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Abstract 1 

This study aimed to determine whether ultrasonography (US) can detect 2 

increased vascular signal in the synovial tissue prior to overt synovitis in 3 

rheumatoid arthritis (RA). Env-pX rats that spontaneously develop RA-like 4 

synovitis were used. Ankle joints of 15 pre-morbid env-pX rats were observed 5 

with power Doppler and superb microvascular imaging (SMI) using an ultrahigh-6 

frequency (8-24 MHz) probe. Signal values were counted as the number of pixels. 7 

The total number of vessels and vessel area in the synovial tissue were 8 

histologically evaluated. Dilated vessels were determined from the mean value of 9 

synovial vessels in three wild-type rats. In all env-pX rats, apparent synovial 10 

proliferation was not observed. However, vasodilation was evident. Only SMI 11 

values were significantly correlated with the number of dilated vessels (r=0.585, 12 

p=0.022) but not with the total number of vessels. US with SMI using ultrahigh-13 

frequency probe can detect increased vascular signal in the synovial tissue of 14 

arthritis-prone rats. 15 

 16 
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Introduction 20 

Rheumatoid arthritis (RA) is a systemic autoimmune disease that 21 

causes synovitis and subsequent bone destruction. The joints affected by RA are 22 

histologically characterised by massive proliferation of synovial tissues with 23 

pronounced inflammatory cell infiltration that destroys cartilages and bones. Joint 24 

destruction by progression of synovitis reduces the quality of life in RA patients 25 

(Scott  et al. 1987; Pincus  et al. 1984). However, recent studies have 26 

demonstrated that early intervention in synovitis can induce persistent disease 27 

remission (Gibofsky et al. 2017). Therefore, early detection of synovitis, as well 28 

as predicting synovitis, are very important in an RA clinic. 29 

Although the findings that precede synovitis have not been determined 30 

yet, diverse mediators of RA, such as neutrophils, monocytes, and lymphocytes, 31 

are known to be recruited into synovial tissues by blood flow (Patel et al. 2001). 32 

Gullick et al. reported the linkage of increase blood flow signals in power Doppler 33 

(PD) ultrasonography (US) to the presence of Th17 cells, the critical initiators of 34 

synovitis, in RA joints (Gullick et al. 2010). Thus, we speculated that increased 35 

https://www.ncbi.nlm.nih.gov/pubmed/20824142
https://www.ncbi.nlm.nih.gov/pubmed/20824142
https://www.ncbi.nlm.nih.gov/pubmed/20824142
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vascular signal in the synovial tissue might be detected prior to overt synovitis in 36 

RA. 37 

US is a well-established tool for diagnosis of RA that can evaluate the 38 

activity of synovitis (Aletaha et al. 2010; Backhaus et al. 1999; Nakagomi et al. 39 

2013; Naredo et al. 2005). The utility of US in detecting synovitis is recognised 40 

superior to visual palpation and conventional radiography (Diaz-Torne et al. 41 

2017; Murayama et al. 2013). Grey-scale US is used to evaluate synovial 42 

thickening (Backhaus et al. 2001; Grassi et al. 1993, 2000; Iagnocco et al. 2001; 43 

Kane et al. 2003; Karim et al. 2004; Koski et al. 1990; Manger and Kalden. 1995; 44 

Naredo et al. 2003; Schmidt et al. 2004), and PD is employed to detect blood 45 

flow in affected joints. Those findings contribute to estimate disease severity 46 

(Newman et al. 1994, 1996). PD values have been shown to represent the blood 47 

vessel area in synovial tissues (Saito et al. 2016) and well reflect response to 48 

treatment (Fukae et al. 2014; Hau et al. 2002, 1999; Ribbens et al. 2003), 49 

prognosis (Ellegaard et al 2011; Koch. 1998; Salaffi et al. 2010; Scirè et al. 50 

2009), and bone destruction (Brown et al. 2008; Fukae et al. 2014; Ikeda et al. 51 
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2013; Peluso et al. 2011). On the contrary, the usefulness of US for detection 52 

of the preceding events of synovitis remains unclear. 53 

Basic research using small animals is necessary for developing new 54 

drugs and for evaluating their therapeutic efficacy in RA. However, there has 55 

been no method to diagnose and estimate synovitis in small animals other than 56 

histological evaluation made after sacrifice. Although some studies attempted to 57 

evaluate arthritis in small animals using an experimental ultrasonic equipment 58 

(Clavel et al.2008; Liao et al. 2016), the sensitivity to detect microvascular 59 

signalling does not appear to be satisfactory. Recently, US device with ultrahigh-60 

frequency probes equipped with superb microvascular imaging (SMI) has been 61 

released for clinical use. SMI can eliminate motion artefacts through special 62 

image processing and sensitively depict blood flow with low velocity. Although 63 

SMI can detect microvasculature more sensitively than conventional PD in 64 

humans (Lim et al. 2018; Orlandi et al. 2017; Yokota et al. 2018; Yu et al. 2018), 65 

no trial has obtained findings prior to established synovitis in small animals using 66 

SMI and compared them with histology. In this study, we have verified whether 67 
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US with SMI using an ultrahigh-frequency (8-24 MHz) probe can detect increased 68 

vascular signal in the synovial tissue prior to overt synovitis in arthritis-prone rats. 69 

  70 
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Materials and Methods 71 

 72 

Rats 73 

Fifteen env-pX rats without macroscopic joint swelling (median age, 12 74 

weeks old; range, 10 to 44 weeks old) and age-matched three wild-type rats 75 

(inbred WKAH rats) were enrolled. The env-pX rats are transgenic rats carrying 76 

the env-pX gene of human T-cell leukaemia virus type I and spontaneously 77 

develop inflammatory arthritis mimicking RA with production of rheumatoid factor 78 

(RF) (Yamazaki et al. 1997). The prevalence of arthritis in env-pX rats at 6 months 79 

of age is about 80%. These rats are maintained in the room where the 80 

temperature is controlled at about 22 °C at the Institute for Animal 81 

Experimentation, Hokkaido University Graduate School of Medicine. 82 

Experiments using animals were performed in accordance with the Guidelines for 83 

the Care and Use of Laboratory Animals in Hokkaido University (permission No. 84 

10-0029, 15-0034). 85 

 86 
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Ultrasonography  87 

Env-pX rats were sedated using inhalation anesthesia. On the left lateral 88 

decubitus position, the right ankle joint was scanned with a longitudinal view by 89 

US (Figure 1). To avoid interfering observation, the ankle joint was shaved before 90 

US. All env-pX rats were examined either by two sonographers with 8 or 32 years 91 

of experience in clinical US.  92 

The ultrasonic equipment used was Canon AplioTM i800 (Canon Medical 93 

Systems, Otawara, Tochigi, Japan) equipped with PLI-2004X (8-24 MHz). All 94 

images were acquired at a fixed depth of 1.25 cm, and they were not magnified 95 

during the observation. The frame rate and the velocity range of PD and SMI 96 

were 11 frame/s, 1.6 cm/s, and 26 frame/s, 0.5 cm/s, respectively. The frequency 97 

used for both PD and SMI were 12 MHz. The gain was set to the maximum value 98 

of the discrepancy in which the noise disappeared. PD and SMI values were 99 

determined as the number of pixels at a width of about 5 mm between the tibia 100 

and the metatarsal bone. True blood flow signal was distinguished from noise as 101 

a pulsatile flow during the careful observation. Because the delineation of the 102 
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boundary of the synovium was thought to be difficult, we defined that blood flow 103 

signals detected in the articular space as fine signals were blood flow signals in 104 

the synovium. Continuing signals from the proximal to the distal part right below 105 

the skin that run through horizontally were excluded as extra-articular normal 106 

blood flow signals. First, the ankle joint was visualised by identifying the tibia, 107 

tarsal bones, and metatarsal bone in grey-scale image, and sweep scan was then 108 

performed covering the entire ankle joint with PD and SMI. When the region with 109 

the most prominent blood flow signalling was detected, findings were captured at 110 

still images. 111 

Quantitative SMI and PD values (summation of the number of coloured 112 

pixels in the joint) of US images were determined using ImageJ 1.50i 113 

(http://allpcworld.com/download-imagej-1-50i-free/) in manually defined region of 114 

interest. 115 

 116 

Histological assessment 117 
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All env-pX rats were sacrificed immediately after completion of US 118 

scanning. Haematoxylin and eosin (HE) staining was performed for the 119 

longitudinal sections of the ankle joint. Total vessels in the synovial tissue were 120 

counted in the HE specimens. Dilated vessels were defined as vessels with area 121 

larger than 20,090 µm2, which represented the mean plus standard deviation 122 

(SD) value of synovial vessels in three age-matched wild-type rats.  123 

 124 

Statistical analysis 125 

Wilcoxon-signed rank test and Mann-Whitney U-test were performed, 126 

and p-value < 0.05 was considered significant. Correlation between two 127 

continuous variables was assessed using Pearson’s correlation coefficients. For 128 

statistical evaluation, SPSS version 22.0 (IBM, New York, NY, USA) and 129 

GraphPad Prism Software (ver.7.02, GraphPad Software, San Diego, CA, USA) 130 

were used. 131 

  132 
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Results 133 

Detection of vascular signal in the synovial tissue of env-pX rats without 134 

established synovitis by US 135 

In all env-pX rats examined (n=15), apparent synovial thickening was 136 

not detected with grey-scale US, and there was no histologically proven synovitis, 137 

such as inflammatory cell infiltration and bone erosion. PD and SMI values and 138 

total number of vessels and dilated vessels in the 15 env-pX rats are shown in 139 

Table 1. Blood flow signal was detected in 8 and 12 env-pX rats with PD and SMI, 140 

respectively. Representative histological and US findings are shown in Figure 2 141 

(rat No. 2) and Figure 3 (rat No. 11). 142 

 143 

Vasodilation in the synovial tissue of env-pX rats without established 144 

synovitis 145 

 Although there was no significant difference in the synovial vascular 146 

areas between env-pX rats and age-matched wild-type rats (p=0.601), many 147 

vessels with large area were found in the env-pX rats (Figure 4A). Therefore, we 148 



 

 

14 

analyzed dilated and non-dilated vessels. Although the vascular areas of non-149 

dilated vessels in the env-pX synovial tissues (8,197 ± 4,728 µm2) were 150 

comparable with those in the wild-type synovial tissues (9,665 ± 4,766 µm2) 151 

(p=0.059, Figure 4B), the vascular areas of dilated vessels in the env-pX synovial 152 

tissues (45,610 ± 25,203 µm2) were significantly larger than those in the wild-type 153 

synovial tissues (27,481 ± 8,842) (p=0.013, Figure 4C). These findings suggested 154 

that vasodilation occurred in the env-pX synovial tissues prior to the 155 

establishment of synovitis. 156 

 157 

Correlation of SMI values with the numbers of dilated vessels in the 158 

synovial tissue of env-pX rats without established synovitis 159 

SMI values were significantly larger than PD values (p=0.002) and 160 

correlated with the number of dilated vessels (r=0.585, p=0.022) but not those of 161 

the total vessels (p=0.762) in the synovial tissue (Figure 5). The number of dilated 162 

vessels was not correlated with PD values (p=0.130). 163 

  164 
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Discussion 165 

Our results demonstrate the detection of presumably increased vascular 166 

signal in the synovial tissue prior to the establishment of synovitis in arthritis-167 

prone rats by US with SMI using an ultrahigh-frequency probe. SMI appears to 168 

be superior to PD to detect increase in synovial vascular signal. Conventional PD 169 

uses wall filter to exclude motion artifacts. However, SMI hires a new algorithm 170 

adapted to remove clutter noise by analyzing tissue motion. Microvascular blood 171 

flow with low velocity has been thought to be hardly detected by conventional PD, 172 

because low velocity in small vessels is usually buried in noise. However, SMI 173 

can successfully detect this blood flow without blooming from the vascular cavity. 174 

The blood flow velocity in the synovium has never been clarified. The lowest 175 

blood flow velocity that could be measured by PD in a basic experimental model 176 

depends on the diameter of the vessels and US machines (Cate et al. 2013). It 177 

ranged from 0.01 to 0.4 cm/s in vessels with a diameter of 150 to 2000 μm. 178 

However, the measurement of the blood flow velocity by SMI neither in a phantom 179 

model nor in the synovium has been reported. Although SMI could detect quite a 180 
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low-velocity blood flow, a detailed limitation of the lowest velocity detected by SMI 181 

has remained unclear. 182 

There are few reports on human subjects demonstrating the superiority 183 

of SMI over PD in terms of detection of vascularity with improved resolution and 184 

sensitivity, which may contribute to earlier detection of active inflammation and to 185 

have significant impact on treatment paradigms (Yokota et al. 2018; Lim et al. 186 

2018; Orlandi et al. 2017; Yu et al. 2018). To the best of our knowledge, this is 187 

the first small animal study to prove similar findings with pathological correlations. 188 

The implication of this work is possible application of this method to future drug 189 

design for arthritides by enhancing drug efficacy. 190 

Interestingly, SMI values were significantly correlated with the number 191 

of dilated vessels but not the total number of vessels in the synovial tissue. This 192 

suggests that dilated vessels but not all vessels contribute to the substantial 193 

blood flow. Similar relationship between PD values and synovial vessels in long-194 

standing RA patients has been reported (Schmidt et al. 2000; Saito et al. 2016). 195 

Koski hypothesized that this is attributed to the stage of congestion (hyperemia) 196 
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in the tissue rather than to the increased number of the vessel (Koshi 197 

2012). Unfortunately, the regulation of synovial perfusion, namely, the exact 198 

mechanism on how resistance and/or compliance of the vessels are altered at 199 

the initial stage of synovitis, is largely unknown. However, when we consider that 200 

the SMI signal is correlated to the perfusion, it may be a cause of synovitis. 201 

There were two possible reasons for the positive blood flow signals in 202 

rat numbers 6 and 12 by SMI, the joints with zero dilated vessels in pathological 203 

specimens. First of all, pathological specimens did not necessarily coincide with 204 

US planes. US scan was done comprehensively, and US images have a certain 205 

thickness. On the contrary, the pathological specimen was made by a fixed plane 206 

as the median of the ankle joints. These facts suggest that US has higher 207 

sensitivity to detect blood flow signals than one slice of a pathological specimen. 208 

The second possibility was that the signal detected by SMI might capture normal 209 

vessels that were not in the joints. 210 

A limitation of this study is that cross-sectional images obtained by US 211 

do not necessarily coincide with histological specimens. However, we observed 212 
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relatively small joints, and US images had certain thickness, the 24 MHz matrix 213 

array probe that we used had presumably less than 5 mm beam width in one US 214 

image plane (no disclosure of specifications of US beam forming) so that US 215 

images obtained by our study nearly covered the ankle joints of rats. 216 

Another limitation is a lack of follow-up study. To compare the US 217 

findings with histology, we had to sacrifice rats immediately after US scanning. 218 

Prospective studies are needed to confirm the association between initial 219 

increase in synovial blood flow detected by US and future development of 220 

synovitis in rats. In our pilot study using env-pX rats, blood flow was initially 221 

detected in the synovium, and synovial thickening followed 2 weeks later 222 

(unpublished data). We believe that increase in synovial blood flow induced by 223 

vasodilation triggers the initiation of synovitis. 224 

In addition, the usage of a single animal model is also a critical limitation 225 

in this study. Although env-pX rats are suitable models of RA (Yamazaki et al. 226 

1997), reproducibility of results should be determined using other RA models. 227 

  228 
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Conclusion 229 

Despite the limitations, our study demonstrated that SMI can detect 230 

increase in synovial blood flow prior to overt synovitis and gave us a motivation 231 

to perform this experiment on human joints. Prediction and early diagnosis of 232 

synovitis are inevitable to achieve complete and persistent remission of RA. 233 
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Figure Legends 441 

Fig. 1. Rat ankle joint 442 

A: Rat lower leg.  443 

B: Loupe view of the haematoxylin and eosin staining section.  444 

C: X-ray image showing anatomical orientation of the joint.  445 

D: Grey-scale ultrasound scan showing the ankle joint with the tibia, tarsal bones, 446 

and metatarsal bone. 447 

T: Tibia, M: Metatarsal bone. 448 

 449 

Fig. 2. Representative findings (rat No. 2)  450 

The tibia, tarsal bones, and metatarsal bone in the ankle joint are seen in the 451 

sagittal plane of the haematoxylin and eosin specimen (×20) (A), grey-scale 452 

image (B), PD image (C), and SMI (D). A: Only one dilated vessel is seen in the 453 

specimen (yellow arrow head) B: Grey-scale image shows no thickening of the 454 

synovium. C: PD image shows no blood flow. D: SMI shows no blood flow. 455 

PD, power Doppler; SMI, superb microvascular imaging 456 
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Fig. 3. Representative findings (rat No. 11)  457 

The tibia, tarsal bones, and metatarsal bone in the ankle joint are seen in sagittal 458 

view of the haematoxylin and eosin specimen (×20) (A), grey-scale image (B), 459 

PD image (C), and SMI (D). A: Three dilated vessels are seen in the specimen 460 

(yellow arrow heads). B: Grey-scale image shows no thickening of the synovium. 461 

C: PD image shows blood flow (arrows). D: SMI shows blood flow (arrows). SMI 462 

depicted greater pixel counts (4,570) than PD (2,865). 463 

PD, power Doppler; SMI, superb microvascular imaging 464 

 465 

Fig. 4. Comparison of vessel areas in the synovial tissues between wild-466 

type and env-pX rats. 467 

(A) Comparison of areas of all vessels in the synovial tissues between wild-type 468 

rats (55 vessels in 3 rats) and env-pX rats (153 vessels in 15 rats). (B) 469 

Comparison of areas of non-dilated vessels in the synovial tissues between wild-470 

type rats (48 vessels in 3 rats) and env-pX rats (123 vessels in 15 rats). (C) 471 
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Comparison of areas of dilated vessels in the synovial tissues between wild-type 472 

rats (7 vessels in 3 rats) and env-pX rats (30 vessels in 15 rats). 473 

 474 

Fig. 5. Correlation between PD and SMI values and numbers of total and 475 

dilated vessels 476 

SMI values were significantly correlated with the numbers of dilated vessels 477 

(r=0.585, p=0.022) but not with the total number of vessels (p=0.762) in the 478 

synovial tissue. The numbers of dilated vessels were not correlated with PD 479 

values (p=0.130). 480 

PD, power Doppler; SMI, superb microvascular imaging 481 



1 
 

Table 1. PD and SMI values and numbers of total and dilated vessels in env-pX 
rats 

Rat number 
(n=15) 

PD values 
[pixels] 

SMI values 
[pixels] 

Number of 
total vessels 

Number of 
dilated vesselsa 

1 0 1,504 5 1  
2 0 0 5 1  
3 0 0 8 2  
4 0 1,780 11 2  
5 0 222 26 2 
6 518 2,094 16 0  
7 0 2,384 8 3  
8 756 3,637 8 5  
9 0 0 3 0  

10 807 1,793 9 2  
11 2,865 4,570 14 3  
12 994 1,291 5 0  
13 2,507 4,368 12 4  
14 813 4,054 9 2 
15 483 954 14 3 

a) Dilated vessels were defined as vessels with area larger than 20,090 µm2, 
which represented the mean + SD value of wild-type synovial vessels. 

PD, power Doppler; SMI, superb microvascular imaging 
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