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Chimera states in one-dimensional nonlocally coupled phase oscillators are mostly assumed to be stationary,
but breathing chimeras can occasionally appear, branching from the stationary chimeras via Hopf bifurcation.
In this paper, we demonstrate two types of breathing chimeras: The type I breathing chimera looks the same as
the stationary chimera at a glance, while the type II consists of multiple coherent regions with different average
frequencies. Moreover, it is shown that the type I changes to the type II by increasing the breathing amplitude.
Furthermore, we develop a self-consistent analysis of the local order parameter, which can be applied to breathing
chimeras, and numerically demonstrate this analysis in the present system.
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I. INTRODUCTION

The collective dynamics of coupled nonlinear oscillators
is beneficial for understanding a wide variety of scientific
phenomena [1,2]. Chimera states can result from symmetry
breaking in a large group of identical oscillators and have
spatiotemporal patterns characterized by the coexistence of
synchronized and desynchronized oscillators. Such a pattern
was first discovered by Kuramoto and Battogtokh [3] in
the one-dimensional array of nonlocally coupled complex
Ginzburg-Landau (CGL) equations, which describe interact-
ing biological cells [4], and they introduced the self-consistent
analysis of the local mean field by phase reduction. Then,
the emergence of chimera states in the phase oscillators is
characterized by two bifurcation parameters: the phase lag
parameter, which is derived from the original parameters of
the CGL equation, and the coupling range, which is given by
the diffusion factor of substance-mediating cellular interac-
tion. Chimera states have actively been studied and have been
found in various systems beyond the one-dimensional oscilla-
tor systems above [5–20], with different coupling topologies
[21–25], different interaction functions [26–28], and different
constituent oscillators [29–35]. The emergence of chimera
states has also been reported experimentally [36–39].

When Kuramoto and Battogtokh [3] introduced the self-
consistent analysis of the local mean field for chimera states,
they assumed that the local mean field is time independent on
the rotating frame of the whole oscillation. This means that the
chimera state is collectively stationary. This assumption has
been used in most studies of chimeras in the one-dimensional
phase oscillator system and forms the basis of the analytical
theory [3,5–7,12,13,16–20].

A natural question arising from this assumption is whether
nonstationary chimeras exist in the one-dimensional phase
oscillator system [22]. As an answer to this question, it is
reported that breathing (oscillating) chimeras can be obtained
by introducing phase lag parameter heterogeneity [8,17,18].
On the other hand, we recently found that breathing chimeras

can appear even without introducing such heterogeneity [19].
In these previous works, it is shown that the system exhibits a
Hopf bifurcation from a stationary chimera to a breathing one.

In this paper, we study breathing chimeras in more detail.
In Sec. II, we show that two types of breathing chimeras can
be obtained by numerical simulations. The type I breathing
chimera looks the same as the stationary chimera at a glance,
as reported in Ref. [19], while the type II has multiple coherent
regions with different average frequencies. In Sec. III, we an-
alyze these breathing chimeras by deriving a self-consistency
equation extended for breathing chimeras and introducing a
complex function combining the average frequency and the
stability property. In Sec. IV, we show that the breathing
chimera can be changed from type I to type II by increas-
ing the breathing amplitude, and then new coherent regions
appear in the incoherent regions for the type I. In Sec. V, we
numerically solve this self-consistency equation.

II. NUMERICAL SIMULATION

We consider the one-dimensional array of nonlocally cou-
pled phase oscillators in the continuum limit N → ∞, where
N is the number of oscillators. The evolution equation of the
system is given by

θ̇ (x, t ) = ω −
∫ π

−π

dy G(x − y) sin[θ (x, t ) − θ (y, t ) + α],

(1)

with 2π -periodic phase θ (x, t ) ∈ [−π, π ) on the space x ∈
[−π, π ) under the periodic boundary condition. The constant
ω denotes the natural frequency. The interaction between
oscillators is described as the sine function with the phase
lag parameter α [40]. As the kernel G(x) characterizing the
nonlocal coupling, we use the step kernel [9–12,14,19,20,27]

G(x) =
{

1/(2πr) (|x| � πr)

0 (|x| > πr),
(2)
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FIG. 1. Stationary chimera state with two coherent and incoher-
ent regions for Eq. (3) with N = 100 000, α = 1.480, and r = 0.440.
(a) The snapshot of the phase θ (x, t ). (b) The profile of the average
frequency 〈θ̇ (x, t )〉 with T = 2000. (c) Time evolution of the global
order parameter |Z (t )|. Figures (a) and (b) are plotted once every 10
oscillators.

with 0 < r � 1, where r denotes the coupling range. The
coupling kernel is usually given by an even real function and
can be taken as, instead of the step kernel, the exponential
kernel [3,7,16–18] or the cosine kernel [5,6,8,13]. For nu-
merical simulations, we discretize x into x j := −π + 2π j/N
( j = 0, . . . , N − 1) and rewrite Eqs. (1) and (2) as

θ̇ j (t ) = ω − 1

2R

j+R∑
k= j−R

sin[θ j (t ) − θk (t ) + α], (3)

where θ j (t ) := θ (x j, t ), R := rN/2 and the index k is modulo
N . For all the simulations of Eq. (3), we set ω = 0 without loss
of generality and use the fourth-order Runge-Kutta method
with time interval �t = 0.01.

Chimera states for Eq. (1) are characterized by the coexis-
tence of coherent and incoherent regions. For example, Fig. 1
shows a chimera state with two coherent and incoherent re-
gions. In the coherent region, the oscillators are synchronized
with each other at a constant average frequency, while the
oscillators in the incoherent region are drifting at continuously
varying average frequencies. The average frequency is numer-
ically defined as

〈θ̇ (x, t )〉 := 1

T

∫ T

0
dt ′ θ̇ (x, t ′), (4)

with the measurement time T after a sufficiently long transient
time. In the following, 〈·〉 denotes the time average quantity.

While the chimera state in Fig. 1 is a stationary state,
we have found breathing chimeras with two coherent and
incoherent regions [19], as shown in Fig. 2, which we call
the type I breathing chimera below. Though the stationary and
the type I breathing chimeras have very similar appearance of
the phase snapshot, they can be distinguished by observing the
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FIG. 2. The type I breathing chimera for Eq. (3) with N =
100 000, α = 1.480, and r = 0.360. All figures show the same
quantities as those in Fig. 1.

time evolution of the global order parameter |Z (t )|, defined as

Z (t ) := 1

2π

∫ π

−π

dy eiθ (y,t ), (5)

which denotes the synchronization degree of all the oscilla-
tors. For |Z (t )| = 1, all the oscillators are completely syn-
chronized in phase, and otherwise for 0 � |Z (t )| < 1. In the
present case, |Z (t )| becomes nearly zero for both of the
stationary and the type I breathing chimeras, but the time
evolutions are different. For stationary chimeras, |Z (t )| is time
independent. Figure 1(c) denotes a small fluctuation around
zero and can be regarded as nearly satisfying |Z (t )| = 0. For
breathing chimeras with sufficiently large N , however, |Z (t )|
oscillates periodically, as shown in Fig. 2(c).

In our simulations of Eq. (3), the stationary and the type I
breathing chimeras with two coherent and incoherent regions
are obtained in the orange region in Fig. 3. In our previous
work [19], we showed that the breathing chimera branches
from the stationary one via supercritical Hopf bifurcation. The
bifurcation points are indicated by black solid lines in Fig. 3.
We previously showed only the bifurcation points at r �
0.400 by the linear stability analysis of the stationary chimera
[19]. However, we have found the other bifurcation points at
r � 0.580 by the same method as before. Breathing chimeras
are also found in two interacting populations of globally
coupled phase oscillators, where the global order parameter
of a desynchronized population oscillates temporally [22,25].

In addition to the type I breathing chimera, we have nu-
merically found the type II breathing chimera characterized
by two kinds of coherent regions with different average fre-
quencies, as shown in Fig. 4. The first coherent regions around
x = 0 and x = ±π in Fig. 4(a) are similar to the coherent
regions of the stationary or the type I breathing chimera; that
is, they are always separated from each other by the phase
almost exactly π . The second coherent regions lie near each
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FIG. 3. Stability region of chimera states obtained by the nu-
merical simulation of Eq. (3). There appear the stationary and the
type I breathing chimeras in the orange region and the type II
breathing chimeras in the blue region. Black solid lines denote the
Hopf bifurcation points [19]. The black diamond, the black triangle,
and the white circle denote the parameter values of Figs. 1, 2, and
4, respectively. The horizontal dotted line denotes the parameter
r = 0.620 discussed in Sec. IV.

first coherent region and have a different average frequency
from it. Such type II breathing chimeras with multiple co-
herent regions are also observed in the system with phase
lag parameter heterogeneity [17,18]. The stability region of
the type II breathing chimeras is shown as the blue region
in Fig. 3. In our numerical simulations, we did not find the
bistable region of the types I and II. In this paper, we focus on
these two types of breathing chimeras and aim to understand
them theoretically.

III. THEORY OF BREATHING CHIMERAS

In this section, we study the properties common to the two
types of breathing chimeras. First, we define the local order
parameter and the local mean field. The local order parameter
[13]

z(x, t ) := lim
η→0+

1

2η

∫ x+η

x−η

dy eiθ (y,t ), (6)
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FIG. 4. The type II breathing chimera for Eq. (3) with N =
100 000, α = 1.500, and r = 0.600. All figures show the same
quantities as those in Fig. 1.

which satisfies 0 � |z(x, t )| � 1, is similar to the global order
parameter given by Eq. (5) in quality, and |z(x, t )| denotes the
synchronization degree of oscillators in the neighborhood of
a point x. In the case of chimera states, |z(x, t )| = 1 implies
that the oscillator at x belongs to a coherent region, and
otherwise an incoherent region. We assume that the number of
oscillators contained in the integral of Eq. (6) tends to infinity
in the continuum limit N → ∞. The local mean field [3] is
defined as

Y (x, t ) :=
∫ π

−π

dy G(x − y) eiθ (y,t ). (7)

Then, Eq. (1) is rewritten as

θ̇ (x, t ) = ω − Im[eiαeiθ (x,t )Y ∗(x, t )], (8)

where the symbol ∗ denotes the complex conjugate. Equation
(8) suggests a physical picture in which each independent
phase oscillator is driven by the local mean field Y (x, t ). Using
the local order parameter z(x, t ), Eqs. (5) and (7) are rewritten
as

Z (t ) =
∫ π

−π

dy z(y, t ), (9)

Y (x, t ) =
∫ π

−π

dy G(x − y) z(y, t ). (10)

In the continuum limit, phase oscillators described as Eq. (8)
can be regarded as interacting subpopulations of globally
coupled infinite oscillators in the neighborhood of x [11].
Then, we can obtain the evolution equation of z(x, t ) as

ż(x, t ) = iωz(x, t ) + 1
2 e−iαY (x, t ) − 1

2 eiαz2(x, t )Y ∗(x, t ),

(11)

by the method in Refs. [11,23] using the Watanabe-Strogatz
approach [41]. We can also define the local order parameter by
using a probability density function of phase [8,12,20]. In that
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case, Eq. (11) can be obtained from the Ott-Antonsen ansatz
[42,43].

If chimera states are stationary, the local order parameter
takes the form

z(x, t ) = zst (x) ei�t , (12)

with the frequency � of the rotating frame, which we may
regard as the definition of “stationary” for chimera states.
Then, the local mean field is also obtained as

Y (x, t ) = Yst (x) ei�t , (13)

from Eq. (10). Using Eqs. (12) and (13), Eq. (11) is rewritten
as

0 = i�zst (x) + 1
2 e−iαYst (x) − 1

2 eiαz2
st (x)Y ∗

st (x), (14)

where � := ω − �. When Eq. (14) is regarded as a quadratic
equation with respect to zst (x), the stable solution satisfying
0 � |z(x, t )| � 1 is

zst (x) = e−iα[i� − g(x)]/Y ∗
st (x), (15)

g(x) :=
{

−|�|
√

(|Yst (x)|/�)2 − 1 [|�| � |Yst (x)|]
i�

√
1 − (|Yst (x)|/�)2 [|�| > |Yst (x)|],

(16)

where |�| � |Yst (x)| and |�| > |Yst (x)| correspond to coher-
ent and incoherent regions, respectively, and in Eq. (38) we
confirm that this solution in Eq. (15) satisfies the local stability
condition. Moreover, taking its convolution with the coupling
kernel G(x), we can obtain the self-consistency equation of
Yst (x) as

Yst (x) = e−iα
∫ π

−π

dy G(x − y)[i� − g(y)]/Y ∗
st (y), (17)

which agrees with the equation derived by Kuramoto and
Battogtokh [3].

For breathing chimeras, instead of Eq. (12), we assume that
the local order parameter takes the form

z(x, t ) =
∞∑

k=−∞
zk (x) ei(�+kδ)t , (18)

introducing the breathing frequency δ in addition to the fre-
quency � of the rotating frame. We take the sign of δ in
accordance with �; for example, when � > 0, we set δ > 0.
Then,

Y (x, t ) =
∞∑

k=−∞
Yk (x) ei(�+kδ)t , (19)

Yk (x) =
∫ π

−π

dy G(x − y) zk (y), (20)

are also obtained from Eq. (10). Equation (18) is equivalent to
the Fourier expansion of z(x, t ) and includes the stationary
solution where z0(x) = zst (x) and zk 
=0(x) = 0. Substituting
Eqs. (18) and (19) into Eq. (11), we obtain the following
equation for each k:

0 = i�kzk (x) + 1

2
e−iαYk (x) − 1

2
eiα

∑
l+m−n=k

zl (x)zm(x)Y ∗
n (x),

(21)

where �k := ω − � − kδ. Similarly to stationary chimeras,
we also regard Eq. (21) as a quadratic equation with respect
to zk (x) and obtain the solution

zk (x) = [Bk (x) + {Bk
2(x) − Ak (x)Ck (x)} 1

2 ]/Ak (x), (22)

Ak (x) := eiαY ∗
k (x), (23)

Bk (x) := i�k − eiα
∑
l 
=k

zl (x)Y ∗
l (x), (24)

Ck (x) := −e−iαYk (x) + eiα
∑
l 
= k
m 
= k

zl (x)zm(x)Y ∗
l+m−k (x). (25)

As the argument of the square root in Eq. (22), either one
should be chosen to satisfy |z(x, t )| � 1 and the stability
condition of the oscillator if it belongs to a coherent region.
We can regard Eqs. (22)–(25) as the new self-consistency
equations of the set of the complex coefficient function {zk (x)}
for breathing chimeras, which are discussed in Sec. V.

The average frequency of breathing chimeras can be ob-
tained by using Eq. (18). To simplify the notation, we describe
the right-hand side of Eq. (6) as Peiθ with an operator P
below. PA means that the function A(x) is averaged in the
neighborhood of a point x, that is,

(PA)(x) := lim
η→0+

1

2η

∫ x+η

x−η

dy A(y). (26)

We note that the continuous functions, e.g., Y (x), are not
affected by P . Operating P on Eq. (8), we have

(P θ̇ )(x, t ) = ω − Im[eiαz(x, t )Y ∗(x, t )]. (27)

Note that the right-hand side of Eq. (27) agrees with the
other equation obtained by the Watanabe-Strogatz approach
together with Eq. (11) (see Eq. (11) in Ref. [23]). Averaging
both sides of Eq. (27) temporally, since P and 〈·〉 are commu-
tative, we have

〈θ̇ (x, t )〉 = ω − Im[eiα〈z(x, t )Y ∗(x, t )〉]. (28)

Moreover, because

〈z(x, t )Y ∗(x, t )〉 =
∞∑

k=−∞
zk (x)Y ∗

k (x) (29)

is established for a sufficiently long measurement time, from
Eq. (28) we obtain the average frequency as the imaginary part
of the complex function

f (x) := iω − eiα
∞∑

k=−∞
zk (x)Y ∗

k (x). (30)

Figures 5(a) and 5(b) show the profiles of the imaginary
part of Eq. (30) corresponding to the average frequencies in
Figs. 2(b) and 4(b). All figures in Fig. 5 are depicted by
computing zk (x) and Yk (x) for k ∈ [−5, 5] in the numerical
simulation of Eq. (3), and then we have computed zk (x) and
Yk (x) as

zk (x) = 〈eiθ (x,t )e−i(�+kδ)t 〉, (31)

Yk (x) = 〈Y (x, t )e−i(�+kδ)t 〉, (32)
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FIG. 5. Profile of Eq. (30) for the type I [(a) and (c)] and the
type II [(b) and (d)] breathing chimeras corresponding to Figs. 2
and 4, respectively. [(a), (b)] The imaginary part denotes the average
frequency. [(c), (d)] The real part denotes the linear stability against
a small local perturbation, where it is negative in stable coherent
regions and zero in neutral incoherent regions. All figures are de-
picted by computing zk (x) and Yk (x) for k ∈ [−5, 5] obtained by the
numerical simulation of Eq. (3).

using the inverse transformation of Eqs. (18) and (19), where
� and δ are computed from the Fourier transform of the time
series Z (t ) by using Eqs. (9) and (18).

In addition to the average frequency, we note that the real
part of Eq. (30) denotes an important property of breathing
chimeras, that is, the linear stability against a small local
perturbation. Suppose that only the oscillator at x is perturbed
from θ (x, t ) to θ (x, t ) + φ(x, t ), where φ is small. Then, we
are allowed to regard the local mean field Y (x, t ) as unchanged
by that perturbation, as far as the continuum limit is consid-
ered, since the perturbation at only one point x does not affect
the integrated value Y (x, t ) in that limit. From Eq. (8), we can
obtain the linear evolution equation of φ(x, t ) as

φ̇(x, t ) = [∂θV (θ, x)] φ(x, t ), (33)

∂θV (θ, x) = −Re[eiαeiθY ∗(x, t )], (34)

where V (θ, x) denotes the right-hand side of Eq. (8). When
our breathing chimera is stable, the time-averaged 〈∂θV (θ, x)〉
should be nonpositive. We act with the operator P on Eq. (34)
and average the result over time, as Eqs. (27) and (28).
Moreover, using Eq. (29), we finally obtain

〈∂θV (θ, x)〉 = −Re

[
eiα

∞∑
k=−∞

zk (x)Y ∗
k (x)

]
, (35)

which is equivalent to the real part of Eq. (30). Here, we
assumed that 〈∂θV (θ, x)〉 is a continuous function with respect
to x, namely, which is not affected by P . Figures 5(c) and 5(d)
show the profiles of the real part of Eq. (30). In the coherent

regions, the real part of Eq. (30) is negative, while that is
zero in the incoherent regions. This implies that the oscillators
are locally stable in the coherent regions and neutral in the
incoherent regions.

For stationary chimeras, Eq. (30) is

f (x) = iω − eiαzst (x)Y ∗
st (x). (36)

From Eqs. (15) and (16), we obtain f (x) = i� + g(x); there-
fore

Im f (x) =
{

� [|�| � |Yst (x)|]
� + �

√
1 − (|Yst (x)|/�)2 [|�| > |Yst (x)|],

(37)

which agrees with the average frequency derived by Kuramoto
and Battogtokh [3]. The stability property is also obtained as

Re f (x) =
{

−|�|
√

(|Yst (x)|/�)2 − 1 [|�| � |Yst (x)|]
0 [|�| > |Yst (x)|].

(38)

We note that the set of g(x) and its complex conjugate is the
essential spectrum obtained by the linear stability analysis of
the stationary chimera [12,20].

IV. RELATION BETWEEN TWO TYPES OF
BREATHING CHIMERAS

Next, we study the relation between the two types of
breathing chimeras in this section. In particular, we fix the
parameter r = 0.620, which corresponds to the horizontal
dotted line in Fig. 3, and compare the two types of breathing
chimeras with close parameters. For the numerical simulation
of Eq. (3) with fixed r = 0.620, the emergence of the types I
and II is switched at α � 1.550; namely, the type I is stable
for 1.550 < α < π/2 and the type II for α < 1.550.

By the linear stability analysis of the stationary chimera
[12,13,16–20], the eigenvalues characterizing the stability
of the stationary chimera can be obtained as the essential
spectrum and the point spectrum. Then, the essential spectrum
is given by the set of g(x) [described as Eq. (16)] and its
complex conjugate, which consists of pure imaginary and
negative real eigenvalues, and the point spectrum determines
whether the stationary chimera is stable. Figure 6 shows
an example of the eigenvalues λ for an unstable stationary
chimera state obtained by the numerical method in Ref. [19],
where we computed the eigenvalues from the finite (but large)
sized linearized matrix obtained by discretizing the space
coordinate of Eq. (11). The point spectrum is a pair of the
complex conjugate eigenvalues with a positive real value
and the imaginary values about ±0.215. Though there are
eigenvalues with positive real values around the real axis, they
belong to the fluctuation of the essential spectrum by finite
discretization of the numerical method and approach zero by
finer discretization [19].

We numerically computed these spectra for fixed r =
0.620 and obtained results such that the positive real part
of the point spectrum becomes larger continuously as α de-
creases around α � 1.550, as shown in Fig. 7. According to
the analytical result in the neighborhood of a Hopf bifurcation
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FIG. 6. Complex eigenvalues λ for the unstable stationary
chimera state with α = 1.549 and r = 0.620. (a) All eigenvalues.
(b) The enlarged view of panel (a). The dashed lines in each panel
are drawn only for reference.

point (see pages 8–13 in Ref. [1]), we may expect that the
amplitude of the limit-cycle solution gradually increases as
the real part of such eigenvalues increases. Strictly speaking,
the method in Ref. [1] may not be applied to the present
spectral problem, because the method in Ref. [1] assumes
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FIG. 7. Transition of the point spectrum with a positive imagi-
nary value for fixed r = 0.620. The square, the triangle, the circle,
and the cross denote the point spectrum for α = 1.551, α = 1.550,
α = 1.549, and α = 1.548, respectively. The dashed line is the
imaginary axis.

that the linearized matrix of the system is finite-dimensional
but the present problem has a continuous spectrum. We again
refer to this problem in Sec. VI. Below, we will see that this
increase of the amplitude causes the change of the type I
breathing chimera to the type II.

As mentioned in Sec. II, we have found the Hopf bifurca-
tion points at r � 0.400 and r � 0.580 between the stationary
chimera and the type I breathing chimera by the linear stability
analysis. Then, the absolute values of the imaginary parts of
the point spectrum are nearly equal to the breathing frequency
δ [19]. This agrees with the occurrence of a supercritical
Hopf bifurcation. Therefore, for the type I breathing chimeras
with a small breathing amplitude immediately after a Hopf
bifurcation, we can assume that the local order parameter
z(x, t ) given by Eq. (18) satisfies

zk (x) = O(ε|k|), (39)

where ε is a small bifurcation parameter [1]. Then, the local
mean field Y (x, t ) also satisfies

Yk (x) = O(ε|k|), (40)

from Eq. (10). For k = 0, substituting Eqs. (39) and (40)
into Eq. (22) and eliminating the O(ε1) terms, Eq. (22) is
equivalent to the stationary case Eqs. (15) and (16), where
A0 = eiαY ∗

0 (x), B0 = i�0, and C0 = e−iαY0(x). Therefore, we
have

z0(x) � zst (x), Y0(x) � Yst (x), (41)

where zst (x) and Yst (x) denote the quantities for the unstable
stationary chimera at the same parameters that remains after
the Hopf bifurcation of the stable stationary chimera. These
agree with the numerical result as shown in Fig. 8. Y0(x)
of the type I breathing chimera obtained by the numerical
simulation of Eq. (3) and the numerical solution Yst (x) to the
self-consistency equation (17) look identical.

On the rotating frame with the frequency �, z(x, t ) oscil-
lates around the center z0(x), and zk (x) eikδt for k = ±1 are
the main terms of oscillation for the type I breathing chimera.
Substituting Eqs. (39) and (40) into Eq. (22) for k = ±1 and
eliminating the O(ε2) terms, we obtain

z±1(x) � −e−iαY±1(x) + eiαz0
2(x)Y ∗

∓1(x)

2[i�±1 − eiαz0(x)Y ∗
0 (x)]

. (42)

z±1(x) are in the order of ε1 for almost all x, but in the vicinity
of xs they become larger than O(ε) and therefore do not satisfy
Eq. (42), if there exist specific points x = xs satisfying

i(� + kδ) = iω − eiαz0(x)Y ∗
0 (x), (43)

for k = ±1, since the denominator of the right-hand side in
Eq. (42) becomes zero. From Eq. (41), the right-hand side
of Eq. (43) agrees with Eq. (30) for the unstable stationary
chimera in the order of ε0. In incoherent regions, Eq. (30) is
purely imaginary and its imaginary part corresponds to the av-
erage frequency, as mentioned in Sec. III. Let us consider the
case of � > 0. For stationary chimeras, the average frequency
of the coherent region is equal to �, which is the minimum
value of the average frequency, from Eq. (37). Since δ > 0,
if � + δ is within the range between the maximum and the
minimum of the average frequency, some points xs satisfying
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FIG. 8. Local mean field of the type I breathing chimera and
the stationary chimera. Figures show (a) the amplitude and (b) the
argument. Open circles denote Y0(x) of the type I breathing chimera
obtained by the numerical simulation of Eq. (3) with N = 100 000,
α = 1.551, and r = 0.620. Those circles are plotted once every 2000
oscillators. The solid line denotes the numerical solution Yst (x) to the
self-consistency equation (17) at the same parameters. This solution
corresponds to the unstable stationary chimera.

Eq. (43) for k = 1 should exist. On the other hand, if � < 0, �
is the maximum value of the average frequency. Then, some xs

satisfying Eq. (43) for k = 1 exist under the same condition of
� + δ since δ < 0. Therefore, from Eq. (37), if the breathing
frequency δ satisfies the condition

0 < |δ| � max{|�
√

1 − (|Yst (x)|/�)2|}, (44)

in incoherent regions (� > |Yst (x)|), some specific points xs

exist, and |z1(xs)| becomes larger sharply than other points
x. We note that |z1(xs)| does not diverge to infinity. The
function z±1(x) is determined by Eq. (22), but can be approx-
imately found by Eq. (42) for all x ∈ [−π, π ) such that the
denominator in Eq. (42) is separated from zero. At x = xs, the
denominator in Eq. (42) for k = 1 is zero. Then, z±1(xs) does
not obey Eq. (42). However, the correct values of z±1(xs) still
can be found from Eq. (22), and |z1(xs)| practically becomes
a large finite value. In our numerical simulations (ω = 0)
presented here, we observed � > 0 and therefore Eq. (44)
becomes

0 < δ � � (= −�), (45)

since the minimum of |Yst (x)| is zero as shown in Fig. 8.
From the existence of specific points xs, we can explain

that the type I changes to the type II by increasing the
breathing amplitude, as follows. After the Hopf bifurcation
from stationary chimeras, there appear the type I breathing
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FIG. 9. Comparison between the two types of breathing chimeras
for the numerical simulation of Eq. (3) with N = 100 000 and r =
0.620. The left column denotes the type I for α = 1.551, and the right
column denotes the type II for α = 1.549. Figures (a) and (b) show
the snapshot of the phase. Figures (c) and (d) show the profile of the
average frequency. Figures (e) and (f) and figures (g) and (h) show the
amplitudes of z0(x) and z1(x), respectively. All the figures are plotted
once every 10 oscillators. Note that the appearance of the types I and
II is switched at α � 1.550.

chimeras with a small breathing amplitude. This amplitude
is mainly characterized by z±1(x), which are very small for
almost x. However, z1(x) is large only at xs. As increasing the
breathing amplitude by leaving the bifurcation point, z±1(x)
gradually becomes large. By the increase in z±1(x), especially
z1(xs), z(x, t ) reaches the upper limit |z(x, t )| = 1 at xs, e.g.,
for α � 1.550 and r = 0.620. When α decreases further from
α = 1.550 with fixed r = 0.620, z1(xs) cannot become large
anymore. Instead, the second coherent regions with average
frequency � + δ emerge around xs with increasing the ampli-
tude; in other words, the type II breathing chimera appears.

Let us confirm this scenario by numerical simulations of
Eq. (3). Figure 9 shows comparison between the two types of
breathing chimeras near the bifurcation between them. For the
type I breathing chimera for r = 0.620 and α = 1.551 (see
the left column in Fig. 9), we obtained � � −0.3602 and
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δ � 0.2151, then from Eq. (43) we can see that 〈θ̇ (xs, t )〉 =
� + δ is established for k = 1 at, e.g., xs � 0.705. Such a
profile as |z1(x)| nearly diverges can often be seen just before
the bifurcation to the type II. As shown in Fig. 9(g), |z1(x)| is
very small for almost all x but nearly diverges at the points xs.

For the type II breathing chimeras, the local order param-
eter does not satisfy Eq. (39), because z0(x) as shown in
Fig. 9(f) clearly differs from zst (x) [�z0(x) for the type I];
that is, Eq. (41) is not satisfied. Therefore, it turns out that the
breathing amplitude for type II is larger than that for type I.
When Figs. 9(a) and 9(b) are compared, we find that a part of
the incoherent region suddenly changes to the second coherent
region. Then, it is observed that the second coherent regions
for type II emerge at the same points as xs for type I and have
the average frequency � + δ obtained from the simulation
results � � −0.3974 and δ � 0.2067. From this result, our
scenario is shown to be valid. As shown in Fig. 3, we do
not observe that the type I breathing chimeras for r < 0.400
change to the type II. This seems to be because the amplitude
increase is smaller than that for r > 0.600.

For |k| � 2, we can obtain zk (x) of the order of ε|k| similar
to Eq. (42) and the same condition as Eq. (43). Therefore,
there can also exist special points xs satisfying Eq. (43),
if � + kδ is within the range between the maximum and
minimum of the average frequency. In other words, if the
breathing frequency δ satisfies the condition

0 < k|δ| � max{|�
√

1 − (|Yst (x)|/�)2|}, (46)

the type II breathing chimera has (k + 1)-th coherent regions
with the average frequency � + kδ. In the present case, δ does
not satisfies Eq. (46) except for k = 1, so the type II breathing
chimeras cannot have the third and greater coherent regions.
However, the type II breathing chimeras in Refs. [17,18]
appear to have the second and third coherent regions, though
the system used in Refs. [17,18] includes phase lag parameter
heterogeneity. We emphasize that our analytical theory and
scenario can be applied to the system with phase lag parameter
heterogeneity only by replacing α. As mentioned above, |δ|
is nearly equal to the absolute value of the imaginary parts
of the point spectrum in the neighborhood of a Hopf bifur-
cation point. Therefore, when the type I breathing chimera
is bifurcated via Hopf bifurcation, it is already determined
whether the type II breathing chimera has the second or
greater coherent regions.

V. SELF-CONSISTENT ANALYSIS

Finally, we propose a self-consistent analysis for breath-
ing chimeras. As mentioned in Sec. III, Eqs. (22)–(25) are
the self-consistency equations of {zk (x)}. In this section, we
numerically solve them, especially for the type II breathing
chimera.

Equations (22)–(25) are composed of one complex equa-
tion for every k. Therefore, we need two additional con-
ditions to obtain the solution because there are unknown
complex functions {zk (x)} and two real unknowns � and δ

to be determined. Unlike the breathing chimeras, the self-
consistency equation (17) for stationary chimeras has one
unknown complex function Yst (x) and one real unknown �,
and an additional condition obtained from the invariance of

Eq. (17) under any rotation of the argument of Yst (x) leads to
solving the self-consistency equation [5–7,13,19]; for exam-
ple, Arg[Yst (0)] = 0 is chosen.

Equation (30) can be utilized for obtaining the additional
real conditions to determine � and δ. The average frequencies
of the first and second coherent regions are equal to � and
� + δ, respectively. Moreover, the coherent region satisfies
the stability condition Re f (x) < 0, and Re f (x) has a minimal
value in every coherent region, as shown in Fig. 5. Let xc1

and xc2 be the minimal points of Re f (x) corresponding to
the first and second coherent regions, respectively. Then, the
frequencies � and δ are given by

� = Im f (xc1), (47)

δ = Im f (xc2) − Im f (xc1). (48)

Note that Eq. (47) is also established for stationary chimeras.
In the following, we regard Eqs. (22)–(25) and Eqs. (47) and
(48) as the complete self-consistency equations for the type II
breathing chimeras.

There are a few important points to solve the self-
consistency equations numerically. First, we truncate {zk (x)}
to k ∈ [−10, 10], assuming that zk (x) for sufficiently large |k|
is small enough not to affect the other zk (x). That is confirmed
from the results of the numerical simulation of Eq. (3).

The second point is the selection method of the argument
of the square root in Eq. (22). Equation (22) can produce
two solutions according to this selection. In our numerical
computation of the two solutions for all k, we have found
that the orders of these two solutions are greatly different
except for the first coherent regions for k = 0 and the second
coherent regions for k = 1. In that case, the larger one is easily
rejected because of the condition |z(x, t )| < 1. The problem is
the exceptional case where the orders of the two solutions are
not so different. Then, one of the two solutions corresponds to
the stable solution and the other does not. That can be shown
as follows. Because Eqs. (22)–(25) are transformed to

{
Bk

2(x) − Ak (x)Ck (x)
} 1

2 = −i�k + eiα
∞∑

k=−∞
zk (x)Y ∗

k (x),

= i(� + kδ) − f (x), (49)

where f (x) is the same function in Eq. (30), we have

f (x) = i(� + kδ) − {
Bk

2(x) − Ak (x)Ck (x)
} 1

2 . (50)

It is interesting that the right-hand side of Eq. (50) should be
independent of k. Therefore, since Im f (x) = � in the first
coherent regions, the square root becomes the real number for
k = 0, and either one corresponding to Re f (x) < 0 should be
selected from the stability in the coherent regions. The case in
the second coherent regions for k = 1 is the same as above.

In this way, we can select the stable solution to Eq. (22) at
almost all x for k = 0, 1. However, the stable and unstable so-
lutions are too close to be distinguished around the boundaries
between the coherent and incoherent regions since Re f (x) �
0. To solve this problem, we use the following method. For
example, let us consider the boundaries between the first co-
herent and incoherent regions for k = 0. Substituting Eq. (49)
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FIG. 10. Local order parameter of the type II breathing chimera
for α = 1.500 and r = 0.600 corresponding to Fig. 4. Figures show
the amplitude of (a) z0(x), (b) z1(x), and (c) z−1(x). Open circles
denote the values obtained by the numerical simulation of Eq. (3)
with N = 100 000, and are plotted once every 2000 oscillators. The
solid line denotes the numerical solution to the self-consistency
equations (22)–(25), (47), and (48).

into Eqs. (22)–(25), we have

zk (x) = [Bk (x) + i(� + kδ) − f (x)]/Ak (x). (51)

This equation is also derived from Eq. (30) directly. Because
the branch of the square root for k 
= 0 is easily selected by
the orders of the two solutions, the right-hand side of Eq. (50)
can be computed for a specific k 
= 0. When it is difficult to
distinguish the two solutions for k = 0, we may use Eq. (50)
for k 
= 0 as f (x) in Eq. (51).

Figure 10 shows numerical solutions to the self-
consistency equations (22)–(25), (47), and (48). At first, we
tried to numerically solve the self-consistency equations by
the simple iteration method, where unknown variables {zk (x)},
�, and δ are substituted into the right-hand side of the equa-
tions and are regenerated from the left-hand side. However, we
could not obtain a solution of the type II breathing chimeras

because the variables have not converged even by using var-
ious initial conditions. Instead, we have applied Steffensen’s
method [44] to the regeneration of every variable and have
succeeded in obtaining the correct numerical solution. Open
circles in Fig. 10 denote zk (x) obtained by the numerical
simulation of Eq. (3). We used them as the initial condition
for solving the self-consistency equations. The results from
the numerical simulation and the self-consistency equations
look like almost identical. Although it may seem that they are
not identical in a part of |z1(x)|, that is caused by the numerical
error due to the finite-size effects of the simulations. We ex-
pect that more extensive simulations improve this discrepancy.
We succeeded in obtaining the solution to the self-consistency
equations by using an initial condition that is very close to
the correct solution. However, when other initial conditions
were used, the correct solution could not be obtained since
the variables have not converged. This may be a weak point of
our numerical method.

VI. SUMMARY

We have studied breathing chimera states in one-
dimensional nonlocally coupled phase oscillators. First, we
have found breathing chimeras in numerical simulations. The
breathing chimeras are characterized by the temporally os-
cillating global order parameter and classified into two types
by observing the average frequencies of the coherent regions.
While type I contains the coherent regions with a common
average frequency similarly to the stationary chimera, type II
contains the coherent regions with different average frequen-
cies. Type II breathing chimeras are also obtained for Eq. (1)
with phase lag parameter heterogeneity [17,18].

Next, we have assumed that the local order parameter
z(x, t ) takes the form of Eq. (18) instead of Eq. (12) as in
many previous works, and analytically discussed breathing
chimeras. Moreover, we have derived the self-consistency
equations (22)–(25) and the important complex function
Eq. (30), whose imaginary and real parts denote the average
frequency and the local linear stability, respectively. They
turns out to be very useful to analyze breathing chimeras.

We have shown that the type I breathing chimera changes
to type II by increasing the breathing amplitude. This means
that the type I breathing chimera looks the same as the
stationary chimera since the breathing amplitude is small
but the second coherent regions emerge in the incoherent
regions as that amplitude becomes larger. Such a bifurcation,
that new coherent regions emerge in the incoherent regions,
has been reported in a few systems that are different from
phase oscillators [31,35]. However, the mechanism of that
bifurcation in the other systems is unclear.

In the present paper, we applied the analytical result in
Ref. [1] to the spectral problem corresponding to the lineariza-
tion of Eq. (11). However, this method may not rigorously
be justified in N → ∞. To understand breathing chimera
states more precisely, we need to analyze them by a more
sophisticated perturbation theory for infinite-dimensional
systems [45].

Finally, we have numerically solved the self-consistency
equations (22)–(25). Then, the frequencies � and δ are for-
mulated as Eqs. (47) and (48), respectively. Our numerical
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method has succeeded in solving them, but it is necessary
to use the initial condition that is very close to the correct

solution. To obtain the solution more easily, we need to
improve the present method in future.
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