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Configuration of propagator method for calculation

of electron velocity distribution function in gas

under crossed electric and magnetic fields ‡

Hirotake Sugawara

Division of Electronics for Informatics, Graduate School of Information Science and

Technology, Hokkaido University, Sapporo 060-0814, Japan

E-mail: sugawara@ist.hokudai.ac.jp

Abstract. This paper presents a self-contained description on the configuration

of propagator method (PM) to calculate the electron velocity distribution function

(EVDF) of electron swarms in gases under dc electric and magnetic fields crossed at a

right angle. Velocity space is divided into cells with respect to three polar coordinates v,

θ and ϕ. The number of electrons in each cell is stored in three-dimensional arrays. The

changes of electron velocity due to acceleration by the electric and magnetic fields and

scattering by gas molecules are treated as intercellular electron transfers on the basis of

the Boltzmann equation and are represented using operators called the propagators or

Green’s functions. The collision propagator, assuming isotropic scattering, is basically

unchanged from conventional PMs performed under electric fields without magnetic

fields. On the other hand, the acceleration propagator is customized for rotational

acceleration under the action of the Lorentz force. The acceleration propagator specific

to the present cell configuration is analytically derived. The mean electron energy

and average electron velocity vector in a model gas and SF6 were derived from the

EVDF as a demonstration of the PM under the Hall deflection and they were in a

fine agreement with those obtained by Monte Carlo simulations. A strategy for fast

relaxation is discussed, and extension of the PM for the EVDF under ac electric and

dc/ac magnetic fields is outlined as well.
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1. Introduction

Calculation of the electron velocity/energy distribution function (EVDF/EEDF) is one

of the most fundamental bases for evaluation of the electron transport and reactions

in electrical discharges and plasmas. Boltzmann equation (BE) analyses are a typical

approach to the EVDF. However, their formulation includes technical mathematics

such as a series expansion of the EVDF using orthogonal functions [1, 2, 3, 4], and some

advanced efforts using a multi-term BE analysis varied even the number of expansion

terms as a parameter to confirm the convergence of the solutions of anisotropic or

distorted EVDFs [5, 6, 7]. Practical composition of such a BE analysis code would

require highly sophisticated experience in operating more or less abstract simultaneous

differential equations. In contrast, Monte Carlo (MC) simulations to treat electron

behavior on the basis of a particle model are of a clear picture. Instead, MC simulations

require a heavy computational load to track a huge number of samples to reduce

statistical fluctuation due to use of random numbers. Nevertheless, it is not easy to

judge the convergence of the EVDF under relaxation with fluctuation nor to estimate

ab initio a sufficient relaxation time to reach equilibrium.

The propagator method (PM), detailed in this paper, is a numerical technique to

solve the BE more directly than using the series expansion. Velocity space is divided

into cells, the EVDF is represented by the number of electrons in each cell, and the

intercellular electron transfers due to electron acceleration and collisions are quantified

using operators called the propagators or Green’s functions. Starting from a given initial

EVDF, relaxation of the EVDF to its equilibrium solution is calculated by repeatedly

applying the propagators to the EVDF. The PM requires huge arrays to store the

number of electrons and cell properties. Instead, physical aspects of the electron motions

in velocity space are kept as are in a particle model. Furthermore, the PM is considered

to be suitable for parallel computing because the PM is carried out mainly with multiply-

add operations.

The PM have been applied mostly to the EVDFs/EEDFs under electric fields E

without magnetic field B. Some examples are for time-dependent EVDFs under dc E

[8, 9], those under radio-frequency E [10, 11, 12], and impulse E [13], equilibrium and

non-equilibrium EEDFs in the steady-state Townsend modes [14, 15, 16, 17], analyses

of drift velocities [18], derivation of longitudinal and transverse diffusion coefficients
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[19, 20, 21], etc. Furthermore, the PM has been extensively applied to objects other

than electrons; ion transport [22], excited species, and radiation [23, 24, 25, 26, 27], and

carrier in semiconductor [28]. A brief history of the PM was presented in recent papers

[29, 30].

Under E without B, we can assume a rotational symmetry of the EVDF around

the axis in the direction of E. The EVDF becomes a two-variable function, thus

it can be calculated with two-dimensional (2D) arrays. On the other hand, in the

presence of B, we need three-dimensional (3D) arrays to deal with the EVDF no longer

axisymmetric under the action of the Lorentz force. The cost for the memory capacity

and computational time had limited the PM calculations under crossed E and B in

early decades. However, recent enriched computational resources have enabled us to

perform the 3D PM calculations with ordinary workstations [30, 31, 32, 33, 34]. This

would contribute to analyses of fundamental properties of magnetized plasmas.

In this paper, ever unwritten details of the PM calculation for the EVDF under E

and B crossed at a right angle (E × B fields) are described as necessary specification

in composition of a PM program. This field configuration E ⊥ B is applicable for

whole space in chambers for characteristic inductively coupled magnetized plasmas

so-called neutral loop discharge plasmas for etching [35, 36, 37, 38, 39] and X-point

plasmas for ion source [40, 41, 42, 43, 44]. The consideration of the Lorentz force

requires not only an extension of the arrays from 2D ones to 3D ones but also the

change of the electron acceleration field in velocity space from translational one to

rotational one, and a modification of the numerical scheme accompanies. In a chosen cell

configuration under these substantial changes, an analytical derivation of the propagator

for electron acceleration is presented as a key component of the PM. The validity of

the numerical scheme is shown in comparisons of electron transport parameters and the

EVDF with those obtained by a BE analysis and MC simulations. An effort pursuing

faster relaxation is also made.
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Figure 1. Coordinate system (x, y, z), applied electric and magnetic fields E and B,

and acceleration vector a = −(e/m)(E + v × B) in velocity space (vx, vy, vz). a and

a′ correspond to E and E′, respectively.

2. Simulation model

2.1. Electron motion in electric and magnetic fields

In boundary-free real space r = (x, y, z), E and B are defined as follows:

E = (Ex, Ey, Ez) = (0,−E cosα,−E sinα), (1)

B = (Bx, By, Bz) = (0, B, 0), (2)

where E > 0, B > 0, and α is the angle between E and −B as shown in figure 1.

The electron velocity v is written with both Cartesian coordinates vx, vy and vz

and polar coordinates v, θ and ϕ as

v = (vx, vy, vz) = (v sin θ cosϕ, v cos θ, v sin θ sinϕ), (3)

where v = |v|, θ is the polar angle between the vy-axis and v vector, and ϕ is the

azimuthal angle around the vy-axis. The Cartesian coordinates vx, vy and vz are used

mainly for description of the electron motion, and the polar coordinates v, θ and ϕ are

for the cell configuration detailed in section 3.2.

The electron flow in velocity space is governed by the electron acceleration a =

(ax, ay, az) under the Coulomb and Lorentz forces. The electron motion equation is
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written as

a =
d

dt
v = − e

m
(E+ v ×B), (4)

ax =
d

dt
vx =

e

m
vzB = ωvz, (5)

ay =
d

dt
vy =

e

m
E cosα = ω

E

B
cosα, (6)

az =
d

dt
vz =

e

m
(−vxB + E sinα) = −ω

(
vx −

E

B
sinα

)
, (7)

where e and m are the electronic charge and mass, and ω = eB/m is the electron

cyclotron angular frequency. The projection of an electron free-flight locus in velocity

space on the vxvz-plane is a circle centered at (vx, vz) = ((E/B) sinα, 0) [30, 45] because(
vx −

E

B
sinα

)2

+ v2z =
(
vx|t=0 −

E

B
sinα

)2

+ (vz|t=0)
2. (8)

(E/B) sinα is the E×B drift velocity in the x direction under collision-less condition. a

is parallel to the vxvz-plane when α = 1
2
π (i.e. E ⊥ B). Otherwise, the electron motion

in velocity space is helical around the axis passing the center of the circle in parallel to

the vy-axis. An overview is depicted in figure 1. Hereafter, we assume E ⊥ B.

2.2. Collisional processes

Binary collisions between electrons and gas molecules are considered in the present work,

assuming the cold gas model and isotropic scattering in laboratory system. The collision

frequency ν of a specific collisional process is given as ν = Nq(v)v, where N is the gas

molecule number density and q is the electron collision cross section of a gas molecule.

The collisions are categorized into elastic momentum transfer, excitation, ionization and

electron attachment. Let us denote the related quantities with subscripts ‘mom’, ‘exc’,

‘ion’ and ‘att’, respectively, in the description of the propagator for collisions.

3. Calculation scheme of propagator method

In the PM, the cells are defined by partitioning velocity space, an initial EVDF is

given by distributing electrons to the cells, and the number of electrons in each cell in

equilibrium is obtained by a relaxation scheme to satisfy simultaneous balance equations

for the electron inflow and outflow represented using the acceleration and collision

propagators. The present PM calculation follows the principle summarized in Ref.
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[29, 30]. In this section, the cell configuration and the PM scheme are detailed from a

viewpoint of practical coding.

3.1. Correspondence between the BE and the PM

The EVDF of an electron swarm is defined as f(v, t) = f(vx, vy, vz, t). The EVDF in

this form can be applied to spatially uniform electron distributions or the case that the

positions of individual electrons are not cared. The BE for the EVDF is

∂

∂t
f(v, t) =

[
−a · ∂

∂v
+

(
∂

∂t

)
coll

]
f(v, t). (9)

(∂/∂t)coll is the collision operator representing the changes of electron velocity and

population due to the collisional processes. Using the acceleration and collision

propagators, Pacc(dv ← dv′) and Pcoll(dv ← dv′), representing the electron transfers

from a region dv′ to another dv in velocity space, the BE can be rewritten as

∂

∂t
f(v, t)dv

=
∫
v′ ̸=v

Pacc(dv← dv′)f(v′, t)dv′ −
∫
v′ ̸=v

Pacc(dv
′ ← dv)f(v, t)dv

+
∫
v′ ̸=v

Pcoll(dv← dv′)f(v′, t)dv′ −
∫
v′ ̸=v

Pcoll(dv
′ ← dv)f(v, t)dv. (10)

The positive and negative terms in the right-hand side represent, respectively, the

electron inflow to and outflow from dv due to collision and acceleration. Treatment

of the collisions is described in section 3.5. That of the acceleration represented by

a · (∂/∂v) in the BE is detailed in section 3.6.

3.2. Cells

Three polar coordinates v, θ and ϕ are divided into sections for every ∆ε = εmax/imax,

∆θ = π/jmax and ∆ϕ = 2π/kmax, respectively, as shown in figure 2. Here, ε = 1
2
mv2 is

the electron energy. The (i, j, k)th cell Ci,j,k is defined as the following region:

Ci,j,k : vi−1 ≤ v ≤ vi, θj−1 ≤ θ ≤ θj, ϕk−1 ≤ ϕ ≤ ϕk, (11)

where vi = v1eV
√
εi/ε1eV, εi = i∆ε, v1eV is the electron speed associated with 1 eV,

ε1eV = 1
2
mv21eV = 1 eV, θj = j∆θ and ϕk = k∆ϕ. The volume Vi,j,k of Ci,j,k is

Vi,j,k =
∫ vi

vi−1

∫ θj

θj−1

∫ ϕk

ϕk−1

v2 sin θ dvdθdϕ =
1

3
(v3i − v3i−1)(cos θj−1 − cos θj)∆ϕ. (12)

The indices i, j and k range 1 ≤ i ≤ imax, 1 ≤ j ≤ jmax and 1 ≤ k ≤ kmax,

respectively. It is convenient to set jmax to be an even integer and kmax to be a multiple
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Figure 2. Cells defined in velocity space. Those in the octant of vx ≥ 0, vy ≥ 0 and

vz ≥ 0 are omitted to show inner cells.

of four so that the vxvy-, vxvz- and vyvz-planes become cell boundaries. The parameters

for the cell division, εmax, imax, jmax and kmax, are empirically chosen to have sufficient

extent and resolution to represent the EVDF. For example, we may choose εmax and

imax so that the high-energy tail of the EEDF F (εmax) is sufficiently small and ∆ε is

satisfactorily fine to discretize the thresholds of inelastic collisions.

Note here that these cells are concentric around the origin O of velocity space while

the rotation center of a is shifted from O. This configuration makes the evaluation of the

acceleration propagator partly irregular, but makes the treatment of isotropic scattering

simple.

Let us denote the number of electrons in Ci,j,k as ni,j,k. A 3D array with a size of

imax× 1
2
jmax×kmax is necessary to store ni,j,k. Here, reflectional symmetry of the EVDF

with respect to the vxvz-plane, f(vx, vy, vz, t) = f(vx,−vy, vz, t), is assumed because

E ⊥ B. ni,j,k for 1
2
jmax + 1 ≤ j ≤ jmax (i.e. vy ≤ 0) can be omitted to save the

required memory capacity. Using ni,j,k, the normalized EVDF f(v) and EEDF F (ε) are

represented as

f(vRi )
∆ε

mvRi
= F (εRi )∆ε =

1

Ne

jmax/2∑
j=1

kmax∑
k=1

ni,j,k, (13)

Ne =
∫ ∞

vx=−∞

∫ ∞

vy=−∞

∫ ∞

vz=−∞
f(vx, vy, vz) dvxdvydvz =

imax∑
i=1

jmax/2∑
j=1

kmax∑
k=1

ni,j,k, (14)
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where vRi and εRi are the representative electron speed and energy of Ci,j,k to plot the

EVDF/EEDF, respectively, εRi = (i − 1
2
)∆ε = 1

2
m(vRi )

2, and Ne is the total electron

population. vRi and εRi are referred to afterward for calculation of electron transport

parameters.

In practical coding of the PM program, more 3D arrays of the same size as for ni,j,k

are used to store the cell properties to quantify the acceleration propagator (section 3.6),

because the cell properties are constants and referred to repeatedly in the PM calculation

(section 3.7). The 3D arrays are prepared to have extra elements as margins outside

of the calculation range; the zeroth and the (imax + 1)th elements for v, and those

similar for θ and ϕ as well. This is because the calculation of ni,j,k refers to its neighbors

ni±1,j,k, ni,j±1,k and ni,j,k±1. With the margin cells, the formulation can be regulated into

a common form avoiding special treatments at the upper and lower ends of the index

ranges. Here, because the series of cells indexed by k for ϕ are cyclic, the margin cells are

equivalent to the cells on the opposite ends; i.e. Ci,j,0 = Ci,j,kmax and Ci,j,kmax+1 = Ci,j,1.

The properties of Ci,j,kmax and Ci,j,1 are copied to Ci,j,0 and Ci,j,kmax+1, respectively,

before the calculation of ni,j,k, and those of C0,j,k, Cimax+1,j,k, Ci,0,k and Ci,jmax/2+1,k are

set to be zero.

3.3. Cell boundaries

Let us define the cell boundaries as follows (see also figure 3). A v-boundary Bv
i,j,k is

the boundary between Ci,j,k and Ci+1,j,k. B
v
i,j,k is a part of a sphere centered at O;

Bv
i,j,k : v = vi, θj−1 ≤ θ ≤ θj, ϕk−1 ≤ ϕ ≤ ϕk. (15)

A θ-boundary Bθ
i,j,k is the boundary between Ci,j,k and Ci,j+1,k. B

θ
i,j,k is a part of a cone

whose apex is at O;

Bθ
i,j,k : vi−1 ≤ v ≤ vi, θ = θj, ϕk−1 ≤ ϕ ≤ ϕk. (16)

A ϕ-boundary Bϕ
i,j,k is the boundary between Ci,j,k and Ci,j,k+1. B

ϕ
i,j,k is a part of a plane

including the vy-axis;

Bϕ
i,j,k : vi−1 ≤ v ≤ vi, θj−1 ≤ θ ≤ θj, ϕ = ϕk. (17)

Here, Bϕ
i,j,0 = Bϕ

i,j,kmax
is the boundary between Ci,j,kmax and Ci,j,1, because the series of

cells indexed by k are cyclic.
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Figure 3. Cell Ci,j,k and its boundaries Bv
i,j,k (v = vi), B

θ
i,j,k (θ = θj) and Bϕ

i,j,k

(ϕ = ϕk) facing to the +v, +θ and +ϕ directions, respectively.

Ci,j,k has six boundaries Bv
i−1,j,k, B

v
i,j,k, B

θ
i,j−1,k, B

θ
i,j,k, B

ϕ
i,j,k−1 and Bϕ

i,j,k. B
v
i,j,k and

Bθ
i,j,k are concentric boundaries, and Bϕ

i,j,k represents radial boundaries. However, Bv
0,j,k

are degenerate at a point O, and Bθ
i,0,k and Bθ

i,jmax,k are lines on the vy-axis. The electron

outflows from Ci,j,k through its boundaries are calculated in section 3.6 and Appendix.

3.4. The Boltzmann equation in equilibrium

The BE in equation (9) and its translation into the PM in equation (10) can be rewritten

with inflow and outflow terms as follows [29, 30]:

∂

∂t
f(v, t)dv =

( ∂

∂t

)in

acc

−
(
∂

∂t

)out

acc

+

(
∂

∂t

)in

coll

−
(
∂

∂t

)out

coll

 f(v, t)dv. (18)

In equilibrium, the EVDF is unchanged when normalized, but grows exponentially in

the electron population as (∂/∂t)f(v, t) = ν̄ionf(v, t), where ν̄ion = νion − νatt is the

effective ionization frequency. For discretized cells, equation (18) becomesν̄ion +
(
∂

∂t

)out

acc

+

(
∂

∂t

)out

coll

ni,j,k =

( ∂

∂t

)in

acc

+

(
∂

∂t

)in

coll

ni,j,k. (19)
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The inflow and outflow terms for a cell Ci,j,k are given as follows:(
∂

∂t

)in

acc

ni,j,k =
∑

i′,j′,k′
Pacc(Ci,j,k ← Ci′,j′,k′)ni′,j′,k′ , (20)

(
∂

∂t

)in

coll

ni,j,k =
∑

i′,j′,k′
Pcoll(Ci,j,k ← Ci′,j′,k′)ni′,j′,k′ , (21)

(
∂

∂t

)out

acc

ni,j,k =
∑

i′,j′,k′
Pacc(Ci′,j′,k′ ← Ci,j,k)ni,j,k, (22)

(
∂

∂t

)out

coll

ni,j,k = νtotalni,j,k, (23)

where νtotal = Nqtotal(v
R
i )v

R
i is the total collision frequency, and qtotal is the total collision

cross section of a gas molecule. Pacc(Ci′,j′,k′ ← Ci,j,k) and Pcoll(Ci′,j′,k′ ← Ci,j,k) represent

the rates of electron transfer (ratio per unit time) from Ci,j,k to Ci′,j′,k′ due to acceleration

and collision, respectively. From equations (19)–(23), the condition that ni,j,k satisfies

in the equilibrium (time-independent) solution of the EVDF is obtained as

ni,j,k =

∑
i′,j′,k′ [Pacc(Ci,j,k ← Ci′,j′,k′) + Pcoll(Ci,j,k ← Ci′,j′,k′)]ni′,j′,k′

ν̄ion +
∑

i′,j′,k′ Pacc(Ci′,j′,k′ ← Ci,j,k) + νtotal
. (24)

This equation is used for the relaxation of the EVDF [29, 30]. Pcoll and Pacc are quantified

in sections 3.5 and 3.6, respectively. The relaxation scheme is explained in section 3.7.

3.5. Collision propagator

The collision propagator in the presence of B is basically unchanged from the

conventional PM under E only [29]. It represents the changes of v, θ and ϕ occurring

at scattering, and may include the change of electron population due to ionization and

electron attachment. The rate of electron outflow from Ci,j,k by collisions is quantified

with νtotal as in equation (23). On the other hand, that of the inflow to Ci,j,k from

Ci′,j′,k′ , Pcoll(Ci,j,k ← Ci′,j′,k′) in equation (21), is separated into Pmom(Ci,j,k ← Ci′,j′,k′),

Pexc(Ci,j,k ← Ci′,j′,k′) and Pion(Ci,j,k ← Ci′,j′,k′). Here, Pcoll(Ci,j,k ← Ci′,j′,k′) = 0 when

there is no direct electron transfer from Ci′,j′,k′ to Ci,j,k via the collisional processes. It

is assumed for Pexc(Ci,j,k ← Ci′,j′,k′) and Pion(Ci,j,k ← Ci′,j′,k′) that Ci′,j′,k′ is a high-v

cell and Ci,j,k is a low-v one corresponding to the electron energy loss by the process.

Patt is always zero because the electrons undergoing attachment are to disappear from

velocity space and they have no destination cells.

Under the assumption of isotropic scattering, each of Ci,j,k with a common i receives
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a part of the scattered electrons in proportion to the solid angle Ωj,k of Ci,j,k subtended

at O. In the present cell configuration,

Ωj,k =
∫ θj

θj−1

∫ ϕk

ϕk−1

sin θ dθdϕ = (cos θj−1 − cos θj)∆ϕ. (25)

Ci,j,k and Ci′,j′,k′ for elastic momentum transfer collision are in the relation of i = i′

under an assumption that the elastic energy loss is negligible. Pmom(Ci,j,k ← Ci′,j′,k′) is

quantified with νmom(v
R
i′ ) = Nqmom(v

R
i′ )v

R
i′ as

Pmom(Ci,j,k ← Ci′,j′,k′) =


Ωj,k

2π
νmom(v

R
i′ ) for i′ = i

0 for i′ ̸= i
. (26)

Here, the denominator is not 4π but 2π, which represents that the scattered electrons

are re-distributed only to the cells in the hemisphere of vy ≥ 0; the cells of vy ≤ 0 were

omitted under the reflectional symmetry of the EVDF. The non-zero Pmom(Ci,j,k ←

Ci′,j′,k′) values satisfy

jmax/2∑
j=1

kmax∑
k=1

Pmom(Ci,j,k ← Ci′,j′,k′) = νmom(v
R
i′ ) for i′ = i. (27)

For excitation, Ci,j,k and Ci′,j′,k′ are related as i′ = i + lexc, where lexc = ⌊εexc/∆ε⌋

is an integer representing the loss energy εexc of excitation discretized by ∆ε. With

νexc(v
R
i′ ) = Nqexc(v

R
i′ )v

R
i′ ,

Pexc(Ci,j,k ← Ci′,j′,k′) =


Ωj,k

2π
νexc(v

R
i′ ) for i′ = i+ lexc

0 for i′ ̸= i+ lexc

, (28)

jmax/2∑
j=1

kmax∑
k=1

Pexc(Ci,j,k ← Ci′,j′,k′) = νexc(v
R
i′ ) for i′ = i+ lexc. (29)

In case of ionization induced by a primary electron with energy ε′p, the residual

energy ε′p − εion after the subtraction of the ionization energy εion is divided into two

portions εp and εs for the primary and secondary electrons (ε′p − εion = εp + εs),

and the number of electrons undergoing ionization is doubled to reflect the electron

multiplication. In the present PM, the ratio εp : εs was assumed to be equi-probable

in a range between 0 : 1 and 1 : 0. Ci,j,k and Ci′,j′,k′ are in the relation of i′ ≥ i + lion,

where lion = ⌊εion/∆ε⌋. Pion(Ci,j,k ← Ci′,j′,k′) is given with νion(v
R
i′ ) = Nqion(v

R
i′ )v

R
i′ as

Pion(Ci,j,k ← Ci′,j′,k′) =



Ωj,k

2π

4

2(i′ − lion)− 1
νion(v

R
i′ ) for i′ > i+ lion

Ωj,k

2π

2

2(i′ − lion)− 1
νion(v

R
i′ ) for i′ = i+ lion

0 for i′ < i+ lion

. (30)
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The factors 2/[2(i′− lion)− 1] and 4/[2(i′− lion)− 1] approximate that the primary and

secondary electrons originating in the ionization in Ci′,j′,k′ are re-distributed to the cells

Ci,j,k of 1 ≤ i ≤ i′− lion, which correspond to an energy range 0 ≤ ε ≤ ε′p− εion, but the

upper limit of this range varies between εi′−1 − εion for the ionization at ε′p = εi′−1 (i.e.

the lower end of the energy range of Ci′,j′,k′) and εi′ − εion for the ionization at ε′p = εi′

(i.e. the upper end) [29]. For ionization in a cell Ci′,j′,k′ ,

i′−lion∑
i=1

jmax/2∑
j=1

kmax∑
k=1

Pion(Ci,j,k ← Ci′,j′,k′) = 2νion(v
R
i′ ). (31)

3.6. Acceleration propagator

The change of electron velocity due to acceleration is continuous, thus the resulting

intercellular electron transfer occurs between neighboring cells. The electron outflow

from Ci,j,k becomes the inflows to the neighboring destination cells Ci′,j′,k′ located in the

downstream of Ci,j,k. Pacc(Ci′,j′,k′ ← Ci,j,k) is obtained from a on the boundary between

Ci,j,k and Ci′,j′,k′ . Assuming uniform electron distribution within a cell, the electron

outflow from Ci,j,k is written as(
∂

∂t

)out

acc

ni,j,k =
(
K−v

i−1,j,k +K+v
i,j,k +K−θ

i,j−1,k +K+θ
i,j,k +K−ϕ

i,j,k−1 +K+ϕ
i,j,k

) ni,j,k

Vi,j,k

(32)

K±∗
i,j,k =

∫
B∗

i,j,k

max(a · (±n∗), 0) ds∗i,j,k, (33)

where the asterisks represent v, θ or ϕ; K±∗
i,j,k (≥ 0) are the rate coefficients of electron

flows toward the ±v, ±θ and ±ϕ directions through corresponding boundaries B∗
i,j,k;

n∗ are the unit normal vectors on B∗
i,j,k toward the +v, +θ and +ϕ directions; and

ds∗i,j,k (≥ 0) are the areal elements of B∗
i,j,k. With the maximum function, that gives

the greatest value among its arguments, only the positive values of a · (±n∗) ds∗i,j,k are

integrated to calculate the outflows separately from the inflow to Ci,j,k from the neighbor

cells. Therefore, some of K±∗
i,j,k may be zero depending on the angle between a and n∗.

The acceleration propagators for the electron outflows from Ci,j,k to its six neighbors

are

Pacc(Ci−1,j,k ← Ci,j,k) = K−v
i−1,j,k/Vi,j,k, (34)

Pacc(Ci+1,j,k ← Ci,j,k) = K+v
i,j,k/Vi,j,k, (35)

Pacc(Ci,j−1,k ← Ci,j,k) = K−θ
i,j−1,k/Vi,j,k, (36)

Pacc(Ci,j+1,k ← Ci,j,k) = K+θ
i,j,k/Vi,j,k, (37)
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Pacc(Ci,j,k−1 ← Ci,j,k) = K−ϕ
i,j,k−1/Vi,j,k. (38)

Pacc(Ci,j,k+1 ← Ci,j,k) = K+ϕ
i,j,k/Vi,j,k, (39)

In the present cell configuration under E ⊥ B, some of the borders at which

sgn(a ·n∗) changes can be aligned at cell boundaries by letting kmax be an even integer,

that simplifies the integral for K±∗
i,j,k. Their analytical derivations are presented in

Appendix.

The calculated values of Pacc are stored to not six but four 3D arrays with the same

size as for ni,j,k. One is for K±v
i,j,k. Because K

+v
i,j,k or K−v

i,j,k is necessarily zero for each set

of {i, j, k} and whether K+v
i,j,k = 0 or K−v

i,j,k = 0 can be known from k, the storages for

non-zero K±v
i,j,k can share a 3D array. K±θ

i,j,k can be stored in a 3D array in the same way

as K±v
i,j,k. The directions of electron flows through the concentric boundaries Bv

i,j,k and

Bθ
i,j,k are unique on each of them. On the other hand, K+ϕ

i,j,k and K−ϕ
i,j,k may have non-zero

values at the same time, i.e. the electron transfer through Bϕ
i,j,k may be mutual between

two neighboring cells Ci,j,k and Ci,j,k+1. Thus, two different 3D arrays are needed to

store K±ϕ
i,j,k. The condition of the mutual electron transfer is detailed in Appendix A.3.

3.7. Relaxation scheme

The equilibrium solution of the EVDF is obtained by iterative renewal of ni,j,k using

equation (24) [29] in the manner of Gauss–Seidel method. The renewal was applied to

the cells from the upstream to the downstream in velocity space so that the renewed

values of ni,j,k, which were expected to be closer to the equilibrium solution than their

previous values, were used immediately for succeeding renewal of ni,j,k of other cells.

The upstream and downstream were determined by the direction of a. The relaxation

was terminated when the relative changes of the electron transport parameters described

in the next section became less than 10−7.

Note that a in velocity space is rotational (see figure 1). On Bv
i,j,k and Bθ

i,j,k, a is

toward the +v and +θ directions in the region of vz ≥ 0, respectively. In the region

of vz ≤ 0, their directions are opposite. These aspects are depicted in figure A1 in

Appendix. On the other hand, a is toward the −ϕ direction on a majority of Bϕ
i,j,k, but

there are opposite cases in the region of vx ≥ 0. This reverse directionality appears in

a cylinder of infinite length having an axis (vx, vz) = (1
2
(E/B), 0) and a diameter E/B

(see figures A2 and A4 in Appendix). Let us name this region ‘reverse region’ and its



Propagator method for EVDF under E×B fields 14

outside region ‘regular region’ for later discussions.

On the basis of this directionality of a, the sequence of the renewal of ni,j,k in triple

nesting loops with indices i, j and k was arranged as follows.

For ϕ, the renewal was from k = kmax (ϕ = 2π) to k = 1 (ϕ = 0) by decrement of

k. A modification for the renewal sequence on k in the region of vx ≥ 0 is attempted

later in section 5.1.

For θ at a k, the renewal was from j = 1
2
jmax (θ = 1

2
π) to j = 1 (θ = 0) by

decrement of j in the region of vz ≤ 0, and from j = 1 to j = 1
2
jmax by increment of j

in the region of vz ≥ 0.

For v at a k and a j, the renewal was from i = imax (v = vmax) to i = 1 (v = 0) by

decrement of i in the region of vz ≤ 0, and from i = 1 to i = imax by increment of i in

the region of vz ≥ 0.

4. Benchmark

Two gases were chosen for benchmark of the present PM calculation. One is a ramp

model gas [46] having qmom = 6.0 × 10−16 cm2 and qexc(ε) = 10.0 × 10−16 × max((ε −

εexc)/ε1eV, 0) cm
2 with εexc = 0.2 eV. The other is SF6, which is a real gas having all

of qmom, qexc, qion and qatt [47, 48]. The former and latter are examples of electron

conservative and non-conservative cases, respectively.

The mean electron energy ε̄ and components WE and WE×B of the average electron

velocity vector W = (WE×B,WB,WE) = (⟨vx⟩, ⟨vy⟩, ⟨vz⟩) were derived from the EVDF

as

ε̄ =
1

2
m⟨v2⟩ =

1

Ne

∫ ∞

vx=−∞

∫ ∞

vy=−∞

∫ ∞

vz=−∞

1

2
mv2f(vx, vy, vz) dvxdvydvz

=
1

Ne

imax∑
i=1

jmax/2∑
j=1

kmax∑
k=1

εRi ni,j,k, (40)

WE×B = ⟨vx⟩ =
1

Ne

∫ ∞

vx=−∞

∫ ∞

vy=−∞

∫ ∞

vz=−∞
vxf(vx, vy, vz) dvxdvydvz

=
1

Ne

imax∑
i=1

jmax/2∑
j=1

kmax∑
k=1

vRi sin θRj cosϕR
k ni,j,k, (41)

WB = ⟨vy⟩ =
1

Ne

∫ ∞

vx=−∞

∫ ∞

vy=−∞

∫ ∞

vz=−∞
vyf(vx, vy, vz) dvxdvydvz = 0, (42)

WE = ⟨vz⟩ =
1

Ne

∫ ∞

vx=−∞

∫ ∞

vy=−∞

∫ ∞

vz=−∞
vzf(vx, vy, vz) dvxdvydvz
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=
1

Ne

imax∑
i=1

jmax/2∑
j=1

kmax∑
k=1

vRi sin θRj sinϕR
k ni,j,k. (43)

Here, θRj = (j − 1
2
)∆θ and ϕR

k = (k − 1
2
)∆ϕ are the representative θ and ϕ values of

Ci,j,k, respectively. WB = 0 when E ⊥ B for the reflectional symmetry of the EVDF.

These parameters in the ramp model gas under E×B fields are available from the

literature; those obtained by a BE analysis [49] and a MC simulation [50]. Note that

W has been defined as the average velocity here but is identical to the centroid drift

velocity in Ref. [50] under the present electron-conservative condition. The benchmark

for the ramp model gas was performed at the reduced electric and magnetic fields,

E/N and B/N , respectively, reported in Ref. [50]; 200Hx at 1Td; 1, 10, 50, 200

and 500Hx at 12Td; and 200Hx at 24Td. Here, 1Td (townsend) = 10−21Vm2, and

1Hx (huxlay) = 10−27Tm3. The size of the 3D arrays used in the PM, imax×1
2
jmax×kmax,

was chosen to be 12000×45×2160. The initial EVDF was a Maxwellian with ε̄ = 0.1 eV.

εmax was set to be 1.2–3.0 eV. A part of the preliminary calculations was reported also

in Ref. [32].

For SF6, the parameters were calculated at combinations of E/N = 100, 200, 500,

1000 and 2000Td and B/N = 100, 200, 500, 1000 and 2000Hx (25 conditions in total)

by the PM and a MC simulation. Some of the conditions were examined in previous

work [30, 31, 33], but the condition has been extended to higher E/N and B/N values

for the present benchmark. The initial EVDF was a Maxwellian with ε̄ = 1.0 eV,

εmax = 100.0 eV and imax× 1
2
jmax×kmax = 10000×45×720. In the MC simulations, the

time step ∆t was set at 0.1 ps at N = 1022m−3. Trace times of 100–200 ns were necessary

in most cases to obtain the parameters in equilibrium. The number of electrons traced

was more than 106. At E/N = 100Td and B/N = 2000Hx, the electron population

decreased severely and the relaxation time was taken to be 500 ns for slow relaxation.

Because it was difficult to acquire a sufficient number of samples in equilibrium, a

technique of the periodic sample multiplication [51] was adopted in this condition.

Primary properties (CPU, clock frequency, main memory and operating system) of

the workstations used for the benchmark were as follows. Intel Xeon E5-2667 (6-core),

2.9GHz, 32GB, and Linux CentOS 6.4 for the ramp model gas; and Intel Xeon E5-1650

v4 (6-core), 3.6GHz, 128GB, and Linux CentOS 7.3 for SF6. Programming language

was C++. The latter machine was able to perform at most four PM calculations in
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parallel. The limit was from the required memory capacity.

4.1. Results of ramp model gas

Table 1 shows a comparison of ε̄, WE×B and WE in the ramp model gas. The ratios of

the PM results to those of the BE analysis are shown together. The parameters agreed

well with each other with discrepancies less than 1% in most cases. The relaxation

cycles required for the convergence of these results were 66–200, when the accelerated

relaxation scheme tested in section 5.1 was used. The CPU times were 2.2–6.9 h, roughly

being proportional to the relaxation cycles (about 2.0min per relaxation cycle).

The discrepancies more than 1% were seen in the cases of 1Hx at 12Td, 500Hx

at 12Td and 200Hx at 1Td. The discrepancy in the former one (the CPU time was

2.3 h for 68 cycles) seems to be simply due to small absolute value of the parameter.

On the other hand, the latter two (27.6 h for 836 relaxation cycles and 228.1 h for 3446

relaxation cycles, respectively) are considered to be severe conditions as indicated by

the long CPU times. There was a tendency that the discrepancy became large and

the relaxation became long when the Hall deflection angle θH = tan−1(WE×B/WE) was

large under high B/N , although the discrepancies were at most a few percent. Here,

θH represents the significance of B relative to that of E in determining the equilibrium

EVDF. In the ramp model gas, the inelastic collisions, by which the energy relaxation

of the electrons proceeds mainly, are less frequent than the electron cyclotron motion

quantified by ω (= eB/m) when ε̄ is low under strong B. From the viewpoint of

the numerical relaxation, one might expect that a high ω enhances the intercellular

electron transfer by accelerating the rotational electron flow in velocity space and this

enhancement might promote the relaxation of the EVDF. However, the high ω did not

contribute to the energy relaxation. This is because the electron flow across Bv
i,j,k, that

induces the change of ε, does not increase with ω; the rotation center represented as

(vx, vz) = (E/B, 0) approaches the vy-axis as B increases, that reduces the change of

ε accompanying the rotational electron flow. This can be understood from equations

(A.9), (A.12), (A.23) and (A.26), in which K±v
i,j,k are independent of B (canceled in their

factor ω(E/B)) while K±ϕ
i,j,k have terms proportional to ω.
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Table 1. Comparison of mean electron energy ε̄, components WE and WE×B of

average electron velocity vector W, and the Hall deflection angle θH in ramp model

gas [46]. BE, Boltzmann equation analysis [49]; MC, Monte Carlo simulation [50]; and

PM, propagator method (present).

E/N B/N Method ε̄ WE WE×B θH
(Td) (Hx) Ratio (eV) (104ms−1) (104ms−1) (deg)

1 200 BE 0.06821 0.1446 0.4488 72.1

MC 0.0658 0.1437 0.4498 72.3

PM 0.07053 0.1483 0.4464 71.6

PM/BE (%) 103.40 102.55 99.46 99.25

12 1 BE 0.2689 6.838 0.04151 0.348

MC 0.2693 6.833 0.0417 0.350

PM 0.26893 6.8262 0.04092 0.343

PM/BE (%) 100.01 99.83 98.58 98.75

12 10 BE 0.2687 6.821 0.4146 3.48

MC 0.2690 6.818 0.4149 3.48

PM 0.26865 6.8090 0.41282 3.47

PM/BE (%) 99.98 99.82 99.57 99.75

12 50 BE 0.2616 6.401 2.020 17.5

MC 0.2616 6.400 2.0192 17.5

PM 0.26157 6.3905 2.0123 17.5

PM/BE (%) 99.99 99.84 99.62 99.80

12 200 BE 0.1816 2.573 4.208 58.9

MC 0.1817 2.571 4.204 58.6

PM 0.18202 2.5800 4.1938 58.4

PM/BE (%) 100.23 100.27 99.66 99.13

12 500 BE 0.1123 0.4154 2.318 79.8

MC 0.1124 0.4161 2.318 79.8

PM 0.11370 0.42293 2.3146 79.6

PM/BE (%) 101.24 101.81 99.85 99.76

24 200 BE 0.3192 5.516 5.688 45.9

MC 0.31944 5.509 5.686 45.9

PM 0.31957 5.5165 5.6632 45.8

PM/BE (%) 100.12 100.01 99.56 99.72

4.2. Results of SF6

The parameters in SF6 are presented in table 2. Most of them agreed well between the

PM and MC results with discrepancies less than 1%. Similarly to the results of the

ramp model gas, discrepancies exceeding 1% were seen in case the absolute value of the

parameter is small.
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The CPU times required for the relaxation cycles Nalt in table 3 shown later, using

the accelerated relaxation scheme in section 5.1, were about 0.8–27.7 h (0.78–0.88min

per relaxation cycle). The CPU times of the MC simulations, which depend on the

number of traced electrons and the trace time steps, however, were about 1.9–118.4 h.

The conditions at E/N = 100–200Td and B/N = 2000Hx at 500Td were attachment-

dominant. Decrease of electrons with time made the MC simulations time-consuming to

have a sufficient number of electrons in equilibrium, but the PM obtained equilibrium

EVDF solutions stably.
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Figure 4. Components WE and WE×B of the average electron velocity vector W.

|W| = (W 2
E +W 2

E×B)
1/2 and θH increase with E/N and B/N , respectively.

An aspect of the Hall deflection is depicted in figure 4 using WE and WE×B in

table 2. The increase of |W| with E/N and that of θH with B/N are observed clearly.

Figure 5 shows the EVDF at 1000Td and 1000Hx. The EVDF has been projected

to the vxvz-plane as

f(vx, vz) =
∫ ∞

vy=−∞
f(vx, vy, vz) dvy, (44)

and has been normalized to satisfy∫ ∞

vx=−∞

∫ ∞

vz=−∞
f(vx, vz) dvxdvz = 1. (45)

The scales for vx and vz are expressed in unit of v1eV as vx/v1eV and vz/v1eV so

that the conversion from speed to energy is easy; the value of (v/v1eV)
2 gives the

value of the energy in eV. At E/N = 1000Td and B/N = 1000Hx, the rotation

center of a is at (vx/v1eV, vz/v1eV) = (1.686, 0), where the E × B drift velocity is

E/B = 106ms−1 = 1.686× v1eV.

The PM successfully reproduced the EVDF obtained by the MC. The fluctuation-

free PM solution enables us to observe the shape of EVDF in detail. For example,

the EVDF peak shifted from the origin to (vx/v1eV, vz/v1eV) = (0.5, 0.8). The angle

of the peak direction tan−1(0.5/0.8) = 32.0◦ was greater than θH = 23.2◦ of W. The

distribution width in figure 5(b) along the E direction is about 3% narrower than that

in figure 5(c) along the E×B direction. The EVDF is close to a Gaussian around the

peak, but it has a slight asymmetry.
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Figure 5. The EVDF in SF6 at E/N = 1000Td and B/N = 1000Hx. (a) contours

of f(vx, vz) from 0.005 to 0.030 in steps of 0.005, (b) f(vx, vz) along cross section Z

at vx/v1eV = 0.5, and (c) f(vx, vz) along cross section X at vz/v1eV = 0.8. vx and vz

are the velocity components in the directions of E×B and −E, respectively. f(vx, vz)

has its peak at the intersection between X and Z.

5. Discussion

5.1. Further acceleration of numerical relaxation

The renewal of ni,j,k was made by decrement of k for ϕ. However, locally in the reverse

region, this renewal direction was against the upstream-to-downstream policy and it

is considered that this retarded the convergence of the EVDF. Thus, as a simple

modification, the renewal direction was rearranged to be back-and-forth. In the modified

relaxation scheme, increment and decrement of k were alternated every other relaxation

cycles in the region of vx ≥ 0, where the reverse region lies. It is expected that the

increment of k would accelerate the relaxation in the reverse region, while it would

retard the relaxation in the regular region.

Table 3 shows the relaxation cycles to achieve the seven-digit convergence before

and after the above modification. Nfix represents the cycles in the decrement-only cases,

and Nalt is of alternated decrement and increment. The convergence was judged after
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Table 3. Comparison of relaxation cycles (Nfix, Nalt) required for seven-digit

convergence in calculation of the EVDF in SF6 by the PM at various E/N (Td)

and B/N (Hx). Nfix, renewal of ni,j,k by decrement of k only; and Nalt, by alternated

decrement and increment of k.

E/N B/N

100Hx 200Hx 500Hx 1000Hx 2000Hx

100Td (1544, 566) (1304, 606) (1146, 744) (1146, 1068) (1434, 1980)

200Td (1826, 300) (1550, 310) (1308, 362) (1246, 506) (1314, 990)

500Td (1668, 138) (1528, 136) (1334, 152) (1324, 194) (1780, 376)

1000Td (1362, 78) (1250, 76) (1134, 80) ( 942, 92) (1238, 146)

2000Td (1220, 54) (1038, 52) (1162, 52) (1114, 58) (1010, 76)

every two cycles for Nfix and every pair of decrement and increment cycles for Nalt. The

result was Nalt < Nfix in most cases as expected. The acceleration in the reverse region

exceeded the retardation outside in total. The only exception was the case of 100Td at

2000Hx, in which the diameter E/B of the reverse region is the smallest.

Implementation of the upstream-to-downstream renewal of ni,j,k throughout the

cells both in the reverse and regular regions might lead to faster relaxation. The criterion

to judge whether Ci,j,k belongs to the reverse region or not with the indices i, j and k

is definite as described in Appendix. However, a sequence to realize the upstream-to-

downstream renewal seems to be not simple in the off-axis rotational field of a because

the seeking for the indices corresponding to the border between the regular and reverse

regions requires a case analysis in the present cell configuration. The locally specific

treatment for the reverse region would increase the load to manage the indices of the

triple nesting loops and it might prevent efficient parallel processing. The optimization

of the relaxation sequence is left as a technical issue in the practical coding together

with investigation on efficient treatment of the mutual electron flows in the upstream-

to-downstream renewal scheme.

5.2. Extension for real-space electron transport parameters

The parameters derived from the EVDF in the present work, ε̄, WE×B and WE, do

not require information on the electron position in real space. On the other hand,

the rate coefficients of some other electron reactions would be derived from the EVDF
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using corresponding collision cross sections by assuming position-dependent factors such

as the number densities of electrons and excited/ionic species, because the present

PM is to obtain normalized EVDF. Furthermore, there are demands for real-space

electron transport parameters such as the centroid drift velocity Wr = (Wr,x,Wr,y,Wr,z)

and the diffusion coefficients Dr,x, Dr,y and Dr,z along specific directions x, y and z,

respectively, for fluid model simulations and theoretical studies on the electron transport

in magnetized plasmas. A theory to derive these real-space parameters from moment

equations has already been established for electron swarms under dcE [18, 19, 20, 21, 52].

This theory was applied to electron swarms under E × B fields of E ⊥ B [30]. Wr,x,

Wr,y and Wr,z were derived from the first-order x, y and z moments, and Dr,x, Dr,y and

Dr,z were obtained from the second-order ones. The accelerated relaxation scheme [29]

and the propagators were applicable commonly to the higher-order moments.

The zeroth-, first- and second-order moment equations in a direction are in a

hierarchy; i.e., a higher-order moment is dependent on those of lower orders. However,

they can be calculated independently for each of the x, y and z directions. Thus, we

need at least two more 3D arrays with the same size as for the zeroth-order moment

ni,j,k to perform a PM calculation for a pair of Wr,x and Dr,x, Wr,y and Dr,y, or Wr,z

and Dr,z. Because the PM calculation can proceed sequentially for these pairs, the two

3D arrays for the first- and second-order moments with respect to a direction can be

reused for the calculations of those of another direction, that saves the required memory

capacity.

5.3. Extension for ac electric fields with dc and ac magnetic fields

A time-dependent acceleration propagator Pacc(t) is necessary for calculations of the

EVDF under ac E. The accelerated relaxation scheme [29] is no longer applicable here.

The relaxation of the EVDF to a periodic steady state must proceed along physical

time passage step by step for every ∆t to be set by partitioning the ac phase 0–2π

with a satisfactory time resolution. Pacc(t) is to be periodic, thus, it would be efficient

in practical operation if all of the Pacc(t) values at the discretized ac phases could be

stored in 3D arrays for repeated use. However, the memory capacity required for them

would increase correspondingly to the number of the discretized phases. Nonetheless,

most of the Pacc(t) properties are proportional to |E|, that enables us to reduce the
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necessity of additional 3D arrays by separating the time-dependent factor as a periodic

weight.

First, when Ez(t) = −E sinωact and B is dc, K±v
i,j,k(t) and K±θ

i,j,k(t) do not require

additional 3D arrays. Their non-zero values are proportional to |Ez(t)| as inferred from

equations (A.9)–(A.12) and (A.16)–(A.19), and thus they can be represented in a form

of K±∗
i,j,k,max| sinωact| (∗: v or θ). Their amplitudes K±∗

i,j,k,max are constant and can be

stored in existing 3D arrays instead of K±∗
i,j,k under dc E. K±v

i,j,k(t) would vary in a

manner of half-wave rectification complementarily, and K±θ
i,j,k(t) would vary similarly.

On the other hand, K±ϕ
i,j,k(t) would need additional 3D arrays. K±ϕ

i,j,k(t) of such Bϕ
i,j,k

that locate always outside of the reverse region can be represented by E-independent

(constant) and E-dependent (sinusoidal) terms as seen in equations (A.25) and (A.26).

They would need one additional 3D array to store the amplitude of the sinusoidal term in

addition to the constant term. The other K±ϕ
i,j,k(t) would need further 3D arrays because

the reverse region, whose diameter is (E/B)| sinωact|, expands and shrinks periodically,

and K±ϕ
i,j,k(t) of B

ϕ
i,j,k which may have an intersection with the boundary of the reverse

region are calculated under a case analysis to choose applicable equations from equations

(A.23)–(A.26), (A.49), (A.56), (A.61) and (A.65).

Next, when E and B are both ac and they alternate synchronously as Ez(t) =

−E sinωact and By(t) = B sinωact, Ez(t)/By(t) is constant. In such a field condition,

i.e. in electromagnetic wave, all non-zero K±∗
i,j,k(t) would be represented in a form of

K±∗
i,j,k,max| sinωact| because all components of a in equation (A.2) varies in proportion to

ω (= eBz(t)/m ∝ sinωact) keeping the direction of a unchanged in the rotational field,

i.e. the reverse region is unchanged throughout the ac phase. Thus, the PM calculation

under synchronous ac E and ac B would not require additional 3D arrays.

Furthermore, when ac E and ac B have a phase difference, e.g. Ez(t) = −E sinωact

and By(t) = B cosωact, as assumed in Refs. [53, 54, 55], Pacc(t) would be prepared

similarly to that under ac E and dc B. The non-zero values of K±v
i,j,k(t) and K±θ

i,j,k(t) are

proportional to |Ez(t)|, and the calculation of K±ϕ
i,j,k(t) requires a case analysis whether

the boundary of the reverse region intersects Bϕ
i,j,k or not. Here, all Bϕ

i,j,k may be

included in the reverse region because (E/B) tanωact, whose absolute value represents

the diameter of the reverse region, may diverge to ±∞.
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5.4. Extension for E×B fields crossed at arbitrary angles

The condition E ⊥ B, in which a is parallel to the vxvz-plane, allowed us to quantify Pacc

analytically. In contrast, when E ̸⊥ B [55, 56, 57, 58], the directionality of a crossing the

cell boundaries would vary in a complicated way for Bv
i,j,k and Bθ

i,j,k because a becomes

helical. It has never been investigated how far the derivation of Pacc could be carried

out analytically in such a condition. It might become fully numerical integration of

max(a · n, 0) ds for each boundary. In that case, a cell boundary would be divided into

small areal elements with respect to the two variables consisting ds, and judgement of

sgn(a · n) is made on each element. This calculation is for 3D arrays, thus the total

calculation may include up to quintuple loops. In addition, the cells for vy ≤ 0 cannot

be omitted in the absence of the reflectional symmetry in the EVDF. This would be a

heavy load even for the latest computers.

6. Conclusions

A technique of the PM to calculate the EVDF under E ⊥ B was detailed. Under the

E × B fields, the EVDF becomes non-axisymmetric because the electron acceleration

vector a is of off-axis rotation in velocity space. Velocity space was divided into cells by

partitioning the three polar coordinates v, θ and ϕ, and corresponding 3D arrays were

prepared to store the number of electrons in each cell and the rate coefficients of the

electron outflows from the cell across its boundaries. The rate coefficients were derived

analytically from surface integrals of the inner product between a and the unit normal

vector on the cell boundary.

Mean electron energy ε̄ and components of the average electron velocity vector

WE×B and WE in the ramp model gas and SF6 were derived from the EVDF obtained

by the PM. They agreed well with those obtained by a BE analysis and MC simulations.

The discrepancies were mostly less than 1%, and were 1–3% under strong B or in case

the calculated values were small. It is an advantage of the PM that smooth EVDF

is obtained avoiding the statistical fluctuation inevitable in the MC simulations. The

PM was stable even under conditions of ν̄ion < 0, where the MC simulations became

difficult or much time-consuming because of the electron decrease before reaching the

equilibrium.
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An accelerated relaxation scheme based on the Gauss–Seidel method worked well.

The renewal of the number of electrons in each cell was operated mainly from the

upstream to the downstream in velocity space along the direction of a. The seven-

digit convergence of the EVDF to its equilibrium solution was achieved in hundreds

to thousands relaxation cycles. In the present cell configuration, there was a region

in which the direction of a is locally reversed relative to a group of cell boundaries.

This was because the rotation center of a is off-axis in velocity space. The upstream-

to-downstream relaxation has not been implemented perfectly to all of the cells in the

reverse region for the complexity in making a sequential operation order for the cells.

However, an attempt showed that faster convergence is available simply by switching

the renewal direction back and forth in the quadrants of velocity space including the

reverse region.

A key achievement in composing the PM calculation code for the EVDF under

crossed E and B was the derivation of the acceleration propagator. On the other

hand, analysis of the precision depending on the cell configuration and resolution and

improvement of the convergence speed are still left for further investigations. Extensions

of the PM to calculations of the EVDF under ac E and dc/ac B and under E and B

crossed at arbitrary angles were mentioned as possible succeeding work, however, such

calculations would be much heavier than in the present work. Nonetheless, use of

mainframe machines and/or further progress in computational resources would enable

us to challenge them.
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Appendix A. Electron flow through cell boundaries

In order to quantify the acceleration propagator Pacc(Ci′,j′,k′ ← Ci,j,k) in equations

(34)–(39), which represents the electron flow from a source cell Ci,j,k to a neighboring

destination cell Ci′,j′,k′ through the cell boundary between Ci,j,k and Ci′,j′,k′ under the

action of the E×B fields, the rate coefficients K±∗
i,j,k (∗: v, θ or ϕ) of the electron flow are

calculated in this section by the integral of a · n ds. Here, a is the electron acceleration

by the E ×B fields, n is the unit normal vector on the cell boundary, and ds (≥ 0) is

the areal element of the boundary.

From equations (5)–(7), a is represented as

a = (ωvz, ω
E

B
cosα,−ωvx + ω

E

B
sinα)

= (ωv sin θ sinϕ, ω
E

B
cosα,−ωv sin θ cosϕ+ ω

E

B
sinα). (A.1)

Hereafter, we assume E ⊥ B, then

a = (ωv sin θ sinϕ, 0,−ωv sin θ cosϕ+ ω
E

B
). (A.2)

For the reflectional symmetry of the EVDF with respect to the vxvz-plane, Pacc(Ci′,j′,k′ ←

Ci,j,k) is calculated only for the cells in the region of vy ≥ 0 (Ci,j,k of 1 ≤ j ≤ 1
2
jmax).

Let K, n and ds have indices i, j and k and superscripts v, θ and ϕ when we

distinguish them for individual boundaries Bv
i,j,k, B

θ
i,j,k and Bϕ

i,j,k defined in equations

(15)–(17). Here, the superscripts for K are signed to distinguish the direction of the

electron flow. Equation (33) for K is rewritten as

K±v
i,j,k =

∫ θj

θ=θj−1

∫ ϕk

ϕ=ϕk−1

max(a · (±nv
i,j,k), 0) ds

v
i,j,k, (A.3)

K±θ
i,j,k =

∫ vi

v=vi−1

∫ ϕk

ϕ=ϕk−1

max(a · (±nθ
i,j,k), 0) ds

θ
i,j,k, (A.4)

K±ϕ
i,j,k =

∫ vi

v=vi−1

∫ θj

θ=θj−1

max(a · (±nϕ
i,j,k), 0) ds

ϕ
i,j,k, (A.5)

where nv
i,j,k, n

θ
i,j,k, and nϕ

i,j,k are the unit normal vectors on Bv
i,j,k, B

θ
i,j,k and Bϕ

i,j,k toward

the +v, +θ and +ϕ directions, respectively. Analytical derivations of K±v
i,j,k, K

±θ
i,j,k and

K±ϕ
i,j,k are presented in the following subsections.

The maximum functions in equations (33) and (A.3)–(A.5) are to integrate the

positive and negative values of a · n separately. In the present cell configuration, we

can arrange the cells so that sgn(a ·n) is unchanged on all individual Bv
i,j,k and Bθ

i,j,k as

shown in Appendix A.1 and Appendix A.2. In such cases, we can omit the maximum
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Figure A1. Intersections between the concentric cell boundaries (v- or θ-boundaries)

and the acceleration vector a = −(e/m)(E+v×B). a crosses the concentric boundaries

from the outside to the inside in the region of vz < 0, and from the inside to the outside

in the region of vz > 0.

functions by case analysis. The exceptional case that both positive and negative values

appear on a boundary may occur on Bϕ
i,j,k. This will be explained in Appendix A.3.

Appendix A.1. Electron flows through v-boundaries

At (vi, θ, ϕ) on a v-boundary Bv
i,j,k defined in equation (15), the normal vector nv

i,j,k

toward the +v direction and the areal element dsvi,j,k are

nv
i,j,k = (sin θ cosϕ, cos θ, sin θ sinϕ), (A.6)

dsvi,j,k = v2i sin θ dθdϕ. (A.7)

Then, a · nv
i,j,k ds

v
i,j,k to obtain K±v

i,j,k in equation (A.3) is

a · nv
i,j,k ds

v
i,j,k = ω

E

B
v2i sin

2 θ sinϕ dθdϕ. (A.8)

The sign of this integrand changes at ϕ = 0 and π (see figure A1). By letting kmax be

an even integer, we can align the borders of the sign change at those between Bv
i,j,1 and

Bv
i,j,kmax

and those between Bv
i,j,kmax/2

and Bv
i,j,kmax/2+1. Then, sgn(a ·nv

i,j,k) is unchanged

on every Bv
i,j,k.

For 1 ≤ k ≤ 1
2
kmax (0 ≤ ϕ ≤ π, i.e. vz ≥ 0), the direction of the electron flow across

Bv
i,j,k is from Ci,j,k to Ci+1,j,k, i.e. a · nv

i,j,k ≥ 0, thus

K+v
i,j,k = +

1

4
ω
E

B
v2i [2∆θ − (sin 2θj − sin 2θj−1)] (cosϕk−1 − cosϕk), (A.9)

K−v
i,j,k = 0. (A.10)
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Complementarily, for 1
2
kmax + 1 ≤ k ≤ kmax (π ≤ ϕ ≤ 2π, i.e. vz ≤ 0), the direction of

the electron flow across Bv
i,j,k is from Ci+1,j,k to Ci,j,k, i.e. a · nv

i,j,k ≤ 0, thus

K+v
i,j,k = 0, (A.11)

K−v
i,j,k = −

1

4
ω
E

B
v2i [2∆θ − (sin 2θj − sin 2θj−1)] (cosϕk−1 − cosϕk). (A.12)

Appendix A.2. Electron flows through θ-boundaries

At (v, θj, ϕ) on a θ-boundary Bθ
i,j,k defined in equation (16), the normal vector nθ

i,j,k

toward the +θ directions and the areal element dsθi,j,k are

nθ
i,j,k = (cos θj cosϕ,− sin θj, cos θj sinϕ), (A.13)

dsθi,j,k = v sin θj dvdϕ. (A.14)

Then, a · nθ
i,j,k ds

θ
i,j,k to obtain K±θ

i,j,k in equation (A.4) is

a · nθ
i,j,k ds

θ
i,j,k = ω

E

B
v sin θj cos θj sinϕ dvdϕ = ω

E

B
v
sin 2θj

2
sinϕ dvdϕ. (A.15)

The sign of this integrand changes at ϕ = 0 and π (see figure A1). By letting kmax be

an even integer, we can align the borders of the sign change at those between Bθ
i,j,1 and

Bθ
i,j,kmax

and those between Bθ
i,j,kmax/2

and Bθ
i,j,kmax/2+1. Then, sgn(a ·nθ

i,j,k) is unchanged

on every Bθ
i,j,k.

For 1 ≤ k ≤ 1
2
kmax (0 ≤ ϕ ≤ π, i.e. vz ≥ 0), the direction of the electron flow across

Bθ
i,j,k is from Ci,j,k to Ci,j+1,k, i.e. a · nθ

i,j,k ≥ 0, thus

K+θ
i,j,k = +

1

4
ω
E

B

(
v2i − v2i−1

)
sin 2θj(cosϕk−1 − cosϕk), (A.16)

K−θ
i,j,k = 0. (A.17)

Complementarily, for 1
2
kmax + 1 ≤ k ≤ kmax (π ≤ ϕ ≤ 2π, i.e. vz ≤ 0), the direction of

the electron flow across Bθ
i,j,k is from Ci,j+1,k to Ci,j,k, i.e. a · nθ

i,j,k ≤ 0, thus

K+θ
i,j,k = 0, (A.18)

K−θ
i,j,k = −

1

4
ω
E

B

(
v2i − v2i−1

)
sin 2θj(cosϕk−1 − cosϕk). (A.19)

Appendix A.3. Electron flows through ϕ-boundaries

At (v, θ, ϕk) on a ϕ-boundary Bϕ
i,j,k defined in equation (17), the normal vector nϕ

i,j,k

toward the +ϕ direction and the areal element dsϕi,j,k are

nϕ
i,j,k = (− sinϕk, 0, cosϕk), (A.20)

dsϕi,j,k = v dvdθ. (A.21)
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Figure A2. Intersections between the radial cell boundaries (ϕ-boundaries) and the

acceleration vector a = −(e/m)(E + v ×B). The dotted circle represents the border

at which the crossing direction of a changes. a crosses the radial boundaries from the

−ϕ side to the +ϕ side in the dotted circle, and otherwise from the +ϕ side to the −ϕ
side.

Then, a · nϕ
i,j,k ds

ϕ
i,j,k to obtain K±ϕ

i,j,k in equation (A.5) is

a · nϕ
i,j,k ds

ϕ
i,j,k = −ωv2 sin θ dvdθ + ω

E

B
v cosϕk dvdθ. (A.22)

The sign of the integrand changes at a border v sin θ = (E/B) cosϕk. Here, v sin θ =√
v2x + v2z (≡ vxz). Because (E/B) cosϕk (≡ vc) is a constant in the plane of ϕ = ϕk

including Bϕ
i,j,k, the border is a line vxz = vc parallel to the vy-axis. This border line

is the intersection between the plane of ϕ = ϕk and a tubular surface (the side of a

cylinder of infinite length) that has an axis (vx, vz) = (1
2
(E/B), 0) parallel to the vy-axis

and a diameter E/B (see figure A2). The cylinder intersects limited Bϕ
i,j,k only in the

region of vx ≥ 0 (i.e. 0 ≤ ϕk ≤ 1
2
π and 3

2
π ≤ ϕk ≤ 2π). The intersection on Bϕ

i,j,k is a

line (vx, vz) = (vc cosϕk, vc sinϕk) = ((E/B) cos2 ϕk, (E/B) cosϕk sinϕk) parallel to the

vy-axis. Excluding the vy-axis, that does not divide any Bϕ
i,j,k, the effective intersection

between the cylinder and each Bϕ
i,j,k is at most once in the present cell configuration.

When whole of Bϕ
i,j,k is in the cylinder, the direction of the electron flow across

Bϕ
i,j,k is from Ci,j,k to Ci,j,k+1, thus

K+ϕ
i,j,k = −

1

3
ω
(
v3i − v3i−1

)
(cos θj−1 − cos θj) +

1

2
ω
E

B

(
v2i − v2i−1

)
∆θ cosϕk, (A.23)

K−ϕ
i,j,k = 0. (A.24)
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On the other hand, when whole of Bϕ
i,j,k is out of the cylinder, the direction of the

electron flow across Bϕ
i,j,k is from Ci,j,k+1 to Ci,j,k, thus

K+ϕ
i,j,k = 0, (A.25)

K−ϕ
i,j,k = +

1

3
ω
(
v3i − v3i−1

)
(cos θj−1 − cos θj)−

1

2
ω
E

B

(
v2i − v2i−1

)
∆θ cosϕk. (A.26)

When Bϕ
i,j,k has an intersection with the cylinder, the integral domain must be separated

into the inside region (vxz ≤ vc) where K+ϕ
i,j,k ≥ 0 and K−ϕ

i,j,k = 0, and the outside region

(vxz ≥ vc) where K+ϕ
i,j,k = 0 and K−ϕ

i,j,k ≥ 0.

Hereafter, we consider the case that Bϕ
i,j,k has an intersection with the cylinder.

The integrals for K±ϕ
i,j,k can be calculated in the plane of ϕ = ϕk with abscissa vxz and

ordinate vy. The four edges of Bϕ
i,j,k are numbered as shown in figure A3. They are

represented as

edge 1, upper straight line:

vy,upper(vxz) = vxz cot θj−1, (A.27)

vxz13 = vi−1 sin θj−1 ≤ vxz ≤ vxz12 = vi sin θj−1, (A.28)

edge 2, upper arc:

vy,upper(vxz) =
√
v2i − v2xz, (A.29)

vxz12 = vi sin θj−1 ≤ vxz ≤ vxz24 = vi sin θj, (A.30)

edge 3, lower arc:

vy,lower(vxz) =
√
v2i−1 − v2xz, (A.31)

vxz13 = vi−1 sin θj−1 ≤ vxz ≤ vxz34 = vi−1 sin θj, (A.32)

edge 4, lower straight line:

vy,lower(vxz) = vxz cot θj, (A.33)

vxz34 = vi−1 sin θj ≤ vxz ≤ vxz24 = vi sin θj. (A.34)

We assume vxz13 ≤ vc ≤ vxz24. Whether vxz12 < vxz34 or vxz12 ≥ vxz34 depends on Bϕ
i,j,k.

a and nϕ
i,j,k are independent of vy. Thus, in the vxzvy-plane, a·nϕ

i,j,k ds
ϕ
i,j,k in equation

(A.22) can be rewritten by the following a ·nϕ
i,j,k and dsϕi,j,k represented with vxz instead

of v and θ:

a · nϕ
i,j,k = − ωvxz + ω

E

B
cosϕk, (A.35)

dsϕi,j,k = [vy,upper(vxz)− vy,lower(vxz)] dvxz. (A.36)
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O

vxz

vy

dvxz

dsi,j,k
φ

vi−1

vi

θj−1

θj

Bi,j,k
φ

edge 1 edge 2

edge 3 edge 4

vxz13 vxz12 vxz34 vxz24

θj−1

θj

Figure A3. A ϕ-boundary Bϕ
i,j,k and its areal element dsϕi,j,k. Because the integrand

a · nϕ
i,j,k is independent of vy, the areal element can be a strip shape.

Because the direction of the electron flow across Bϕ
i,j,k is from Ci,j,k to Ci,j,k+1 for vxz ≤ vc

and from Ci,j,k+1 to Ci,j,k for vxz ≥ vc as shown in figure A4, K±ϕ
i,j,k are given as

K+ϕ
i,j,k = +

∫ vc

vxz13
a · nϕ

i,j,k[vy,upper(vxz)− vy,lower(vxz)] dvxz

=
(
K+ϕ

i,j,k,1 +K+ϕ
i,j,k,2

)
−
(
K+ϕ

i,j,k,3 +K+ϕ
i,j,k,4

)
, (A.37)

K−ϕ
i,j,k = −

∫ vxz24

vc
a · nϕ

i,j,k[vy,upper(vxz)− vy,lower(vxz)] dvxz

=
(
K−ϕ

i,j,k,1 +K−ϕ
i,j,k,2

)
−
(
K−ϕ

i,j,k,3 +K−ϕ
i,j,k,4

)
, (A.38)

K+ϕ
i,j,k,1 = +

∫ min(vxz12,vc)

vxz13
a · nϕ

i,j,kvy,upper(vxz) dvxz, (A.39)

K−ϕ
i,j,k,1 = −

∫ vxz12

min(vxz12,vc)
a · nϕ

i,j,kvy,upper(vxz) dvxz, (A.40)

K+ϕ
i,j,k,2 = +

∫ max(vxz12,vc)

vxz12
a · nϕ

i,j,kvy,upper(vxz) dvxz, (A.41)

K−ϕ
i,j,k,2 = −

∫ vxz24

max(vxz12,vc)
a · nϕ

i,j,kvy,upper(vxz) dvxz, (A.42)

K+ϕ
i,j,k,3 = +

∫ min(vxz34,vc)

vxz13
a · nϕ

i,j,kvy,lower(vxz) dvxz, (A.43)

K−ϕ
i,j,k,3 = −

∫ vxz34

min(vxz34,vc)
a · nϕ

i,j,kvy,lower(vxz) dvxz, (A.44)

K+ϕ
i,j,k,4 = +

∫ max(vxz34,vc)

vxz34
a · nϕ

i,j,kvy,lower(vxz) dvxz, (A.45)



Propagator method for EVDF under E×B fields 33

O

vx

vy

vz

vxz

E/B

Bi,j,k
φ

φ = φkvxz = vc

= (E/B)cosφk

a

a·n > 0 a·n < 0

n
reverse
region

Figure A4. A ϕ-boundary Bϕ
i,j,k having the border vxz = vc = (E/B) cosϕk, at which

sgn(a · n) changes. The electron flow across such a boundary is mutual between the

two cells contacting at Bϕ
i,j,k.

K−ϕ
i,j,k,4 = −

∫ vxz24

max(vxz34,vc)
a · nϕ

i,j,kvy,lower(vxz) dvxz. (A.46)

In order to calculate these eight terms, let us introduce parameters vL and vU to

represent an integral domain vL ≤ vxz ≤ vU in which sgn(a · nϕ
i,j,k) is unchanged. In

the following subsections, the integrals for K±ϕ
i,j,k,l (l = 1–4) in equations (A.39)–(A.46)

are calculated using vL and vU. After that, practical values of vL and vU are chosen

depending on whether vxz12 ≥ vc or vxz12 < vc and whether vxz34 ≥ vc or vxz34 < vc.

Appendix A.3.1. Integral along edge 1: upper straight line K±ϕ
i,j,k,1 in equations (A.39)

and (A.40) are given as follows by introducing an integral K1(vL, vU) along edge 1 in

equation (A.27):

K+ϕ
i,j,k,1 = +K1(vxz13,min(vxz12, vc)), (A.47)

K−ϕ
i,j,k,1 = −K1(min(vxz12, vc), vxz12), (A.48)

K1(vL, vU) =
∫ vU

vL
a · nϕ

i,j,kvy,upper(vxz) dvxz

=
∫ vU

vL

(
−ωv2xz cot θj−1 + ω

E

B
vxz cot θj−1 cosϕk

)
dvxz

= − 1

3
ω
(
v3U − v3L

)
cot θj−1 +

1

2
ω
E

B

(
v2U − v2L

)
cot θj−1 cosϕk. (A.49)
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When the integral domain covers all of the vxz range of edge 1,

K full
1 = K1(vxz13 = vi−1 sin θj−1, vxz12 = vi sin θj−1)

= − 1

3
ω
(
v3i − v3i−1

)
cos θj−1 sin

2 θj−1

+
1

2
ω
E

B

(
v2i − v2i−1

)
cos θj−1 sin θj−1 cosϕk. (A.50)

Appendix A.3.2. Integral along edge 2: upper arc K±ϕ
i,j,k,2 in equations (A.41) and (A.42)

are given as follows by introducing an integralK2(vL, vU) along edge 2 in equation (A.29):

K+ϕ
i,j,k,2 = +K2(vxz12,max(vxz12, vc)), (A.51)

K−ϕ
i,j,k,2 = −K2(max(vxz12, vc), vxz24), (A.52)

K2(vL, vU) =
∫ vU

vL
a · nϕ

i,j,kvy,upper(vxz) dvxz

= −
∫ vU

vL
ωvxz

√
v2i − v2xz dvxz +

∫ vU

vL
ω
E

B

√
v2i − v2xz cosϕk dvxz. (A.53)

The first term in the right-hand side of equation (A.53) becomes

−
∫ vU

vL
ωvxz

√
v2i − v2xz dvxz = − ω

[
2

3

(
−1

2

)(
v2i − v2xz

)3/2]vU
vL

=
1

3
ω
[(
v2i − v2U

)3/2
−
(
v2i − v2L

)3/2]
. (A.54)

The second term in the right-hand side of equation (A.53) becomes∫ vU

vL
ω
E

B

√
v2i − v2xz cosϕk dvxz =

∫ θU

θL
ω
E

B
v2i cos

2 θ cosϕk dθ

=
∫ θU

θL
ω
E

B
v2i

1 + cos 2θ

2
cosϕk dθ

= ω
E

B
v2i

[
1

2
θ +

1

4
sin 2θ

]θU
θL

cosϕk

= ω
E

B
v2i

[
1

2
(θU − θL) +

1

4
(sin 2θU − sin 2θL)

]
cosϕk.

(A.55)

Here, the integral variable was converted into θ by relations vxz = vi sin θ, dvxz =

vi cos θ dθ, θL = sin−1(vL/vi) and θU = sin−1(vU/vi). From equations (A.54) and (A.55),

equation (A.53) becomes

K2(vL, vU) =
1

3
ω
[(
v2i − v2U

)3/2
−
(
v2i − v2L

)3/2]
+ ω

E

B
v2i

[
1

2
(θU − θL) +

1

4
(sin 2θU − sin 2θL)

]
cosϕk. (A.56)
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When the integral domain covers all of the vxz range of edge 2,

K full
2 = K2(vxz12 = vi sin θj−1, vxz24 = vi sin θj)

=
1

3
ωv3i

(
cos3 θj − cos3 θj−1

)
+ ω

E

B
v2i

[
1

2
∆θ +

1

4
(sin 2θj − sin 2θj−1)

]
cosϕk. (A.57)

Appendix A.3.3. Integral along edge 3: lower arc K±ϕ
i,j,k,3 in equations (A.43) and (A.44)

are given as follows by introducing an integralK3(vL, vU) along edge 3 in equation (A.31):

K+ϕ
i,j,k,3 = +K3(vxz13,min(vxz34, vc)), (A.58)

K−ϕ
i,j,k,3 = −K3(min(vxz34, vc), vxz34), (A.59)

K3(vL, vU) =
∫ vU

vL
a · nϕ

i,j,kvy,lower(vxz) dvxz

= −
∫ vU

vL
ωvxz

√
v2i−1 − v2xz dvxz +

∫ vU

vL
ω
E

B

√
v2i−1 − v2xz cosϕk dvxz.(A.60)

From a comparison between equations (A.53) and (A.60), K3(vL, vU) is obtained by

replacing vi in equation (A.56) with vi−1:

K3(vL, vU) =
1

3
ω
[(
v2i−1 − v2U

)3/2
−
(
v2i−1 − v2L

)3/2]
+ ω

E

B
v2i−1

[
1

2
(θU − θL) +

1

4
(sin 2θU − sin 2θL)

]
cosϕk. (A.61)

When the integral domain covers all of the vxz range of edge 3,

K full
3 = K3(vxz13 = vi−1 sin θj−1, vxz34 = vi−1 sin θj)

=
1

3
ωv3i−1

(
cos3 θj − cos3 θj−1

)
+ ω

E

B
v2i−1

[
1

2
∆θ +

1

4
(sin 2θj − sin 2θj−1)

]
cosϕk. (A.62)

Appendix A.3.4. Integral along edge 4: lower straight line K±ϕ
i,j,k,4 in equations (A.45)

and (A.46) are given as follows by introducing an integral K4(vL, vU) along edge 4 in

equation (A.33):

K+ϕ
i,j,k,4 = +K4(vxz34,max(vxz34, vc)), (A.63)

K−ϕ
i,j,k,4 = −K4(max(vxz34, vc), vxz24), (A.64)

K4(vL, vU) =
∫ vU

vL
a · nϕ

i,j,kvy,lower(vxz) dvxz

=
∫ vU

vL

(
−ωv2xz cot θj + ω

E

B
vxz cot θj cosϕk

)
dvxz

= − 1

3
ω
(
v3U − v3L

)
cot θj +

1

2
ω
E

B

(
v2U − v2L

)
cot θj cosϕk. (A.65)
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When the integral domain covers all of the vxz range of edge 4,

K full
4 = K4(vxz34 = vi−1 sin θj, vxz24 = vi sin θj)

= − 1

3
ω
(
v3i − v3i−1

)
cos θj sin

2 θj

+
1

2
ω
E

B

(
v2i − v2i−1

)
cos θj sin θj cosϕk. (A.66)
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