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Abstract 

The literature provides insights for catalyst design and discovery. Effective analysis of reported data using 
machine learning (ML) methods offers the ability to gain valuable information. However, utilizing the 
literature in this way has obstacles such as lack of compositional overlaps, bias from prior published data, 
and low sample counts for many elements. The present study describes an ML approach that considers 
elemental features as input representations instead of inputting catalyst compositions directly. This ML 
method has the potential for catalyst discovery, including catalytic reactions with limited catalyst 
composition overlap in the available data. Oxidative coupling of methane (OCM), water gas shift (WGS), 
and CO oxidation reactions were chosen to confirm the effectiveness of the proposed method by analysis 
using several state-of-the-art ML methods. Among the ML methods tested, gradient boosting regression 
with XGBoost (XGB) provided the best results, and prediction accuracy was improved by the proposed 
approach for all three reaction types. In addition, a quantitative value of “feature importance score” was 
calculated to evaluate the most influential input variables on catalyst performance. Finally, catalyst 
optimization was explored using ML as a “surrogate” model, and the top 20 promising candidate catalysts 
were identified for the OCM reaction based on the optimization. The advantages of ML in catalysis analysis 
as well as the difficulties and limitations originating from the complexity of heterogeneous catalysis were 
explored. 
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Introduction 
Catalysis is a highly complex phenomenon.[1] In particular, heterogeneous catalysis remains an empirical 
science due to the complexity of the surface reactions involved.[2,3] Recent experimental and theoretical 
studies have produced insights on the atomic level.[4–6] However, discovering new and interesting catalysts 
remains a formidable task. High-throughput or combinatorial techniques, which have been applied 
successfully to relevant fields such as materials synthesis and homogeneous catalysis, should serve as 
powerful tools for the discovery of novel heterogeneous catalysts and catalytic processes.[7–11] Data- and 
text-mining approaches also show promise for accelerating research.[12,13] For these approaches, refined 
and automatic search strategies to minimize the number of experiments during exploration are required 
and need to be a key aspect of the approach. Evolutionary computation (such as generic algorithms) often 
are used for these statistical approaches.[14–20] However, they normally require a large amount of data and 
computational time to explore. In this sense, machine learning (ML) techniques, which require a relatively 
small amount of data and are less computationally expensive, should be effective for searches, especially 
in fields having little information.  
 ML methods have gained attention in molecular and materials science fields to predict various 
physical and chemical properties.[21–23] These methods can serve as fast and high-precision alternatives 
to first-principles modelling. Several successful examples have already been reported for organic 
chemistry reactions, including those that involve homogeneous catalysts.[24–29] However, the applicability 
of ML predictions for heterogeneous catalysis have been limited mainly to computationally determined 
values such as band gaps,[30–32] d-band centers,[33,34] and adsorption energies.[35–40] For the practical use 
of ML for discovering new solid catalytic materials, not only first-principles calculated values but also 
experimental values for specific catalytic reactions are needed, especially in heterogeneous catalysis 
because an adequate theoretical model for heterogeneous catalysis is not available. Thus, the ML 
predicted values could not directly lead to novel catalyst designs. Although reports based on ML predictions 
of experimental results of heterogeneous catalysis are limited in number, some examples are available.[41–

48] For example, catalysts for oxidative coupling of methane (OCM) to C2 products such as C2H4 and C2H6 
have been predicted.[47,48] Yildirim et al. analyzed results of various catalytic reactions obtained from the 
literature, including CO oxidation,[49] water gas shift (WGS),[50,51] and transesterification for biodiesel 
production.[52] It is worthy of note that a recent report by Schmack and coworkers described a meta-
analysis of experimental results of the OCM reaction.[53] The proposed method incorporates general 
textbook knowledge about fundamental material properties and the experienced intuition of a chemist or 
material scientist about possible property–performance correlations in addition to the experimental data 
reported in literature. 
 Catalyst-performance data are a rich resource that can provide insightful information for catalyst 
discovery and design. The data usually involve a wide variety of multicomponent catalysts that have 
different compositions of diverse elements, which make meaningful statistical comparisons difficult and 
can prevent full use of these catalyst data with less compositional overlaps. For example, the original OCM 
dataset used for a previous study contained 1868 catalyst-performance data composed of 68 different 
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elements: 61 cations and 7 anions (Cl, F, Br, B, S, C, and P) excluding oxygen,[47] but each catalyst 
contained only 2.30 elements on average. In addition, catalyst research has relied heavily on prior 
published data, and the compositional variations of high-performance catalysts are limited. Out of 1868 
catalysts for the OCM reaction, 317 catalysts performed well with C2 yields ≥ 15% and C2 selectivity ≥ 50%, 
but the frequency of the occurrence of a few specific elements, such as La, Ba, Sr, Cl, Mn, and F, was very 
high. This implies that, even when the data collections are large, their information coverage could be limited 
and biased. Elements such as Li, Mg, Na, Ca, and La also frequently appear in the dataset, which suggests 
that a large dataset prepared from already examined catalyst data from the literature is likely to contain a 
few widely used elements and many other elements with low sample counts; this situation makes 
statistically meaningful use of the data challenging. To efficiently utilize the experimental data for 
development of novel catalysts, establishing a new ML protocol that includes a variety of elements is 
necessary to find effective elements that have not been thoroughly explored experimentally. 
 The present study describes the development of an effective ML predictive protocol for 
experimental catalytic results including OCM, WGS, and CO oxidation reactions. The proposed ML 
approach considers elemental features as representative input instead of the catalyst compositions 
themselves, as shown in Figure. 1. Therefore, this method could allow catalyst discovery, even for catalytic 
reactions with little information and limited catalyst composition overlaps in the literature. In addition, the 
reactions were analyzed quantitatively to determine correlations between the input variables, such as 
catalyst compositions and experimental conditions, and reactivity properties. The resulting quantitative 
“feature importance score” is particularly important for the design of efficient catalytic systems for which 
various parameters can affect results. Promising candidate catalysts for the OCM reaction also are 
proposed for future study. This study presents not only the advantages of ML but also the limitations and 
difficulties of ML for heterogeneous catalysis. The schemes proposed and results obtained provide a 
valuable contribution to establishing “catalysis Informatics.”[54–57] 
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Figure 1. The proposed machine learning (ML) approach.  
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Data and methods 

Catalyst datasets and elemental descriptors 

For quantitative evaluation, three published datasets of heterogeneous catalysts and their performances 
were analyzed (Table 1) for OCM,[47] WGS,[51] and CO oxidation reactions.[58] The original OCM dataset 
consisted of 1866 catalysts with information on their compositions, support types, promoter types, 
experimental conditions (preparation methods, operating temperature, total pressure, and contact time), 
and reported performance (yield and selectivity of C2 hydrocarbons). To ensure the quality of the statistical 
data, the following preprocessing was applied. First, catalysts with more than five elements and catalysts 
including Th (due to its scarcity) were removed. The WGS dataset consisted of 4360 catalysts with their 
compositions (wt%), support types, promoter types, experimental conditions [e.g., temperature, vol% of 
H2, O2, and CO, time on stream (TOS), flow per unit weight (F/W)], and performance (% CO conversion). 
For preprocessing, catalysts containing “YSZ” (yttria-stabilized zirconia) were removed. The CO oxidation 
dataset consisted of 5610 catalysts with their compositions (wt%), support types, promoter types, 
experimental conditions (e.g., temperature, vol% of H2, O2, and CO, TOS, and F/W), and performance (% 
CO conversion). For the three datasets, the indistinguishable catalyst records with the same catalyst 
compositions and reaction conditions were aggregated into a single record with the best reported 
performance. After preprocessing, the final numbers of catalyst records for the three datasets resulted in 
1833 for OCM, 4185 for WGS, and 5567 for CO oxidation (Table 1).  
 

Table 1. The three catalyst datasets investigated in this study 

Dataset # Catalysts (Original) # Features Target 
OCM[47] 1833 (1866) 105 C2 yield (%) 
WGS[51] 4185 (4360) 61 CO conversion (%) 
CO oxidation[58] 5567 (5610) 80 CO conversion (%) 

OCM: http://www.fhi-berlin.mpg.de/acnew/department/pages/ocmdata.html 
WGS: https://www.sciencedirect.com/science/article/pii/S0360319914002407?via%3Dihub 
CO oxidation: https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201200665 
 
Machine learning (ML) methods 
For performance prediction, seven well-established ML models (Table 2) were used: least absolute 
shrinkage and selection operator regression (LASSO),[59] ridge regression (Ridge),[60] kernel ridge 
regression (KRR),[61] support vector regression (SVR),[62] random forest regression (RFR),[63] gradient 
boosting regression with XGBoost (XGB),[64] and extra trees regression (ETR).[65] Two of these methods 
involve linear regression methods (Lasso, Ridge), and the other five methods involve nonlinear regression 
methods [more specifically, two kernel methods (KRR, SVR) and three tree ensemble methods (RFR, GBR, 
ETR)]. This set of ML models covers a wide spectrum of model types, which can reveal the relevant aspect 
of diverse data as illustrated in previous research on data-driven predictions for DFT-calculated values 
such as d-band centers[33,34] and adsorption energies.[40] Widely used implementations of scikit-learn 
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(version 0.19.1)[66] were employed for all ML models except XGB, and for XGB the original implementation 
(version 0.81) of XGBoost[64] was used. The key hyperparameters of each model tuned in an exhaustive 
way (i.e., grid search) within the specified ranges shown in Table 2 (the hyperparameters not explicitly 
indicated in the table were set to the scikit-learn or XGBoost defaults). 

 The quantitative evaluations of prediction accuracy were based on the root mean squared errors 
(RMSEs) calculated by 10-fold cross-validation, the most widely used method for estimating prediction 
error. Cross-validation uses a portion of the given data to fit the model, and a different portion to test it. In 
10-fold cross-validation, the given data are first partitioned into 10 equal-sized parts. For each part, an ML 
model was fit to the other 9 parts (a training set), and the RMSE of the fitted model calculated when 
predicting that part (a test set). After repeating this process for each of 10 parts, 10 RMSE values were 
obtained for the out-of-sample predictions, which were averaged into a single number as the final estimate 
for the prediction error (test error). 

 To evaluate the input feature variables that contributed most to the prediction of the target of 
interest, the “feature importance score,” provided by tree ensemble methods (RFR, XGB, ETR), was used. 
The importance score can be of many types, typically calculated as the weighted mean of improvements 
in squared errors attributed to the individual feature variables, and represents the relative importance of 
each feature variable with respect to the predictability of the target variable. The input feature variables 
were seldom equally relevant, and usually only a few had significant influence on predicting the target 
variable. The feature importance scores do not require strong assumptions, such as linearity and 
independence of input variables assumed in conventional linear regression analysis. 

Table 2. List of ML methods with search ranges for hyperparameter settings (if not specified, default values 
of scikit-learn were used). 3-fold cross validation with n_estimators = 100 was used for inner evaluations 
in the grid-search due to time constraints. 
Type Method Hyperparameters [Tested range] 
Linear Lasso alpha ∈ [10-2,10-1,1.0,101,102] 

Ridge alpha ∈ [10-2,10-1,1.0,101,102] 
Nonlinear Kernel 

methods 
KRR kernel=’rbf, alpha∈ [1.0,10-1,10-2,…,10-5], gamma ∈ [1.0,10-1,10-2,…,10-5] 
SVR kernel=’rbf’, C ∈ [1.0,10,102,…, 105], gamma ∈ [1.0,10-1,10-2,…,10-9,10-10], 

epsilon ∈ [10-2,10-1,1.0,101,102] 
Tree 
ensemble 
methods 

RFR n_estimators = 500(OCM) or 1500(WGS, CO oxidation) 
XGB n_estimators = 500(OCM) or 1500(WGS, CO oxidation), max_depth ∈ [6, 

7, 8], learning_rate ∈ [0.1, 0.05], subsample∈ [0.8, 0.9, 1], 
colsample_bytree∈ [0.8, 0.9, 1], 

ETR n_estimators = 500(OCM) or 1500(WGS, CO oxidation) 
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Prediction of multicomponent catalyst performance by incorporating descriptors for individual 
component elements of ML methods 

Trends in literature data, such as diversity in elements, bias from prior published data, few compositional 
overlaps, and low sample counts for many elements, were observed in the three datasets (Table 1). Figure 
2 shows the number of common component elements for all pairwise comparisons of catalyst compositions 
in OCM, WGS, and CO oxidation. Even though some elements were used frequently as catalyst 
components, the reported catalysts have a small number of common elements, and the majority have no 
common elements in their compositions. In addition, the number of catalyst records having each of 
elements Pt, Tm, N, Ge, Cr, Cd, Re, Be, Ru, Sc, Lu, Pd, Rh, Te, In, Ga, Au, Ar, and I in OCM was less than 
5 out of 1868, which was insufficient to affect the statistical analysis. To overcome this difficulty, the 
descriptors for each element of multicomponent catalyst representations as input variables to ML were 
used as shown in Figure 1. The elemental compositions were conventionally represented by a vector of 
compositional ratios for all elements under consideration. For example, for the dataset covering five 
elements A, B, C, D, and E, a catalyst with 90% A, 6% B, and 4% C would be expressed as Cat-ABC = 
(0.90, 0.06, 0.04, 0.00, 0.00), a catalyst with 60% D, 30% B, and 10% C was represented as Cat-BCD = 
(0.00, 0.30, 0.10, 0.60, 0.00), and a catalyst with 60% E, 30% B, and 10% C was represented as Cat-BCE 
= (0.00, 0.30, 0.10, 0.00, 0.60). However, the Euclidean distance between Cat-ABC and Cat-BCD was 
equal to that between Cat-ABC and Cat-BCE because only the numbers of elemental composition ratios 
are visible, not the individual elements. If element A shares some common properties with D but not with 
E, Cat-BCD and Cat-BCE can be characterized differently. However, meaningful comparisons cannot be 
made between two catalysts with no common elements (i.e., with no compositional overlap), whereas the 
majority of arbitrary pairs of catalysts had no common elements (Figure 2). 
 Figure 1 illustrates the scheme of the proposed approach. As shown at the bottom of Figure 1, 
the proposed input representation contains additional variables for considering the “elemental features” of 
component elements. Due to this, Cat-BCD can be distinguished from Cat-BCE. For Cat-BCD that contains 
60% D, 30% B, and 10% C, the primary, secondary, and tertiary components are respectively D, B, and C. 
Thus, the elemental descriptors for D, B, and C were set in this order, each of which was multiplied by ratio 
0.60, 0.30, and 0.10, respectively. In this case, the resultant vector is represented by Cat-BCD=(0.00, 0.30, 
0.10, 0.60, 0.00, 0.60×desc-D1, 0.60×desc-D2,…, 0.60×desc-Dp, 0.30×desc-B1, 0.30×desc-B2,…, 
0.30×desc-Bp, 0.10×desc-C1, 0.10×desc-C2,…, 0.10×desc-Cp), where desc-Xi indicates the i-th descriptor 
value for element X (p=11 in this paper as described later). This extended representation was applied to 
each group of elements, such as base metals, supports, and promoters. The multiplication and reordering 
are needed because of the following: (1) no information should be included from elements not contained 
in the catalyst; and (2) the elemental descriptor values are “constant” for each element, and, hence, just 
replacing elemental ratios by elemental descriptors could not add any more information without catalyst-
specific manipulations. Note that soft weighting using numbers between 0 and 1 with a sum of 1 is a 
common technique to represent statistical interactions such as those between compositional ratios and 
descriptors of the component element in this study. 
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As elemental descriptors for the proposed ML model, the following 11 physical properties (readily 
available from the periodic table and chemical handbook) were used for each element:[67] atomic number 
(AN), atomic weight (AW) in g mol-1, group, period, atomic radius in Å, electronegativity, melting point (m.p.) 
in K, boiling point (b.p.) in K, enthalpy of fusion in J g-1, density (ρ) at 25 °C in g cm-3, and ionization energy 
in eV.  
 

 
Figure 2. Number of common elements for all pairwise comparisons of catalyst compositions for (A) OCM, 
(B) WGS, and (C) CO oxidation. Frequencies (y axis) are on a log scale. 
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Results and Discussion 

Quantitative evaluations for performance prediction of OCM, WGS, and CO oxidation catalysts 

To evaluate performance predictions using the proposed approach, a quantitative investigation was done 
based on the OCM dataset,[47] which had previously published analysis results.[48,68] In a recent study by 
Takahashi and coworkers,[68] the catalysts were classified into four groups with C2 yields of 0-10%, 10-
20%, 20-30%, and greater than 30%, and the performance by classification version of RFR was evaluated. 
This was done because the OCM dataset from the literature is noisy and inconsistent due to the variety of 
data sources from different instruments, procedures, platforms, and researchers. In contrast, prediction of 
C2 yield performance directly as a regression problem rather than a classification problem was pursued in 
the present study, allowing for quantitative analysis of the noise variance and predictability across multiple 
state-of-the-art ML methods. 
 First, the prediction performance of the proposed approach was evaluated using seven different 
ML methods (Table 2). All evaluations were conducted using 10-fold cross-validation and the root mean 
square error (RMSE) of the difference between the predicted value and ground truth; standard deviations 
also were calculated. Figure 3 shows the prediction errors (RMSEs) for the predictions of C2 yield from 
OCM catalysts. Non-linear methods performed better than linear methods, and, in particular, tree ensemble 
methods (RFR, XGB, ETR) resulted in small training and test errors. The best prediction performance by 
XGB was RMSE of 0.52 (training error) and 4.15 (test error) for predicting C2 yield (%). A previous study 
by Takahashi et al. regarded catalysts as being at roughly the same level if the performance was within 
the same 10% intervals;[68] therefore, this 4.15% test error in RMSE was informative. In addition, Figure 4 
provides a visual representation of the details of the ML predictions by plotting actual C2 yield (x axis) 
against predicted yield by ML (y axis). Linear methods revealed underfitting, and continuous nonlinear 
methods, such as KRR and SVR, were difficult to fit to the proposed representations that were 
discontinuous. In contrast, tree ensemble methods, such as RFR, XGB, and ETR, worked fairly well, and 
therefore a combination of these methods was used with the proposed representations. The data were 
distributed mainly in low-performance intervals, which cannot simply be identified from quantitative 
evaluations such as classification performances and RMSEs. 
 Second, the three representation patterns for input to ML were evaluated using the XGB model, 
which showed the best performance, combined with different input representations: (1) conventional ML 
method using only catalyst compositions, (2) conventional ML method using both catalyst compositions + 
experimental conditions, and (3) proposed ML method using both catalyst compositions + experimental 
conditions. The proposed method used the elemental features shown in Figure 1. Figure 5 shows the 
results for predictions of 10% catalysts (in red) from the remaining 90% catalysts (in blue), which strongly 
suggests that the performance prediction for OCM relied heavily on experimental conditions; using only 
catalyst compositional information resulted in poor prediction results. The visual assessment also indicated 
that the improvement from (2) to (3) was marginal compared to that from (1) to (2), but the data shown in 
Tables 3 and 4 confirm quantitatively that the proposed representation improves the prediction 
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performance for all 3 cases of OCM, WGS, and CO oxidation, even though the datasets contained 
unavoidable intrinsic noise originating from the variety and uncertainty of multiple data sources, which 
limited predictability. 

 
Figure 3. Prediction-error comparisons for catalyst performance (C2 yield) for OCM. The proposed 
approach was tested with seven state-of-the-art machine learning methods. Evaluations were done with 
respect to RMSEs estimated by 10-fold cross-validation. The error bar indicates the 95% CI (±2σ). 
 

 
Figure 4. The 90%/10% training-test error plots for catalyst performance (C2 yield) for OCM. The proposed 
approach was tested using seven ML methods. Training data (blue), test data (red). 
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Figure 5. Comparison of 90%/10% training-test error plots for three representation patterns for catalyst 
performance (C2 yield) for OCM. (A) Conventional ML method using (A) only catalyst compositions, (B) 
catalyst compositions + experimental conditions, and (C) proposed ML method using catalyst compositions 
+ experimental conditions. XGB was used for the ML method. Training data (blue), test data (red). 
 
Table 3. Comparison of prediction accuracy (RMSE, 10-fold cross-validation) for C2 yield (%) of OCM. 
Three representation patterns (composition only, composition + condition, and the proposed) were tested 
with seven ML methods. The numbers shown in parentheses are the corresponding σs. 
Method Lasso Ridge KRR SVR RFR ETR XGB 
Conventional ML method 
Only catalyst composition 
   Training Error 
   Test Error 

 
6.23 (0.05) 
6.37 (0.41) 

 
6.09 (0.05) 
6.36 (0.43) 

 
6.21 (0.05) 
6.33 (0.41) 

 
2.65 (0.04) 
5.98 (0.30) 

 
2.54 (0.02) 
5.33 (0.37) 

 
1.85 (0.03) 
5.48 (0.38) 

 
3.01 (0.03) 
5.23 (0.35) 

Both catalyst composition 
& experimental conditions 
   Training Error 
   Test Error 

 
 
6.55 (0.03) 
6.57 (0.33) 

 
 
5.56 (0.05) 
6.64 (0.82) 

 
 
5.95 (0.04) 
6.11 (0.38) 

 
 
5.55 (0.04) 
6.06 (0.41) 

 
 
1.65 (0.02) 
4.41 (0.34) 

 
 
0.16 (0.02) 
4.32 (0.27) 

 
 
0.97 (0.02) 
4.23 (0.24) 

Proposed ML method 
Both catalyst composition 
& experimental conditions 
   Training Error 
   Test Error 

 
 
6.53 (0.04) 
6.56 (0.33) 

 
 
5.36 (0.06) 
6.33 (0.60) 

 
 
1.80 (0.03) 
9.83 (0.54) 

 
 
2.21 (0.03) 
6.12 (0.26) 

 
 
1.62 (0.02) 
4.36 (0.37) 

 
 
0.16 (0.02) 
4.27 (0.41) 

 
 
0.52 (0.02) 
4.15 (0.40) 

 
Table 4. Comparison of prediction accuracy (RMSE, 10-fold cross-validation) for CO conversion (%) of 
WGS and CO oxidation. Three representation patterns (composition only, composition + condition, and 
the proposed) were tested with three tree ensemble methods. 
Method WGS CO oxidation 

RFR ETR XGB RFR ETR XGB 
Conventional ML method 
Only catalyst composition 
   Training Error 
   Test Error 

 
29.62 (0.07) 
31.15 (0.65) 

 
29.61 (0.07) 
31.17 (0.64) 

 
29.61 (0.07) 
31.17 (0.65) 

 
29.33 (0.09) 
30.33 (0.86) 

 
29.32 (0.09) 
30.36 (0.87) 

 
29.36 (0.09) 
30.37 (0.85) 

Both catalyst composition 
& experimental conditions 
   Training Error 
   Test Error 

 
 
4.24 (0.04) 
11.48 (0.91) 

 
 
0.01 (0.00) 
10.45 (0.79) 

 
 
2.95 (0.05) 
8.33 (0.60) 

 
 
5.23 (0.04) 
14.30 (0.84) 

 
 
0.02 (0.01) 
12.58 (0.69) 

 
 
2.65 (0.09) 
12.12 (0.67) 

Proposed ML method 
Both catalyst composition 
& experimental conditions 
   Training Error 
   Test Error 

 
 
4.11 (0.06) 
11.39 (0.77) 

 
 
0.01 (0.00) 
10.12 (0.98) 

 
 
2.41 (0.03) 
8.28 (0.81) 

 
 
5.02 (0.04) 
13.71 (0.59) 

 
 
0.02 (0.01) 
12.13 (0.69) 

 
 
2.66 (0.06) 
12.05 (0.55) 
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 Finally, the input variables that provided the most contribution to prediction of the catalyst 

performance were evaluated. For this purpose, feature importance scores were calculated from the 

optimized XGB models from the proposed ML method. This score was used to assess the relative 

importance of a descriptor with respect to predictability of the catalytic performances, and therefore, it is 

important for the systematic design of efficient catalytic processes. The default type of XGBoost (‘weight’) 

was used among options in this analysis. Figure 6 shows the top 20 contributing variables for predicting 
the performance for OCM, WGS, and CO oxidation reactions. The variables for elemental features were 

Metal_i or Promotor_i, which represent the type of active metal or promoter, respectively, in the catalyst. 

The i indicated the order of the abundance of the element in the catalyst. The top descriptor was reaction 

temperature for all three reactions. Reaction temperature for WGS and CO oxidation, especially, had 

relatively strong contributions compared to reaction temperature of the OCM reaction. The OCM reaction 

can be classified as a “selective” catalytic reaction, whereas the other two reactions could not. The C2 yield 

for the OCM reaction decreased and undesirable coke or COx formation occurred when reaction 

temperature was too high. Therefore, the feature importance score suggests that the catalytic performance 

is not dependent only on reaction temperature, especially for selective catalytic reactions such as the OCM. 

Experimental conditions other than catalyst composition also can contribute to reaction outcomes. Contact 

time, PCH4, and PCH4/PO2 were the next top three contributors to OCM reaction results. This is probably 

because that the OCM reaction mechanism involves a reactive radical species.[47,69] The initial step of the 

OCM reaction is formation of CH3 radical species. After formation of the CH3 species on a catalytic surface, 

gas-phase reactions proceed, and CH3 radical species are expected to combine to form the C2 products. 
For catalyst compositions, alkali metals and alkaline earth metals, such as Li, Ca, Na, Ba, and Mg, 

influenced C2 yield. In addition, La was a top-12 contributing descriptor. These observations agree with 

past reports on multicomponent catalysts containing a host basic metal oxide (MgO or La2O3) promoted 

with metal oxide dopants that positively influenced C2 selectivity (Li, Na, Cs, Sr, Ba) .[47,48] The present 

approach permits further quantitative analysis that includes catalyst compositions and experimental 

conditions and element features, and thus, provides greater insights into catalytic reactions. 

      For the drawbacks and limitations of feature importance analysis, it should be noted that the results 

could depend on the choice of importance criteria, the choice of tree learning algorithms, as well as the 

sample variability, and thus careful evaluations would be required for further confident interpretation. For 

example, permutation test[63,70] as well as Y-randomization and pseudo-descriptor analysis[71] would be 

possible options. However, it should also be kept in mind that forcibly projecting multivariate trends into 

independent univariate contributions of individual features always entails information loss due to the cross 

correlation of features. These 'interpretability or explainability' aspects for blackbox ML algorithms have 
also been a recent hot topic in the ML community. 
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Figure 6. Top 20 contributing descriptors for predicting (A) C2 yield from OCM, (B) CO conversion from 
WGS, and (C) CO conversion from CO oxidation, based on the average feature importance from the best 
XGB models in 10-fold cross-validation.   
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Simulated evaluation for catalyst optimization based on ML surrogates 

Optimization of catalysts using ML predictions also was investigated. Since catalyst research has relied 
heavily on prior published data, the research tends to be biased toward variations in catalyst composition 
that were successful. Since ML builds predictive models that are representative of the training data, using 
ML predictions directly would result only in finely tuned variations of previously investigated catalysts and 
would narrow the scope of catalysts. 
 To take into account this data bias problem, a catalysis optimization procedure using ML as 
“surrogate” models was developed and evaluated. In many practical optimization cases in engineering and 
scientific applications, obtaining accurate target values through laborious experiments or high-fidelity 
simulations is extremely time-consuming and costly. Therefore, using them directly for comprehensive 
exploration of high-performance catalysts from an infinite number of theoretically possible catalysts is 
difficult. Accurate and rapid ML predictions can be used as surrogate models for these costly experiments 
and time-consuming simulations. In the simplest scenario, called the “exploitation only” strategy, ML 
models were fit to the training data (literature data) and fed many possible inputs to search for new catalyst 
candidates. The input with the best predicted catalyst performance can then be tested. But this strategy is 
often unsuccessful because training data usually are too limited and potentially biased and thus are 
insufficient to cover all potential catalyst variations. In many practical cases, “exploration” steps also are 
needed to gain new information by testing new catalysts not close to any of previously tested catalysts.  
The ‘exploitation’ makes the best prediction given current information (data), and the ‘exploration’ gather 
more information (data). This fundamental tradeoff between exploitation and exploration is the key to 
identifying promising catalyst candidates to be tested next. To balance between exploiting known data and 
exploring for new data, global optimization procedures have been investigated in many forms such as 
surrogate-based optimization (SBO),[72,73] Bayesian optimization (BO),[74–76] response surface 
methods,[77,78] sequential design of experiments and multi-armed bandits,[79–81] kriging,[82] and derivative-
free and blackbox optimization.[83] 
 In the present study, an SBO strategy based on the sequential model-based algorithm 

configuration (SMAC) procedure[84] was developed and evaluated with expected improvement (EI)[85] as 
the infill criterion (acquisition function). It iterated on the following general steps. First, ML models equipped 
with predictive variances were fit to the given samples, EIs of candidate samples were calculated based 
on the fitted ML model, and samples with the greatest EI value as well as some random samples were 
selected for further testing. For quantitative comparisons, a “random” strategy was used by evaluating 
additional samples randomly, and we evaluated “exploitation only” strategies by fitting ML models and 
selecting samples with the best predicted performance (without the EI criterion and random sample 
inclusion), as well as “exploitation + exploration” strategies that maximize EI by SMAC with RFR or ETR 
and by BO with Gaussian process regression (GPR).[86] For RFR, ETR, and XGB, RFR and ETR were 
used with n_estimators=300 with other hyperparameters defaults, and XGB was used with 
n_estimators=300, max_depth=8, subsample=0.8, colsample_bytree=0.9, and learning_rate=0.05. For 
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GPR, the scikit-learn implementation was used with the Matern 5/2 kernel with alpha=0.01, 
n_restarts_optimizer=10, and normalize_y=True. Note that the original SMAC algorithm is based on RFR, 
but the present study also used ETR for estimating the predictive variance using the formula in 4.3.2 from 
a report by Hutter and coworkers.[87] 
 To evaluate the developed catalyst optimization strategies, a simulated situation was set up based 
on the OCM dataset. In this random simulation, 10 catalysts are provided initially; then each optimization 
strategy sequentially selects catalyst candidates to test (other than the initial 10 catalysts). More 
specifically, the following random simulation is repeated 10 times for individual cases to determine how 
early each strategy can find high-performance catalysts: 1) 10 catalysts are selected randomly from the 
dataset as initial samples; 2) an ML model is fit to the samples and the criterion value (i.e., EI or predicted 
value) calculated for catalysts in the dataset that have not yet been selected; 3) the catalyst with the best 
criterion values is added to the initial samples; and then step 2 is repeated. Note that SMAC also requires 
addition of newly generated random samples at step 3 for exploration purposes. Figure 7 shows the 
averaged curve plots of the highest values found for the first 400 selections from the “exploitation only” 
and “exploitation + exploration” strategies. Each simulation was run 10 times and the average values were 
used. Both strategies could identify high-performance catalysts much earlier than the random strategy, 
which demonstrates that ML surrogate-based optimization is a promising approach for a sequential design 
of experiments. The “exploitation only” strategy worked well in this simulation, although no ML models can 
perform well in principle when extrapolating catalysts dissimilar to any set of given samples, which implies 
that the high-performance catalysts in the current OCM dataset have limited variations and a strong bias. 
Since this simulation is based on the currently available dataset for OCM, the training and test datasets 
have some similarity. In this situation, wider “exploration” is not needed, and efforts can focus on fine-
tuning the currently obtained catalysts. However, the biased datasets for simulating catalysts optimization 
is a limitation, and potential high-performance catalysts are not necessarily similar to our limited training 
data. Ideally, for real-world situations, the datasets should be unrestricted, and the exploitation-exploration 
tradeoff [Figure 7(B)] would play an important role in practical situations. 
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Figure 7. Performance comparisons of the first 400 catalysts identified using the simulated catalyst 
optimization process by an (A) “exploitation only” strategy with 4 ML methods and a random strategy as a 
baseline and an (B) “exploitation + exploration” strategy with the proposed methods based on SMAC with 
RFR or ETR, a BO strategy with GPR, or a random strategy as a baseline. Each curve is the average of 
curves over 10 simulations. 
 

 Finally, applying the “exploitation + exploration” strategy using a modified SMAC procedure with 
ETR to the entire OCM dataset suggested several potential catalyst candidates with high EI values to be 
tested (Figure 8). In previous situations (such as that shown in Figure 7), only the EIs for those finite 
candidates needed to be calculated to select the next samples to evaluate. However, in general situations, 
an infinite number of candidates are available to test next. Therefore, points with the greatest EIs need to 
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be identified by maximizing the EI function. However, due to the discontinuity and multimodality of the EI 
function, obtaining the local maximizers is very difficult. The SMAC procedure performs both local searches 
started from current samples with high EI values and random searches from the entire feature space. To 
search for OCM catalysts, input variables were grouped into “catalyst composition,” “support,” “promotor,” 
“preparation,” and “experimental condition.” For each group, a local search by slightly changing the 
variables in the group was performed. For “catalyst composition,” after slightly changing the variables, the 
four largest values were selected (search was done for up to four components as base metals), all other 
variables were set to zero, and the variable set was normalized so that the total sum of elements equaled 
1. For “support,” a search was done for up to two components as support metals because no data having 
more than 3 supports were available in the OCM datasets. For “promoter,” the variables were set randomly 
to have a single 1 and all others 0s, or all 0s. For “preparation,” one of six options was selected randomly 
by setting the variables to have a single 1 and all others 0s. For “experimental condition,” a random 
sampling was used as the original SMAC procedure but with renormalization. Note that the standard “one-
hot encoding” was used to represent non-numeric variables such as “promoter” and “preparation.” For 
example, a variable taking one of ‘a’,’b’, and ‘c’ is represented as a 3-dimensional binary vector taking (1, 
0, 0) for ‘a’, (0, 1, 0) for ‘b’, and (0, 0, 1) for ‘c’. 

 Figure 8 shows a list of the top 20 promising candidate catalysts worth testing, suggested from 
the entire OCM dataset using the present method. In standard SBO situations, only one point with the 
highest EI value is needed, but for now, multiple candidates with high EI values were obtained by k-means 
clustering (k = 421, # of the OCM literature) to aggregate the searched results from multiple starts, and 
the highest points in each cluster were selected as representatives. A catalyst composed of 68.2 mol% Al, 
14.6 mol% Mg, 9.7 mol% Li, 4.9 mol% Mo, and 2.6 mol% Na had the greatest EI values. The second best 
performing catalyst consisted of 60.7 mol% Ti, 30.3 mol% Ba, 6.0 mol% Cl, and 3.0 mol% Sn. Note that 
the labels of each catalyst contain only the compositions of active components, and O was not included in 
this expression. In addition to the group 1 and 2 elements, which are expected to appear for high-
performing catalysts, these investigations imply that other elements, which do not appear frequently in the 
literature, also can be effective in the OCM process. The ultimate goal of this effort was to utilize the present 
approach to obtain fundamental knowledge about the factors determining catalytic performance to design 
ideal catalysts on the atomic level, even for catalysts with less explored or unexplored compositions. Since 
the catalytic properties of materials should be determined by their elemental features, such as physical 
properties and electronic structures,[88–90] the strategy used here was to find novel catalysts having ideal 
elemental features by changing the composition of the materials. 
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Figure 8. Top 20 promising candidate catalysts for OCM, worth testing next, as suggested by the entire 
OCM dataset using the proposed method. Similar catalysts are clustered, and representative catalysts 
with the greatest EI in each group are shown.  
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Conclusions 
The value of a machine learning (ML) approach that involves elemental features as representational input 
instead of catalyst compositions was demonstrated using previous experimental catalytic data on oxidative 
coupling of methane (OCM), water gas shift (WGS), and CO oxidation reactions. Prediction accuracy was 
improved using this approach when compared to conventional methods utilizing catalyst compositions as 
input. Among several the-state-of-the-art ML methods tested in this study, gradient boosting regression 
with XGBoost (XGB) performed the best for predicting catalytic performance. A feature importance score 
also was calculated to determine quantitatively the most influential input feature variables and predict 
catalyst performance. In addition, a catalyst optimization procedure was explored by using ML as 
“surrogate” models. Based on this optimization, the top 20 promising catalyst candidates for the OCM 
reaction were identified for future study. This study provides fundamental knowledge about heterogeneous 
catalytic processes and is expected to identify truly novel catalysts, even in the field of heterogeneous 
catalysis where the literature data are very noisy and inconsistent due to the variety of data arising from 
different instruments, procedures, platforms, and researchers, which can be limiting and biased. 
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