltonian for this model system is given as

Ĥ =

m∑
k=1

εk |k〉 〈k|+
1

2

2Np∑
α

(
p̂2α +ω

2
αq̂

2
α

)

+

2N∑
α

m∑
k,l=1

µklωαλα(rA)q̂α |k〉 〈l| ,
(37)

where µkl denotes the transition moment, λα the coupling strength,ωα the mode
frequency, rA the atomic position and m the number of atomic energy levels.
Furthermore, with the coupling of a 1D-cavity given as

λα =

√
2

ε0L
sin(kαrA), (38)

with kα = ωα
c = απ

L and the atomic position fixed at rA = L
2 , where L is the

cavity length, only half of the cavity modes (only the odd modes) couple to the

atomic system by symmetry λα =
√

2
ε0L

sin(απ2 ). For more details on the precise
parameter choice we refer to Chap. 2.

|e0>
|e1>
|e2>

Photon

Figure 3: A schematic of a few-level atomic system (green) trapped in a cavity. Here |e0〉
denotes the electronic groundstate, |e1〉 the electronic first excited state and
|e2〉 the electronic second excited state.
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coupled electron-nuclei-photon model system To approach more
realistic systems, we replace the few-level system from above with a molecular
model system and include the nuclei degrees of freedom. Hence, we employ
the minimal model of Shin and Metiu [85, 87, 88], which consists of three ions
and a single electron, where two ions are fixed at a distance of LI and the third
ion and the electron can move between the two fixed ions. This model has been
proven to be remarkably instructive for studying adiabatic and nonadiabatic ef-
fects in cavity-free cases [87–90] as well as in-cavity cases [82, 91]. Fig. 4 depicts
a schematic of this model system. We study nonadiabatic effects of PCET within
a cavity set-up by coupling the Shin-Metiu minimal model to the photonic de-
grees of freedom. The non-relativistic photon-matter Hamiltonian in the dipole
approximation in the Coulomb gauge [56, 75, 78, 82], thus, takes the from

Ĥ =−
1

2M

∂2

∂R2
+−

1

2

∂2

∂r2
+
1

2

∑
α

(
p̂2α +ω

2
αq̂

2
α

)

+
∑
α

ωαλαq̂α (ZR− r) + V̂m + V̂sp,
(39)

with V̂m the molecular potential given as

V̂m =
∑
σ=±1




1

|R+ σLI
2 |

−

erf

(
|r+

σLI
2

aσ

)

|r+ σLI
2 |


−

erf
(
|R−r|
af

)

|R− r|
, (40)

and V̂sp the self-polarization term given as

V̂sp =
1

2

∑
α

(λα · (ZR− r))2 . (41)

Note that in the single-mode coupling investigated in [O4] this term has a neg-
ligible effect and therefore can be discarded. In contrast, considering the multi-
mode coupling studied in [O5] this term has an significant impact and neglecting
it does not only yield quantitative differences of the results but also qualitatively
changes the physics tremendously. Furthermore, the electron-photon coupling
strength λα generally depends on the mode function of the cavity. However,
for both cases we will take it as a constant, assuming that the cavity is much
longer than the spatial range of the molecular dynamics. For the EF approach
[O4] we couple the molecule to one single photon mode, whereas in the MTEF
approach [O5] we first investigate dynamics with coupling to one photon mode,
in comparison to an exact reference solution, and then, with the exact reference
solution out of reach, extend the coupling up to 440 photon modes. Again, with
the position of the molecule fixed at L/2, only half of the cavity modes couple
by symmetry. For more details about the precise parameter choice we refer to
Chap. 3.
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Figure 4: A schematic of the molecular Shin-Metiu model system trapped in a cavity.
This model includes two fixed ions (black) in a distance LI. The third ion (ma-
genta) and the single electron (purple) given at a distance R and r can move in
between these fixed ions.

1.2 mixed-quantum classical mehtods for photons

In this section we outline the extension of the MQC methods, traditionally in-
troduced to electron-nuclear systems, to coupled light-matter systems. With the
intention not to exceed the scope of this introduction, we do not elaborate on the
traditional electron-nuclei MQC theory in detail. We refer the interested reader
to the following references for more information and technical background on

• the MTEF method [15, 17–19],

• fewest switch surface hopping algorithms [29–34],

• semiclassical mapping methods [20–26].

Furthermore, Sec. 2.3 gives an overview of the different methods within the
light-matter framework. However, note that this thesis is mainly concerned with
the extension of the MTEF method to light-matter interaction, see Sec. 2.1 and
3.2. Thus, the following paragraphs present the central concepts of MQC meth-
ods for photons, i.e. photonic initial state sampling, operator normal ordering
and spBO-surfaces. The section is concluded by an overview on the numerical
implementation, see Fig. 7.

1.2.1 Wigner Transformation for Photons

In quantum mechanics the concept of phase-space is obstructed by the quanti-
ties being described by their probability and, moreover, obeying the uncertainty
principle [92]. For example, considering a classical particle, which has a phase-
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space distribution Pcl(q,p), where q and p denote its position and momentum
respectively, the average of some arbitrary function A(q,p) can be calculated as

〈Acl〉 =
∫
dq

∫
dpA(q,p)Pcl(q,p). (42)

In contrast, in quantum mechanics the particle is defined by its density matrix
ρ̂ and the corresponding average (expectation value) of an arbitrary quantum
operator Â(q̂, p̂), where q̂ and p̂ are now operators, can be calculated by

〈Â〉qm = Tr 〈Âρ̂〉 . (43)

Therefore, in order to obtain a phase-space representation of the quantum
state, a connection between Eq. (42) and Eq. (43) is required. However, it is
known that for a given classical A(q,p) the corresponding quantum operator
Â(q̂, p̂) is not uniquely defined [92]. Nonetheless, this problem can be overcome
by defining a so-called quasi-distribution PQ(q,p) and using well defined corre-
spondence rules such that

〈Â〉qm =

∫
dq

∫
dp A(q,p)PQ(q,p). (44)

One well-known quasi distribution was introduced by Wigner [93] in order to
find quantum corrections to classical mechanics. This quasi-distribution has been
studied extensively [92, 94–99] and renders a central concept for classical and
semiclassical ensemble-trajectory methods. More precisely, the Wigner distribu-
tion is given by [100]

W(q,p) =
1

2π h

∫
e

−ipy
 h ψ(q+

y

2
)ψ(q−

y

2
)dy, (45)

where ψ denotes the wavefunction of the particle. The expectation value of the
quantum operator Â is defined as

〈Â〉 =
∫ ∫
W(q,p)Ã(q,p)dqdp, (46)

where Ã denotes the Weyl-transform [101, 102] and is given as

Ã(q,p) =
∫
e

−ipy
 h

〈
q+

y

2

∣∣∣ Â
∣∣∣q− y

2

〉
dy. (47)

Integrating the Wigner function over p yields
∫
W(q,p)dp = ψ∗(q)ψ(q) by apply-

ing the relation
∫

exp
[
ipq
 h

]
dp = 2 hδ(q). The analogous integration for q yields∫

W(q,p)dq = φ∗(p)φ(p), where Ψ(q), φ(p) denote the probability density in
position and momentum space respectively. With the projection of W(q,p) on q
defining the probability distribution in q and the projection of W(q,p) defining
the probability distribution in p, the Wigner function characterizes a phase-space
distribution represented by the wavefunction Ψ(q). In other words, the Wigner
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function introduces a quantum correction to classical statistical mechanics by
transforming the wavefunction to a quasi-probability in phase-space.

The Wigner function is also a central and important concept for the extension
of the MQC methods to photonic degrees of freedom, i.e. the sampling of the
initial photon state. Even though the photonic degrees of freedom are defined
classically, quantum effects can be introduced via the initial state obtained from
the Wigner distribution. Note that this corresponds to properly accounting for
the quantum statistics of the initial vacuum field. In the studied MQC method
for photons, see Secs. 2.1, 2.3 and 3.2, we consider a vacuum in the cavity at
time zero, i.e. no photon, and, thus, the Wigner transform of this groundstate
yields a Gaussian phase-space distribution. More precisely, the free photonic
field Hamiltonian is given by an harmonic oscillator structure as

Ĥp =
1

2

(∑
α

p̂2α +ω
2q̂2α

)
(48)

and the corresponding groundstate wavefunction is

Ψ0(q) =
∑
α

(ωα
π h

)1
4 exp

[
−
ωαq̂

2
α

2 h

]
. (49)

Inserting Ψ0(q) into the Wigner transform of Eq. (45) then yields a Wigner dis-
tribution

W0(q,p) =
∏
α

1

π h
exp

[
−
p2α
ωα

−
ωαq

2
α

 h

]
, (50)

where Eq. (50) defines the distribution for the photonic initial state sampling.
Here α, again, denotes the photon mode. Note that, although not investigated
in this work, the Wigner transform could also be applied for excited photonic
states. We briefly discuss this possible future extension in Chap. 4.

1.2.2 Vacuum Fluctuation and Normal Ordering

Quantum mechanical operators underlie commutation relations, which makes
the order in which the operators occur crucial [103]. More precisely, quantum
mechanical particles, such as photons (or alternatively phonons), obey the Bose-
Einstein statistics and therefore satisfy the following commutation relation

[â, â+] = 1→ ââ+ − â+â = 1, (51)

where â+, â compactly denote the creation and annihilation operator, respec-
tively. The resulting non-commutativity â+â 6= ââ+ incurs the so-called ordering
problem of the operators and plays an important role in the construction of quan-
tum operators and the calculation of their expectation values. If all annihilation
operators are on the right hand side, i.e. for calculations of number or coherent
state expectation values, the ordering is called normal ordering, denoted as : Ô :
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Figure 5: An example of the difference between normal ordered photonic field intensity
(red) and not normal ordered photonic field intensity (black) at the initial time.
The inset depicts a zoom-in of the peak at the atomic position. Figure adapted
from [O1].

for an arbitrary operator Ô. This normal ordering is especially important within
the MQC approach for photons, because non-normal ordered operators yield re-
sults that include the vacuum fluctuation. Although being essential, the vacuum
fluctuation is a typically non-measurable effect in experiments [104, 105] and
therefore needs to be removed from the results, i.e. by normal ordering. In other
words, for the calculation of the electric field and the field intensity it has to be
ensured that both observables are zero when in the vacuum state, irrespective
of the number of photon modes in the cavity field (note that all observables in
the following are given in atomic units). The effect of this operator ordering is
particularly evident for the photon number operator

: N̂pt :=
1

2

∑
α

(
p̂2α
ωα

+ωαq̂
2
α − 1

)
. (52)

Here the normal ordering produces a constant shift due to the zero-point energy
term, i.e. −2N

2 = −N, where 2N is the maximum mode number. However, this
offset can become rather complex, e.g for the quantized field intensity operator,
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or, even more so, for correlation functions. Fig. 5 shows this effect by plotting
the normal ordered electric field intensity given as

: Ê2(r, t) :=: Î(r, t) := 2
∑
α

ωαζ
2
α(r)q̂

2
α(t) −

∑
α

ζ2α(r), (53)

where

ζα(r) =

√
ωα

ε0L
sin
(απ
L
r
)

, (54)

against its canonical counterpart. In addition to the constant shift, the normal
ordering also eliminates oscillations observed in the canonical field intensity near
boundaries and matter position. Note that the canonical field intensity shown in
Fig. 5 exactly corresponds to the vacuum fluctuation of the system.

This shift gets even more complex when the second order correlation function
g2 for the photon field is considered. This function is frequently used in quantum
optics to discriminate between classical light (g2 = 1) and non-classical light that
exhibits photon bunching (g2 > 1) or photon anti-bunching (g2 < 1) [106]. More
precisely, in the case of a spatial second order correlation function given at time
t as

ĝ2(r1, r2, t) =
〈Ê+(r1, t)Ê+(r2, t)Ê(r2, t)Ê(r1, t)〉

〈Î(r1, t)〉 〈: Î(r2, t)〉
, (55)

the numerator of g2, also referred to as G2(r1, r2, t), takes the complex normal-
ordered form of

: Ĝ2(r1, r2, t) :=4
∑
α

ω2αζα(r1)ζα(r2)ζα(r2)ζα(r1)q̂
4
α(t)

−
∑
αβ

(
4ζβ(r1)ζβ(r2)ζα(r1)ζα(r2) + ζ

2
β(r2)ζ

2
α(r1)

+ ζ2β(r1)ζ
2
α(r2)

)
· 2ωαq̂2α(t).

(56)

Considering the time-correlation function the commutation operators are ad-
ditionally time dependent, thus further increasing the complexity of the normal
ordering. For the frequently assumed case of ∆τ = 0, with t2 = t1 + ∆τ, the
time-correlation function at position r for a single photon mode is given as

ĝ2(r, t) =
〈N̂pt(t)

(
N̂pt(t) − 1

)
〉

〈N̂pt(t)2〉
, (57)

and : G2(r, t) : takes the normal ordered form of

: Ĝ2(r, t) :=
1

4

(
p̂(t)

ω2
+ p̂(t)2q̂(t)2 + q̂(t)2p̂(t)2 −

4p̂(t)2

ω
−ωq̂(t)2 + 3+

ω2q̂(t)4

4

)
.

(58)
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However, the remaining momentum and displacement operator multiplica-
tions (p̂2q̂2 + q̂2p̂2) in Eq. (58) additionally require a Weyl transform [21, 101,
102]. Complementary to the Wigner transform, which guarantees the correct
phase-space representation for the wavefunction, the Weyl transform ensures
the correct phase-space representation of the operators corresponding to physi-
cal observables. More precisely, applying the Weyl transform (indicated by the ∼

operator) as [100]

ˆ̃q2p̂2 + ˆ̃p2q̂2 = 2q2p2 − 1, (59)

produces a constant shift (−1) and therefore yields

: G2(r, t) :=
1

4

(
p(t)

ω2
+ 2q(t)2p(t)2 −

4p(t)2

ω
−ωq(t)2 + 2+

ω2q(t)4

4

)
, (60)

for the classical limit of the time-correlation function. Note that a classical limit
without Weyl ordering, on the other hand, would yield 2p2q2 (without a shift).

1.2.3 Self-Polarization-Modified Born-Oppenheimer Surfaces

The concept of PESs plays a central role for the simulation and analysis of MQC
methods e.g., (cavity) BO-surfaces [14, 82], polaritonic surfaces [107, 108] or TDPES
[35, 36] for the analyses of coupled dynamics. However, the contribution of the
self-polarization term, see Eq. (36), has so far been neglected for PESs in cavi-
ties. This is reasonable in many cases, especially within the commonly applied
single (resonant) photon mode coupling. Also, for the systems investigated in
[O1–O4] the self-polarization provably has no impact on the dynamics and sur-
faces. Nonetheless, recent publications emphasize the overall importance of this
term [83, 84], particularly when assuming the ultra-strong coupling regime, even
within single-mode coupling [71]. In line with these publications, we find that,
the closer we get to modeling realistic systems, i.e. full electron-nuclei-photon
systems coupled to multiple photon modes, this term can become highly signif-
icant [O5].

To analyze the impact of the self-polarization term, we define the spBO-surface

Ĥ
sp
BOΦ

sp
BO = εspBO(R)Φ

sp
R,BO, (61)

where HspBO defines the traditional BO-Hamiltonian plus the self-polarization
term, ĤspBO = T̂e + V̂m + V̂sp with T̂e the electronic kinetic term, V̂m the molec-
ular potential and V̂sp the self-polarization term. See Sec. 3.2 for a more com-
prehensive description. Fig. 6 shows the ground and first excited surfaces (black
curves) of the molecular model system investigated in [O5] exemplary for a sin-
gle photon mode and 10, 40, 200, 440 photon modes. For the single-mode case in
Fig. 6(a) the BO-surfaces and the spBO-surfaces are essentially identical. However,
the more photon modes are accounted for, these surfaces show an increasing
difference from the original form with significant changes in the overall slope
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Figure 6: The self-polarization-modified BO surfaces for 1 (a), 10 (b), 40 (c), 200 (d) and
440 (e) photon-mode coupling depict for the ground and first excited surface
within the model investigated in [O5], where R denotes the nuclear coordinate.
Figure adapted from [O5]

as well as the size and position of the avoided crossing Fig. 6(d–e). This clearly
shows the impact of the self-polarization term on the resulting dynamics.

We now additionally define the 1-photon spBO-surface by shifting the spBO-
surface uniformly by the energy of the photon  hωα. For a single photon mode
coupling this shift yields well separated surfaces, see Fig. 6(a). However, the
more photon modes are accounted for, these surfaces develop band-like struc-
tures indicated by the colored areas in Fig. 6(b–e). These areas represent parallel
surfaces separated by the mode spacing. Specifically, the frequencies chosen to
generate Fig. 6 are given by ωα = 0.1 + απc

L where 0.1 is the initial resonant
frequency and α = {−N

2 · · · N2 }. Here L denotes the cavity length and N the num-
ber of modes ranging from 0 (single mode) to 10, 40, 200, 440. Therefore, by
accounting for more photon modes, also the overlap of the band-like surfaces
increases, as shown in Fig. 6(c–e), and suggests that a nuclear wavepacket, evolv-
ing between excited state and groundstate, will encounter an increasing number
of avoided crossings.

Subsequently, we have two microscopic mechanisms that are fundamentally
responsible for differences in the corresponding dynamics compared to single
mode simulations: First, the self-polarization term grows in significance with
more modes with the effect that spBO-surfaces are distorted significantly away
from their cavity-free shape (compare pink to blue surfaces). Second, the 1-
photon-spBO-bands become wider and increasingly overlapping, yielding a very
mixed electronic character and continual exchange between surfaces. Again, see
Sec. 3.2 for a more detailed discussion. Note that these changes of the PES occur
without changing the matter-photon coupling strength and therefore could yield
a new way to control and change chemical reactions via the self-polarization
without the need to explicitly change the light-matter coupling strength itself.
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1.2.4 Numerical Implementation

This section outlines the numerical implementation of the MQC dynamics meth-
ods for photons. Recall that we aim to treat the electronic degrees of freedom
quantum mechanically and the nuclei and photonic degrees of freedom via clas-
sical Wigner dynamics, see Sec. 1.1.2. For the correlated electron-photon system
this implies a classical treatment of the photons, see Secs. 2.1 and 2.3. For the
full electron-photon-nuclei system, on the other hand, we explore the classical
treatment of both photons and nuclei, see Sec. 3.2. Therefore, the numerical im-
plementation presented below focuses on the latter case, as it is the most general.

Fig. 7 shows a schematic of the algorithm for the resulting full electron-photon-
nuclei system. To obtain the initial state distribution, we first calculate the Wigner
transformation of the photonic and nuclear initial density operators ρ̂0,Wp(qα,pα)
and ρ̂0,Wn(Rβ,Pβ), respectively. Again α denotes the photonic modes and, addi-
tionally, β the nuclear degrees of freedom. Note that as we consider no photon
to be in the cavity at time zero, i.e. vacuum state at zero temperature, for all
calculations performed in this work, the Wigner transform yields a Gaussian
distribution with frequency-depending variance. Furthermore, we also choose
the nuclear initial distribution to be Gaussian. Thus, to obtain a set of initial
conditions (qjα(0),p

j
α(0)), (R

j
β(0),P

j
β(0)) for the trajectory ensemble, we perform

a Monte Carlo sampling from the photonic and nuclear Wigner transforms for
each trajectory j. Furthermore, as the electronic degrees of freedom are treated
quantum mechanically, we choose the initial electronic state to be excited. We
then generate an ensemble of trajectories, by independently evolving each initial
condition |I

j
total〉, as shown in Fig. 7, according to the MTEF electron-photon-

nuclei correlated equations of motion. The corresponding equations of motion
for multiple photon modes α, a single nuclear degree of freedom and two BO-
PESs are given as

q̈jα(t) = −ω2αq
j
α −ωαλα(Z〈R〉j − 〈r〉j) (62)

MR̈j(t) = −〈∂RεBO(Rj)〉−
∑
α

ωαλαq
j
α +

∑
α

(
λ2α · (Z〈R〉j − 〈r〉j)

)
(63)

i∂t

(
C1(t)

C2(t)

)
=

(
h11 h12

h21 h22

)(
C1(t)

C2(t)

)
, (64)

with the diagonal matrix elements given as

hkk =ε
k
BO(R

j) +
∑
α

ωαλαq
j
α(ZR

j − rkk(R
j))

+
1

2

∑
α

λ2α ·
(
(ZRj)2 − 2ZRjrkk(R

j) + r
(2)
kk (R

j)
)

,
(65)
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Figure 7: Overview of the numerical implementation of the MQC dynamics for the full

electron-nuclei-photon correlated system with a quantum-classical-classical
treatment, respectively. The upper panels (magenta) show the initial state cal-
culation, i.e. Wigner sampling for the photons and nuclei and the choice of
an excited electronic state. Then, the evolution of each initial condition is per-
formed independently according to the applied electron-photon-nuclei corre-
lated equations of motion (cyan) of Eqs. (62), (63), (64). The average values of
an arbitrary observable Ô are constructed by summation over the entire trajec-
tory ensemble and normalizing the result with respect to the total number of
trajectories Ntraj (green), see also Eq. (68).
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and the off-diagonal matrix elements given as

hkl =i

(
Pj

M
dkl(R

j)

)
−
∑
α

ωαλαq
j
αrkl(R

j)

+
1

2

∑
α

λ2α ·
(
−2ZRjrkl(R

j) + r
(2)
kl (R)

) (66)

hlk =− i

(
Pj

M
dlk(R

j)

)
−
∑
α

ωαλαq
j
αrlk(R

j)

+
1

2

∑
α

λ2α ·
(
−2ZRjrlk(R

j) + r
(2)
lk (R

j)
)

.
(67)

Eqs. (62), (63), (64) give the equations of motion for the photons, nuclei and elec-
trons respectively. Furthermore, dkl(R) = 〈ΦBOR,k |∂RΦ

BO
R,l 〉 denotes the nonadiabatic

coupling term and r(n)kl = 〈ΦBOR,k | r
n |ΦBOR,l 〉 the electronic transition dipole moment.

The coefficients Ck(t) are the expansion coefficients of the electronic wavefunc-
tion in the BO basis. Finally, we construct the average values of an arbitrary
observable Ô by summation over the entire trajectory ensemble and normaliz-
ing the result with respect to the total number of trajectories in the ensemble
Ntraj

〈Ô(t)〉 = 1

Ntraj

Ntraj∑
j

Oj(t). (68)

1.3 time-dependent potential energy surface

We now move to the concept of TDPES within the EF approach and its extension to
the photonic degrees of freedom. The concepts of PES and, even more so, TDPES
allow to obtain an intuitive understanding of both adiabatic and nonadiabatic
molecular dynamics. Furthermore, besides corroborating the analysis of the re-
sults found within the MQC methods, they also provide a rigorous starting point
for new approximate MQC methods. Again, with the intention not to exceed the
scope of this introduction, we do not elaborate on the traditional electron-nuclei
EF approach in detail. For more information and technical background we re-
fer the interested reader to [35, 36, 109–112]. Furthermore, more details on the
derivation of the equations in light-matter systems can also be found in Secs. 2.2
and 3.1.

1.3.1 Traditional Exact Factorization Approach

In general, the dynamics of coupled systems is given by the solution of the time-
dependent Schrödinger equation, where the full wavefunction contains the com-
plete information of the coupled system. On the one hand, this high-dimensional
wavefunction is very difficult to interpret intuitively and, on the other hand,
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in many cases only one of the subsystems is of interest. For electron-nuclear
correlated systems a popular approximation to investigate and understand sub-
systems is the BO approximation. However, as this approximation assumes that
the electronic system remains always in the instantaneous eigenstate associated
with the nuclear configuration, it misses the physics associated with nonadia-
batic effects, including wavepacket branching and decoherence. One approach
that overcomes these caveats is the EF approach (alternatively this could also
be approached via the conditional wavefunction approach [113]). Although the
form of the EF approach is similar to the BO approximation, EF includes all these
effects exactly in the coupling terms. More precisely, the EF approach may be
viewed as a reformulation of the quantum mechanics of interacting coupled
systems, where the full molecular wavefunction (electronic and ionic) can be
factorized as

Ψ(r, R, t) = χ(R, t)ΦR(r, t) (69)

and χ(R, t) characterizes the marginal amplitude and ΦR(r, t) the conditional
amplitude [35, 36, 109, 110]. This factorization is unique, provided that ΦR
satisfies the Partial Normalization Condition (PNC)

∫
dr|ΦR(r, t)|2 = 1, up to a

gauge-like transformation. The equation for the nuclear amplitude χ has a time-
dependent Schödinger-like form [35, 36, 111, 112] with a time-dependent vector
potential and a time-dependent scalar potential, which include all effects of cou-
pling to the electronic system and external fields. The latter potential plays an
analogous role as the BO-PES, but now time-dependent and exact, and is denoted
as TDPES.

More precisely, in the absence of a time dependent external field the electron-
nuclear Hamiltonian can be written as [89]

Ĥ = ĤBO(r, R) + T̂n(R), (70)

where R and r denote the nuclear and electronic coordinates, respectively, ĤBO(r, R)

characterizes the traditional BO electronic Hamiltonian and Tn(R) the nuclear ki-
netic energy. Furthermore, the exact electronic wave function satisfies

(
Ĥel − ε(R, t)

)
ΦR(r, t) = i∂tΦR(r, t), (71)

where the electronic Hamiltonian is given by

Ĥel(r, R, t) = ĤBO(r, R) + Ûen[ΦR,χ], (72)

with

Ûen[ΦR,χ] =
Nn∑
ν=1

1

Mν

[
(−i∇ν − Aν(R, t))2

2

+

(
−i∇νχ(R, t)
χ(R, t)

+ Aν(R, t)
)
(−i∇ν − Aν(R, t))

]
.

(73)
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Here, Mν denotes the nuclear mass, Nn the number of nuclei accounted for in
the system and Aν(R, t) the vector potential. The time evolution of the nuclear
wave function is governed by the Schrödinger equation

(
Nn∑
ν=1

(−i∇ν + Aν(R, t))2

2Mν
+ ε(R, t)

)
χ(R, t) = i∂tχ(R, t), (74)

where ε(R, t) now defines the TDPES given by

ε(R, t) = 〈ΦR(t)| Ĥel(r, R, t) − i∂t |ΦR(t)〉r (75)

and the vector potential given as

Aν(R, t) = 〈ΦR(t)|− i∇ν |ΦR(t)〉r . (76)

The factorization in Eq. (69) is unique up to a gauge-like transformation, pro-
vided the PNC is satisfied. More precisely, Eqs. (71), (74–76) are form-invariant
under phase transformation

ΦR(r, t) = eiΘ(R,t)ΦR(r, t), (77)

χR(r, t) = e−iΘ(R,t)χR(r, t), (78)

with the potentials undergoing a gauge-like transformation

Aν(R, t) = Aν(R, t) +∇νΘ(R, t), (79)
εν(R, t) = εν(R, t) + ∂tΘ(R, t). (80)

In practice, to calculate the TDPES, we have to perform an inversion [36] by
first solving the time-dependent Schrödinger equation Ψ(r, R, t) on a grid and
then extract

χ(R, t) = |χ(R, t)|eiS(R,t), (81)

by using the relation

|χ(R, t)| =

√∫
dr|Ψ(R, r, t)|2, (82)

and

S(R, t) =
∫R(Im ∫

drΨ(r, R ′, t)dΨ(r,R ′,t)
dR ′

|χ(R ′, t)|2

)
dR ′. (83)

After inserting Eq. (81) in

ΦR(r, t) =
Ψ(r, R, t)
χ(R, t)

, (84)
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we obtain the final TDPES from combining Eq. (84) and Eq. (75).
It is important to note that, in contrast to the BO approximation, there is no

assumption on different timescales in the EF approach and therefore neither in
the calculation of the TDPES. This makes it particularly appealing for systems
that include photonic degrees of freedom as, for example, the assumption that
photons are slower than electrons is invalid. Therefore, now considering the full
matter-photon system involving electrons, photons and nuclei, there are three
possibilities for such a factorization and we expect each to be useful in different
contexts. The derivation of the TDPES for these matter-photon coupled systems
proceeds quite analogously to [35, 36, 111] and the following section shows these
factorization and their corresponding TDPES.

1.3.2 Exact Factorization Approach for Photons in Cavities

The first factorization possibility, explored in detail in Sec. 2.2, chooses the pho-
tonic system as the marginal, such that:

Ψ(q, r, R, t) = χ(q, t)Φq(r, R, t). (85)

This yields a time-dependent Schrödinger equation for the photonic system with
the PNC

∫
drdR|Φq(r, R, t)|2 = 1 for each field-coordinate q and all times t. Within

this factorization form, the scalar potential and vector potential contain the feed-
back of the matter-system on the photonic field. In free space, the potential acting
on the photons is quadratic, as follows from the free photon field Hamiltonian
in Eq. (29). However, in the presence of matter, the potential determining the
photonic state deviates from its harmonic form due to interactions with the mat-
ter. This deviation was also introduced and demonstrated within the cavity-BO
approximation [82] and the Born-Huang expansion [114]. However, the EF now
renders this concept exact, time-dependent, and beyond any adiabatic assump-
tions.

Considering the full matter-photon Hamiltonian, we can define

Ĥm(r, R, q, t) = ĤqBO(r, R, q) + Ûep[Φq,χ], (86)

where additionally to the nuclear and electronic coordinates q denotes the pho-
tonic displacement coordinates. Furthermore, HqBO characterizes the BO Hamil-
tonian for the photonic system defined as

ĤqBO = Ĥe + Ĥn + Ĥen + Ĥpen + Ĥep + Ĥnp +
1

2

2Np∑
α=1

ωαq̂
2
α (87)
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and Ûen is given as

Ûen[Φq,χ] =
2Np∑
α=1

[
(−i∂qα − Aα(q, t))2

2

+

(
−i∂αχ(q, t)
χ(q, t)

+ Aα(q, t)
)
(−i∂α − Aα(q, t))

]
.

(88)

In analogy to the traditional EF we obtain the factorization equations
(
Ĥm − ε(q, t)

)
Φq(r, R, t) = i∂tΦq(r, R, t), (89)

and


2Np∑
α=1

(−i∂qα + Aα(q, t))2

2
+ ε(q, t)


χ(q, t) = i∂tχ(q, t), (90)

with the TDPES given as

ε(q, t) =
〈
Φq(t)

∣∣ Ĥm(q, r, R, t) − i∂t
∣∣Φq(t)

〉
r,R , (91)

and the vector potential defined by

Aα(q, t) =
〈
Φq(t)

∣∣− i∂qα
∣∣Φq(t)

〉
r,R . (92)

Further, in analogy to Eqs. (77–80), Eqs. (89–92) are also form-invariant under
phase transform with the potentials undergoing the gauge-like transformation.
However, in contrast to the traditional EF approach χ(q, t) now characterizes
the displacement field density and reproduces the full wave function with the
relation given by

|χ(q, t)| =

√∫
drdR|Ψ(q, r, R, t)|2. (93)

Therefore, observables associated with the multiplication of q, e.g. the electric
field, can be directly calculated from χ(q, t) such that

E(r, t) =
∑
α

ωαλα(r, t)
∫
dqqα|χ(q, t)|2. (94)

Finally, the TDPES for the photonic degrees of freedom can be obtained analo-
gously to the inversion process introduced for traditional EF. In particular, con-
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sidering the one-dimensional two-level system investigated in Sec. 2.2 within the
introduced EF approach for photons, the TDPES takes the form

ε(q, t) = εBO(q, t) + εkin(q, t) + εGD(q, t) (95)

εqBO(q, t) = 〈Φq(t)| ĤqBO(q, r, t) |Φq(t)〉r (96)

εkin(q, t) = 〈Φq(t)|
2Np∑
α

∂2α
2

|Φq(t)〉r (97)

εGD(q, t) = 〈Φq(t)|− i∂t |Φq(t)〉r , (98)

where the total TDPES ε(q, t) is decomposed into the weighted photonic BO (qBO),
kinetic (kin), and gauge-dependent (GD) components. Note, that in general there
is also a vector potential acting on the photons, which needs to be considered.
However, as for all calculations within the EF approach we consider the one-
dimensional nature of each photon-displacement mode, the vector potential can
be chosen to be zero. In other words, one can always transform to a gauge in
which the TDPES is the only potential driving the photonic dynamics.

1.3.3 Exact Factorization Approach for Nuclei in Cavities

Another possibility, which is perhaps the most natural extension of the tradi-
tional exact factorization is explored in detail in Sec. 3.1. Here the nuclear sys-
tem is chosen as marginal and the photons are included in in the conditional
amplitude, such that

Ψ(q, r, R, t) = χ(R, t)ΦR(q, r, t). (99)

Here the PNC
∫
dqdr|ΦR(q, r, t)|2 = 1 for every nuclear configuration R at each

time t. This, again, yields a time-dependent Schrödinger equation for the nu-
clear system. The time-dependent vector and scalar potential now include the
effects on the nuclei of coupling both to the electrons and photons. This factor-
ization is particularly useful for studying light-induced nonadiabatic chemical
dynamics phenomena, when the quantum nature of light is expected to play
a role, e.g cavity-induced suppression of proton-coupled electron-transfer. This
phenomena was already introduced by an approximation based on the normal
BO approximation for the electron-ion dynamics in the strong coupling regime
[115]. However, again, the EF approach now renders this concept exact, time-
dependent and beyond any adiabatic assumptions.

Note that due to the similarity of the equations of this EF approach and the
traditional EF approach, we only discuss the most essential equations here. Con-
sidering the full matter-photon Hamiltonian, with the nuclear system being the
marginal, the factorization equations are

(
ĤBO + Ĥp + V̂pm + V̂sp + Ûep−n − ε(R, t)

)
ΦR(r, q, t) = i∂tΦR(r, q, t), (100)
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where ĤBO denotes the BO Hamiltonian, Ĥp the free photonic field, V̂pm the
matter-photon interaction and V̂sp the self-polarization. For the coupling to a
single photon mode the equation for χ(R, t) and Uep−n take the same form as in
Eq. (74) and Eq. (73), respectively, with the vector potential now given as

Aν(R, t) = 〈ΦR(t)|− i∇ν |ΦR(t)〉r,q . (101)

Finally, the TDPES is defined as

ε(R, t) = 〈ΦR(t)| ĤBO + Ĥp + V̂pm + V̂sp + Ûep−n − i∂t |ΦR(t)〉r,q , (102)

where we obtain ΦR(t) by inversion. Specifically, considering the Shin-Metiu
minimal model coupled to a single photon mode, studied in detail in Sec. 3.1,
the TDPES takes the form

ε(R, t) = εwpol(R, t) + εkin(R, t) + εGD(R, t) (103)

εwpol(R, t) = 〈ΦR(t)|ĤBO + Ĥp + V̂pm|ΦR(t)〉r,q (104)

εkin(R, t) =
1

2M
〈ΦR(t)|−∇2RΦR(t)〉r,q (105)

εGD(R, t) = 〈ΦR(t)|− i∂tΦR(t)〉r,q, (106)

where the total TDPES ε(R, t) is considered against the backdrop of polaritonic
surfaces and, thus, is decomposed into the weighted polaritonic (wpol), kinetic
(kin), and gauge-dependent (GD) components.

Furthermore, we note that there is also a third factorization possibility, which
is the natural extension of the reverse factorization [116], where the electronic
system is the marginal amplitude and yields a TDPES for the electrons. Although
not discussed within this work, this factorization could be particularly interest-
ing for studying, for example, the impact of vacuum field on electrical conduc-
tivity in a molecule or semiconductor.

1.4 connecting the work of this thesis

This section outlines the findings of the scientific contributions comprising this
thesis and connects them to each other. Fig. 8 sketches the connection and main
messages of the research and its outlook. For clarity, let us first, briefly, reiterate
the main motivation of our work:

1. Rapid experimental and theoretical advances have drawn attention to fasci-
nating phenomena of quantized light fields interacting with matter, open-
ing up a new field of research.

2. The investigation of physical effects in this field, however, involves multiple
degrees of freedom such as systems with multi-molecules or multi-photon
modes accounted for. Therefore, approximate methods (ideally ab initio) to
solve the Schrödinger equation are required. We explore and extend the
concept of MQC methods for photons in detail, which, due to their simplic-
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ity, efficiency, and, especially, scalability, presents an interesting alternative
or extension to existing quantum theory approximations. Specifically, as
the trajectories are not coupled during their time evolution, the correspond-
ing algorithms can be implemented in a highly parallel manner to reduce
the total run-time.

3. In order to further analyze the results found within the MQC framework
more fundamentally and also to set a starting point for the development
of potential new MQC methods, we extend and explore the EF approach
for the investigated systems. Although being similar to the BO approach,
it allows to study the exact TDPES beyond any adiabatic and timescale as-
sumptions, which is particularly useful for systems that include explicit
photonic degrees of freedom.

1.4.1 Outline of Scientific Contributions

The work presented in [O1] employs the MTEF theory, traditionally developed for
electron-nuclear problems, to simulate the spontaneous emission and photon-
field correlation in a model QED cavity-bound atomic system (two and three en-
ergy levels). More precisely, we analyze observables such as atomic population,
photon number, photon field intensity, and two-dimensional spatial correlation
functions within the one and two photon emission process. We find, by correctly
accounting for the vacuum fluctuation, that this MQC method is able to qualita-
tively characterize the correct dynamics and, even more so, can capture quantum
mechanical features such as bound photon states and second order photon cor-
relations.

Although accurate, the MTEF dynamics do suffer from some quantitative draw-
backs. However, reference [118] suggests that in cases where the free photonic
field is harmonic and the coupling to the matter is treated linearly, classical
Wigner dynamics should yield exact results. Looking at the electron-photon cou-
pled Hamiltonian in Eq. (37), one might assume that this is the case. However,
with the photonic field reacting onto the matter system, but also the matter sys-
tem reacting back to the photon field, the seemingly linear coupling turns out
to be not linear at all. This nonlinearity further implies that the true potential
driving the photonic motion is, in fact, not harmonic.

Therefore, the main focus of the work presented in [O2] is the investigation of
this deviation from the typically assumed harmonic potential throughout the dy-
namics of spontaneous emission. Here we extend and illustrate the EF formalism
and its TDPES for the electron-photon coupled system. More precisely, we inves-
tigate the TDPES for a two-level system, either coupled to an infinite number
of photon modes in the Wigner-Weisskopf approximation, or to a single mode,
both with various coupling strengths throughout the dynamics. We find signifi-
cant differences to the potential used in conventional approaches, especially for
strong-couplings and, thus, can corroborate the results in found [O1].

A natural extension to [O1] is presented in [O3]. With the intention of im-
proving the results found in [O1], we benchmark a selection of MQC methods
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Figure 8: Connection of the different scientific contributions. The areas with blue back-
ground show the work within electron-photon correlated systems, the areas
with pink background the work within electron-photon-nuclei correlated sys-
tems and the area with yellow background gives a short outlook on a possible
future step such as connecting the MQC approach with an advanced TDDFT
electron-structure code i.e. the open source Octopus code [117] .
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and perturbative dynamics techniques. Here we investigate the same electron-
photon correlated model system as in [O1] featuring spontaneous emission, in-
terference, and strong coupling behaviour and compare the performance of dif-
ferent MQC methods, i.e. the fewest switches surface hopping, MTEF, linearized,
and partially linearized semiclassical dynamics methods. We also investigate
self-consistent perturbative methods by applying the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy in the second Born approximation. We find
that, with the exception of fewest switches surface hopping, all methods provide
a reasonable level of accuracy for the correlated light-matter dynamics. Addition-
ally, the path-integral methods were able to capture some level of interference
effects, which were only seen as broadening of the wave packet within the MTEF
method. Furthermore, the perturbative method performed exceptionally well,
yet shows an exponential scaling with the degrees of freedom and therefore, in
contrast to the MQC methods, is not suitable for realistic systems.

Next, we extend and investigate the EF approach and the MTEF method to the
full matter-photon system (electron-photon-nuclei correlated system i.e. Shin-
Metiu model [85] coupled to a cavity) to enable eventual applications to realistic
systems. Here we analyze the TDPES as well as the performance of the MTEF
within the effect of cavity-induced suppression of PCET.

More precisely, in the work presented in [O4] we simulate and analyze the
exact TDPES driving the proton motion throughout the cavity-induced suppres-
sion of PCET. By examining the features of the TDPES in detail we find that this
surface can, indeed, predict the suppression induced by the cavity. Furthermore,
we observe that the pure polaritonic surfaces alone, although providing a useful
backdrop, are not able to predict the dynamics. Further, we suggest that caution
is needed when using polaritonic surfaces in order to perform MQC calculations,
as even when their couplings are accounted for, the proliferation of avoided
crossings will result in inaccuracies from over-coherence issues of usual MQC
methods.

Finally, we extend the MTEF method to a full electron-photon-nuclei system.
Based on [O4], we focus on the performance of MTEF within the process of cavity-
induced suppression of PCET. With realistic systems in mind, but, on the other
hand, requiring rigorous benchmarks of the MTEF-performance, we step-wise de-
crease the quantum treatment of the different components coupled to a single
photon mode, i.e. full quantum treatment (quantum electron, photons, nuclei),
MTEF treatment for the photons only (quantum electrons, nuclei) and MTEF treat-
ment of both nuclei and photons (quantum electrons). In the single mode case
we find that MTEF is, indeed, able to describe the suppression of PCET, but tends
to underestimate these results, which we explain in detail by referring to [O2].
With the exact reference solution out of reach, we then couple the matter system
to up to 440 photon modes. Here we find that, as more photon modes are in-
cluded, chemical reactions can change significantly and self-polarization effects
have an increasingly crucial impact on the dynamics. More precisely, we observe,
that by including more photon modes a full photochemical suppression of the
PCET can be induced via the self-polarization only, without changing the cou-
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pling strength itself. To this end, we introduce the concept of spBO-surfaces as an
instructive tool for analysis.

We conclude, that the MQC methods shown here, indeed, constitute a promis-
ing route to simulate realistic correlated quantum mechanical light-matter sys-
tems. These methods, besides enabling multi-photon mode simulations, are able
to capture quantum mechanical effects, i.e. spontaneous emission, bound photon
states, and photon field correlations and suppression of PCET, yet do not exhibit
the exponential scaling. In particular, connecting the MQC approach to electronic
structure calculations, i.e. TDDFT, in future work, provides a computational feasi-
ble ab initio path towards simulations of realistic correlated light-matter systems.

1.4.2 Connecting to the State of the Art Research

Research on quantized light fields interacting with matter is a rapidly expanding
domain. Therefore, in this section we position our contribution relative to the
emerging theoretical state of the art research. Here, the main difference of the
approaches lies in how the photonic degrees of freedom are included in the
calculations.

One possibility is to include the photonic degrees of freedom directly through
the PES, which gave rise to the field of polaritonic chemistry. Here fascinating
phenomena such as cavity-induced modifications of molecular structure [115],
suppression of photochemical reactions [107], many-molecule reaction triggered
by a single photon [119] up to new reactivities enabled by polariton photochem-
istry [120], and many more [108, 121–126] are found and described. However,
those simulations are performed within model systems and it has been shown
in recent publications [43, 71, 79, 114, 127] that such model systems, especially
few-level approximations, have fundamental limitations. One prominent exam-
ple is the superradiance phase transition due to the Dicke Model [128], where
the physical implications of the few-level model is debated [75]. In such cases a
treatment beyond model systems and towards ab initio calculations is required.

One promising ab initio route is the Quantum Electrodynamical Density Func-
tional Theory (QEDFT) approach. Here the well known TDDFT approach is gen-
eralized to the photonic degrees of freedom, where the photons are included in
the exchange-correlation functional [56, 78]. Furthermore, to extend this theory
towards more realistic systems, a practical exchange-correlation functional [79],
and an extension to the nuclear motion (by including a single Ehrenfest trajec-
tory) [129], was recently introduced. However, the accuracy and scalability of
this method solely depends on the choice of the exchange-correlation functional
and, thus, can exhibit a wide range of problems [130, 131]. Therefore, obtaining
a rigorous functional is analytically and numerically by far not a trivial task.

Therefore, due to the simplicity, efficiency, and especially scalability the ex-
tension of MQC methods to the photonic degrees of freedom is an interesting
alternative or extension to approaches like QEDFT or polaritonic chemistry. In
particular, combining the introduced MQC approach with an existing ab initio
electronic structure method, such as TDDFT, could provide a computationally
feasible way to simulate photon-field fluctuations and correlations in realistic
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three-dimensional systems. Within this framework, besides the work presented
in this thesis, an adjusted Ehrenfest theory based method was developed to
investigate light-matter interactions. This method, by construction, can recover
spontaneous emission, while also distinguishing between electromagnetic fluc-
tuations and coherent emission [132–134]. However, besides being ad-hoc, this
approach focuses on the interaction with classical light while our work targets
quantized light fields.

remark First successful applications based on our Wigner approach for pho-
tons were just recently published in [135], where the Meyer-Miller-Stock-Thoss
dynamics [20, 136] is applied in order to investigate superradiance and subradi-
ance.1

1 Note that [135] only includes one-photon states in the exact reference simulation and therefore
does not see any appearance of the polariton peak at the atomic position. However, in our simula-
tions of this model, we have found that this peak appears due to contributions from two-photon
states in the full configuration interaction expansion of the system and cavity field wavefunction
(details about this can be found in Fig. 6 of [O3]). This error has been acknowledged by the
authors of [135] and will be corrected in future versions of their paper.
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motivation Profound changes in the physical and chemical properties of
material systems can be found in situations where the quantum nature of light
plays an important role in the interaction with the system [67–69]. These exciting
developments have been strongly driven by experimental efforts, thus exposing
the immediate need for the development and improvement of theoretical ap-
proaches, especially beyond model systems [71, 79, 114, 127], that can bridge the
gap between quantum optics and quantum chemistry [75]. Due to the similarity
of the electron-photon and the electron-nuclear problems, simulation methods
that have traditionally been of use in the quantum chemistry community, such as
semiclassical and MQC methods, offer a potentially interesting avenue to bridge
this gap. In particular, these techniques typically do not exhibit the pernicious
exponential scaling of computational effort inherent in grid-based quantum cal-
culations [136].

state of the art One promising route beyond model systems towards ab
initio calculations is the QEDFT approach. However, the accuracy and scalability
of this method solely depends on the choice of the exchange-correlation func-
tional and, thus, can exhibit a wide range of problems [130, 131] and obtaining
a rigorous functional is analytically and numerically by far not a trivial task.
Therefore, due to the simplicity, efficiency, and especially scalability the exten-
sion of MQC methods to the photonic degrees of freedom is an interesting alter-
native or extension to approaches like QEDFT. Available techniques in the fam-
ily of exact and approximate MQC approaches (for nuclear-electron systems) are
MTEF dynamics [15, 17–19], fully linearized and partially linearized path-integral
methods, forward-backward trajectory methods [20–27], and trajectory surface-
hopping algorithms [29–34]. All these techniques have some ability to describe
essential quantum mechanical effects such as tunneling, interference, and zero-
point energy conservation. Recently, an adjusted Ehrenfest theory-based method
[132–134] was used to simulate the spontaneous emission of classical light. How-

41
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ever, in contrast to these works, we target the description of quantized light
fields.

contribution and main findings In the present work, we focus on the
Ehrenfest mean-field approach and employ the MTEF implementation, tradition-
ally developed for electron-nuclear problems, to simulate the spontaneous emis-
sion of radiation in a model quantum electrodynamical cavity-bound atomic
system. More precisely, by properly accounting for the quantum statistics of
the vacuum field i.e. employing the Wigner transform for photons, while using
MQC (mean-field) trajectories to describe the evolution. We investigate the perfor-
mance of this approach in capturing the dynamics of spontaneous emission from
the perspective of both the atomic system and the cavity photon field through
a detailed comparison with exact benchmark quantum mechanical observables
and correlation functions. We find that MTEF dynamics are able to qualitatively
characterize the correct dynamics for one-and two-photon spontaneous-emission
processes in a QED cavity. However, MTEF dynamics does suffer from some quan-
titative drawbacks. Furthermore, we also observed that MTEF dynamics simula-
tions can, in fact, capture quantum mechanical features such as bound polariton
states and second-order photon correlations.

outlook Trajectory-based quantum classical algorithms emerge as a promis-
ing route towards treating more complex and realistic systems. In particular, as
the equations of motion for the photonic system presented in this work can be
seen as a one-dimensional Maxwell’s equation, one possible route to extend the
MTEF approach to realistic systems is the combination of our multi-trajectory
approach with the recently presented work in [51]. This work presents an ab ini-
tio light-matter coupling methodology, which treats coupled classical light, elec-
trons, and nuclei by solving the Ehrenfest-Maxwell-Pauli-Kohn-Sham equations
in quantum electrodynamics and is ideally suited for applications in nano-optics
and nanoplasmonics. Therefore, combining the MTEF approach with the method-
ology of [51] provides a computationally feasible way to simulate photon-field
fluctuations and correlations in realistic three-dimensional systems.

However, before extending the MTEF to realistic systems, we first need to an-
swer the following question:

(i) Why does the MTEF approach suffer from qualitative drawbacks and what
are their causes? Investigated in [O2].

(ii) Can we improve the results found within the MTEF by using more advanced
methods? Investigated in [O3].

(iii) In order to approach more realistic systems, how can we include the nuclei
degrees of freedom into the MTEF approach for photons? Investigated in
[O5].
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We describe vacuum fluctuations and photon-field correlations in interacting quantum mechanical light-matter
systems by generalizing the application of mixed quantum classical dynamics techniques. We employ the
multitrajectory implementation of Ehrenfest mean-field theory, traditionally developed for electron-nuclear
problems, to simulate the spontaneous emission of radiation in a model quantum electrodynamical cavity-bound
atomic system. We investigate the performance of this approach in capturing the dynamics of spontaneous
emission from the perspective of both the atomic system and the cavity photon field through a detailed
comparison with exact benchmark quantum mechanical observables and correlation functions. By properly
accounting for the quantum statistics of the vacuum field, while using mixed quantum classical (mean-field)
trajectories to describe the evolution, we identify a surprisingly accurate and promising route towards describing
quantum effects in realistic correlated light-matter systems.
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I. INTRODUCTION

Profound changes in the physical and chemical properties
of material systems can be produced in situations where
the quantum nature of light plays an important role in the
interaction with the system [1–3]. A few notable recent ex-
amples of such effects are few-photon coherent nonlinear
optics with single molecules [4], direct experimental sam-
pling of electric-field vacuum fluctuations [5,6], multiple Rabi
splittings under ultrastrong vibrational coupling [7], exciton-
polariton condensates [8,9], and frustrated polaritons [10].
These exciting developments have been strongly driven by
experimental efforts, thus exposing the immediate need for
the development and improvement of theoretical approaches
that can bridge the gap between quantum optics and quantum
chemistry [11].

Due to the similarity of the electron-photon and the
electron-nuclear problems, simulation methods that have tra-
ditionally been of use in the quantum chemistry community,
such as semiclassical and mixed quantum classical methods,
offer a potentially interesting avenue to bridge this gap. In
particular, the family of trajectory-based quantum classical
methods has the advantage of providing a very intuitive, qual-
itative understanding of nonadiabatic molecular dynamics.
Further, these techniques typically do not exhibit the perni-
cious exponential scaling of computational effort inherent in
grid-based quantum calculations [12]. Available techniques in
this family of exact and approximate approaches are Ehrenfest
mean-field dynamics, fully linearized and partially linearized

*aaron.kelly@dal.ca
†heiko.appel@mpsd.mpg.de

path-integral methods, forward-backward trajectory methods
[13–15], and trajectory surface-hopping algorithms [16]. All
these techniques have some ability to describe essential quan-
tum mechanical effects such as tunneling, interference, and
zero-point energy conservation.

Recently, Subotnik and co-workers performed investiga-
tions of light-matter interactions where an adjusted Ehrenfest-
theory-based method was used to simulate the spontaneous
emission of classical light [17–19]. Here, in contrast with
these works, we focus on the description of quantized light
fields. We then generalize the well-established multitrajectory
Ehrenfest method to treat quantum mechanical light-matter
interactions. We highlight the possibilities and theoretical
challenges of this method in comparison to the exact treat-
ment of the quantum system by applying this approach to
investigate spontaneous emission for a model atom in an
optical cavity. Furthermore we point out that in contrast
to many previous studies of atomic processes in quantum
electrodynamical (QED) cavities that use an open quantum
systems approach [20–22], in this work we treat the cavity
bound atomic system as a closed quantum system where all
the degrees of freedom of the atom and the cavity field are
treated explicitly.

The remainder of this work is divided into three sections:
in Sec. II, we briefly review general interacting light-matter
systems and the multitrajectory Ehrenfest dynamics method.
In this framework, we then introduce a one-dimensional (1D)
model system comprising a single (two- or three-level) atomic
system coupled to a multimode QED cavity. In Sec. III,
we investigate the performance of multitrajectory Ehrenfest
(MTEF) dynamics in describing the process of spontaneous
emission. We conclude our results in Sec. IV and discuss some
prospects for future work.

2469-9926/2019/99(6)/063819(9) 063819-1 ©2019 American Physical Society

2.1 multi-trajectory ehrenfest for photons 43



NORAH M. HOFFMANN et al. PHYSICAL REVIEW A 99, 063819 (2019)

II. THEORY

A. Quantum mechanical light-matter interactions

To begin, we describe a general coupled field-matter sys-
tem using Coulomb gauge and the dipole approximation
[23,24]. The total Hamiltonian for the system is [25–29]

Ĥ = ĤA + ĤF + ĤAF . (1)

The first term ĤA is the atomic Hamiltonian, which may be
generally expressed in the spectral representation,

ĤA =
∑

k

εk|k〉〈k|. (2)

Here, {εk, |k〉} are the atomic energies and stationary states of
the atomic system in the absence of coupling to the cavity.
The second term is the Hamiltonian of the uncoupled cavity
field ĤF ,

ĤF = 1

2

2N∑
α=1

(
P̂2

α + ω2
αQ̂2

α

)
. (3)

The photon-field operators Q̂α and P̂α obey the canonical com-
mutation relation [Q̂α, P̂α′ ] = ı h̄δα,α′ , and can be expressed
using creation and annihilation operators for each mode of the
cavity field,

Q̂α =
√

h̄

2ωα

(â†
α + âα ), (4)

P̂α = i

√
h̄ωα

2
(â†

α − âα ), (5)

where â†
α and âα denote the usual photon-creation and -

annihilation operators for photon mode α. The coordinatelike
operators Q̂α are directly proportional to the electric displace-
ment operator, while the conjugate momentalike operators
P̂α are related to the magnetic field [27,28]. The upper limit
of the sum in Eq. (3) is 2N , as there are (in principle) two
independent polarization degrees of freedom for each photon
mode; however, in the 1D cavity models presented here, only
a single polarization will be considered.

The final term in Eq. (1) represents the coupling between
the atom and the cavity field,

ĤAF =
2N∑
α=1

[
ωαQ̂α (λα · μ̂) + 1

2
(λα · μ̂)2

]
, (6)

where we denote μ̂ as the electronic dipole moment vector
of the atomic system, and λα as the electron-photon coupling
vector [25,28]. In the case of a two-level electronic system,
the quadratic term in the atom-field coupling Hamiltonian
simply results in a constant energy shift and hence has no
effect on observables [30], and we neglect this term in the
case of the three-level model system. Furthermore, we note
that this Hamiltonian can easily be extended to include nuclear
degrees of freedom; however, this has been omitted in the
present work.

B. Multitrajectory Ehrenfest dynamics

In this section, we apply the well-known multitrajectory
Ehrenfest method, traditionally introduced to study electron-

nuclear systems [31–33], to coupled light-matter systems
[24,33,34].

A particularly simple and instructive route to derive the
MTEF mean-field theory is via the quantum classical Liou-
ville (QCL) equation [35]. This equation of motion for the
density matrix is formally exact for an arbitrary quantum
mechanical system that is bilinearly coupled to a harmonic
environment, as is the case in the atom-field Hamiltonian
studied here. The QCL equation can be written in a compact
form as

∂

∂t
ρ̂W (X, t ) = −iLρ̂W (X, t ). (7)

It describes the time evolution of ρ̂W (X, t ), which is the
partial Wigner transform of the density operator taken
over the photon-field coordinates, which are thus repre-
sented by continuous phase-space variables, X = (Q, P) =
(Q1, Q2, . . . , Q2N , P1, P2, . . . , P2N ). The partial Wigner trans-
form of the density operator, ρ̂, is defined as

ρ̂W (Q, P) = 1

(2π h̄)2N

∫
dZeiP·Z

〈
Q − Z

2
|ρ̂|Q + Z

2

〉
. (8)

The QCL operator is defined as

iL· = i

h̄
[ĤW , ·] − 1

2
({ĤW , ·} − {·, ĤW }), (9)

where ĤW denotes the Wigner transform of Ĥ , [·, ·] is the
commutator, and {·, ·} is the Poisson bracket in the phase
space of the environmental variables.

At this point, one may arrive at MTEF equations by as-
suming that the total density of the system can be written as
an uncorrelated product of the atomic and photonic reduced
densities at all times,

ρ̂W (X, t ) = ρ̂A(t )ρF,W (X, t ), (10)

where the reduced density matrix of the atomic system is

ρ̂A(t ) = TrF [ρ̂(t )] =
∫

dX ρ̂W (X, t ), (11)

and the Wigner function of the cavity field is ρF,W (X, t ) =
TrA[ρ̂W (X, t )]. If one seeks solutions to the QCL equation of
this form, the Ehrenfest mean-field equations of motion for
the atomic system are obtained,

∂

∂t
ρ̂A(t ) = − i

h̄

[
ĤA + ĤAF,W (X (t )), ρ̂A(t )

]
, (12)

where ĤAF,W denotes the Wigner transform of ĤAF . The
evolution of the Wigner function of the photon field can be
represented as a statistical ensemble of independent trajecto-
ries, with weights w j ,

ρF,W (X, t ) =
Ntraj∑

j

w jδ[X − X j (t )], (13)

that evolve according to Hamilton’s equations of motion,

∂Qα

∂t
= ∂HE f f

F,W

∂Pα

,
∂Pα

∂t
= −∂HE f f

F,W

∂Qα

. (14)
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The effective photon-field Hamiltonian is

HE f f
F,W = 1

2

∑
α

[
P2

α + ω2
αQ2

α + 2ωαλαQαμ(t )
]
, (15)

where μ(t ) = TrA[ρ̂A(0)μ̂(t )].
The exact expression for the average value of any observ-

able, 〈O(t )〉, can be written as

〈O(t )〉 = TrA

∫
dXÔW (X, t )ρ̂W (X, t = 0). (16)

We note here that for this class of systems, the Ehrenfest
equations of motion for the photon-field coordinates corre-
spond to a mode-resolved form of Maxwell’s equations. In
applying the MTEF dynamics method numerically, we use the
above expressions in the following manner:

(i) We first perform Monte Carlo sampling from the Wigner
transform of the initial density operator of the photon field
ρ̂F,W (X, 0) to generate an ensemble of initial conditions,
for the trajectory ensemble (Q j

α (0), P j
α (0)). In this work, we

used uniform weights w j = 1
Ntraj

; however, other importance
sampling schemes could be employed as the only requirement
is that the sum of the weights is normalized,

∑
j w

j = 1.
(ii) We evolve each initial condition independently ac-

cording to the Ehrenfest equations of motion, producing a
trajectory. In the following, we refer to such a solution as an
ensemble of independent trajectories.

(iii) Average values are constructed by summing over the
entire trajectory ensemble and normalizing the result with re-
spect to Ntraj, the total number of trajectories in the ensemble,

〈O(t )〉 = ∑Ntraj

j TrA[ÔW (Q j, P j, t )ρ̂A(0)]/Ntraj.
Here, ρF,W (X, 0) is the Wigner transform of the zero-

temperature vacuum state,

ρF,W (X, 0) =
∏
α

1

π
exp

[
− P2

α

h̄ωα

− ωαQ2
α

h̄

]
. (17)

C. Observables and normal ordering

Before we proceed with a discussion of our simulation
results, we must note that the Wick normal-ordered form
for operators (denoted : Ô : for some operator Ô) is used
when calculating the average values in this study. The reason
for using the normal-ordered form, in practice, is to remove
the effect of vacuum fluctuations from the results, which
ensures that both 〈E〉 = 0 and 〈I〉 = 0, irrespective of the
number of photon modes in the cavity field, when the field
is in the vacuum state. The effect of this operator ordering is
particularly evident for the photon-number operator,

: N̂pt := 1

2

∑
α

(
P̂2

α

h̄ωα

+ ωαQ̂2
α

h̄
− 1

)
, (18)

where normal ordering produces a constant shift due to the
zero-point energy term.

The quantized electric-field operator is defined as

Ê (r, t ) =
∑

α

√
2ωαζα (r)Q̂α (t ), (19)

with

ζα (r) =
√

h̄ωα

ε0L
sin

(απ

L
r
)
. (20)

The corresponding normal-ordered electric-field intensity op-
erator is given by

: Ê2(r, t ) :=: Î (r, t ) := 2
∑

α

ωαζ 2
α (r)Q̂2

α (t ) −
∑

α

ζ 2
α (r).

(21)
The effect of normal ordering on this quantity is shown in
Fig. 2, where the intensity of the electric field is plotted in
both its canonical and normal-ordered forms. In addition to
a constant shift with respect to the normal-ordered quantity,
which is identically zero, the canonical average field intensity
also displays additional oscillations near the boundaries and
the atomic position, corresponding to the vacuum fluctuations
for this system.

We also consider the second-order correlation function for
the photon field [36],

: g2(r1, r2, t ) := 〈: Ê†(r1, t )Ê†(r2, t )Ê (r2, t )Ê (r1, t ) :〉
〈: Î (r1, t ) :〉 〈: Î (r2, t ) :〉 .

(22)
This function is frequently used in quantum optics to dis-
criminate between classical light and nonclassical states of
the photon field that exhibit photon bunching (g2 > 1) or
photon antibunching (g2 < 1). The normal-ordered form of
the numerator in g2, also referred to as G2(r1, r2, t ), is

: G2(r1, r2, t ) : = 4
∑

α

ω2
αζα (r1)ζα (r2)ζα (r2)ζα (r1)Q̂4

α (t )

−
∑
αβ

[
4ζβ (r1)ζβ (r2)ζα (r1)ζα (r2)

+ ζ 2
β (r2)ζ 2

α (r1) + ζ 2
β (r1)ζ 2

α (r2)
]
2ωαQ̂2

α (t ).

(23)

The partial Wigner transforms of the polynomial functions
of the bath-coordinate operators are simply polynomial func-
tions of the continuous bath coordinates, [Q̂n

α (t )]W = [Qα (t )]n

[37]. The same is also true for the corresponding momenta
and thus the average values of the preceding operators can be
easily calculated using mean-field trajectories.

D. Model system

Following previous work [26,38], we investigate a model
atomic system in a one-dimensional electromagnetic cavity,
as depicted in Fig. 1:

Ĥ =
m∑

k=1

εk |k〉 〈k| + 1

2

2N∑
α

(
P̂2

α + ω2
αQ̂2

α

)

+
2N∑
α

m∑
k,l=1

μklωαλα (rA)Q̂α |k〉 〈l| , (24)

where the upper limit of the first and last summation m
denotes the number of atomic energy levels. In the case
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ωα

λα

ωα

λλλλλααα

α

λλ

FIG. 1. Model atomic system in an electromagnetic cavity. The
atom (green) is trapped between two mirrorlike surfaces of the cavity,
supporting 2N photon modes with frequencies ωα = πcα

L , where
α = {1, 2, . . . , 2N} and L is the distance between the mirrors. The
strength of the interactions between each mode of the cavity field
and the atomic system is λα .

of a two-level atomic system, this corresponds to a spe-
cial case of the spin-boson model. With the position of the
atom fixed at rA = L

2 in this study, half of the 2N cav-
ity modes decouple from the atomic system by symmetry.
We adopt the same parameters as in Refs. [26,39], which
are based on a 1D hydrogen atom with a soft Coulomb
potential (in atomic units): {ε1, ε2} = {−0.6738,−0.2798},
λα ( L

2 ) = 0.0103(−1)α , L = 2.362 × 105, and μ12 = 1.034.
For the three-level atom, we adopt all the same parameters for
the field and the atom-field coupling as for the two-level
case. The atomic energies for the three-level model are
{ε1, ε2, ε3} = {−0.6738,−0.2798,−0.1547} and, as before,
the numerical parameters are based on the 1D soft-Coulomb
hydrogen atom. The dipole moment operator only couples
adjacent states, such that the only nonzero matrix elements
are {μ12, μ23} = {1.034,−2.536} and their conjugates.

Furthermore, with g2,1

ε2−ε1
= 1.2 × 10−2 for the two-level

system and g3,2

ε3−ε2
= 2.1 × 10−2 for the three-level system,

FIG. 2. Average value of the cavity electric-field intensity. Wick
normal ordering has been applied to the operator in the case of the red
dashed line, whereas the solid black line corresponds to the original
operator. The cavity field is prepared in the vacuum state, at zero
temperature.

where gi, j = μk,l

√
εi−ε j

2 λ is the coupling strength for the res-
onant mode, our system is beyond the weak coupling regime,
specifically for the three level case. This can also be explicitly
seen later in the results by the appearances of the polariton
peaks in the intensity, which are strong coupling features
and are beyond the description of the well-known analytic
Wigner-Weisskopf solution for weak coupling.

III. RESULTS AND DISCUSSION

We now investigate the performance of the MTEF method
in the context of cavity-bound spontaneous emission. In all
calculations shown below, we use 400 photon modes to repre-
sent the cavity field. We choose the atom to be initially in the
excited state, and the cavity field is in the vacuum state at zero
temperature. In all simulations reported here, we use an en-
semble of Ntraj = 104 independent trajectories, sampled from
the Wigner transform of the initial field density operator given
in the previous section. This level of sampling is sufficient
to converge the atomic observables to graphical accuracy;
however, observables and correlations functions of the photon
field would require a slightly larger trajectory ensemble for
graphical convergence. All observables shown below corre-
spond to their normal-ordered forms. For our benchmark nu-
merical treatment, we solved the time-dependent Schrödinger
equation by using a truncated configuration-interaction (CI)
expansion. More precisely, the photon-field state space is
truncated at two photons, whereas for the atomic system, a
two- and three-state discrete variable representation is used in
each case [26]. Numerical convergence is checked to ensure
that the CI basis that we employ is complete for the models
and parameter regimes studied in this work.

A. Two-level atom: One-photon emission process

In Fig. 3, we show the intensity of the cavity field
along the axis of the cavity, at four different times. As the

FIG. 3. Time evolution of the average field intensity for the
one-photon emission process, at four different time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. (e) Zoom-in
of the polariton peak at the atomic position. Exact simulation results
(black) and MTEF dynamics (green).
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FIG. 4. Time evolution of the atomic-state populations (top
panel) and the total photon number (bottom panel). Top panel: Solid
lines represent the atomic ground state and dashed lines represent
the excited state. Both panels: Exact simulation results (black) and
MTEF (green).

spontaneous-emission process proceeds, a photon wave
packet with a sharp front is emitted from the atom and travels
toward the boundaries where it is reflected, and then travels
back to the atom [e.g., Fig. 3(c)]. The emitted photon is then
absorbed and reemitted by the atom, which results in the
emergence of interference phenomena in the electric field.
This produces a photonic wave packet with a more complex
shape [Fig. 3(d)]. We observe that the MTEF simulations
capture the qualitative character of the spontaneous-emission
process extremely accurately, as well as the wave-packet
propagation through the cavity. However, MTEF dynamics
fails to reproduce the interference phenomena in the field due
to reemission. We do note, however, that the MTEF simula-
tions are capable of describing the remaining field intensity
at the atomic position [Fig. 3(e)]. This feature corresponds
to a bound electron-photon state, or polariton, which is an
emergent hybrid state of the correlated light-matter system.

We also plot the excited-state population of the atomic
system, and the average value of the photon number for
the field, in Fig. 4. Again, MTEF is able to capture the
qualitative behavior of both of these quantities very nicely.
However, it fails to quantitatively reproduce the correct
values for the emitted photon number and atomic popula-
tion transfer, as these quantities are underestimated. Fur-
thermore, as a result of this loss in accuracy, only a part
of the subsequent reexcitation and reemission processes
is captured.

In Fig. 5, we investigate the normalized second-order
correlation function, g2(r1, r2, t ), for the cavity photon field.
The unperturbed vacuum state, which is coherent, corresponds
to g2(r1, r2, t ) = 1, given by the black background seen in
Fig. 5. The vacuum state is disturbed by the emitted wave
packet, corresponding to antibunched light with g2(r1, r2, t ) <

1. The simplicity of the one-dimensional, one-photon pro-
cess is quite clear in Fig. 6, where we show the associated

FIG. 5. Second-order correlation function for the photon field,
g2(r1, r2, t ), for the two-level model, plotted at four time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. Exact
simulation results (left panels) and MTEF (right panels).

one-dimensional cuts of g2, along with projections of
g2(r1, r2, t ) along the positive and negative diagonals, r± =
(r1 ± r2)/

√
2. Here we find, similar to the intensity, a nice

qualitative agreement between MTEF and the exact result
for the first three time snapshots. However, for the last time
snapshot, the exact solution shows a broader correlation than
MTEF, which corresponds to the fact that MTEF is not able
to accurately capture reemission. Furthermore, as we only
consider a one-photon process in this case, the correlation is
symmetric in r+ and r−.

B. Three-level atom: Two-photon emission process

We now investigate the three-level system for the same
observables as the previous section. The initial state for
the atomic system is now the second-excited state. The
photonic initial state remains the zero-temperature vacuum
state.

In Fig. 7, we show the intensity of the cavity field
during the two-photon emission process. Similar dynamics
are observed compared with the two-level case. However, due
to the additional intermediate atomic state, we now observe
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FIG. 6. Associated one-dimensional diagonal cuts g2(r±, t ) of
the second-order correlation function, exact (black) and MTEF
(green), plotted at four time snapshots: (a) t = 100, (b) t = 600,
(c) t = 1200, (d) t = 2100 a.u.

a double-peak feature in the emitted photonic wave packet.
This feature corresponds to the emission of two photons,
as the excited atom initially drops to the first-excited state
emitting one photon, and then further relaxes to the ground
state, emitting a second photon. The polariton peak (the
central feature in the field intensity profile) is overestimated
in the MTEF simulations. This overestimation is due to the
incomplete relaxation of the second-excited state within the
Ehrenfest description.

In Fig. 8, we show the time evolution of the atomic-state
populations and total photon number. Again, the emitted pho-
tonic wave packet moves through the cavity, is reflected at the
mirrors, and returns to the atom. The first- and second-excited
states are then repopulated due to stimulated absorption. A
second spontaneous-emission process ensues and the emitted
field again takes on a more complex profile due to interfer-
ence. For the intensity, as well as the atomic population and
photon number, we observe that MTEF displays qualitatively
correct short-time dynamics. However, it fails to describe the

FIG. 7. Time evolution of the average field intensity for the
two-photon emission process, at four different time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. (e) Zoom-in
of the polariton peak at the atomic position. Exact simulation results
(black) and MTEF (green).

correct spatial structure of the (re)emitted two-photon wave
packet, as well as the correct amplitude for the observables,
in accordance with what was observed previously in the two-
level case.

In Fig. 9, we show g2(r1, r2, t ) for the two-photon emission
process. The energy-level spacing in the three-level truncation
of the 1D soft-Coulomb hydrogen atom is uneven, such that
the two emitted photons are of different frequencies. Hence,
in contrast to the one-photon process, we expect to observe
asymmetric features in the second-order correlation function.
In the exact result, we observe that the vacuum state is locally
disturbed by a structured, antibunched photon wave packet.

FIG. 8. Top panel: Time evolution of the atomic-state popula-
tions; solid line (m = 3), dashed lines (m = 2), and dotted line
(m = 1). Bottom panel: Total photon number as a function of time.
Exact simulation results (black) and MTEF (green).
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FIG. 9. Second-order correlation function for the photon field,
g2(r1, r2, t ), for the three-level model, plotted at four time snapshots:
(a) t = 100, (b) t = 600, (c) t = 1200, (d) t = 2100 a.u. Exact
simulation results (left panels) and MTEF (right panels).

The fine, multilobed spatial structure of the photon wave
packet is blurred into a single, rather narrow feature in the
MTEF result. However, MTEF dynamics indeed show the
correct spatial asymmetry that is expected in g2(r1, r2, t ). In
the corresponding one-dimensional cuts of g2(r1, r2, t ), shown
in Fig. 10, we show in further detail the comparison of MTEF
dynamics and the exact results in this more complex two-
photon case.

IV. SUMMARY AND OUTLOOK

In this work, we have adapted the multitrajectory Ehrenfest
(MTEF) method to simulate correlated quantum mechanical
light-matter systems. We applied this mixed quantum classical
dynamics method, which is traditionally applied to electron-
nuclear dynamics problems, to two- and three-level model
QED cavity-bound atomic systems, and in order to simulate
observables and correlation functions for both the atomic
system and the photon field. We find that MTEF dynamics
is able to qualitatively characterize the correct dynamics for
one- and two-photon spontaneous-emission processes in a
QED cavity. However, MTEF dynamics does suffer from

FIG. 10. Associated one-dimensional diagonal cuts g2(r±, t ) of
the second-order correlation function, exact (black) and MTEF
(green), plotted at four time snapshots: (a) t = 100, (b) t = 600,
(c) t = 1200, (d) t = 2100 a.u.

some quantitative drawbacks. Furthermore, we also observed
that MTEF dynamics simulations can, in fact, capture some
quantum mechanical features such as bound polariton states
and second-order photon correlations. Moreover, as exper-
imental advances drive the need for realistic descriptions
of light-matter coupled systems, trajectory-based quantum
classical algorithms emerge as a promising route towards
treating more complex and realistic systems. In particular, as
the equations of motion for the photonic system presented
in this work can be seen as a one-dimensional Maxwell’s
equation, one possible route to extend the MTEF approach
to realistic systems is the combination of our multitrajectory
approach with the recently presented work of Jestädt et al.
[40]. This work presents an ab initio light-matter coupling
methodology, which treats coupled classical light, electrons,
and nuclei by solving the Ehrenfest-Maxwell-Pauli-Kohn-
Sham equations in quantum electrodynamics and is ideally
suited for applications in nano-optics and nanoplasmonics.
Therefore, combining the multitrajectory approach from the
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present work with the methodology of Jestädt et al. provides a
computationally feasible way to simulate photon-field fluctu-
ations and correlations in realistic three-dimensional systems.
Furthermore, by also including a sampling for the nuclei,
this extension allows a fully quantized treatment of electrons,
photons, and nuclei in such systems. Work along these lines
is already in progress. Furthermore, an alternative to the
independent trajectory-based approach employed here is the
conditional wave-function approach, which allows one to
address nonadiabatic dynamics problems in complex systems
with higher accuracy than MTEF dynamics [41], and opens

up an interesting potential route for mixed quantum classical
methods in correlated light-matter systems.
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motivation The interaction of light with matter involves the correlated dy-
namics of photons, electrons, and nuclei. Even at a non-relativistic level the so-
lution of Schrödinger’s equation for the coupled subsystems is a daunting com-
putation. In a given situation however, one is often measuring properties of only
one of these subsystems, where the observable of interest involves one of the
subsystems alone. Yet, to capture the dynamics of the relevant subsystem, clearly
the effects of all subsystems are needed. The question then arises: can we write
a Schrödinger equation for one of the subsystems alone, such that the solution
yields the wavefunction of that subsystem? Note that the potential appearing in
the equation would have to incorporate the couplings to the other subsystems as
well as to any externally applied fields. More precisely, in order to analyze the
finding of [O1] in more detail, the question can be specified as: Can we find the
exact potential driving the photon motion and fully incorporating the effects of
the matter system on the photonic dynamics?

state of the art One possible way to answer this question is via the EF ap-
proach [35, 36, 109, 110], which was introduced for the case of coupled electronic
and nuclear subsystems in the presence of a classical light field neglecting the
magnetic field contribution. Here, it was shown that one can exactly factorize the
complete molecular (electron-ion) wavefunction into a wavefunction describing
the nuclear system, and a wavefunction describing the electronic system that is
conditionally dependent on the nuclear subsystem: Ψ(r, R, t) = χ(R, t)ΦR(r, t),
where χ(R, t) characterizes the marginal amplitude and ΦR(r, t) the conditional
amplitude with r, R denoting the electronic and nuclear coordinates, respectively.
The equation for the nuclear subsystem has a Schrödinger form, with scalar
ε(R, t) and vector A(r, t) potentials that completely account for the coupling to
the electronic system.

contribution and main findings We extend the EF approach to light-
matter interactions Ψ(q, r, R, t) = χ(q, t)Φq(r, R, t), which yields a time-dependent
Schrödinger equation for the photonic system, where q denotes the photonic
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displacement vector. This choice is particularly relevant when one is primarily
interested in the state of the radiation field. We illustrate the formalism and
potential for a two-level system representing the matter coupled to an infinite
number of photon modes in the Wigner-Weisskopf approximation, as well as
to a single mode with various coupling strengths. Our main findings include,
significant differences from convetional approaches in the potential that drives
the photonic dynamics, due to large deviations from the harmonic form of the
free-photon field. These deviations completely incorporate the effect of the mat-
ter system on the photonic dynamics. We also study the effect of beginning in an
initially purely factorized light-matter state, compared to a photonic BO initial
state, finding significant differences for larger coupling strengths in the ensuing
dynamics, implying that in modelling these problems a careful consideration of
the initial state is needed.

outlook Besides analyzing the TDPES for photons, in order to gain more
indside to the results found in [O1], one can also use the EF approach as a
guideline to develop semiclassical trajectory methods for efficient simulations of
realistic light-matter dynamics. However, approximations will be needed, since
solving the EF equations is at least as computationally expensive as solving the
Schrödinger equation for the fully coupled system. It has been shown recently
that mixed quantum-classical trajectory methods that are derived from the EF
approach can correctly capture decoherence effects [37–39]. Since photons are
intrinsically non-interacting and therefore even simpler to treat than nuclei, we
expect in analogy to the electron-nuclear case that semiclassical trajectory meth-
ods derived from systematic and controlled approximations to the full EF of the
light-matter wavefunction will be able to capture decoherence effects beyond the
Ehrenfest limit for light-matter coupling.
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Abstract. The exact factorization approach, originally developed for electron-nuclear dynamics, is extended
to light-matter interactions within the dipole approximation. This allows for a Schrödinger equation for
the photonic wavefunction, in which the potential contains exactly the effects on the photon field of its
coupling to matter. We illustrate the formalism and potential for a two-level system representing the matter,
coupled to an infinite number of photon modes in the Wigner–Weisskopf approximation, as well as to a
single mode with various coupling strengths. Significant differences are found with the potential used in
conventional approaches, especially for strong couplings. We discuss how our exact factorization approach
for light-matter interactions can be used as a guideline to develop semiclassical trajectory methods for
efficient simulations of light-matter dynamics.

1 Introduction

The interaction of light with matter involves the corre-
lated dynamics of photons, electrons, and nuclei. Even
at a non-relativistic level the solution of Schrödinger’s
equation for the coupled subsystems is a daunting com-
putation. In a given situation however, one is often
measuring properties of only one of these subsystems. For
example, one might be wanting to know how the electri-
cal conductivity of a molecule is affected by the photons,
as in the recent experiment showing the increased con-
ductivity of organic semiconductors due to hybridization
with the vacuum field [1]. On the other hand, one might
want to understand how molecular dissociation after elec-
tronic excitation is affected in the presence of light, as
in the recent study of light-induced versus intrinsic non-
adiabatic dynamics in diatomics [2]. Or, one might want
to measure the superradiance from a collection of atoms
[3]. In each of these three cases, the observable of interest
involves one of the subsystems alone, electronic, nuclear,
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and photonic, respectively, yet to capture the dynamics of
the relevant subsystem, clearly the effects of all subsys-
tems are needed. The question then arises: can we write a
Schrödinger equation for one of the subsystems alone, such
that the solution yields the wavefunction of that subsys-
tem? The potential appearing in the equation would have
to incorporate the couplings to the other subsystems as
well as to any externally applied fields.

Hardy Gross, with co-workers, in fact already answered
exactly these questions [4–6] for the case of coupled
electronic and nuclear subsystems in the presence of a clas-
sical light field neglecting the magnetic field contribution.
That is, for systems of electrons and nuclei, interacting
with each other via a scalar potential (usually taken as
Coulomb), and in the presence of an externally applied
scalar potential, such as the electric field of light, it
was shown that one can exactly factorize the complete
molecular wavefunction into a wavefunction describing
the nuclear system, and a wavefunction describing the
electronic system that is conditionally dependent on
the nuclear subsystem [4–7]: Ψ(r,R, t) = χ(r, t)ΦR(r, t),

where r = r1, . . . , rNe and R = R1, . . . ,RNn represent
all electronic and nuclear coordinates respectively. The
equation for the nuclear subsystem has a Schrödinger
form, with scalar and vector potentials that completely
account for the coupling to the electronic system. One
can reverse the roles of the electronic and nuclear sub-
systems, to instead get a Schrödinger equation for the
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electronic system, which is particularly useful when one
is most interested in the electronic properties [8], e.g. in
field-induced molecular ionization.

Recently rapid experimental and theoretical advances
have however drawn attention to fascinating phenomena
that depend on the quantization of the light field in
its interaction with matter. This includes few-photon
coherent nonlinear optics with single molecules [9], direct
experimental sampling of electric-field vacuum fluctua-
tions [10,11], multiple Rabi splittings under ultrastrong
vibrational coupling [12], exciton-polariton condensates
[13,14], polaritonically enhanced superconductivity in
cavities [15], or frustrated polaritons [16] among others.
Optical cavities can be used to tune the effective strength
of the light-matter interaction, and, in the strong-coupling
regime in particular, one finds for example non-radiative
energy transfer well beyond the Förster limit between
spatially separated donors and acceptors [17], strong
coupling between chlorosomes of photosynthetic bacteria
and confined optical cavity modes [18], photochemical
reactions can be suppressed with cavity modes [19], the
position of conical intersections can be shifted or they can
be removed [2,20], or state-selective chemistry at room
temperature can be achieved by strong vacuum-matter
coupling [21]. Strong vacuum-coupling can change chemi-
cal reactions, such as photoisomerization or a prototypical
deprotection reaction of alkynylsilane [21,22]. This has
given rise to the burgeoning field now sometimes called
“polaritonic chemistry” [20,23–27]. In addition, novel
spectroscopies have been proposed which explicitly exploit
correlated states of the photon field. For example the use
of entangled photon pairs enables one to go beyond the
classical Fourier limit [28,29], or correlated photons can
be used to imprint correlation onto matter [20,27,30,31].

In this paper, we extend the exact factorization
approach to non-relativistic coupled photon-matter sys-
tems within the dipole approximation. We focus particu-
larly on finding the potential driving the photonic system
in the present study. One motivation is towards develop-
ing mixed quantum-classical methods for the light-matter
system. The observation that in a matter-free system, the
photonic Hamiltonian is a sum over harmonic Hamilto-
nians for each mode of the radiation field suggests that
a classical treatment of the photonic system would be
accurate: if the system begins in a Gaussian wavepacket,
classical Wigner dynamics exactly describes the motion
[32]. Coupling to matter within the dipole approximation
where the coupling operator is linear in the photonic vari-
able preserves the quadratic nature of the Hamiltonian,
and one might then think that again a classical Wigner
treatment would be exact. However, although accurate, it
is not exact. This implies that the true potential driving
the photonic motion is in fact not quadratic. The exact
factorization approach defines exactly what this potential
should be. In this paper we explain the formalism and give
some examples of this potential, that clearly show devia-
tions from harmonic behaviour throughout the dynamics.

The theory is described in Section 2, presenting the
Hamiltonian that we will consider, and the formalism of
the factorization approach. Section 3 demonstrates the
approach on two examples, that we choose as the simplest

cases for this initial study. The matter system is described
by a two-level system while the photonic system is chosen
to either be an infinite number of modes treated within
the Wigner–Weisskopf approximation, or a single cavity
mode chosen to be resonant with the spacing of the two
levels, explored over a range of coupling strengths. We
find and interpret the potential driving the photonic sys-
tem, which depends significantly on whether the initial
state of the system is chosen correlated or fully factor-
ized. Finally in Section 4 we summarize and discuss the
relevance of this approach for future investigations of
light-matter dynamics.

2 Theory

2.1 QED-Hamiltonian

In this work, we consider the non-relativistic limit of a
system of Ne electrons, Nn nuclei, and Np quantized pho-
ton modes, treated within the dipole approximation in
Coulomb gauge [27,33,34]. For now, we do not consider
any classical external fields, and neglect spin-coupling.
The Hamiltonian of this coupled system is then defined
by [20,35–38]

Ĥ(q, r,R) = Ĥp + Ĥe + Ĥn + Ĥep + Ĥnp + Ĥen + Ĥpen,

(1)
which operates in the space of: r = {r1..ri..rNe} represent-
ing all electronic spatial coordinates, R = {R1..RI ..RNn}
representing all nuclear coordinates, and q = {q1..qα..qNp}
representing all photonic displacement coordinates. The
first term characterizes the cavity-photon Hamiltonian

Ĥp(q) =
1

2




2Np∑

α=1

p̂2
α + ω2

αq̂
2
α


 = T̂p(q) + V̂p(q). (2)

Here q̂α =
∑
α

√
~

2ωα
(â+
α + âα) defines the photonic dis-

placement coordinate for the αth mode, with creation(a+)
and annihilation(a) operators [35,36], and the commuta-
tion relation [q̂α, p̂α′ ] = ı~δα,α′ . The photonic displace-
ment coordinate is directly proportional to the mode-
projected electric displacement operator, D̂α = ε0ωαλαq̂α,
while p̂α is proportional to the magnetic field [36,37].
The αth mode has frequency ωα = kαc = απc/V , with
kα the wavevector and V the quantization volume. The
electron–photon coupling strength is given by

λα =
√

4πSα(kα ·X)eα, (3)

where Sα denotes the mode function, e.g. a sine-function
for the case of a cubic cavity [36,39], kα the wave vector,
and X the total dipole of the system. In particular, we
emphasize at this point that the mode functions introduce
a dependence of the coupling constants on the quantiza-
tion volume of the electromagnetic field. By confining this
volume, for example with an optical cavity, one can tune
the interaction strength. Finally, we note that the sum in
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equation (2) goes from 1 to 2Np, to take the two polariza-
tion possibilities of the electromagnetic field into account.
The second term of equation (1) denotes the electronic
Hamiltonian

Ĥe(r) =

Ne∑

i=1

p̂2
i

2me
+

e2

4πε0

Ne∑

i>j

1

|ri − rj |

= T̂e(r) + V̂ee(r) , (4)

where me defines the electronic mass, p̂i the electronic
momentum operator conjugate to r̂i. The third term in
equation (1) denotes the nuclear Hamiltonian

Ĥn(R) =

Nn∑

I=1

P̂I
2

2MI
+

e2

4πε0

Nn∑

i>j

ZIZJ
|RI −RJ |

(5)

= T̂n(R) + V̂nn(R), (6)

with analogous identifications to the electronic
Hamiltonian and eZI here being the nuclear charge.

The remaining terms in equation (1) denote the cou-
plings between the subsystems. The electron-nuclear
coupling appears as the usual Coulombic interaction:

Ĥen = −
Ne∑

i=1

Nn∑

J=1

e2Z

|ri −RJ |
(7)

the electron–photon coupling, in dipole approximation,

Ĥep = −
2Np∑

α=1

ωαq̂α~λα ·
Ne∑

i=1

eri, (8)

(where e is the magnitude of the electronic charge) bilin-
early couples the total electric dipole moment with the
electric field operator for each mode of the photonic field.
Similarly, the nuclear-photon coupling is

Ĥnp =

2Np∑

α=1

ωαq̂α~λα ·
Nn∑

I=1

eZIRI . (9)

Finally, Hpen represents the dipole self-energy of the
matter in the radiation field:

Ĥpen =
1

2

2Np∑

α=1

~λα ·
(
Nn∑

I

ZIRI −
Ne∑

i

ri

)2

. (10)

This self-energy term is essential for a mathematically
well defined light-matter interaction. Without this term
the Hamiltonian is not bound from below, and loses in
addition translational invariance (in case of a vanishing
external potential) [40].

The dynamics of such a coupled system is given by
the solution of the time-dependent Schrödinger equation
(TDSE)

ĤΨ(r,R,q, t) = i∂tΨ(r,R,q, t), (11)

where Ψ(r,R,q, t) is the full matter-photon wavefunction,

that contains the complete information of the coupled
system. However it is difficult to obtain an intuitive under-
standing and interpretation of such a coupled system
from the high-dimensional Ψ(r,R,q, t), and moreover, we

may not be interested in all the information as we might
be interested in one of the subsystems. If one of these
subsystems varies on a much slower time-scale than the
others (in particular the nuclei), what is often done in
coupled electron-nuclear systems is a Born–Oppenheimer
(BO) adiabatic approximation where the faster time-scale
subsystem (in particular the electrons) are assumed to
instantaneously adjust to the positions of the nuclei, and
hence if they begin in an eigenstate, they remain in
an eigenstate parameterized by the nuclear coordinate.
The eigenenergy maps out a BO potential energy sur-
face (PES) which provides the potential for the nuclear
dynamics. These potential-energy surfaces are clearly an
approximation within the adiabatic ansatz, but in fact
an exact PES can be defined quite generally without
the need for any adiabatic approximation, which brings
us to the main point of this paper. For the electron-
nuclear problem, these arise from the exact factorization
approach mentioned earlier in the introduction. In the
next section we will extend the idea of the exact factoriza-
tion for electron-nuclei systems to coupled photon-matter
systems.

Before moving to this, we note that equation (1) is the
most general form of Hamiltonian that we will consider
in the present work. In later sections, in particular in
the explicit examples, we will simplify to just a two-level
electronic system interacting with the photonic field in a
cavity. In that case, many of the terms in equation (1) are
zero, and we simplify the remaining terms even further to
a model Hamiltonian

Ĥ = −ω0

2
σ̂z +

∑

α

(
−1

2

∂2

∂q2
α

+
1

2
ω2
αq

2
α

)

+
∑

α

ωαλαq̂α(degσ̂x). (12)

Here σi are the Pauli matrices. The first term is the
two-level system that replaces the electronic Hamilto-
nian (including the dipole self-energy, which simplifies to
a constant energy shift for a two-level system), where
the energy-level difference is ω0, and deg, appearing in
the third term, is the dipole moment of the transition.
The second term describes the free photon field, as in
equation (2), while equation (8) reduces to the third term
with λα as the coupling strength evaluated at the position
of the atom in the cavity. The TDSE also simplifies, to

i~ ∂
∂t

−→
Ψ (q, t) =

(
−ω0

2
+ Ĥp(q)

∑
α ωαλαq̂αdeg∑

α ωαλαq̂αdeg
ω0
2

+ Ĥp(q)

)
−→
Ψ (q, t),

(13)

where we use the notation
−→
Ψ (q, t) being a 2-vector defined

at every q and t. A cartoon of the problem is given

in Figure 1.
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Fig. 1. Cavity-setup: particle (green) trapped in a cavity and
coupled by coupling strength λα to the α photon mode with
the photonic frequency ωα, where α = {1, 2, . . . , 2np}.

2.2 Exact factorization approach

The exact factorization (EF) may be viewed as a
reformulation of the quantum mechanics of interact-
ing coupled systems where the wavefunction is factored
into a marginal amplitude and a conditional amplitude
[4–7,41]. With non-relativistic electron-nuclear systems in
mind, the equations for these amplitudes were derived for
Hamiltonians of the form

Ĥ = T̂e + T̂n + V̂ , (14)

where V̂ is a scalar potential that includes coupling
between the electrons and nuclei (usually Coulombic)

and any externally applied fields. Here T̂e,n are kinetic
energy operators of the electronic and nuclear systems,
just as in equations (4) and (6), that have the form of
−∑i(I)∇2

i(I)/2mi(I) (that is, no vector potential). The

EF then proves that the exact full molecular wavefunction
can be factored as

Ψ(r,R, t) = χ(R, t)ΦR(r, t) . (15)

The equation for the nuclear amplitude χ has a TDSE
form [5,6,42,43], equipped with a time-dependent scalar
potential ε(R, t) and a time-dependent vector potential
AI(R, t) that include entirely the effects of coupling to the
electronic system as well as external fields. The equation
for the conditional electronic amplitude ΦR has a more

complicated form, involving a coupling operator Ûen, that
acts on the parametric dependence of ΦR. The factoriza-

tion is unique, up to a gauge-like transformation, provided
ΦR satisfies the “partial normalization condition” (PNC),∫
dr|ΦR(r, t)|2 = 1; under such a transformation, ε and

A transform as scalar and vector potentials do in electro-
dynamics. The nuclear Nn-body probability density and
current-density can be obtained in the usual way from
the nuclear amplitude χ(R, t), so in this sense, χ can be
identified as the nuclear wavefunction of the system.

The form of equation (15) is similar to the BO approx-
imation, however with the important difference that
equation (15) is an exact representation of the wavefunc-
tion, not an approximation, and further that it is valid
for time-dependent systems, with time-dependent exter-
nal fields, as well. The BO approximation assumes that

the electronic system remains always in the instantaneous
ground (or eigen)-state associated with the nuclear config-
uration R, and therefore misses all the physics associated
with non-adiabatic effects, including wavepacket branch-
ing and decoherence. These effects are contained exactly
in the coupling terms in the EF equations: the scalar and
vector potentials and the coupling operator of the elec-
tronic equation. It is important to note that there is no
assumption of different timescales in the EF approach, in
contrast to the BO approximation.

As the scalar potential plays a role analogous to the
BO PES, but now for the exact system, it is denoted the
time-dependent potential energy surface (TDPES), while
the vector potential (TDVP) is an exact time-dependent
Berry connection. The gauge-freedom is a crucial part of
the EF approach: in particular, whether a gauge exists in
which the vector potential can be transformed into part
of the TDPES has been explored in some works [44–47],
especially since the common understanding is that Berry
phases appear only out of an adiabatic separation of time-
scales, while the EF is exact and does not assume any such
separation. Further, equally valid is the reverse factoriza-
tion [8], Ψ(r,R, t) = χ(r, t)Φr(R, t), which is particularly

useful when one is interested in the electronic system,
since in this factorization, the electronic system follows
a TDSE in which the potentials can be analysed and
interpreted.

2.3 Exact factorization approach for QED

Here, we extend the exact factorization to systems of cou-
pled photons, electrons, and nuclei. Since all the kinetic
operators in the Hamiltonian within the dipole approxi-
mation, equation (1), are of similar form to those that were
considered in the original EF approach, equation (14),
the mathematical structure of the equations and coupling
terms will be similar when we make a factorization into
two parts.

There are three possibilities for such a factorization,
and we expect each to be useful in different contexts. One
possibility, which is perhaps the most natural extension
of the factorization of references [4–7,41], is to take the
nuclear system as the marginal one,

Ψ(q, r,R; t) = χ(R; t)ΦR(q, r; t) , (16)

with the PNC
∫
dqdr|ΦR(q, r; t)|2 = 1 (17)

for every nuclear configuration R at each time t. This
would yield a TDSE for the nuclear system, much like in
the original EF approach, but now the TDPES and TDVP
includes not only the effects on the nuclei of coupling to
the electrons, but also to the photons. This would be a
particularly useful factorization for studying light-induced
non-adiabatic chemical dynamics phenomena, when the
quantum nature of light is expected to play a role. In fact,
an approximation based on the normal BO approxima-
tion for the electron-ion dynamics has been used to study
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the cavity-induced changes in the potential energy sur-
faces in the strong coupling regime [48]. This would be a
particularly useful factorization for studying light-induced
non-adiabatic phenomena, when the quantum nature of
light is expected to play a role.

A second possibility is the natural extension of the
reverse factorization [8], where the electronic system is
the marginal amplitude

Ψ(q, r,R; t) = χ(r; t)Φr(q,R; t) , (18)

with the PNC
∫
dqdR|Φr(q,R; t)|2 = 1, for all t and every

electronic configuration r, which would yield a TDSE for
electrons, with the e-TDPES and e-TDVP now incor-
porating the full effects on the electrons of coupling to
the nuclei as well as the photons. This could be particu-
larly useful for studying, for example, the impact of the
vacuum field on electrical conductivity in a molecule or
semiconductor.

This leaves the third possibility, where the photonic
system is chosen as the marginal:

Ψ(q, r,R; t) = χ(q; t)Φq(r,R; t) , (19)

with the PNC

∫
drdR|Φq(r,R; t)|2 = 1 , (20)

for each field-coordinate q and all times t. This is the

factorization we will focus on in the present paper: it
gives a TDSE for the photonic system, within which the
scalar potential, which we call the q-TDPES, and vec-
tor potential, the q-TDVP, contain the feedback of the
matter-system on the radiation field. In free space, the
potential acting on the photons is quadratic as is evident
from equation (2), however, in the presence of matter,
the potential determining the photonic state deviates
from its harmonic form due to interactions with matter.
The cavity-BO approach introduced in reference [34] has
demonstrated these deviations within the BO approxima-
tion. The EF approach now renders this concept exact,
beyond any adiabatic assumptions.

The equations for each of these three factorizations
follow from a straightforward generalization of the orig-
inal EF equations, as the non-multiplicative operators
(the kinetic operators) have the same form; hence the
derivation proceeds quite analogously to that given in
references [5,6,42]. In particular, for the factorization
equation (19), we obtain

(
Ĥm(r,R,q; t)− ε(q; t)

)
Φq(r,R; t) = i∂tΦq(r,R; t), (21)

(
2np∑

α

1

2

(
i
∂

∂qα
+Aα(q; t)

)2

+ ε(q; t)

)
χ(q; t) = i∂tχ(q; t),

(22)

where the matter Hamiltonian Ĥm is given by

Ĥm(r,R,q; t) = ĤqBO + Ûep (23)

with

ĤqBO = Ĥe+ Ĥn+ Ĥen + Ĥpen + Ĥep + Ĥnp+
1

2

2Np∑

α=1

ωαq̂
2
α

(24)
defined in an analogous way to the BO Hamiltonian,
but now for the photonic system. The electron–photon
coupling potential Ûep is given by

Ûep[Φq, χ] =

2np∑

α

[
(−i∂qα −Aα(q; t))2

2
+

(−i∂qαχ(q; t)

χ(q; t)

+Aα(q; t)

)(
−i∂qα −Aα(q; t)

)]
, (25)

the q-TDPES by

ε(q; t) =

∫
drdRΦ∗q(r,R; t)

(
Ĥm(r,R,q; t)− i∂t

)

×Φq(r,R; t) (26)

and the q-TDVP by

Aα(q; t) = −i
∫
drdRΦ∗q(r,R; t)∂qαΦq(r,R; t) . (27)

The factorization (19) is unique up to a gauge-like trans-
formation, provided the PNC, equation (20) is satisfied.
The gauge-like transformation has the structure of the
usual one in electromagnetism, except here the scalar and
vector potentials arise due to coupling, rather than due
to external fields, and they are potentials on the pho-
tonic system, not on the matter system. The equations
are form-invariant under the following transformation:

Φq(r,R, t)→ Φq(r,R, t) exp(iθ(q, t))

χ(q, t)→ χ(q, t) exp(−iθ(q, t))
Aα(q; t)→ Aα(q; t) + ∂αθ(q, t)

ε(q; t)→ ε(q; t) + ∂tθ(q, t). (28)

Further, one can show that the displacement-field
density represented by χ reproduces that of the full
wavefunction, i.e.

|χ(q; t)|2 =

∫
drdR|Ψ(q, r,R; t)|2 , (29)

and that the phase of χ together with the q-TDVP provide
the displacement-field probability current in the natural
way:
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Im〈Ψ |∂αΨ〉 = |χ(q; t)|2Aα(q; t) + ∂αS(q; t) , (30)

where χ(q; t) = |χ(q; t)| exp(iS(q, t)). This means that

observables associated with multiplication by q can be

obtained directly from χ(q, t), for example, the electric

field

E(r; t) =
∑

α

ωαλα(r, t)

∫
dq qα|χ(q; t)|2 , (31)

while the magnetic field is

B(r; t) =
∑

α

c

ωα
∇× λα(r, t)

∫
dq|χ(q; t)|2Aα(q; t)

+∂αS(q; t). (32)

2.4 Exact factorization for simplified model
hamiltonian: two-level system in radiation field

For our exploration of the QED factorization in this
paper, we will turn to the simplified model Hamiltonian
of equation (12), where the matter system’s Hamiltonian
is a 2×2 matrix. First, it is useful to write equation (12)
as

Ĥ = −
∑

α

1

2
∂2
qα12 + ĤqBO , where (33)

ĤqBO =−ω0

2
σ̂z+

∑

α

1

2
ω2
αq

2
α12+

∑

α

ωαλαq̂α(degσ̂x). (34)

Here ĤqBO is analogous to the BO Hamiltonian in the
usual electron-nuclear case. We can define q-BO states as
normalized eigenstates:

ĤqBO
−→
Φ (1,2)

q = ε
(1,2)
qBO (q)

−→
Φ (1,2)

q , (35)

with
−→
Φ i,†

q ·
−→
Φ j

q = δij . and these can be used as a basis to

expand the fully coupled wavefunction, i.e.

−→
Ψ (q, t) = χ1(q, t)

−→
Φ (1)

q + χ2(q, t)
−→
Φ (2)

q , (36)

which would be analogous to the Born–Huang expansion
but now for the cavity-matter system.

Now in the EF approach, the fully coupled wavefunction
is instead factorized as a single product:

−→
Ψ (q, t) = χ(q, t)

−→
Φ q(t), (37)

where the PNC becomes

−→
Φ †q(t) · −→Φ q(t) = 1 , (38)

and holds for every q and each time t.

We note that there are two useful bases for this problem.
One is obtained from diagonalizing the field-free two-level
system, i.e. that defined by eigenvectors of the Pauli-σz
matrix. The other basis is the q-BO basis, defined by the
eigenvectors of ĤqBO, as in equation (35).

The EF equations follow directly from equations
(21)–(27) but with the much simplified ĤqBO above,
and all integrals over r and R replaced by 2×2 matrix-
multiplication.

2.5 Photonic time-dependent potential energy
surface

Unlike the original electron-nuclear factorization, the q-
TDVP can always be chosen to be zero due to the one-
dimensional nature of each photon-displacement mode.
This means that one can always transform to a gauge in
which the q-TDPES contains the entire effect of the cou-
pling of the matter system on the radiation field, i.e. it
is the only potential that is driving the photonic dynam-
ics. For the matter system, both the q-TDPES and the
photon-matter coupling operator incorporate the effect
of the photonic system on the matter. In the original
electron-nuclear factorization, the exact TDPES proved
to be a powerful tool to analyze and interpret time-
resolved dynamics of the system in cases ranging from
dynamics of molecules in strong fields [5,6,8,49–52], to
non-adiabatic proton-coupled electron-transfer [53–55], to
nuclear-velocity perturbation theory [56,57] and dynam-
ics through a conical intersection [58,59]. It provides an
exact generalization of the adiabatic BO-PES.

In the present work, we will study the q-TDPES ε(q, t)

of equation (26) for the case of the radiation field coupled
to a two level-system, using the model Hamiltonian (12).

Given a solution
−→
Ψ (q, t) for the coupled system, found

from equation (13), we will extract the exact q-TDPES
by inversion.

To do this, we first ensure that we work in the gauge
where Aα = 0. Similarly to previous work [6,54], this
gauge can be fixed by choosing the phase S(q, t) of the

photonic wavefunction, χ(q, t) = |χ(q, t)| exp(iS(q, t)), to

satisfy

∂qαS(q, t) =
Im
(−→
Ψ (q, t) · ∂qα

−→
Ψ (q, t)

)

|χ(q, t)|2 . (39)

So, from the given solution
−→
Ψ (q, t), we compute

−→
Φ q(r) =

−→
Ψ (q, t)

|χ(q, t)|eiS( ~q,t)
with

|χ| =
√
−→
Ψ †(q, t) · −→Ψ (q, t) (40)
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and insert into the q-TDPES

ε(q, t) =
−→
Φ †q(t) · ĤqBO ·

−→
Φ q(t)

+
∑

α

1

2
|∂α
−→
Φ q(t)|2 +

−→
Φ †q(t) · (−i∂t

−→
Φ q(t))

= εwBO(q, t) + εkin(q, t) + εGD(q, t) , (41)

where we have identified here the first term in
equation (41) as εwBO, a “weighted q-BO” surface,
weighted by the probabilities of being in the q-BO eigen-
states: using the expansion equation (36),

εwBO =
|χ1(q, t)|2ε(1)

qBO(q, t) + |χ2(q, t)|2ε(2)
qBO(q, t)

|χ(q, t)|2 . (42)

The second term arises from kinetic effects from the
parametric dependence of the conditional matter wave-
function, hence we denote it as εkin, and it originates
from the electron–photon coupling operator: in this gauge
the only term that contributes to the electron–photon
coupling operator expectation value is

εkin(q, t) =
−→
Φ †q(t) · Ûep ·

−→
Φ q(t) = −1

2

2np∑

α

−→
Φ †q(t) · ∂2

α

−→
Φ q

=
1

2

2np∑

α

|∂αΦq|2. (43)

Both εwBO and εkin are invariant under different gauge
choices, while the last term in equation (41) is gauge-
dependent, hence its name εGD.

3 Results and discussion

We will consider two extremes within the simplified model
Hamiltonian equation (12). The first is the Wigner–
Weisskopf limit where the two-level system is coupled
to an infinite number of cavity modes. This is the clas-
sic model for spontaneous emission: an atom initially in
an excited state in a vacuum decays to the ground-state
by spontaneously emitting a photon. The second system
we study is the two-level system coupled to a single res-
onant mode. The Hamiltonian is then the same as the
Jaynes–Cummings one, but as we will begin with a pho-
tonic vacuum and excited atom, we will not see the famous
collapses and revivals, but we will see Rabi oscillation type
behavior for weak coupling. In both cases, our central
question is what are the structures and features of the
q-TDPES potential that drives the photonic system away
from its vacuum state?

As initial condition, we take the photon modes in the
vacuum state, and the two-level system in the excited
state. For the single resonant mode case, we will compare
the effect of starting in a fully factorized matter-photonic
state with that of starting in a q-BO state. The fully
factorized initial state would be the physical one when

an excited atom is instantaneously brought into a closed
cavity and just then its dynamics is studied, while the
excited q-BO state results when there is initially an exter-
nal dissipative coupling together with an applied resonant
field to maintain the atom in that excited state before the
dynamics is examined.

We notice that the dipole matrix element and cou-
pling parameter appear only together as a product in this
model equation (12), degλ. Physically, these are fixed by
the problem at hand, specifically the volume of the cav-
ity and the dipole coupling between the two levels in the
atom, apart from fundamental constants. But here, in this
model we choose them arbitrarily, and compare dynamics
for different degλ that range from relatively weak coupling
to strong coupling.

3.1 Wigner–Weisskopf limit

We first consider the Wigner–Weisskopf limit, in which our
two-level system is coupled to an infinite number of modes.
In this limit, the accepted well-known approximate solu-
tion for the coupled system is known analytically, which
makes the q-TDPES particularly straightforward to find.
We begin by briefly reviewing this solution.

The solution for
−→
Ψ of the coupled problem can be found

in the standard literature [60]. The initial state is taken to
be a purely factorized state of the electron in the excited
state and all photon modes in their ground states, i.e.

−→
Ψ (q, 0) = χ0(q)

(
1
0

)
, (44)

where

χ0(q) =
∏

α

(ωα
π~

)1/4

e−ωαq
2
α/2~ , (45)

which follows from the harmonic nature of the free pho-
ton field. The coupling in the off-diagonal elements of
equation (12) then cause Ψ to evolve in time, as

−→
Ψ (q, t) = a(t)χ0(q)

(
1
0

)
+
∑

α

bα(t)χα(q)

(
0
1

)
(46)

under the reasonable assumption that the coefficients of
the two-photon and higher states are negligible. Here the
one-photon states of the photonic system are

χα(q) =

√
2ωα
~
qα
∏

β

(ωβ
π~

)1/4

e−ωβq
2
β/2~ . (47)

The coefficients a(t) and bα(t) can be found by substi-
tuting equation (46) into the TDSE equation (13). After
making the Wigner–Weisskopf approximations (taking the
continuum limit so V → ∞, taking a(t) to change with
a rate much slower than the resonant frequency ω0 and
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performing a Markov rotating-wave approximation, and
neglecting a divergent Lamb shift), we arrive at

a(t) = e−
iω0t
~ e−

Γt
2 , (48)

bα(t) = eiωα
igα(ei(ωα−ω0)t−Γt/2 − 1)

i(ωα − ω0)− Γ/2 , (49)

where gα =
√

πωα
2~ λαdeg and the decay (spontaneous

emission rate), Γ = (degλ)2ω2
0
V
~c3 . The Wigner–Weisskopf

solution is accurate for weak coupling, so that in this limit
the solution also generates accurate q-TDPES.

With this Wigner–Weisskopf solution, we can then find
the corresponding “exact” q-TDPES, equation (41), using
equations (40) and (39). However, this yields an infi-
nite dimensional surface, since q = (q1..qα...q∞), which

is challenging to visualize. Instead, we plot some one-
dimensional cross-sections of the q-TDPES, along the ith
mode, setting qα6=i = 0. In the following, we use q̄ to
denote all modes not equal to qi. We will abbreviate
quantities such as ε(qi, q̄ = 0, t) by ε(qi, t), understood to
be looking at the cross-section where the displacement-
coordinate of all other modes is zero. We will choose
two different modes to look along: one resonant with ω0,
and the other slightly off-resonant. With this choice of
cross-sections through the origin of all modes but one, it
can be shown that the phase of the nuclear wavefunction
that satisfies the zero-q-TDVP condition, equation (27),
S(qi, t) ≡ 0. This leads to some simplification in the
components of ε(qi, t).

Before we discuss the q-TDPES, in Figure 2 we plot the
autocorrelation function

AΦ(t) =
∣∣∣
∫
dqi(
−→
Φ †(qi; t = 0) · −→Φ (qi; t))

∣∣∣
2

(50)

as this gives an indication of what time-scales to expect in
the behavior of the q-TDPES ε(qi, t) for different coupling
strengths degλ = {0.01, 0.1, 0.4}. In the upper panel, we
have chosen to plot the q-TDPES along the mode of the
radiation field that is resonant with the two-level system.
In this case, the decay of the autocorrelation depends pri-
marily on (degλ)2, through Γ , i.e. AΦ(t) ∝ e−Γt, although
there are some small polynomial corrections.

In the slightly off-resonant case, we have chosen ωi =
0.41 while ω0 = 0.4. In fact, we observe partial revivals
in the autocorrelation function for very long times in
the case of the weakest coupling shown (degλ = 0.01), as
shown in the inset, with the amplitude decreasing with
each revival. However the initial decay follows a similar
degλ-scaling pattern to that of the on-resonant section.
In either case, the dynamics of the decay is essentially the
same for all coupling strengths, provided the time is scaled
appropriately, and their q-TDPES’s also map on to each
other at the corresponding times. In the following then,
we will focus on the case degλ = 0.01, for both the cross-
section taken along the on-resonant mode and the slightly
off-resonant mode.

In Figures 3 and 4 we show the different components
of the q-TDPES ε(qi, t) for the different time snapshots

Fig. 2. The autocorrelation function AΦ(t) where the different
colors describe the different coupling strengths of the system.
The upper panel shows the decay of this function when we
choose to look on-resonance ωi = ω0 = 0.4. The lower panel
illustrates the decay when looking along a slightly-off reso-
nant mode ωi = ω0 + 0.01. The zoom-out shows the same
off-resonance decay for a longer time.

indicated by the colored dots in the decay-plot in the top
left panel, for the on-resonant and off-resonant sections
respectively. The displacement-field density, |χ(qi, t)|2 =
|χ(qi, q̄ = 0, t)|2 at these time-snapshots is shown in the
top middle panel, and we observe the gradual evolution
from the vacuum state towards the state with one photon
during the decay. This is also seen in the conditional prob-
ability amplitudes shown in the top right panel, which we
obtain from

|C1(2)(qi, t)|2 =
−→
Φ

(1(2))
qi,q̄=0 ·

−→
Φ qi,q̄=0(t). (51)

These are the coefficients of expansion of Φqi(t) in
the q-BO basis and are related to the coefficients in
equation (36) via Cj(qi, t) = χj(qi, t)/χ(qi, t). C

(1)(qi, t)

and C(2)(qi, t) begin close to 0 and 1, respectively, as
expected, and as the coupling kicks in and the atom
decays, one might expect them to evolve to 1 and 0,
respectively. This is in fact correct for almost all qi, how-
ever non-uniformly in qi. As expected from the nature
of the bilinear coupling Hamiltonian equation (12), the
conditional electronic amplitude associated with larger
photonic displacements qi couple more strongly than those
associated with smaller ones, so the conditional ampli-
tude on the upper surface falls away from 1 starting on
the outer edges and then moving in. In fact, the con-
ditional amplitude at q = 0 remains forever stubbornly
at the upper surface, unaffected by the coupling to the
field.
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Fig. 3. Wigner–Weisskopf model, looking on-resonance ωi =
ω0. The top left panel shows the decay AΦ(t), where the differ-
ent colored dots depict the times of the different time snapshots
of the dynamics shown within this plot. The middle and right
panels along the top show the photonic distribution |χ(qi, t)|2
and each coefficient of the conditional electronic distribution
|C(1)(qi; t)|2 (dashed), |C(2)(qi; t)|2 (solid) at the correspond-
ing time snapshots. The middle and lower panels show the
different components of the ε(qi; t) as well as the full scalar
potential at the given time snapshots. In the middle panels,
the q-BO surfaces are shown in blue for reference.

This non-uniformity is reflected in the q-TDPES ε(qi, t),
plotted in the middle panel, and leads to a strong devi-
ation from the harmonic form it has in the absence of
matter. The potential, driving the photonic motion, loses
its harmonic form in the initial time steps as the decay
begins, peeling away starting from the outer qi. The poten-
tial nearer qi = 0 remains harmonic for the initial stages,
but as time goes on, more of the surface peels away from
the upper surface, while a peak structure develops near
qi = 0 that gets increasingly localized and increasingly
sharp as the atom decay process completes and the photon
is fully emitted. It is this peak structure in the potential
driving the photonic system that excites the system from
the zero-photon state towards the one-photon state.

We turn now to the components of this exact surface.
In the weighted BO surface, εwBO(qi, t) that is plotted
in the middle right panel, we see the same peeling away
from the outer edges, but sticking resolutely to the original

Fig. 4. As for Figure 3 but looking along the slightly-off
resonant mode in the Wigner–Weisskopf model.

upper surface at qi = 0. As the decay occurs, εwBO(qi, t)
gradually melts to the lower surface everywhere except
for a shrinking region near the origin that sticks to the
upper surface. The peak seen in the full q-TDPES on the
other hand comes from εkin(qi, t), plotted in the lower left
panel, which gets sharper and sharper as the photon is
emitted. Mathematically, this structure follows from the
change in the conditional-dependence of Φq near qi = 0, as

the electronic state associated with qi = 0 remains on the
upper q-BO surface while away from q = 0, in a shrinking
region, the electronic state is associated with the lower
surface. This gets sharper as χ(qi = 0, t) gets smaller and
smaller there. One can show from the analytic solution,
that, in the long-time limit, the surface at qi = 0 grows
exponentially with t at a rate determined by Γ , while for
q 6= 0, εkin(qi 6= 0, t→∞)→ 0.

These features of εwBO and εkin are very similar for
both the cross-section that cuts along the resonant mode
(Fig. 3) and the section that cuts along the slightly
off-resonant (Fig. 4). The remaining component of the
q-TDPES, εGD is much smaller than the other compo-
nents, and has a different structure in the two cases. In
fact, it is straightforward to show from the analytic solu-
tion that εGD(qi = 0, t) is independent of t, and that
uniformly shifting εGD(qi, t) so that εGD(qi = 0, t) ≡ 0
yields εGD(qi 6= 0, t� Γ )→ ω0 − ωi for qi large. That is,
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Fig. 5. The ε(q, t) for the excited BO initial state and coupling
strength degλ = 0.01. The top left panel shows AΦ(t), where
the different colored dots depict the times of the dynamics
within this plot. The top middle and right plots show the pho-
tonic distribution |χ(q, t)|2 and the electronic coefficients in

the BO basis, |C(1)(qi; t)|2 (dashed), |C(2)(qi; t)|2 (solid), for
the time snapshots shown. The middle and lower panel show
the q-TDPES ε(q, t) and its decomposition into components
for the given time snapshots. The q-BO surfaces are shown in
the middle panel in blue for reference.

there is a symmetric step-like feature in εGD, of the size
of the difference in the mode frequency of interest and the
resonant mode, and as t gets larger, this feature sharpens.

Thus, we can see that in the Wigner–Weisskopf limit,
the potential driving the photonic modes deviates signif-
icantly from its initial harmonic form during the decay,
although once again becoming harmonic almost every-
where (except at q = 0) in the long-time limit. The atom-
photon correlation is required to capture these effects, and
if one wanted to model this exact q-TDPES, the condi-
tional dependence of the electronic amplitude is crucial to
include.

3.2 Two-level system coupled to a single resonant
cavity photon mode

We now turn to the other limit, tuning the cavity so that
there is just one mode that couples appreciably to the
two-level atom, with a mode frequency that is resonant
with the atomic energy difference.

Fig. 6. As in Figure 5 but with coupling strength degλ = 0.1.

The q-BO surfaces can be easily found by diagonalizing
HqBO of equation (34), keeping only one mode with ωα =
ω0 in the field:

εqBO(q) =
1

2
ω2

0q
2 ∓

√
ω2

0/4 + (degλω0)2q2. (52)

For couplings λdeg � 1/2, the q-BO surfaces are approx-
imately parallel and harmonic except at large q (see also
Ref. [34]). So in this case if the initial photonic state
is a vacuum, then the ensuing dynamics is driven by
a largely harmonic potential, without much perturba-
tion from the atom, except at larger q. Deviations from
parallel harmonic surfaces, and hence non-q-BO behav-
ior, occurs at larger q and as the coupling increases.
We will investigate the q-TDPES driving the photonic
dynamics for three different coupling strengths, (degλ =
{0.01, 0.1, 0.4}) and will include a plot of the two q-BO
surfaces with our results for comparison with the exact
q-TDPES.

In Figures 5–7, we plot the exact q-TDPES for coupling
strengths degλ = 0.01, 0.1 and 0.4, respectively, beginning
with the atom in the excited q-BO level, multiplied by the
photonic ground-state. On the upper panel (left) we plot
the autocorrelation function

AΨ (t) =

∣∣∣∣
∫
dq
−→
Ψ †(q, 0) · −→Ψ (q, t)

∣∣∣∣
2

(53)
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Fig. 7. As in Figure 5 but with coupling strength degλ = 0.4.

to indicate the approximate periodicity of the system
dynamics. Comparing AΨ (t) in these three figures, we find
a decrease of the approximate period with the increase of
coupling strength until the periodicity breaks down for the
strong coupling degλ = 0.4. The weakest coupling strength
we have chosen is on the borderline of being in the Rabi
regime [61], while the strongest is far from it.

The photonic distribution (middle) and conditional
electronic coefficients (right) are shown in the top panel
of Figures 5–7. The initial coefficients are C(1)(q, 0) = 1
and C(2)(q, 0) = 0. After some time we see a transition of
the electron from the excited state to the ground-state as
indicated by these coefficients. We observe that the trans-
fer begins earlier for higher values of q and then is followed
by lower q-values, and again the conditional amplitude at
q = 0 sticks to the upper surface at all times in all cases as
there is no coupling for q = 0. The q-dependence of these
coefficients has a significant role in shaping the structure
of the q-TDPES that we will shortly discuss. At the same
time, the probability of photon emission increases, as indi-
cated by the morphing of the initial gaussian in χ(q, t)
towards its first-excited profile. For the weakest coupling
strength (Fig. 5), after a half period the system begins to
move back approximately to its initial state, as the pho-
ton is reabsorbed and atom becomes excited again. For
strong coupling degλ = 0.4 (Fig. 7), the periodic charac-
ter is lost and we find more wells and structure appearing
in the displacement-field density profile. With such strong

coupling the q-BO surfaces are quite distorted from a pure
harmonic, as evident in the plot (blue lines in the mid-
dle panel), and the anharmonicity brings more frequencies
into play. A one-photon state that is associated with the
lower q-BO surface has a wider profile with density max-
ima further out than a one-photon state associated with
the upper surface would have, for example. In fact the
character of the coupled cavity-matter system becomes
quite mixed, as is evident from the conditional electronic
coefficients shown on the right, and as one goes along the
photonic coordinate q one associates with different super-
positions of the electronic states. This leads to interesting
structure in the exact q-TDPES, that, when decomposed
in terms of the q-BO surfaces, has components that vary
a lot with q (i.e. not just approximately piecewise-in-q).

The q-TDPES for initial state prepared in the upper
q-BO state begins with the weighted q-BO compo-
nent, εwBO (middle right panel) on top of the upper
q-BO surface as expected. For the weakest coupling,
degλ = 0.01, εwBO(q, t) then melts down to the lower sur-
face over half a cycle, peeling away from the outer higher
q-values first, in a similar way to what was seen in the
Wigner–Weisskopf limit. This potential approaches the
lower surface before returning back to the upper q-BO
surface, but the region near q = 0 remains bound to the
upper surface. The time-dependent double-well structure
in the potential is again important in driving the pho-
ton emission. A similar trend is seen for the stronger
coupling 0.1 in Figure 6, but for the strongest coupling
degλ = 0.4 of Figure 7, εwBO(q, t) shows a more compli-
cated correlation in q, with structures mirroring those in
the displacement-field density discussed above. As for the
kinetic component, for the weaker couplings, a peak struc-
ture in εkin(q, t) (lower left panel) develops that grows
and narrows during the photon emission stage, similar to
what was seen in Wigner–Weisskopf, but this then reverses
during the reabsorption here. Again for the stronger cou-
pling, the structure is more complicated, mirroring the
more complicated dynamics. The gauge-dependent part,
εGD (lower right panel) is generally a smaller contribution
to the total q-TDPES compared to the other components,
but again we see step-like features for the weaker cou-
plings, and more complicated dynamics for the strongest
coupling.

The dynamics depends significantly on whether the ini-
tial state is the correlated q-BO state of Figures 5–7, or
a fully factorized one, and now we turn to the surfaces,
conditional probabilities, and displacement-field densities
for the latter case, plotted in Figures 8–10. The initial
coefficients were C(1)(q, 0) = 1 and C(2)(q, 0) = 0 when
beginning in the q-BO states, but when beginning in
the fully factorized state, these coefficients deviate from
these uniform values, especially for larger q, with devia-
tion increasing with the coupling strength. Although the
photonic field still begins in the vacuum state, the elec-
tronic state is not purely in the upper q-BO surface; the
electronic state associated with larger q already has some
component in the ground-state. So at these larger values
of q, the initial εwBO(q, 0) surface dominates the q-TDPES
and is anharmonic from the very start, lying intermediate
between the upper and lower q-BO surface. In the weak
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Fig. 8. As in Figure 5 with coupling strength degλ = 0.01 but
with the initial purely factorized state.

coupling case, the differences are only large at values of q
much larger than shown in the plot, and these are physi-
cally unimportant given there is very little photonic field
probability there; hence Figures 5 and 8 are almost iden-
tical. For strong couplings, comparing Figures 7 and 10
show that the q-TDPES has a tamer structure for the
fully-factorized initial state than for the correlated q-BO
initial state, especially at larger q; this is likely because
less energy is available at these larger q for the system
to exchange between the atomic and photonic systems
because the atomic state correlated with large q is not
completely in its excited state initially.

To summarize: at time zero the exact q-TDPES starts
on the upper q-BO-surface, which, depending on coupling
strength and choice of initial state, ranges from lying
directly on top of the upper q-BO surface (weaker cou-
pling and with q-BO initial state), to in between the two
q-BO surfaces with deviations from the upper being larger
for larger q (stronger coupling, or fully factorized initial
state). After some time the potential starts to melt down
onto the lower BO-surface, first starting at higher q-values
and then followed by lower q-values, with peak struc-
tures developing in the interior region. Around q = 0 the
kinetic-component dominates, which leads to an increas-
ing and after half a period decreasing peak. For stronger
coupling we observe several peak features in the poten-
tial and significant deviations from the curvature of the

Fig. 9. As in Figure 6 with coupling strength degλ = 0.1 but
with the initial purely factorized state.

q-BO surfaces throughout q small contribution below the
lower BO-surface; the deviations at larger q arise from the
gauge-dependent component.

4 Summary and outlook

We have introduced an extension of the exact–
factorization approach, originally derived for coupled
electron-nuclear systems, to light-matter systems in the
non- relativistic limit within the dipole approximation. We
have presented different possible choices for the factoriza-
tion but in this work have focussed on the one where the
marginal is chosen as the photonic system and the mat-
ter system is then conditionally-dependent on this. This
choice is particularly relevant when one is primarily inter-
ested in the state of the radiation field since the exact
factorization yields a time-dependent Schrödinger equa-
tion for the marginal, while the conditional is described
by an equation with an unusual matter-photon coupling
operator. The equation for the marginal is, in a sense, sim-
pler than that in the electron-nuclear case, since the vector
potential, q-TDVP, appearing in the equation can always
be chosen to be zero, so only a scalar potential remains,
the q-TDPES. We have studied the potential appearing
in this equation in a gauge where the q-TDVP is zero,
for a two-level system coupled to an infinite number of
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Fig. 10. As in Figure 7 with coupling strength degλ = 0.4 but
with the initial purely factorized state.

modes in the Wigner–Weisskopf approximation, and for a
two-level system coupled to a single photonic field mode
with a range of coupling strengths. In all cases we find
a very interesting structure of the potential that drives
the photonic dynamics, and in particular, large deviations
from the harmonic form of the free-photon field. These
deviations completely incorporate the effect of the mat-
ter system on the photonic dynamics. We also studied
the effect of beginning in an initially purely factorized
light-matter state, compared to a q-BO initial state, find-
ing significant differences for larger coupling strengths in
the ensuing dynamics, implying that in modelling these
problems a careful consideration of the initial state is
needed.

To use the exact factorization for realistic light-matter
systems, approximations will be needed, since solving the
exact factorization equations is at least as computation-
ally expensive as solving the Schrödinger equation for the
fully coupled system. The success of such an approxima-
tion depends on how well the q-TDPES is modelled. The
components of the exact q-TDPES beyond the weighted
BO depend significantly on the q-dependence of the condi-
tional probability amplitude; approximations that neglect
this dependence (Ehrenfest-like) will likely lead to errors
in the dynamics. It has been shown recently that mixed
quantum-classical trajectory methods that are derived
from the exact factorization approach can correctly

capture decoherence effects [62–64]. Since photons are
intrinsically non-interacting and therefore even simpler to
treat than nuclei, we expect in analogy to the electron-
nuclear case that semiclassical trajectory methods derived
from systematic and controlled approximations to the
full exact factorization of the light-matter wavefunction
will be able to capture decoherence effects beyond the
Ehrenfest limit for light-matter coupling. This will be
subject of future investigations.
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2.3 mixed-quantum classical and perturbative methods for pho-
tons




“Benchmarking Semiclassical and Perturbative Methods for Real-time Simulations
of Cavity-Bound Emission and Interference”

NM Hoffmann, C Schäfer, N Säkkinen, A Rubio, H Appel, A Kelly,

The Journal of Chemical Physics, (2019), 151 (24), 244113




motivation and state of the art Continuing our work of Sec. 2.1, the
overall motivation for this work as well as the current state of the art research
stays the same. However, based on the knowledge obtained from [O1], we now
broaden our scope of investigation and target the question: How can we improve
the results found within the MTEF, i.e. additionally capture interference effects
and obtain quantitatively more accurate results, by going beyond the mean-field
approach towards more advanced methods?

contribution and main findings In the present work we investigate
the performance of a comprehensive class of MQC approaches for simulating
spontaneous emission in an optical cavity, including the MTEF approach [15, 17–
19], fewest switch surface hopping algorithm [29–34], fully linearized and par-
tially linearized semiclassical dynamics techniques [20–26], and a selection of
finite size corrected second Born BBGKY truncations [137–140]. More precisely,
for all trajectory based methods the general extension to the photonic degrees of
freedom is carried out analogously to [O1], i.e. Wigner sampling for the photons,
while propagating the trajectories corresponding to the given either classical or
now also semiclassical equations of motion. Considering the BBGKY we compare
different restrictions and find that by restricting to the single electron subspace
as well as enforcing at most a single photon in the cavity for the two level sys-
tem, we obtain the best performance and therefore focus on those results in
comparison with the classical and semiclassical approaches. Here, we find that
with the exception of the fewest switch surface hopping all methods are able to
capture quantum effects such as spontaneous emission and bound photon states
and give a reasonable level of accuracy for the correlated light-matter dynamic.
Additionally, although not fully accurate, the path integral methods are able to
capture some level of interference effects.

outlook With respect to extrapolations towards realistic systems, we identify
the MTEF approach as well as the path integral methods as the most promising
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methods for applications along these lines. Furthermore, both methods exhibit
similar convergence with respect to the trajectory numbers and allow a signifi-
cant reduction of total run-time due to uncoupled trajectories during the time
propagation. In contrast, a treatment of the photons within the fewest switch sur-
face hopping approach would not be favourable due to its relatively poor perfor-
mance, whereas BBGKY, although performing exceptionally well for the applied
model systems, features a rather unfavourable high-order polynomial scaling,
which restricts this method to comparable small systems. Therefore, following
the outlook of Sec. 2.1, combining the ab initio light-matter coupling methodol-
ogy introduced in [51] with either the MTEF or a path integral based methods
could provide a computationally feasible way to simulate photon-field fluctua-
tions and correlations in realistic three-dimensional systems.
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ABSTRACT
We benchmark a selection of semiclassical and perturbative dynamics techniques by investigating the correlated evolution of a cavity-
bound atomic system to assess their applicability to study problems involving strong light-matter interactions in quantum cavities. The
model system of interest features spontaneous emission, interference, and strong coupling behavior and necessitates the consideration
of vacuum fluctuations and correlated light-matter dynamics. We compare a selection of approximate dynamics approaches including
fewest switches surface hopping (FSSH), multitrajectory Ehrenfest dynamics, linearized semiclassical dynamics, and partially linearized
semiclassical dynamics. Furthermore, investigating self-consistent perturbative methods, we apply the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy in the second Born approximation. With the exception of fewest switches surface hopping, all methods provide a rea-
sonable level of accuracy for the correlated light-matter dynamics, with most methods lacking the capacity to fully capture interference
effects.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5128076., s

I. INTRODUCTION

Profound changes in the properties of cavity-bound molec-
ular systems can be achieved in regimes where the quantum
nature of light becomes important. A few notable examples are
the change in conductivity in semiconductors due to vacuum field
hybridization,1 the appearance of mixed states due to strong cou-
pling,2,3 and multiple Rabi splittings caused by ultrastrong vibra-
tional coupling.4 Although the forefront of the rapidly expanding
domain of cavity-modified chemistry has been strongly driven by

experiments, theoretical investigations have offered complementary
insights into the various possibilities opening up with this new field
of research.5–16

Describing chemical processes that are strongly correlated with
quantum light17–19 requires an accurate and flexible, furthermore
computationally efficient, treatment of the light-matter interac-
tions. Thus, in order to meet the demand of developing an ab
initio theoretical description of cavity modified chemical systems,
extensions to the traditional theoretical toolkits for quantum optics
and quantum chemistry are required. In this paper, we focus on

J. Chem. Phys. 151, 244113 (2019); doi: 10.1063/1.5128076 151, 244113-1
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semiclassical dynamics methods, which due to the simplicity, effi-
ciency, and especially scalability, present an interesting alternative or
extension to existing quantum electrodynamical wavefunction20–23

and density-functional (QEDFT) based approaches.15,24–26

The semiclassical concept has the advantage of providing an
intuitive qualitative understanding of the dynamics through trajec-
tories in phase space. Furthermore, many semiclassical methods do
not exhibit an exponential scaling of the computational effort with
system size or simulation time. However, these methods can fail
to quantitatively, and sometimes even qualitatively, describe all of
the relevant physical features in a variety of nonadiabatic reactive
scattering and excited state relaxation processes, such as nuclear
interference and detailed balance.27,28 Hence, benchmark tests of
these approaches are needed in this particular regime of the prob-
lem in order to be able to verify their viability. In order to address
some of these challenges, we have recently shown the potential of
the Multitrajectory Ehrenfest (MTEF) method to capture the cor-
related dynamics of a one-dimensional QED cavity-setup with a
two-level atomic system coupled to a large set of cavity photon-
modes.29 Furthermore, we note that in contrast to recent work of
Subotnik and co-workers, who investigated light-matter interaction
with an adjusted Ehrenfest theory based method to simulate sponta-
neous emission of classical light,30–32 we focus on the description of
quantized light fields.

Here, we broaden our scope by investigating the performance
of a comprehensive class of approximate quantum dynamics meth-
ods for simulating spontaneous emission in an optical cavity, includ-
ing Ehrenfest mean-field theory,33,34 Tully’s surface hopping algo-
rithm,35 fully linearized36 and partially linearized37,38 semiclassi-
cal dynamics techniques, and a selection of approximate closures
for the quantum mechanical Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy. Through benchmark comparisons with
exact numerical results, we assess the accuracy and efficiency of
each method and highlight the possibilities and theoretical chal-
lenges involved with extending these approaches toward realistic
systems.

The remainder of this work is divided into four sections: Sec-
tion II gives a short overview of general quantum mechanical light-
matter interactions and a brief introduction of the class of model
systems used in this study. Section III contains a short introduc-
tion to each of the selected dynamics methods that we consider
in this work. In Sec. IV, we report the results of our benchmark
tests of the performance of these techniques in describing spon-
taneous emission, stimulated absorption, and strongly correlated
light-matter dynamics. In Sec. V, we offer some conclusions and
outlooks.

II. ELECTRON-PHOTON CORRELATED SYSTEMS
The total Hamiltonian for a coupled light-matter system can be

written as follows:

Ĥ = ĤA + ĤF + ĤAF . (1)

The first term, ĤA, is the matter Hamiltonian, which may be gener-
ally expressed in the spectral representation as follows:

ĤA = ∑
k
εk∣k⟩⟨k∣.

Here, {εk, |k⟩} are the energies and stationary states of the electron-
nuclei system in the absence of coupling to the cavity. The second
term is the Hamiltonian of the uncoupled cavity field ĤF ,

ĤF = 1
2

2N∑
α=1
(P̂2

α + ω2
αQ̂

2
α). (2)

The photon-field operators, Q̂α and P̂α, obey the canonical com-
mutation relation, [Q̂α, P̂α′] = ıh̵δα,α′ , and can be expressed using
creation and annihilation operators for each mode of the cavity
field,

Q̂α =
√

h̵
2ωα
(â†

α + âα), P̂α = i
√

h̵ωα

2
(â†

α − âα),
where â†

α and âα denote the usual photon creation and annihilation
operators for photon mode α. The coordinatelike operators, Q̂α, are
directly proportional to the electric displacement operator, while the
conjugate momentalike operators, P̂α, are related to the magnetic
field.25,39,40 The upper limit of the sum in Eq. (2) is 2N, as there are
(in principle) two independent polarization degrees of freedom for
each photon mode; however in the 1D cavity models presented here
only a single polarization will be considered.

The final term in Eq. (1) represents the coupling between
the electron-nuclei system and the cavity field. In Coulomb gauge,
and the dipole approximation,15,39 this term can be written as
follows:

ĤAF = 2N∑
α=1
(ωαQ̂α(λα ⋅ μ̂) +

1
2
(λα ⋅ μ̂)2), (3)

where we denote μ̂ as the electronic plus nuclear dipole moment
and λα as the matter-photon coupling vector.15,24,41 The featured
methodologies can be generically applied to arbitrary complex mat-
ter systems.

With the demand for exact reference solutions, as part of the
benchmarking procedure, we are forced to restrict the Hilbert-space
of interest. Focusing on the evolution of the photonic degrees of
freedom, we restrict the matter part to a highly simplified few-
level atomic system trapped in a cavity14,29,42 as depicted in Fig. 1.
The fundamental limitations of the few-level approximation have
been presented in a variety of recent publications.16,23,26,43,44 While

FIG. 1. Cavity-setup: Few-level approximated atomic system (green) trapped in a
cavity and coupled by coupling strength λα to 400 photon modes with their photonic
frequency ωα, where α = {1, 2, . . ., 400}.
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this approximation results in a strongly simplified problem, it has
the advantage that exact numerical results, although nontrivial to
obtain, are still achievable with a reasonable computational effort.
In the case of a two-level approximation of the matter system, the
quadratic term (λα ⋅ μ̂)2 simply results in a constant energy shift
and hence can be discarded.23 For simplicity, we also neglect this
term in the case of the three level model system, to remain consis-
tent across setups and previous publications.14,29,42,78 However, the
quadratic term is generally important to consider as it stems from
a proper definition of field observables, renders the system stable,
and is essential to retain gauge and translational invariance. Appli-
cations to realistic systems should of course consider this term; for
a detailed discussion of this topic, one may refer to Ref. 44, for
example.

In the case of a two-level atomic system, this corresponds to a
special case of the spin-boson model. With the position of the atom
fixed at rA = L

2 in this study, half of the 2N cavity modes decouple
from the atomic system by symmetry. We adopt the same parame-
ters as in Refs. 14 and 45, which are based on a 1D Hydrogen atom
with a soft Coulomb potential (in atomic units): {ε1, ε2} = {−0.6738,−0.2798}, λα( L2 ) = 0.0103 ⋅ (−1)α, L = 2.362 ⋅ 105, and μ12 = 1.034.

For the three-level atom, we adopt all the same parameters for
the field and the atom-field coupling as for the two-level case. The
atomic energies for the three level model are {ε1, ε2, ε3} = {−0.6738,−0.2798, −0.1547}, and as before the numerical parameters are based
on the 1D soft-Coulomb hydrogen atom. The dipole moment oper-
ator only couples adjacent states such that the only nonzero matrix
elements are {μ12, μ23} = {1.034, −2.536} and their conjugates.

Furthermore, with g2,1
ε2−ε1

= 1.2 ⋅ 10−2 for the two-level sys-
tem and g3,2

ε3−ε2
= 2.1 ⋅ 10−2 for the three-level system, where

gi,j = μk,l

√
εi−εj

2 λ is the coupling strength for the resonant mode,
our system is beyond common perturbative approaches most illus-
tratively indicated by the appearances of a bound photon peak in
the intensity as consequence of counter-rotating components. Cav-
ity losses are not considered at this point but could be included in
future developments.

III. METHODS
A. Multitrajectory methods

In this section, we briefly review a selection of semiclassical
dynamics methods that are based on ensembles of independent tra-
jectories. These methods have been introduced traditionally to study
electron-nuclear systems, and they typically involve the use of the
Wigner representation for the non-subsystem degrees of freedom. In
this work, we extend the application of these methods to treat cou-
pled quantum mechanical light-matter systems, in which the degrees
of freedom of the photon field will be partially Wigner transformed.
The structural similarity allows for the trivial inclusion of nuclear
degrees of freedom. The general expression for the average value of
any observable, ⟨B(t)⟩, in the partial Wigner representation can be
written as follows:

⟨B(t)⟩ = TrA ∫ dXB̂W(X, t)ρ̂W(X, t = 0),
= ∑

λλ′
∫ dXBλλ′

W (X, t)ρλ′λW (X),

where the subscript W denotes the partial Wigner transform over
the photonic degrees of freedom, which are represented on the con-
tinuous phase space X = (R, P). The partial Wigner transforms for
an arbitrary operator B̂ and the density matrix ρ̂ are defined as
follows:46

B̂W(R,P) = ∫ dZeiP⋅Z⟨R − Z
2
∣B̂∣R +

Z
2
⟩,

ρ̂W(R,P) = 1(2πh̵)2N ∫ dZeiP⋅Z⟨R − Z
2
∣ρ̂∣R +

Z
2
⟩.

Thus, in order to assemble the average value a multitrajectory
method may be employed, which is essentially a hybrid Monte Carlo
molecular dynamics method in which initial conditions are sampled
from the initial Wigner distribution, and then an ensemble of molec-
ular dynamics trajectories is used to evaluate the time-evolution of
the property of interest.

1. Ehrenfest mean-field theory
The Ehrenfest equations of motion may be derived by assuming

that the total density can be written as an uncorrelated product of
the atomic and field reduced densities at all times, and then taking
the appropriate classical limit,33,34 or by starting with the quantum-
classical Liouville equation (QCLE), which is formally exact for the
class of systems studied here,47 and then making the uncorrelated
approximation, i.e.,

ρ̂W(X, t) = ρ̂A(t)ρF,W(X, t),
where the reduced density matrix of the atomic system is as follows:

ρ̂A(t) = TrF(ρ̂W(X, t)) = ∫ dXρ̂W(X, t),
and the Wigner function of the cavity field is ρF,W(X, t)= TrA(ρ̂W(X, t)). The Ehrenfest mean-field equations of motion for
the atomic system are as follows:

∂t ρ̂A(t) = −i[ĤA + ĤAF,W(X(t)), ρ̂A(t)],
where ĤAF,W denotes the Wigner transform of the bilinear coupling
and ĤA the atomic Hamiltonian. The evolution of the Wigner func-
tion of the photon field can be represented as a statistical ensemble
of independent trajectories with N being the ensemble size, where
we select uniform weights wj = 1/N,

ρF,W(X, t) = 1
N

N∑
j=1

δ(X − Xj(t)),
that evolve according to Hamilton’s equations of motion,

dQα

dt
= ∂HEff

F,W

∂Pα
,

dPα
dt
= −∂HEff

F,W

∂Qα
.

The mean field photonic Hamiltonian is as follows:

HEff
F,W = 1

2∑α (P2
α + ω2

αQ
2
α + 2ωαλαQαμ(t)),

where μ(t) = TrA(ρ̂A(0)μ̂(t)).
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2. Fewest switches surface-hopping
In the following, we outline the fewest switches surface hop-

ping (FSSH) method for the electron-photon coupled system. FSSH
allows feedback between the classical and quantum subsystems,
which, however, requires the photons to always propagate on a
particular electronic adiabatic state, with hops between adiabatic
surfaces.48–51

Considering the mode displacement moving along some clas-
sical trajectory R(t) = {Rα=1(t), . . ., R2N(t)}, the effective electronic
Hamiltonian,

Ĥel[R(t)] = ĤA + ĤAF[R(t)] +
1
2

2N∑
α=1

ω2
αRα(t)2,

then becomes parametrically dependent on time through the pho-
tonic trajectory. Expanding the electronic wavefunction in the adia-
batic basis yields the following:

Ψ(r,R, t) = ∑
i
ci(t)ϕi(r,R(t)),

where r denotes the collection of all electronic degrees of free-
dom and ci(t) are time-dependent complex expansion coefficients.
Assuming the photonic motion with the momentum P(t) to be
classical, the equation of motion is given by the following equation:

∂tρij = − i∑
k
(Hel

ik[R(t)]ρkj − ρikHel
kj[R(t)])

− P(t) ⋅∑
k
(dαik[R(t)]ρkj − ρikdαkj[R(t)]),

with the photon mode α and ρij = ci(t)c∗j (t) being the correspond-
ing electronic density matrix. Furthermore, the movement of the
photon is given by moving along a single potential energy surface
except for some instantaneous switches. The probability for those
switches, jumping from the current state i to another state j, is
defined by the following:

gij = bijΔt
ρii

,

whereΔt is a time interval from t to t +Δt and bij =−2Re(ρijP(t) ⋅ dij),
with dij = ⟨ϕi(r, R(t))|∂Rϕj(r, R(t))⟩ being the nonadiabatic coupling
vector.

a. Semiclassical mapping methods. Here, we briefly sketch two
semiclassical methods that are based on the mapping representation.
These approaches can be rigorously derived from the path-integral
formulation of the dynamics, or, for example, using the quantum-
classical Liouville equation (QCLE).38 Originally, however, the lin-
earized semiclassical (LSC) approach has been developed through a
stationary-phase approximation to the full path-integral, and sub-
sequently applying a linearization approximation to the resulting
subsystem propagator.36

With the intention of providing only the essential information
about these techniques, we will briefly introduce the representa-
tion in a mapping basis and then simply give the expressions for
the corresponding equations of motion and expectation values. The

interested reader may refer to specific literature (e.g., Refs. 27, 37,
38, and 52–55 for example) for further information and technical
details.

In order to achieve a classical-like description of the quan-
tum subsystem, the Meyer-Miller-Stock-Thoss mapping represen-
tation52,53 is used. Each subsystem state |λ⟩ is represented by a
mapping state |mλ⟩, that is, an eigenfunction of a system of N fic-
titious harmonic oscillators, that have occupation numbers which
are constrained to be 0 or 1: |λ⟩ → |mλ⟩ = |01, . . ., 1λ, . . .0N⟩.
3. Linearized semiclassical dynamics

In the LSC method, the mapping version of an operator on the
subsystem Hilbert space, B̂m(X), is defined such that its matrix ele-
ments are equivalent to those of the corresponding operator, B̂W(X).
For example, the mapping Hamiltonian can be written as follows:55

B̂m(X) = ∑
λλ′

Bλλ′
W (X)â†

λ âλ′ ,

where the creation and annihilation operators on the subsystem
mapping states, â†

λ and âλ, satisfy the usual bosonic commutation
relation [âλ, â†

λ′] = δλλ′ . Completing the Wigner transform over the
subsystem, the mapping Hamiltonian can be written as a function of
continuous phase space variables (X, x) = (R, P, r, p),

Bm(X) = ∑
λλ′

Bλλ′
W (X)(rλrλ′ + pλpλ′ − δλλ′).

The LSC time-evolution of an arbitrary operator in the map-
ping representation, Bm(X), can be written as a classical-like dynam-
ics in the extended Wigner-mapping phase space,

∂

∂t
Bm(X, x, t) = {Hm(X, x),Bm(X, x, t)}

X,x
.

Due to the Poisson bracket structure of this equation, the density can
be obtained from the evolution of an ensemble of independent tra-
jectories, ρm(X, t) = N −1∑N

i=1 δ(X − Xi(t)), where Xi(t) = (Ri(t),
Pi(t)) are given by the solutions of the following set of ordinary
differential equations:56

drλ
dt
= ∂Hm

∂pλ
,

dpλ
dt
= −∂Hm

∂rλ
,

dR
dt
= ∂Hm

∂P
,

dP
dt
= −∂Hm

∂R
.

4. Partially linearized quantum-Classical dynamics
A less severe approximation to the QCLE37,57 uses a partially

linearized approximation to the equations of motion for the cou-
pled system, using the mapping representation for the forward
and backward time-propagators separately. This doubles the num-
ber of mapping variables used to describe each subsystem state
but yields an efficient approximate solution to the QCLE in this
forward-backward mapping form. This forward-backward trajec-
tory solution (FBTS) describes a classical-like dynamics in the
extended phase space of the environmental and the mapping vari-
ables that represent the subsystem degrees of freedom. The effec-
tive Hamiltonian function that generates the FBTS evolution is as
follows:
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He(X, x, x′) = 1
2
(Hm(X, x) + Hm(X, x′)),

where (X, x, x′) = (R, P, r, r′, p, p′).
The continuous trajectories that define the FBTS solution to

the quantum-classical Liouville equation can be represented by the
following Hamiltonian equations of motion:58

drμ
dt
= ∂He(X, x)

∂pμ
,

dpμ
dt
= −∂Hm(X, x)

∂rμ
,

dr′μ
dt
= ∂Hm(X, x′)

∂p′μ ,
dp′μ
dt
= −∂Hm(X, x′)

∂r′μ ,

dR
dt
= P
M

,
dP
dt
= −∂He(X, x, x′)

∂R
.

In the FBTS simulation algorithm, the matrix elements of the
operator B̂W(t) are approximated using the following expression:

Bλλ′
W (X, t) =∑

μμ
∫ dxdx′ϕ(x)ϕ(x′)(rλ + ipλ)(r′λ − ip′λ)

× Bμμ′
W (Xt)(rμ(t) + ipμ(t))(r′μ′(t) − ip′μ′(t)),

where ϕ(x) = (π)−2Ne−∑μ(r2
μ+p2

μ) are normalized Gaussian distri-
bution functions, and evaluation of the integrals over the time-
independent ϕ(x) functions is carried out by Monte Carlo sampling.

B. Quantum BBGKY-Hierarchy
In the following, we briefly describe the quantum mechanical

BBGKY-hierarchy, which is an exact reformulation of many-body
quantum dynamics. As such it can capture quantum interference
and fluctuations. In practice, some approximate closures for the
hierarchy have to be employed to reduce the computational cost
of this approach. For a system of interacting fermions and bosons
according to Eq. (3), where we focus on the explicit Pauli-spin
representation of the 2-level system, i.e.,

Ĥ = −Δε
2
σ̂z +

1
2

2N∑
α=1
(P̂2

α + ω2
αQ̂

2
α) + Ê(rA)σ̂x,

Ê(rA) = 2N∑
α=1

μ12ωαλα(rA)Q̂α,

(4)

with Δε = ε2 − ε1, the underlying equations of motion, known
as the quantum BBGKY-hierarchy59–61 follow from the Heisenberg
equations of motion for the Hamiltonian. Consistent with previ-
ous publications,64 we introduce the short-hand notation X̂1α ≡ Q̂α,
X̂2α ≡ P̂α such that the correlation functions are given by the
following:

Λiα,jβ ≡ ⟨X̂iαX̂jβ⟩ − XiαXjβ,

Λε;jα ≡ ⟨X̂jασ̂ε⟩ − Xjασε,

with i, j ∈ {1, 2}, ε ∈ {x, y, z}, and we chose to suppress the
time-arguments for brevity. In this work, we truncate the infi-
nite hierarchy of equations of motion at the doublets level for
the correlation functions,63 resulting in an approximation con-
ventionally referred to as the second Born approximation.64,65

This extends the Hartree-Fock-type approximation as presented in

Refs. 14 and 25 to the next higher consistent approximation level
of the hierarchy. With X ≡ (Qα=1, . . . ,Qα=(2N),Pα=1, . . . ,Pα=(2N))T= (X11, . . . ,X1(2N),X21, . . . ,X2(2N))T the normal coordinate aver-
ages satisfy

Ẋ = {X,Hcl(σx,X)},
where {⋅, ⋅} denotes the canonical Poisson bracket. Furthermore, Hcl
defines the classical Hamiltonian function, i.e., providing the classi-
cal equivalent to Eq. (4) B̂ → ⟨B⟩. The spin-projection averages in
turn obey the following equations:

σ̇z = 2E(rA)σy + 2λTeff ⋅Λy,

σ̇y = −Δεσx − 2E(rA)σz − 2λTeff ⋅Λz ,
σ̇x = Δεσy,

where λeff ≡ (ω1λ1(rA)μ12, . . . ,ωMλ(2N)(rA)μ12)T represents the
effective light-matter coupling. Moreover, we introduced the vector
notation Λε ≡ (Λε;11, . . . ,Λε;1(2N),Λε;21, . . . ,Λε;2(2N))T for the cor-
relation functions. The dynamics of the correlation functions are
determined by

Λ̇z = {Λz ,Hcl(−ıσy − σxσz ,Λz)} + 2EΛy + 2σyΛ ⋅ λeff(rA),
Λ̇y = {Λy,Hcl(−ıσz − σyσx,−Λy)} − ΔεΛx + 2EΛz

+ 2σzΛ ⋅ λeff(rA),
Λ̇x = {Λx,Hcl(1 − σ2

x ,Λx)} − ΔεΛy,

where the matrix Λ with the elements Λiα,jβ is the covariance matrix
satisfying the following equation:

Λ̇ = J ⋅Ω ⋅Λ −Λ ⋅Ω ⋅ J − λeff ⋅ΛT
x −Λx ⋅ λTeff.

Here, J is the standard symplectic matrix

J =
⎛⎜⎜⎜⎜⎜⎝

0 1 0−1 0 1 . . .

0 −1 0
. . .

⎞⎟⎟⎟⎟⎟⎠
and Ω denotes a matrix such that Ω1α,1α = ω2

α, Ω2α,2α = 1, and
otherwise zero.

Evolving the covariance matrix in time allows the field fluctu-
ations to dynamically respond to the polarizable matter. Deriving
the equation of motions from the many-body perturbation hier-
archy sets an implicit condition on the dynamic fluctuations as
the 2-particle reduced density matrix has to be identically zero to
guarantee that only a single electron is acting in our system. In
Sec. IV A 1, we will show that enforcing this condition cures
almost completely all nonphysical negative intensities that arise oth-
erwise and overall improves the performance of the second Born
approximation considerably.

C. Configuration Interaction expansion
To obtain accurate reference solutions, considered as exact

benchmarks for this low dimensional model, we truncate the Con-
figuration Interaction (CI) expansion such that we allow at most two

J. Chem. Phys. 151, 244113 (2019); doi: 10.1063/1.5128076 151, 244113-5

Published under license by AIP Publishing

2.3 mixed-quantum classical and perturbative methods for photons 75



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

photons per mode, featuring 400 modes, while retaining the full two
and three state representation for the atomic system,

∣Ψ(t)⟩ = ∑
k
ck,0(t)∣k⟩ ⊗ ∣0⟩ +∑

k

2N∑
n1

ck,n1(t)∣k⟩ ⊗ â†
n1 ∣0⟩

+∑
k

2N2+N∑
n1 ,n2

ck,n1 ,n2(t)∣k⟩ ⊗ â†
n1 â

†
n2 ∣0⟩. (5)

In line with the nature of CI expansions, the numerical cost expo-
nentially grows when increasing the number of allowed photonic
excitations. When exploiting the bosonic symmetry of the photons
in total 1 + 2N + 2N(2N − 1)/2 photon basis functions span the
zero-photon (vacuum), one-photon (1pt), and two-photon (2pt)
space. Combined with the low-dimensional matter system featur-
ing the eigenstates |k⟩, it is computationally nontrivial but feasi-
ble to propagate this CI expanded wavefunction using the Lanczos
algorithm.66,67 We ensured that the above (vacuum + 1pt + 2pt)
CI basis is sufficient for the observables and parameters studied in
this work.79 Although spontaneous decay from the 2-level atomic
system will lead to at most a single observable photon, the pho-
tonic fluctuations can reach the 2pt state space which results in
the possibility to bind photon intensity at the atomic position (see
Fig. 6).

IV. RESULTS AND DISCUSSION
As in earlier work,29 we note that the Wick normal ordered

form for operators (denoted : B̂: for some operator B̂) is used when
calculating average values in this study. The reason for using the
normal ordered form, in practice, is to remove the typically non-
measurable68,69 effect of vacuum fluctuations from the results, which
ensures that both ⟨E⟩ = 0 and ⟨I⟩ = 0, irrespective of the number
of photon modes in the cavity field, when the field is in the vac-
uum state. In order to guarantee a distinct spatial resolution for the
dynamics of the photonic wave-packet in the cavity and to ensure the
inclusion of all possible inference effects we use 400 photon modes
to represent the cavity field that is coupled to a two or three energy-
level atomic system in all calculations shown below. We choose
the atom to be initially in the highest excited state and the cavity
field in the vacuum state at zero temperature. For our benchmark
numerical treatment, we solved the time-dependent Schrödinger
equation by using a truncated Configuration Interaction expan-
sion as introduced in Sec. III C. The atomic population operator is
given by σ̂i(t) = ∣ci(t)∣2, where ci(t) denotes the time-dependent CI
coefficient for the corresponding atomic energy level. Furthermore,
we define the normal-ordered electric field intensity operator as
follows:

: Î(r, t) :=: Ê2(r, t) := 2
2N∑
α=1

ωαζ2
α(r)Q̂2

α(t) − 2N∑
α=1

ζ2
α(r),

with

ζα(r) =
√

ωα

ε0L
sin (απ

L
r).

A. 2-Level atom: One-photon emission process
In Fig. 2, we show a schematic sketch of the propagating

photon-field intensity along the axis of the cavity for four differ-
ent time snap-shots. As the spontaneous emission process evolves,
a photon wave-packet with a sharp front is emitted from the atom
[e.g., panel (a) of Fig. 2] and travels toward the boundaries [e.g.,
panel (b) of Fig. 2] where it is reflected, and then travels back to the
atom [e.g., panel (c) of Fig. 2]. The emitted photon is then absorbed
and re-emitted by the atom, which results in the emergence of inter-
ference phenomena in the electric field. This produces a photonic
wave-packet with a more complex shape [e.g., panel (d) of Fig. 2].
In Figs. 3 and 4, we plot this spontaneous emission process for the
different methods compared to the exact result (black dashed line).
Here, we observe that the essential differences among the methods
are (i) determining the correct amplitude of the wave-packet, (ii)
capturing the re-emission interference pattern, and (iii) resembling
the bound photon at the atomic position.

1. Finite size corrections to the BBGKY hierarchy
By partially summing the infinite series of perturbative dia-

grams that arise as a consequence of the Heisenberg equation of
motion using Hamiltonian (4), we intrinsically introduce spurious
interaction between physically nonexistent particles as we consider
that more diagrams than particles are present in the physical system.
This is a well-known subject of interest in electronic structure the-
ory.70–76 Specifically for our problem, this can result in such funda-
mental violations as producing negative atomic state occupations or
photon field intensities (see Fig. 3). Enforcing the correct fermionic
truncation of the many-body hierarchy acts to cure most of the
nonphysical features that appear, i.e., negative intensities after the
re-emission and strong oscillations around the exact solution. This
restriction to the single electron subspace (1efsc) is performed by
enforcing that the two-particle reduced density matrix be identically
zero, ρ(2)ijkl = 0. For one-body reduced density-matrices ρ(1)ij , the clus-

ter expansion on the exchange-only level ρ(2)ijkl ≈ ρ(1)il ρ(1)jk − ρ(1)ik ρ(1)jl

guarantees this if ρ(1)ij is idempotent.

FIG. 2. A schematic sketch of the photon-field intensity propagating through the
cavity for four time snap-shots: (a) t = 100 a.u., (b) t = 600 a.u., (c) t = 1200 a.u.,
and (d) t = 2100 a.u.
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FIG. 3. Intensity of the emitted (normal-ordered) photon field using
different finite-size corrections at three different time snapshots: (a)
t = 100 a.u., (b) t = 1200 a.u., and (c) t = 2100 a.u.; no correction, single-
photon correction (1pfsc), single-electron correction (1efsc), and single-photon
and single-electron correction (1fsc) for the BBGKY hierarchy within the second
Born approximation. The arrow indicates the direction of the wave-packet.

A further correction is possible in the photonic subspace,
i.e., enforcing at most a single photon in the cavity for the
two-level system (1pfsc). This is achieved by substituting higher
correlation matrices with lower order expansions such that the
equation of motion does not connect to higher excitations
and corrects the bound photon intensity to excellent accuracy.
Employing both restrictions at the same time (1fsc) leads to
the overall best performance, and we focus on those results in
Sec. IV. For multiple electrons and photonic excitations, such
corrections will become less relevant and less straightforward to
apply.

FIG. 4. Time-evolution of the average field intensity for the one-photon emission
process, at three different time snapshots: (a) t = 100 a.u., (b) t = 1200 a.u.,
and (c) t = 2100 a.u. Exact solution (black-dashed), FSSH (purple), MTEF (red),
LSC (orange), FBTS (blue), and (1fsc) BBGKY (green). The arrow indicates the
direction of the wave-packet.

2. Trajectory-based semiclassical methods
To perform numerical simulations using the semiclassical

dynamics methods, we first employ Monte Carlo sampling from the
Wigner transform of the initial density operator of the photon field,
ρ̂F,W(X, 0), to generate an ensemble of initial conditions for the tra-
jectory ensemble (Qj

α(0),Pj
α(0)). The Wigner transform of the zero

temperature vacuum state is given by the following:

ρF,W(X, 0) = 2N∏
α=1

1
π

exp [− P2
α

ωα
− ωαQ2

α].
We then evolve each initial condition independently according

to the corresponding equations of motion to produce a trajectory.
Average values are then constructed by summing over the entire
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trajectory ensemble and normalizing the result with respect to N,
the total number of trajectories. We use an ensemble of N = 105

independent trajectories for the MTEF, FSSH, LSC, and FBTS cal-
culations, sampled from the Wigner transform of the initial field
density operator. This level of sampling is sufficient to converge
the atomic observables to graphical accuracy, while the field inten-
sity would require a slightly larger trajectory ensemble for graphical
convergence.

In order to illustrate the comparison more accurately, a zoom-
in of Fig. 4 is depicted in Figs. 5 and 7 in the same coloring. We
find that the shapes of the (2B-1fsc) BBGKY-method and the FBTS-
method nicely agree with the exact wave-packet shape for time 100
a.u., while the MTEF and LSC simulations are qualitatively accu-
rate but miss the correct wave-packet amplitude. We find that FSSH
performs rather poorly, as it fails to capture the qualitative struc-
ture of the outgoing wave-packet. Furthermore, we observe at time
2100 a.u. that the FSSH-method has broken down completely as it
fails to reproduce the wave-packet structure in addition to exhibit-
ing a time-delay. As a consequence of the ad hoc nature of the FSSH
approach, we do not have a controlled and well-defined error term,
and it is nontrivial to obtain an educated guess for the failure of this
approach. Considering the other trajectory-based methods, we find
that MTEF is not able to reproduce the photon re-emission due to
the lack of capturing interferences within mean-field methods. On
the other hand, FBTS and LSC predict a substantial amount of inter-
ference in the form of a second maximum, however shifted to earlier
times in relation to the exact solution. As seen previously, the cor-
rected second Born truncation of the BBGKY hierarchy is in very
good agreement with the exact simulation; nevertheless, it still devel-
ops very small unphysical negative intensity values in between the
first and second wave-packet maxima.

All methods are capable of describing the remaining intensity at
the atomic position. This intensity corresponds to the bound photon
intensity, which emerges from beyond rotating-wave approxima-
tion (RWA) effects. More precisely, in Fig. 6, we show the photon
field intensity for the exact reference solution calculated in four

FIG. 5. Zoom-in onto the wavefronts of Fig. 4 (same color code) at time t = 100
a.u. (upper panels) and t = 2100 a.u. (lower panels).

FIG. 6. Photon field intensity for the exact reference solution at time 600 a.u. for
blue: including two-photon states (2pt) and no RWA, cyan: including two-photon
states (2pt) with RWA, red: including only one-photon states (1pt) and no RWA,
and orange: including only one-photon states (1pt) with RWA.

different ways according to Eq. (5). First including all two-photon
states (2pt) without RWA (blue) and then performing the same cal-
culation within RWA (cyan). Here, we find that using the RWA
erases the bound photon state. Furthermore, we find that only
including the one-photon states (1pt) is also not sufficient to cap-
ture this higher-order effect, as in both cases without RWA (red)
and with RWA (orange) no bound photon is observed. Therefore,
those results show that all methods are indeed capable of describing
effects beyond the perturbative regime such as bound photon states.
In Fig. 7, we depict this signature feature of the bound photon state
for time 1200 a.u.. Here, we find that BBGKY and MTEF perform
best, as FBTS, LSC, and FSSH overestimate the amplitude for the
remaining intensity. Without single photon correction, the BBGKY
amplitude is comparable to that of FBTS, i.e., finite size corrections
in both, fermionic and photonic subspace, are important to obtain
excellent results.

In Fig. 8, we plot the atomic adiabatic state population in the
same color code as in Fig. 4. Here, BBGKY leads to excellent accu-
racy while among the trajectory methods LSC performs best. The
initial decay, which is connected to the shape of the wavefront, is,

FIG. 7. Left: Zoom-in on the bound photon state of Fig. 4 (same color code). Right:
Zoom-in on the bound photon state of Fig. 3 (same color code).
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FIG. 8. Time-evolution of the atomic state population in the same color code as
Fig. 4. The solid lines represent the atomic ground state, and the dashed lines
represent the excited state.

however, superior in FBTS with the drawback of an incomplete de-
excitation. While MTEF is capable of qualitatively describing the
process, it fails on quantitative scales and even worse is FSSH which
not even qualitatively resembles the process.

B. 3-Level atom: Two-photon emission process
Let us turn our attention to the slightly more complex three-

level system where we focus on the most promising approaches with
respect to extrapolations toward realistic systems in mind. We thus
exclude FSSH due to its relatively poor performance and BBGKY
due to its high computational effort, which we will later discuss in
more detail.

In Fig. 9, we show the intensity of the cavity field during the
two-photon emission process for MTEF, LSC, and FBTS compared
to the exact solution. Furthermore, in order to allow a more quan-
titative and accurate comparison, a zoom-in of Fig. 9 is depicted
in the same color-code in Figs. 10 and 11. Here, similar dynamics
are observed compared to the two-level case. However, due to the
additional intermediate atomic state, we now observe a double-peak
feature in the emitted photonic wave-packet. This feature corre-
sponds to the emission of two photons, as the excited atom initially
decays to the first excited state emitting one photon and then fur-
ther relaxes to the ground state, emitting a second photon. We find
in accordance with the two-level case that the shape of the FBTS-
method is in a good agreement with the exact wave-packet shape for
time 100 a.u., while the MTEF and LSC-simulation are qualitatively
in line, but underestimate the wave-packet amplitude. Furthermore,

FIG. 9. Time-evolution of the average field intensity for the two-photon emission
process, at three different time snapshots: (a) t = 100 a.u., (b) t = 1200 a.u., and
(c) t = 2100 a.u. Exact solution (black-dashed), MTEF (red), LSC (orange), and
FBTS (blue). Please note that in this plot, the amplitude of the bound photon state
for the FBTS simulation is reduced in order to improve the illustration of the results.
Explicit quantitative results for the bound photon state can be found in Fig. 11. The
arrow indicates the direction of the wave-packet.

we observe that at time 2100 a.u., none of the methods sufficiently
captures the complex re-emission structure while overestimating the
bound photon peak in Fig. 11.

In Fig. 12, we show the time evolution of the atomic state popu-
lations. As before, the emitted photonic wave-packet moves through
the cavity, is reflected at the mirrors, and returns to the atom. The
first and second excited states are then repopulated due to stimulated
absorption. A second spontaneous emission process ensues, and the
emitted field again takes on a more complex profile due to interfer-
ence. While MTEF features the pronounced incomplete emission,
LSC and especially FBTS quite accurately capture the short-time
decay dynamics. Each method provides a qualitative indication of
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FIG. 10. A zoom-in onto the wavefronts of Fig. 9 (same color code) for time t = 100
a.u. (upper panel) and t = 2100 a.u. (lower panel).

the reabsorption and consecutive emission with LSC and FBTS per-
forming clearly superior, suffering from a diminished incomplete
(de-)excitation in relation to MTEF.

C. Computational effort and scaling
Regarding the BBGKY-method, the computational cost for

this specific model is similar to the exact time-propagation for a
two-photon subspace. This makes BBGKY, also in relation to the
highly accurate results it provides, the most rigorous method for
the model when considering the finite size corrections. Depend-
ing on the selected approximation and numerical details such as
sparsity, it, however, features a rather unfavorable high-order poly-
nomial scaling which restricts this method to comparably small
systems.

In terms of the other semiclassical approaches, we have found
that different numbers of trajectories are needed to converge dif-
ferent observables to the same statistical accuracy. In particular,
for subsystem observables like the atomic populations, the FSSH
and MTEF data are relatively well converged with 103–104 trajec-
tories, while LSC and FBTS require 104–105. However, for observ-
ables related to the photon field, such as the intensity, the observable

FIG. 11. A zoom-in on the bound photon state of Fig. 9 (same color code).

FIG. 12. Time-evolution of the atomic state population in the same color-code as
Fig. 9. The solid lines represent the atomic ground state, the dashed lines rep-
resent the first excited state, and the dotted lines represent the second excited
state.

remains rather noisy for all the trajectory-based simulation methods
with 105 trajectories.

As all the independent trajectory based methods employ a
Monte Carlo sampling procedure, their statistical error is propor-
tional to the inverse square-root of the number of trajectories in
the ensemble. However, as shown in this work, we have observed
that more trajectories are required to converge photon-field (envi-
ronmental) quantities compared to atomic (subsystem) quantities to
within the same relative error. Furthermore, as the trajectories are
not coupled during their time evolution, the corresponding algo-
rithms can be implemented in a highly parallel manner to reduce
the total run-time.

V. CONCLUSION
In this work, we have adapted and benchmarked a variety

of approximate quantum dynamics methods, i.e., multitrajectory
Ehrenfest (MTEF), linearized, and partially linearized semiclassical
mapping (LSC and FBTS) methods, Tully’s fewest switches surface
hopping (FSSH), as well as a set of finite size corrected second Born
BBGKY truncations, to treat correlated electron-photon systems.
We have applied these methods to model QED cavity bound atomic
systems in order to simulate the one and two photon spontaneous
emission and interference processes and to analyze the performance
of these approaches.

Consistently for the one- and two-photon emission processes,
we find that MTEF, LSC, and FBTS are able to qualitatively char-
acterize the correct dynamics. The initial spontaneous emission, the
associated atomic occupations, and the emitted photon wave-packet
improve from qualitative agreement within MTEF, to slightly bet-
ter agreement while overestimating the decay-rate in LSC, to almost
quantitative agreement using FBTS. However, these methods per-
form poorly when interference patterns emerge in the reabsorbed
and re-emitted photonic wave-packet; MTEF totally fails to capture
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any of the interference effects associated with the excitation and re-
emission processes, while LSC and FBTS qualitatively recover some
of the characteristics of the outgoing intensity. The FSSH-method
in contrast is not capable of properly resembling the wavefront of
the photonic wave-packet, and, furthermore, exhibits an incorrect
time delay in the re-emitted wave-packet. Consequentially, this tech-
nique performs rather poorly compared to the other trajectory based
methods. It is possible, however, that improved versions of this algo-
rithm may offer improvement over these initial results. The self-
consistent perturbative expansion form of the BBGKY-hierarchy
behaves exceptionally well when restricted to the physical subspace
although some unphysical effects such as negative photon intensities
can result. Finally, all methods investigated here can, in fact, cap-
ture the bound photonic state. Here, MTEF and BBGKY present the
best performance while LSC and FBTS consistently overestimate the
amplitude of this feature.

For the two-photon emission process, we focused on the
most promising approaches considering the balance between per-
formance and computational scalability. Here, we find in accor-
dance with the two-level system that MTEF, LSC, and FBTS are
able to qualitatively characterize the correct dynamics of this pro-
cess; however, they suffer from quantitative drawbacks, especially
pronounced for interference features.

Moreover, as experimental advances drive the need for realistic
ab initio descriptions of light-matter coupled systems, trajectory-
based quantum-classical algorithms emerge as a promising route
towards treating more complex and realistic systems, more precisely
extending to molecular systems beyond the few-level description
and incorporating nuclear dynamics. In particular, combining the
ab initio light-matter coupling methodology recently presented by
Jestädt et al.77 with the multitrajectory approach could provide a
computationally feasible way to simulate photon-field fluctuations
and correlations in realistic three-dimensional systems, and work
along these lines is already in progress.
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78We have verified that in the parameter regimes studied in this work includ-
ing the quadratic term into adjusted eigenstates, according to the Hamiltonian
ĤA + ∑2N

α=1
1
2 (λα ⋅ μ̂)2, has no qualitative influence on the time-evolution of the

observables associated with the cavity-bound emission process.

79As the exponential scaling permits the inclusion of higher photon states for the
given model, we ensured convergence investigating a related 3-level system based
on a screened Hydrogen atom with 1/10 of the atomic binding potential coupled
to the 100 lowest harmonics of the former cavity. Including the three-photon
states resulted in marginal numerical changes such that we deem the selected
two-photon states sufficient for the investigated model.

J. Chem. Phys. 151, 244113 (2019); doi: 10.1063/1.5128076 151, 244113-13

Published under license by AIP Publishing

2.3 mixed-quantum classical and perturbative methods for photons 83





3
E L E C T R O N - N U C L E I - P H O T O N C O R R E L AT E D S Y S T E M S

3.1 time-dependent potential energy surface for molecules in

cavities




“Exact Potential Energy Surface for Molecules in Cavities”

L Lacombe, NM Hoffmann, NT Maitra

Physical Review Letters (2019), 123 (8), 083201




motivation Continuing the work of Sec. 2.2 the overall question stays the
same, i.e. can we find a Schrödinger equation for one of the subsystems alone,
such that the solution yields the wavefunction of that subsystem and the poten-
tial appearing in the equation incorporate the couplings to the other subsystems
as well as to any externally applied fields. However, within this work, we are
now interested in the nuclear subsystem under the influence of both the elec-
tronic and the photonic subsystems.

state of the art It has been shown that the cavity clearly modifies the
potential that the matter evolves in [70, 122, 141–143], and various constructs
have been put forward complementary to the BO surfaces that have proved valu-
able for understanding cavity-free dynamics. In particular, polaritonic surfaces
that arise from diagonalizing the electron-photon Hamiltonian parametrized by
nuclear coordinates have been instructive in interpreting some of the novel phe-
nomena [107, 115, 144]. Another construct are the cavity-BO surfaces where the
photonic displacement field and nuclear coordinates are treated on the same
footing [70, 82]. Furthermore, going beyond using the surfaces for qualitative in-
terpretation, and implementing them in dynamics schemes, couplings between
the surfaces must be included [108, 122], as well as nonadiabatic effects aris-
ing from photon-matter coupling interplay with electron-nuclear couplings. The
EF approach bypasses these questions, while also shedding light on them, as a
single TDPES replaces the manifold of static surfaces and represents the exact po-
tential that the nuclear wave packet evolves in, which exactly contains the effects
of coupling to the electrons and photons.

contribution and main findings In this work, we extend the EF ap-
proach to light-matter interactions so that Ψ(q, r, R, t) = χ(R, t)ΦR(q, r, t) yields
a time-dependent Schrödinger equation for the nuclear system, parametrically
depending on both the electronic r and the photonic q subsystem. We find and
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analyze the exact TDPES driving the proton motion for a model of cavity-induced
suppression of PCET. Additionally, we show how its features directly correlate to
the proton dynamics and we discuss cavity modifications of its structure respon-
sible for the suppression. The results highlight the interplay between nonadia-
batic effects from coupling to photons and coupling to electrons. Furthermore,
we find, that the polaritonic surfaces, although providing a useful backdrop, are
not able to predict dynamics or mechanisms without considering their couplings
to each other in a dynamics scheme [122, 141]. Therefore, care is needed with
such dynamics schemes, due to the propensity of near crossings caused by both
electron-nuclear and matter-photon couplings.

outlook For mixed quantum-classical methods, which would be required
for many-molecule systems [108, 145], overcoherence in surface-hopping meth-
ods is likely to be problematic. Instead, following the outlook of Sec. 2.2, this
work shows the promise of rigorously based mixed quantum-classical approxi-
mations for cavity-QED, based on, for example, generalizations of the schemes of
[37–39], that have been successful for cavity-free nonadiabatic dynamics

supplementary material In the supplementary material to this paper we
provide more details on the full exact factorization equations and their form
within the applied model system. We furthermore provide more numerical de-
tails and three movies1 corresponding to the discussed results in the paper.

1 Movies: https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.123.083201

https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.123.083201
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We find and analyze the exact time-dependent potential energy surface driving the proton motion for a
model of cavity-induced suppression of proton-coupled electron transfer. We show how, in contrast to the
polaritonic surfaces, its features directly correlate to the proton dynamics and we discuss cavity
modifications of its structure responsible for the suppression. The results highlight the interplay between
nonadiabatic effects from coupling to photons and coupling to electrons and suggest caution is needed
when applying traditional dynamics methods based on polaritonic surfaces.
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Impressive experimental advances [1–5] have led to a
rekindling of interest in cavity quantum electrodynamics.
Rapidly expanding applications to molecules and nano-
structures require going beyond the simplest few-level-
single-mode models explored in the early days of quantum
mechanics, with the interplay of coupled electronic, nuclear,
and photonic excitations revealing a plethora of new
phenomena, from enhanced conductivity and superconduc-
tivity to photochemical suppression of chemical reactions to
superradiance; see, e.g., Refs. [6–12]. There is the possibil-
ity to manipulate matter with cavity parameters providing
tunable dials for photochemical control of reactions, replac-
ing shaped laser pulses as photonic reagents [1,13,14]. The
hope is to attain strong light-matter coupling and control
without large power sources, reducing unintended by-
products such as multiphoton absorption and ionization
channels.
The cavity clearly modifies the potential that the matter

evolves in, and various constructs have been put forward to
serve in lieu of the Born-Oppenheimer (BO) surfaces that
have proved so instrumental for understanding cavity-free
dynamics. In particular, “polaritonic surfaces” that arise
from diagonalizing the electron-photon Hamiltonian para-
metrized by nuclear coordinates have been instructive in
interpreting some of the novel phenomena mentioned
above [15–19]. Another construct is the “cavity-BO sur-
faces” where the photonic displacement field and nuclear
coordinates are treated on the same footing [7,20]. A
complete dynamical picture of how the electrons and
photons influence the nuclear dynamics can only be
obtained when several of such surfaces in the chosen
manifold together with their couplings are considered:
typically, at a given time, the nuclear wave packet locally
straddles several surfaces or has distinct parts associated

with different surfaces. Going beyond using the surfaces for
qualitative interpretation, and implementing them in
dynamics schemes, couplings between the surfaces must
be included [8,21], and nonadiabatic effects arising from
photon-matter coupling interplay with electron-nuclear
couplings. Practical necessity calls for approximations
which work best when this choice of surfaces in some
sense represents a “zeroth-order” picture. The situation
somewhat mirrors that for a molecule driven by classical
light, where, for example, in surface-hopping schemes
sometimes Floquet states (which are the classical-light
analogues to the polaritonic surfaces) work best [22,23],
while in other cases quasistatic (a.k.a. instantaneous BO)
states are argued to be more appropriate [24,25].
The exact factorization approach (EFA) bypasses these

questions while also shedding light on them. Originally
presented for coupled electron-nuclear systems, a single
time-dependent potential energy surface (TDPES) replaces
the manifold of static surfaces and represents the exact
potential that the nuclear wave packet evolves in, which
exactly contains the effects of coupling to the electrons
[26,27]. Generalizations of EFA have been made to include
photons [28,29]. Explicit examples of how coupling to
photons affects features of the potential driving an electron
are given in Ref. [29], while Ref. [28] finds the exact
photon-matter coupling-induced corrections to the potential
driving the photons. So far, how the presence of the cavity
modifies the potential driving the nuclei has not been
explored. In this Letter, we find the exact cavity-modified
TDPES for a model that demonstrates suppression of
photo-induced proton-coupled electron transfer (PCET),
a key process in energy conversion in biological and
chemical systems. In contrast to polaritonic surfaces, its
features alone indicate the suppression phenomenon, and it
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provides the exact, unambiguous force on the nuclei to be
used in mixed quantum-classical methods.
The minimal model of Refs. [30–32] has been remark-

ably instructive for studying nonadiabatic effects in cavity-
free PCET [31–34]. The Hamiltonian involves one electron
and one proton moving between two fixed ions separated
by L in one dimension

Ĥm ¼ T̂n þ ĤBO ¼ T̂n þ T̂e þ V̂m; ð1Þ

where T̂n ¼ −ð1=2MÞð∂2=∂R2Þ, T̂e ¼ − 1
2
ð∂2=∂r2Þ, and

V̂m ¼
X

σ¼�1

�
1

jRþ σL
2
j −

erfðjrþσL
2

aσ
Þ

jrþ σL
2
j
�
−
erfðjR−rjaf

Þ
jR − rj ; ð2Þ

where we chose L ¼ 19.0 a:u:, aþ1 ¼ 3.1 a:u:, a−1 ¼
4.0 a:u:, af ¼ 5.0 a:u:, and proton mass M ¼ 1836 a:u:
Atomic units (ℏ ¼ e2 ¼ me ¼ 1) are used throughout.
Changing these parameters changes the strength of the
electron-nuclear couplings and eigenstates; a closely
related model [31,32] was used to study sequential versus
concerted PCET mechanisms in solvents, while a two-
dimensional version was used to model a conical inter-
section [35].
The top panel in Fig. 1 shows the BO surfaces for the

cavity-free system. Considering an initial sudden vertical
electronic excitation out of the ground-state donor well on
the left to the first excited BO state, the nuclear wave packet
slides down the surface and splits soon after encountering
the avoided crossing (see the figures shortly and movie in
the Supplemental Material [36]). The part of the nuclear
wave packet evolving on the lower surface then becomes
associated with an electron transfer as evident from
comparing the conditional BO electronic wave functions
shown in the insets in Fig. 1. To investigate how placing the
molecule in a cavity affects the PCET, we consider the
nonrelativistic photon-matter Hamiltonian in the dipole
approximation in the Coulomb gauge [19,20,28,37,38]

Ĥ ¼ Ĥm þ Ĥp þ V̂pm þ V̂dipSE; ð3Þ

where, for a single cavity mode of frequency ωα,

ĤpðqÞ ¼
1

2
ðp̂2

α þ ω2
αq̂2αÞ and V̂pm ¼ ωαλαq̂αðR − rÞ;

ð4Þ

where q̂α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ωα

p ðâ†α þ âαÞ is the photonic displace-
ment-field coordinate, related to the electric displacement
operator, while p̂α is proportional to the magnetic field.
The coupling strength λα ¼ λ generally depends on the
mode function of the cavity, but here we take it constant,
assuming that the cavity is much longer than the spatial
range of the molecular dynamics. The dipole self-energy

V̂dipSE ¼ 1
2
½λαðR − rÞ�2 has a negligible effect in all cases

studied. Polaritonic surfaces, defined by the eigenvalues
of Ĥ − T̂n, are shown in the lower panel of Fig. 1 for ωα ¼
0.1 a.u. and λ ¼ 0.005 a:u: and 0.001 a.u. Immediately
evident is the increased number of avoided crossings compa-
red to the BO surfaces, as nonadiabatic effects from photon-
matter and electron-nuclear couplings come into play.
Turning to the dynamics, the lower part of the upper

six panels in Fig. 2 shows time snapshots of the nuclear
density (red) resulting from the initial wave function,

Ψðr; q; R; 0Þ ¼ N e−½ðRþ4Þ2=2.85�ΦBO;ð2Þ
R ðrÞξð0ÞðqÞ, where

ξð0ÞðqÞ ¼ ðωα=πÞ1=4e−ωαq2=2 is the zero-photon state in
the cavity. The figure and movie in the Supplemental
Material [36] demonstrate cavity-induced suppression of
PCET: significantly less proton density moves to the right
compared to the cavity-free case (black), and while the
electron transfers in concert with the proton transfer in
cavity-free dynamics (see black dipoles in the lowest right
panel), it is partially suppressed when the molecule is
placed in the cavity with λ ¼ 0.005 a:u: The snapshots
show that part of the wave packet becomes trapped on the
left, reducing the nuclear dipole moment and consequently
reducing the electron transfer.
Attempting to understand the suppression from the shape

of the polaritonic surfaces (Fig. 1) alone is impossible: one

FIG. 1. Upper panel: the lowest BO surfaces for the PCET
model. The initial conditional electronic wave function associated
with the initial excitation on the donor side is shown in the inset
on the left, showing localization of the electron at negative r
values, while those associated with the BO surfaces after a proton
transfer are shown on the right. The latter show that on the second
surface the electron is localized at negative r values, while on the
lower surface the electron becomes localized at positive r. Lower
panel: the polaritonic surfaces, for coupling strengths indicated.
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might be tempted to attribute the partial trapping of the
density to the barrier in the third polaritonic surface at
around R ≈ −2 a:u:; however not only does the trapped
density evolve past this point, but also the barrier is present
in the weaker coupling λ ¼ 0.001 a:u: case which shows
negligible suppression as indicated by the orange dipole
shown in the lowest panel of Fig. 2 and movie in the
Supplemental Material [36]. Instead, as we shortly discuss,
the structure of the exact TDPES shown in Fig. 2 directly
correlates with the dynamics.
The TDPES is a fundamental construct arising from the

EFA [26,27]. When extended to systems of coupled
electrons, nuclei, and photons [28,29], EFA factorizes
the complete wave function into a nuclear wave function
χðR; tÞ and a conditional electron-photon wave function
ΦRðr; q; tÞ, Ψðr; q; R; tÞ ¼ χðR; tÞΦRðr; q; tÞ, in which the
exact equation for the marginal χðR; tÞ is Schrödinger,

f−½∇þ AðR; tÞ�2=2M þ ϵðR; tÞgχðR; tÞ ¼ i∂tχðR; tÞ; ð5Þ

(written here for one nuclear coordinate), with a scalar
potential, the TDPES ϵðR; tÞ, and a vector potential AðR; tÞ,
both of which depend on ΦRðr; q; tÞ. The time evolution
for the latter is more complicated [39], with a χðR; tÞ-
dependent non-Hermitian operator that operates on the
R dependence of ΦRðr; q; tÞ. The exact equations are
provided in the Supplemental Material [36]. The roles of
the nuclei, electrons, and photons can be permuted in EFA
such that the subsystem of most interest is chosen for the
marginal factor χ since this satisfies the Schrödinger
equation [28], e.g., choosing the photonic system as the
marginal, Ref. [28] found distortions of the exact potential
driving the photonic field away from harmonic due to
photon-matter coupling.
The factorization of Ψ is unique up to an ðR; tÞ-

dependent phase-factor multiplying χðR; tÞ with its inverse
multiplying ΦRðr; q; tÞ; this in turn transforms the poten-
tials, and for one nuclear dimension, a gauge can always be
found in which AðR; tÞ is zero. Then, the only potential
driving the nuclei is ϵðR; tÞ and, for the cavity-enclosed
PCET model, is shown in the time snapshots of Fig. 2.
Comparing with the cavity-free TDPES, the structures that
lead to the partial trapping of the nuclear density, and the
subsequent partial PCET suppression, are clearly seen. At
early times, the slope of the TDPES is smaller compared to
the cavity-free case, even sloping upward in the trailing part
of wave packet, therefore slowing down and spreading out
the wave packet compared to the cavity-free case (up to
t ¼ 13.55 a:u:). A gentle step develops, lowering the
potential on the left of the wave packet, which begins to
split the wave packet in two parts (t ¼ 18.38 a:u:): one
associated with TDPES turning downward and forming a
well to the left and the other turning downward to the right,
further enhancing the splitting. The nuclear wave packet on
the left becomes trapped in the well, and eventually
oscillates in it, unable to reach the region of electron-
nuclear nonadiabatic coupling that leads to the electron
transfer. In contrast, the nuclear wave packet on the right
continues moving to the right (t ¼ 22.78, 28.29 a.u.),
where it later splits and behaves similarly to the cavity-
free dynamics but scaled down since some density was lost
in the trapped region on the left (t ¼ 40.64 a:u:).
The shape of the TDPES therefore directly reflects the

proton’s dynamics. To understand the physical mechanisms
yielding its shape, we consider the TDPES against the
backdrop of polaritonic surfaces. First, we decompose the
surface into weighted polaritonic (wpol), kinetic (kin), and
gauge-dependent (GD) components that arise from the form
of the EFA [27,28] (see the Supplemental Material [36]),

ϵðR; tÞ ¼ ϵwpolðR; tÞ þ ϵkinðR; tÞ þ ϵGDðR; tÞ; ð6Þ

ϵwpolðR; tÞ ¼hΦRjĤBO þ Ĥp þ V̂pmjΦRir;q; ð7Þ

FIG. 2. Snapshots of the nuclear density (scaled by 0.1) and
exact TDPES for dynamics inside (red) and outside (black) the
cavity. The lowest panels show the electronic and nuclear dipole
moments and the photon number over time. Cavity-induced
suppression of PCET is evident in the red density as part of the
nuclear wave packet becomes trapped on the left, consistent with
the structure of the TDPES (see text).
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ϵkinðR; tÞ ¼hΦRj −∇2
RΦRir;q=2M; ð8Þ

ϵGDðR; tÞ ¼hΦRj − i∂tΦRir;q: ð9Þ

In Fig. 3, we plot ϵwpolðR; tÞ and ϵGDðR; tÞ against the
backdrop of the static polaritonic surfaces; ϵkin remains
negligible throughout, due to the 1=M prefactor. At early
times we observe that ϵwpol on the left lies intermediate
between the second and third polaritonic surfaces, acquiring
a mixed character, while on the right adheres to the second
surface. Looking at the middle row, this behavior resolves
into the left part of the nuclear wave packet being correlated
with the third polaritonic surface, while the right correlates
with the second: this piecewise behavior illustrates matter-
photon correlation, with the left part correlated with photon
emission accompanying an electronic transition to the lower
BO surface (see also Fig. 4 shortly), while the right part of
the nuclear wave packet is correlated with a zero-photon
electronically excited state. The step in ϵwpol that bridges the

two polaritonic surfaces after the photon-emission event is
analogous to that found in earlier work betweenBO surfaces
[33] and between Floquet surfaces [23], which polaritonic
surfaces reduce to in the classical-light limit [40]. Also
analogous is that ϵGD displays a countering step [34], that
adjusts the energy locally in the nuclear system to account
for the different energies of the electron-photon system
associated with the different characters on the left and right.
It is important to note that the suppressionmechanism sets in
during the stage when the surface has mixed character,
before the piecewise-shifted character of ϵGD sets in. This is
also well before part of the wave packet encounters the
avoided crossing associated with strong electron-nuclear
coupling aroundR ≈ 2 a:u: (see also theBO surfaces Fig. 1),
which is where the nuclear wave packet splits again with the
part moving to the lowest surface associated with the
electron transfer. At the final time shown we see three parts
to the nuclear wave packet: the left part trapped in the left
well associated with a one-photon BO ground state, and two
lobes on the right, with the extreme right associated with
PCETon the BO ground state, and the other with the excited
BO state, both with zero photons. The ϵwpol component of
theTDPESdirectly reflects thismatter-polariton correlation,
while ϵGD adjusts the local energy in a piecewise manner.
To further clarify the dynamics in the conditional

variables q and r, Fig. 4 shows the n photon resolved
nuclear density, defined as

FIG. 3. Snapshots of the nuclear density and the components of
the TDPES for dynamics in the cavity, λ ¼ 0.005, ωα ¼ 0.1. The
thin lines represent the polaritonic surfaces.

FIG. 4. Snapshots of the zero- and one-photon resolved nuclear
densities of Eq. (10) (lower panel), along with the BO coefficients
of Eq. (11) (upper panel).
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jχn−phðR; tÞj2 ¼ jhξnjΨðtÞir;qj2; ð10Þ

where ξnðqÞ are the harmonic oscillator eigenstates of Hp,
and the BO coefficients, defined as

CBO
i ðR; tÞ ¼ jhΦBO;i

R jΨðtÞir;qj2=jχðR; tÞj2: ð11Þ

These measures clearly show the nuclear-photon and
nuclear-electron correlations throughout the evolution
(see also movie in the Supplemental Material [36]). At
early times there is mixed character of the electron-photon
state, with both zero-photon and one-photon contributions
associated with the nuclear density at a given R, and
fractional BO coefficients contributing with occupation
even in the third BO state. At later times local regions of the
nuclear density become correlated with different electronic
and photonic characters.
In conclusion, we analyzed the structure of the TDPES

for a model of PCET and have shown how its features
predict the cavity-induced suppression. While polaritonic
surfaces provide a useful backdrop, they are not able to
predict dynamics or mechanisms without considering their
couplings to each other in dynamics [8,9], and care is
needed with such dynamics schemes, due to the propensity
of near crossings caused by both electron-nuclear and
matter-photon couplings. For mixed quantum-classical
methods, which would be required for many-molecule
systems [21,41], overcoherence in surface-hopping meth-
ods is likely to be quite problematic. Instead, this work
shows the promise of rigorously based mixed quantum-
classical approximations for cavity-qed, based on, for
example, generalizations of the schemes of Refs. [42–
49], that have been successful for cavity-free nonadiabatic
dynamics.
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I. EXACT FACTORIZATION EQUATIONS

The full equations of the EF factorization we use here are based on the generalization given in Ref. [1] of the
original time-dependent EF equations of Ref. [2, 3]. These are based on the factorization

Ψ(r, q, R, t) = χ(R, t)ΦR(r, q, t) (1)

where r, q, R represent all electronic-, photonic displacement-field mode-, and nuclear- coordinates, respectively, and
the partial normalization condition

∫
|ΦR(r, q, t)|2drdq = 1 (2)

is satisfied. The marginal and conditional parts each satisfy the following coupled equations of motion:
(
ĤBO + Ĥp + V̂pm + V̂dipSE + Ûep−n − ε(R, t)

)
ΦR(r, q, t) = i∂tΦR(r, q, t) (3)

(
Nn∑

J=1

(−i∇J + AJ(R, t))2/2MJ + ε(R, t)

)
χ(R, t) = i∂tχ(R, t) (4)

with

Ûep−n =

Nn∑

J=1

1

MJ

(
(−i∇J −AJ(R, t))2

2
+

(
−i∇Jχ(R, t)

χ(R, t)
+ AJ(R, t)

)
·
(
−i∇J −AJ(R, t)

)
)

(5)

ε(R, t) = 〈ΦR|ĤBO + Ĥp + V̂pm + V̂dipSE + Ûep−n − i∂t|ΦR〉r,q (6)

AJ(R, t) = 〈ΦR| − i∇JΦR〉r,q (7)

and all other terms in Eqs. 3 and 4 are given in the main text for the one-dimensional model we studied. The notation
〈...〉r,q indicates an integral over all photonic displacement-field and electronic coordinates only.

The marginal part, χ(R, t) is a nuclear wavefunction in the sense that it reproduces the exact nuclear density and
exact nuclear current-density of the exact full photon-matter wavefunction. The equations 3–7 are form-invariant un-
der the phase-transformation Φr,q(R, t) → Φr,q(R, t)e

iθ(R,t), χ(R, t) → χ(R, t)e−iθ(R,t) with the potentials undergo-
ing the gauge-like transformation AJ(R, t)→ AJ(R, t)+∇Jθ(R, t), ε(R, t)→ ε(R, t)+∂tθ(R, t), and the factorization
Eq. 1 is unique up to such a transformation.

The model we studied has a one-dimensional nuclear coordinate so a gauge can always be found in which the
vector potential A(R, t) is zero. This is the gauge we chose in our calculations. The equations then simplify in the
sense, for example, that there is only one potential, the scalar ε(R, t) appearing in the nuclear equation, and the scalar
potential can then be written as three terms, as prescribed in Eqs. (6)–(9) of the main paper.

In practise, we obtained the potential energy surface ε(R, t) by inversion [3]. That is, we first solved the time-
dependent Schrödinger equation for Ψ(r, q, R, t) on a three-dimensional grid, and extracted χ(R, t) = |χ(R, t)|eiS(R,t)

using

|χ(R, t)| =
√∫

dqdr|Ψ(r, q, R, t)|2 (8)

and

S(R, t) =

∫ R
(

Im
∫
drdqΨ(r, q, R′, t)dΨ(r,q,R′,t)

dR′

|χ(R′, t)|2

)
dR′ (9)

Then we found Φr,q(R, t) = Ψ(r, q, R, t)/χ(R, t) enabling us to evaluate the matrix elements involved for ε(R, t)
(Eqs.(6) – (9) of the main text).

II. NUMERICAL DETAILS

In our calculations, we used 192, 96, 1280 points on a grid of size±120.20 a.u.,±80 a.u.,±9.5 a.u., for the electronic,
photonic or nuclear calculation respectively. We also used a time-step of 0.1 a.u.
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III. MOVIES

We provide three movies:
(i) movieCpl0p005 shows the dynamics for the case where the resonant frequency of the cavity is ωα = 0.1au and

the coupling strength is λ = 0.005 in red, compared to the cavity-free dynamics in black.
Top left: exact TDPES, shown against the background of polaritonic surfaces in blue and green, and the nuclear

density, scaled by 0.1 and shifted down, is shown in the lower part of all plots in the first row.
Top middle: weighted polaritonic component of the exact TDPES εwpol(R, t) .
Right middle: gauge-dependent component of the exact TDPES εGD(R, t).
Lower left: BO coefficients Ci(R, t) as defined in Eq. (11) of the main text as a function of time
Lower middle: number of photons emitted as a function of time
Lower right: electronic (solid) and nuclear (dashed) dipole moments as a function of time.

(ii) movieCpl0p001 as above but for coupling strength λ = 0.001.

(iii) movieCpl0p005phdenCBO shows the n-photon resolved densities and BO-coefficients for the ωα = 0.1 and
λ = 0.005 case as compared with the cavity-free case.

Top left panel: the total nuclear density (as a reference)
Top right panel: the 0-photon resolved density
Middle left: the 1-photon resolved density
Middle right: the 2-photon resolved density
Lower left: the BO coefficients in the cavity
Lower right: the BO-coefficients for the cavity-free case.

[1] N. M. Hoffmann, H. Appel, A. Rubio, and N. T. Maitra, The European Physical Journal B 91, 180 (2018).
[2] A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010).
[3] A. Abedi, N. T. Maitra, and E. K. U. Gross, J. Chem. Phys. 137, 22A530 (2012).
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motivation Continuing our work of Sec. 2.1 and Sec. 3.2, the overall moti-
vation for this work as well as the current state of the art research stays the same.
However, based on the knowledge obtained from [O1, O3], we now broaden our
scope by investigating a full molecular system, i.e. electron-nuclei-photon corre-
lated system and investigate the performance of the MTEF1 approach within the
cavity-induced suppression of the PCET investigated in [O4]. With the ability to
go beyond single photon-mode calculations via the MTEF approach, we further
target the so far unexplored question: How does including many cavity-modes
affect the cavity-modified phenomena?

state of the art Apart from a handful of exceptions [70, 146–149] the sim-
ulations of cavity-modified chemistry largely involve coupling to only one (res-
onant) photon mode, and the vast majority uses simple model systems for the
matter part. The modeling of realistic cavity set-ups requires coupling to multi-
ple photon modes that are resonant in the cavity even if they are not resonant
with matter degrees of freedom and, further, the description should account for
losses at the cavity boundaries. Some strategies have been put forward to treat
quantized field modes in the presence of dispersive and absorbing materials
[150–154] and theories have been developed to treat many modes and many mat-
ter degrees of freedom [56, 70, 79, 80, 146–149, 155]. So far unexplored, however,
is a demonstration of how the cavity-modified electronic-nuclear dynamics that
were simulated using a single loss-less mode change as one increases the num-
ber of photon modes. Nonetheless, in order to calculate such high-dimensional
systems, i.e. molecules coupled to multiple photon modes requires accurate and
computationally efficient approximations.

contribution and main findings To this end, we extend the MTEF ap-
proach to polaritonic chemistry, i.e. coupled electron-nuclear-photon dynamics,

1 In order to avoid confusion for future publications with potential combinations of the MTEF
approach and the EF approach, the acronym MTEF has been changed to MTE in this paper.
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focusing on the effect that including many photon modes has on the process of
cavity-induced suppression of PCET. To validate the MTEF treatment of photons,
we first study the single-mode case, for which exact results can be computed,
finding that MTEF performs well but tends to underestimate the photon emis-
sion and cavity-induced effects. We explain this by using the EF approach [O2].
Treating the nuclei classically as well gives reasonable averaged dipoles and pho-
ton numbers, but a poor nuclear density, as expected. Turning to multi-mode
dynamics computed from MTEF for photons, we find that the effect of multiple
cavity photon modes on the reaction dynamics can be dramatically different than
when only a single mode is accounted for. More precisely, as the number of cav-
ity modes increases (without changing the coupling strength), the suppression of
both proton transfer and electron transfer significantly increases, the electronic
character becomes more mixed throughout, the photon number begins to in-
crease, and the photon frequency acquires a small but growing Lamb-like shift.
This suggests that single-mode simulations tend to underestimate the cavity-
induced effects on dynamics in realistic cavities. The self-polarization term [71,
83, 84] in the Hamiltonian that is often neglected in the literature, has an increas-
ingly crucial impact on the dynamics, and we introduce the concept of spBO
surfaces as an instructive tool for analysis of chemical processes mediated by
cavity-coupling.

outlook Analogously to the outlook discussed in Secs. 2.1 and 3.2, to ob-
tain a practical approach for realistic systems we further need an approximate
treatment of the matter part. From the electronic side TDDFT would be a natural
choice, while a practical treatment of nuclei calls for a classical treatment such as
Ehrenfest or surface-hopping in some basis. However, the increase of crossings
the more photon-modes are accounted for suggests that simple surface-hopping
treatments based on BO (or spBO) surfaces should be used with much caution
and that decoherence-corrections should be applied, for example those gener-
alized from the EF approach, to the electron-nuclear problem [37–39, 156–158].
Furthermore, we note that the findings in this work are general in that the in-
creasing importance of self-polarization with more photon modes is expected
to hold for the description and control of cavity-driven physical processes of
molecules, nanostructures and solids embedded in cavities in general. These
findings could yield a new way to control and change chemical reactions via the
self-polarization without the need to explicitly change the light-matter coupling
strength itself.

supplementary material In the supplementary material to this paper
provides three movies2 corresponding to the discussed results in the paper.

2 Movies: https://github.com/nhoffma5/Effect_of_Many_Modes_Supplementary

https://github.com/nhoffma5/Effect_of_Many_Modes_Supplementary
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The standard description of cavity-modified molecular reactions typically involves a single (res-
onant) mode, while in reality the quantum cavity supports a range of photon modes. Here we
demonstrate that as more photon modes are included, physico-chemical phenomena can dramati-
cally change, as illustrated by the cavity-induced suppression of the important and ubiquitous pro-
cess of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-
modes, we find that self-polarization effects become essential, and we introduce the concept of self-
polarization-modified Born-Oppenheimer surfaces as a new construct to analyze dynamics. As the
number of cavity photon modes increases, the interplay between photon emission and absorption
inside the increasingly wide bands of these surfaces, together with their deviations from the cavity-
free Born-Oppenheimer surfaces, leads to enhanced suppression. The present findings are general
and will have implications for the description and control of cavity-driven physical processes of
molecules, nanostructures and solids embedded in cavities.

The interaction between photons and quantum sys-
tems is the foundation of a wide spectrum of phenom-
ena, with applications in a range of fields. One rapidly-
expanding domain is cavity-modified chemistry, by
which we mean here nuclear dynamics concomitant
with electron dynamics when coupled to confined quan-
tized photon modes [1–4]. The idea is to harness strong
light-matter coupling to enhance or quench chemical
reactions, manipulate conical intersections, selectively
break or form bonds, control energy, charge, spin, or
heat transfer, and reduce dissipation to the environ-
ment, for example. This forefront has has been strongly
driven by experiments [2, 5–11], with theoretical inves-
tigations revealing complementary insights [4, 12–31].
However, apart from a handful of exceptions [32–38]
the simulations of cavity-modified chemistry largely in-
volve coupling to only one (resonant) photon mode, and
the vast majority uses simple model systems for the mat-
ter part. The modeling of realistic cavity set-ups re-
quires coupling to multiple photon modes that are res-
onant in the cavity even if they are not resonant with
matter degrees of freedom, and further, the descrip-
tion should account for losses at the cavity boundaries.
Some strategies have been put forward to treat quan-
tized field modes in the presence of dispersive and ab-
sorbing materials [39–43] and theories have been devel-
oped to treat many modes and many matter degrees of
freedom [14, 27, 30, 32, 34–38, 44]. So far unexplored
however is a demonstration of how the cavity-modified
electronic-nuclear dynamics that were simulated using a

∗ norah.magdalena.hoffmann@mpsd.mpg.de
† liolacombe@gmail.com
‡ angel.rubio@mpsd.mpg.de
§ neepa.maitra@rutgers.edu

single loss-less mode change as one increases the num-
ber of photon modes.

Molecules coupled to multiple photon modes rep-
resent high-dimensional systems for which accurate
and computationally efficient approximations beyond
model systems are needed. To this end, the Multi-
Trajectory Ehrenfest (MTE) approach for light-matter
interaction has been recently introduced [33, 34], and
benchmarked for two- or three-level electronic systems
in a cavity. Wigner-sampling the initial photonic state
to properly account for the vacuum-fluctuations of the
photonic field while using mean-field trajectories for
its propagation, this method is able to capture quan-
tum effects such as spontaneous-emission, bound pho-
ton states and second order photon-field correlations
[33, 34]. In particular, as the trajectories are not coupled
during their time-evolution the algorithm is highly par-
allelizable. Therefore, due to the simplicity, efficiency,
and especially scalability the MTE approach for pho-
tons emerges as an interesting alternative or extension
to other multi-mode treatments [27, 30, 32, 34, 36, 37, 42,
44]. 1

In this work, we extend the MTE approach to cavity-
modified chemistry, and observe for the first time (to our
knowledge) the effect that accounting for many photon
modes has on coupled electron-ion dynamics. We fo-
cus on the process of polaritonic suppression of an im-
portant and ubiquitous process in chemistry and biol-
ogy, the proton-coupled electron transfer [45], finding

1 This includes Quantum-Electrodynamical Density Functional The-
ory (QEDFT) [4, 27, 30, 44], which is an exact non-relativistic gener-
alization of time-dependent density functional theory that dresses
electronic states with photons and allows to retain the electronic
properties of real materials in a computationally efficient way.
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the electron-nuclear dynamics significantly depends on
the number of modes, as sketched in Fig. 1. We ne-
glect (for now) any effects from cavity losses so we can
isolate effects purely from having many modes in the
cavity rather than a single mode. To validate the MTE
treatment of photons, we first study the single-mode
case for which exact results can be computed, finding
that MTE performs well but tends to underestimate the
photon emission and cavity-induced effects. We ex-
plain why using the exact factorization approach [46].
Treating also the nuclei classically gives reasonable av-
eraged dipoles, and photon numbers, but a poor nuclear
density, as expected. Turning to multi-mode dynam-
ics computed from MTE, we find that as the number
of cavity modes increases (without changing the cou-
pling strength), the suppression of both proton trans-
fer and electron transfer significantly increases, the elec-
tronic character becomes more mixed throughout, the
photon number begins to increase, and the photon fre-
quency acquires a small but growing Lamb-like shift.
This suggests that single-mode simulations tend to un-
derestimate the cavity-induced effects on dynamics in
realistic cavities. The self-polarization term [19, 47, 48]
in the Hamiltonian that is often neglected in the litera-
ture, has an increasingly crucial impact on the dynam-
ics, and we introduce the concept of self-polarization-
modified Born-Oppenheimer (spBO) surfaces as an in-
structive tool for analysis of chemical processes medi-
ated by cavity-coupling.

RESULTS

A. Self-Polarization-Modified BO Surfaces

Potential energy surfaces play a paramount role in
analyzing coupled electron-dynamics: we have Born-
Oppenheimer (BO) surfaces for cavity-free dynamics,
Floquet [49, 50] or quasistatic [51, 52] surfaces for
molecules in strong fields, cavity-BO [18] or polari-
tonic surfaces [13] for molecules in cavities and the
exact-factorization based time-dependent potential en-
ergy surface [45, 53, 54] for all cases that yields a com-
plete single-surface picture. The surfaces so far explored
for molecules in cavities have largely neglected the self-
polarization term, which is typically indeed negligi-
ble for single-mode cavities except at ultra-strong cou-
pling strengths [19]; its importance in obtaining a con-
sistent ground-state and maintaining gauge-invariance
has also been emphasized [47, 48]. In the multi-mode
case however, there is a sum over modes in this term
that can become as important as the other terms in the
Hamiltonian, and, as we shall see below, it cannot be
neglected, especially becoming relevant for large mode-
numbers, contributing forces on the nuclei as the to-
tal dipole evolves in time. Therefore, to analyze the
dynamics, we define self-polarization-modified Born-
Oppenheimer (spBO) surfaces εSPBO(R), as eigenvalues

Single Photon Mode(a)

spBOPhoton

Nuclear
Density

Effect of Many Photon Modes(b)

spBO

Photon

Nuclear
Density

FIG. 1. An exemplary sketch of a molecule coupled to many
photon modes. (a) Sketches the spBO surfaces and the cor-
responding nuclear dynamics for a coupling to a single pho-
ton mode. (b) Depicts the effect of many photon modes on
the spBO surfaces and the corresponding complete photo-
chemical suppression of the proton-coupled electron transfer.

of the spBO Hamiltonian, where HSP
BO defines the tra-

ditional BO-Hamiltonian plus the self-polarization term
(see Methods for details): ĤSP

BOΦSP
R,BO = εSPBO(R)ΦSP

R,BO.
Further, we define 1-photon-spBO surfaces by sim-

ply shifting the spBO surfaces uniformly by the energy
of one photon, ~ωα. These can be viewed as approx-
imate (self-polarization modified) polaritonic surfaces,
becoming identical to them in the limit of zero coupling.
For small non-zero coupling the polaritonic surfaces, de-
fined as eigenvalues of Ĥ − T̂n, where T̂n denotes the
nuclear kinetic term, resemble the n-photon-spBO sur-
faces when they are well-separated from each other, but
when they become close, the crossings become avoided
crossings.

The top middle panel of Fig. 2 shows the spBO sur-
faces (pink) for the case of a single photon mode at
frequency ωα = 0.1 a.u. coupled to our molecule,
along with the 1-photon-spBO surfaces (black). Our
model molecule consists of one electronic and one nu-
clear degree of freedom, with the Hamiltonian given
in the Methods section, and we truncate the electronic
Hilbert space to the lowest two BO-surfaces throughout
this paper. For one mode at the coupling strength of
λ = 0.005 a.u. (see Methods) the spBO surfaces coincide
with the BO surface, i.e. the self-polarization energy is
negligible [45].

As the number of cavity modes grows, the spBO sur-
faces begin to strongly deviate from the BO surfaces.
We consider cavities with resonant modes at frequen-
cies ωα = 0.1 + απc

L with α = {−M2 · · · M2 } with M
the number of modes ranging from 0 (single mode),
to 10, 40, 200, 440 and L = 50µm is the cavity-length.
The black curves in the top panel of Fig. 3 indicate the
corresponding spBO surfaces, and clearly show an in-

2
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creasing departure from the BO surfaces as the num-
ber of photon modes increases. Given that the land-
scape of such surfaces provides valuable intuition about
the nuclear wavepacket dynamics, with their gradients
supplying forces, this suggests an important role of the
self-polarization term in the dynamics of the nuclear
wavepacket, as we will see shortly.

With more modes, the 1-photon-spBO surfaces begin
to form a quasi-continuum: band-like structures indi-
cated by the shaded colors in the top row of Fig. 3. The
shading actually represents parallel surfaces separated
by the mode-spacing 0.00045 a.u. (We note that, as a
function of cavity-length, the mode-spacing decreases,
approaching the continuum limit as L approaches in-
finity, however the coupling strength λα also decreases,
vanishing in the infinite-L limit such that the free BO
surfaces are recovered). The 1-photon ground-spBO
band and 1-photon excited-spBO band show growing
width and increasing overlap as the number of pho-
ton modes increases, suggesting a nuclear wavepacket
will encounter an increasing number of avoided cross-
ings between ground- and excited- polaritonic states
as it evolves. Note that as lower frequencies are in-
cluded in the band, n-photon-spBO (n ≥ 2) states will
overlap with the 1-photon-spBO band. For simplicity
however we will still refer to these as simply 1-photon-
spBO bands with the understanding that they may in-
clude some 2-photon and higher-photon-number states
for low frequencies. We return to the implications of the
spBO bands later in the discussion of the multi-mode
cases.

B. Single-Mode Benchmark

First we consider the single-mode case for which
we are able to compare the MTE method (see Meth-
ods for details) to numerically exact results2. The cen-
tral photon frequency of 0.1 a.u. is chosen to coin-
cide with the BO energy difference at R = −4 a.u.,
which is where we launch an initial Gaussian nuclear
wavepacket on the excited BO surface. We take the ini-
tial state as a simple factorized product of the photonic
vacuum state ξ0(q) for each mode, the excited BO state,
and the nuclear Gaussian wavepacket: Ψ(r,R, q, 0) =

N e−[(R+4)2/2.85]ΦBO
R,2(r)ξ0(q), where q denotes the vector

of photonic displacement-field coordinates.
The top panel of Fig. 2 shows the electronic wave-

functions at R = −4 a.u. (left) and R = 4 a.u. (right)
in the cavity-free case, showing that the transition of
the initial wavepacket to the lower BO surface through
non-adiabatic coupling near the avoided crossing re-

2 We note that the two-mode case can also be solved exactly numer-
ically, but the single-mode comparison here already illustrates the
main points.
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FIG. 2. Single-Mode Case: The top panel shows the ground
(lower) and excited (upper) BO wavefunctions at R = −4 a.u.
(left) and at R = 4 a.u. (right) and the spBO surfaces (pink)
and one-photon spBO surfaces (black). The second panel de-
picts the nuclear density for cavity-free (pink), full quantum
treatment (black), MTE treatment of the photons only (blue)
and MTE treatment of both photons and nuclei (light blue) at
time snapshots t = 22 fs (a.1) ,t = 30 fs (a.2) and t = 38 fs (a.3).
The third panel shows the electronic (b) and nuclear (c) dipole
and the photon number (d). The lowest panel depicts the BO
occupations, |C1,2(t)|2.

sults in an electron transfer. Hence the molecule mod-
els proton-coupled electron transfer. Ref. [45] found
that this proton-coupled electron transfer is suppressed
when the molecule is placed in a single-mode cavity res-
onant with the initial energy difference between the BO
surfaces.

The second row of Fig. 2 shows the dynamics of
the nuclear wavepacket (see also supplementary mate-
rials, movie 1) for the exact cavity-free case (pink), ex-
act single-mode case (black), MTE for photons (blue)
and MTE for both photons and nuclei (light blue). As
discussed in Ref. [45], the exact dynamics in the cavity
shows suppression of proton-coupled electron transfer
(compare pink and black dipoles in third panel), due to
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photon emission at early times (black line in panel (d))
yielding a partially trapped nuclear wavepacket, lead-
ing to less density propagating to the avoided crossing
to make the transition to the lower BO surface. The BO-
populations in the lowest panel (e) show the initial par-
tial drop to the ground-state surface associated with the
photon emission.

Both MTE approaches are able to approximately
capture the cavity-induced suppression of the proton-
coupled electron transfer, as indicated by the blue and
light-blue dipoles and photon-number in panels (b–d),
and approximate the BO occupations in panel (e) rea-
sonably well. However both approaches somewhat un-
derestimate the suppression; the photon emission is un-
derestimated by about a third, as is the suppression of
the electronic dipole transfer, for example. To under-
stand why, we compare the potentials the MTE photons
experience to the exact potential acting on the photons
as defined by the exact factorization approach, which
was presented in Ref. [46]. In this approach, the total
wavefunction of a system of coupled subsystems is fac-
torized into a single product of a marginal factor and
a conditional factor, and the equation for the marginal
satisfies a Schrödinger equation with potentials that ex-
actly contain the coupling effects to the other subsystem.
When the photonic system is chosen as the marginal,
one obtains then the exact potential driving the photons,
and this was found for the case of an excited two-level
system in a single resonant mode cavity in Ref. [46].
It was shown that the potential develops a barrier for
small q-values while bending away from an upper har-
monic surface to a lower one at large q, creating a wider
and unharmonic well. This leads then to a photonic
displacement-field density with a wider profile in q than
would be obtained via the uniform average of harmonic
potentials that underlie the MTE dynamics, i.e. MTE
gives lower probabilities for larger electric-field values,
hence a smaller photon-number and less suppression
compared to the exact.

An additional treatment of the nuclei within MTE
yields a spreading of the nuclear wave packet instead
of a real splitting (Fig. 2(a.3)), a well-known problem of
Ehrenfest-nuclei. This error is less evident in averaged
quantities such as dipoles and BO coefficients.

Having now understood the limitations of MTE, we
now apply the MTE framework for photons to the multi-
mode case.

C. MTE Dynamics for Multi-Mode Cases

The top panel of Fig. 3 shows the ground and excited
1-photon spBO bands. As we observed earlier, includ-
ing more photon modes has two effects on the spBO
surfaces. First, the self-polarization morphs them away
from the cavity-free BO surfaces, increasing their sep-
aration, and what was a narrow avoided crossing in
the cavity-free case shifts leftward in R with increased
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FIG. 3. The ground- and excited 1-photon spBO bands, rep-
resenting surfaces separated by 0.00045 a.u. (see text) for 10
modes (green), 40 modes (orange), 200 modes (red) and 440
modes (blue). The middle panel depicts the nuclear density
at time snap shots t = 22fs (a.1), t = 30fs (a.2) and t = 41fs
(a.3) in the same color code along with the single mode case
computed within MTE-for-photons (black). The lowest panel
shows the electronic and nuclear dipole (b) and the photon
number (c).

separation. Second, the 1-photon ground and excited
spBO bands both broaden with increasing number of
crossings with the 0-photon spBO surfaces and with
each other in the regions of overlap. As the gradient
of these surfaces and the couplings between them are
considerably altered, we expect significant differences
in the nuclear dynamics when going from the single-
mode case to the many-mode case. Indeed, this is re-
flected in the middle panel of Fig. 3 which shows the nu-
clear wavepacket at time snapshots 22 fs (a.1), 30 fs (a.2),
41 fs (a.3) and in the lower panel, showing the electronic
(dashed) and nuclear (solid) dipoles (panel (b)) and pho-
ton number (panel (c)). The corresponding R-resolved
BO-occupations of the ground-BO electronic state di-
vided by the nuclear density, |c1(R, t)|2 (as defined in
Methods), shown in Fig.4(a), and the R-averaged occu-
pations |C1,2(t)|2 over time plotted in Fig.4(b) also show
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significant mode-number dependence (A movie is also
provided in supplementary materials, movie 2).

Going from a single-mode (black in Fig. 2) to 10-
modes (green), the spBO surfaces are only slightly dis-
torted from the BO surfaces, but there is an enhance-
ment of the suppression, since the 1-photon ground-
spBO band contains 10 surfaces each with slightly
shifted crossings with the 0-photon excited spBO sur-
face on which the wavepacket is initially; these cross-
ings become avoided crossings once the matter-photon
coupling is accounted for, i.e. in the polaritonic sur-
faces. This enhances the probability of photon emis-
sion (panel (c)) into the narrow band of cavity-modes.
This is reflected also in the narrow frequency band of
panel (a) in Fig. 5 which provides a spectral decompo-
sition of the occupied photon modes as a function of
time. The increased photon emission corresponds to a
larger portion of the nuclear wavepacket (panels (a) of
Fig. 3) being trapped in the ground electronic state to
the left of the avoided crossing than in the single-mode
case, while the right-going part continues on the up-
per electronic-surface. Still, as there is only little dis-
tortion of the spBO surfaces, these two branches of nu-
clear wavepacket follow closely the two branches of the
single-mode dynamics. A larger trapped portion of the
wavepacket clearly leads to a smaller nuclear dipole mo-
ment at larger times but also a smaller electron trans-
fer: the final electron transfer is largely due to the split-
ting at the electron-nuclear avoided crossing at around
R = 2 a.u. to which less nuclear density has reached.
The R-resolved BO-occupation of the ground-BO state
in Fig.4(a) show that the electronic character through-
out the nuclear wavepacket is similar to the single-mode
case, especially after the initial interaction region, which
is maybe less obvious to discern from the R-averaged
occupations in Fig. 4(b) that gives the overall picture
from the electronic side over time.

Turning now to the 40-mode case (orange), the distor-
tion of the spBO states from the BO increases, with the
avoided crossing shifting a little leftward and widen-
ing slightly. Although the overall dynamics follow the
10-mode case closely, the now broadened one-photon
bands lead to more and faster initial photon emission
compared to the 10-mode case (Fig. 3(c)) , which is also
reflected in the more mixed character of the R-resolved
BO ground-state population at early times (orange in
panel (a.1) in Fig. 4 ). The combined effects of increased
early transitions to the electronic ground spBO state and
a slightly less sharp electron-nuclear non-adiabatic re-
gion, leads to a little more of the nuclear wavepacket
being trapped on the left side of the avoided crossing
and a reduced electron-transfer, as shown by the elec-
tronic and nuclear dipoles and the BO-occupations. A
notable difference between the 10- and 40-mode cases
is in the spectral decomposition of the occupied photon
modes in Fig. 5(b), where a small Lamb-like shift is evi-
dent [55] with the center of the dominant band slightly
shifting from 0.1 a.u. to 0.102 a.u..
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FIG. 4. Groundstate BO-surface population (a) at time snap
shots t = 22 fs (1), t = 30 fs (2) and t = 41 fs (3) over R and
the averaged population over time (c) in the same color code
as Fig.4.

It is important to note that the calculated photon
number reflects both a propagating photon (photon
emission) as well as a quasi-bound photon component;
the latter arises from dressed photon-matter eigenstates
where pure BO states get coupled through the counter
rotating-wave terms and molecular dipole terms in
the Hamiltonian, and, as perturbation theory suggests,
grows as the number of photon modes increases. The
photon number 〈∑α a

†
αaα〉 that we plot in Fig. 4 and its

spectrally-resolved version in Fig. 5 do not distinguish
these.

In the 200-mode case (red), the self-polarization term
distorts the spBO surfaces significantly and shifts the
electron-nuclear non-adiabatic region to be centered
near R = 0 a.u.. This shift and widening weakens the
non-adiabatic coupling at the electron-nuclear avoided
crossing significantly, which suggests that the popula-
tion transfer from the upper to the lower BO state at
this crossing would be much reduced, which is in fact
the case (see the very gentle slope in panel Fig. 4(a.3)).
However, there is actually very little nuclear density
reaching this crossing due to the extended overlap of
the excited spBO surface and the 1-photon ground spBO
band. As a result the photon number rapidly increases
from the beginning and almost immediately there is a
mixed electronic character throughout the nuclear den-
sity, as reflected in Figs. 3(c) and 4(a). The flatter slope
of the excited spBO surface together with the increased
population in the lower spBO surface (Fig. 4.a), greatly
slows the nuclear density down compared to the fewer-
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FIG. 5. Photon-mode occupation for 10 (a), 40 (b), 200 (c) and
440 (d) modes. The dashed blue lines denotes the resonant
frequency ω = 0.1 at initial R = −4 as well as the Lamb-like
shift. The inset in panel (d) depicts a cut through the heat map
at initial time t = 1.9 fs..

mode cases, and results in a significantly increased sup-
pression of both the proton and electron transfer, as
evident from panels (a) and (b) in Fig. 3. The pho-
ton number continues to grow slightly throughout the
evolution. This can also be seen in the spectral de-
composition in Fig. 5(c), where for initial times we find
a wide band with dominant occupation around a fre-
quency of 0.12 a.u. (inset), which represents the initial
spBO energy-difference (0.1 a.u.) with a small Lamb-like
shift. As time evolves we see a continual re-absorption
and re-emission (yielding the slight constant increase of
the photon number) into a wider band building around
0.07 a.u.. Since the energy-difference between the spBO
surfaces near the turning point of the nuclear dipoleR ≈
−1 a.u. is about 0.05a.u., this frequency can be inter-
preted as the central frequency of transition between the
excited and ground spBO surfaces in the region where
the nuclear wavepacket is moving the slowest with the
Lamb-like shift again on the order of 0.02a.u..

The 440-mode case (blue) leads to an even stronger
suppression of proton-coupled electron transfer. The
key feature causing this is the strong deviation of the ex-
cited spBO surface such that its gradient slopes back to
the left soon after the initial nuclear wavepacket slides
down from its initial position at R = −4 a.u., in con-
trast to the cavity-free excited BO surface. The over-
lap of the extensively broadened 1(n)-photon-excited-
and 1(n)-ground-bands increases significantly creating
a near-continuum of avoided crossings. The 0-photon
surfaces are everywhere surrounded by near-lying n-
photon surfaces with the upper parts of both bands now
reaching up into higher energies and the lowest part of

the 1-photon ground-state band reaching the fundamen-
tal cavity mode of frequency πc/L. Compared to the
200-mode case, even less density reaches the region of
closest approach of the two (0-photon) spBO surfaces,
which is now even wider. The slopes of bands results in
an even slower nuclear dynamics, with the nuclear and
electronic dipole returning to their initial positions af-
ter only a small excursion away, as evident in Fig. 3. By
including the lowest allowable cavity modes, we find
a significant increase of the photon number due to the
population of low frequency photons. This can be seen
in spectral decomposition in Fig.5(d), as we find bright
bands rapidly developing at lower frequencies. As ex-
pected, we find a larger Lamb-like shift at 0.1276 a.u.
at initial times (inset, a cut through the heat map at
t = 1.9 fs). However, due to the densely-spaced 0, 1, 2...-
photon surfaces we observe a quite fast re-absorption
and re-emission of photons into a broad band yielding
the larger constant increase of the photon number.

Finally, to emphasize the importance of the self-
polarization term on the dynamics, in Fig. 6 we com-
pare the results of the MTE dynamics on the electronic
and nuclear dipoles and photon number when this term
is neglected (dashed) or included (solid) for 10, 40, 200
and 440 modes. Here we find only small differences
for the 10 mode case, however, as anticipated from the
discussion above, including more photon modes leads
to larger differences in the dynamics. More precisely,
the very initial photon emission remains the same with
and without self-polarization. However, as more pho-
ton modes are accounted for, there are larger devia-
tions as time evolves, especially for the 440 mode case,
which yields quantitative deviations up to a factor of
2. The differences in the dynamics are distinct for the
electronic and nuclear dipole, where already for the 10
mode case deviations up to 0.3 a.u. (electronic) and
0.2 a.u. (nuclear) are found at later times. The error
in neglecting self-polarization becomes especially sig-
nificant for the 200- and 440-mode cases, where there
is qualitatively different behavior in the nuclear dipole.
In the 200-mode case, the differences reach 5.8 a.u. for
nuclear dipole and 1.8 a.u. for electronic dipole. In-
deed, neglecting the self-polarization term leads to an
increase of the proton transfer compared to the single-
mode case, in contrast to the increased suppression ob-
served when including the self-polarization. There-
fore, neglecting the self-polarization term for many pho-
ton modes does not only change the quantitative re-
sults dramatically, but can also result in overall different
physical effects. The nuclear and electronic wavepack-
ets in the 440-mode case becomes delocalized over the
entire region, so plotting simply the dipole, an aver-
aged quantity, appears to give more agreement with the
self-polarization-neglected dynamics, when in fact the
wavepackets look completely different (see also supple-
mentary material, compare movie 2. and 3.).
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FIG. 6. Difference of the photon number (upper panel),
nuclear dipole (middle panel) and electronic dipole (lower
panel) without self-polarization term (dashed) and with self-
polarization term (solid) in the same color code as Fig.4

I. DISCUSSION AND OUTLOOK

Our results suggest that the effect of multiple cavity-
modes on the reaction dynamics can be dramatically dif-
ferent than when only a single mode is accounted for.
This is particularly true when there are cavity-modes
resonant with the matter system. In particular, for the
model of cavity-induced suppression of proton-coupled
electron transfer investigated here, we find an overall
increase of the suppression the more photon modes are
accounted for. Two mechanisms are fundamentally re-
sponsible for the difference: First, the self-polarization
term grows in significance with more modes with the ef-
fect that self-polarization-modified BO surfaces are dis-
torted significantly away from their cavity-free shape.
Polaritonic surfaces, eigenvalues of H − Tn, should
include the explicit matter-photon coupling on top of
these spBO surfaces. Second, the n-photon-spBO bands
become wider and increasingly overlapping, yielding a
very mixed electronic character and continual exchange
between surfaces. These new dressed potential energy
surfaces provide a useful backdrop to analyze the dy-
namics, and will form a useful tool in analyzing the dif-
ferent surfaces put forward to study coupled photon-
matter systems, for example the polaritonic surfaces,
and especially the time-dependent potential energy sur-

face arising from the exact factorization as this single
surface alone provides a complete picture of the dynam-
ics.

The MTE treatment of the photons appears to be a
promising route towards treating realistic light-matter
correlated systems. In particular, this method is able
to capture quantum effects such as cavity-induced sup-
pression of proton-coupled electron transfer, yet over-
comes the exponential scaling problem with the num-
ber of quantized cavity modes. However, a practical ap-
proach for realistic systems will further need an approx-
imate treatment of the matter part. From the electronic
side TDDFT would be a natural choice, while a practical
treatment of nuclei calls for a classical treatment such as
Ehrenfest or surface-hopping in some basis. However,
the multiple-crossings inside the n-photon spBO bands
suggest that simple surface-hopping treatments based
on spBO surfaces should be used with much caution
and that decoherence-corrections should be applied, for
example those generalized from the exact factorization
approach to the electron-nuclear problem [56, 57]. Fur-
ther, the MTE approach could provide a way to accu-
rately approximate the light-matter interaction part of
the QEDFT xc functional [4, 27, 30, 44].

Finally, we note that the present findings are general
in that the increasing importance of self-polarization
with more photon modes is expected to hold for the de-
scription and control of cavity-driven physical processes
of molecules, nanostructures and solids embedded in
cavities in general. These findings could yield a new
way to control and change chemical reactions via the
self-polarization without the need to explicitly change
the light-matter coupling strength itself.

II. METHODS

A. Hamiltonian

Here we consider the non-relativistic photon-matter
Hamiltonian in the dipole approximation in the
Coulomb gauge as [4, 18, 30, 46, 58]

Ĥ = ĤSP
m + Ĥp + V̂pm , (1)

with the Hamiltonian for the matter in the cavity as

ĤSP
m = T̂n + ĤSP

BO where ĤSP
BO = T̂e + V̂m + V̂ SP . (2)

Our model is in one dimension, with one electronic co-
ordinate r and one nuclear coordinate R, where the nu-
clear and electronic kinetic terms T̂n = − 1

2M
∂2

∂R2 , T̂e =

− 1
2
∂2

∂r2 , while ĤSP
BO denotes the spBO Hamiltonian, de-

fined by adding the self-polarization term,

V̂ SP =
1

2

M∑

α

λ2α(ZR̂− r̂)2 , (3)
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to the usual BO Hamiltonian. The self-polarization term
depends only on matter-operators but scales with the
sum over modes of the squares of the photon-matter
coupling parameters λα; a thorough discussion of this
term can be found in Ref. [19, 47, 48]. Atomic units, in
which ~ = e2 = me = 1, are used here and through-
out. The photon Hamiltonian and photon-matter cou-
pling read as follows

Ĥp(q) =
1

2

M∑

α

(
p̂2α + ω2

αq̂
2
α

)
(4)

V̂pm =

M∑

α

ωαλαq̂α

(
ZR̂− r̂

)
, (5)

where α denotes the photon modes, q̂α =
∑
α

√
1

2ωα
(â†α + âα) is the photonic displacement-

field coordinate, related to the electric displacement
operator, while p̂α is proportional to the magnetic
field. We choose the matter-photon coupling strength

through the 1D mode function λα =
√

2
Lε0 sin(kαX)

where L denotes the length of the cavity and kα = απ/L
the wave vector, and X the total dipole. Here we take
X = L/2, assuming that the molecule is placed at the
center of the cavity, and that L = 50µm is much longer
than the spatial range of the molecular dynamics.

In our particular model the matter potential V̂m is
given by the 1D Shin-Metiu model [59–61], which con-
sists of a single electron and proton (Z = 1 above),
which can move between two fixed ions separated by
a distance L in one-dimension. This model has been
studied extensively for both adiabatic and nonadiabatic
effects in cavity-free [60–63] and in-cavity cases [18, 45,
64]. The Shin-Metiu potential is:

V̂m =
∑

σ=±1


 1

|R+ σL
2 |
−

erf
(
|r+σL

2

aσ

)

|r + σL
2 |


−

erf
(
|R−r|
af

)

|R− r|
(6)

We choose here L = 19.0 a.u., a+ = 3.1 a.u., a− =
4.0 a.u., af = 5.0 a.u., and the proton mass M =
1836 a.u.; with these parameters, the phenomenon of
proton-coupled electron transfer occurs after electronic
excitation out of the ground-state of a model molecular
dimer [45].

B. MTE Treatment of Photonic System

A computationally feasible treatment of coupled
electron-ion-photon dynamics in a multi-mode cavity
calls for approximations. Here we have one electronic
and one nuclear degree of freedom but up to 440 pho-
ton modes, so we use MTE for the photons, coupled
to the molecule treated quantum mechanically. As
mentioned above we take the initial state as a simple
factorized product of the photonic vacuum state ξ0(q)

for each mode, the excited BO state, and the nuclear
Gaussian wavepacket. More precisely, for the MTE
for photons we sample the initial photonic vacuum
state from the Wigner distribution given by: ξ0(q, p) =

∏
α

1
π e

[
− p2α
ωα
−ωαq2α

]

. Furthermore, with two electronic
surfaces, the equations of motion are as follows, for the
lth trajectory:

q̈ lα(t) = −ω2
αq

l
α − ωαλα(Z〈R〉l − 〈r〉l), (7)

i∂t

(
C1(R, t)
C2(R, t)

)
=

(
h11 h12
h21 h22

)(
C1(R, t)
C2(R, t)

)
, (8)

with the diagonal matrix elements

hii = εiBO(R)− 1

2M
∂2R +

∑

α

(
λαωαq

l
α(ZR− rii(R))

+
λ2α
2
· ((ZR)2 − 2ZRrii(R) + r

(2)
ii )
)

(9)

and for i 6= j,

hij = − 1

M
dij(R)∂R −

d
(2)
ij (R)

2M
−

∑

α

λαωαq
l
αrij(R) +

∑

α

(
λ2α
2
·
(
−2ZRrij(R) + r

(2)
ij (R)

))

(10)

Here the non-adiabatic coupling terms are dij(R) =

〈ΦBO
R,i |∂RΦBO

R,j〉, d
(2)
ij (R) = 〈ΦBO

R,i |∂2RΦBO
R,j〉, and the transi-

tion dipole and quadrupole terms r(n)ij = 〈ΦBO
R,i |r̂n|ΦBO

R,j〉.
The coefficients Ci(R, t) are the expansion coefficients
of the electron-nuclear wavefunction in the BO ba-
sis: Ψ(r,R, t) =

∑
i=1,2 Ci(R, t)Φ

BO
R,i(r). Subsequently

the R-resolved and R-averaged BO-populations are
defined as |c1,2(R, t)|2 = |C1,2(R, t)|2/|χ(R, t)|2 and
|C1,2(t)|2 =

∫
dR|C1,2(R, t)|2 respectively. In the single-

mode case we also present the results for when the
proton is also treated by MTE with the nuclear trajec-
tory satisfying MR̈l(t) = −〈∂RεBO(Rl)〉−∑α ωαλαq

l
α−∑

α

(
λ2αZ(Z〈R〉l − 〈r〉l)

)
. For the photonic system,

10,000 trajectories were enough for convergence for all
cases except the 440-mode case which required 50,000
trajectories (the results shown used 100,000 trajectories
in all cases).
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I. MOVIES

We provide three movies:

1. MovieSingleMode.mp4 shows the nuclear dynamics for the cavity free case (pink) and for a coupling to one
resonant photon mode with coupling strength λ = 0.005 and resonant frequency 0.1 for the full quantum
solution (black), quantum nuclei with MTE treatment for the photons (blue) and MTE treatment for nuclei and
photos (light blue) in comparison. The surfaces represent the BO surfaces (pink) and spBO surfaces (black)
with the coupling to the one resonant photon mode. This movie corresponds to the results given in Fig.2 in the
paper.

2. MovieMultiModeWithSP.mp4 shows the spBO surfaces (upper pannel), the nuclear density (second panel),
the R-resolved BO-population (third and last panel) over time. Here we treat the photons with the MTE-
approach, the matter part quantum mechanically and all simulations include the self-polarization term. As in
(1.) we choose the coupling strength to be λ = 0.005 for all cases and compare the dynamics of the cavity free
case (pink), the coupling to a single resonant mode (black) and the coupling to 10- (green), 40- (orange), 200-
(red), 440- (blue) photon modes. This movie corresponds to Fig.3 and Fig.4 in the paper.

3. MovieMultiMode.mp4 shows the same calculations, dynamics and comparison as (2.), however now without
taking the self-polarization into account and the upper panel now shows the BO-surfaces. This movie gives
more details for the discussion of Fig.6.
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4
S U M M A RY, C O N C L U S I O N A N D O U T L O O K

In this thesis we introduced an extension of MQC methods and the EF approach,
traditionally developed to electron-nuclear systems, to the photonic degrees of
freedom in order to pave the way to full ab initio and computational feasible
descriptions of quantum effects in correlated light-matter systems within cavity
quantum electrodynamics. To guarantee a proper benchmarking, we first investi-
gate both methods within electron-photon correlated systems and then extended
both approaches to the full electron-photon-nuclei system. For the MQC methods
we identified a particularly promising route towards treating complex realistic
light-matter correlated systems. Furthermore, we gained a fundamental under-
standing of the results found in the MQC approach by investigating the TDPES
within the EF approach.

More precisely, considering the electron-photon correlated system we first
adapted the MTEF method, where we investigated a two and three-level cavity-
bound atomic system coupled to 400 photon modes. Here we analyzed the per-
formance of the MTEF method by properly accounting for the quantum statis-
tics of the vacuum field, while using mean field trajectories to describe the
time-evolution compared to the exact quantum solution within the spontaneous-
emission process. We found that, although having some quantitative drawbacks,
MTEF is indeed able to qualitatively characterize quantum effects such as one
and two photon spontaneous-emission, polariton peaks, and second-order cor-
relation functions. Furthermore, it is implied that classical Wigner dynamics for
the free photonic field, i.e. harmonic oscillators up to a linear coupling, yield ex-
act results. But, although accurate, the results found within the MTEF approach
were not exact. In order to investigate this, we analyzed the photonic TDPES driv-
ing the electronic motion within the EF approach for the same model system
coupled to either one or infinite photon modes (Wigner-Weisskopf approxima-
tion). Here, we found interesting structures of the potential driving the dynamics
and, in particular, large deviations from the harmonic form of the free-photon
field. These deviations completely incorporate the effect of the matter system
on the photonic dynamics and, thus, corroborated the accurate, but inexact, re-
sults found within the classical Wigner approach. Therefore, in order to then
improve the results found within the MTEF approach we benchmarked a selec-
tion of MQC and semiclassial methods such as MTEF, path integral methods, and
fewest switch surface hopping, as well as perturbative methods within the same
model system, i.e. a cavity-bound two and three-level atomic system coupled to
400 photon modes. Here we found that, with the exception of the fewest switch
surface hopping method, all MQC methods performed well and were able to cap-
ture quantum effects such as bound photon states and spontaneous emission.
Additionally, the path-integral methods were also able to qualitatively capture
some level of interference effects, which were only seen as broadening of the
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wave packet within the MTEF method. Considering the perturbative methods,
i.e. the BBGKY hierarchy in the second Born approximation, we found that this
method performed exceptionally well, yet inherits an exponential scaling with
the increase of the degrees of freedom and therefore, in contrast to the MQC
methods, is not feasible for realistic systems.

To enable the treatment of more realistic systems and as a natural extension
to the work within the electron-correlated systems, we then extended the MTEF
approach and the EF approach to the full electron-photon-nuclear system. Here,
we first investigated the exact TDPES driving the proton motion for a cavity in-
duced suppression of PCET within the EF approach. We analyzed its features and
showed that the TDPES, indeed, can predict the correct dynamics of the cavity
induced suppression of PCET. Furthermore, by investigating the proton dynam-
ics on the back-drop of the polaritonic surfaces, we found that polaritonic sur-
faces, conventionally used in polaritonic chemistry, are themselves not able to
predict the dynamics or mechanisms without considering how they couple to
each other. Finally, we then analyzed and simulated cavity-modified reactions
within the MTEF approach, i.e. cavity induced suppression of PCET. We carefully
benchmarked our approach by step-wise increasing the MTEF-treatment, where
we first treated electrons and nuclei quantum mechanically and the photonic de-
grees of freedom classically and then extended to a MTEF treatment for both the
photons and nuclei. We compared this benchmarking to the exact quantum so-
lution for a model of cavity induced PCET coupled to a single photon mode. We
found that MTEF is, indeed, able to describe the suppression of PCET, but tends
to underestimate these results, which we explained in detail by referring to the
findings within the TDPES for photons. With the exact reference solution out of
reach, we then coupled the matter system to up to 440 photon modes. Here, we
found that as more photon modes are included, cavity-modified phenomena can
significantly change and the self-polarization, which is often neglected, has an
increasingly crucial impact on the dynamics and even more so presents a poten-
tial new tool to control and change chemical reactions. To this end, we introduce
the concept of spBO surfaces as an instructive tool for analysis.

In summary, methods based on classical and semiclassical Wigner dynamics
performed very well for light-matter correlated systems and emerge as a promis-
ing route towards realistic systems, as they are able to capture quantum effects,
yet do not inherent the exponential scaling. Especially, as the trajectories are not
coupled during their time evolution, the corresponding algorithms can be imple-
mented in a highly parallel manner to reduce the total run-time. Additionally,
we note that the conventional harmonic-oscillator picture for photons does not
hold within the investigated systems, as, due to the nonlinear coupling of matter
and light, the photonic potential driving the electronic motion deviates strongly
from being harmonic. Furthermore, considering the potential driving the proton
motion, caution is needed when applying MQC on the conventionally used po-
laritonic surfaces and we suggest using PES beyond the adiabtic approximation,
e.g. TDPES, within the EF approach. However, as the presented work just started
to explore the MQC methods and EF approach within the area of cavity quantum
electrodynamics, there is still a lot of work to be done and open questions to be



summary, conclusion and outlook 115

answered. We address these questions and possible next steps in the following
paragraph.

open questions and outlook With the exciting findings in the MQC
methods and the EF approach in mind, we conclude this thesis with some open
questions and possible next steps within this framework. Here, all open ques-
tions and future steps are related to the goal to enable a full ab initio realistic
description of processes and dynamics within cavity QED.

1. More realistic cavities: In all our calculations presented above we assume
a perfect cavity. However, reality does not have the perfect cavity and re-
quires taking losses into account. Furthermore, in order to mimic a real
experiment, an external light field is required to prepare the initial states
of the matter, i.e. excited state. Moreover, considering the measurement of
the observables, one would need to consider that all observables such as
intensities, photon number and correlation are measured outside of the
cavity. Therefore, future steps include, adding external light fields for ini-
tial state preparation, including losses in the calculations and extracting
the observables outside of the cavity.

2. Excited state sampling: This is related to the preparation of the initial state of
the matter. Here, one could also imagine a single-photon source to act as
an external laser, which opens up the new applications such as quantum
sensing and secure quantum communication [159, 160]. In these cases, a
sampling beyond the vacuum state in the MQC methods is needed, which
can lead to unphysical negative pockets in the Wigner transform for the
photons. However, similar attempts of excited state sampling are already
known from electron-nuclear systems, where a sampling of the nuclei be-
yond zero Kelvin is required [161–164]. Therefore, future steps include,
exploring the exited state sampling for photons in order to mimic external
single-photon sources.

3. Reduction of Trajectories: All results for the MQC methods presented in this
thesis usually require 104− 106 trajectories to converge. However, consider-
ing more complex and realistic systems such as three-dimensional cavites,
a smaller number of required trajectories would reduce the computational
cost tremendously. Therefore, another future step also includes investigat-
ing enhanced sampling techniques in order to obtain same-level results
with fewer trajectories.

4. The way to three dimensions: Finally, the most important next step is the
extension of our methods beyond model systems to full ab initio three-
dimensional calculations. Thus, as we investigated two methodologies
throughout this thesis, i.e. MQC methods and EF approach, there are two
possible paths forward:

a) One the one hand, we explored the extension of the EF approach,
where the photonic degrees of freedom are directly included within
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the exact TDPES. Thus, one could now run trajectory-based methods on
these TDPES. Therefore, one possible future step could be to develop
rigorous mixed quantum-classical approximations for cavity quantum
electrodynamics based on generalizations of the coupled-trajectory
scheme of [37–39], which already has been proven to be successful
for cavity-free non-adiabatic dynamics.

b) On the other hand, which is the most natural extension to the work
presented within this thesis, is to extend the MQC methods themselves.
More precisely, in order to go beyond model systems, one could cou-
ple the presented MQC approach to ab initio electronic structure calcu-
lations such as TDDFT. In particular, as the equations of motion for
the photonic system presented in this work can be seen as a one-
dimensional Maxwell’s equation, one possible route, especially for the
MTEF, is the combination with the recently presented work in [51].
This work presents an ab initio light-matter coupling methodology,
which treats coupled classical light, electrons, and nuclei by solving
the Ehrenfest-Maxwell-Pauli-Kohn-Sham equations in quantum elec-
trodynamics and is ideally suited for applications in nano-optics and
nano-plasmonics. Therefore, combining the MTEF approach presented
in this thesis with the algorithm developed in [51] allows a fully quan-
tized treatment of electrons, photons, and nuclei in realistic systems.
However, note that within this algorithm one also needs to extend the
Ehrenfest treatment of the nuclei to more sophisticated approaches,
as, within molecular systems coupled to multiple photon modes, an
Ehrenfest-like treatment for the nuclei is not favourable due to the
larger number of avoided crossings. Therefore, future steps include
combining and extending the methodology of [51] with the multi-
trajectory approach presented in this thesis, which provides a compu-
tationally feasible route towards simulating photon-field fluctuations
and correlations in realistic three-dimensional systems.

In conclusion, MQC methods for photons emerge as a very promising route
towards treating realistic light-matter systems within cavity QED. Especially, con-
sidering the increasing need for well-scaling methods [165], this approach could
be of great interest for the quantum chemistry as well as quantum optics com-
munity. Therefore, with this work being on the interface of quantum chemistry
and quantum optics, we hope to have added some bricks to the bridge between
these two fields and look forward to add many more in order to enable new
physics in the exciting and fast emerging field of cavity QED.



B I B L I O G R A P H Y

[1] James Clerk Maxwell. “A dynamical theory of the electromagnetic field.”
In: Philosophical transactions of the Royal Society of London 155 (1865), pp. 459–
512. doi: 10.1098/rstl.1865.0008.

[2] Nobel Lectures in Physics, ed. Nobel Lectures Physics 1901-1921. 1901-1921.
World Scientific Publishing, 1998.

[3] Nobel Lectures in Physics, ed. Nobel Lectures in Physics. 1922-1941. World
Scientific Publishing, 1998.

[4] Erwin Schrödinger. “An undulatory theory of the mechanics of atoms
and molecules.” In: Physical Review 28.6 (1926), p. 1049. doi: 10.1103/
PhysRev.28.1049.

[5] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechan-
ics. Cambridge University Press, 2018.

[6] Miguel AL Marques, Neepa T Maitra, Fernando MS Nogueira, Eberhard
KU Gross, and Angel Rubio. Fundamentals of time-dependent density func-
tional theory. Vol. 837. Springer Science & Business Media, 2012. doi: 10.
1007/978-3-642-23518-4.

[7] W. Kohn. “Nobel Lecture: Electronic structure of matter—wave functions
and density functionals.” In: Rev. Mod. Phys. 71 (5 Oct. 1999), pp. 1253–
1266. doi: 10.1103/RevModPhys.71.1253.

[8] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas.” In:
Physical Review 136.3B (1964), B864. doi: 10.1103/PhysRev.136.B864.

[9] Erich Runge and Eberhard KU Gross. “Density-functional theory for time-
dependent systems.” In: Physical Review Letters 52.12 (1984), p. 997. doi:
10.1103/PhysRevLett.52.997.

[10] Oktay Sinanoğlu. “Many-electron theory of atoms and molecules. i. shells,
electron pairs vs many-electron correlations.” In: The Journal of Chemical
Physics 36.3 (1962), pp. 706–717. doi: 10.1063/1.1732596.

[11] M Peter Nightingale and Cyrus J Umrigar. Quantum Monte Carlo methods
in physics and chemistry. 525. Springer Science & Business Media, 1998.
isbn: 0792355520.

[12] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford Sci-
ence Publ. Clarendon Press, 1989. isbn: 9780198556459.

[13] Richard Car and Mark Parrinello. “Unified approach for molecular dy-
namics and density-functional theory.” In: Physical Review Letters 55.22

(1985), p. 2471. doi: 10.1103/PhysRevLett.55.2471.

[14] Max Born and Robert Oppenheimer. “Zur quantentheorie der molekeln.”
In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.
19273892002.

117

https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1007/978-3-642-23518-4
https://doi.org/10.1007/978-3-642-23518-4
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1063/1.1732596
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002


118 bibliography

[15] JohnáC Tully. “Mixed quantum–classical dynamics.” In: Faraday Discus-
sions 110 (1998), pp. 407–419. doi: 10.1039/A801824C.

[16] Raymond Kapral and Giovanni Ciccotti. “Mixed Quantum-Classical Dy-
namics.” In: The Journal of Chemical Physics 110.18 (1999), pp. 8919–8929.
doi: 10.1063/1.478811.

[17] Paul Ehrenfest. “Bemerkung über die angenäherte Gültigkeit der klassis-
chen Mechanik innerhalb der Quantenmechanik.” In: Zeitschrift für Physik
A Hadrons and Nuclei 45.7 (1927), pp. 455–457.

[18] AD McLachlan. “A variational solution of the time-dependent
Schrödinger equation.” In: Molecular Physics 8.1 (1964), pp. 39–44. doi:
10.1080/00268976400100041.

[19] Nancy Makri and William H Miller. “Time-dependent self-consistent field
(TDSCF) approximation for a reaction coordinate coupled to a harmonic
bath: single and multiple configuration treatments.” In: The Journal of
Chemical Physics 87.10 (1987), pp. 5781–5787. doi: 10.1063/1.453501.

[20] Hans-Dieter Meyer and William H Miller. “A classical analog for elec-
tronic degrees of freedom in nonadiabatic collision processes.” In: The
Journal of Chemical Physics 70.7 (1979), pp. 3214–3223. doi: 10.1063/1.
437910.

[21] William H Miller. “The semiclassical initial value representation: A poten-
tially practical way for adding quantum effects to classical molecular dy-
namics simulations.” In: The Journal of Physical Chemistry A 105.13 (2001),
pp. 2942–2955. doi: 10.1021/jp003712k.

[22] Gerhard Stock and Michael Thoss. “Classical description of nonadiabatic
quantum dynamics.” In: Advances in Chemical Physics 131 (2005), pp. 243–
376. doi: 10.1002/0471739464.ch5.

[23] Hyojoon Kim, Ali Nassimi, and Raymond Kapral. “Quantum-classical Li-
ouville dynamics in the mapping basis.” In: The Journal of Chemical Physics
129.8 (2008), p. 084102. doi: 10.1063/1.2971041.

[24] Chang-Yu Hsieh and Raymond Kapral. “Nonadiabatic dynamics in open
quantum-classical systems: Forward-backward trajectory solution.” In: The
Journal of Chemical Physics 137.22 (2012), 22A507. doi: 10.1063/1.4736841.

[25] Chang-Yu Hsieh and Raymond Kapral. “Analysis of the forward-back-
ward trajectory solution for the mixed quantum-classical Liouville equa-
tion.” In: The Journal of Chemical Physics 138.13 (2013), p. 134110. doi: 10.
1063/1.4798221.

[26] Haobin Wang, Xiong Sun, and William H Miller. “Semiclassical approx-
imations for the calculation of thermal rate constants for chemical reac-
tions in complex molecular systems.” In: The Journal of Chemical Physics
108.23 (1998), pp. 9726–9736. doi: 10.1063/1.476447.

https://doi.org/10.1039/A801824C
https://doi.org/10.1063/1.478811
https://doi.org/10.1080/00268976400100041
https://doi.org/10.1063/1.453501
https://doi.org/10.1063/1.437910
https://doi.org/10.1063/1.437910
https://doi.org/10.1021/jp003712k
https://doi.org/10.1002/0471739464.ch5
https://doi.org/10.1063/1.2971041
https://doi.org/10.1063/1.4736841
https://doi.org/10.1063/1.4798221
https://doi.org/10.1063/1.4798221
https://doi.org/10.1063/1.476447


bibliography 119

[27] Shunsuke A Sato, Aaron Kelly, and Angel Rubio. “Coupled forward-
backward trajectory approach for nonequilibrium electron-ion dynam-
ics.” In: Physical Review B 97.13 (2018), p. 134308. doi: 10.1103/PhysRevB.
97.134308.

[28] Aaron Kelly and Thomas E Markland. “Efficient and accurate surface
hopping for long time nonadiabatic quantum dynamics.” In: The Journal
of Chemical Physics 139.1 (2013), p. 014104. doi: 10.1063/1.4812355.

[29] John C Tully. “Molecular dynamics with electronic transitions.” In: The
Journal of Chemical Physics 93.2 (1990), pp. 1061–1071. doi: 10.1063/1.
459170.

[30] John C Tully and Richard K Preston. “Trajectory surface hopping ap-
proach to nonadiabatic molecular collisions: the reaction of H+ with D2.”
In: The Journal of Chemical Physics 55.2 (1971), pp. 562–572. doi: 10.1063/
1.1675788.

[31] Joseph E Subotnik and Neil Shenvi. “A new approach to decoherence and
momentum rescaling in the surface hopping algorithm.” In: The Journal
of chemical physics 134.2 (2011), p. 024105. doi: 10.1063/1.3506779.

[32] Philip Shushkov, Richard Li, and John C Tully. “Ring polymer molecular
dynamics with surface hopping.” In: The Journal of Chemical Physics 137.22

(2012), 22A549. doi: 10.1063/1.4766449.

[33] Eric R Bittner and Peter J Rossky. “Quantum decoherence in mixed quan-
tum-classical systems: Nonadiabatic processes.” In: The Journal of Chemical
Physics 103.18 (1995), pp. 8130–8143. doi: 10.1063/1.470177.

[34] Oleg V Prezhdo and Peter J Rossky. “Evaluation of quantum transition
rates from quantum-classical molecular dynamics simulations.” In: The
Journal of Chemical Physics 107.15 (1997), pp. 5863–5878. doi: 10.1063/1.
474312.

[35] Ali Abedi, Neepa T Maitra, and Eberhard KU Gross. “Exact factoriza-
tion of the time-dependent electron-nuclear wave function.” In: Physical
Review Letters 105.12 (2010), p. 123002. doi: 10.1103/PhysRevLett.105.
123002.

[36] Ali Abedi, Neepa T Maitra, and EKU Gross. “Correlated electron-nuclear
dynamics: Exact factorization of the molecular wavefunction.” In: The
Journal of Chemical Physics 137.22 (2012), 22A530. doi: 10.1063/1.4745836.

[37] Federica Agostini, Seung Kyu Min, Ali Abedi, and EKU Gross. “Quantum-
classical nonadiabatic dynamics: Coupled-vs independent-trajectory meth-
ods.” In: Journal of Chemical Theory and Computation 12.5 (2016), pp. 2127–
2143. doi: 10.1021/acs.jctc.5b01180.

[38] Seung Kyu Min, Federica Agostini, and Eberhard KU Gross. “Coupled-
trajectory quantum-classical approach to electronic decoherence in nona-
diabatic processes.” In: Physical Review letters 115.7 (2015), p. 073001. doi:
10.1103/PhysRevLett.115.073001.

https://doi.org/10.1103/PhysRevB.97.134308
https://doi.org/10.1103/PhysRevB.97.134308
https://doi.org/10.1063/1.4812355
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.1675788
https://doi.org/10.1063/1.1675788
https://doi.org/10.1063/1.3506779
https://doi.org/10.1063/1.4766449
https://doi.org/10.1063/1.470177
https://doi.org/10.1063/1.474312
https://doi.org/10.1063/1.474312
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1063/1.4745836
https://doi.org/10.1021/acs.jctc.5b01180
https://doi.org/10.1103/PhysRevLett.115.073001


120 bibliography

[39] Seung Kyu Min, Federica Agostini, Ivano Tavernelli, and Eberhard KU
Gross. “Ab initio nonadiabatic dynamics with coupled trajectories: A rig-
orous approach to quantum (de) coherence.” In: The Journal of Physical
Chemistry Letters 8.13 (2017), pp. 3048–3055. doi: 10.1021/acs.jpclett.
7b01249.

[40] Andreas Maser, Benjamin Gmeiner, Tobias Utikal, Stephan Götzinger,
and Vahid Sandoghdar. “Few-photon coherent nonlinear optics with a
single molecule.” In: Nature Photonics 10.7 (2016), p. 450. doi: 10.1038/
nphoton.2016.63.

[41] Claudius Riek, DV Seletskiy, Andrey S Moskalenko, JF Schmidt, Philipp
Krauspe, Sebastian Eckart, Stefan Eggert, Guido Burkard, and Alfred Leit-
enstorfer. “Direct sampling of electric-field vacuum fluctuations.” In: Sci-
ence 350.6259 (2015), pp. 420–423. doi: 10.1126/science.aac9788.

[42] Andrey S Moskalenko, Claudius Riek, Denis V Seletskiy, Guido Burkard,
and Alfred Leitenstorfer. “Paraxial theory of direct electro-optic sampling
of the quantum vacuum.” In: Physical Review Letters 115.26 (2015), p. 263601.
doi: 10.1103/PhysRevLett.115.263601.

[43] Jino George, Thibault Chervy, Atef Shalabney, Eloıse Devaux, Hidefumi
Hiura, Cyriaque Genet, and Thomas W Ebbesen. “Multiple Rabi split-
tings under ultrastrong vibrational coupling.” In: Physical Review Letters
117.15 (2016), p. 153601. doi: 10.1103/PhysRevLett.117.153601.

[44] Tim Byrnes, Na Young Kim, and Yoshihisa Yamamoto. “Exciton–polariton
condensates.” In: Nature Physics 10.11 (2014), pp. 803–813. doi: 10.1038/
nphys3143.

[45] Jacek Kasprzak, M Richard, S Kundermann, A Baas, P Jeambrun, JMJ
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Figure 1 A Naphthalene molecule trapped in a cavity. . . . . . . . . 9

Figure 2 A schematic overview of the relation between quantum
chemsitry and quantum optics over the level of matter
system complexity and the quantumness of the light field.
The green area characterizes theory-levels, which can treat
complex matter systems. The blue area contains theory-
levels which are able to take the quantum nature of the
light into account. The overlap of both areas renders the
field of interest of this thesis. . . . . . . . . . . . . . . . . . . 11

Figure 3 A schematic of a few-level atomic system (green) trapped
in a cavity. Here |e0〉 denotes the electronic groundstate,
|e1〉 the electronic first excited state and |e2〉 the electronic
second excited state. . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 4 A schematic of the molecular Shin-Metiu model system
trapped in a cavity. This model includes two fixed ions
(black) in a distance LI. The third ion (magenta) and the
single electron (purple) given at a distance R and r can
move in between these fixed ions. . . . . . . . . . . . . . . . 17

Figure 5 An example of the difference between normal ordered
photonic field intensity (red) and not normal ordered pho-
tonic field intensity (black) at the initial time. The inset de-
picts a zoom-in of the peak at the atomic position. Figure
adapted from [O1]. . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 6 The self-polarization-modified BO surfaces for 1 (a), 10 (b),
40 (c), 200 (d) and 440 (e) photon-mode coupling depict
for the ground and first excited surface within the model
investigated in [O5], where R denotes the nuclear coordi-
nate. Figure adapted from [O5] . . . . . . . . . . . . . . . . 23

Figure 7 Overview of the numerical implementation of the MQC
dynamics for the full electron-nuclei-photon correlated sys-
tem with a quantum-classical-classical treatment, respec-
tively. The upper panels (magenta) show the initial state
calculation, i.e. Wigner sampling for the photons and nu-
clei and the choice of an excited electronic state. Then,
the evolution of each initial condition is performed inde-
pendently according to the applied electron-photon-nuclei
correlated equations of motion (cyan) of Eqs. (62), (63),
(64). The average values of an arbitrary observable Ô are
constructed by summation over the entire trajectory en-
semble and normalizing the result with respect to the total
number of trajectories Ntraj (green), see also Eq. (68). . . . 25
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Figure 8 Connection of the different scientific contributions. The
areas with blue background show the work within electron-
photon correlated systems, the areas with pink background
the work within electron-photon-nuclei correlated systems
and the area with yellow background gives a short out-
look on a possible future step such as connecting the MQC
approach with an advanced TDDFT electron-structure code
i.e. the open source Octopus code [117] . . . . . . . . . . . . 34
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TDDFT Time-Dependent Density Functional Theory

TDPES Time-Dependent Potential Energy Surface

QED Quantum Electrodynamics

QEDFT Quantum Electrodynamical Density Functional Theory
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