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Supplementary Information:

Perfect acoustic bandgap meta-beam based on a quadruple-mode

resonator array

Kentaro Fujita, Motonobu Tomoda, Oliver B. Wright, and Osamu Matsuda

Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo

060-8628, Japan

Abstract

We describe here the approximate analytical or semi-analytical models used to describe the meta-beam

unit-cell resonant frequencies, the effect of the unit-cell frame thickness on the position and width of the band

gap, the details of the experimental setups and measurements, and the details of the numerical simulations.

1 Approximate analytical models of the quadruple-mode meta-beam

resonator

The geometry of the fabricated meta-beam is shown in Fig. S1. We first explain in detail the analytical model

for the unit-cell compressional resonance and then for the other three modes.

1.1 Compressional resonance

The analytical model for the compressional resonance is shown in Fig. S2(a). When the inner mass moves and

a load force F is applied to the right-hand end of spring 2 in the y direction, this spring deforms as shown in

Fig. S2(b). Euler-Bernoulli beam theory [1] allows one to calculate the y-directed bending deformation h(x) of

the bar (for 0 < x < l1):
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Figure S1: Details of the meta-beam unit cell of thickness 8 mm. The numerical values are in mm. The structure is

symmetric with respect to the center dotted-dashed line.
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Figure S2: Approximate analytical model for the compressional resonance of a single unit-cell. (a) Geometry. The blue

region and red ribs are a rigid inner mass and (leaf) springs, respectively, corresponding to motion along the beam axial

direction, and the grey regions are considered to be a rigid frame. The mass oscillates along the axial direction. (b)

Deformation of the spring 2 with an applied force F . The thick red curve corresponds to the bent configuration. The

black dotted-dashed line is the neutral surface. (c) Deformation of the spring 3, with similar notation.
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where I
(a)
1 is the moment of area of spring 2, and

h(x) = − F

6EI
(a)
1

x3 + C1x
2 + C2x+ C3, (S2)

where E is the Young’s modulus and Ci (i = 1, 2, 3) are unknown constants. The rigid connection of the spring

2 at x = 0 leads to the boundary conditions dh(0)/dx = 0, h(0) = 0, so that C2 = 0, C3 = 0. The bending

angle at x = l1 is therefore also zero, because we assume that all the springs are rigidly connected to the mass

and that the mass only moves in the axial direction. The assumption dh(l1)/dx = 0 implies C1 = Fl1/4EI
(a)
1 ,

leading to

h(x) = − F

6EI
(a)
1

x3 +
F

4EI
(a)
1

l1x
2, (S3)

where the spring constant k1 is given by

k1 =
F

h(l1)
=

12EI
(a)
1

l31
=

Ed31t

l31
. (S4)

The spring constant of spring 3 is similarly derived by considering two half springs in parallel:

k2 =
16Ed32t

l32
. (S5)

The predicted frequency for the compressional resonance based on these spring constants and choice of inner

mass, ignoring the mass of the springs, is given in the main text.

1.2 Torsional resonance

An analytical model for the torsional resonance is shown in Fig. S3. Two torsional springs 1 and 2 are included

in the system. The torsional constant, length, and width of these are Ki, li, di, respectively, where i = 1, 2 for

springs 1, 2. (These symbol definitions for each mode should be considered separately in each of the sub-sections

1.1 to 1.4.) The equation for torsional motion is

I
d2θ

dt2
+Kθ = 0, (S6)

where I, θ are the moment of inertia of the inner mass and the rotation angle, respectively, ignoring the moment

of inertia of the springs. For a rectangular bar,

K =
GJ(d, t)

l
, (S7)
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Figure S3: Approximate analytical model for the torsional resonance of a single unit-cell. The blue region and red ribs

are a rigid inner mass and torsional springs, respectively, and the the grey regions are a rigid frame. The mass oscillates

about the central dotted-dashed rotation axis.

where G is the shear rigidity and
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The quantities l, d and t are the length, width and thickness of the bar, with t > d [2]. In our case,

K1 =
GJ(d1, t)

l1
= 1.75× 102 Nm, (S9)

K2 =
GJ(d2, t)

l2
= 4.47× 102 Nm, (S10)

where d1 = 4.8 mm, d2 = 3.2 mm, t = 8 mm, l1 = 28.8 mm, l2 = 4 mm, J(d1, t) = 1.85 × 10−10 m4,

J(d2, t) = 6.54 × 10−11 m4, G = 27.3 GPa. We obtain I = 1.19 × 10−5 kg m2. Since the two springs are

connected in series, the resonant frequency is predicted to be

f =
1

2π

√
K1 +K2

I
, (S11)

giving f=1150 Hz. The value from simulation is f=980 Hz. The difference mainly stems from the approximation

that the springs are connected to rigid bodies, increasing f .

1.3 Shear-horizontal resonance

An analytical model for the shear-horizontal resonance is shown in Fig. S4, involving three springs 1-3. The

rigid inner mass m swings about the center of rotation O shown in Fig. S4(b). Judging from the results of the

simulation, this point is 0.2 mm directly below the point shown in Fig. S4(b), but we ignore this small distance

in the following discussion. The identical springs 1 and 2 have length and width l1 and d1, respectively, whereas

for spring 3 they are l2 and d2. The shortest distance between the springs 1 and 2 is d3, the distance from O to

4



Rigid mass

m

d1

l1

Rigid frame

l2

d2/2

d3/2

l4l3

Center of mass of 

the rigid inner mass

�

Inner mass swing angle

Center of rotation

u1 u2 = −u1

u3

(a) (b)

O

x

y

Spring 1, k1 Spring 2, k1

Spring 3, k2

Figure S4: Approximate analytical model for the shear-horizontal resonance of a single unit-cell. (a) Geometry. The

blue region and red ribs are a rigid inner mass and flexural springs, respectively, and the grey regions are a rigid frame.

(b) Schematic diagram of the displacements. The mass oscillates about the center of rotation O. The pink arrows indicate

the displacement vector of one end of each spring.

the bottom end of spring 3 is l3, and the distance from O to the center of mass of the rigid inner mass is l4. We

assume that one end of the each spring is fixed rigidly whereas the other is connected to the laterally swinging

mass. The displacement of the end of each spring 1, 2 and 3 is given by

u1 = −u2 = −θ

(
l1 +

d3
2

)
j, (S12)

u3 = −θl3i, (S13)

respectively, where θ is the rotation angle and the unit vectors i, j correspond to the x, y directions, respectively.

We shall assume that |θ| ≪ 1, so that second- or higher-order terms in θ are negligible. When the moment of

inertia of the inner mass is ignored, the equation of motion is given by

ml4θ̈ + 2k1(l1 +
d3
2
)θ + k2l3θ = 0, (S14)

where k1 and k2 are the bending spring constants of the springs 1 ( equal to that of 2) and 3, respectively, and

the center of mass of the inner mass is displaced laterally by −θl4i. The above equation can be transformed to

mθ̈ +

(
2k1

l1 + d3/2

l4
+ k2

l3
l4

)
θ = 0. (S15)

Spring constants k1, k2, similar to the (leaf) springs considered for the compressional mode, can be considered

as cantilever spring constants:

ki =
Ed3i t

4l3i
(i = 1, 2). (S16)
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Thus, the resonant frequency for the shear-horizontal mode is given by

f =
1

2π

√
2k1

l1+d3/2
l4

+ k2
l3
l4

m
. (S17)

Using l1 = 22.4 mm, l2 = 28.8 mm, l3 = 17.6 mm, l4 = 20.9 mm, d1 = 2.4 mm, d2 = 4.8 mm, d3 = 3.2 mm,

m = 3.84×10−2 kg, E = 73.1 GPa, we obtain f=806 Hz in fairly good agreement with the value from simulation

f=990 Hz. The difference stems mainly from the approximations concerning the boundary conditions of the

springs. Moreover, the inner mass also vibrates horizontally in the x direction in the simulation, something that

is ignored in the analytical model.

1.4 Shear-vertical resonance

A semi-analytical model for the shear-vertical resonance is shown in Fig. S5. The rigid inner massm is suspended

by three springs, i.e. two L-shaped springs 1 and 2 whose spring constants are k1 and one T-shaped spring

3 whose spring constant is k2. We assume that these springs only bend vertically, i.e. the green portions A,

B and C in Fig. S5 show zero displacement in the x and y directions. The spring constants for k1 and k2 we

obtain using finite-element simulation by loading a vertical force on the faces A, B and C in the simulations

subject to the above constraints and noting the displacements: k1 = 5.9 × 105 N m−1, k2 = 1.3 × 106 N m−1.

The corresponding semi-analytically predicted resonant frequency is f = (1/2π)
√

(2k1 + k2)/m = 1440 Hz,

where m = 3.02 × 10−2 kg, which should be compared with the value f=1010 Hz from the simulation of a

single unit-cell resonant frequency. The difference is significantly larger than for the other modes, presumably

because the semi-analytically derived resonant frequency is highly sensitive to the boundary conditions of the

three springs.
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Figure S5: Approximate semi-analytical model for the shear-vertical resonance of a single unit-cell. The blue region

and red ribs are a rigid inner mass and flexural springs, respectively, and the the grey regions are a rigid frame. Springs

1 and 2 are L-shaped, whereas spring 3 is T-shaped. The light green lines on these springs indicate specific spring ends.

The mass oscillates in the out-of-plane direction in this figure.
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2 Effect of the outer frame thicknesses

In order to investigate the effect of the outer frame geometry on the dispersion relation, we vary the thicknesses

as shown in Fig. S6. The axial and horizontal thicknesses are defined as ta and th, respectively. Figure S7

shows the variation of the band gaps and single-cell resonances on varying ta and th in the range 8±4 mm away

from their design value of 8 mm. Considerable variations in the band gaps is seen. In general, the gaps become
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Figure S6: Geometry for the frame thickness changes, showing the definitions of the axial and horizontal thicknesses ta
and th, respectively.
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Figure S7: Simulated band gap variation with outer frame thicknesses. (a) and (b) indicate the effect of varying the

axial and horizontal thicknesses ta and th, respectively from their design value of 8 mm. The solid lines correspond

to the top and bottom frequencies of each mode gap and the perfect band gap. The colored areas indicate inner gap

frequencies. The open circles show eigenmodes calculated for a single unit cell with two fixed boundaries perpendicular

to the axial direction.
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narrower overall when ta or th increase and the volume ratio of the inner resonator mass to the total unit cell

area decreases. The band gap width for the torsional modes depends on th much more strongly than on ta

because this mode is sensitive to the horizontal dimensions. The shear-horizontal modes show a wider band

gap than for the shear-vertical modes when th is small. The mismatch between the unit-cell frequencies and

the onset of the band gaps is particularly evident when th is small, probably owing to the frame deformations.

3 Experimental setups

To efficiently detect a particular acoustic mode, the positions of the piezo plates and the directions of the

analyzed accelerations are carefully chosen, as described below. Images of the experimental setups are shown in

Fig. S8. The sample is suspended at two points by fishing line, and accelerometers are bonded at two points on

each of the input and output sides. The piezo plate excites the vibrations, and is placed on the sample surfaces

in three different ways. The piezo plate in Fig. S8(c) is bonded on the lower end face, and produces an axial

force to excite compressional modes. The shear-horizontal modes are excited by bending forces along the width

direction, as shown in Fig. S8(d). The shear-vertical modes and torsional modes are simultaneously excited

and detected with the setup shown in Fig. S8(e).

The four acoustic modes are separately reconstructed from the measured acceleration amplitudes and a

knowledge of the dominant displacement directions and their symmetry for each mode. In our experiments

we only make use of the width-direction symmetry because we only made measurements on a single face.

Measurements on the opposite face are not necessary because of the known acoustic mode symmetry. By

considering the symmetry of the width-direction deformations, we classify the measured acceleration amplitudes,

i.e. the axial-direction acceleration amplitudes and symmetric components for the compressional modes, the

width-direction amplitudes and antisymmetric components for the shear-horizontal modes, the depth-direction

amplitudes and symmetric components for the shear-vertical modes, and the depth-direction amplitudes and

antisymmetric components for the torsional modes.

4 Details of the simulations

The finite-element numerical simulations are conducted with COMSOL Multiphysics version 5.4. The acoustic

eigenmodes of a single cell and the dispersion relations are derived by eigenfrequency studies with the Solid

Mechanics interface that solves the equations of motion for elastic bodies. A region making up one quarter

of a unit cell is simulated, and use is made of the mode symmetry, either symmetric or antisymmetric (see

Table I in the main text). For these simulations a total of ∼8,500 triangular-prism mesh elements are used,

and the maximum and minimum element sides are 2 and 0.7 mm, respectively. Rigid boundary conditions

or Floquet periodic boundary conditions are used to derive the eigenmodes of a single cell or the dispersion

relation, respectively, and are applied on the boundaries of the unit cell perpendicular to the axial direction.
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Figure S8: Images of the experimental setups used for detection of the different acoustic polarizations. (a) A meta-beam

suspended by fishing line before attaching accelerometers and piezo plates. (b) Output-side setup. (c), (d) Input-side

setups for compressional mode or shear-horizontal mode investigations, respectively. (e) Input-side setup for shear-vertical

or torsional mode investigations. The piezo plate is positioned on the opposite face to the accelerometers.

In the simulations for the decay constants for a beam of 10 unit cells in length, we again simulate a quarter

of each unit cell, and work in the frequency domain with a 5 Hz step. A total of ∼85,600 triangular-prism

mesh elements are used, with a size similar to that mentioned above. To efficiently excite each acoustic mode,

four types of loads are applied on the end face of the meta-beam, as described in the main text. Particular

components of the acceleration for each mode are selected for analysis on the upper right-hand edge of the

meta-beam, as described in Fig. 6(a) of the main text. For compressional modes, a uniform axial force is

applied, and the axial acceleration is analyzed. For shear-horizontal and -vertical modes, a uniform force is

applied parallel to the meta-beam end face and along the width and depth directions, respectively; the same

directions of the acceleration component are selected for analysis. For the torsional modes, an axial torque is

applied to the meta-beam end face, which rotates about the axial direction, and the out-of-plane component of

the acceleration is analyzed. The accuracy of the simulations were checked by using different discretizations.

The decay constant is defined as the distance over which the acoustic amplitude is expected to decay by 1/e.
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