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In this thesis the time-domain fluorescence diffuse optical tomography (FDOT) is
theoretically and numerically investigated based on analytical expressions for a three
space dimensional diffusion equation model (DE model). Physically the radiative transfer
equation model (RTE model) is a better model to describe the physical process behind the
measurement of the FDOT. We carefully analyzed the derivation of the DE model from
RTE model to consider about the modelling error. Since the distance between the source
and detectors are short, the initial boundary value problem for the DE can be considered
in the half space. Here there are two diffusion equations coupled in one of its source term.
Each of them describes the emission of angularly averaged excited photon density (i.e.
excited light) and that of emitted photon density (i.e. emitted light). Usually for the
excited light the distribution of fluorophores in biological tissue is ignored and have the
so called linearized DE model. The emission light is analytically calculated by solving an
initial boundary value problem for coupled diffusion equations in the half space. Based on
the analytic expression of the solution to this initial boundary value problem, we establish
an error estimate for linearizing the DE model.

Our FDOT is to recover the distribution of fluorophores in biological tissue based on
the linearized DE model by using the time-resolved measurement data on the boundary
surface. We theoretically analyzed the identifiability of this inverse absorption problem.

Aiming a fast and robust algorithm for our FDOT inverse problem, we identify the
location of a fluorescence target by assuming that it has a cuboidal shape neglecting its
precise shape. We proposed and verified our inversion strategy which is a combination of
theoretical arguments and numerical arguments for an inversion, which enables to obtain a
stable inversion and accelerate the speed of convergence. Its effectivity and performance
were tested numerically using simulated data and experimental data obtained from ex
vivo beef phantoms.
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Chapter 1

Introduction to FDOT

This chapter is intended as an introduction into the basic characteristics on Fluo-
rescence Diffuse Optical Tomography (FDOT). As a medical imaging technique, we give
a short description of its background in section 1.1 and the photon transfer model in
section 1.2. As an ill-posed inverse problem, we give the concept of ill-posedness and an
introduction to regularization methods commonly used for treating ill-posed problems in
section 1.3. We summarize the main results of this thesis in section 1.4.

1.1 Fluorescence Diffuse Optical Tomography

Fluorescence imaging using short wavelength near-infrared (NIR) light (700–1000 nm)
is rapidly gaining acceptance as an important diagnostic and monitoring tool of symp-
toms in medical applications [1–4]. The fluorescence contrast agents allow tracking non-
invasively and quantitatively specific molecular events or provides some clinically impor-
tant information in vivo. Fluorescence imaging is generally high-sensitive and there are
some additional advantages in NIR fluorescence imaging, such as the weak background
from tissue and the longer penetration depth compared with those in the visible wave-
length region. More precisely, in tissue, light is strongly attenuated in the visible region
(450 to 700 nm) and can penetrate less than one centimeter, but at NIR wavelengths (700
to 1000 nm) the absorption is significantly lower and with sensitive instrumentation it is
possible to detect light that has traversed up to 8 centimeters of tissue.

However, the NIR fluorescence imaging is still limited in a region near the surface
of tissue because the strong scattering significantly blurs images and the absorption at-
tenuates the fluorescence intensity. In the clinical applications, the imaging in a thick
(> 1 cm) or large volume tissue (> few 10 cm3) is highly demanded because the clinically
important region is not limited on the surface. Thus, the imaging technique under the
strong scattering condition is essential to extend the optical imaging method in many
of the clinical applications. In this condition, the light propagation is considered as an
energy dissipation by the random scattering and the spatial information is significantly
lost, resulting the image blurring. Thus, the three-dimensional image reconstruction of
the fluorescence from the blurred images is essential, which is very important but really
challenging.

In order to recover the three-dimensional distribution of the fluorophores in strong
scattering media, it is necessary to consider an inverse problem (We will explain the
meaning of “inverse problem” later) based on a photon transport model which leads the
so-called diffuse optical tomography (DOT) [25, 26]. For the fluorescence, as shown in
Figure 1.1, two physical processes are coupled, namely, excitation and fluorescence (emis-
sion). The excitation photons injected at the boundary of the medium propagate to the
fluorophores and then some photons are absorbed by them which excite the fluorophore
molecules. After a moment of the absorption, the fluorophores emit other photons, fluo-
rescence, at more longer wavelength than the wavelength of the excitation photons, and
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then these again propagate until they are observed by the detectors at the surface of the
medium. Therefore, two kinds of the propagation, excitation and fluorescence (emission),
are involved and they are described by the photon transport model.

Figure 1.1: Light propagation in turbid media.

Fluorescence diffuse optical tomography (FDOT) is one type of optical tomography
which makes use of fluorescence light from fluorophore. It aims to recover the fluorophores
quantitatively from some measurement specified on the medium surface, which is an
inverse problem. FDOT should be inexpensive and portable compared to X-ray computed
tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography
(PET) and therefore could be an important diagnostic and monitoring tool of symptoms
at the bedside.

1.2 Photon Transport Models in Strong Scattering Media

Light propagation is rigorously described by Maxwell’s equations that describe the
relation of electric and magnetic waves in space and time. However, because the wave
property of the photon is lost by multiple scattering in strongly turbid medium such
as biological tissue, the photon propagation through turbid media for both excitation
and emission are governed by the Boltzmann radiative transfer equation or shortly the
radiative transfer equation (RTE) [18–21], which is originally developed to describe the
light energy propagations in turbulent atmosphere [18, 21] and has been generalized to
describe different kinds of waves in random inhomogeneous medium [20]. We start from
the linearized Boltzmann radiative transport equation.

Linearized Boltzmann radiative transfer

The propagation of photon in scattering media can be described with

1

c

∂

∂t
Φ(x, θ, t) = −θ · ∇Φ(x, θ, t)− (µa + µf + µs)Φ(x, θ, t)

+ µs

∫
S2

η(θ, θ′)Φ(x, θ′, t) dθ′ + S̃(x, θ, t),
(1.2.1)

where Φ(x, θ, t) is the radiant intensity (i.e., angular dependent density) at x in time t
with θ is a unit vector pointing in the direction of interest. S̃(x, θ, t) is the source term.
The absorption and scattering coefficients of medium, µa and µs, are the inverses of the
mean free paths for scattering and absorption, respectively. µf denotes the absorption
coefficient of the fluorophores inside the medium, and c is the speed of photon inside the
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medium. The scattering phase function η(θ · θ′) describing the probability that a photon
traveling in direction θ is scattered within the unit solid angle around the direction θ′, is
given by 3-dimensional Henyey-Greenstein function

η(θ, θ′) :=
1− g2

4π(1 + g2 − 2gθ · θ′)3/2
, (1.2.2)

where the anisotropy parameter (or average scattering cosine) g is the mean cosine of the
scattering angle, i.e., g :=

∫
S2(θ · θ′)η(θ · θ′) dθ and hence −1 < g < 1.

We recognize the left hand side of (1.2.1) as the change of the radiant intensity in
time. The equation says that this change should equal to the sum of the right hand
terms [8].

The first term in the right hand side in (1.2.1) is negative so it decreases the number
of photons. This term represents the out-flowing photons due to a local gradient (i.e.,
“true” diffusion). The second term is also negative and also decreases the photon density.
This term represents the loss of photons in direction θ either due to the absorption or
scattering. The third term represents the photons that are scattered into the volume at
direction θ and the fourth term represents a light source that creates new photons. So
the RTE simply states that the sum of these terms equals to the change in time of the
radiant intensity.

Although the derivation of the RTE was not difficult from a physical point of view
(see the Appendix A in [8]), this RTE system is still considered as a phenomenological
and heuristic theory that lacks a rigorous mathematical formulation capable to take into
account all the physical effects involved in light propagations [19]. On the other hand,
solving RTE requires a large amount of computations. Therefore there are practical
requirements on developing the approximate model of RTE for fluorescence imaging, for
which a cheap solver is available.

Diffusion approximation in radiative transfer

The diffusion equation (DE) [19,23,24] is the most popular and most useful approxi-
mation to the RTE, which was shown a sufficiently good approximation to the RTE but
much easier to calculate, and therefore has been applied in engineering communities for a
long time. When scattering is much stronger than absorption, the radiant intensity, Φ, can
be expressed as an isotropic fluence rate U (photon density) plus a small directional flux
J (photon flux) which is the so-called P1-approximation, and transport equation (1.2.1)
reduces to a diffusion equation.

We write the radiant intensity as

Φ(x, θ, t) =
1

4π
U(x, t) +

3

4π
θ · J(x, t), θ ∈ S2, (1.2.3)

with
U(x, t) :=

∫
S2

Φ(x, θ, t) dθ, J(x, t) :=

∫
S2

θ · Φ(x, θ, t) dθ, (1.2.4)

where S2 :=
{
x ∈ R3, ‖x‖ = 1

}
.

Notice the physical fact ∂
∂t |J| � c(µa+µf+µs)|J|. Under the assumption that sources

S̃(x, θ, t) are isotropic, we have

J(x, t) = −D(x)∇U(x, t) (1.2.5)
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with the photon diffusion coefficient, D(x), by

D(x) :=
1

3(µa + µf + µ′s)
≡ 1

3µ′s
, (1.2.6)

where the reduced scattering coefficient is defined by µ′s := µs(1 − g) with g is the
anisotropy parameter. Here we used the fact that µa, µf � µ′s due to the strong scattering
in medium. Then based on (1.2.3), we can derive the diffusion equation from RTE as
[19,26,30] [

1

c

∂

∂t
−D∆ +

(
µa(x) + µf (x)

)]
U(x, t) = S0(x, t), (1.2.7)

where S0 is the isotropic source. The detail derivation from (1.2.1) to (1.2.7) can be found
in [19,31,32] or Chapter 2.

In addition, by ignoring µf in (1.2.7), one has the following simplified diffusion equa-
tion [

1

c

∂

∂t
−D∆ + µa(x)

]
u(x, t) = S0(x, t), (1.2.8)

which plays a very important role in diffuse optical tomography problems and will be the
photon transport model in the rest of this thesis. (1.2.8) can be considered the approx-
imate model of (1.2.7). However, as far as we know, there is no rigorous mathematical
analysis of the error due to the approximation from (1.2.7) to (1.2.8).

In this thesis, we will analyze the error estimations for such approximations from the
view of mathematics. Due to our experimental setup, we simplify the geometric setup
which allows to use an analytic solution of DE. Then, based on these analytic expressions
of excitation and emission, we will establish the estimations of errors on the excitation
field and the solution to the inverse problem, which ensures the reasonability of the
simplification from (1.2.7) to (1.2.8) (see Theorem 2.1 and Theorem 2.2 in Chapter 2).
Moreover, we also qualitatively validate the approximation from RTE to DE in section
2.3.

1.3 FDOT as an Ill-posed Inverse Problem

The general task of image reconstruction is to compute an image from the speci-
fied measured data. Image reconstruction can be regarded as a parameter identification
problem or so called inverse problem as we mentioned before, which is generally ill-posed.
Now we are ready to give the mathematical descriptions for inverse problems and ill-posed
problems.

Inverse problems and ill-posed problems

Suppose the data is described by a general vector h and that the image can be de-
scribed by a general vector z. Suppose that we also have a physical model P that describes
the relation between h and z, that is,

Pz = h. (1.3.1)

The forward problem is to determine the data h for a given image z within the domain
Z of P, whereas the inverse problem is to reconstruct the image z from the data h for a
given model P.

Inverse problems are hard to be defined. According to Keller [77] a pair of problems
are defined as inverse to each other, if the formulation (i.e.,the data) of each of them
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requires complete or partial knowledge of the solution of the other problem. Thus inverse
problems come paired with direct problems. We may say inverse problems are looking
for images or causes of an observed data or desired effect, which can be characterized by
three points: large scale, nonlinear and ill-posedness.

The forward problems are usually well-posed and have been intensively studied. In the
sense of Hadamard, we say a mathematical problem is well-posed if it satisfies following
conditions [6, 7].

Definition 1.1. (WELL-POSEDNESS) Let Z and H be normed spaces and let P :
Z → H be a (possibly nonlinear) continuous operator from Z into H. The problem h = Pz
is well-posed in the sense of Hadamard if the following three conditions are satisfied:

• 1. There exists a solution z ∈ Z for any h ∈ H such that Pz = h (existence).

• 2. There exists at most one solution z ∈ Z for any h ∈ H with Pz = h (uniqueness).

• 3. Any sequence z1, z2, · · · ∈ Z with Pzn → Pz for n→∞ implies zn → z, n→∞
(stability).

A problem for which at least one of the three conditions above fails to hold is termed
ill-posed.

The first two conditions ensure the unique existence of a solution to the problem, which
can, in theory, be accomplished by choosing the domain and range satisfying P(Z) = H,
i.e., the model P is fully characterized. Here we focus on the stability requirement, which
probably is the most important condition. If the solution does not depend continuously
on the data, then unavoidable perturbations in the data may lead to uncontrolled per-
turbations in the solution.

The following two simple examples illustrate the typical problems encountered when
solving ill-posed inverse problems.

Example 1.1. (Cauchy Problem for Laplace Equations) Consider the Cauchy prob-
lem for two-dimensional Laplace equation [6]

∆u(x, y) = ∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 = 0, (x, y) ∈ R× [0,+∞),

u(x, 0) = a(x), x ∈ R,
∂u
∂y (x, 0) = b(x), x ∈ R.

(1.3.2)

Let a(x) = 0 and b(x) = 1
n sin(nx). Then above Cauchy problem admits unique solution

u(x, y) =
1

n2
sin(nx) sinh(ny). (1.3.3)

Obviously supx∈R {|a(x)|+ |b(x)|} = 1
n → 0 as n→∞. However, for any y > 0 there

holds
sup
x∈R
|u(x, y)| = 1

n2
sinh(ny)→∞, n→∞, (1.3.4)

implying that the solution does NOT depend on the input data a(x), b(x) continuously.

Example 1.2. (Fredholm Integral Equations of the First kind) Let Z and H be
norm spaces and assume P : Z → H is a continuous linear operator from Z into H with
a continuous square integrable kernel k(·, ·) on Z̄ × H̄, where Z̄ denotes the closure of Z.
Then the classical Fredholm integral equation of the first kind has the following form

Pz(t) =

∫ 1

0
k(t, s)z(s) ds = h(t), t ∈ [0, 1]. (1.3.5)
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The forward problem here is to determine the data h for a known kernel k and a given
image z, while the inverse problem is to find the image z from the given data h.

The kernel of (1.3.5) is of important consequence for the degree of ill-posedness of the
inverse problem as the integration with k has a smoothing influence on h. The natural
dynamic range in data h, i.e. the transitions, extremes and other essential characteristics,
is therefore deteriorated by the integration operation. Conversely, this smoothing effect
implies that even small perturbations in the observed data h may cause unacceptably
large perturbations in the estimate of the sought solution.

To be precise, we give one numerical example. Let the kernel be k(t, s) = ets and the
observed data be h(t) = et+1−1

t+1 . Equation (1.3.5) admits unique exact solution z(t) = et.
On the other hand, we consider to solve equation (1.3.5) numerically for given k and h,
by approximating the integral operator P directly using compound trapezoidal formula

∫ 1

0
etsz(s) ds ≈ tτ

1

2
z(0) +

1

2
etz(1) +

n−1∑
j=1

ejτtz(jtτ )

 (1.3.6)

with discrete level n and step size tτ = 1
n , which yields the linear algebra system

tτ

1

2
z0 +

1

2
etzn +

n−1∑
j=1

ejτtzj

 = h(jtτ ), j = 0, 1, · · · , n. (1.3.7)

We compute the approximate value zj of exact value z(jtτ ) by applying the collocation
method for (1.3.7). The error between numerical solution and exact solution zj − z(jtτ )
at different time t = jtτ with different n are listed in following table.

Table 1.1: Error distribution with different discrete level n.

t n = 4 n = 8 n = 16 n = 32

0 0.44 -3.08 1.08 -38.21
0.25 -0.67 -38.16 -25.17 50.91
0.5 0.95 -75.44 31.24 -116.45
0.75 -1.02 -22.15 20.03 103.45
1 1.09 -0.16 20.03 103.45

Table 1.1 shows that the error between numerical solution and exact solution becomes
large as the discrete level increasing, which is obviously a meaningless result [76, 83].
Therefore, equation (1.3.5) can NOT be solved directly by dividing [0, 1] with large n, and
the reason can be attributed to the ill-posedness of solving Fredholm integral equations
of the first kind (It is the same for Volterra integral equations of the first kind).

Classical regularization methods

In practice, we only have the noisy data hδ of exact data h satisfying∥∥∥hδ − h∥∥∥ ≤ δ
with δ > 0. Then, for solving equation (1.3.1), the question is how to obtain the approxi-
mate solution zδ of z from the noisy data hδ of h? Actually, as shown before, we can not
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directly obtain zδ by solving its corresponding problem

Pzδ = hδ. (1.3.8)

This is because the ill-posedness of the inverse problem. That is

• 1. If hδ 6∈ P(Z), there exists not a solution zδ ∈ Z to (1.3.8);

• 2. Even if hδ ∈ P(Z), it does not guarantee the solution zδ obtained by (1.3.8)
satisfies zδ → z as δ → 0, since the inverse operator P−1 of P is unbounded.

Thus, to obtain an approximate solution zδ satisfying zδ → z as δ → 0 even for hδ 6∈
P(Z), we introduce the regularization method, the basic idea of which is that, instead
of trying to solve the ill-posed problem (1.3.8) exactly, one seeks to construct its well-
posed approximated problem that is uniquely solvable and small errors in the data do not
corrupt excessively this approximate solution. In short, the objective in regularization
is to construct an appropriate bounded approximation R : H → Z of the, possibly
unbounded

P−1 : H → Z.

Definition 1.2. (Regularization) A family of continuous operators Rα : H → Z are
called regularization operators with regularization parameter α > 0 if

lim
α→0
RαPz = z, ∀z ∈ Z.

We note that Rα is a bound operator for any fixed α > 0. RαP converges pointwise
to the identity as α→ 0.

Definition 1.3. (Regularization parameter) Let δ > 0. The choice of regularization
parameter α(δ) is called admissible if

α(δ)→ 0, sup
z∈Z

{∥∥∥Rα(δ)h
δ − z

∥∥∥ :
∥∥∥Pz − hδ∥∥∥ ≤ δ}→ 0

whenever δ → 0.

The probably most well-known method for solving linear or nonlinear ill-posed prob-
lems is Tikhonov regularization: it consists in approximating a solution of (1.3.1) by a
minimizer zδα of the Tikhonov functional

Jα,δ :=
∥∥∥Pz − hδ∥∥∥2

+ α ‖z − z0‖2 , (1.3.9)

where z0 ∈ Z typically unifies all available a-priori information on the solution and α > 0
is a regularization parameter. There are two kinds of strategies for choosing α. The
a-priori choice: based on the information about the smoothness of exact solution. The
a-posteriori choice: based on the noisy data and the error level. The introduction given
here is necessarily brief. For a more comprehensive study of ill-posed problems and some
general methods for solving ill-posed problems can be found in [77–83].

Overview of FDOT

We have given a brief introduction to forward problem, inverse problem and the
classical Tikhonov regularization method. Also, for FDOT, it consists of two parts of the
problems: the modeling of the fluorescence photon propagation in the tissue, so-called
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forward problem, and solving an inverse problem with measurement specified on the tissue
surface to identify an unknown target.

For the forward problem of FDOT, F.Marttelli et al [19] and H.B.Jiang [26] summa-
rized the principles and applications of light propagation through biological tissue and
other diffusive media, and gave the theory, solutions and software codes, respectively. We
can also refer [23,24,29,34,35] for the knowledge of forward diffusion model.

For the inverse problem of FDOT, as theoretical results, in addition to the usual
L2 regularization, the L1 regularization was tested [36–39] and the total variation was
considered [40]. An improvement of image quality was reported with the total variation by
making use of the Bregman distance [41]. In data acquisition the measured fluorescence
light can be divided by the measured excitation light to cancel unknown constants, which
was introduced as normalized measurement [42].

FDOT has three different modes depending on the type of the measurement: contin-
uous wave (CW) [43–46], frequency domain (FD) [47–50] and time-domain (TD) [51–55].
Here, we follow the conventional terminology, CW, meaning steady-state or zero-frequency
of FD. In the rest of thesis we focus our attention to the investigation on FDOT using
TD technique. Usually, TD method is measuring the temporal response of fluorescence
excited by the pulsed excitation light injection. On the other hand, FD is measuring the
modulation amplitude and phase of fluorescence with respect to the modulated excitation
source and is the Fourier transform of TD. CW is the particular case of FD when the fre-
quency is zero. Thus, TD technique basically provides the richest information compared
with CW technique and FD technique [33]. We can refer to [23,56] for the choice of data
types in time-resolved FDOT. [23,24] presented a review of methods for the forward and
inverse problems in optical tomography. In [57], the time-resolved FDOT was considered
but the fundamental solution was used simply by ignoring the presence of boundaries.
Many of these works are focusing on small animal measurements and employing the trans-
illumination scheme. We are here focusing on a epi-illumination scheme of the detection
for more larger tissues. We summarize our main results below.

1.4 Summary of Thesis

We focus on the fluorescence and study on its aforementioned inverse problem based
on DE model using time-domain measurements. In our case, measurements are a set of
excitation and detection pair on the surface of tissue like chest and the distance between
excitation and detection points is usually limited less than 2–3 cm because of the strong
attenuation of fluorescence intensity. This distance range is very small rather than the
tissue size and thus we are assuming the half space for the modeling of tissue. Then, we
will study three-dimensional FDOT using the analytical solution of its initial boundary
value problem in the half space.

In addition, aiming at a fast and robust numerical algorithm, we focus on the recov-
ery of the position of a fluorophore target neglecting its precise shape. Then we try to
find the cuboid which represents the true target, by which we can obtain the approx-
imate position, approximate shape and approximate size of fluorophores in the tissue.
Due to the assumption of the cuboid shape, the recovery of our FDOT can be done by
identifying only several unknown parameters. We note here that throughout the thesis
we will use “cuboid" and “cuboidal" for rectangular parallelepiped and its adjective for
our convenience, respectively. We will numerically evaluate the rationality of approxi-
mating unknown target by cuboid and theoretically consider the local analysis of FDOT
using cuboid approximation, which will give us some theoretical supports for our inversion
scheme based on cuboid approximation. For the inversion in my thesis, the well-known
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Levenberg-Marquardt (LM) scheme [11–14] will be employed, which is simple and easy to
accomplish but still sensitive to the initial guess.

Thus, for the robustness and fast convergence of our inversion scheme, we separate
the inversion process by three steps [17]. That is, we narrow the region of interest during
the inversion process. Before assuming a cuboid, we use a cube to have a good initial
guess. The initial guess for the cube is chosen using the spatial knowledge of the inten-
sity from boundary measurements. The proposed inversion scheme will be tested both
numerically and experimentally. We will consider the three-dimensional FDOT using the
time-dependent diffusion equation, which is the most computationally expensive FDOT.
Using the proposed method, we show that the three-dimensional FDOT in time domain
is feasible on a laptop computer (Apple MacBook Pro, 2.7 GHz Intel Core i5). We note
that if we consider continuous-wave or frequency-domain measurements, two numerical
integrals could be removed in our formulation (see U exp

m in (4.1) in Chapter 4) and the
computational time will be further reduced.

We tried hard to put all the arguments mathematically logical and rigorous as much
as possible, and also in the concepts of mathematics. This will clarify the arguments and
present the features of the inverse problem more clearly. Our approach using a simplified
target model and step-wise processing algorithm to find a good initial guess is a very
reliable and fast algorithm. Since in the clinical applications producing a fast reliable
images is very important, we believe that our algorithm is giving an important step for
further study of FDOT.

The remainder of my thesis is organized as follows:

• Chapter 2: we introduce the linearized DE model and analyze its reasonability of the
approximation from (1.2.7) to (1.2.8). We establish the error estimate rigorously
for the excitation field due to ignoring the effect of fluorescence absorption and
the corresponding error estimate for recovering the distribution of fluorophores in
biological tissue from the linearized DE model.

• Chapter 3: we establish the identifiability of the fluorophore and reveal the physical
difficulty of the 3-dimensional imaging model by the back scattering diffusive system.
We also analyze the long-time behavior of emission light, by which we can estimate
the fluorescence lifetime.

• Chapter 4: we consider the FDOT based on linearized DE model and propose
the idea of cuboid approximation, which is reasonable and fast in computation by
numerically testing.

• Chapter 5: from the view of mathematics, we describe our FDOT inverse problem
using cuboid approximation and show its local analysis including local solvability
and local Lipschitz stability, which is also essential for the convergence of iteration
methods.

• Chapter 6: based on the simulation and property of measurement in Chapter 4,
we propose our inversion strategy to accelerate the speed of convergence of LM
iteration scheme, followed by two numerical examples illustrating the performance
of the proposed strategy.

• Chapter 7: we further validate our inversion strategy using experimental data ob-
tained from ex vivo beef phantoms. By the results of inversion using simulated
data and experimental data, we verify that our proposed strategy is fast and robust
against the choice of initial guesses.

• Chapter 8: Conclusion and future directions
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Chapter 2

Linearized Diffusion Equation Model

In this chapter, we introduce the linearized inverse problem based on diffusion equa-
tion (DE) model for FDOT and analyze the reasonability of the model approximation
from radiative transfer equation (RTE) model to linearized DE model. In section 2.1,
by transforming the radiative transfer system into coupled diffusion equations for the
averaged fields, we first introduce a nonlinear inverse problem to identify the absorption
coefficient for a fluorophore by this system using time resolved boundary measurement.
In section 2.2, for the linearized inverse problem obtained by ignoring the absorption by
the fluorophores on the excitation field, we next establish the estimations of errors on
the excitation field and the solution to the inverse problem, which ensures the reasonabil-
ity of the model approximation qualitatively. Some numerical verifications are presented
to show the validity of such a linearizing process quantitatively in section 2.3. Finally,
section 2.4 is devoted to conclusion and remark of this chapter.

2.1 From RTE Model to Linearized DE Model

We first give the RTE model for our FDOT and then introduce the nonlinear FDOT
inverse problem based on DE model which is nonlinear and named nonlinear DE model.
By ignoring the absorption coefficient of fluorophores in the DE equation for excitation,
we obtain the simplified DE model for FDOT which yields the linearized DE model in
this chapter.

2.1.1 RTE model and our FDOT

Fluorescence imaging aims to identify some fluorophores with absorption coefficient
µf (x) which occupies an interior bounded domain Ω0 together with its boundary in Ω
filled with a known background medium, for which we denote by Ω0 b Ω in the following.
Let us begin with the radiative transfer equation which can accurately describe the light
propagation through strong turbid media.

Radiative transfer equations: As we explained in Figure 1.1, two physical processes
in FDOT are coupled, namely, excitation and fluorescence (emission). Each propagation
of them in scattering media can be described with the Boltzmann transport equation
(1.2.1). Describing the photon propagations of the excitation light (subscript e) and
the corresponding emission light (subscript m), these two kinds of the propagation are
involved and described by the following coupled RTEs

1

c

∂Φe

∂t
+ θ · ∇Φe + (µae + µf (x) + µse)Φe − µse

∫
S2

η(θ · θ′)Φe(x, θ
′, t) dθ′ = 0, (2.1.1)
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and

1

c

∂Φm

∂t
+ θ · ∇Φm + (µam + µsm)Φm − µsm

∫
S2

η(θ · θ′)Φm(x, θ′, t) dθ′ = qm, (2.1.2)

where Φe(x, θ, t) and Φm(x, θ, t) represent the angularly resolved radiant intensity of the
excitation and emission light, respectively, c is the speed of light in the medium. The
source term for Φm in (2.1.2) coming from the excitation field is specified by

qm(x, t) =
γµf (x)

4πτ

∫ t

0

∫
S2

exp

(
− t− t

′

τ

)
Φe(x, θ

′, t′) dθ′dt′, (2.1.3)

where τ > 0 is the fluorescence lifetime and 0 < γ ≤ 1 is the quantum efficiency of the
fluorescence. The scattering phase function η(θ · θ′) meets the conditions∫

S2

η(θ · θ′) dθ = 1,

∫
S2

θη(θ · θ′) dθ = gθ′

for the average scattering cosine g ∈ (−1, 1).
Suppose that both the absorption and scattering coefficients of the background medium

are constants in Ω. Furthermore we assume that the absorption and scattering coeffi-
cients for the excitation and emission light are the same. That is, µae = µam ≡ µa and
µse = µsm ≡ µs, with constants µa > 0, µs > 0. Define the reduced scattering coefficient
µ′s := (1−g)µs. The absorption coefficient for the fluorophore is given by µf (x) = εN(x),
where ε is the molar extinction coefficient, and N(x) is the fluorophore concentration with
support Ω0, which is relatively small compared with Ω. Thus, µf (x) is proportional to
the amount of the fluorophores.

Semi-infinite medium: In noninvasive clinical applications of FDOT, the source and
the detector must be placed on the surface of the tissue to be examined. Perhaps the
most common FDOT geometry can be approximated by a semi-infinite medium with a
planar boundary. Thus, in this thesis, we consider the case that Ω is the half space, i.e.,

Ω := R3
+ = {(x1, x2, x3) : (x1, x2) ∈ R2, x3 > 0}

with the boundary ∂Ω := {(x1, x2, 0) : (x1, x2) ∈ R2} and the unit outward normal vector
ν = (0, 0,−1).

Initial and boundary conditions: Both transport equation and diffusion equation to be
solvable uniquely need to specify appropriate initial conditions and boundary conditions.
Assuming that the excitation field Φe is generated by an infinitely short pulse in time
and a point source directed to the normal on the boundary. Then the Fresnel reflection
law [29,59] leads to the boundary conditions

Φe(x, θ, t) = Re(|θ · ν|)Φe(x, θ
>, t) + δ(x− xs)δ(θ + ν)δ(t), x ∈ ∂Ω, (2.1.4)

Φm(x, θ, t) = Rm(|θ · ν|)Φm(x, θ>, t), x ∈ ∂Ω (2.1.5)

for θ · ν < 0. Here, δ(·) is the Dirac δ-function, θ> ∈ S2 is the angle symmetric to θ
about ν, Re, Rm are the Fresnel reflection coefficients, which we assume R := Re = Rm.
Let n1 and n2 with n1 > n2 be the refractive indices inside and outside of the medium,
respectively. For the unpolarized light, we have [19]

R(cos ξ) :=

{
1
2(Rs(cos ξ) +Rp(cos ξ)), 0 ≤ ξ ≤ ξc,
1, ξc ≤ ξ ≤ π/2,

(2.1.6)
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where Rs and Rp denote the Fresnel reflection of the perpendicular and parallel polariza-
tions given as

Rs(cos ξ) :=

∣∣∣∣n1 cos ξ − n2 cos ξt
n1 cos ξ + n2 cos ξt

∣∣∣∣2 , Rp(cos ξ) :=

∣∣∣∣n1 cos ξt − n2 cos ξ

n1 cos ξt + n2 cos ξ

∣∣∣∣2 ,
with the critical angle ξc := arcsin n2

n1
, while cos ξt = (1 − (n1

n2
sin ξ)2)1/2. The initial

conditions are given by

Φe(x, θ, 0) = 0, (x, θ) ∈ Ω× S2, (2.1.7)
Φm(x, θ, 0) = 0, (x, θ) ∈ Ω× S2. (2.1.8)

Thus we have formed an initial boundary value problem with governed equations (2.1.1)-
(2.1.2), boundary conditions (2.1.4)-(2.1.5) and initial conditions (2.1.7)-(2.1.8).

The radiant intensity of the measurements on the boundary: Note n1 and n2 are the
refractive indices inside and outside of the medium, respectively. Let θ be the direction
for outgoing light inside and θ̃ be its corresponding direction of light outside the medium.
For x ∈ ∂Ω, let Φm(x, θ, t) and Φ̃m(x, θ̃, t) be the radiant intensity of emission light on the
internal boundary and external boundary of the medium, respectively. We further assume
ξ and ξ̃ be the polar angle for the direction θ and θ̃, respectively (θ·ν = cos ξ, θ̃·ν = cos ξ̃).
From Snell’s law, ξ̃ is related to ξ and satisfies

n1 sin ξ = n2 sin ξ̃. (2.1.9)

Usually, the outside of medium is the air and the refractive index is almost 1, i.e, n2 = 1.
Further, by the Fresnel reflection law, the radiance on the external boundary surface,
expressed as the fraction of the internal radiance transmitted in the external medium,
can be written as

Φ̃m(x, θ̃, t) =

(
n2

n1

)2

[1−R(|θ · ν|)]Φm(x, θ, t), x ∈ ∂Ω, t ∈ (0, T ), (2.1.10)

where R is the Fresnel reflection coefficient.
Note (2.1.10). For the measurement, the quantity actually measured at the boundary

point x ∈ ∂Ω is the outgoing radiance accepted by the detection system, which is

H(x, t) = Φ̃m(x, ν, t) =

(
n2

n1

)2

[1−R(1)]Φm(x, ν, t), (x, t) ∈ ∂Ω× (0, T ) (2.1.11)

along the normal direction ν = (0, 0,−1), or the average field

H(x, t) =

∫
S2
−

Φ̃m(x, θ̃, t) dθ̃, (x, t) ∈ ∂Ω× (0, T ), (2.1.12)

where Φ̃m(x, θ̃, t) is given by (2.1.10) and S2
− is the set of all unit vectors with negative

x3-components, i.e., θ̃ · ν ≥ 0.
Our FDOT: Suppose µa, µs, g are known. The FDOT problem for fluorescence imag-

ing is to recover the unknown µf (x) from the measurement either (2.1.11) or (2.1.12).
Since (Φe,Φm) depends on the scattering direction θ ∈ S2, the imaging in terms of

(2.1.2)-(2.1.12) is of large amount of numerical computations, which are often intractable.
So people are motivated to consider the DE model for FDOT, which is the approximation
of RTE model and will be shown in the following subsections.
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2.1.2 Derivation of the diffusion equation

We first describe the approximation of RTE: diffusion equation (DE), which is a con-
sequence of a combination of following three different approximations regarded as three
steps.

Step 1: (P1-approximation) First two terms of the expansions of the radiance Φe

and Φm in spherical harmonics upon the angular variable θ yield

Φe(x, θ, t) =
1

4π
Ue(x, t) +

3

4π
θ · Je(x, t), θ ∈ S2, (x, t) ∈ Ω× (0, T ), (2.1.13)

Φm(x, θ, t) =
1

4π
Um(x, t) +

3

4π
θ · Jm(x, t), θ ∈ S2, (x, t) ∈ Ω× (0, T ). (2.1.14)

We see the new unknown variables arising: respectively the photon density, (Ue, Um), and
the photon flux, (Je,Jm). Note that their definitions follows directly by integration over
all solid angles to (2.1.1) and (2.1.2), respectively. We have

Ue(x, t) :=

∫
S2

Φe(x, θ, t) dθ, Um(x, t) :=

∫
S2

Φm(x, θ, t) dθ, (2.1.15)

Je(x, t) :=

∫
S2

θ · Φe(x, θ, t) dθ, Jm(x, t) :=

∫
S2

θ · Φm(x, θ, t) dθ. (2.1.16)

This, so-called, P1-approximation disregards terms of quadratic and higher order in θ.
Such approximate expansions are reasonable, since the angular dependence of (Φe,Φm)
become weak at a large scale.

We note that the source qm(x, t) given by (2.1.3) has no angular dependence. It is safe
to substitute (2.1.15)-(2.1.16) into the transport equations of (2.1.1)-(2.1.2), respectively,
such that we have [19,30]

1

c

∂Ue(x, t)

∂t
+∇ · Je(x, t) + (µa + µf (x))Ue(x, t) = 0, (2.1.17)

1

c

∂Je(x, t)

∂t
+

1

3
∇Ue(x, t) + (µa + µf (x) + µ′s)Je(x, t) = 0, (2.1.18)

1

c

∂Um(x, t)

∂t
+∇ · Jm(x, t) + µaUm(x, t) = S(x, t), (2.1.19)

1

c

∂Jm(x, t)

∂t
+

1

3
∇Um(x, t) + (µa + µ′s)Jm(x, t) = 0 (2.1.20)

with
S(x, t) :=

∫
S2

qm(x, t) dθ′′ = 4πqm(x, t). (2.1.21)

Step 2: ( ∂∂t |J| � cµ′s|J|) The photon flux (Je, Jm) change only slowly in time
compared to the mean collision time. Then by (2.1.18) and (2.1.20) we derive

Je = − 1

3(µa + µf (x) + µ′s)
∇Ue, Jm = − 1

3(µa + µ′s)
∇Um.

Step 3: (µa, µf � µ′s) In fact the diffusion coefficient is rigorously independent of
µa [74] and µf � µ′s in most cases of the application. Thus we can approximate

Je = −D∇Ue, Jm = −D∇Um (2.1.22)
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with D := 1
3µ′s

is the photon diffusion coefficient. Substituting (2.1.22) into (2.1.17) and
(2.1.19) we immediately have the diffusion equations for excitation and emission that(

1

c

∂

∂t
−D∆ + µa + µf (x)

)
Ue(x, t) = 0, (x, t) ∈ Ω× (0, T ), (2.1.23)

and (
1

c

∂

∂t
−D∆ + µa

)
Um(x, t) = S(x, t), (x, t) ∈ Ω× (0, T ). (2.1.24)

Recalling the definitions (2.1.3) for qm(x, t) and (2.1.21) for S(x, t). By (2.1.13) and
(2.1.22) there holds

S(x, t) = 4πqm =
γµf (x)

τ

∫ t

0

∫
S2

e−
t−t′
τ

[
1

4π
Ue(x, t

′)− 3D

4π
θ′ · ∇Ue(x, t′)

]
dθ′dt′

=
γµf (x)

τ

∫ t

0
e−

t−t′
τ Ue(x, t

′) dt′.

2.1.3 Boundary condition for the diffusion approximation

Next we will derive the boundary conditions for (Ue, Um) in terms of (2.1.4) and
(2.1.5). To this end, we unify (2.1.4) and (2.1.5) for θ · ν < 0 (i.e., θ ∈ S2

+) as the form

Φ(x, θ, t) = R(|θ · ν|)Φ(x, θ>, t) + κ(x− xs, t)δ(θ + ν) on x3 = 0,

where κ(x − xs, t) is either δ(x − xs)δ(t) or 0. Then the representation Φ(x, θ, t) =
1

4πU(x, t) + 3
4πθ · J with J = −D∇U leads to the boundary condition

1

4π
U +

3

4π
θ · J = R(|θ · ν|)

(
1

4π
U +

3

4π
θ> · J

)
+ κ(x− xs, t)δ(θ + ν), x3 = 0.

(2.1.25)

In terms of the expression

θ = (cosϕ sin ξ, sinϕ sin ξ, cos ξ) ∈ S2
+, θ> = (cosϕ sin ξ, sinϕ sin ξ,− cos ξ), (2.1.26)

the polar angle and azimuthal angle are ξ ∈ [0, π/2), ϕ ∈ [0, 2π). Moreover, θ ·ν = − cos ξ.
Thus the first and the second components of

∫
S2

+
cos ξ θ dθ and

∫
S2

+
cos ξ R(|θ · ν|)θ> dθ

are zero. Let us introduce µ := cos ξ. By multiplying both sides of (2.1.25) by µ and
integrating with respect to θ ∈ S2

+, we have∫
S2

+

(
1

4π
U +

3

4π
θ · J

)
µ dµdϕ =

∫
S2

+

R(µ)µ

(
1

4π
U +

3

4π
θ> · J

)
dµdϕ

+

∫
S2

+

κ(x− xs, t)δ(θ + ν)µ dµdϕ.

After the integration over ϕ and then over µ = cos ξ, we obtain

1

4
U +

1

2
J3 =

1

2
U

∫ 1

0
R(µ)µdµ− 3

2
J3

∫ 1

0
R(µ)µ2 dµ+ κ(x− xs, t),
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where J3 := −D ∂U
∂x3

. Therefore we obtain the partial current boundary condition (PCBC)
for (Ue, Um) as follows

−D∂Ue
∂x3

+
1

2A
Ue = ωeδ(x− xs)δ(t), x ∈ ∂Ω, (2.1.27)

−D∂Um
∂x3

+
1

2A
Um = 0, x ∈ ∂Ω, (2.1.28)

where the coefficients are defined by

A :=
1 + 3

∫ 1
0 R(µ)µ2 dµ

1− 2
∫ 1

0 R(µ)µdµ
, ωe :=

2

A
(
1− 2

∫ 1
0 R(µ)µdµ

) . (2.1.29)

The first term of the left hand side in (2.1.27) and (2.1.28) are the mathematical expression
of Fick’s law, which expresses how much photon flux exist with respect to x3. Then 1

2A
means the reflection at the boundary. The constant ωe in the right hand side of (2.1.27)
is the injected photon density.

Define β := 1
2AD and ω̃e := ωe/D, which are proportional to the reflection and the

injected photon density but scaled by D. Then we obtain the traditional Robin boundary
conditions in mathematics, i.e.,

−∂Ue
∂x3

+ βUe = ω̃eδ(x− xs)δ(t), x ∈ ∂Ω, (2.1.30)

−∂Um
∂x3

+ βUm = 0, x ∈ ∂Ω, (2.1.31)

respectively. The initial conditions are given by

Ue(x, 0) = 0, x ∈ Ω, (2.1.32)
Um(x, 0) = 0, x ∈ Ω. (2.1.33)

2.1.4 Nonlinear DE model and its linearization

Combining above results together, we have obtained an initial boundary value prob-
lem for (Ue, Um) which consists of the equations (2.1.23), (2.1.24), (2.1.30), (2.1.31) and
(2.1.32), (2.1.33). That is

(
1
c
∂
∂t −D∆ + µa + µf (x)

)
Ue = 0, (x, t) ∈ Ω× (0, T ),

ν · ∇Ue + βUe = δ(x− xs)δ(t), x, xs ∈ ∂Ω, t ∈ (0, T ),

Ue(x, 0) = 0, x ∈ Ω,

(2.1.34)

and 
(

1
c
∂
∂t −D∆ + µa

)
Um = S[µf , Ue](x, t), (x, t) ∈ Ω× (0, T ),

ν · ∇Um + βUm = 0, (x, t) ∈ ∂Ω× (0, T ),

Um(x, 0) = 0, x ∈ Ω,

(2.1.35)

where
D :=

1

3µ′s
, β :=

1

2AD
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with A given by (2.1.29) and the source term in (2.1.35) for Um is

S[µf , Ue](x, t) :=
γµf (x)

τ

∫ t

0
e−

t−s
τ Ue(x, s) ds. (2.1.36)

We remark here we ignored the constant ω̃e in the initial boundary value problem (2.1.34).
This factor only affects the scaling of the photon density and thus the discussions through
the thesis will not change even if ignoring ω̃e.

Now we transform (2.1.11) or (2.1.12), which we call the inversion input data, into
the inversion input for Um(x, t). Using the expansion (2.1.14) together with (2.1.22) for
θ̃ = ν = (0, 0,−1), it follows that

H(x, t) = Φ̃m(x, ν, t) =

(
n2

n1

)2

[1−R(1)]Φm(x, ν, t)

=

(
n2

n1

)2

[1−R(1)]

(
1

4π
Um(x, t) +

3D

4π

∂Um(x, t)

∂x3

)
for x ∈ ∂Ω. So the boundary condition in (2.1.35) yields

Um(x, t) =

[(
n2

n1

)2

[1−R(1)]

(
1

4π
+

3D

4π
β

)]−1

H(x, t) (2.1.37)

for (x, t) ∈ ∂Ω× (0, T ).
Now we are ready to transform the measurement (2.1.12), where the integration is for

θ̃ satisfying θ̃ · ν ≥ 0 with ν = (0, 0,−1). By (2.1.14) and (2.1.26) we have for x ∈ ∂Ω
that

Φm(x, θ, t) =
1

4π
Um(x, t) +

3

4π
θ · Jm(x, t)

=
1

4π
Um(x, t) +

3

4π
(Jmν cos ξ + Jmω cosϕ sin ξ),

(2.1.38)

where Jmν and Jmω are the normal and the tangential component of the flux for emission
light, and ξ and ϕ are the polar and azimuthal angle for θ, respectively, i.e., θ · ω =
cosϕ sin ξ and θ · ν = cos ξ with ω denotes the tangential direction at x ∈ ∂Ω. Similarly,
denote

θ̃ = (cos ϕ̃ sin ξ̃, sin ϕ̃ sin ξ̃, cos ξ̃) ∈ S2
−.

Substituting (2.1.38) into (2.1.10) and averaging over the azimuthal angle ϕ̃ (ϕ̃ = ϕ), we
obtain for (x, t) ∈ ∂Ω× (0, T ) that

Φ̃m(x, ξ̃, t) =

(
n2

n1

)2

[1−R(|θ · ν|)]
(

1

4π
Um(x, t) +

3

4π
Jmν cos ξ

)
, (2.1.39)

where Φ̃m(x, ξ̃, t) is the radiance outgoing along θ̃ averaged over ϕ̃. Further, by (2.1.22)
and the boundary condition in (2.1.35) again, the expression for Φ̃m(x, ξ̃, t) can be sim-
plified as

Φ̃m(x, ξ̃, t) =

(
n2

n1

)2

[1−R(|θ · ν|)]
(

1

4π
+

3D

4π
β cos ξ

)
Um(x, t), (2.1.40)
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implying that

H(x, t) =

∫
S2
−

Φ̃m(x, θ̃, t) dθ̃

=

∫
S2
−

[(
n2

n1

)2

[1−R(cos ξ)]

(
1

4π
+

3D

4π
β cos ξ

)]
dξ̃ Um(x, t)

with ξ = arcsin
(
n2
n1

sin ξ̃
)
due to (2.1.9). Therefore, by (2.1.12), the inversion input data

become

Um(x, t) =

{∫
S2
−

[(
n2

n1

)2

[1−R(cos ξ)]

(
1

4π
+

3D

4π
β cos ξ

)]
dξ̃

}−1

H(x, t) (2.1.41)

for (x, t) ∈ ∂Ω× (0, T ), where ξ = arcsin
(
n2
n1

sin ξ̃
)
.

Thus we have transformed our FDOT inverse problem to identify µf (x) into the DE
model (2.1.34)-(2.1.35) from the specified boundary measurement data

Um(x, t) = C∗H(x, t), (x, t) ∈ ∂Ω× (0, T ), (2.1.42)

where the constant C∗ depends on the inversion input data (2.1.11) or (2.1.12).
Since Ue(x, t) satisfying (2.1.34) depends on the unknown µf (x) nonlinearly, the above

inverse problem for µf (x) in terms of Um(x, t) is nonlinear. Note that ‖µf‖L2(Ω0) � µa
can be assumed in many applications, one possible way of removing the nonlinearity is
to ignore µf (x) in (2.1.34). Then we have the following linearized DE model

(
1
c
∂
∂t −D∆ + µa

)
ue = 0, (x, t) ∈ Ω× (0, T ),

ν · ∇ue + βue = δ(x− xs)δ(t), x, xs ∈ ∂Ω, t ∈ (0, T ),

ue(x, 0) = 0, x ∈ Ω,

(2.1.43)

and 
(

1
c
∂
∂t −D∆ + µa

)
um = S[µf , ue](x, t), (x, t) ∈ Ω× (0, T ),

ν · ∇um + βum = 0, (x, t) ∈ ∂Ω× (0, T ),

um(x, 0) = 0, x ∈ Ω,

(2.1.44)

with the inversion input data

um(x, t) = C∗H(x, t), (x, t) ∈ ∂Ω× (0, T ). (2.1.45)

The system (2.1.43)-(2.1.45) constitutes a linear inverse problem for identifying µf (x)
from the inversion input (2.1.45) with known ue(x, t).

For the above model, we must consider following issue. When we ignore µf in (2.1.34)
to yield a linear inverse problem (2.1.43)-(2.1.45), what is the error due to such a lin-
earization for our imaging?

Although the above linearized DE model has been applied in engineering communities
for a long time, as far as we know, there is no answer to the above question, to say nothing
of the rigorous mathematical analysis. To ensure the efficiency of the linearized DE model,
it is necessary and important to consider this issue, which will be given in the following
section.
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2.2 Error Estimations for Model Approximation

To establish the error for our inverse problem due to the linearization process, we
need the explicit solution to the initial boundary value problems in the half space Ω with
Robin boundary condition at x3 = 0.

2.2.1 Analytical solutions using Green functions

An analytical solution is mostly given in the form of Green function that correspond
to the solution arising from a point source in space and time for simple geometries such as
infinite bulk media, homogeneous cylinders or semi-infinite slabs. For given point source
located at y ∈ Ω, we introduce the Green function K(x, y; t) defined by

(
1
c
∂
∂t −D∆ + µa

)
K = δ(x− y)δ(t), (x, t) ∈ Ω× (0, T ),

K = 0, x ∈ Ω, t = 0,

ν · ∇K + βK = 0, (x, t) ∈ ∂Ω× (0, T ).

(2.2.1)

One can obtain the analytical expression ofK(x, y; t) by the functional solution of heat
equation, which has been investigated extensively in the scientific community. Denote by

Gk(x, t) :=

 1√
(4πcDt)k

e−
|x|2
4cDt , t > 0,

0, t ≤ 0,
(2.2.2)

the fundamental solution to heat equation 1
c
∂u
∂t − D∆u = 0 in (x, t) ∈ Rk × R1 for

k = 1, 2, 3. Then K(x, y; t) has the representation [27,28]

K(x, y; t) = ce−cµat (G3(x− ȳ, t) +G3(x− y, t))

− 2cβeβy3−cµat
∫ +∞

y3

e−βζG3(x− y(ζ), t) dζ
(2.2.3)

for t > 0 and K(x, y; t) ≡ 0 for t ≤ 0 due to (2.2.2), where ȳ := (y1, y2,−y3) and
y(ζ) := (y1, y2,−ζ) for y = (y1, y2, y3).

See Arridge [22] for a summary of Green functions for other geometries: infinite slab,
2D circle, finite and infinite cylinders and spheres. The derivation of Green functions for
slab geometries follows the method of mirror images where a virtual point source with
equal but negative strength is placed mirror-wise opposite to the real source [75].

Corollary 2.1. For x = (x̃, x3), y = (ỹ, y3) ∈ R2 ×R1
+, the Green function K(x, y; t) for

t > 0 has the decomposition

K(x, y; t) =
ce−cµat√
(4πcDt)3

e−
|x̃−ỹ|2
4cDt K3(x3, y3; t), (2.2.4)

where K3(x3, y3; t) is given by

K3(x3, y3; t) = e−
(x3+y3)2

4cDt + e−
(x3−y3)2

4cDt

− 2β
√
πcDteβ(x3+y3)+β2cDt erfc

(
x3 + y3 + 2βcDt√

4cDt

) (2.2.5)
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with the complementary error function

erfc(ξ) =
2√
π

∫ ∞
ξ

e−s
2

ds, ξ ∈ R. (2.2.6)

Proof. By the representations of Gk(·, ·) for k = 1, 2, 3 and (2.2.3), the verification of this
identity is equivalent to show the identity∫ +∞

y3

e−βζe−
(x3+ζ)2

4cDt dζ ≡
√
πcDt eβx3+β2cDt

× erfc
(
x3 + y3 + 2βcDt√

4cDt

)
, t > 0,

which can be derived by the variable transform z = x3+ζ√
4cDt

+ β
√
cDt for the left hand

side.

We firstly state the representation formula for the parabolic system in terms of its
Green function (for example, see Chapter 7 in [15]).

Lemma 2.1. For ρ(x) > 0, p(x) > 0, q(x) ≥ 0, a(x) > 0, b(x) > 0, the solution to the
initial boundary value problem

ρ(x)∂u∂t −∇ · (p(x)∇u) + q(x)u = ρ(x)F (x, t), (x, t) ∈ Ω× (0, T ),

b(x)∂u∂ν + a(x)u = B(x, t), (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = f(x), x ∈ Ω

(2.2.7)

has the expression

u(y, s) =

∫ T

0

∫
Ω
K̃(x, t; y, s)ρ(x)F (x, t) dxdt

+

∫ T

0

∫
∂Ω

p(x)

b(x)
B(x, t)K̃(x, t; y, s) dxdt+

∫
Ω
ρ(x)f(x)K̃(x, 0; y, s) dx,

where K̃(x, t; y, s) is the Green function determined by
−ρ(x)∂K̃∂t −∇ · (p(x)∇K̃) + q(x)K̃ = δ(x− y)δ(t− s), (x, t) ∈ Ω× (0, T ),

b(x)∂K̃∂ν + a(x)K̃ = 0, (x, t) ∈ ∂Ω× (0, T ),

K̃(x, T ; y, s) = 0, x ∈ Ω

for point source located at (y, s) ∈ Ω× (0, T ). Here ∂u
∂ν denotes ν · ∇u.

By applying Lemma 2.1 to (2.1.43) and (2.1.44) we are ready to give the analytical
expressions of ue and um.

Lemma 2.2. Suppose Ω0 b Ω be the support of µf (x). For a given source located at
xs ∈ ∂Ω, we have

ue(x, t;xs) = D ×K(x, xs; t), (x, t) ∈ Ω× [0, T ], (2.2.8)

um(x, t;xs) =

∫ t

0

∫ s

0

γDe−(s−t′)/τ

τ

∫
Ω0

µf (y)

×K(x, y; t− s)K(y, xs; t
′) dydt′ds, (x, t) ∈ Ω× [0, T ],

(2.2.9)

where K(x, y; t) is the Green function satisfying (2.2.1).



2.2. Error Estimations for Model Approximation 21

Proof. Taking ρ(x) ≡ 1/c, p(x) ≡ D, q(x) ≡ µa, f(x) ≡ 0 as well as b(x) ≡ 1, a(x) ≡ β
in Lemma 2.1, and noting that µf (x) ≡ 0 in Ω \ Ω0, we have

ue(x, t;xs) = D × K̃(xs, 0;x, t) (2.2.10)

and

um(x, t;xs) =

∫ t

0

∫
Ω0

K̃(y, s;x, t)S[µf , ue](y, s) dyds (2.2.11)

for (x, t) ∈ Ω× [0, T ], where K̃(x, t; y, s) satisfies
−1
c
∂K̃
∂t −D∆K̃ + µaK̃ = δ(x− y)δ(t− s), (x, t) ∈ Ω× (0, T ),

∂K̃
∂ν + βK̃ = 0, (x, t) ∈ ∂Ω× (0, T ),

K̃(x, T ; y, s) = 0, x ∈ Ω.

By a formal argument we have K̃(y, s;x, t) = K(x, y; t− s) with K(x, y; t) satisfying
(2.2.1). Then (2.2.10) and (2.2.11) imply (2.2.8) and (2.2.9) respectively.

Remark 2.1. The reason why the diffusion coefficient D explicitly appeared in (2.2.8) and
(2.2.9) is that we ignored the constant ω̃e = ωe/D in the right hand side of the boundary
condition in (2.1.34). Let uεe, ε > 0 be the solution of the following initial boundary value
problem with a transient point source:
(

1
c
∂
∂t −D∆ + µa

)
uεe = δ(x1 − xs1)δ(x2 − xs2)δ(x3 − ε)δ(t), (x, t) ∈ Ω× (0, T ),

uεe(x, 0) = 0, x ∈ Ω,

ν · ∇uεe + βuεe = 0, (x, t) ∈ ∂Ω× (0, T ).

The solution ue of (2.1.43) is a limit of the solution D × uεe, i.e., the distribution Duεe
converges to the distribution ue as ε→ 0 [64].

2.2.2 Error estimation for excitation

The error on our imaging solution due to the linearization process comes from the
approximation error Ue − ue for the excitation field, which can be estimated by the
following.

Theorem 2.1. For µf (x) ≥ 0 with support Ω0 b Ω, the error for the excitation field by
ignoring µf (x) has the estimate

‖Ue − ue‖L2((0,T )×Ω) ≤ C(Ω0, T, c,D)

∥∥∥∥µf (·)
µa

∥∥∥∥
L2(Ω0)

, (2.2.12)

where Ue(x, t;xs) meets the DE system (2.1.34) and ue(x, t;xs) satisfying (2.1.43) is its
approximation by ignoring µf (x) in (2.1.34), and the known constant C > 0 independent
on µa is given by

C(Ω0, T, c,D) :=
1√

4cDπ3

(∫ T

0

1

t3
e−

C2
0

2cDt dt

)1/2

(2.2.13)

with the positive constant C0 = C0(Ω0) := minx∈Ω0 {dist(x, ∂Ω)}.
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Proof. For the simplicity of notations, we write Ue(x, t;xs), ue(x, t;xs) as Ue(x, t), ue(x, t),
respectively. Define V (x, t) := ue(x, t)− Ue(x, t) which satisfies

(
1
c
∂
∂t −D∆ + µa + µf (x)

)
V = µf (x)ue(x, t), (x, t) ∈ Ω× (0, T ),

ν · ∇V + βV = 0, (x, t) ∈ ∂Ω× (0, T ),

V (x, 0) = 0, x ∈ Ω.

Then by the standard energy estimate [15] for the solution of the initial boundary value
problem for the diffusion equation and using µf (x) ≥ 0, we have

1

2c
‖V (·, T )‖2L2(Ω) +Dβ‖V ‖2L2((0,T )×∂Ω)

+D

∫ T

0

∫
Ω
|∇V |2 dxdt+ µa‖V ‖2L2((0,T )×Ω)

≤
∫ T

0

∫
Ω
µf (x)ue(x, t)V (x, t) dxdt

≤ 1

2
µa

∫ T

0

∫
Ω
|V (x, t)|2 dxdt+

1

2µa

∫ T

0

∫
Ω
µ2
f (x)u2

e(x, t) dxdt,

which leads to

‖Ue − ue‖2L2((0,T )×Ω) ≤
∫

Ω0

(
µf (x)

µa

)2 ∫ T

0
u2
e(x, t) dtdx, (2.2.14)

by ignoring the first three terms in the left hand side and then moving the first term in
the right hand side into the left hand side, noticing µf (x) ≡ 0 in Ω \ Ω0.

Now let us estimate ue in Ω0. By (2.2.3) and Lemma 2.2, we have

ue(x, t) = D ×K(x, xs; t) = cDe−cµatK0(x, xs; t), (2.2.15)

where

K0(x, xs; t) := 2G3(x− xs, t)− 2β

∫ +∞

0
e−βζG3(x− xs(ζ), t) dζ (2.2.16)

with xs(ζ) := (xs1, xs2,−ζ) for xs = (xs1, xs2, 0) ∈ ∂Ω by the definition. Since Ω0 b Ω
is bounded, the distance between Ω0 and ∂Ω satisfying dist(Ω0, ∂Ω) ≥ C0 > 0 for a
constant C0 = C0(Ω0) := minx∈Ω0 {dist(x, ∂Ω)} depending only on Ω0. So we have
|x − xs| ≥ C0 > 0 and x3 > 0 uniformly for all x ∈ Ω0 and xs ∈ ∂Ω. Hence, by the
definition of G3(x, t), (2.2.16) yields for x ∈ Ω0 and t > 0 that

0 < K0(x, xs; t)

≤ 2|G3(x− xs, t)|+ 2β

∫ +∞

0
e−βζ |G3(x− xs(ζ), t)|dζ

=
2√

(4πcDt)3

(
e−
|x−xs|2

4cDt + β

∫ ∞
0

e−βζe−
|x−xs|2+ζ2+2ζx3

4cDt dζ

)
≤ 2√

(4πcDt)3
e−

C2
0

4cDt

(
1 + β

∫ ∞
0

e−βζe−
ζ2+2ζx3

4cDt dζ

)
≤ 2√

(4πcDt)3
e−

C2
0

4cDt

(
1 + β

∫ ∞
0

e−βζ dζ

)
=

4√
(4πcDt)3

e−
C2

0
4cDt

(2.2.17)
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from 0 < e−
ζ2+2ζx3

4cDt ≤ 1 due to ζ ≥ 0, x3 > 0. By (2.2.15), this estimate immediately
implies for x ∈ Ω0 that

‖ue(x, ·)‖2L2(0,T ) = ‖D ×K(x, xs; ·)‖2L2(0,T )

≤
∫ T

0

(
1√

4cD(πt)3
e−

C2
0

4cDt
−cµat

)2

dt

≤
∫ T

0

(
1√

4cD(πt)3
e−

C2
0

4cDt

)2

dt,

(2.2.18)

since 0 ≤ e−cµat ≤ 1 for t ≥ 0.
Finally (2.2.14) and (2.2.18) lead to (2.2.12), which completes the proof.

By the error estimate (2.2.12), it can be observed that the excitation ue from the
DE model (2.1.43), which is independent of µf (x), can approximate the excitation Ue
satisfying (2.1.34) well, if µ−1

a ‖µf‖L2(Ω0) is small.

2.2.3 Error estimation for inversion solutions

Now we can consider the linearized inverse problem (2.1.43)-(2.1.45) from the inversion
input data specified in ∂Ω. The inversion solution (i.e., the solution of inverse problem)
from (2.1.43)-(2.1.45) is just an approximation to the nonlinear DE model constituted by
(2.1.34)-(2.1.36) and (2.1.42). We will use the notation µ̃f (x) for the inversion solution
to the linearized model (2.1.43)-(2.1.45).

Now we can estimate the error µf (x)− µ̃f (x) by the following result.

Theorem 2.2. Assume µf (x) is the inversion solution from the system constituted by
(2.1.34)-(2.1.36) and (2.1.42), while µ̃f (x) is the inversion solution from the linearized
system (2.1.43)-(2.1.45). Then it follows that

‖µ̃f − µf‖L1(Ω0) ≤ µaC̃
∥∥∥∥µf (·)
µa

∥∥∥∥2

L2(Ω0)

(2.2.19)

with a constant C̃ = C̃(T,Ω0,Γ0, c,D, τ, γ) > 0 for µf (x), µ̃f (x) ∈ L2(Ω) with known
Γ0 b ∂Ω and support Ω0 b Ω.

Remark 2.2. Since either µf (x) or µ̃f (x) may not be unique for specified point source
located at xs ∈ ∂Ω, the estimate (2.2.19) can be considered as an inequality which holds
for any possible µf (x), µ̃f (x).

Proof. For fixed xs ∈ ∂Ω, define Z(x, t;xs) := um(x, t;xs)− Um(x, t;xs), which satisfies
(

1
c
∂
∂t −D∆ + µa

)
Z = S̃(x, t), (x, t) ∈ Ω× (0, T ),

ν · ∇Z + βZ = 0, (x, t) ∈ ∂Ω× (0, T ),

Z(x, 0) = 0, x ∈ Ω,

(2.2.20)

with the source term expressed by

S̃(x, t) := S[µ̃f , ue](x, t)− S[µf , Ue](x, t)

= S[µ̃f − µf , ue](x, t)− S[µf , ue − Ue](x, t) (2.2.21)
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from straightforward computations. By Lemma 2.2, the solution to (2.2.20) is

Z(x, t;xs) =

∫ T

0

∫
Ω0

K(x, y; t− s)S̃(y, s) dyds, (x, t) ∈ Ω× [0, T ]. (2.2.22)

On the other hand, we have the extra boundary condition

Z(x, t;xs) = 0, x ∈ ∂Ω, t ∈ (0, T ), (2.2.23)

since we apply the same inversion input data for um and Um. So (2.2.21)-(2.2.23) lead to
the following identity∫ T

0

∫
Ω0

K(x, y; t− s)S[µ̃f − µf , ue](y, s) dyds

=

∫ T

0

∫
Ω0

K(x, y; t− s)S[µf , ue − Ue](y, s) dyds, (x, t) ∈ ∂Ω× [0, T ].(2.2.24)

For hτ (t) := γ
τ e
− t
τ , define the operator

I[ue](x, t) := hτ (t) ∗t ue(x, t) =

∫ t

0
hτ (s)ue(x, t− s) ds

for x ∈ Ω̄. Then, by the expression of S[·, ·](x, t) in (2.1.36), we have

S[µf , ue](x, t) = µf (x)I[ue](x, t). (2.2.25)

Notice ue ≥ 0, K(x, y; t − s) > 0 for t > s and K(x, y; t − s) ≡ 0 for t ≤ s, it follows by
(2.2.24) and Theorem 2.1 that∫ t

0

∫
Ω0

K(x, y; t− s)S[|µ̃f − µf |, ue](y, s) dyds

≤
(∫ t

0

∫
Ω0

[K(x, y; t− s)µf (y)]2 dyds

)1/2

‖I[ue − Ue]‖L2((0,T ),L2(Ω0))

≤
(∫ t

0

∫
Ω0

[K(x, y; t− s)µf (y)]2 dyds

)1/2

‖hτ‖L1(0,T ) ‖ue − Ue‖L2((0,T ),L2(Ω))

≤ C(Ω0, T, c,D) ‖hτ‖L1(0,T )

(∫ t

0

∫
Ω0

[K(x, y; t− s)µf (y)]2 dyds

)1/2 ∥∥∥∥µf (·)
µa

∥∥∥∥
L2(Ω0)

= C1(Ω0, T, c,D, τ, γ)

(∫ t

0

∫
Ω0

[K(x, y; t− s)µf (y)]2 dyds

)1/2 ∥∥∥∥µf (·)
µa

∥∥∥∥
L2(Ω0)

(2.2.26)
for (x, t) ∈ ∂Ω × [0, T ], where the positive constant C1 := C(Ω0, T, c,D) × ‖hτ‖L1(0,T )

with C > 0 defined by (2.2.13).
We note that x ∈ ∂Ω and y ∈ Ω0. Likewise we did in (2.2.17), we have for all

x ∈ ∂Ω, y ∈ Ω0 that

0 ≤ K(x, y; t− s) ≤ 1√
4cπ3D3(t− s)3

e
− C2

0
4cD(t−s) (2.2.27)
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with C0 := C0(Ω0) := miny∈Ω0 {dist(y, ∂Ω)}. Then (2.2.26) becomes∫ t

0

∫
Ω0

K(x, y; t− s)S[|µ̃f − µf |, ue](y, s) dyds

≤ C1√
4cπ3D3

(∫ t

0

1

s3
e−

C2
0

2cDs ds

)1/2

‖µf (·)‖L2(Ω0)

∥∥∥∥µf (·)
µa

∥∥∥∥
L2(Ω0)

≤ C2µa

∥∥∥∥µf (·)
µa

∥∥∥∥2

L2(Ω0)

(2.2.28)

with a constant C2 = C2(T,Ω0, c,D, τ, γ) > 0.
This estimate holds for all x ∈ ∂Ω by (2.2.23). To get a positive lower bound on the

left hand side of (2.2.28), we consider (2.2.28) for x in a bounded domain of ∂Ω. For all
x = (x̃, 0), xs = (x̃s, 0) ∈ Γ0 b ∂Ω and all y = (ỹ, 0) ∈ Ω0 b Ω satisfying

|x̃− ỹ|, |x̃s − ỹ| ≤ c∗(Ω0,Γ0), 0 < C0 ≤ y3 ≤ C̃0 (2.2.29)

with C̃0 = C̃0(Ω0) := maxy∈Ω0 {dist(y, ∂Ω)}, we have by Corollary 2.1 that

K(x, y; t− s) =
ce−cµa(t−s)√

(4πcD(t− s))3
e
− |x̃−ỹ|2

4cD(t−s)K3(0, y3; t− s)

≥ ce−cµa(t−s)√
(4πcD(t− s))3

e
− c

2
∗(Ω0,Γ0)

4cD(t−s) Kmin
3 (0, y3; t− s), t > s

(2.2.30)

and

K(y, xs; t
′) =

ce−cµat
′√

(4πcDt′)3
e−
|ỹ−x̃s|2
4cDt′ K3(y3, 0; t′)

≥ ce−cµat
′√

(4πcDt′)3
e−

c2∗(Ω0,Γ0)

4cDt′ Kmin
3 (y3, 0; t′), t′ > 0,

(2.2.31)

where we define

Kmin
3 (t) = Kmin

3 (0, y3; t) = Kmin
3 (y3, 0; t)

= min
y3∈[C0,C̃0]

{
2e−

y2
3

4cDt − 2β
√
πcDteβy3+β2cDt erfc

(
y3 + 2βcDt√

4cDt

)}
> 0.

Hence we have

K(x, y; t− s)I[ue](y, s) = D ×K(x, y; t− s)
∫ s

0
hτ (s− t′)K(y, xs; t

′) dt′

≥ Dce−cµa(t−s)√
(4πcD(t− s))3

e
− c

2
∗(Ω0,Γ0)

4cD(t−s) Kmin
3 (t− s)

×
∫ s

0
hτ (s− t′) ce−cµat

′√
(4πcDt′)3

e−
c2∗(Ω0,Γ0)

4cDt′ Kmin
3 (t′) dt′
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for all y ∈ Ω0. Using this lower bound, the left hand side of (2.2.28) for x ∈ Γ0 can be
estimated as ∫ t

0

∫
Ω0

K(x, y; t− s)S[|µ̃f − µf |, ue](y, s) dyds

=

∫ t

0

∫
Ω0

|µ̃f (y)− µf (y)|K(x, y; t− s)I[ue](y, s) dyds

≥ D ×N(t) ∗t (hτ (t) ∗t N(t))

∫
Ω0

|µ̃f (y)− µf (y)| dy

=: D ×M(t)

∫
Ω0

|µ̃f (y)− µf (y)| dy, (2.2.32)

where N(t) := ce−cµat√
(4πcDt)3

e−
c2∗(Ω0,Γ0)

4cDt Kmin
3 (t). By (2.2.28) and (2.2.32), we have

D M(t)

∫
Ω0

|µ̃f (y)− µf (y)|dy ≤ C3µa

∥∥∥∥µf (·)
µa

∥∥∥∥2

L2(Ω0)

.

Since 0 ≤ M(t) 6≡ 0 in [0, T ], we have by integrating this estimate in (x, t) ∈ Γ0 × (0, T )
that ∫

Ω0

|µ̃f (y)− µf (y)| dy ≤ µaC̃
∥∥∥∥µf (·)
µa

∥∥∥∥2

L2(Ω0)

,

with a positive constant C̃ := C̃(T,Ω0,Γ0, c,D, τ, γ). The proof is complete.

This result shows that, in the case of ‖µf‖L2(Ω0) � µa, the linearized model for

recovering µf (x) is reasonable, with the L1 error estimate bounded by
∥∥∥µf (·)

µa

∥∥∥2

L2(Ω0)
.

2.3 Numerical Verifications for Model Approximation

The linearized inverse problem in terms of um(x, t) for identifying µf (x) is obtained
by two steps, firstly transform the RTE system (2.1.1)-(2.1.2) for (Φe,Φm) to the diffusion
model for (Ue, Um) under the approximate expansions (2.1.13)-(2.1.14), and then ignore
µf (x) for the excitation field Ue to consider the system (ue, um) for recovering µf (x)
linearly. In other words, we have in fact the model approximation errors due to the
transform of the RTE model to DE model and the linearizing error from the approximation
of Ue by ue. Although the first approximation has been applied extensively [19, 30], and
the error for the second approximation is estimated in the above section, here we give
some numerical tests to partially verify the total error from two approximations. The
verification is based on the comparisons between um and Φm in ∂Ω for small µf (x),
where Φm are generated by approximating the experimental condition for the RTE model
(2.1.1)-(2.1.2) with this nonzero µf (x) using a Monte Carlo (MC) simulation. Such an
error represents the total error by two approximations, namely, the error of approximating
RTE model by DE model and the error by linearizing process for Ue, from which we
consider the linear inverse problem in terms of (ue, um).

By the diffusion approximation developed in section 2.1.4, (ue, um) and (Φe,Φm) in
the boundary have the relations

ue(x, t) ≈ C∗
∫
S2
−

Φ̃e(x, θ̃, t) dθ̃, (x, t) ∈ ∂Ω× (0, T ), (2.3.1)
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um(x, t) ≈ C∗
∫
S2
−

Φ̃m(x, θ̃, t) dθ̃, (x, t) ∈ ∂Ω× (0, T ), (2.3.2)

where the constant C∗ is given in (2.1.41), the outgoing radiance Φ̃e(x, θ̃, t) and Φ̃m(x, θ̃, t)
along direction θ̃ ∈ S2

− depend on the relative refractive index n2
n1
, the Fresnel reflection

coefficient, inside radiance Φe(x, θ, t) and Φm(x, θ, t), respectively, as shown in (2.1.10).
Then we will validate the model approximation numerically by comparing two sides of
(2.3.1) and (2.3.2) for two observation points in ∂Ω.
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xs=(-11,-11)

x1=(0,0)

x2=(11,11)

The projection of the sphere shape target to the boundary

Figure 2.1: Horizontal projection of the configuration: the red circle with center (0, 0) is the
projection of a sphere target to the boundary ∂Ω, the boundary source locates at xs, and the
measurements are taken at points x1 and x2.

For parameters configuration in the MC simulation, we take

c = 0.219 mm/ps, µa = 0.01 mm−1, µs = 10 mm−1, g = 0.9, β = 0.5493 mm−1 (2.3.3)

and n1 = 1.37, n2 = 1, which are typical values of biological tissues [66]. We set γ = 1.
Now we are ready to give some numerical implementations for the following example.

Example 2.1. The geometrical configuration is shown in Figure 2.1, where a sphere-
shaped fluorosence target with diameter 6 mm and absorption coefficient µf (x) = 0.0017 mm−1

is located at (0, 0, 11). We put the boundary point source at xs = (−11,−11) and two
boundary measurement detectors at x1 = (0, 0) and x2 = (11, 11) for t ∈ (0, T ) with
T = 3.3 ns for measurement time.

Simulating RTE using Monte Carlo method

Monte Carlo (MC) simulations definitely are powerful in that they are easy to im-
plement and can deal with very complex geometries. A major drawback is their huge
computational requirements. Typical MC simulations of optical diffusion can take sev-
eral days or weeks of computation.

The values in the right hand side of (2.3.1) and (2.3.2) will be obtained from the MC
method simulating the physical process, which traces the photons in the diffusive medium.
The idea was firstly used for the steady state light transport with a multi-layered system
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by Wang [72] and similarly for the time-domain transport with a semi-infinite system [71]
and now widely used to test theories and experiments. Our simulation was conducted by
a modified code for the time-domain fluorescence based on the code developed for general
purpose computing on graphics processing unit (GPGPU) [73]. Firstly, the excitation
photon is injected from the source point and then randomly travels until absorbed by the
background absorber or the fluorophore at the target. If the excitation photon is absorbed
by the fluorophore, the excitation photon is eliminated and the fluorescence photon is
generated at the point. Then, the fluorescence photon is traveling until absorbed or
exited from the boundary. For the detection of the photon, the travel distance from the
injection point to the exit point together with the exit point itself is recorded, but the
exit angle is not recorded. Then, the histogram of the photons detected with respect to
the distance, which is corresponding to the time, at a small area is obtained by repeating
the above process. The detail simulation method can be found in paper [67]. Therefore,
the objective of the simulation is not to directly calculate the right hand side of (2.3.1)
and (2.3.2) but to approximate the experimental condition for this system.

Numerical verification for excitation

We first evaluate the relation (2.3.1) for excitation light. The values of two sides of
(2.3.1) at observation points x1 and x2 in time interval (0, T ), after taking logarithm,
are shown in Figure 2.2 (a), where an artificial constant has been introduced to re-scale
the simulation data, representing the signal collection efficiency of measurements. This
constant scaled the peak of the results. It can be observed that the red and green curves
increase slightly faster than the corresponding curves shown by blue and black colors at
the early time, which represent the limitation effect of DE approximation. At most of
the time instants t ∈ (0, T ), two sides of (2.3.1) are consistent very well. To describe the
inconsistency of two sides of (2.3.1) quantitatively, we compute the relative error defined
by

Errei (t) :=
C∗
∫
S2
−

Φ̃e(xi, θ̃, t) dθ̃ − ue(xi, t)

ue(xi, t)
, t ∈ (0, T )

at points xi for i = 1, 2, which are shown in Figure 2.2 (b) and Figure 2.2 (c), respectively.
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Figure 2.2: Comparisons of two sides of (2.3.1) at two points x1 and x2. Left: Distributions of
two sides at two points after taking logarithm; Right: Relative error at two points.
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Numerical verification for emission

We next evaluate the relation (2.3.2) for the emission light. Similarly, the values of
two sides of (2.3.2) at two observation points x1 and x2 in time interval (0, T ), after
taking logarithm, are shown in Figure 2.3 (a). It should be pointed out that, in our
simulations, we in fact take the lifetime τ = 0. Such a comparison can also reveal the
validation of (2.3.2) with any τ > 0, since two sides of (2.3.2) for any fixed τ > 0 are
just the convolutions of 1

τ e
− t
τ with those values for τ = 0 (see (2.2.9) below). It can

be observed from Figure 2.3 (a) that the red and green curves increase slightly faster
than the corresponding curves shown by blue and black colors at the early time, which is
consistent to the limitation effect of DE approximation what we observed in Figure 2.2.
Nevertheless, at most of the time instants t ∈ (0, T ), except small t and large t, two sides
of (2.3.2) are consistent very well. To describe the inconsistency of two sides of (2.3.2)
quantitatively, we compute the relative error defined by

Errmi (t) :=
C∗
∫
S2
−

Φ̃m(xi, θ̃, t) dθ̃ − um(xi, t)

um(xi, t)
, t ∈ (0, T )

at points xi for i = 1, 2, which are shown in Figure 2.3 (b) and Figure 2.3 (c), respectively.
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Figure 2.3: Comparisons of two sides of (2.3.2) at two points x1 and x2. Left: Distributions of
two sides at two points after taking logarithm; Right: Relative error at two points.

An interesting observation on Errmi (t) (see Figure 2.3 (b) and Figure 2.3 (c)) is that,
the relative errors are always large for either small t or large t, while the errors in the
interior part of (0, T ) are relatively small. The deviation, which is also visually seen in
Figure 2.3 (a), in the small time region is speculated from the diffusion approximation,
which can not model the finite time of the transportation. In the large time region, the
excitation field is weakened by the absorption from the object and eventually the fluores-
cence intensity is smaller than that calculated by the DE model, ignoring the absorption
µf from the object in the excitation. Due to this reason, when we do simulations for our
inverse problem, we can ignore the inversion input data for t either large or small. This
is also one reason why we always take the time points around peak time of the emission
as our measurement data when we consider the numerical inversion in the Chapter 6.

Remark 2.3. For the above implementations, the absorption of background is µa =
0.01 mm−1 and the absorption of fluorescence target is µf = 0.0017 mm−1. In some
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sense, it is very hard to assert ‖µf‖L2(Ω0) � µa quantitatively. However, from Figure 2.2
and Figure 2.3, we have the observation that the errors for excitation field and emission
field by ignoring µf in (2.1.34) are indeed small, if ‖µf‖L2(Ω0) is not large compared with
µa and the size of the fluorescence target is small, which partially supports our theoretical
result in Theorem 2.1, where the error Ue − ue by the average norm is estimated. Here
we showed this error distribution with respect to time at two fixed observation points.

2.4 Chapter Summary

We considered the DE model for identifying the absorption coefficient µf (x) of fluo-
rophore from boundary measurement data. Although such an imaging model, as an ap-
proximation to RTE model due to the approximate expansions of excitation and emission
together with the linearization process for imaging, has been widely applied in engineering
communities, there is no rigorous mathematical analysis on the above process. Our novel
contributions in this chapter are as follows.

1. We establish the error estimate rigorously for the excitation field due to ignoring
µf (x) and the corresponding error estimate for recovering µf (x) from the linearized DE
model;

2. We present numerical implementations to partially support our theoretical esti-
mates, by comparing the excitation fields and emission fields on the boundary for DE
model and RTE model.
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Chapter 3

Parameter Identification for FDOT

For the linearized DE model obtained in Chapter 2, we consider the parameter identi-
fication problems arising from FDOT. In section 3.1, based on the analytical expressions
of excitation and emission, the identifiability of the absorption coefficient of fluorophores
is rigorously analyzed for absorption coefficient in special form. Also, based on the ana-
lytical expression of emission, we show its long-time asymptotic behavior in section 3.2,
by which we can estimate the fluorescence lifetime. Finally, we give some conclusion and
remark in section 3.3.

3.1 Identifiability of the Absorption Coefficient

We have derived the linearized inverse model in terms of um(x, t;xs) with known ex-
citation field ue(x, t;xs) generated from (2.1.43) depending on the boundary point source
δ(x − xs)δ(t). Then a mathematically idealized version of our linear inverse problem is
to recover µ̃f (x) from specified data

um(x, t;xs) := h(x, t;xs), (x, t) ∈ ∂Ω× (0, T ), (3.1.1)

where um(x, t;xs) is the solution to (2.1.44) with the source term

S[µ̃f , ue](x, t) := γµ̃f (x)

∫ t

0

e−(t−t′)/τ

τ
ue(x, t

′;xs) dt′ (3.1.2)

for known ue. By Lemma 2.2, we have from (3.1.1) that∫
Ω0

µ̃f (y)

∫ t

0

∫ s

0

e−(s−t′)/τ

τ
K(x, y; t− s)K(y, xs; t

′) dt′dsdy =
1

γD
h(x, t;xs) (3.1.3)

for (x, t;xs) ∈ ∂Ω× (0, T )× ∂Ω.
The essence of this problem is to identify the three-dimensional absorption function

µ̃f (x) with known compact support Ω0 from the measurement data only on the horizontal
plane x3 = 0. In general, it is impossible to uniquely identify µ̃f (x) even if we put the
point sources on the whole boundary ∂Ω. This is because the measurements on x3 = 0
are just back scattering data which reveal the horizontal information about µ̃f (x) and
are not enough to identify its distribution along vertical direction. So it is important to
clarify to what extent we can get the uniqueness of this inverse problem.

Since both the source locations xs and the observation points x are optional in bound-
ary ∂Ω, we need to consider the uniqueness of the solution µ̃f (y) to (3.1.3) from known
h(x, t;xs) for suitable boundary points x, xs ∈ ∂Ω. However, the equation (3.1.3) is an
integral equation of the first kind with respect to µ̃f (x) defined in R3

+, in general, there
is no uniqueness for the solution. Moreover, the convolution structure with the function
1
τ e
− t
τ makes the kernel more smooth.
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Thus, we consider a particular case of the model (2.1.44) for um(x, t;xs). Let ũm(x, t;xs)
denote the photon density of zero-lifetime emission light, i.e., the fluorescence lifetime in
the source term S[µ̃f , ue](x, t) is τ = 0. For t ∈ (0, T ), integrating (3.1.2) by parts with
respect to s gives

S[µ̃f , ue](x, t; τ) =
γµ̃f (x)

τ

∫ t

0
e−(t−s)/τue(x, s;xs) ds

= γµ̃f (x)

(
ue(x, t;xs)− ue(x, 0;xs)e

− t
τ −

∫ t

0

∂ue(x, s;xs)

∂s
e−

t−s
τ ds

)
.

Since xs ∈ ∂Ω,
ue(x, t;xs) ∈ C∞(Ω× [0, T ]) (3.1.4)

due to (2.2.4) and (2.2.8). Hence ∂ue(x,s;xs)
∂s is bounded with respect to s ∈ (0, T ). Hence

there exists a constant C > 0 such that∣∣∣∣∫ t

0

∂ue(x, s;xs)

∂s
e−

t−s
τ ds

∣∣∣∣ ≤ C ∫ t

0
e−

t−s
τ ds = Cτ(1− e−

t
τ ).

Together with this and limτ→0+ e
− t
τ = 0 for t > 0, we immediately have

lim
τ→0+

S[µ̃f , ue](x, t; τ) = γµ̃f (x)ue(x, t;xs). (3.1.5)

Thus, the photon density of zero-lifetime emission light ũm satisfies
(

1
c
∂
∂t −D∆ + µa

)
ũm = γµ̃f (x)ue(x, t;xs), (x, t) ∈ Ω× (0, T ),

ũm(x, 0) = 0, x ∈ Ω,

ν · ∇ũm + βũm = 0, (x, t) ∈ ∂Ω× (0, T )

(3.1.6)

with the analytical expression

ũm(x, t;xs) = γD

∫ t

0

∫
Ω0

µ̃f (y)K(x, y; t−s)K(y, xs; s) dyds, (x, t) ∈ Ω×[0, T ], (3.1.7)

which implies that the solution um(x, t;xs) to (2.1.44) is the convolution of zero-lifetime
emission ũm(x, t;xs) with the lifetime function 1

τ e
−t/τ , τ > 0, i.e.,

um(x, t;xs) =

∫ t

0

1

τ
e−s/τ ũm(x, t− s;xs) ds, τ > 0, (x, t) ∈ Ω× [0, T ]. (3.1.8)

On the other hand, in the sense of
∫∞

0
1
τ e
− t
τ dt = 1 for any fixed small τ > 0 and

lim
τ→0+

1

τ
e−

t
τ =

{
0, t > 0,

+∞, t = 0,

we can consider 1
τ e
− t
τ for small τ > 0 as the approximation to δ(t) such that we have the

relation
lim
τ→0+

um(x, t;xs) = ũm(x, t;xs). (3.1.9)

Now we are ready to consider the identifiability of our linearized inverse absorption
coefficient problem for the zero-lifetime case. That is, we transform the integral equation
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of the first kind with respect to µ̃f (x) given by (3.1.3) into∫
Ω0

µ̃f (y)

∫ t

0
K(x, y; t− s)K(y, xs; s) dsdy =

1

γD
h̃(x, t;xs), (3.1.10)

where h̃(x, t;xs) is the observation corresponding to the case τ = 0 in (2.1.3). The follow-
ing result asserts, in general, only the horizontal information of µ̃f (x) can be determined
from our linearized inversion model [65].

Theorem 3.1. Assume that µ̃f (x) for x = (x̃, x3) ∈ R2×R1
+ has the variable separation

form µ̃f (x) = p(x̃)q(x3) with known q(x3) and the convolution kernel 1
τ e
−t/τ in (3.1.3) is

replaced by the impulse function δ(t). Then p(x̃) can be uniquely determined from one of
the following observation data:

• 1. {h̃(x, t;xs), x ∈ ∂Ω, t ∈ (t0− ε0, t0 + ε0)} for one fixed point xs ∈ ∂Ω and t0 > 0;

• 2. {h̃(x, t;xs), xs ∈ ∂Ω, t ∈ (t0− ε0, t0 + ε0)} for one fixed point x ∈ ∂Ω and t0 > 0,

where ε0 > 0 may be arbitrarily small in each case.

Proof. By the assumptions, the equation (3.1.10) can be rewritten as∫
R2

p(ỹ)

∫
R+

q(y3)K(x̃, x̃s, t, y3) dy3dỹ = R(x̃, t; x̃s), (3.1.11)

where the kernel is

K(x̃, x̃s, t, y3) := e−cµat
∫ t

0
G2(ỹ− x̃s, s)K̃3(y3; s)G2(x̃− ỹ, t− s)K̃3(y3; t− s) ds (3.1.12)

with

K̃3(y3; t− s) :=
1√

4πcD(t− s)
K3(y3, 0; t− s) =

1√
4πcD(t− s)

K3(0, y3; t− s),

and
R(x̃, t; x̃s) :=

1

c2γD
h̃(x, t;xs), xs = (x̃s, 0), x = (x̃, 0). (3.1.13)

Since p(x̃)q(x3) has support Ω0, (3.1.11) becomes∫
R2

p(ỹ)

∫ t

0
G2(ỹ − x̃s, s)G2(x̃− ỹ, t− s)W [q](s, t− s) dsdỹ = ecµatR(x̃, t; x̃s), (3.1.14)

where the known function

W [q](s, t− s) :=

∫
R+

q(y3)K̃3(y3; s)K̃3(y3; t− s) dy3. (3.1.15)

By operating ∂
∂t − cD∆x̃ to two sides of (3.1.14), we have

p(x̃)G2(x̃− x̃s, t)W [q](t, 0) +∫
R2

p(ỹ)

∫ t

0
G2(ỹ − x̃s, s)G2(x̃− ỹ, t− s)∂W [q](s, t− s)

∂t
dsdỹ

=

(
∂

∂t
− cD ∆x̃

)
(ecµatR(x̃, t; x̃s)), (3.1.16)
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where we have used
(
∂
∂t − cD ∆x̃

)
G2(x̃−ỹ, t−s) = δ(x̃−ỹ)δ(t−s) and G2(x̃−ỹ, t−s) ≡ 0

for s ≥ t. On the other hand, rewriting (3.1.14) as∫
R2

p(ỹ)

∫ T

0
G2(ỹ − x̃s, t− s)G2(x̃− ỹ, s)W [q](t− s, s) dsdỹ = ecµatR(x̃, t; x̃s)

and then applying the operator ∂
∂t − cD∆x̃s to both sides, we have

p(x̃s)G2(x̃− x̃s, t)W [q](0, t) +∫
R2

p(ỹ)

∫ t

0
G2(ỹ − x̃s, s)G2(x̃− ỹ, t− s)∂W [q](s, t− s)

∂t
dsdỹ

=

(
∂

∂t
− cD ∆x̃s

)
(ecµatR(x̃s, x̃, t)). (3.1.17)

Hence, for known q(x3), we get the integral equations (3.1.16) and (3.1.17) for p(x̃) and
p(x̃s), respectively.

Now we analyze the solvability of (3.1.16) and (3.1.17), which depends on the behavior
of W [q](t, 0) (W [q](0, t)). In terms of the definitions of (2.2.5), we decompose K̃3(y3; t) =
2G1(y3, t)K3(y3; t) with

K3(y3; t) : = 1− β
√

4πcDt
eβy3+β2cDt+

y2
3

4cDt

2

∫ +∞

y3+2βcDt√
4cDt

e−s
2

ds

= 1− β
√
πcDt e

(
y3+2βcDt√

4cDt

)2 ∫ +∞

y3+2βcDt√
4cDt

e−s
2

ds

= 1− β
√
πcDtM

(
y3 + 2βcDt√

4cDt

)
,

(3.1.18)

where we introduce
M(z) := ez

2
erfc(z). (3.1.19)

Based on the asymptotic expansion of the complementary error function given as

√
πzez

2
erfc(z) ∼ 1 +

∞∑
m=1

(−1)m
(2m− 1)!!

(2z2)m
, z � 1,

we have M(z) ∼ 1/(z
√
π) for large z. Thus we have 0 < K3(y3; z) < 1 and K3(y3; z) →

1 as z → 0+, which implies that K3(y3; ·) can be considered as a positive continuous
function on [0,+∞) with K3(y3; 0) = 1 for any fixed y3 > 0. Therefore we have

W [q](s, t− s) =

∫
R+

Q(y3, t− s, s)
1√

4πcD(t− s)
1√

4πcDs
e
−y2

3

(
1

4cD(t−s) + 1
4cDs

)
dy3

with a compactly supported smooth function

Q(·, t− s, s) := 4q(·)K3(·; s)K3(·; t− s) > 0.

Further by the variable transform, we have

W [q](s, t− s) =
1√

4cDt

∫
R+

Q(2
√
cDz(s(1− s/t))1/2, t− s, s)e−z2

dz,
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which implies

W [q](t, 0) =
1√

4cDt

∫
R+

Q(2
√
cDz(s(1− s/t))1/2, t− s, s)e−z2

dz |s=t > 0. (3.1.20)

W [q](0, t) has the same expression due to W [q](s, t − s) = W [q](t − s, s). Therefore, for
known q(y3), the integral equations (3.1.16) and (3.1.17) are Volterra integral equations
of the second kind for p(x̃) and p(x̃s), respectively, which are uniquely solvable.

The proof is complete.

3.2 Long-time Behavior of Emission Light

The emission light um has information on the fluorosence target. Let us investigate
the long-time behavior of um. We will see below that the fluorescence lifetime τ can be
estimated by the long-time behavior of um.

For simplicity we consider a point target

µf (x) = δ(x− x0), x0 := (x0
1, x

0
2, x

0
3) ∈ Ω. (3.2.1)

That is, Ω0 is a point x0. According to (2.2.9), the emission light um(xd, t;xs) with
xd, xs ∈ ∂Ω can be calculated as

um(xd, t;xs) =
γ

16π3D2c

∫ t

0

1

τ
e−

t−s
τ e−cµas

∫ s

0
ξ(s, s′)eζ(s,s

′) ds′ds. (3.2.2)

Here we introduced

ξ(s, s′) =
1

[(s− s′)s′]3/2

×

[
1− β

√
πDc(s− s′)M

(
x0

3 + 2βDc(s− s′)√
4Dc(s− s′)

)]

×
[
1− β

√
πDcs′M

(
x0

3 + 2βDcs′√
4Dcs′

)]
,

(3.2.3)

and

ζ(s, s′) = − |xd − x0|2

4Dc(s− s′)
− |xs − x0|2

4Dcs′
, (3.2.4)

where M(z) is defined by (3.1.19). On the other hand, we note

min
t∈(0,T )

x0
3 + 2βDct√

4Dct
=
√

2βx0
3. (3.2.5)

In the sequel, let us suppose

x0
3 �

1

2β
. (3.2.6)
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Then, using the method of steepest descent, we obtain

um(xd, t;xs) ≈
γ(x0

3)2

8π5/2D3/2
√
c

(|xs − x0|+ |xd − x0|)3

|xs − x0||xd − x0|

×
∫ t

0
hτ (t− s)e

−cµas

s3/2
exp

(
−(|xs − x0|+ |xd − x0|)2

4Dcs

)
× 1

C0x0
3 + 2βDc|xs − x0|s

1

C0x0
3 + 2βDc|xd − x0|s

ds,

(3.2.7)

where C0 = |xs − x0|+ |xd − x0|.
By considering large t, we assume the following relations.

t� τ, τ � x0
3

2βDc
. (3.2.8)

Since we are interested the long-time behavior of um(xd, t;xs), we take the Laplace trans-
form for t and take only small values of the Laplace variable into account. Then for large
t, we have

um(xd, t;xs) ∝ exp

[
−1

τ

(
t− |xs − x0|+ |xd − x0|

2c
√
µaD

)]
. (3.2.9)

Therefore we obtain

τ =

(
− ∂

∂t
lnum(xd, t;xs)

)−1

. (3.2.10)

In Chapter 6, we will develope a reconstruction algorithm using pre-determined flu-
orescence lifetime, which is not always known a priori. Kumar et al. pointed out that
the fluorescence lifetime can be estimated from the asymptotic behavior of the temporal
profile of the emission light [60,61]. Here we showed that their formula also holds true in
the presence of the boundary.

3.3 Chapter Summary

We established the identifiability of the fluorophore and revealed the physical difficulty
of the 3-dimensional imaging model by the back scattering diffusive system. We point that
although the FDOT based on the linearized DE model was a linear inverse problem, we can
only establish the identifiability of the fluorophore by its absorption coefficient µf (x) :=
p(x̃)q(x3) with x̃ ∈ ∂Ω. We verified the uniqueness of p(x̃), under the assumptions that
the vertical information of absorption q(x3) is known, and the lifetime of the fluorophore
is τ = 0. However, the general practical target µf (x) may not have the decomposition
form p(x̃)q(x3) and its lifetime are generally τ > 0. Also, we need to develop the efficient
reconstruction algorithms for µf (x) in finite dimensional space, which is one of our tasks
in the following chapters.
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Chapter 4

FDOT Using Cuboid Approximation

In this chapter, for general target with any τ > 0, we will introduce the idea of
cuboid approximation for our FDOT based on the linearized DE model, which develops
a simple imaging model for µf (x) in finite dimensional space. The remainder of this
chapter is organized as follows. We first simplify the linearized DE model and provide a
fast solver for the forward problem by assuming a cuboid in section 4.1. In section 4.2,
the numerical implementations using cuboid to approximate spherical target is shown to
valuate the rationality of approximating unknown target by cuboid. The simulation and
property of measured data are numerically tested in section 4.3 which is useful to find
a good initial guess for iteration methods. Finally the concluding remark is denoted in
section 4.4.

4.1 The Idea of Cuboid Approximation

We first recall our FDOT based on the linearized DE model, which is an effective and
reasonable approximation of RTE model as we analyzed in Chapter 2. Let a fluorescence
target be embedded in a biological tissue occupying the half space Ω with boundary ∂Ω.
We assume that the reduced scattering coefficient µ′s and the absorption coefficient µa
are constant everywhere in the medium and in the wavelength range of the excitation
and fluorescence. Let xs = (xs1, xs2, 0) ∈ ∂Ω denote the position where the excitation
photons are injected by a pencil beam of the temporal profile r(t)(t > 0) and hence
generating the excitation light on the boundary. Then the propagation of excitation light
ue(x, t;xs) and emission (fluorescence) light um(x, t;xs) in scattering–absorbing medium
can be described by coupled time-domain diffusion equations as follows [51,57]

(
1
c
∂
∂t −D∆ + µa

)
ue = 0, (x, t) ∈ Ω× (0, T ),

ue(x, 0) = 0, x ∈ Ω,

ν · ∇ue + βue = δ(x− xs)r(t), (x, t) ∈ ∂Ω× (0, T ),

(4.1.1)

and 
(

1
c
∂
∂t −D∆ + µa

)
um = f(x, t; τ), (x, t) ∈ Ω× (0, T ),

um(x, 0) = 0, x ∈ Ω,

ν · ∇um + βum = 0, (x, t) ∈ ∂Ω× (0, T ),

(4.1.2)

where ν = (0, 0,−1) is the unit outward normal direction, c is the speed of light in the
medium, and D := 1

3µ′s
, β are some positive constants defined as before. The source term

f for um on the right-hand side of (4.1.2) contains the excitation field and is specified by

f(x, t; τ) =
γµf (x)

τ

∫ t

0
e−(t−s)/τue(x, s;xs) ds, (4.1.3)
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where τ > 0 is the fluorescence lifetime, γ is the quantum efficiency of the fluorescence,
and µf is the absorption coefficient of fluorophore inside the target. It should be remarked
here that we have assumed that µf � µa.

4.1.1 Analytical solution to real experiment

In the real experiment such as our ex vivo beef experiment in Chapter 7, any device
for the measurements has some delay in responding to the coming signals. Suppose an
excited light is detected at xd := (xd1, xd2, 0) ∈ ∂Ω, the detected excitation light U exp

e is
given through a response function R̃ as

U exp
e (xd, t;xs) :=

∫ t

0
R̃(t− s)ue(xd, s;xs) ds, (4.1.4)

where xd ∈ ∂Ω denotes the position of a detector. Similarly, the observed emission light
U exp
m is given as

U exp
m (xd, t;xs) :=

∫ t

0
R̃(t− s)um(xd, s;xs) ds. (4.1.5)

Further, the excitation laser pulse is slightly temporal broadened in the real experiment.
We take these non-ideal temporal broadening effects into account with an instrumental
response function (IRF)

q(t) :=

∫ t

0
R̃(t− s)r(s) ds, (4.1.6)

which is experimentally determined.
Our fluorescence diffuse optical tomography (FDOT) is to identify the distribution

of µf (x) in Ω as well as its interface from the boundary measured data, which is a
linear inverse source problem formulated by the forward diffusion model together with
the corresponding additional information.

Then, by changing the order of integrals and the general theory of partial differential
equations, we immediately have the following expression of U exp

m stated as a lemma.

Lemma 4.1. Suppose Ω0 b Ω be the support of µf (x), we have

U exp
m (xd, t;xs) =

∫ t

0
q̃(ξ)ũm(xd, t− ξ;xs) dξ, xd, xs ∈ ∂Ω, t ∈ [0, T ], (4.1.7)

where q̃(ξ) is defined by

q̃(ξ) =

∫ ξ

0

e−s/τ

τ
q(ξ − s) ds (4.1.8)

and ũm(xd, t;xs), xd, xs ∈ ∂Ω, t ∈ [0, T ] given by

ũm(xd, t;xs) = γD

∫ t

0

∫
Ω0

µf (y)K(xd, y; t− s)K(y, xs; s) dyds (4.1.9)

is the photon density of zero-lifetime emission light satisfying initial boundary value prob-
lem (3.1.6).

Proof. By solving the initial boundary value problem (4.1.2), we have

um(xd, t;xs) =

∫ t

0

∫
Ω
K(xd, y; t− s)f(y, s; τ) dyds

= γ

∫ t

0

∫ s

0

e−(s−t′)/τ

τ

∫
Ω0

µf (y)K(xd, y; t− s)ue(y, t′;xs) dydt′ds
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with K(x, y; t) is the Green function satisfying (2.2.1) and

ue(y, t
′;xs) = D

∫ t′

0
r(t′′)K(y, xs; t

′ − t′′) dt′′.

Thus um is written as

um(xd, t;xs) = γD

∫ t

0

∫ s

0

e−(s−t′)/τ

τ

∫ t′

0
r(t′′)

∫
Ω0

µf (y)

×K(xd, y; t− s)K(y, xs; t
′ − t′′) dydt′′dt′ds,

Substituting above into (4.1.5), we have

U exp
m (xd, t;xs) = γD

∫ t

0
R(ξ)

∫ t−ξ

0

∫ s

0

e−(s−t′)/τ

τ

∫ t′

0
r(t′′)

∫
Ω0

µf (y)

×K(xd, y; t− ξ − s)K(y, xs; t
′ − t′′) dydt′′dt′dsdξ.

By (3.1.7) and exchanging the integrals we have

Um(xd, t;xs) = γD

∫ t

0
q̃(ξ)

∫ t−ξ

0

∫
Ω0

µf (y)K(xd, y; t− ξ − s)K(y, xs; s) dydsdξ

=

∫ t

0
q̃(ξ)ũm(xd, t− ξ;xs) dξ,

where q̃(ξ) is defined by (4.1.8). This completes the proof.

4.1.2 Fast solver by assuming cuboid

Although the fluorescence target which we try to recover may have different shapes,
in this paper we focus on simultaneously recovering the position and approximate size of
the fluorescence target in the tissue by assuming that it has a cuboidal shape. In other
words, we assume that the support of µf (x) is a cuboid, which is parallel to horizontal
plane and vertical plane. Since the absorption coefficient µf of the fluorophore has a
nonzero value only inside the target, we have

µf (x) =

{
P, x ∈ cuboid,

0, x 6∈ cuboid,
(4.1.10)

where P is a positive constant and

cuboid := {x ∈ Ω; x1 ∈ (a1, b1), x2 ∈ (a2, b2), x3 ∈ (a3, b3)} (4.1.11)

with b3 > a3 > 0. Thus, to recover the distribution of µf (x) in Ω as well as its interface, we
only need to determine seven unknowns (a1, b1, a2, b2, a3, b3, P ) in practical configurations,
which becomes a nonlinear inverse problem. In the future work, we will consider the
approximate recovery of fluorescence target using the cuboid with some rotation, which
implies to identify nine unknowns including the angles of cuboid with horizontal and
vertical planes. In the sequel, we use the following identification

µf (x)⇔ a := (a1, b1, a2, b2, a3, b3, P ) ∈ R4 × R3
+. (4.1.12)

Then we can provide a fast solver for the forward problem by transforming ũm given by
(4.1.9) into following easy computation scheme.
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Theorem 4.1. Suppose that the support of µf (x) is a cuboid, we have

ũm(xd, t;xs) = PC(xd1, xs1, xd2, xs2, t)

∫ t

0

1√
s(t− s)

× ũ1(xd1, xs1, t, s; a1, b1)

× ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3) ds,

(4.1.13)

where C(xd1, xs1, xd2, xs2, t) := γ
43π2Dt

e−
(xd1−xs1)2+(xd2−xs2)2

4cDt e−cµat, and

ũi(xdi, xsi, t, s; ai, bi) = erf

(√
t

4cD(t− s)s

(
bi −

sxdi + (t− s)xsi
t

))

− erf

(√
t

4cD(t− s)s

(
ai −

sxdi + (t− s)xsi
t

))
, t > s,

for i = 1, 2 and

ũ3(t, s; a3, b3) :=

∫ b3

a3

K3(0, y3; t− s)K3(y3, 0; s) dy3, t > s

with K3(x, y; t) defined by (2.2.5) and error function erf(z) := 2√
π

∫ z
0 e
−ζ2

dζ .

Proof. We note that

∫ b

a
e
− (y−α)2

p e
− (y−β)2

q dy =

√
pq

p+ q
e
− (α−β)2

p+q

∫ √
p+q
pq

(
b− qα+pβ

p+q

)
√
p+q
pq

(
a− qα+pβ

p+q

) e−z
2

dz

=
1

2

√
πpq

p+ q
e
− (α−β)2

p+q ×
[
erf

(√
p+ q

pq

(
b− qα+ pβ

p+ q

))
− erf

(√
p+ q

pq

(
a− qα+ pβ

p+ q

))]
.

Hence, by simple computation we have∫ b1

a1

∫ b2

a2

e
− (xd1−y1)2+(xd2−y2)2

4cD(t−s) e−
(y1−xs1)2+(y2−xs2)2

4cDs dy1dy2

=

(∫ b1

a1

e
− (xd1−y1)2

4cD(t−s) e−
(y1−xs1)2

4cDs dy1

)(∫ b2

a2

e
− (xd2−y2)2

4cD(t−s) e−
(y2−xs2)2

4cDs dy2

)
=

πcD(t− s)s
t

e−
(xd1−xs1)2+(xd2−xs2)2

4cDt

×

[
erf

(√
t

4cD(t− s)s

(
b1 −

sxd1 + (t− s)xs1
t

))

− erf

(√
t

4cD(t− s)s

(
a1 −

sxd1 + (t− s)xs1
t

))]

×

[
erf

(√
t

4cD(t− s)s

(
b2 −

sxd2 + (t− s)xs2
t

))

− erf

(√
t

4cD(t− s)s

(
a2 −

sxd2 + (t− s)xs2
t

))]
.
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Thus we obtain∫
Ω0

K(xd, y; t− s)K(y, xs; s) dy

=
c2e−cµat

(4πcD)3(t− s)3/2s3/2

(∫ b1

a1

∫ b2

a2

e
− (xd1−y1)2+(xd2−y2)2

4cD(t−s) e−
(y1−xs1)2+(y2−xs2)2

4cDs dy1dy2

)
×
∫ b3

a3

K3(0, y3; t− s)K3(y3, 0; s) dy3

=
e−cµat

43π2D2t
√

(t− s)s
e−

(xd1−xs1)2+(xd2−xs2)2

4cDt

×ũ1(xd1, xs1, t, s; a1, b1)ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3),

where ũ1(xd1, xs1, t, s; a1, b1), ũ2(xd2, xs2, t, s; a2, b2), ũ3(t, s; a3, b3) are defined as above.
Then, by the expression (4.1.9) and (4.1.10) we have

ũm(xd, t;xs) =
γPe−cµat

43π2Dt
e−

(xd1−xs1)2+(xd2−xs2)2

4cDt

×
∫ t

0

1√
(t− s)s

ũ1(xd1, xs1, t, s; a1, b1)

× ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3) ds.

By the definition of C(xd1, xs1, xd2, xs2, t), we end the proof.

Remark 4.1. Although the form of (4.1.13) looks not of convolution type, it is actually
the same as (4.1.9) which is of convolution type.

Suppose that the support of µf (x) is a cuboid, we can analyze the singularity of zero-
lifetime emission (4.1.13) when s → 0+ and s → t− for any fixed t > 0. Noticing the
error function erf is odd function and erf(+∞) = 1, we have the following results.

Theorem 4.2. (1) For every fixed t > 0, ai, bi ∈ R and ai < bi (i = 1, 2), we have

lim
s→0+

ũi(xdi, xsi, t, s; ai, bi) =


2, for xsi ∈ (ai, bi), xdi ∈ R,
1, for xsi = ai, xdi ∈ R or xsi = bi, xi ∈ R,
0, else;

(4.1.14)

lim
s→t−

ũi(xdi, xsi, t, s; ai, bi) =


2, for xdi ∈ (ai, bi), xsi ∈ R,
1, for xdi = ai, xsi ∈ R or xdi = bi, xsi ∈ R,
0, else.

(4.1.15)

(2) For every fixed t > 0 and 0 < a3 < b3, we have

lim
s→0+

1√
s(t− s)

ũ3(t, s; a3, b3) = lim
s→t−

1√
s(t− s)

ũ3(t, s; a3, b3) = 0, (4.1.16)

which is not dependent on the positions of xd and xs.

Proof. Based on the property of error function, it is easy to prove (4.1.14) and (4.1.15).
Now we prove (4.1.16).
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By the expression of K3(x, y; t) we have

1√
s(t− s)

ũ3(t, s; a3, b3) =
1√

s(t− s)

∫ b3

a3

K3(0, y3; t− s)K3(y3, 0; s) dy3

=
4√

s(t− s)

∫ b3

a3

e
− y2

3
4Dc(t−s)−

y2
3

4Dcs

×

[
1− β

√
πDc(t− s)M

(
y3 + 2βDc(t− s)√

4Dc(t− s)

)]

×
[
1− β

√
πDcsM

(
y3 + 2βDcs√

4Dcs

)]
dy3,

where the functionM(z) is defined by (3.1.19). ByM(z) ∼ 1/(z
√
π) for z � 1, we obtain

the estimate for t > 0 that

1√
s(t− s)

ũ3(t, s; a3, b3) ≤ 4√
s(t− s)

∫ b3

a3

e
−
(

y2
3

4Dc(t−s) +
y2
3

4Dcs

)
dy3

= 8

√
Dc

t

∫ √
t
t−s

b3√
4Dcs√

t
t−s

a3√
4Dcs

e−z
2

dz =: U3(t, s; a3, b3),

(4.1.17)

where we substitute z =
√

t
t−s

y3√
4Dcs

satisfying

y3
2

4Dc(t− s)
+

y3
2

4Dcs
= z2. (4.1.18)

Apparently, lims→0+ U3(t, s; a3, b3) = lims→t− U3(t, s; a3, b3) = 0, which implies (4.1.16).

Theorem 4.2 ensures the effectiveness of solving (4.1.13) by numerical methods such as
trapezoidal formula and compound trapezoidal formula. Now we give one numerical exam-
ple to verify the results in Theorem 4.2. Without loss of generality, we fix time t = 100 ps,
a1 = 3 mm, b1 = 6 mm and take physical parameters as (2.3.3) to numerically check the
behavior of ũ1 when s → 0+ and s → t−. The values of lims→0+ ũ1(xd1, xs1, t, s; a1, b1)
with fixed xd1 = 1 and xs1 ∈ [0, 10] is plotted in Figure 4.1 (a), and the values of
lims→t− ũ1(xd1, xs1, t, s; a1, b1) with fixed xs1 = 1 and xd1 ∈ [0, 10] is plotted in Figure 4.1
(b), respectively. The numerical results are consistent to Theorem 4.2.
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Figure 4.1: (a) The values of lims→0+ ũ1(xd1, xs1, t, s; a1, b1) with fixed xd1 = 1 and xs1 ∈ [0, 10].
(b) The values of lims→t− ũ1(xd1, xs1, t, s; a1, b1) with fixed xs1 = 1 and xd1 ∈ [0, 10].
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4.2 Testing the Rationality of Cuboid Approximation

How to save time of computation is very important for solving inverse problems in
practice. To fulfill this request, on one hand, a fast solver for the forward problem is
highly desirable for inversion schemes using iterative methods such as the least square
method, Levenberg-Marquadt method and trust region method. On the other hand, the
interpretation of the measured data by small number of effective parameters could be
useful. Hence we aim to describe the unknown target by finite parameters such that a
small number of sources and detectors are enough to have a good performance in our
inversion scheme based on Levenberg-Marquadt method.

Next we will show numerically that the modeling of the target by cuboid is a reasonable
approximation. In another word, we will show that the measured emission light due to
the existence of an unknown target can be approximated well by assuming it as a cuboid.
To do that, we will compare the temporal point spread functions (TPSFs) associated with
different shape of targets by that associated with cuboidal target.

To be precise we will give one example. For that, if not specified, we always take
the physical parameters as (2.3.3). Hereafter the unit of length is mm, and we will set
γ = 1. The quantum efficiency γ of the real fluorophore molecule is usually less than
1. However, this factor only affects the scaling of the absorption coefficient µf and thus
this factor is only needed to calculate the absolute value of µf as a proportional constant.
The discussion of the recovery will not change even if assuming γ = 1 except requirement
of the absolute value of µf .

Example 4.1. (spherical target) Suppose a spherical target with 6 mm in diameter shown
in Figure 4.2 is located at (0, 0, 11). We assume the absorption coefficient of the target by
fluorophore is µf = P = 0.0017 mm−1 inside the sphere.

(a) Cube1 (b) Cube2 (c) Cube3

Figure 4.2: The spherical target and three cubic targets approximated to the spherical target;
Cube1 is the inscribed cubic target, Cube2 is the cubic target which has same volume and Cube3
is the circumscribed cubic target.

In this example we compare the zero-lifetime emission light between spherical target
and three different cubic targets shown in Figure 4.2, (a), (b), (c) respectively, all of which
have the same absorption P . In particular, Cube2 denoted by

Cube2 := {x ∈ Ω; x1 ∈ (−2.42, 2.42), x2 ∈ (−2.42, 2.42), x3 ∈ (8.58, 13.42)} (4.2.1)

has the same center and volume as that of the spherical target. For the cubic targets, the
photon density of emission light ũcube

m (xd, t;xs) is computed by (4.1.13). For spherical
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fluorophore target, its photon density of emission light is calculated by

ũsphere
m (xd, t;xs) = γDP

∫ t

0
ds

∫ R

0
r2 dr

∫ π

0
sinϕdϕ

×
∫ 2π

0
K(xd, y; t− s)K(y, xs; s) dθ,

(4.2.2)

where y = x∗ + r(sinϕ cos θ, sinϕ sin θ, cosϕ), x∗ = (x∗1, x
∗
2, x
∗
3) = (0, 0, 11) is the center

of sphere and r = 6 mm is its diameter.
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Figure 4.3: TPSFs (i.e. temporal profile of the emission) corresponding to the spherical target
indicated by circles and three approximate cube targets indicated by lines. Two figures are
corresponding to the different detection points at (0,0,0) and (19,-11, 0).

As shown in Figure 4.3 (a), we fix the point source xs = (−11,−11) ∈ ∂Ω and consider
two detectors located at x1 = (0, 0), x2 = (11, 11) ∈ ∂Ω for t ∈ (0, T ) with T = 3.3

ns. TPSFs corresponding to the emission light ũsphere
m (xd, t;xs) and ũcube

m (xd, t;xs) at
two detectors are shown in Figure 4.3 (b), (c), respectively. It can be observed that
the curves depend on the volumes of targets, and a good agreement indicates that the
spherical target can be approximated well by the cubic target having the same center and
volume as that of spherical target (Cube2). On the other hand, by applying the typical
function (named integral3) implemented on Matlab to compute (4.2.2) could take several
hours of computation. However, we could easily compute (4.1.13), for which less than
one minute of computation was enough.

We further check the cuboid approximation from the view of inverse problem. We
place four sources Si, i = 1, · · · , 4 and twelve detectors Dj , j = 1, · · · , 12 as follows on the
boundary (see Figure 4.4 (a)) to obtain the measurements

S3 = (−11, 11), S4 = (11, 11),

S1 = (−11,−11), S2 = (11,−11),

and
D7 = (−19, 18), D9 = (−3, 18), D10 = (6, 18), D12 = (16, 18),

D8 = (−11, 4), D11 = (11, 4),

D2 = (−11,−4), D5 = (11,−4),

D1 = (−19,−18), D3 = (−3,−18), D4 = (6,−18), D6 = (16,−18).

Here we obtained the measured data with respect to a spherical target by the Monte Carlo
simulation as we described in section 2.3. The emission at each detector corresponding
to excitation S1 are shown in Figure 4.4 (b), (c) respectively.
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Figure 4.4: (a) The positions of four sources (small red circles) and twelve detectors (small blue
points). The big red circle is the projection of spherical target to the boundary. (b), (c) are the
TPSFs (the logarithm value) to different detectors corresponding to source S1.

Let (X1, X2, X3) denote the center of cube and L denote its side length. Denote by
Q the absorption coefficient of recovered cube. We want to find an approximate cube

acube := (X1, X2, X3, L,Q) (4.2.3)

of the spherical target by fitting the measured data. To identify unknowns acube, we will
use time-resolved measurements in time domain [0, T ] with T = 3.3 ns. For each source
detector pair, we denote tpeak as the peak time at which the photon density of emission
light is biggest. Then, for each source-detector pair we select the peak time and choose
10 time points [tpeak − 5∆t, tpeak + 4∆t] with time step ∆t = 6.67 ps. Setting the initial
guess a0 = (2, 2, 4, 2, 0.1), the recovered cube by Levenberg-Marquadt method is

acube
rec = (−0.0003,−0.0047, 11.0418, 4.6759, 0.0020), (4.2.4)

which is almost same as Cube2 given by (4.2.1).
Summarizing the results obtained in the above example, we have observed that TPSF

for unknown target with spherical shape can be approximated well by corresponding one
for cuboidal target having the same center and volume as that of the unknown target. The
recovered cube (4.2.4) further confirms this argument. In other words, the interpretation
of measured data using cuboidal target was reasonable and made the computation very
fast.

4.3 Simulation and Property of Measured Data

Generally speaking, the measured data itself contain the information of the unknown
target. How to analyze the relations between the measurement and unknown target is
important to obtain some prior information of the target, which is very useful in es-
tablishing our inversion strategy. To do this, we study the property of measured data
to obtain the prior estimation of unknown target. Let a = (a1, b1, a2, b2, a3, b3, P ) =
(−1, 1,−3, 3, 10, 12, 0.01) be a cuboidal target, and let the other physical parameters be
the same as (2.3.3). That is

µf (x) =

{
0.01, x ∈ cuboid := {x ∈ Ω; x1 ∈ (−1, 1), x2 ∈ (−3, 3), x3 ∈ (10, 12)} ,
0, x 6∈ cuboid.

We define the intensity of emission light corresponding to source-detector (S-D) pair
as

I :=

∫ T

0
ũm(a)(xd, t;xs) dt. (4.3.1)
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Let (x1, x2) be the the middle position of a S-D pair. As shown in Figure 4.5, (a), we scan
the S-D pair on ∂Ω along the direction x2 = 0 without any rotation. Then the emission
intensities with T = 3.3 ns and different positions of S-D pair are plotted in Figure 4.5,
(b).
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(b) Emission intensities

Figure 4.5: (a) Scan the S-D pair on the boundary ∂Ω; The red rectangular shape shows the
fluorescence target. (b) The emission intensities given by (4.3.1) with different position x1.

We keep the same size of cuboidal target as above and denote its center by (0, 0, h).
The TPSFs (the logarithm value) at x1 = x2 = 0 with respect to different h are plotted
in Figure 4.6, (a). For fixed scan direction x2 = 0, three indexes such as peak time, peak
intensity and intensity of emission light with different S-D pairs and target center h are
plotted in Figure 4.6, (b), (c), (d), respectively.
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Figure 4.6: TPSFs and three indexes of emission light with different S-D pairs.

In both Figure 4.5 and Figure 4.6, the middle positions of the source and the detector
with respect to different S-D pairs are (x1, 0) due to the fixed scan direction x2 = 0.
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Now we change the scan direction and scan the S-D pair on the boundary without any
rotation. We plot the emission intensities given by different positions of the S-D pair for
the target with h = 11 in Figure 4.7.

-20

x1

0
2020

0

x2

#10-7

2

4

6

8

0
-20

E
m

is
si

on
 in

te
ns

ity

x1
-20-1001020

x2

-20

-10

0

10

20

Figure 4.7: The distribution of emission intensity with different S-D pairs.

From Figure 4.5 and Figure 4.7, it can be seen that the intensities of emission light
with S-D pairs near by the target are stronger than the others. We can see the same
phenomenon for other indexes of emission light such as the peak time and the peak
intensity from Figure 4.6. Therefore, by comparing for example the emission intensities
I with different S-D pairs, we can obtain prior information of the projection of target to
∂Ω, which is useful to choose a good initial guess for iteration methods.

4.4 Chapter Summary

We considered the cuboid approximation for our FDOT based on the linearized DE
model. By solving the initial boundary value problem, the explicit analytical expression is
possible for real experimental case, which is further transformed into an easy computation
scheme having an integral form. We further analyzed the weak singularity of the integrand
function with a numerical test, revealing that our proposed easy computation scheme is
reliable to apply numerical integration for example trapezoidal formula. By comparing
the temporal point spread functions (TPSFs) associated with spherical shape of target
by that associated with cuboidal target, we showed numerically that the modeling of the
target by cuboid is a reasonable approximation. The measured emission light due to the
existence of an unknown target could be approximated well by assuming it as cuboid.
Nevertheless, we point that it is hard to compute the TPSFs with irregular shape of
target. Therefore, the remained problem is to verify the effectiveness of approximating
the target with irregular shape by some associated cuboid. We also tested the properties
of measured data, which gives us some ideas to choose a good initial guess in our inversion
iteration method. Summarizing the results in this chapter, we observed that our cuboid
approximation was reasonable and made the computation very fast. This provides a
preliminary basis for our further research on FDOT using cuboid approximation in the
following chapters.
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Chapter 5

Local Analysis for FDOT Using
Cuboid Approximation

In this chapter, we consider the local analysis for our FDOT inverse problem using
cuboid approximation. For giving some mathematical analysis and discussion on our
FDOT measurement and inversion, we need to describe the measurement using some
mathematical notations. Since the detected experimental emission light Um with any fixed
τ > 0 is the convolution of function q̃ defined by (4.1.8) with the zero-lifetime emission
light ũm, it is enough to do that for ũm for simplicity. We start that by introducing the
following convention.

Let {ωi := (xis, x
i
d) ∈ ∂Ω × ∂Ω, i = 1, 2, · · · , N} be the finite set of source-detector

(S-D) pairs and let T ⊂ (0,∞) be a time interval in which we have measurement times.
Then, representing µf by vector a as in (4.1.10), (4.1.12), we can denote by ũm(a)(t∗, ωi)
the unique solution of the forward diffusion problem corresponding to any given input a in
a vector subspace A ⊂ Rd with ωi ∈ ∂Ω× ∂Ω and t∗ ∈ T . Unless otherwise specified, we
will always take d = 7 which is equal to the number of component of a of (4.1.12). Here
d is different from the d for xid and note that we have assumed A where the unknown a
belongs does not change even when S-D pairs and measurement times change. Taking the
measured data at K different times {t1, · · · , tK} denoted by t̂ ∈ T K , the inverse problem
which we considered consists of determining an unknown vector a from a time-resolved
data with N S-D pairs given as the following set of measurement data

H := (~h1, · · · ,~hN ) = (ũm(a)(t̂, ω1), · · · , ũm(a)(t̂, ωN )) (5.0.1)

in an N ×K dimensional real vector space HNK . The process of obtaining the finite set
of measurement data (5.0.1) can be described as

Fi := F (t̂, ωi) : A → HK , F (t̂, ωi)(a) := ũm(a)(t̂, ωi) = ~hi, i = 1, · · · , N (5.0.2)

with t̂ ∈ T K . For convenience, we rewrite (5.0.2) as a single equation

F := F (t̂, ω̂) : A → HNK , F (t̂, ω̂)(a) = H with ω̂ := (ω1, · · · , ωN ), (5.0.3)

which is a nonlinear mapping. Further by Lemma 4.1, it is easy to see that F(a) =
F (t̂, ω̂)(a) is analytic with respect to t̂, ω̂, a.

In the forthcoming arguments, unless otherwise stated, Br(a0) stands for an open ball
centered at a0 with radius r > 0 such that B := Br(a0) ⊂ A, where a0 will be used as an
initial guess of the iteration method.



50 Chapter 5. Local Analysis for FDOT Using Cuboid Approximation

5.1 The Determinant Condition

We first give the determinant condition. For given one time point t∗ ∈ T and d S-D
pairs ω̂∗ := (ω1, · · · , ωd), let

F̃ (t∗, ω̂∗)(a) := det (∇M(t∗, ω̂∗)(a)) (5.1.1)

with the column vector

M(t∗, ω̂∗)(a) := (ũm(a)(t∗, ω1), · · · , ũm(a)(t∗, ωd)) =: H∗, (5.1.2)

where ∇ is the gradient with respect to a. Then the determinant condition is given as

F̃ (t∗, ω̂∗)(a) 6= 0 in A′, (5.1.3)

where A′ is a subdomain of A. We will see later in subsection 5.2 that we can recover
a by knowing H∗ if the determinant condition is satisfied. Hence it is very important
to assure that the determinant condition can be satisfied for some time points and S-D
pairs.

We further consider multiple time points for S-D pairs defined as follows.

Definition 5.1. Given a finite set of time points {t1, t2, · · · , tK} ∈ T K , we say that
{t1, · · · , tK} × {ω1, · · · , ωd} is a set of parameters giving the measurements.

We would like to have a set of parameters giving the measurements and a finite open
covering of A′ such that the determinant condition (5.1.3) is satisfied in each open set of
this covering by taking some time point. The precise meaning of this statement is given
by the following definition.

Definition 5.2. Let A′ ⊂ A. A set of parameters giving the measurements {t1, · · · , tK}×
{ω1, · · · , ωd} is said F − complete in A′ if there exists an open cover of A′

A′ =
P⋃
p=1

A′p,

such that for each p there exist k ∈ {1, 2, · · · ,K} and ω̂∗ both depending on p such that

|F̃ (tk, ω̂∗)(a)| > 0, a ∈ A′p. (5.1.4)

A F -complete set of parameters giving the measurements provides a cover of A′ by
its finite subdomains, such that the determinant condition (5.1.3) is satisfied in each sub-
domain with different time point and S-D pairs. The following theorem gives a condition
when we can have a F -complete set of parameters giving the measurements.

Theorem 5.1. Suppose the determinant condition (5.1.3) holds in B at a time point t∗
and for the source-detector pairs ω1, · · · , ωd. Then for any B′ := Br′(a0) with 0 < r′ < r,{

(t1, t2, · · · , td) ∈ T d : {t1, · · · , td} × {ω1, · · · , ωd} is F − complete in B′
}

is open and dense in T d.

The proof of this theorem can be given in the same way as that of Theorem 3.50 in [5]
which basically uses the Whitney stratification for analytic sets. We will see in subsection
5.4, (1) that the determinant condition holds numerically for the S-D pairs chosen near



5.1. The Determinant Condition 51

but not distributed symmetrically around the target. However, it is not easy to prove this
theoretically. Since there is a very strong smoothing effect of diffusion for um after t = 0,
it is very natural to analyze the determinant condition for 0 < t � 1. Hence we will
derive the asymptotic expansions as t→ +0 for the derivatives of um given in Appendix.
Based on this we can have the asymptotic expansion of F ′(a) as t → +0 by choosing
7 different S-D pairs. Our speculation was that the dominant part of this asymptotic
expansion will satisfy the determinant condition. Unfortunately it was not the case. In
fact we will see that the three column vectors of the dominant part coming from the
derivatives with respect to a3, b3, P are mutually parallel to each other for any choice of
7 different S-D pairs. This could be related to the bad sensitivity of F(a) with respect
to a3, b3 which we will see in subsection 5.4, (2). Hence we will only prove theoretically
the following reduced determinant condition. That is under the assumption that we do
know a3, b3, we show that the determinant condition holds for the Fréchet derivative of
F(a) with respect to (a1, b1, a2, b2, P ) for some particular choice of 5 S-D pairs for any
0 < t∗ � 1.

As a major tool for our next argument, we give the asymptotic expansion of following
integral of the form

I(t) =

∫ t

0
(s(t− s))−αe−

kt
s(t−s) f(t, s) ds as t→ +0, (5.1.5)

where k > 0, α < 1 are constants and f(t, s) is a smoothly extendable function in s, t
with 0 ≤ t ≤ T which is not symmetric with respect to point s = t/2 of (0, t) for a
t ∈ (0, T ).

Lemma 5.1. For 0 < t� 1, (5.1.5) admits the following asymptotic expansion

I(t) ∼
∞∑
j=0

2−2j+1

(2j)!
t2(j−α)+1f (2j)(t, t/2)e−4kt−1 ×

[
4α−j−

3
2 Γ
(
j +

1

2

)
(kt−1)−(j+ 1

2
)

+4α−j−
5
2 (α− j − 3/2)Γ

(
j +

3

2

)
(kt−1)−(j+ 3

2
) + · · ·

]
.

(5.1.6)

Proof. By expanding f(t, s) into finite terms Taylor series around s = t/2 with respect
to s, f(t, s) admits the following asymptotic expansion

f(t, s) = f0(t) +
f ′(t, t2)

1!

(
s− t

2

)
+
f ′′(t, t2)

2!

(
s− t

2

)2
+ · · ·

for |s − t/2| � 1, where ′ denotes the derivative with respect to s. Since the function
s(t− s) in (0, t) is symmetric at s = t/2 and an even function with respect to this point,
we have

I(t) ∼ 2

∫ t/2

0
(s(t− s))−αe−

kt
s(t−s)

[
f0(t) +

f ′′(t, t2)

2!

(
s− t

2

)2
+
f (4)(t, t2)

4!

(
s− t

2

)4
+ · · ·

]
ds

∼
∞∑
j=0

2

(2j)!

∫ t/2

0
(s(t− s))−α

(
s− t

2

)2j
e
− kt
s(t−s) f (2j)(t, t/2) ds,
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where f (2j) denotes the derivative of f with respect to s of order 2j. By introducing the
new integration variable σ given by σ = s/t, this expansion becomes

I(t) ∼
∞∑
j=0

2

(2j)!
t2(j−α)+1f (2j)(t, t/2)

∫ 1/2

0
(σ(1− σ))−α

(
σ − 1

2

)2j
e
− kt−1

σ(1−σ) dσ

∼
∞∑
j=0

2

(2j)!
t2(j−α)+1f (2j)(t, t/2)H2j(t)

(5.1.7)

with

H2j(t) :=

∫ 1/2

0
(σ(1− σ))−α

(
σ − 1

2

)2j
e
− kt−1

σ(1−σ) dσ.

Here we first transform the integration variable σ to z = (σ(1 − σ))−1 which transform
0 ≤ σ ≤ 1/2 to 4 ≤ z <∞, and σ is given as σ =

(
1−
√

1− 4z−1
)
/2. Then, we further

transform z to ζ = z − 4, which yields the following Laplace transform

H2j(t) := 2−2je−4kt−1

∫ ∞
0

(ζ + 4)α−2(1− 4(ζ + 4)−1)j−1/2e−kt
−1ζ dζ

with Laplace variable kt−1.
Now recall Watson’s lemma at the infinity which says that if g ∈ C∞((0,∞)) is

bounded on [1,∞) and satisfies

g(ζ) ∼ ζµ
∞∑
n=0

gnζ
−n, 0 < ζ � 1 with µ > −1,

then ∫ ∞
0

e−ηζg(ζ) dζ ∼
∞∑
n=0

gnΓ(µ+ n+ 1)η−(µ+n+1), η � 1.

By applying this lemma to H2j(t), we have for 0 < t� 1 that

H2j(t) ∼ 2−2je−4kt−1

[
4α−j−

3
2 Γ

(
j +

1

2

)
(kt−1)−(j+ 1

2
)

+4α−j−
5
2 (α− j − 3/2)Γ

(
j +

3

2

)
(kt−1)−(j+ 3

2
) + · · ·

]
.

Then substituting this into (5.1.7), we obtain (5.1.6). The proof is complete.

Based on the asymptotic expansion of the complementary error function given as

√
πzez

2
erfc(z) ∼ 1 +

∞∑
m=1

(−1)m
(2m− 1)!!

(2z2)m
, z � 1, (5.1.8)

we first prepare the asymptotic expansions of the factors of ũm such as K3(0, y3; t −
s)K3(y3, 0; s) and ũi, i = 1, 2, 3 in order to derive the asymptotic expansion of the deriva-
tives of ũm. They are given as follows.

Lemma 5.2. For y3 > 0, t > s and given D, β, we have

K3(0, y3; t− s)K3(y3, 0; s) ∼ 4e
− y3

2t
4cDs(t−s) , t→ 0, (5.1.9)
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and

ũ3 :=

∫ t

0
K3(0, y3; t− s)K3(y3, 0; s) ds

∼ 1√
π

16cDs(t− s)
t

[
a3
−1e
− a3

2t
4cDs(t−s) − b3−1e

− b3
2t

4cDs(t−s)

]
, t→ 0.

(5.1.10)

Moreover, if the geometrical parameters {ai, bi, i = 1, 2} of the cuboidal target and the
positions of source (xs1, xs2, 0) ∈ ∂Ω and detector (xd1, xd2, 0) ∈ ∂Ω satisfy∣∣∣∣ai − sxdi + (t− s)xsi

t

∣∣∣∣ , ∣∣∣∣bi − sxdi + (t− s)xsi
t

∣∣∣∣ > ε (5.1.11)

with some 0 < ε� 1 and for any 0 ≤ s < t ≤ T , then we have

ũi ∼
1√
π

√
4cD(t− s)s

t


(
ai −

sxdi + (t− s)xsi
t

)−1

e
−
t

(
ai−

sxdi+(t−s)xsi
t

)2

4cD(t−s)s

−
(
bi −

sxdi + (t− s)xsi
t

)−1

e
−
t

(
bi−

sxdi+(t−s)xsi
t

)2

4cD(t−s)s

 , i = 1, 2.

(5.1.12)

Proof. For y3 > 0 and given positive constants β and D, we know

y3 + 2βcDs√
4cDs

→∞, s→ 0. (5.1.13)

By the expression

K3(y3, 0; s) = 2e−
y3

2

4cDs − 2β
√
πcDseβy3+β2cDs erfc

(
y3 + 2βcDs√

4cDs

)
,

and the asymptotic expansion (5.1.8) of the complementary error function, we have

K3(y3, 0; s) ∼ 2

(
1− 2βcDs

y3 + 2βcDs

)
e−

y3
2

4cDs , s→ 0.

Similarly we have

K3(0, y3; t− s) ∼ 2

(
1− 2βcD(t− s)

y3 + 2βcD(t− s)

)
e
− y3

2

4cD(t−s) , 0 < t− s→ 0.

Hence from these two asymptotic expansions, we immediately have (5.1.9).

By (5.1.9) and the transformation of integration variable y3 =

√
4cDs(t−s)

t z, we have
for t > s

ũ3 ∼ 4

∫ b3

a3

e
− ty3

2

4cDs(t−s) dy3 = 4

√
4cDs(t− s)

t

∫ (
4cDs(t−s)

t

)− 1
2 b3(

4cDs(t−s)
t

)− 1
2 a3

e−z
2

dz

= 4

√
4cDs(t− s)

t

{
erfc

((
4cDs(t− s)

t

)− 1
2

a3

)
− erfc

((
4cDs(t− s)

t

)− 1
2

b3

)}

∼ 1√
π

16cDs(t− s)
t

[
a3
−1e
− ta3

2

4cDs(t−s) − b3−1e
− tb3

2

4cDs(t−s)

]
, t→ 0,
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which gives (5.1.10). Now by the expression of ũi (i = 1, 2), we have

ũi = erfc

(√
t

4cD(t− s)s

(
ai −

sxdi + (t− s)xsi
t

))

− erfc

(√
t

4cD(t− s)s

(
bi −

sxdi + (t− s)xsi
t

))
.

Then under the condition (5.1.11), we can also prove (5.1.12) by using the asymptotic
expansion of the complementary error function. This completes the proof.

Based on Lemma 5.1 and Lemma 5.2, we can give the asymptotic expansions of the
derivatives of ũm as follows.

Theorem 5.2. Let the parameters of unknown cuboidal target {ai, bi, i = 1, 2} and the
positions of source xs = (xs1, xs2, 0) ∈ ∂Ω and detector xd = (xd1, xd2, 0) ∈ ∂Ω satisfy∣∣∣∣ai − sxdi + (t− s)xsi

t

∣∣∣∣ , ∣∣∣∣bi − sxdi + (t− s)xsi
t

∣∣∣∣ > ε, i = 1, 2 (5.1.14)

with some 0 < ε� 1 and for any 0 ≤ s < t ≤ T , and∣∣b1 − xd1 + xs1
2

∣∣ > ∣∣a1 −
xd1 + xs1

2

∣∣, ∣∣b2 − xd2 + xs2
2

∣∣ > ∣∣a2 −
xd2 + xs2

2

∣∣. (5.1.15)

Then we have the following asymptotic expansions of seven derivatives of ũm as t→ +0.

∂ũm
∂a1

∼ −PC1

a3

(
a2 −

xd2 + xs2
2

)−1

×
(

(a1 − xs1)2 + a3
2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(a1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.16)

∂ũm
∂b1

∼
PC1

a3

(
a2 −

xd2 + xs2
2

)−1

×
(

(b1 − xs1)2 + a3
2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(b1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.17)

∂ũm
∂a2

∼ −PC1

a3

(
a1 −

xd1 + xs1
2

)−1

×
(

(a2 − xs2)2 + a3
2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4Dt
+cµat

)
e−

∥∥∥∥(a1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.18)

∂ũm
∂b2

∼
PC1

a3

(
a1 −

xd1 + xs1
2

)−1

×
(

(b2 − xs2)2 + a3
2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(a1,b2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.19)



5.1. The Determinant Condition 55

∂ũm
∂a3

∼ −PC2

(
a1 −

xd1 + xs1
2

)−1(
a2 −

xd2 + xs2
2

)−1

×
(
a3

2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(a1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.20)

∂ũm
∂b3

∼ PC2

(
a1 −

xd1 + xs1
2

)−1(
a2 −

xd2 + xs2
2

)−1

×
(
b3

2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(a1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.21)

∂ũm
∂P

∼ C3

(
a1 −

xd1 + xs1
2

)−1(
a2 −

xd2 + xs2
2

)−1

× t

a3

(
a3

2

4cDt

)− 1
2

e
−
(
‖xd−xs‖2

4cDt
+cµat

)
e−

∥∥∥∥(a1,a2,a3)−xd+xs
2

∥∥∥∥2

cDt , (5.1.22)

where ‖ξ‖ is the Euclidean distance of any three dimensional vector ξ, and C1 := cγ
16π7/2 Γ

(
1
2

)
,

C2 := cγ
32π3 Γ

(
1
2

)
, C3 := γc2D

32π7/2 Γ
(

1
2

)
are constants which are independent of time t,

cuboidal target and S-D pair.

Proof. We will only show how to derive the asymptotic expansion for ∂ũm
∂a1

. First note
that we can easily see ∂ũm

∂a1
in the form

∂ũm
∂a1

= PC

∫ t

0

−
√
t

s(t− s)
√
πcD

e
− (t(a1−xs1)−s(xd1−xs1))2

4cDts(t−s) u2u3 ds (5.1.23)

as in Appendix with C := C(xd1, xs1, xd2, xs2, t) given in Theorem 4.1. Then taking
account of the condition (5.1.14) and using Lemma 5.2, we have

∂ũm
∂a1

∼ −32PcDC

π
3
2 t

∫ t

0

√
s(t− s)

(
1

a3
e
−((a1−xs1)2+a3

2)t
4cDs(t−s) − 1

b3
e
−((a1−xs1)2+b3

2)t
4cDs(t−s)

)
f(t, s) ds

with

f(t, s) := e
−−2ts(a1−xs1)(xd1−xs1)+s2(xd1−xs1)2

4cDts(t−s)

×


(
a2 −

sxd2 + (t− s)xs2
t

)−1

e
−

(
a2−

sxd2+(t−s)xs2
t

)2
t

4cD(t−s)s

−
(
b2 −

sxd2 + (t− s)xs2
t

)−1

e
−

(
b2−

sxd2+(t−s)xs2
t

)2
t

4cD(t−s)s

 ,

which is not symmetric in (0, t) with respect to the point s = t/2. Hence to exclude the
integral in the above asymptotic expansion, we need to use Lemma 5.1.

To be precise let

k1 :=
(a1 − xs1)2 + a3

2

4cD
, k2 :=

(a1 − xs1)2 + b3
2

4cD
, (5.1.24)
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and apply Lemma 5.1 with α = −1
2 . Then we have

∂ũm
∂a1

∼
−Pcγ
2π7/2

e
−
(

(xd1−xs1)2+(xd2−xs2)2

4cDt
+cµat

)
∞∑
j=0

2−2j+1

(2j)!
t2jf (2j)(t, t/2)

×
{

1

a3
e−4k1t−1 × [4−2−jΓ(j + 1/2)

(
k1t
−1
)−(j+ 1

2
)

−4−3−j (j + 2) Γ
(
j + 3/2

)(
k1t
−1
)−(j+3/2)

+ · · · ]

− 1

b3
e−4k2t−1 × [4−2−jΓ(j + 1/2)

(
k2t
−1
)−(j+1/2)

−4−3−j(j + 2)Γ(j + 3/2)(k2t
−1)−(j+3/2) + · · · ]

}
∼ − Pcγ

16π7/2
e
−
(

(xd1−xs1)2+(xd2−xs2)2

4cDt
+cµat

)
f (0)

(
t,
t

2

)
×
{

1

a3
e−4k1t−1

Γ
(
1/2
)(
k1t
−1
)− 1

2 − 1

b3
e−4k2t−1

Γ
(
1/2
)(
k2t
−1
)− 1

2

}
, t→ 0,

where

f (0)
(
t,
t

2

)
= e−

−4(a1−xs1)(xd1−xs1)+(xd1−xs1)2

4cDt


(
a2 −

xd2 + xs2
2

)−1

e−

(
a2−

xd2+xs2
2

)2

cDt

−
(
b2 −

xd2 + xs2
2

)−1

e−

(
b2−

xd2+xs2
2

)2

cDt

 .

(5.1.25)
To finish the proof recall the condition (5.1.15) and note that k2 > k1 due to b3 > a3.

Then just extract the dominant part to have

∂ũm
∂a1

∼ − Pcγ

16π7/2a3
Γ
(1

2

)(
a2 −

xd2 + xs2
2

)−1((a1 − xs1)2 + a3
2

4cDt

)−1/2

× e
−
(

(xd1−xs1)2+(xd2−xs2)2

4cDt
+cµat

)
e−

(
a1−

xd1+xs1
2

)2

cDt e−

(
a2−

xd2+xs2
2

)2

cDt e−
a3

2

cDt , t→ 0.

Thus we have proved (5.1.16).

Now we are ready to give the validity of the reduced determinant condition. Let’s
begin by giving the difference of the reduced determinant condition to the determinant
condition. That is in the definition (5.1.1) of F̃ (t∗, ω̂∗), take d = 5 and assume that a3, b3
are known so that we can fix them. Consequently we interpret that ∇ in the definition
(5.1.1) of F̃ (t∗, ω̂∗) is with respect to (a1, b1, a2, b2, P ). Next we give some theoretical
result on the validity of the reduced determinant condition.

Theorem 5.3. Let a† = (a1, b1, a2, b2, a3, b3, P ) ∈ A be the cuboidal target and ω̂∗ =
{ωk :=

(
xks , x

k
d

)
∈ ∂Ω× ∂Ω, k = 1, 2, · · · , 5} be the set of source-detector pairs satisfying

the conditions in Theorem 5.2. Assume that a3 is very small. Further we will choose ω̂∗
in a way described in the proof of this theorem. Then there exists r > 0 such that

F̃ (t∗, ω̂∗)(a) 6= 0, a ∈ B := Br(a
†) for any fixed 0 < t∗ � 1, (5.1.26)

where F̃ (t∗, ω̂∗) is defined by (5.1.1).
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Proof. We firstly recall that the S-D pair is denoted by ω = (xs, xd) with xs = (xs1, xs2)
and xd = (xd1, xd2). For simplicity, we further denote

ξ1 := xs1, η1 :=
xd1 + xs1

2
, ξ2 := xs2, η2 :=

xd2 + xs2
2

.

We assume X := (ξ1, η1, ξ2, η2) satisfying (5.1.14) and (5.1.15). Take 5 of such X denoted
by Xk := (ξk1 , η

k
1 , ξ

k
2 , η

k
2 ) for k = 1, 2, · · · , 5.

By factoring out some common constants and

√
4cDt, e−

(‖xkd−xks‖2

4cDt
+cµat

)
, e−

∥∥∥∥∥(a1,a2,a3)−
xkd+xks

2

∥∥∥∥∥
2

cDt , k = 1, · · · 5

and ignoring very small a2
3 in the dominant part of the asymptotic exapansion of F̃ (t∗, ω̂∗)(a),

then the dominant part becomes

A :=


~A1
′

~A2
′

~A3
′

~A4
′

~A5
′

 , (5.1.27)

where the row vectors ~Ak
′

(k = 1, 2, · · · , 5) are defined by

~Ak
′
:=
(

(a2 − ηk2 )−1(a1 − ξk1 )−1, (a2 − ηk2 )−1(b1 − ξk1 )−1,

(a1 − ηk1 )−1(a2 − ξk2 )−1, (a1 − ηk1 )−1(b2 − ξk2 )−1, (a1 − ηk1 )−1(a2 − ηk2 )−1
)
,

respectively. Here for simplicity, we have mod out what we have factored out.
To have the determinant conditions, we need to show that it is possible to choose

Xk(k = 1, 2, · · · , 5) in some general way satisfying det(A) 6= 0. This should be possible
because 20 free parameters in Xk(k = 1, 2, · · · , 5). For instance, we can take Xk :=
(ξk1 , ξ

k
2 , η

k
1 , η

k
2 ) for k = 1, 2, 3 such that the row vectors

~Bk
′
=
(

(a2 − ηk2 )−1(a1 − ξk1 )−1, (a1 − ηk1 )−1(a2 − ξk2 )−1, (a1 − ηk1 )−1(a2 − ηk2 )−1
)

for k = 1, 2, 3 are linearly independent. Then, appropriately take X4, X5 to make the
condition det(A) is satisfied, where A is defined by (5.1.27) with respect to the selected
5 S-D pairs in above way. The proof is complete.

We note that we have given in Theorem 5.3 the verification of the reduced determinant
condition only for some extreme choice of S-D pairs.

5.2 Local Solvability and Its Lipschitz Stability

We simply denote M(t∗, ω̂∗)(a) by M(a) for fixed t∗ ∈ T , ω̂∗ = (ω1, · · · , ωd) and
consider the associated operator M : B 3 a 7→ M(a) ∈ Rd. It is clear by the expression
(4.1.13) that M is continuous in B and its Fréchet derivative M ′ is locally Lipschitz
continuous in B in terms of the expressions of ∇ũm shown in Appendix. Suppose the
determinant condition (5.1.3) holds in B at a time point t∗ and for the source-detector
pairs ω1, · · · , ωd. Then M ′ is invertible and its inverse (M ′)−1 is locally continuous in B.
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Moreover, there exists a constant C̃ > 0 such that

‖G(a2,a0)− G(a1,a0)‖ ≤ C̃ ‖a2 − a1‖ , a1,a2 ∈ B, (5.2.1)

where

G(a,a0) :=

(∫ 1

0
M ′(a0 + θ(a− a0)) dθ

)−1

, a ∈ B. (5.2.2)

Now let a† satisfy
M(a†) = H∗, a† ∈ B, (5.2.3)

where H∗ is defined by (5.1.2). Then we can prove the local solvability and local Lipschitz
stability of the inverse problem. More precisely we first have from the inverse mapping
theorem the following local solvability (see Theorem 9.23 in [9]).

Theorem 5.4. Under the same condition in Theorem 5.1, there exist ρ > 0, r̃ > 0 such
that M(ã) = H̃∗ is uniquely solvable in ã ∈ Br̃(a†) ⊂ B for any H̃∗ ∈ Bρ(H∗).

Theorem 5.4 means that if the given measurement data are near by exact measurement
data there exists unique solution which is also close to the exact solution.

By (5.2.1)-(5.2.2) we can immediately have

Theorem 5.5. Under the same condition in Theorem 5.1, for any a1,a2 ∈ B, H∗1 , H∗2 ∈
Bρ(H

∗), if M(a1) = H∗1 , M(a2) = H∗2 are satisfied, there exists a constant CF > 0 such
that

‖a1 − a2‖ ≤ CF ‖H∗1 −H∗2‖ . (5.2.4)

5.3 Convergence of Levenberg-Marquardt method

In practice, we do not know the data exactly. Instead, we only have an approximate
measured data Hδ ∈ HNK satisfying∥∥∥Hδ −H

∥∥∥ ≤ δ (5.3.1)

with δ > 0. For inversion, we apply Levenberg-Marquardt (LM) method to solve (5.0.3)
iteratively by the following procedure

aδk+1 = aδk +
(
F ′(aδk)∗F ′(aδk) + αkI

)−1
F ′(aδk)∗(Hδ −F(aδk)), (5.3.2)

where F ′(z) is the Fréchet derivative of F(z) defined by (5.0.3) and F ′(z)∗ is its adjoint.
LM iteration scheme has a regularization parameter αk at each k+ 1 step. This is chosen
in such a way that aδk+1 − aδk is the minimum norm solution of∥∥∥Hδ −F(aδk)−F ′(aδk)(aδk+1 − aδk)

∥∥∥ = c1

∥∥∥Hδ −F(aδk)
∥∥∥ (5.3.3)

with any fixed 0 < c1 < 1 (see [13]). Concerning the convergence of LM iteration scheme,
it is well-known that ak converges to a solution a of F(a) = H (δ = 0) as k → ∞ if we
have the so called tangential cone condition∥∥F(a)−F(ã)−F ′(a)(a− ã)

∥∥ ≤ c2 ‖a− ã‖ ‖F(a)−F(ã)‖ , a, ã ∈ B, (5.3.4)

where F(a†) = H.
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Remark 5.1. The tangential cone condition follows from the Hölder type stability esti-
mate with Hölder exponent larger than 1/2 (see [10]). In particular, for the case F = M ,
the tangential cone condition follows from the local Lipshitz stability estimate (5.2.4).
More precisely we have the following theorem.

Theorem 5.6. Suppose F = M with some fixed t∗ ∈ T and ω̂∗ such that the determinant
condition holds. Then the tangential cone condition (5.3.4) holds.

Proof. For any a, ã ∈ B, observe that∥∥F(a)−F(ã)−F ′(a)(a− ã)
∥∥

=

∥∥∥∥(∫ 1

0
F ′(ã + θ(a− ã)) dθ

)
(a− ã)−F ′(a)(a− ã)

∥∥∥∥
=

∥∥∥∥(∫ 1

0
(F ′(ã + θ(a− ã))−F ′(a)) dθ

)
(a− ã)

∥∥∥∥
≤

∥∥∥∥∫ 1

0
(F ′(ã + θ(a− ã))−F ′(a)) dθ

∥∥∥∥ ‖a− ã‖ .

By the Lipschitz continuity of F ′ we have∥∥∥∥∫ 1

0
(F ′(ã + θ(a− ã))−F ′(a)) dθ

∥∥∥∥ ≤
∫ 1

0

∥∥F ′(ã + θ(a− ã))−F ′(a)
∥∥dθ ‖a− ã‖

≤ CL

∫ 1

0
(1− θ) dθ ‖a− ã‖ ≤ CL ‖a− ã‖

due to (ã + θ(a− ã))− a = (1− θ)(ã− a) and
∫ 1

0 (1− θ) dθ ≤ 1, where CL is a positive
constant. By (5.2.4), there exists a constant CF such that ‖a− ã‖ ≤ CF ‖F(a)−F(ã)‖.
Hence we complete the proof by setting c2 := CLCF .

In terms of the expressions of ∇ũm given in Appendix, F ′(a) is uniformly bounded
in B. Then, by the tangential cone condition, we have the convergence of LM iteration
scheme.

Theorem 5.7. Assume the tangential cone condition is satisfied. For exact data H, if
the initial guess a0 satisfies ∥∥∥a0 − a†

∥∥∥ < c1

c2
, (5.3.5)

then the sequence ak, k = 0, 1, · · · defined by (5.3.2) converges to a solution a of F(a) = H
as k →∞. Moreover, if the kernel condition

N (F ′(a†)) ⊂ N (F ′(a)) for all a ∈ B (5.3.6)

holds, then ak → a† as k →∞. Here for instance N (F ′(a)) denotes the kernel of F ′(a).
(See, e.g. [11] and the references therein.)

This theorem means that the exact solution a† ∈ B of equation (5.0.3) with exact
data H can be recovered by LM iteration scheme.

For the noisy data Hδ, we have to set up some stopping rule to terminate the iteration
appropriately. The most commonly used stopping rule is the discrepancy principle which
requires to stop the iteration at the first iteration index k∗ := k∗(δ,H

δ) for which∥∥∥Hδ −F(aδk∗)
∥∥∥ ≤ λδ (5.3.7)
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with some fixed constant λ > 1/c1.

Theorem 5.8. Suppose the tangential cone condition for F ′(a) is satisfied in B. Let k∗
be chosen according to the stopping rule (5.3.7) with λ > 1/c1. Then starting from the
initial guess a0 which satisfies ∥∥∥a0 − a†

∥∥∥ ≤ c1λ− 1

c2(1 + λ)
, (5.3.8)

the discrepancy principle (5.3.7) terminates LM iteration scheme with αk determined from
(5.3.3) after finitely many iterations k∗ and we have

k∗(δ,H
δ) = O(1 + | ln δ|).

Further the sequence aδk, k = 0, 1, · · · converges to a solution a of the equation F(a) = H
as δ → 0 (see [16]). Moreover, if the kernel condition

N (F ′(a†)) ⊂ N (F ′(a)) for all a ∈ B (5.3.9)

holds, then aδk → a† as δ → 0, k →∞ (see [11]).

From Theorem 5.8, under some restrictions, the sequence aδk for δ ≥ 0 can converge
to a solution a of F(a) = Hδ. However, it can be observed also that the convergence
heavily depends on the initial guess a0, i.e., a good initial guess is essential to ensure the
convergence to expected solution in LM iteration scheme. In addition, the convergence
speed depends also on the initial guess, i.e., a good initial guess is also important to save
the number of iteration, see, e.g. [10].

Thus, based on above discussions, we summarize our main task to be answered are
the following two questions.

• 1. How to select a good set of parameters giving the measurements such that the
determinant condition (5.1.3) is valid.

• 2. How to obtain a stable inversion and accelerate the convergence speed (select a
good initial guess).

5.4 Numerical implementations

In this section, we verify the results in section 5.2 numerically. Let

a = (a1, b1, a2, b2, a3, b3, P ) = (−1, 1,−3, 3, 10, 12, 0.01) (5.4.1)

be a cuboidal target, and let the other physical parameters are the same as (2.3.3).

Numerically testing the determinant condition

For simplicity, we consider a set of source-detector (S-D) pairs {ωi = (Si, Di) ∈
∂Ω×∂Ω, i = 1, · · · , 10} as shown in Figure 5.1, (a), where the corresponding sources and
detectors are Si := (xis1, 12, 0) and Di := (xid1,−8, 0) with {xis1}i=1:10 = {xid1}i=1:10 =:
{xi1}i=1:10 = {−28,−24,−20,−16,−12,−8,−4, 5, 10, 15}. We note here they are not
symmetrical about the cuboidarl target. Let tipeak be the peak time corresponding to i-th
S-D pair ωi, where we expect the intensity of emission light on time tipeak is strongest in
the time interval (0, T ). By arbitrarily choosing 7 S-D pairs from these 10 S-D pairs, there
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are 120 choices. Let {ωk1 , ωk2 , · · · , ωk7} be the k-th chosen S-D pairs, and we compute
each corresponding rank of sensitivity matrix and plot its value to have Figure 5.1, (b).
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Figure 5.1: (a) A set of S-D pairs and the projection of cuboidal target to ∂Ω; (b) The rank of
sensitivity matrix with different selected 7 S-D pairs.

From Figure 5.1, it can be observed that the determinant condition is valid for the
selected 7 S-D pairs which are not distributed symmetrically about the cuboidal target. In
other words, the determinant condition will be not valid if there exist two S-D pairs among
the selected 7 ones are distributed symmetrically about the cuboidal target. For instance,
we firstly choose 6 S-D pairs which are S1-D1, S2-D2, S3-D3, S4-D4, S5-D5 and S6-D6
as shown in Figure 5.1. However, we let the 7-th S-D pair locate at S̄7 = (8, 12, 0) and
D̄7 = (8,−8, 0). Obviously, S6-D6 and S̄7-D̄7 are symmetrical about the cuboidal target
such that the 7 S-D pairs selected in this way don’t satisfy the determinant condition.

The sensitivity analysis
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Figure 5.2: The sensitivities on different parameters on tstart and tpeak.

We can easily speculate from LM iteration scheme (5.3.2), the property of sensitivity
matrix F ′ has some strong influence on recovering the unknown target. To see this take
measurement time on tpeak and S-D pair ω with point source S = (0, 10, 0), detector
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D = (0,−10, 0), and examine the behaviors of ∇ũm(a)(tpeak, ω) with different a. From
(4.1.13), it is easy to obtain the expressions of ∇ũm(a)(tpeak, ω) given in Appendix and
∂ũm(a)
∂P is a positive constant. As before, let tpeak be the peak time. We consider the

sensitivities on different parameters such as a1, b1, a2, b2, a3, b3 on time tpeak and tstart :=
tpeak − 10∆t with ∆t = 6.67 ps. The values are shown in Figure 5.2, respectively.

It can be observed from Figure 5.2 that the sensitivities on a1 and b1 are symmetric,
and the same for parameters a2 and b2. This is because the source and detector are
symmetric about the target. On the other hand, it can be seen also that how the sensitivity
changes with respect to a3 is not uniform, i.e., it doesn’t change monotonically, which
makes LM iteration scheme unstable. Hence, recovering the parameters a3 and b3 of the
unknown cuboidal target is generally difficult, i.e, the recovery of the thickness of the
target should be unstable than the recovery of its other geometric information such as
the length and width (denoted by b1 − a1 or b2 − a2). We will test that in Chapter 6.

Comparison of the set of parameters by SVD

Let t̂ := {t1, t2, · · · , tK} ∈ T K be the finite set of measurement times. By Definition
5.1 we say {t1, · · · , tK} × {ω1, · · · , ωd} is a set of parameters giving the measurements.
Then, for given a ∈ B ⊂ A ⊂ Rd, by (5.0.1)-(5.0.3) the sensitivity matrix F ′ with respect
to the set of parameters is

F ′(t̂, ω̂)(a) := ∇H, (5.4.2)

where ω̂ := (ω1, ω2, · · · , ωN ) and H is given by (5.0.1).
For ` = 1, 2, let t̂` ∈ T K` , ω̂` = (ω`, · · · , ωN`) and denote F ′` := F ′(t̂`, ω̂`) be sensitivity

matrix with N`K` rows and d columns. Then we introduce the condition

F ′1
∗F ′1 ≥ F ′2

∗F ′2 (5.4.3)

to say the set of parameters in F ′1 is better than the one in F ′2. For instance, letting the
measured time be tpeak, we suppose the set of S-D pairs in F ′1 be {S4-D4, S5-D5, S6-D6,
S7-D7, S8-D8, S9-D9, S10-D10} shown in Figure 5.1, (a), which are not symmetrical
about the cuboidal target. Further we suppose the set of S-D pairs in F ′2 be symmetrical
about the cuboidal target but having the same x1-axis with the one in F ′1. By the SVD
test we have that F ′1

∗F ′1 − F ′2
∗F2 is positive defined, which means that the condition

(5.4.3) is valid. In fact, the symmetrical S-D pairs provide similar information. Hence
the set of parameters in F ′1 is better than the one in F ′2.

5.5 Chapter Summary

We considered the local analysis of the cuboid approximation including local solvabil-
ity and its Lipschitz stability. We also gave a clear framework to our whole argument
and useful concepts, conditions which can orient numerical study and interpret the nu-
merical results in following Chapter 6. For example the condition for the convergence of
LM algorithm and sensitivity analysis. Concerning the theoretical study of determinant
condition, it should be remarked that the numerical verification of this condition suggests
the following. If we look at the second term of the asymptotic expansions for ∂ũm

∂a3
, ∂ũm∂b3

and ∂ũm
∂P , we may be able to prove the determinant condition theoretically.
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Chapter 6

Inversion Strategy and Numerical
Inversions Using Simulation Data

In this chapter, based on the discussions given before, we propose an inversion strat-
egy providing an initial guess a0 in section 6.1, which can guarantee successful recovery
and accelerate the speed of convergence of LM iteration scheme. Then we verify the effec-
tiveness of our proposed strategy by numerical inversion using simulated data in section
6.2 and experimental data in Chapter 7.

6.1 Step-wise Inversion Strategy

Our inversion strategy consists of the following three steps:

• Step 1. (prior estimation)
By comparing the emission intensity I(ω) defined by (4.3.1) for each S-D pair, we
first look for Γ on ∂Ω. Here Γ denotes the projection of the unknown target to ∂Ω.

• Step 2. (fitting by cube)
Let X = (X1, X2, X3) and L denote the center and side length of cube acube,
respectively. We expect that this cube could be an approximation of the unknown
target. Then acube can be described by

acube = (X1, X2, X3, L,Q), (6.1.1)

where Q > 0 is the unknown absorption coefficient. Choose the initial guess for X1,
X2 inside Γ and variate X1, X2, X3, L,Q to fit to the measurement by LM iteration
scheme. Then we will get a cube

acube
rec = (X∗1 , X

∗
2 , X

∗
3 , L

∗, Q∗) (6.1.2)

which gives some good fit to the measurement. The number of iteration used in
this scheme will be refered by J with 0 < J ≤ Jmax.

• Step 3. (cuboid approximation)
Let the recovered cube (6.1.2) in Step 2 be the initial guess acuboid

0 in this step, that
is

acuboid
0 = (X∗1 −

L∗

2
, X∗1 −

L∗

2
, X∗2 −

L∗

2
, X∗2 +

L∗

2
, X∗3 −

L∗

2
, X∗3 +

L∗

2
, Q∗). (6.1.3)

Then by further applying LM iteration scheme again, we numerically recover a
cuboid

acuboid
rec = (a∗1, b

∗
1, a
∗
2, b
∗
2, a
∗
3, b
∗
3, P

∗). (6.1.4)
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We will refer by N with 0 < N ≤ Nmax the number of iteration used in this scheme.

Step 1 provides prior information to set the initial guess for Step 2. The advantages
of cube used in Step 2 are that it can be described by just using five parameters and these
may not heavily depend on the initial guess. We expect that recovered cube can refine
the initial guess obtained in Step 1 so that it can be effectively used as the initial guess in
the next step. Using the recovered cube in Step 2 as an initial guess, Step 3 is to recover
the cuboid, which will give us the approximate geometric information such as position
and size of unknown target. Thus, step by step, we expect to obtain a stable inversion
and accelerate the convergence speed.

6.2 Numerical Inversion Using Simulation Data

We will verify our inversion strategy with three steps is essential and effective in
detail for the zero-lifetime case (τ = 0). Since the emission light for any fixed τ > 0
is just the convolution of some target-independent function with zero-lifetime emission
light ũm, such a numerical verification can also reveal the effectiveness of our inversion
strategy for the cases of τ > 0. To be precise we will test two examples. For those, if not
specified, we always take the physical parameters as c = 0.219 mm/ps, µ′s = 1.0 mm−1,
µa = 0.01 mm−1, β = 0.5493 mm−1, and we will set γ = 1.

Example 6.1. (ellipsoidal target) Suppose an ellipsoidal fluorescence target is set at
(0, 0, 11) and the target is assigned the absorption of light by fluorphore with µf = P =
0.02 mm−1 inside the ellipsoid defined by

E :=
{

(x1 − x∗1)2/A2 + (x2 − x∗2)2/B2 + (x3 − x∗3)2/C2 ≤ 1
}
, (6.2.1)

where A = C = 1.5 mm, B = 3 mm and x∗ = (x∗1, x
∗
2, x
∗
3) = (0, 0, 11) is the center of E.

Example 6.2. (cylindrical target) Suppose a cylindrical fluorescence target is set at
(0, 0, 10) and the target is assigned the absorption of light by fluorphore with µf = P =
0.02 mm−1 inside the cylinder defined by

Ẽ :=
{
x ∈ Ω : |x1 − x∗1| ≤ A, (x2 − x∗2)2 + (x3 − x∗3)2 ≤ R2

}
, (6.2.2)

where A = 4 mm, R = 1 mm and x∗ = (x∗1, x
∗
2, x
∗
3) = (0, 0, 10) is the center of Ẽ.

6.2.1 Good sets of measurements

For ellipsoidal target, we calculate the photon density of emission light by

ũellipsoid
m = γPABCD

∫ t

0
ds

∫ R

0
r2 dr

∫ π

0
sinϕdϕ

∫ 2π

0
K(xd, y; t− s)K(y, xs; s) dθ,

(6.2.3)
where P = 0.02 mm−1 and y = x∗+ r(A sinϕ cos θ,B sinϕ sin θ, C cosϕ). For cylindrical
target, its photon density of emission light is calculated by

ũcylinder
m = γPD

∫ t

0
ds

∫ R

0
r dr

∫ 2π

0
dθ

∫ A

−A
K(xd, y; t− s)K(y, xs; s) dϕ, (6.2.4)

where P = 0.02 mm−1 and y = x∗ + (ϕ, r cos θ, r sin θ).
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Figure 6.1: (Left) The holder of source-detector pairs at a position P1; (Right) All positions on
the boundary surface.

To obtain more data we scan over ∂Ω and measure several discrete points by moving
the holder. This measurement done at each place is called the scan step. The holder has
two sources and two detectors. We move this holder without any rotation starting from
having its center at P1 and then moving it to P2, P3, · · · , P8 successively (see the right
figure of Figure 6.1). For example, when the center of the holder is at P1, we conduct
measurements for the four source-detector pairs: (S1, D1), (S1, D2), (S2, D1), (S2, D2) as
shown in the left figure of Figure 6.1. Hence in this scanning we have 8 scan steps and
there is four measurements for four source-detector pairs at each scan step. Therefore we
have 32 different S-D pairs denoted by ω̂ in total for this scanning. To be precise about the
location of sources and detectors, let Pi = (xip1, x

i
p2), i = 1, 2, · · · , 8 denote the positions

of holder in the scanning. Then when the holder center is at Pi, the corresponding sources
and detectors are located at

S1 = (xip1, x
i
p2 + 10

√
3), S2 = (xip1, x

i
p2 − 10

√
3), (6.2.5)

and
D1 = (xip1 − 10, xip2), D2 = (xip1 + 10, xip2). (6.2.6)

Now we will explain what we think as good sets of measurements in our study of
FDOT. For Example 6.1 and Example 6.2, we use data local in time from the temporal
point spread function. That is, for each S-D pair, we select the peak time tpeak and
choose 20 time points t̂ := [tpeak − 10∆t, tpeak + 9∆t] with time step ∆t, such that the
measurement data H is a 640-dimensional vector. The noisy data Hδ of H is described
by

Hδ = H(1 + ζε), (6.2.7)

where ε > 0 is a noise level and ζ is the random standard Gaussian noise.
In the succeeding subsections, we will recover the unknown parameters from noisy data

(6.2.7). It was shown that local data types are more robust to noise than global data
types, and should provide enhanced information to the inverse problem [56]. Furthermore,
it is effective to recover the unknown target with good quality by applying a large number
of S-D pairs . Because the noise is random in the measurement data, we think that the
above sets of measurements are good enough even if they are symmetrically distributed
around the target. Hence we will concern about taking such good sets of measurements
for the inversion.

In the sequel, we denote by acube
exact and acube

noisy to distinguish the recovered cube by LM
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iteration scheme in Step 2 using the exact data and noisy data, respectively. Similarly,
we make a distinction by acuboid

exact and acuboid
noisy in Step 3. The fluorescence target which

we try to recover may have different shapes and we do not know its exact shape. In our
cuboid approximation, we will regard acube

exact and acuboid
exact as the optimal approximation

to unknown target in Step 2 and Step 3, respectively. Then, to show the accuracy and
stability of the recovery using our strategy, we define the approximate L2 relative error
in recoveries by

Err :=
∥∥∥acube

exact − acube
noisy

∥∥∥
2
/
∥∥∥acube

exact

∥∥∥
2

(6.2.8)

and the approximate L2 relative error in measurement data by

err :=
∥∥∥F (t̂, ω̂)(acube

noisy)−Hδ
∥∥∥

2
/
∥∥∥Hδ

∥∥∥
2
, (6.2.9)

where F (t̂, ω̂)(acube
noisy) is defined by (5.0.3). In parallel, we do the similar definitions for

acuboid
exact and acuboid

noisy .
Now we are ready to apply our proposed inversion strategy to give our recovery. We

will apply the LM algorithm implemented on Matlab. An local minimum can be found
as long as arrived at the given number of maximum iterations Jmax = Nmax = 800,
or the length of the calculated step less than 1 × 10−20, or the reduction of sum of
squares of residual fall below the prescribed convergent precision 1 × 10−6. Further all
the computations are performed on a Windows PC or Mac PC.

6.2.2 Results of inversion for ellipsoidal target

In this example we focus on the robustness of our strategy against the initial guesses
and the effectiveness of accelerating the convergence speed.

Step 1: We first compare the intensities of zero-lifetime emissions given as (4.3.1)
with T = 3.3 ns with ∆t = 6.67 ps. The emission intensities of S-D pairs at P1, P3, P5

and P7 shown in Figure 6.2 are listed in Table 6.1, respectively.

Table 6.1: The emission intensities (×10−8) with different S-D pairs in Ex. 6.1.

P1(-10,10) P3(-10,-10) P5(10,-10) P7(10,10)
S1-D1: 0.100 S1-D1: 3.900 S1-D1: 58.84 S1-D1: 1.610
S1-D2: 1.610 S1-D2: 58.84 S1-D2: 3.900 S1-D2: 0.100
S2-D1: 3.900 S2-D1: 0.100 S2-D1: 1.610 S2-D1: 58.84
S2-D2: 58.84 S2-D2: 1.610 S2-D2: 0.100 S2-D2: 3.900

By the results shown in Figure 4.5 in section 4.3, the emission intensity for S-D pairs
near by the target are stronger than the others. From Table 6.1, we can see that the pairs
S2-D2, S5-S6, S9-D9 and S14-D13 have the strongest emission intensities. These lead us
to a very natural speculation. That is the projection of the center of ellipsoidal target
to ∂Ω should be located in Part 4, Part 1, Part 2 and Part 3 which correspond to the
positions of holder at P1, P3, P5 and P7. In fact this is true for Figure 6.2. Thus we
speculate that the projection of the center of target to ∂Ω should be located inside the
domain

Γ := (−10, 10)× (−10, 10) ⊂ ∂Ω, (6.2.10)

which is shown in Figure 6.3. In the following inversion, we will use this Γ as a prior
information of unknown target, which will be important for the choice of initial guess in
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Step 2. Here we note that we only compared the emission intensities with respect to the
holder at P1, P3, P5 and P7 which distribute around the edge of tissue surface to obtain
the domain Γ. Actually we can further narrow Γ by comparing emission intensities if we
have enough scan steps at the boundary surface of tissue.
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Figure 6.2: The S-D pairs corresponding to the positions of holder at P1, P3, P5 and P7 in
Ex.6.1, respectively.
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Step 2: By Γ we set a bound for initial value acube
0 = (X0

1 , X
0
2 , X

0
3 , L0, Q0) by

(X0
1 , X

0
2 ) ∈ Γ, 0 < X0

3 < 30, 0 < L0 < min{20, 2X0
3}, 0 < Q0 < 10, (6.2.11)

where the bound for X0
3 , L0 and Q0 are not precise. Now we apply the LM iteration

scheme to fit this acube to the measurement.
By arbitrarily setting the initial guess from the bound (6.2.11), we have

acube
exact = (0, 0, 11.24, 4.089, 0.0086)

with err = 3.60e−3. Using the same measurement with noise level ε = 5%, the recovered
results obtained in a similar way with different initial guesses are listed in Table 6.2.

Table 6.2: Recoveries using different initial guesses in Step 2 for Ex. 6.1 (ε = 5%).

acube
0 acube

noisy Err err J

(−8,−8, 4, 4, 0.1) (−0.02, 0.01, 11.18, 3.78, 0.011) 2.6e− 2 5.2e− 3 39
(−15,−15, 4, 4, 0.1) (−0.02, 0.01, 11.18, 3.78, 0.011) 2.6e− 2 5.2e− 3 171
(−8,−8, 16, 8, 10) (−0.02, 0.01, 11.18, 3.78, 0.011) 2.6e− 2 5.2e− 3 89

(−15,−15, 16, 8, 10) (−0.02, 0.01, 11.18, 3.78, 0.011) 2.6e− 2 5.2e− 3 189

From Table 6.2, it can be observed that the recovered results (Step 2) do not heavily
depend on the initial guesses. Under the same noisy measurement, the inversions from
different initial guesses are similar. It means that Step 2 enhanced the robustness of LM
algorithm against different initial guesses for noise even if the initial guess of the target
is chosen very far away with the target. However, it can be also seen that the choice
of initial guess has a strong impact on the iteration number J . For instance, letting
X0

3 = 4, L0 = 4 and Q0 = 0.1 are fixed, the iteration number is J = 39 for the case
(X0

1 , X
0
2 ) = (−8,−8) ∈ Γ but J = 171 for the case (X0

1 , X
0
2 ) = (−15,−15) 6∈ Γ. It means

that choosing initial guess (X0
1 , X

0
2 ) ∈ Γ is effective to save iteration number.

Now we fix the initial guess as

acube
0 = (−8,−8, 4, 4, 0.1), (6.2.12)

which belongs to the bound given by (6.2.11). Since noisy data has random noise, we
perform the inversion 10-times from different noisy data to test the numerical stability
of recovery. We will denote by ācube

noisy the average of the results obtained by doing the
inversion 10-times. Then Table 6.3 lists ācube

noisy corresponding to different noise levels,
where Ērr is the average relative error of recovery, ērr is the average relative error in
measurement data and Javr is the average iteration number. Furthermore, the 10-time
recoveries are plotted in Figure 6.4, and Figure 6.5 shows the average recovery for the
case the noise level is ε = 5%.

Table 6.3: The average recoveries with different noise level ε in Step 2 for Ex. 6.1.

ε ācube
noisy Ērr ērr Javr

5% (0.0004, 0.0067, 11.20, 3.751, 0.0125) 2.85e− 2 1.19e− 2 41.8
1% (0.0001, 0.0014, 11.23, 4.032, 0.0090) 4.80e− 3 3.70e− 3 37.4
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Figure 6.4: The 10-times recoveries with different noise levels.
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Figure 6.5: The different views of exact ellipsoidal target (red) and average recovered cube
(blue) (ε = 5%).

From Table 6.3, it can be seen that fitting by cube is numerical stable against the noise
in measurement data. We can stably recover even if the noise level is ε = 5%. This step
only needs a small number of iteration. Based on the results we have obtained so far in
Step 2, we can say that the results of this step do not heavily depend on the initial guess
or robust against different initial guesses, but the convergence speed becomes faster if we
choose an initial guess with (X0

1 , X
0
2 ) ∈ Γ. Thus, to find Γ in Step 1 is very important.

Step 3: We first discuss about the necessity of fitting by cube (Step 2) for cuboid
approximation (Step 3). To this end, we mainly answer the following two questions:

(i) How would be if we just use acube
0 as initial guess in Step 3 ?

(ii) How would be the difference in the recoveries between with and without Step 2 ?

Concerning the questions (i) and (ii), we considered the recoveries from exact mea-
surement data with two different initial guesses. One is the initial cube acube

0 given by
(6.2.12) which is also used as the initial guess in Step 2. The other is the recovered cube
acube

noisy which is recovered from (6.2.12) in Step 2. The recovered results are listed in Table
6.4.

Table 6.4: Recoveries from exact measured data in Step 3 for Ex.6.1 (ε = 0).

acuboid
0 acuboid

exact err N

acube
0 (−1.165, 1.165,−2.321, 2.321, 9.813, 12.20, 0.022) 1.62e− 5 468

acube
exact (−1.165, 1.165,−2.321, 2.321, 9.813, 12.20, 0.022) 1.62e− 5 243



70 Chapter 6. Inversion Strategy and Numerical Inversions Using Simulation Data

Similar recoveries as above for fixed noise level ε = 5% are listed in Table 6.5. Further
the recovered cuboid is plotted in Figure 6.6.

Table 6.5: Recoveries from noisy measured data in Step 3 for Ex. 6.1 (ε = 5%).

acuboid
0 acuboid

noisy Err err N

acube
0 (−1.07, 1.04,−2.15, 2.17, 9.91, 12.02, 0.029) 2.15e− 2 3.80e− 3 528

acube
noisy (−1.07, 1.04,−2.15, 2.17, 9.91, 12.02, 0.029) 2.15e− 2 3.80e− 3 297
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Figure 6.6: The different views of exact ellipsoidal target (red) and recovered cuboid (blue) in
Ex.1 (ε = 5%). (a) Front view; (b) Vertical view; (c) Side view.

We also carried out 100-time recoveries from different measured data with noise level
ε = 1%. The mean and variance of 100-time recoveries for different parameters are listed
in Table 6.6, respectively.

Table 6.6: The 100-time recoveries from different noisy data sets with ε = 1% for Ex.6.1.

Index a∗1 b∗1 a∗2 b∗2 a∗3 b∗3 P ∗

acuboid
exact −1.165 1.165 −2.321 2.321 9.813 12.20 0.022

Mean −1.160 1.160 −2.310 2.310 9.855 12.17 0.036

Variance 0.018 0.018 0.020 0.020 0.085 0.233 4.10e− 3

Table 6.2 in Step 2 showed that the iteration number J of Step 2 from acube
0 to

acube
noisy is J = 39. Now Table 6.4 and Table 6.5 show that the convergence speed using

recovered cube acube
noisy in Step 2 as initial guess becomes faster both for exact and noisy

measured data. All the above recoveries show that our inversion strategy with three
steps Γ 7→ acube

noisy 7→ acuboid
noisy is a stable and effective strategy. The recovered cuboid

approximately recover the position, shape and size of the unknown ellipsoidal target.
From Table 6.6, it can be observed that the mean of 100-time recoveries are approx-

imately equal to the values of acuboid
exact . This means that the recoveries are numerically

stable. We remark here that the variance for a∗3 and b∗3 are clearly bigger than those of
other parameters, which shows the difficulty to recover the parameters a∗3, b∗3 and this is
consistent to what we observed in the sensitivity analysis given in subsection 5.4. That
implies the recovery of thickness of the target should be unstable against the noise for
some sets of measurement data. To be precise, we explain more in the following.

We further compare the stability of recovery of the width, length and thickness. First,
let Ljwidth, L

j
length and Ljthickness be the recovered width, length and thickness correspond-

ing to the j-th recovery of the 100-time recoveries and plot its values in Figure 6.7, (a), (b),
(c), respectively. Note that Lmean

width = 2.320 mm, Lmean
length = 4.620 mm and Lmean

thickness = 2.315
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mm which are the mean of the 100-time recoveries, respectively. Next, we define the rel-
ative errors at each recovery by

|Ljwidth − L
mean
width|

|Lmean
width|

,
|Ljlength − L

mean
length|

|Lmean
length|

,
|Ljthickness − L

mean
thickness|

|Lmean
thickness|

, j = 1, 2, · · · , 100

and plot its values in Figure 6.8, (a), (b), (c), respectively. From Figure 6.7 and Figure
6.8, it can be observed that the recovery of thickness should be more difficult than the
recovery of width and length.
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Figure 6.7: The recovered width, length and thickness at each recovery of the 100-time recov-
eries. The black lines are the corresponding mean of the 100-time recoveries.
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Figure 6.8: The relative error for width, length and thickness at each recovery of the 100-time
recoveries.

We will give one remark before closing this subsection.

Remark 6.1. The volume of unknown ellipsoidal target is Vellipsoid = 4π
3 ABC ≈ 28.27

mm3, and the absorption coefficient is Pellipsoid = 0.02 mm−1. Let V j
rec and P jrec be

the volume and absorption coefficient corresponding to the j-th recovery of the 100-times
recoveries in Table 6.6. Then Table 6.6 shows that

V j
rec ≈ Vellipsoid, P

j
rec ≈ Pellipsoid, V

j
rec × P jrec ≈ Vellipsoid × Pellipsoid, j = 1, · · · , 100.

6.2.3 Results of inversion for cylindrical target

In this example we focus on the error analysis by cuboid approximation. By comparing
the emission intensity with T = 4 ns and ∆t = 6.1 ps for different S-D pairs we can also ob-
tain Γ := (−10, 10)× (−10, 10) ⊂ ∂Ω. Setting the initial cube acube

0 = (−8,−8, 4, 4, 0.1),
we have acube

exact = (0, 0, 10.58, 2.26, 0.05) with the approximate L2 relative error in mea-
surement data err = 2.46e − 2. Next, using the same measurement with noise level
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ε = 5%, the recovered result obtained in a similar way with same initial guess is

acube
noisy = (0.007,−0.032, 10.68, 3.92, 0.01) (6.2.13)

with err = 5.84e − 2. Setting the recovered cube from Step 2 as the initial guess, the
recovered cuboid using noisy measurement data with different noise levels ε are listed in
Table 6.7, respectively.

Table 6.7: Recoveries from noisy measured data in Step 3 for Ex.6.2

ε acuboid
noisy err Err

0 (−4.001, 4.001,−0.87, 0.87, 9.13, 10.86, 0.0209) 1.69e− 6
1% (−3.999, 3.991,−0.77, 0.78, 9.15, 10.84, 0.0240) 1.02e− 2 9.00e− 3
5% (−3.878, 3.864,−1.03, 0.95, 9.60, 10.58, 0.0348) 5.14e− 2 3.03e− 2

We note the center, length and radius of the cylindrical target are (0,0,10), 8 and
1, respectively. Table 6.7 shows that the position and size of cylindrical target can be
approximated well by the recovered cuboid. We can see that the values of err defined by
(6.2.9) are approximately equal to its corresponding noise levels ε, i.e.,

err :=

∥∥∥F (t̂, ω̂)(acuboid
noisy )−Hδ

∥∥∥
2

‖Hδ‖2
≈ ε ≈

∥∥H −Hδ
∥∥

2

‖Hδ‖2

due to the description of noisy data Hδ given by (6.2.7), implying the interpretation of
measurement data using cuboid was reasonable and acuboid

noisy → acuboid
exact as ε→ 0.
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Figure 6.9: The TPSFs ũcylinderm (t, ω) (blue line) and ũm(acuboid
noisy )(t, ω) (red line) to two S-D

pairs. Here acuboid
noisy was recovered by the noisy data with ε = 5%.

The error of our method using cuboid approximation consists of two kinds of er-
ror: system error and measure error. The former comes from the different shape be-
tween cylindrical target and cuboid, and the latter comes from the noise added in the
exact measurement. Indeed, the components of measurement from different S-D pairs
contribute different for the recovery. The data with stronger intensity are more sta-
ble against the measure noise. In other words, the data provided by the S-D pairs
close to the target are very important in the data fitting, which determine the accu-
racy of inversion. To be precise we plot the temporal point spread functions (TPSFs)
ũcylinder
m (t, ω) and ũm(acuboid

noisy )(t, ω) to two different S-D pairs in Figure 6.9. See Figure
6.9, (a) for ω∗1 := (xs, xd) = ((−10,−10 − 10

√
3), (−20,−10)) and Figure 6.9, (b) for
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ω∗2 := (xs, xd) = ((0,−10 + 10
√

3), (10,−10)), respectively. ω∗1 is located far away the
target while ω∗2 is close to the target. From Figure 6.9, it can be observed for ε = 5% that
ũm(acuboid

noisy )(t, ω) to ω∗2 is in very good agreement with ũcylinder
m (t, ω) and less accurate to

ω∗1. We also note that the peak time for ω∗2 is quit earlier than the one for ω∗1. Thus
by Step 1 we can also select the S-D pairs with strong emission intensity to reduce the
number of measurements to save computation. That is possible according to the argu-
ment given in Chapter 5 that a small number of measurements could ensure the local
solvability of the inverse problem.

Likewise we did for Example 1, we carried out 100-time recoveries from different
measured data with noise level ε = 1%. The mean and variance of 100-time recoveries for
different parameters are listed in Table 6.8, respectively.

Table 6.8: The 100-time recoveries from different noisy data sets with ε = 1% for Ex.6.2.

Index a∗1 b∗1 a∗2 b∗2 a∗3 b∗3 P ∗

acuboid
exact −4.001 4.001 −0.87 0.87 9.13 10.86 0.021

Mean −4.000 3.999 −0.82 0.82 9.17 10.84 0.032

Variance 0.002 0.002 0.099 0.099 0.062 0.138 4.87e− 4

Table 6.8 shows that the mean of 100-time recoveries are approximately equal to the
values of acuboid

exact , implying the recoveries are numerically stable. Note that the variance
for parameters a∗1 and b∗1 are clearly smaller than those of other parameters, and hence
know the recoveries for a∗1 and b∗1 should be more stable against the noise in measurement
data. On the other hand, due to the nonlinearity and strong ill-posedness of our FDOT
inverse problem, although the listed recovered cuboid acuboid

noisy corresponding to ε = 5%
in Table 6.7 is satisfactory, we point out that the recoveries especially for a∗3 and b∗3 may
become less stable if the noise level is large. This difficulty of identifying thickness may
further influence the accuracy of other geometric information such as the length (denoted
by b∗1 − a∗1) and width (denoted by b∗2 − a∗2) of the recovered cuboid. One may improve
the stability of recovery against large noise by increasing the number of S-D pairs and
letting the S-D pairs distribute more closely around the target.

6.3 Chapter Summary

By giving up the recovery of the detail shape of the target, we could identify the
location of the target by identifying only several unknown parameters. Even for these
several parameters, the LM method was not stable or only converged slowly unless good
initial guesses were used. Thus the proposed procedure of narrowing target domains as
Γ→ acubic

0 → acuboid
0 is important for the iterative method to work, which was confirmed

by the results of inversion using simulated data. Our proposed strategy was fast and
robust against the choice of initial guess.
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Chapter 7

Numerical Inversions Using
Experimental Data

In this section, we further verify the effectiveness of our proposed strategy using
experimental data obtained from ex vivo beef phantoms.

7.1 Experimental Demonstration with a Beef Phantom

Figure 7.1: The block diagram of the experiment and the geometry of the fibers.

An experiment with a fluorescence target in a beef was conducted to demonstrate
our inversion strategy in the medical applications. The beef mimicked human tissue.
The experiment was carried out by a picosecond time-domain system as described in our
previous paper [62]. Briefly, a picosecond laser at 780 nm with 10 MHz repetition was
coupled to an optical fiber. The optical fiber was bifurcated and one branch of them
was connected to an extra fiber to get a sufficient delay about 10 ns to separate two
excitation pulses in time-domain. The two fibers with a diameter of 62.5 µm excited a
fluorescence target implanted in a beef block at different two points. The fluorescence
(emission) were collected by two bundled fibers with a diameter of 3 mm and delivered
to high-speed hybrid photomultiplier tubes with selectable band pass filters. In this
experiment, we selected a filter for the fluorescence wavelength region (> 834 nm) but
we also used a filter for the excitation wavelength to measure the IRF and the optical
property of meat. The photomultiplier tube was worked in photon counting mode and
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the timing of the detected photon with respect to the excitation timing was accumulated
by a time-correlated single photon counting board to yield the temporal response function
of the fluorescence. Two excitation sources were recorded in a same temporal response
function at a different time region by the delay. The time step of the temporal response
function was 6.1 ps/bin and the time range of the record was about 50 ns and the data
was accumulated upto 90 sec. Eventually, temporal profiles at two detection points with
two different excitation sources were recorded in two measurement temporal response
data. Two temporal profiles with different excitation sources were separated from each
measurement temporal response data and the time-axis was calibrated for the analysis.

The IRF (i.e, the function q in (4.1.6)) was measured by a special designed adapter
as shown in Figure 7.2, which is basically measuring the scattering of the excitation pulse
by a peace of paper at a known distance. The measured temporal response function
approximated the IRF of the experimental setup.

Figure 7.2: The IRF measurement adapter. The adapter holds some attenuation filters and a
small diffuser to homogenize the light.

The fluorescence lifetime τ = 0.6 ns was estimated by another experiment [67]. The
temporal response function of the background emission was approximated by the function
at the lowest emission intensity and the background response was simply subtracted from
other measurement data. In following two experiments with a beef meat phantom, the
physical parameters determined by another experiment with the excitation light are

τ = 0.6 ns, c = 0.219 mm/ps, µ′s = 0.92 mm−1, µa = 0.023 mm−1, β = 0.50 mm−1.

We remark that the absolute fluorescence intensity in the experiment is difficult to
determine because the intensity is depending on the sensitivity or detectability of the
system and the calibration is very difficult. Then, these unknowns are reduced to a
proportional constant of µf . Therefore, γ can be included in this proportional constant
denoted by Cγ . Then, in this section, we consider positive constant P := Cγµf be the
unknown absorption coefficient inside approximate cuboid given by (4.1.10). Further,
at each iteration in the LM iteration scheme, we will calculate the emission light for
t ∈ (0, T ) with T = 10 ns by (4.1.7), where the IRF q was convoluted with fluorescence
lifetime function shown in (4.1.8).

Now we are ready to apply our proposed inversion strategy to give our recovery.

7.2 Results of Inversion for Beef Experiment I

BEEF EXPERIMENT I: As shown in Figure 7.3, a block meat about 5× 10× 5
cm3 was purchased from a food market and then cut to implant a fluorescence target. The
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fluorescence target containing a 1 µM indocyanine green (ICG) solution in 1% Intralipid
in a small cylinder (2 mm in diameter and 8 mm in length) was implanted at about 16 mm
from the measurement surface of the meat sample. Then, the boundary measurements
were performed using optical fibers attached to a holder on the top of beef.

Figure 7.3: Beef experiment I: (Left) A cylinder of fluorescence target was placed inside the beef.
(Middle) The cylinder was embedded at depth about 16 mm. (Right) Boundary measurements
were performed using optical fibers attached to a holder on the top of beef.

The two excitation and two detection fibers were aligned with a fiber holder as shown
in the left figure of Figure 6.1. The distance between the excitation and the detection
points was fixed to 20 mm in our measurements. Then, the holder was scanned on the
meat surface by a motorized stage. We used 16-different fiber holder positions as shown
in Figure 7.4, yielding 64-different source-detector (S-D) pairs.

Figure 7.4: The positions of S-D pairs in Beef Experiment I. Red small disks show sources and
blue circles show detectors. The sources and detectors for the holder at position P1 (i.e, 1) are
distinguished by purple squares.

Step 1: Likewise we did in section 6.2, we can obtain the prior information of unknown
target by comparing the emission intensities defined by (4.3.1). For example, we compare
the emission intensities with respect to the holder of S-D pairs at P3(0, 0), P4(0, 5),
P13(-10, 0) and P16(-10, 5), which are shown in Figure 7.5 and listed in Table 7.1.
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Table 7.1: The emission intensities (×103 counts) with different S-D pairs.

P3(0,0) P4(0,5) P13(-10,0) P16(-10,5)
S1-D1: 3.0240 S1-D1: 10.118 S1-D1: 0.0950 S1-D1: 0.3490
S1-D2: 33.330 S1-D2: 40.115 S1-D2: 3.0990 S1-D2: 2.5270
S2-D1: 0.7880 S2-D1: 1.5840 S2-D1: 2.2900 S2-D1: 9.0480
S2-D2: 5.6790 S2-D2: 4.7990 S2-D2: 28.976 S2-D2: 33.512
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Figure 7.5: The positions of holder at P3, P4, P13 and P16 in Experiment I.

From Table 7.1 and Figure 7.5, it can be observed that the emission intensities with
S1-D2 pair, S1-D2 pair, S2-D2 pair and S2-D2 pair are stronger than other S-D pairs
with respect to the positions of holder at P3, P4, P13 and P16, which means that the
projection of the center of unknown approximate cuboid to boundary surface should be
located inside

Γ := (−10, 0)× (5, 20) ⊂ ∂Ω. (7.2.1)

By the computation results of emission intensities for each S-D pair, to reduce com-
putation, we perform the inversion using the measured data given by 16 S-D pairs

p1 := P01S1D2, p2 := P01S2D2,p3 := P02S1D2,p4 := P02S2D2,

p5 := P03S1D2, p6 := P04S1D2,p7 := P05S1D1,p8 := P05S1D2,

p9 := P06S1D2,p10 := P07S1D2,p11 := P08S1D2, p12 := P13S2D2,

p13 := P14S2D2,p14 := P15S2D1,p15 := P15S2D2, p16 := P16S2D2,

which have stronger emission intensities than other S-D pairs such that they should be
more close to the unknown target. We note here for instance “P01S1D2” denotes the S1-
D2 pair corresponding to the position of holder at P1 in Figure 7.4, where the background
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fluorescence was subtracted from the signal at each S-D pair. Since the emission intensity
from the S-D pair at P15S1D2 contains little contribution from the fluorescence target, we
used the emission light from p0 as the background fluorescence. The temporal response
function after subtracting the background fluorescence to 8 S-D pairs among above 16
S-D pairs are plotted in Figure 7.6. The hump in a very early region less than 1 ns was
probably the background response, which could not be removed by the subtraction.

Time (ns)

0 2 4 6 8 10

E
m

is
si

o
n

0

1

2

3

4

P01S1D2

P03S1D2

P05S1D2

P07S1D2

Time (ns)

0 2 4 6 8 10

E
m

is
si

o
n

0

1

2

3

4

P08S1D2

P13S2D2

P15S2D1

P16S2D2

Figure 7.6: TPSFs (the logarithm value) with the position of holder at P1, P3, P5, P7, P8,
P13, P15 and P16.

Step 2: Likewise we did as before, we choose 20 time points for each S-D pair as the
measured time points and perform LM iteration scheme. The results from two different
initial guesses are listed in Table 7.2. Furthermore, the initial guess with

(X0
1 , X

0
2 ) = (−5, 10) ∈ Γ ⊂ ∂Ω

and its responding recovered cube in Step 2 are plotted in Figure 7.7.

Table 7.2: The reconstructed results with different initial guesses.

acube
0 acube

rec err Tcpu(s)/M

(−5, 10, 7, 2, 5) (−4.12, 7.72, 17.25, 3.92, 6.1e+ 4) 0.1219 3523/85
(5, 0, 7, 2, 5) (−4.12, 7.72, 17.25, 3.92, 6.1e+ 4) 0.1219 7300/182
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Figure 7.7: The initial guess (small yellow cube) and recovery (big red cube) in Step 2.

By the results in Step 1, it can be observed that even for the inversion using detected
experimental data, Step 1 is still essential for Step 2. Applying the initial guess with
(X0

1 , X
0
2 ) ∈ Γ for example (X0

1 , X
0
2 ) = (−5, 10) can accelerate the convergence speed.
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Step 3: Setting the recovered cube acube
rec in Step 2 as the initial guess in this step,

the recovered cuboid is

acuboid
rec = (−5.16,−3.11, 3.83, 12.03, 16.05, 16.34, 5.36e+ 4). (7.2.2)

We compare the recovered cuboid and unknown cylinder target in Table 7.3. Furthermore,
the initial guess (the recovered cube in Step 2) and recovered cuboid are plotted in Figure
7.8 and Figure 7.9..

Table 7.3: The exact cylinder and recovered cuboid (unit: mm).

Unknown target Diameter Length Depth
Cylinder 2.0 8.0 16.0

Recovery Width Length Depth
Cuboid 2.05 8.21 16.05
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Step 3.
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Figure 7.7 and Figure 7.8 plotted the initial guesses and recoveries in each steps in
our inversion strategy, which clearly showed the process of redefining initial guess such
that the algorithm was stable and robust. The position of the recovered cuboid (7.2.2)
is what we expected. The exact position of the embedded cylinder in beef is not known.
If the cylinder target is parallel to the y-axis as the green rectangle in Figure 7.9, it can
be observed from Table 7.3 that the recovered cuboid approximately recover the shape
and size of the unknown cylinder target, which shows the effectiveness of our proposed
method again.

7.3 Results of Inversion for Beef Experiment II

We consider the inversion using our proposed strategy for another beef experiment,
for which the prior-position of target is known.

Figure 7.10: Beef experiment II: (Left) A cylindrical fluorescence target was inserted in the
beef meat. (Middle) The cylinder was embedded at depth about x3 = 10 mm. (Right) Scanned
on the meat surface to obtain the boundary measurements.

BEEF EXPERIMENT II: As shown in Figure 7.10, the fluorescence target con-
taining a 1 µM indocyanine green (ICG) solution in 1% Intralipid in a small cylinder
(2 mm in diameter and about 8 mm in length) was implanted at depth about x3 = 10
mm from the measurement surface of the meat sample. We setup the stage axis almost
parallel to the target. The center position of the target was at about (x1, x2) = (0, 5)
which is also the position of holder at P13 shown in Table 7.4. The longer axis of target
was set aligned to x1-axis.

The two excitation (S1 and S2) and two detection (D1 and D2) fibers were aligned
with a fiber holder as shown in the left figure of Figure 6.1. The distance between the
excitation and the detection points was fixed to 20 mm in our measurement such that
the exact locations of excitation and detection corresponding to different positions of
holder are also (6.2.5) and (6.2.6), respectively. Then, the holder was scanned on the
meat surface by a motorized stage. We used 16-different fiber holder positions as shown
in Table 7.4, yielding 64-different source-detector (S-D) pairs.

Table 7.4: The positions of the holder in Beef Experiment II (unit: mm).

P01(-15,15) P05(-20,5) P09(-10,15) P13(0,5)
P02(-20,15) P06(-15,5) P10(-5,15) P14(0,0)
P03(-15,10) P07(-10,5) P11(-5,10) P15(0,10)
P04(-20,10) P08(-10,10) P12(-5,5) P16(0,15)
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In the experiment, at each iteration in the LM iteration scheme, we will calculate the
emission light for t ∈ (0, T ) with T = 4.78 ns by (4.1.7), where the IRF q was convoluted
with fluorescence lifetime function shown in (4.1.8).

Step 1: Likewise we did as before, we can obtain Γ := (−10, 10) × (0, 10) ⊂ ∂Ω by
comparing the emission intensities. To reduce the computation, by the numerical results
for Example 2 in subsection 6.2.3 we perform the inversion using the measured data given
by the following 10 S-D pairs

P03S2D2,P06S1D2,P06S2D2,P07S1D2,P07S2D2,

P09S2D2,P12S2D2,P13S2D2,P15S2D2,P16S2D2, (7.3.1)

which have stronger emission intensities than other S-D pairs such that they should be
more close to the unknown target. We note here for instance “P03S2D2” denotes the S2-D2
pair corresponding to the position of holder at P03 in Table 7.4. We used the emission
light from P01S1D2 as the background fluorescence, which contains little contribution
from the target fluorescence. The TPSFs after subtracting the background fluorescence
to above 10 S-D pairs are plotted in Figure 7.11, respectively.
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Figure 7.11: The TPSFs (the logarithm value) to above 10 S-D pairs given in (7.3.1).

Step 2: We choose 20 time points t̂ := [tpeak + 6∆t, tpeak + 25∆t] for each S-D pair as
the measured time points and perform LM iteration scheme. The result from the initial
guess acube

0 = (−2, 7, 10, 3, 1e+ 5) is

acube
rec = (0.49, 5.53, 14.0, 6.53, 1.90e+ 4) (7.3.2)

with iteration number J = 83 and relative error in measurements err = 8.7e− 2.

Step 3: Setting (7.3.2) as the initial guess in this step, the recovered cuboid is

acuboid
rec = (−5.34, 6.37, 4.39, 6.00, 9.68, 10.48, 8.35e+ 4) (7.3.3)

with err = 5.14e− 2. We compare the recovered cuboid (7.3.3) and unknown cylindrical
fluorescence target in Table 7.5 and plot them in Figure 7.12, respectively.



7.4. Chapter Summary 83

Table 7.5: The exact cylinder and recovered cuboid (unit: mm).

Unknown target Expected center Diameter Length Depth
Cylinder (0, 5, 10) 2.0 8.0 10.0

Recovery Recovered center Width Length Depth
Cuboid (0.52, 5.20, 10.08) 1.61 11.71 10.08
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Figure 7.12: Red disks show the positions of holder. The blue and green rectangular are the
positions of the expected cylinder target and recovered cuboid projected on the boundary plane,
respectively.

By Table 7.5 we can see that the center and depth of the unknown cylindrical fluo-
rescence target can be recovered well by (

a∗1+b∗1
2 ,

a∗2+b∗2
2 ,

a∗3+b∗3
2 ) and a∗3+b∗3

2 . The shape and
size of the target can also be approximated by the recovered cuboid. We can recover the
longer axis of target. Although the recovered thickness b∗3 − a∗3 = 0.8 mm is thinner than
the expected value, it is satisfactory in views of the difficulty of recovering the parameters
a∗3 and b∗3 as we analyzed before. We point out that the recovered length b∗1 − a∗1 = 11.71
mm is longer than the expected one. In light of the fact that the length of cylinder was
stably and correctly recovered in Table 6.7 and Table 6.8, here the reason for the longer
recovered length may be attributed to the less number and positions of S-D pairs and
measurement noise.

7.4 Chapter Summary

We further confirmed our proposed step-wise algorithm is effective to accelerate the
speed of convergence by using real experimental data. We could exactly recover the
location of unknown target by assuming cuboid shape. By the results of Chapter 5 and
Chapter 6 it is possible to ensure the solvability of inverse problem just using a small
number of measurements and the measured data from the S-D pairs near by the target
contributed more than others to the inversion. Thus we applied the time-series data from
those S-D pairs close to the target as measurement in the inversion.
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In our tested examples, we fixed the unknown targets aligned to x1-axes and x2-axes,
and approximated them using seven unknown parameters. The remained problem to be
solved in the future is how to approximate the unknown target using cuboid, if it is not
aligned to x1-axes and x2-axes or has a general shape. For these cases, we are planing to
consider the approximation using the cuboid with some rotation, which implies to identify
nine unknowns including the angles of cuboid with horizontal and vertical planes.
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Chapter 8

Conclusion and Remark

We first described the diffusion approximation from RTE to linearized DE. The error
estimations were established for such a model approximation based on the analytic ex-
pression for excitation and emission. We also theoretically analyzed the identifiability of
inverse absorption coefficient of flourophore (target).

Then, by using the diffusion equation as a model equation for FDOT, we investigated
the inverse problem of FDOT which is to recover the distribution of the absorption coef-
ficient as well as its interface in three-dimensional half space Ω from the measured data
at the boundary. Our aims were to provide both theoretical and numerical arguments
which could be useful for practical applications. More precisely we not only gave a very
efficient numerical inversion strategy for the inverse problem but also some theoretical
analysis which can support the numerical arguments and interpret the numerical results.
We tried to put everything mathematically logical as much as possible.

By assuming the unknown flourophore (target) has cuboidal shape, we could identify
the location of the unknown target by recovering only several unknown parameters, which
made the computation fast at each iteration of Levenberg-Marquardt algorithm (LM
algorithm). Furthermore, to select a good set of parameters giving the measurement data
and find a good initial guess to accelerate the speed of convergence of iteration in LM
algorithm, a procedure of narrowing target domains as Γ 7→ acube

0 7→ acuboid
0 was proposed.

The results of inversion using simulated data and experimental data showed the efficiency
of the proposed strategy. More precisely, our strategy gave successful recoveries and
robustness against initial guesses and noise, and even accelerated the convergence speed
of LM algorithm.

We gave a precise formula of the analytical solution for our the forward problem of
FDOT. Also, we provided the theoretical analysis behind our numerical studies. It can
give clear framework to our whole argument and useful concepts, conditions which can
orient numerical study and interpret the numerical results. For example the condition for
the convergence of LM algorithm and sensitivity analysis.

Finally we give some remarks on our study. Although we assumed that the turbid
media in which the light propagates is just a half space in this paper and made use of an
analytical solution to the diffusion equation, the proposed algorithm works also in more
general cases where diffusion equations must be solved numerically by finite difference
method or finite element method [54]. The proposed algorithm can be applied not only
to the iterative scheme of LM algorithm but also to other iterative schemes such as the
conjugate gradient method and the Gauss-Newton method.
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Appendix A

The Gradient of Zero-lifetime
Emission

In this Appendix, we provide the gradient ∇ũm of ũm(a)(xd, t;xs) with respect to
a := (a1, b1, a2, b2, a3, b3, P ) for given detector xd ∈ ∂Ω, time t and excitation source
xs ∈ ∂Ω. By the expression (4.1.13) of ũm, they are given as follows.

∂ũm
∂a1

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

−
√
t

s(t− s)
√
πcD

e
− (t(a1−xs1)−s(xd1−xs1))2

4cDts(t−s)

× ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3)ds,

∂ũm
∂b1

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

√
t

s(t− s)
√
πcD

e
− (t(b1−xs1)−s(xd1−xs1))2

4cDts(t−s)

× ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3)ds,

∂ũm
∂a2

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

−
√
t

s(t− s)
√
πcD

e
− (t(a2−xs2)−s(xd2−xs2))2

4cDts(t−s)

× ũ1(xd1, xs1, t, s; a2, b2)ũ3(t, s; a3, b3)ds,

∂ũm
∂b2

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

√
t

s(t− s)
√
πcD

e
− (t(b2−xs2)−s(xd2−xs2))2

4cDts(t−s)

× ũ1(xd1, xs1, t, s; a2, b2)ũ3(t, s; a3, b3)ds,

∂ũm
∂a3

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

−1√
s(t− s)

ũ1(xd1, xs1, t, s; a1, b1)

× ũ2(xd2, xs2, t, s; a2, b2)K3(0, a3; t− s)K3(a3, 0; s)ds,

∂ũm
∂b3

= PC(xd1, xs1, xd2, xs2, t)

∫ t

0

1√
s(t− s)

ũ1(xd1, xs1, t, s; a1, b1)

× ũ2(xd2, xs2, t, s; a2, b2)K3(0, b3; t− s)K3(b3, 0; s)ds,

∂ũm
∂P

= C(xd1, xs1, xd2, xs2, t)

∫ t

0

1√
s(t− s)

ũ1(xd1, xs1, t, s; a1, b1)

× ũ2(xd2, xs2, t, s; a2, b2)ũ3(t, s; a3, b3)ds,

respectively, where C(xd1, xs1, xd2, xs2, t) is a constant for given xd1 , xs1, xd2, xs2, t and
ũi, i = 1, 2, 3 are defined in (4.1.13) respectively. Here note that by Theorem 4.1,
ũ3(t, s; a3, b3) is a function both flat at s = 0 and t = s.
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