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Abstract: Few studies have investigated the long-term 
temporal dynamics of seagrass beds, especially in South-
east Asia. Remote sensing is one of the best methods for 
observing these dynamic patterns, and the advent of deep 
learning technology has led to recent advances in this 
method. This study examined the feasibility of applying 
image classification methods to supervised classification 
and deep learning methods for monitoring seagrass beds. 
The study site was a relatively natural seagrass bed in Hat 
Chao Mai National Park, Trang Province, Thailand, for 
which aerial photographs from the 1970s were available. 
Although we achieved low accuracy in differentiating 
among various densities of vegetation coverage, classi-
fication related to the presence of seagrass was possible 
with an accuracy of 80% or more using both classification 
methods. Automatic classification of benthic cover using 
deep learning provided similar or better accuracy than 
that of the other methods even when grayscale images 
were used. The results also demonstrate that it is possible 

to monitor the temporal dynamics of an entire seagrass 
area, as well as variations within sub-regions, located in 
close proximity to a river mouth.

Keywords: Andaman Sea; deep learning; land cover clas-
sification; long-term dynamics; remote sensing.

Introduction
Seagrass bed areas are declining worldwide (United 
Nations 2016), especially in Southeast Asia and Oceania 
(Waycott et  al. 2009, Kawaguchi and Hayashizaki 2011). 
At local scales, these declines may be caused by direct 
anthropogenic disturbances, such as eutrophication and 
land fill, and the indirect effects of land modification, 
such as sedimentation (Hemminga and Duarte 2000, 
Short et al. 2018). At large spatial scales, human-induced 
climate change is another reason for seagrass decline 
(Orth et al. 2006, Short et al. 2018). The temporal dynam-
ics of seagrass populations are also affected by natural 
processes such as monsoons, sedimentation, waves, 
river discharges, and diseases. Natural disasters, such as 
typhoons, storms caused by monsoons, and tsunamis, can 
cause large declines in the areas of seagrass beds. There-
fore, in order to monitor the remaining seagrass beds for 
conservation purposes, it is important to understand their 
natural dynamics, the range of their fluctuations, and 
their recovery potential by conducting long-term research 
on natural spatio-temporal fluctuations.

Southeast Asia is a hot-spot of marine biodiversity 
(Tittensor et  al. 2010, Asaad et  al. 2017, Yamakita et  al. 
2017, Faridah-Hanum et  al. 2018), including seagrasses. 
Twenty-four seagrass species have been recorded in the 
tropical Indo-Pacific bioregion, which extends from 
the east coast of Africa to the Eastern Pacific (Short 
et  al. 2018). In  Thailand, large areas of seagrass beds 
are distributed throughout the Gulf of Thailand and the 
Andaman Sea, covering 96.3 and 159.4 km2, respectively 
(Department of Marine and Coastal Resources, Ministry 
of Natural Resources and Environment, Thailand 2015). 
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Unfortunately, there are few areas in the region where 
long-term temporal changes of seagrass distribution can 
be assessed due to limited research (Waycott et al. 2009, 
Fortes et  al. 2018, Yaakub et  al. 2018). However, begin-
ning in the 1970s, aerial photographs have been taken 
of Hat Chao Mai National Park, which is located on the 
Andaman Sea side of the central Malay Peninsula. This 
marine reserve has been affected by river discharges, 
storms, and a tsunami in 2004, and it has been the focus 
of some research programs (Nakaoka et al. 2007). These 
conditions make this area suitable for investigating the 
natural spatio-temporal dynamics of seagrasses.

Several methods can be used to obtain information 
about the distribution of seagrass. Direct observation by 
snorkeling, diving, or using a boat is the most basic way. 
To measure the three-dimensional structure, the use of 
acoustic sonar is a popular method. Shallow seagrass 
beds can also be investigated via remote sensing (Komatsu 
et al. 2002), and aerial photographs and satellite images 
have been used for this purpose (Wabnitz and Andréfouët 
2008, Yamakita et  al. 2011). In recent years, unmanned 
aerial vehicles have become a popular way to observe 
seagrass beds. Aerial photographs and satellite images 
have been captured and archived by governmental and/or 
commercial entities in many areas for the purpose of land 
management. Using these archived data, it is possible to 
track long-term changes in seagrass beds to monitor the 
state and trends of the seagrass as representative of the 
coastal environment (Dahdouh-Guebas 2002).

When analyzing aerial photographs and satellite 
images, several methods can be used to interpret land 
cover and land use (hereafter “benthic cover” in our 
examples). Visual interpretation by experts can be an 
accurate way to construct benthic cover maps, particu-
larly when the images are of high spatial resolution. 
Supervised and unsupervised classification based on 
the value of each pixel in an image can be performed 
using remote sensing software packages (Yamakita and 
Nakaoka 2009). Although these are popular methods for 
determining benthic cover classifications, they generate 
small fragments of noise along with correctly classified 
pixels depending on the condition or resolution of the 
images. This noise may cause over- or under-estimation 
of the areal extent and interfere with landscape structure 
analysis. These methods are also not suitable for gray-
scale images because there is only a single band available 
for classifying pixel values.

When images are of higher spatial resolution or gray-
scale, researchers can use object-based classification 
(Lyons et  al. 2012). Compared to traditional pixel-based 
methods that use information from each pixel directly for 

the classification process, the object-based classification 
method creates aggregations of similarly colored neighbor-
ing pixels in the first step of the analysis. Each aggregated 
area is called an “object” or a “patch” of any land use that 
is not yet classified. The identified objects are then further 
classified by a statistical model that uses spectral colors 
and geometric properties such as size and shape to iden-
tify the land use type of each object. Therefore, compared 
to pixel-color-based supervised and unsupervised clas-
sification, object-based classification is more useful for 
detecting patch structures, especially for images with fine 
resolution. Object-based classification also achieves better 
results when using grayscale images, such as old aerial 
photographs. However, determining thresholds to produce 
patches, selecting patch properties to be used for classifi-
cation, and preparing supervised data for each image must 
be completed manually by experienced experts.

Image-to-image transformation using deep learning 
techniques was recently developed in the field of com-
puter vision (Isola et  al. 2016). This method is expected 
to enable accurate analysis of images through automated 
procedures that detect patches and generate image fea-
tures rapidly. Image-to-image transformation is used to 
create mathematical mapping from an input image (in this 
case, the original remote sensing image) to a target image 
(after benthic cover classification). This transformation 
model is trained with supervised image data which consist 
of a pair of input and target images at the learning step. 
For a new input (test image), the produced model makes 
it possible to conduct similar transformations by retaining 
the characteristics of the test images as the model testing 
step. The deep learning method used in the current study 
is based on conditional generative adversarial networks 
(cGAN). cGAN is an image generation technique in which 
two networks are trained simultaneously: a generator that 
mimics the target image from a supplied image (supervised 
data in the model training stage) and a discriminator that 
distinguishes a fake generated image from one generated 
from real samples (i.e. the target image). Although the 
generator and discriminator use a kind of convolutional 
neural network that is the basic model of deep learning, 
cGAN shows higher accuracy in image recognition than 
other conventional machine learning methods, including 
supervised classification and other simpler deep learn-
ing methods (Goodfellow et al. 2016, Creswell et al. 2018, 
Yamakita 2018, 2019, Yamakita et al. 2018). cGAN was not 
specifically developed for remote sensing, but the model 
has been applied to automatic map production from sat-
ellite images (Isola et  al. 2016). Thus, it should also be 
applicable to the identification of seagrass beds in remote 
sensing images. Furthermore, the time and cost required 
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for classification are expected to be smaller compared to 
those of other conventional methods.

This study examined long-term changes in seagrass bed 
distribution in a marine protected area along the Andaman 
Sea coast based on remote sensing analyses using aerial 
photographs and satellite images collected since the 1970s. 
Our aim was to apply and compare the accuracy of three 
image classification methods – manual extraction, semi-
automatic classification, and deep learning automatic clas-
sification – when only grayscale images are available.

Materials and methods

Study site

Seagrass beds occur off the coast of Hat Chao Mai National 
Park, Trang Province, Thailand, on the Andaman Sea side 
of the Malay Peninsula (Chansang and Poovachiranon 
1994, Lewmanomont et al. 1996) (Figure 1). A large series 
of seagrass beds covering about 6.5 km2 is located along 
the Andaman coast in the northern part of the marine 
park between Muk Island and the mainland, named 
Laem Yong Lam (Lewmanomont et al. 2000, Nakaoka and 
Supanwanid 2000). The distributions of eight seagrass 
species [Enhalus acoroides (Linnaeus f.) Royle 1839, Hal-
ophila ovalis (R. Brown) J.D. Hooker 1858, Thalassia hem-
prichii (Ehrenberg) Ascherson 1871, Cymodocea rotundata 
Ascherson & Schweinfurth 1870, Cymodocea serrulata 

(R.  Brown) Ascherson & Magnus, Halodule uninervis 
(Forsskål) Ascherson 1882, Halodule pinifolia (Miki) den 
Hartog 1964, and Syringodium isoetifolium (Ascherson) 
Dandy 1939] have been recorded in this area.

Although we did not analyze the direct impacts of 
drivers on seagrass resources, both human impacts, 
such as coastal infrastructure development, run off from 
plantations, and aquaculture ponds, and natural dis-
asters like the Indian Ocean tsunami of 2004 can drive 
spatio-temporal changes in seagrass beds. Some previous 
studies indicated that the 2004 tsunami had little effect on 
benthic organisms in this area (Department of Marine and 
Coastal Resources 2005, Nakaoka et al. 2007).

To describe the seagrass distribution and its patterns 
of temporal change (also referred to as “temporal dynam-
ics”), the area was divided into nine sub-regions based 
on depth and geographic features: (1) shallow part of the 
northern area (Sh-N); (2) river mouth area; (3) shallow part 
of the middle area (Sh-M); (4) shallow part of the south-
ern area(Sh-S); (5) transition zone of the northern area; 
(6) transition zone of the middle area; (7) transition zone
of the southern area; (8) deeper part of the middle area;
and (9) deeper part of the southern area (Figure 1). The
classification was first based on water depth, with three
depth zones: (1) the coastline to the edge of the intertidal
area (0 m); (2) the slope of the end of tidal flat to subtidal
area (0–2  m); and (3) the deeper area (>2  m). The tidal
effect, transparency of images, and dominant species
vary across this depth gradient. The classification was
also based on geographic features. A river channel passes

Figure 1: Location of the study site on the coast of Thailand and aerial photograph depicting the outlines of the nine sub-regions.
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through the study area. We refer to the northern side of 
the river channel as the “northern area,” the river channel 
as the “river mouth,” and the southern side of the river 
channel as the “middle area,” each of which is expected 
to experience different effects of the river. In contrast, the 
“southern area” is exposed to the open ocean; this area is 
not affected by the river current, but it is influenced by the 
coastal current.

Preparation of images

To conduct image analyses, commercially available satel-
lite images and aerial photographs, which were captured 
for geographic surveying purposes, were used as data 
sources (Table 1). For the satellite images, QuickBird ortho-
rectified images captured in 2009 were used. Aerial pho-
tographs archived in the Royal Thai Survey Department, 
spanning 36 years in four periods (1973–1974, 1995, 2003, 

and 2009) were used. The images were geometrically rec-
tified based on existing rectified aerial photographs, and 
the total root mean square error after the correction was 
less than 1 pixel.

From the aerial photographs and satellite images, we 
extracted three benthic cover types: (1) dense seagrass 
pixels, with >70% coverage; (2) sparse seagrass pixels, 
with 10–69% coverage; and (3) sandy areas, with <10% 
coverage. These cover types were classified using four 
image-analysis techniques: (1) manual extraction based 
on visual interpretation by an expert; (2) semi-automatic 
extraction (2a) using pixel-based supervised classification 
(only for color images) or (2b) using object-based classifi-
cation (only for grayscale images); and (3) fully automatic 
extraction using deep learning (for both types of images 
transformed into grayscale; Table 2). In our analyses, 
the manually extracted benthic cover was then used as 
the reference to evaluate the accuracy of the other three 
image-analysis techniques.

Table 1: List of aerial photographs and one satellite image of Hat Chao Mai National Park, Trang Province, Thailand and their properties.

Year Month  Day  Time  Resolution  Format Height Type Coverage Analysis method

Semi-automatic   Automatic

1973   4  17  09:06:14  0.3 m Grayscale   600 m Aerial photo   South Object based pix2pix
1974   5  5  08:39:33  0.3 m Grayscale   700 m Aerial photo   North Object based pix2pix
1995   1  22  09:38:22  0.3 m Grayscale   480 m Aerial photo   South Object based pix2pix
1995   1  29  08:53:29  0.3 m Grayscale   450 m Aerial photo   North Object based pix2pix
2003   2  8  10:48:13  0.5 m RGB 1700 m   Aerial photo   Entire area   Pixel based pix2pix
2009   12  13  10:49:50  0.6 m RGB + IR NA Quick Bird Entire area   Pixel based pix2pix

Table 2: Images used in the different image-analysis methods of extraction, classification, and accuracy assessment.

Image-analysis technique 1973-4-17   1974-5-5
 

1995-1-22   1995-1-29   2003-2-8   2009-12-13

Grayscale Grayscale Grayscale Grayscale RGB RGB + IR

(1)	 Manual extraction Yes Yes Yes Yes Yes Yes
(2)	 Semi-automatic classification

Pretreatment for depth Yes Yes
Create supervised data (labelled polygons) Yes Yes Yes Yes Yes Yes

(2a)	 Pixel-based supervised classification Yes Yes
(2b)	 Object-based classification Yes Yes Yes Yes
(3)	 Automatic classification (deep learning)

	�Training stage (production of model; Figure 2B-1) Yes
	�Test stage (application of the model; Figure 2B-2)   Yes Yes Yes Yes Yes Yes

(4)	 Accuracy assessment
(4-1)	� Between the model output and supervised data

For Semi-automatic classification Yes Yes Yes Yes Yes Yes
(4-2)	 Between the model output and manual extraction 

For Semi-automatic classification Yes Yes Yes Yes Yes Yes
For Automatic classification Yes Yes Yes Yes Yes Yes
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Manual extraction of benthic cover

For manual extraction, an expert conducted classi-
cal visual interpretation and traced the areas of various 
benthic cover types using a pixel-based tracing tool. To 
trace patches or pixels of different benthic cover types, 
raster-based software functions (Photoshop CS6; Adobe 
Systems Co., Ltd.) were used instead of delineating 
polygon boundaries by hand using polygon functions in 
the remote sensing software (Loveland et al. 2000, Camp-
bell and Wynne 2011, Foga et al. 2017, Olthof 2017). Raster-
based tracing enables a more accurate trace of a boundary 
for the same time investment, but it produces smaller 
patches of pixels as compared to tracing using hand-
drawn polygons. Automatic selections based on similar 
colors in neighboring areas, color range selections, and 
level correction functions using appropriate thresholds 
were applied during this process. The extraction took 
more than 5 h for each image, including double-checking 
by experts. During the manual extraction of seagrass 
distribution, the 2009 aerial photograph was compared 
to photographs taken by an unmanned airship (Sky-
catcher, Choryo Sekkei Co. Ltd.) with a Ricoh GR Digital 
8-megapixel camera (f = 5.9 mm) from 50 to 200 m height
between 25 and 27 February 2009. That survey was con-
ducted to obtain high-resolution (ca. <10  cm) and high-
clarity images that enable visual recognition of seagrass.

Pixel-based or object-based semi-automatic 
classification

Pretreatment of depth for semi-automatic classification

Prior to image classification, pretreatment for depth was 
performed on the RGB color images (Table 2). Water-
column effects were corrected using the Lyzenga approach 
to work with benthic albedo as opposed to water-column 
reflectance + benthic albedo signals (Lyzenga 1978, 1981, 
Matsunaga et al. 2000). For more than 20 polygons that 
were distributed across the whole area and contained suf-
ficient numbers and combinations of pixel colors to create 
a regression model, RGB-band values for the sandy areas 
were extracted. For the RGB color images, an index of 
bottom type for each band combination was constructed 
using the band ratio rectified by the extinction coefficient 
(Lyzenga 1978, 1981, Matsunaga et al. 2000). The extinc-
tion coefficient of each band pair was estimated using the 
slope of the linear regression of the band-to-band scatter 
plot. Pixel values in the sandy areas for each band combi-
nation were used for this estimation.

Creating supervised data for semi-automatic 
classification

Supervised data for semi-automatic classifications were 
independently created based on classic manually traced 
data of the seagrass and sandy areas. Locations clearly 
recognizable as seagrass or sandy areas based on the level-
corrected images were hand-traced using GIS polygons. 
The polygons were also labelled based on the same crite-
ria of the manual extraction of vegetation coverage assum-
ing an approximate projection coverage: dense coverage 
(70–100%), sparse coverage (10–69%), or no seagrass 
(0–10%) pixels. These data were created by the authors, 
who have conducted field surveys of this area and have 
experience with remote sensing of seagrass beds; it took 
us no more than 1 h for each image. Reference images for 
the extraction of seagrass areas in the most recent photo-
graphs were obtained during field observations between 6 
and 10 March 2008, and the result of this trace was double 
(cross)-checked by the interpreters.

Pixel-based or object-based semi-automatic 
classification

For the semi-automatic benthic cover type classification 
process, supervised classification based on maximum 
likelihood of the band-ratio combinations of RGB color 
images was conducted using the Geographic Resources 
Analysis Support System (GRASS) GIS ver. 7.2.1 (GRASS 
Development Team) and Spatial Analyst of Arc GIS ver. 
10.2–10.3 (ESRI Inc.). For the grayscale images, object-
based image classification was conducted by using the 
GRASS GIS and regression analysis decision tree (CART) 
in R ver. 3.4.1 (R Development Core Team). These data 
were also pre- and post-processed by using standardized 
methods such as rectification using polynomial correc-
tion and masking of the terrestrial area using GRASS GIS, 
Quantum GIS ver. 2.14 (Quantum GIS Development Team), 
and Arc GIS ver. 10.2–10.3 (ESRI Inc.).

Automatic classification using deep learning

Using manually classified data of the 2003 aerial photo-
graph as a training dataset, image-to-image transforma-
tion was conducted using pix2pix, which is based on 
a general-purpose cGAN framework (Isola et  al. 2016, 
Beckham and Pal 2017). A GAN is an image generator 
model that enables transformation from an input image 
to an output image that mimics a target image (Figure 2A). 
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The transformation model was developed using automatic 
learning of a loss function to achieve the goal of “making 
the output indistinguishable from reality.” In this case, 
reality indicated the target (classified) image in the train-
ing (supervised) data (based on comparison of the model 
output and target images). The goal was achieved via rein-
forcement learning between two types of neural networks 
(i.e. the application of convolutional neural networks), 
which can automatically learn features of an image. One 
neural network is the generator that creates machine-gen-
erated tentative outputs, which are intended to mimic the 
target of the supervised data using features learned by the 
neural network. The other is the discriminator that distin-
guishes between a real image (the target in the training) 
and a generated image (the machine-generated tentative 
output). Pix2pix is a pre-coordinated framework that uses 
a conditional GAN, which considers pairs of images (input 
and target) as a condition to create the model. In pix2pix, 
specialized network structures, rather than the standard 
convolutional neural networks (Isola et  al. 2016), were 
applied to both the generator and the discriminator to 
maintain the characteristics of the input images.

Training stage of automatic classification

For training data, a combination of the grayscale trans-
formed aerial photograph taken in 2003 and the manually 
classified results of the color image taken in 2003  were 
used (Figure 2B-1); among the aerial photographs, the 

2003 photo provided a relatively clear view and highly 
confident classification results. The data were sliced 
into 128-m grids (256 × 256 pixels) to fit the framework of 
pix2pix, which is optimized for this image size. From the 
grid data, 1169 pairs of images that accurately classified 
the benthic cover types with little noise were selected as 
the training data to feed to pix2pix. At this point, most 
of  the areas depicting sunlight contamination (halation) 
in the deeper part were eliminated. Then pix2pix was run 
to train the model (generator) by using the default setting.

Test stage of automatic classification

To produce classified images in the test stage (Figure 2B-2), 
the aerial photographs were sliced for application to the 
pre-trained model. Each color photograph was trans-
formed into grayscale to apply the same pre-trained model 
for all the aerial photographs. The results of the transfor-
mation for each grid were merged into the original posi-
tion of the aerial photograph.

Interpretation of results and accuracy 
assessment

Three types of seagrass distribution maps were obtained 
from each image, by using (1) manual extraction; (2) semi-
automatic classification (either supervised classifica-
tion for color images or object classification for grayscale 

Figure 2: Graphical abstract of the analyses of the aerial images using pix2pix.
(A) Basic structure of conditional generative adversarial networks (cGAN) model training used in pix2pix. To train the model, the 
competition between the generator and discriminator was repeatedly conducted until the generator was trained by the discriminator 
to create outputs indistinguishable from the target. (B) Flow of the analyses showing pre- and post-processing for model training using
supervised data in the model.
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images); and (3) automatic classification (Table 2). Tem-
poral changes in the spatial extent and distribution of the 
extracted locations of seagrass beds in each sub-region, 
with particular focus on the three shallow sub-regions, 
were assessed.

To verify the classification model using the supervised 
data (“model verification” hereafter; Table 2, technique 
4-1), the supervised and object-oriented semi-automatic 
classifications and the training data were compared based 
on the overall accuracy of the classification (% correctly 
classified) and Cohen’s κ statistic, an index of inter-ras-
ter agreement. The κ value indicates agreement without 
random coincidence; in general, a value >0.4 is moder-
ate agreement, >0.6 is substantial agreement, and >0.8 is 
almost perfect agreement (Landis and Koch 1977). To eval-
uate the accuracy of each benthic cover class, omission 
and commission errors and the bias (ratio) of these two 
types of errors were generated. An omission error indi-
cates the rate of incorrect classification when compared to 
a class in the reference (true) data (each class in the refer-
ence is the denominator). It is also known as 1 – sensitivity 
or false negative rate and is equivalent to a Type II error. A 
commission error indicates the rate of disagreement of the 
reference data to a class of the classification result (each 
classified class is the denominator). It also called a 1 – pre-
cision or false discovery rate.

The classification results (i.e. semi-automatic classi-
fications plus automatic classification using image trans-
formation) were also compared with the results of the 
manual extraction (“result verification” hereafter; Table 2, 
technique 4-2). More than 2000 random reference points 
were plotted in the survey region and compared with 
the majority of benthic cover types within a 5-m buffer. 
Together with the previously mentioned indices of accu-
racy, the variation of estimated vegetation coverage in 
each sub-region was also assessed for accuracy.

To interpret the results, temporal changes in the man-
ually extracted results were compared with those obtained 
by using the other methods. Visual interpretation of the 
aerial photographs was also compared among classifica-
tion methods, including manual extraction.

Results

Comparing the accuracy of the classification 
methods

The results of the classifications are presented in Figure 
3B–D, and the results of the two types of verification are 

listed in Table 3. The accuracy measures determined by 
comparison with the supervised data (model verification) 
varied depending on the year, depth, and analysis method. 
The overall accuracy of the semi-automatic classifications 
was 72% ± 14% (mean ± SD), with κ = 0.54 ± 0.24. The accu-
racy was lower for the older grayscale images (65% ± 9.11%, 
κ = 0.42 ± 0.16) and higher for the two newer color images
(87% ± 7%, κ = 0.80 ± 0.10). The average omission and
commission errors for each benthic cover type were high
in the grayscale images, especially for sand and sparse
vegetation; the omission errors were 0.46 ± 0.10 (sand)
and 0.44 ± 0.23 (sparse) and the commission errors were
0.68 ± 0.13 (sand) and 0.36 ± 0.18 (sparse). The underesti-
mation of sand area was also explained by a bias toward
commission. These errors were low for the color images;
the omission errors were 0.07 ± 0.01 (sand) and 0.20 ± 0.20
(sparse) and the commission errors were 0.07 ± 0.02 (sand) 
and 0.16 ± 0.11 (sparse). Although the constructed semiau-
tomatic classification models were of a reasonably good
level in the color images, lower accuracies in the model
construction were observed in the grayscale images in
most cases.

When the overall accuracy was determined based 
on a comparison with independently manually extracted 
results (result verification), these values were 55% ± 16% 
(κ = 0.28 ± 0.17) for semi-automatic classification and
63% ± 4% (κ = 0.35 ± 0.07) for automatic classification
using deep learning (Table 3). Except for the image taken
in 1974, automatic classification provided higher accu-
racy. Comparing the older and newer types of images, the
accuracy was 50% ± 18% (κ = 0.30 ± 0.17) (semi-automatic) 
and 61% ± 1% (κ = 0.35 ± 0.77) (automatic) for the older
grayscale images and 64% ± 2% (κ = 0.37 ± 0.03) (semi-
automatic) and 67% ± 3% (κ = 0.36 ± 0.08) (automatic)
for the two newer images. The differences in the accu-
racy observed between newer types and older types of
images were almost half for the automatic classification
in comparison with the semi-automatic classification. The 
accuracy values were lower by 15% as compared to the
results of the model verification in the case of the semi-
automatic classification. In the case of image 1995-01-22,
the overall accuracy was very low and failed to predict the 
benthic cover while using semi-automatic classification,
which was not the case using automatic classification.
Average omission and commission errors for this image
were also high, especially for sand and sparse vegetation:
0.53 ± 0.29 (omission) and 0.58 ± 0.17 (commission) for
sand and 0.51 ± 0.18 (omission) and 0.67 ± 0.13 (commis-
sion) for sparse beds in all semi-automatically classified
images. For the automatically classified images, they were 
also high for the same categories: 0.52 ± 0.16 (omission)
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Figure 3: (A) Rectified images of the study area taken in 1973–1974, 1995, 2003, and 2009. Areas of sand, dense seagrass, and sparse 
seagrass classified based on (B) manual extraction, (C) semi-automatic classification, and (D) automatic classification, using deep learning 
from grayscale images.
Original images from 1973 to 2003 taken by Royal Thai Survey Department. Images for 2009 include derivative of copyrighted material of 
DigitalGlobe, Inc., All Rights Reserved.

Authenticated | yamakitat@jamstec.go.jp author's copy
Download Date | 6/20/19 5:13 PM
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and 0.35 ± 0.15 (commission) for sand and 0.38 ± 0.12 
(omission) and 0.64 ± 0.10 (commission) for sparse beds. 
The higher bias toward commission error at sparse beds 
in the automatic classification reflects overestimation of 
this category, especially in the offshore area. Because the 
errors for sand were not easily distinguished from errors 
caused by sunlight contamination in the offshore areas, 
classification errors in the sparse beds were only reduced 
by combining the two categories of seagrass coverage.

The overall accuracy increased considerably when 
the two seagrass coverage categories were combined 
into a single category of seagrass presence or absence; 
the accuracy increased to 84% ± 6% (κ = 0.31 ± 0.18) 
for the semi-automatic classification and to 89% ± 7% 
(κ = 0.50 ± 0.13) for the automatic classification. For the
grayscale images, it was 82% ± 5% (κ = 0.21 ± 0.10) (semi-
automatic) and 87% ± 7% (κ = 0.45 ± 0.13) (automatic).
For the color images, it was 87% ± 10% (κ = 0.51 ± 0.12)
and 94% ± 2% (κ = 0.60 ± 0.03). The average omission
and commission errors for all types of vegetation (com-
bined dense and sparse) were low: 0.08 ± 0.05 (omis-
sion) and 0.12 ± 0.06 (commission) for semi-automatic
classification and 0.02 ± 0.02 (omission) and 0.10 ± 0.08
(commission) for automatic classification of the older
grayscale images. They were 0.13 ± 0.12 (omission) and
0.02 ± < 0.01 (commission) and 0.01 ± < 0.01 (omission)
and 0.05 ± 0.02 (commission), respectively, for the two
newer images.

Considering the spatial structures of the classified 
patches (Figure 3) in the large-scale versions of the 1995 
image, there were clear discontinuities at the edges of the 
original aerial photograph because of the semi-automatic 
classification. This artifact was caused by limb darkening 
of the lens, the angle of sunlight, and atmospheric condi-
tions. This discontinuity was observed less for the auto-
matic classification.

Although the automatic classification depicted better 
results at larger scales, in general, it sometimes failed to 
discriminate patches in small areas of the images. These 
areas of failed discrimination were visually identified as 
a mixture of noise-like pixels of some categories, espe-
cially in areas of dense vegetation (see the deeper part of 
Figure 3D). In such cases, the grid boundaries were clearly 
discontinuous and were observed as artificial noise in the 
resulting images.

Comparison of the temporal dynamics

We compared seagrass areas (presence or absence) 
between the manually extracted (reference) images 

and the classification results (Table 4). Semi-automatic 
classification resulted in −5.2 ± 23.6  ha difference (i.e. 
underestimation) and automatic classification resulted 
in 4.6 ± 12.1  ha overestimation. Even after eliminating 
the results using training data (2003), the variance was 
smaller in the automatic classification; for each dense and 
sparse vegetation area, the difference was −24.9 ± 46.4 and 
21.2 ± 48.6 ha, respectively, for the semi-automatic classifi-
cation and −14.1 ± 31.5 and 19.6 ± 29.5 ha for the automatic 
classification. Thus, the direction (+ or  −) of misclassifica-
tions was similar for both methods.

We next assessed the overall changes in the spatial 
extents of the seagrass beds. Based on the manually 
extracted data, the mean area of all types of vegetation 
in the study area was 1230 ± 201 ha (in Table 4 “Total area 
full extent” which contains areas not covered by some 
aerial images i.e. no data for the deeper area during 1973–
1974 and the 1995 northern transition zone). This result 
was similar to those of the other methods: 1184 ± 195 ha 
for the semi-automatic classification and 1271 ± 201  ha 
for the automatic classification. Of this vegetation, 
878 ± 128  ha was dense seagrass and 355 ± 104  ha was 
sparse seagrass, according to the manually extracted 
data. The coefficient of variation (CV) of the overall veg-
etation area was low (≤0.1) for all types of vegetation and 
dense vegetation, and was 0.16 for sparse vegetation (in 
Table 4 “Total area equal extent” refers to areas contain-
ing missing values, i.e. the deeper areas and the transi-
tion zone of the northern sub-region in any years were 
eliminated).

We then compared the temporal fluctuations in the 
seagrass area among the sub-regions based on the CV 
values. The shallow northern, deep middle, shallow 
middle, and river mouth sub-regions showed the great-
est fluctuations in the area of all types of vegetation. In 
the shallow northern sub-region, where the highest fluc-
tuation was observed, the area of all types of vegetation 
increased by more than 70% between 1974 and 1995; 
however, in 2003, it was reduced by 41%, according to 
the manual extraction method (Table 4, Figure 4). During 
the same periods, all types of vegetation showed an 88% 
increase and a 70% decrease in the semi-automatic clas-
sification and a 49% increase and a 35% decrease in the 
automatic classification. Compared to manual classifica-
tion, the semi-automatic classification exhibited a greater 
difference each year between color and grayscale images. 
Unfortunately, we were unable to test whether the differ-
ences in estimated spatial extents between the methods 
were statistically significant, due to the limited number 
of images. The automatic classification had a tendency to 
depict more stable changes than those extracted manually.
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The greatest changes in area of all types of vegeta-
tion occurred in the shallow middle sub-region in 1995, 
with a decrease of 31  ha, and in the deep middle sub-
region in 2009, with an increase of 44  ha, according to 
manual extraction (based on the difference between 1995 
and 2009, and the previous year in Table 4). As with the 
manual extraction, the greatest decrease in 1995  was in 
the shallow middle sub-region (51  ha) according to the 
automatic classification, but this decrease was only 8 ha 
in the semi-automatic classification, which may have 
failed the accuracy requirements of the classification in 
this year. Changes in the deeper area were also observed 
in 2009 in the semi-automatic classification, with an 
increase of 97 ha, but not in the automatic classification 
(0 ha) as shown in Table 4. Most of this change observed 
in the semi-automatic classification was an artifact of 
sunlight contamination. This difference could have been 
caused by the elimination of areas with sunlight contami-
nation while making the training datasets for both types 
of models; however, it was not possible to eliminate all 
this contamination by manual tracing. Because semi-
automatic classification is fundamentally based on the 
pixel values of images, it was closer to using the human 
eye in this case, whereas the automatic classification was 
robust to the change of the colors and captured other fea-
tures not visible only by the colors.

Result of the visual interpretation of images

In this section, temporal changes in the seagrass distri-
bution determined by visual interpretation of original 
images (Figure 3) are explained. Although visual interpre-
tation and manual tracing is not perfect, it was considered 

to be the best method because the experts know the local 
area and are likely able to correctly identify the trends 
captured in the images. It is also appropriate to assess the 
detectability of local landscape structure qualitatively by 
comparison with the results of semi- and fully automatic 
classification.

In 1973 and 1974, there was relatively little seagrass 
in the shallow northern sub-region. In the river mouth 
sub-region, the routes of channels from the mouth to the 
deeper areas differed from those in recent images (2003 
and 2009). There were two channel branches: one was a 
shallower channel located near those in the recent images 
(inside river mouth sub-region; “new river mouth” in 
Figure 1), and the other flowed about 1 km south of the 
recent channels and was located in the middle sub-region 
(“old river mouth”), where this broad and meandering 
channel carried sand to a wide area (especially in the 
shallow middle sub-region). In the shallow southern sub-
region, zones of dense seagrass beds were observed par-
allel to the coastline, and the whole area was covered by 
either dense or sparse vegetation. Although these spatial 
patterns were distinguished by manual classification, 
they were not clearly recognized by semi-automatic clas-
sification. The patterns spanning from the northern sub-
region to halfway down the middle sub-region were also 
recognized by the automatic classification. In addition, 
no images of the deeper parts could be obtained for 1973 
and 1974. Few noticeable differences occurred between 
these years, with the detection of only a few new patches 
or gaps.

By 1995, in the shallow northern sub-region, seagrass 
beds extended across the whole sub-region. The branch of 
the channel flowing due west became the main channel 
and the former river channel on the northern side became 
a dense seagrass bed in the shallow middle sub-region. 
However, in the center of this sub-region, the dunes that 
flowed from the river mouth to the south spread into the 
shallow areas. As a result, the width of the sand bars 
extended to the southern side of this shallow middle sub-
region where dense vegetation was observed in the 1970s. 
Overall, the seagrass beds occupied a narrower area in 
this sub-region. In the shallow southern sub-region, the 
shape of the seagrass beds became clearly visible, but the 
relative vegetation density declined. In the shallow parts 
of the study site, these spatial patterns were distinguished 
by manual classification. Although the increase of sea-
grass area in the northern sub-region was recognized, 
other features were not clearly observed by semi-auto-
matic classification. Automatic classification reproduced 
these spatial distributions at low resolution (e.g. 10-m 
resolution).

Figure 4: Temporal changes in all types of seagrass area for the 
three shallow (Sh) sub-regions classified using the manual, semi-
automatic, and automatic (deep learning) methods (N, northern;  
M, middle; S, southern).



T. Yamakita et al.: Application of deep learning for seagrass classification  13

In the deep middle sub-region, a patchy structure was 
observed. This was recognized as a constricted distribu-
tion of large species that produced dense patches (looking 
like tussock in highland wetland), possibly mixing with 
the small seagrass species, which were described in a pre-
vious survey (Nakaoka and Supanwanid 2000). Manual 
extraction could not reliably delineate this patchy spatial 
pattern in the transition zone and deeper part of the study 
site. Although several local patches could be extracted 
manually, this could not be achieved across the site in 
equal quality. Even at low resolution, the spatial patterns 
in the deeper part could not be drawn because the spatial 
extent of the seagrass patches was too small.

By 2003, in the shallow northern sub-region, vege-
tation had decreased in locations close to the coast, and 
the seagrass remained only in the deeper zones at the 
boundary of the transition sub-region. The river mouth 
area showed changes in sand flow structures at the 
channel mouth. Sand flowed south and offshore from 
the channel, with decreased flow to the northern side. 
All types of classification distinguished similar changes 
in the spatial patterns, except in the shallow southern 
sub-region and the deep middle sub-region using semi-
automatic classification. In the former sub-region, there 
were no significant changes of the spatial extent of all 
types and dense vegetation while others increased. and 
the latter sub-region was highly affected by sunlight 
contamination. However, the intensity of the changes 
differed among classification methods, as noted in the 
text regarding spatial changes. Especially in the case of 
semi-automatic classification, many of the spatial pat-
terns were inaccurate because of the overestimation of 
sand area.

The 2009 images showed no major structural dif-
ferences in seagrass beds from those taken in 2003; 
however, the density and visibility of the beds in the 
image differed. In the shallow northern sub-region, veg-
etation increased in locations close to the coast and on 
the boundary of the transition area. Patchy structures 
in deeper areas were most clearly observed in the 2009 
image. Because there were no large changes in the sea-
grass area from 2003, the spatial patterns detectable by 
different classifications were also similar, except for the 
improved result of semi-automatic classification. Less 
overestimation of the sand area by semi-automatic clas-
sification in 2009 enabled that method to detect spatial 
patterns in the northern and middle sub-regions at a 
level comparable to the manually and automatically clas-
sified results. However, these three methods showed dif-
ferent spatial patterns in the deeper part, suggesting that 
automatic and semi-automatic results may not reflect the 

actual distribution pattern when it was applied to the 
deeper area in this case.

Discussion

Comparison of the classification methods

The accuracy of the image classification methods varied 
widely. Although they were unable to accurately dis-
tinguish between sparse and dense seagrass beds, all 
the methods were able to discriminate the presence or 
absence of seagrass with an accuracy of 80% or more. In 
most cases, the accuracy of the automatic classification 
was as good as that of semi-automatic classification. Fur-
thermore, automatic classification did not show a decline 
in accuracy because of pre-conversion of the images from 
color to grayscale, nor was there a significant difference 
in accuracy between the year with supervised data (2003) 
and other years.

Large differences in accuracy were also observed 
among different types of images and mainly corresponded 
to their condition (i.e. color, sharpness, and contrast 
range), which was worse in older grayscale images. This 
difference in accuracy between grayscale and color images 
was observed with semi-automatic classification,  but it 
was less of an issue with automatic classification. There-
fore, we conclude that the automatic classification model 
is able to extract appropriate features to detect the pres-
ence or absence of seagrass from images with only a single 
grayscale band. Among the methods, automatic classifi-
cation had similar or better accuracy than object-based 
semi-automatic classification even while using grayscale 
images, which are commonly used for long-term remote 
sensing analyses.

The advantage of automatic classification, which uses 
a single model pre-trained over several years, was appar-
ent. There was no significant misfit in the temporal change 
of the spatial extent of seagrass beds as compared to the 
manually extracted spatial changes. Across the time-
series, the automatic classification extracted patterns 
more uniformly than supervised classification, the use of 
which varied depending on the year. A typical example 
of this advantage was also observed at the boundaries of 
the different images after classification in similar periods, 
such as the two images from the 1970s or those from 
1995. In addition, the ability of the automatic classifica-
tion method to detect low-resolution spatial patterns was 
comparable to that of manual extraction, especially at the 
shallow sub-regions.
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However, for evaluating fine-scale patch structures 
(which was not the main purpose of this study), there were 
distinct discontinuities between the grids used in the analy-
sis of automatic classification. Therefore, many places were 
not suitable for the analysis of fine patch structures strad-
dling the grid. Possible causes for this were the treatment 
of the boundary in the model or “over-fitting” to the super-
vised images. Pix2pix enlarges the input image once to use 
the boundary information in the model. During this time, 
information at the edge was used more than that from other 
areas. If the boundary contains more specific features com-
pared to other areas, then the bias of the features will be 
strengthened. Because many of the artifacts occurred at a 
similar distance from the boundary, the result of the auto-
matic classification may have been affected by this bias. 
Over-fitting means that a model fits too well to the specific 
supervised data, but fails to achieve high accuracy with 
independent test data because of less flexibility of the model 
(Kramer 2016). Over-fitting by GANs also tends to depend 
on the majority of the features in input data (Creswell et al. 
2018). Because more artifacts were observed in the same 
direction in many areas, the strongest bias was likely to 
be the water depth gradient of the vegetation in the train-
ing data. Detecting the artifacts, distinguishing their cause, 
and properly manipulating the cause, such as boundaries 
or depth trends in training data, will need to be dealt with in 
the future. What is required is not only to build and compare 
different deep-learning models, but also to standardize pre- 
and post-processing of images to eliminate biases.

In addition, automatic classification requires less 
effort for extraction than the other methods because it 
requires only a single year of classified results for use as 
training data, while the others require supervised data for 
each year to ensure their accuracy. Therefore, except for 
machine learning time and the effect of the treatment of 
artifacts at the grid boundaries, which may be addressed 
in the near future, automatic classification can serve as 
a time-efficient method for extracting information related 
to the presence or absence of seagrass beds, especially in 
time-series images that are grayscale.

Distribution and temporal change of the 
seagrass beds

Considering the spatial changes of the seagrass in the 
study site, the beds were larger and denser in the deeper 
parts (ca. 3–4 m depth) of the study area, as reported in 
previous field studies (Nakaoka and Supanwanid 2000). 
In the deeper areas, there were patches of the large sea-
grass Enhalus acoroides and several smaller species. The 

patchy structures observed in the recent images also cor-
respond with this characteristic of species distributions 
observed previously.

Marked temporal variation was observed, especially 
in shallow areas near the river mouth (i.e. the shallow 
north, shallow middle, and river mouth sub-regions) 
before and after 1995, when the flow of sand and the 
movement of the sand bars were observed in both the 
manually and automatically classified results. There-
fore, sand dynamics are a likely driver of the distribution 
of shallow seagrasses, which mainly consist of smaller 
species. Studies describing local changes in seagrass 
beds noted a relationship between the change in bottom 
sediment and density of seagrass beds (Department of 
Marine and Coastal Resources 2005, Nakaoka et al. 2007). 
Nakaoka et al. (2007) investigated seagrass coverage and 
biomass changes in the Andaman Sea from 2000 to 2006. 
They recorded a decline in seagrass coverage in 2003 that 
was nearly recovered by 2006. Likewise, in this study, no 
major changes were observed between 2003 and 2009. 
Together, these observations indicate that sand move-
ments change seagrass distributions over a relatively short 
time scale, making it difficult to discriminate between the 
magnitudes of these variations. Considering results of 
the current study based on remote sensing and the pre-
vious field study, seagrass beds in this relatively pristine 
area show stable trends and resilience to disturbance on 
a broad spatial scale. However, local changes, which are 
likely to be caused by river discharge, remained visible (as 
seen on the aerial photographs) for a longer time. For the 
conservation of the seagrass beds in this area, any modi-
fication of the river, including land cover changes in its 
basin, should be monitored more than other factors.

In conclusion, this comparison of multiple extraction 
methods revealed that automatic image transformation 
using deep learning can be used for quick extraction of 
information regarding the presence of seagrass beds. Use 
of the same pre-trained models was advantageous with 
regard to accuracy and consistency of extraction as com-
pared to that of the semi-automatic classification method, 
which was affected by the condition of the images and the 
different models made for each image. Applying this model 
to images of a protected marine area from the 1970s indi-
cated that the seagrass beds had stable spatial dynamics, 
with a slight decrease in area around 1995. These results 
matched those of the manual tracing, even in the grayscale 
images, which is the common type of old photographs used 
for long-term monitoring of seagrass populations. However, 
there are still challenges to be resolved, especially with 
regard to the discrimination of density categories and the 
effect of grid boundaries on image analyses.
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Research article: A deep 
learning model determined 
seagrass extent using grayscale 
aerial photographs. Vegetation 
recognition accuracy (>80%) 
was as high as monochrome 
remote sensing. Landscape 
structures preserved in 
classified images enabled 
detection of changes in patches 
at the river mouth.
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