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Evaluating metrics derived from Landsat 8 OLI imagery to map crop 

cover 

Developing techniques are required to generate agricultural land cover maps to 

monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers 

reflectance data over the visible to shortwave-infrared range. OLI offers several 

advantages, such as adequate spatial and spectral resolution, and 16 day repeat 

coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great 

potential for evaluating the status of vegetation. Additionally, classification 

algorithms are essential for generating accurate maps. Recently, multi-Grained 

Cascade Forest, which is also called deep forest, was proposed, and it was shown 

to give highly competitive performance for classification. However, the ability of 

this algorithm to generate crop maps with satellite data had not yet been 

evaluated. In this study, the reflectance at 7 bands and 57 spectral indices 

calculated from Landsat 8 OLI data were evaluated for its potential for crop type 

identification. 

Keywords: crop; deep forest; Landsat 8; random forests; reflectance; spectral 

indices 

1. Introduction 

Crop specific land cover greatly influences soil and water quality, and information 

about them are helpful for evaluating increases in solar energy harvesting and carbon 

flux into the soil (Dabney et al., 2001). Furthermore, since statistics related to the study 

of agricultural fields could be useful information for solving issues concerning food 

insecurity and poverty (Khan et al., 2010), some local governments in Japan have been 

making efforts to manually categorise field properties such as crop type and location. 

Developing techniques to generate agricultural land cover maps has been required and 

efforts to address recurrent problems in remote sensing have been undertaken (Sonobe 

et al., 2017c). 

Landsat series data have been shown to be suitable for land characterisation 

activities due to its spatial, spectral, and radiometric data quality (Wulder et al., 2008, 



Vogelmann et al., 2016). Thus, the data acquired from Landsat are also useful for 

assessing the condition of vegetation like leaf area index (Dahms et al., 2016, 

Masemola et al., 2016) or chlorophyll content (Pastor-Guzman et al., 2015) and tracing 

vegetation phenology (Elste et al., 2015). In particular, spectral indices derived from 

reflectance data acquired from optical sensors have been widely used to assess various 

properties of vegetation or soil (Guan et al., 2017, Jin et al., 2017, Sonobe et al., 2018), 

and a vast number of spectral indices could be calculated from Landsat 8 Operational 

Land Imager (OLI) data. Although some of them possess great potential for improving 

the classification accuracies, they have not been fully evaluated in previous studies. In 

this study, 57 published indices and original reflectance data sources were evaluated to 

classify six crop types, including beans, beetroot, grass, maize, potato, and winter wheat, 

which are dominant crops over the western Tokachi plain, Hokkaido, Japan. 

Classification and regression trees (CART) is an attractive option to generate 

agricultural land cover maps and the US and Canada have successful ag-specific land 

cover monitoring programs based on this algorithm (Boryan et al., 2011; Fisette et al., 

2013). Furthermore, the US Geological Survey distributed the National Land Cover 

Database (NLCD), which is also based on CART, and known as a high quality land 

cover monitoring program. Besides CART, random forests (RF) is one extremely 

successful algorithm used as a general-purpose classification and regression method 

(Biau and Scornet, 2016), and some previous studies show the advantages of RF 

classification using optical imagery (Immitzer and Atzberger, 2014, Sonobe et al., 

2014). RF is an ensemble learning technique that builds multiple CART based on 

random bootstrapped samples of training data (Breiman, 2001), and one of its 

advantages is to have few hyperparameters to optimise. Furthermore, it can offer good 

predictions and quantify each input variable based on an importance measure, 



regardless of large sample sizes or vast numbers of input variables such as the expenses 

of irregular samples including outliers and noise (Breiman, 2001, Cutler et al., 2007). 

Recently, gcForest (multi-Grained Cascade Forest), which is also called deep 

forest, was proposed (Zhou and Feng, 2017). A cascade structure composed of RF is 

employed in this algorithm, and each cascade level receives feature information 

processed by its preceding level and outputs its processing results to the next level; its 

highly competitive performance has been shown for classification (Zhou and Feng, 

2017). However, the use of gcForest to generate crop maps with satellite data has not 

yet been evaluated. Therefore, the potential of gcForest was also evaluated in this study. 

The main targets of this study were (1) to select the optimal metrics for 

identifying crops based on comparing original reflectance values at 7 bands and 57 

published indices derived from Landsat 8 OLI data and (2) to evaluate the performance 

of gcForest for crop cover classification. 

2. Materials and Methods 

2.1. Study area 

The study was conducted using Landsat 8 operational land imager (OLI) data acquired 

over the western Tokachi plain, Hokkaido, Japan (Figure 1, 142°42′51″ to 143°08′47″ E, 

42°43′20″ to 43°07′24″ N). Figure 2 represents the weather conditions in 2016; the 

average monthly temperatures were 8.3 – 21.8 °C and monthly precipitation was 12.0 – 

94.5 mm during the cultivating period (May to October) (Japan Meteorological Agency, 

2017). Six crop types, including beans, beetroots, grasses, maize, potatoes, and winter 

wheat, are mainly cultivated. The mean size of the fields is 2.54 ha (the maximum area 

is 18.21 ha and the smallest area is 0.05 ha). 

< Figure 1. The study area and Landsat 8 OLI data acquired on 7 July, 2016.> 



< Figure 2. Weather conditions in 2016.> 

The cultivation calendar for the crops in this study area is shown in Table 1. 

Seeding of winter wheat was conducted in September 2015, and the harvesting period 

was late July to early August. Seeding or transplanting of beetroots and potatoes was 

conducted in late April to early May 2016, and seeding of maize and beans was 

conducted in mid-May 2016. The harvesting period was late August to September for 

potatoes and maize, late September to early November for beans. and November for 

beetroots. The first harvest was in late June to early July, and the second was in late 

August for grasses. 

<Table 1. Cultivation calendar for the crops.> 

2.2. Satellite data 

The Landsat-8 OLI data were acquired on 20 May, 7 July and 24 August 2016. The data, 

which had been spatially orthorectified by the U.S. Geological Survey, were 

downloaded from EarthExplorer (https://earthexplorer.usgs.gov/). The whole processing 

workflow is illustrated in Figure 3.  

< Figure 3. Overview of the data processing.> 

ENVI image analysis software version 5.3 and the Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm (Matthew et al., 

2000) were applied to carry out the atmospheric correction of the imagery, and the 

reflectance values of bands 1-7 were calculated. 

The 57 published spectral indices were evaluated for their potential for crop 

classification (Table 2). A number of indices based on reflectance in the visible or near 

infrared domain have been proposed to evaluate the properties of vegetation, such as 

chlorophyll content (Miura et al., 1988, Karnieli et al., 2001). In some indices, the 

reflectance of shortwave infrared was integrated to cancel the effect of atmosphere, but 



this domain has also been proposed to evaluate photosynthesis ability (Serbin et al., 

2012) and MVI (Thenkabail et al., 2002), NDSI (Allen et al., 1969), and SLAVI 

(Lymburner et al., 2000). Some indices developed for estimating minerals (Rowan and 

Mars, 2003, Volesky et al., 2003) were also assessed in this study. 

< Table 2. Spectral indices used in this study.> 

Reference data in a polygon shape file, which included attribute data such as 

crop type, were provided by Tokachi Nosai (an organization involved in agricultural 

insurance which supports farmers after natural disasters and calculates the statistics 

related the regional agricultural industry). Based on this polygon shape file, reflectance 

values for the centre of the fields were extracted to avoid selecting training pixels from 

the edge of a field. 

2.3. Agricultural crop classification 

A total of 11900 fields (2169 beans fields, 1527 beetroot fields, 2089 grasslands, 813 

maize fields, 2066 potato fields and 3236 winter wheat fields) covered the areas of 

interest in 2016 and average values of the reflectance values at Band 1-7 were 

calculated for the fields. After that, a stratified random-sampling approach was applied 

to divide all the reflectance data into three groups including training (50%), validation 

(25%), and test data (25%) (Hastie et al., 2009).To apply this strategy, the reflectance 

data over 11900 fields were divided into 6 groups based upon crop types and, 50% of 

the fields were selected as training data, which were used for generating classification 

models, based on random number for each group. Next, 50 % of the remaining fields 

was selected as validation data, which were used for optimizing hyperparameters of 

machine learning algorithms. Finally, the last group were used as test data for 

evaluating classification results. This procedure was repeated ten times to give more 

robust results. In this study, to evaluate the performance of gcForest for crop type 



classification, experimental comparisons were conducted among CART, RF, and 

gcForest.  

2.3.1. Separability assessment 

Before classification, statistical separabilities of original reflectance values among crop 

types or spectral indices calculated from Landsat 8 OLI data were evaluated based on 

Jeffries-Matusita (J-M) distance (Richards, 1999); a J-M distance value of greater than 

1.9 means good separation, and a value between 1.7 and 1.9 means fairly good 

separation. 

2.3.2. Classification algrithm 

CART has been used for building a decision tree (Breiman et al., 1984). Each node of 

decision trees built by CART always have only two child nodes, and the Gini index 

(Gini coefficient) is used for assessing the purity measure in building a decision tree. RF 

is an ensemble learning technique that builds multiple CART using random 

bootstrapped samples from the training data (Breiman, 2001). The output is determined 

by a majority vote from the CARTs. Generally, the number of trees (ntree) and the 

number of variables used to split the nodes (mtry) are tuned to increase performance of 

the RF classification. However, the best split for a node can increase classification 

accuracy (Ishwaran and Kogalur, 2007, Ishwaran et al., 2008, Sonobe et al., 2017b); 

thus, the minimum number of unique cases in a terminal node (nodesize), the maximum 

depth of tree growth (nodedepth), and the number of random splits (nsplit) were also 

tuned in this study. The variable importance (VIMP) was calculated when a 

classification model was used to evaluate how much worse the prediction would be 

without that variable when RF was applied (Ishwaran, 2007). Recently, inspired by 

representation learning in deep neural networks, gcForest, which generates a deep forest 



ensemble using a cascade structure for representation learning, was proposed;  Zhou and 

Feng (2017) have shown that it has great abilities for image categorization, face 

recognition, music classification, and so on, although it has much fewer hyper-

parameters than deep neural networks.  

2.3.3. Accuracy assessment 

Classification maps have been assessed by a confusion matrix or error matrix (Story and 

Congalton, 1986). The quantity disagreement (QD) and allocation disagreement (AD) 

(Pontius and Millones, 2011) were used for assessing the classification accuracies based 

on the confusion matrices. The proportion of fields that are crop i based on the 

classification results but are crop j based on the correct data (Pij) is calculated using the 

following equation: 

𝑃𝑖𝑗 = 𝑊𝑖
𝑛𝑖𝑗
𝑛𝑖+

    (1) 

where Wi are the fields classified as crop i and nij is the number of fields classified as 

crop i according to the classification results but are crop j according to the correct data. 

ni+ is the row totals of the confusion matrix. In this case, AD and QD were calculated 

using the following equations: 

𝐴𝐷𝑖 = 2 min(𝑝𝑖+,𝑝+𝑖) − 2𝑝𝑖𝑖 (2) 

AD = 1
2
∑ 𝐴𝐷𝑖
𝑁𝑐
𝑖=1    (3) 

𝑄𝐷𝑖 = |𝑝𝑖+ − 𝑝+𝑖|   (4) 

QD = 1
2
∑ 𝑄𝐷𝑖
𝑁𝑐
𝑖=1    (5) 

where Nc is the number of crop types, pi+ and pe are the row and column totals of the 

confusion matrix, ADi is the allocation disagreement for crop I, and QDi is the quantity 

disagreement for crop i. Finally, the sum of QDi (QD) and ADi (AD) are obtained. The 



total disagreement can be evaluated based on the sum of QD and AD (Pontius and 

Millones, 2011).  

Overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) 

were also calculated because they are commonly used for accuracy assessments.  

OA = ∑ 𝑝𝑖𝑖𝑁
𝑖=1 / N   (6) 

PA = 𝑝𝑖𝑖/𝑅𝑖    (7) 

UA = 𝑝𝑖𝑖/𝐶𝑖    (8) 

where N is the number of fields, Ri and Ci represent the total number of crop i in the 

correct data and the total number from the classification results, respectively. OA is the 

total classification accuracy. PA is calculated by dividing the number of correctly 

classified fields for each crop type by the number of reference fields. UA is calculated 

by dividing the number of correctly classified fields for each crop type by the total 

number of fields classified for that crop type.  

We analysed whether there were significant differences between the two 

classification results based on McNemar’s test (McNemar, 1947). In this test, the lack 

of independent samples is considered by focusing on how each point was either 

correctly or incorrectly classified in the two classifications being compared. This 

approach was adopted in the previous studies (e.g. Foody, 2004).  

3. Results and discussion 

3.1. Acquired data and separability assessments 

The reflectance from OLI is shown in Figure 4. On 20 May, grassland and wheat fields 

had been covered with vegetation, and at that time a low reflectance at band 4 and high 

reflectance at band 5 were observed; other fields had been covered with small plants 

(less than 7 cm in height), and their reflectance were similar to that of bare soil. Over 



time, the differences in the observed reflectance values in the visible domain became 

smaller, and on 7 July the spectral patterns of bands 1-4 were similar among crop types. 

On the other hand, the reflectance values at bands 5-7 were different between the fields. 

The shortwave infrared reflectance is useful to evaluate the photosynthesis abilities of 

vegetation (Serbin et al., 2012, Sonobe et al., 2017a). Indeed, beans, beetroot, and 

maize were under vegetative growth; in particular, the beetroot fields were completely 

covered with the rosette leaves, while blooming was confirmed in the potato, grass, and 

wheat fields. Wheat harvesting was finished by 24 August, and the reflectance pattern 

of wheat was almost the same as bare soil, but the expense of radium made the variance 

greater. In this study area, chemical treatment was conducted over the potato fields 

causing plants to die and make harvesting easier. This treatment made the reflectance at 

band 5 smaller. Similar spectral features with low reflectance in the visible domain and 

peaks at band 5 were confirmed for other crops. 

< Figure 4. Distributions of reflectance from OLI on the three dates.> 

A dendrogram based on the correlation relationship of reflectance and spectral 

indices is shown in Figure 5. The correlations between band 5 and other bands were 

relatively weak compared with the other combinations. Generally, the improved 

versions of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 

Index (EVI), or Soil-adjusted Vegetation Index (SAVI) correlated with each other.  

< Figure 5. Dendrogram based on the correlation relationship of reflectance and spectral 

indices. > 

Separability analysis is important to assess the performance of training data, and 

the separability levels of crop cover pairs were evaluated based on the J-M distances 

(Table 3). Using the metrics calculated from  Landsat 8 OLI data, the J-M distances 

greater than 1.4 were confirmed, except for the combination of beans and maize. 



However, when only the original reflectance data were applied, J-M distances were 

lower than 1.4 for the combinations of beans-beetroot, beans-maize, beetroot-maize, 

and maize-potato. In particular, Norm R, which is expressed as the ratio between Band 

4 and the sum of Bands 3, 4, and 5, on 20 May was useful to examine separately. Its 

high performances were dependant on the ability to distinguish vegetated area and bare 

soil. Later, Norm R on 7 July (there were no bare soil fields) had low J-M distances, and 

on 24 August (wheat had already been harvested and the wheat fields were bare soil) 

had high J-M distances for the combinations. The EVI is sensitive to a higher canopy 

leaf area index (LAI) and less affected by atmospheric aerosol impacts (Huete et al., 

2002); the strong linear relationship with fraction of absorbed photosynthetically active 

radiation at the biome-specific level was confirmed (Myneni et al., 2002). Furthermore, 

it can be an indicator for unstressed canopy-level photosynthetic capacity (Sellers et al., 

1992). Therefore, it was useful to assess the photosynthesis functions of vegetation 

when the fields were completely covered with vegetation (i.e. on 7 July), and it could be 

useful for separating maize and potato. 

< Table 3. J-M distance of the top 5 useful metrics for separation between two given 

crop covers.> 

3.2.Accuracies and statistical comparison 

The summary of accuracy results and McNemar’s test results are tabulated in Tables 4 

and 5. For all algorithms, OAs more than 0.9 were confirmed, proving good results 

were achieved. Thus, some ag-specific land cover monitoring programs conducted in 

the US and Canada (Boryan et al., 2011; Fisette et al., 2013; Wickham et al., 2014) may 

be useful in our study area. However, the results based on the two improved algorithms 

(i.e. RF and gcForest) were superior to those of CART. According to AD+QD, RF was 

the best algorithm for classifying the six crop types and an overall accuracy of 93.6 % 



was achieved. CART archived classifications with high accuracies by classifying fields 

with a larger sample size than when it was hard to distinguish between two given crop 

types. The results could show QD values being smaller but AD values being greater. 

For all algorithms, classification results were improved by using spectral indices. On the 

other hand, the advantages of gcForest were not confirmed in this study, and that 

indicated RF reached its highest degree of accuracy when a single machine learning 

algorithm was applied. However, the classification results were significantly different 

between RF and gcForest even though both reflectance and spectral indices were used 

(p<0.05, based on McNemar’s test), although their accuracies were almost same. 

Therefore, the theoretical framework for combining classifiers using distinct pattern 

representations, like the multiple classifier systems (Kittler et al., 1998), should be 

considered in the future. 

< Table 4. Accuracy results for CART, RF, and gcForest.> 

< Table 5. Chi-square values from McNemar’s test.> 

3.3.Relative importance of the contribution to the RF classification model 

The importance of each metric was evaluated based on VIMP values (Figure 5). 

Generally, the data acquired on 24 August was useful for identifying beans, beetroots, 

and maize, data acquired on 20 May was useful for identifying grass, and data acquired 

on 9 July was useful for maize and wheat.  

On 20 May, the spectral features of beans, beetroots, maize, and potatoes were 

similar to bare soil due to having small plant bodies, and they were different from those 

of grass and wheat, which were in their growing season. But the reflectance of grass 

was higher than that of wheat at band 5-7. The Generalized Difference Vegetation Index 

(GDVI) values on 20 May for grass and wheat were negative, while those of the other 



crop types were positive; distinguishing between grass and wheat would be easy using 

SR NIR/SWIR, which is expressed as a simple ratio of the reflectance at band 5 and 7. 

A positive correlation between shortwave infrared reflectance and leaf nitrogen 

content has been reported (Bartlett et al., 2011). In this period, wheat plants were in 

their ripening period and their leaf nitrogen content were decreasing because nitrogen 

was being used for bearing. That led to the lowest reflectance at bands 6 and 7 on 7 July 

among all the crop types, and that is why it was the most useful indicator to identify 

wheat fields. The high reflectance at band 5 was observed for potato fields on the same 

day, and Hue (based on the differences in reflectance between band 4 and 5) was useful 

for identifying potato fields. Although the large differences in reflectance between 

bands 4 and 5 were also confirmed for beans and beetroot fields, the relatively high 

reflectance at band 6 was helpful to identifying potato fields. 

Beetroot was in its growing season, and the plant bodies were completely 

covering on 24 August and thus a high reflectance at band 5 was confirmed; however, 

the reflectance at band 6 was the lowest among all the crops. As a result, SCI (the 

normalized difference between band 5 and 6) on 24 August played the most important 

role for identifying beetroot. Although the SR NIR/SWIR values of beans and grass 

were very similar on this date, grassland could be identified based on the data acquired 

on 20 May. Therefore, SR NIR/SWIR on 24 August was most effective for identifying 

beans. The maximum rates of carboxylation (Vcmax) and electron transport (Jmax) of C3 

plants, which possesses the most efficient photosynthesis functions in cool and wet 

climates, can be estimated using two narrow bands at shortwave infrared (Sonobe et al., 

2017a). However, maize was only a C4 plant, which is most efficient in carrying out 

photosynthesis in hot and sunny climates; among all the crops, the lowest reflectance 



was observed over maize fields on 24 August, which was in the growing season of 

maize.  

 

< Figure 5. Variable importance (VIMP) of the top 10 metrics obtained from Landsat 8 

OLI data for identifying each crop: (a) beans, (b) beetroot, (c) grass, (d) maize, (e) 

potato, and (f) wheat.> 

4. Conclusions 

Crop maps, including reflectance and spectral indices, were generated using 

Landsat 8 OLI data acquired on 20 May, 7 July, and 24 August. Then, the performance 

of three machine learning algorithms including CART, RF, and gcForest was compared. 

The classification results based on the two improved algorithms (i.e. RF and gcForest) 

were superior to those of CART and we found that RF generated the most accurate 

agricultural land cover maps for the study area. 

The most effective metrics determined from Landsat 8 OLI data were SR 

NIR/SWIR on 24 August for identifying beans fields, SCI on 24 August for identifying 

beetroot fields, GDVI on 20 May for identifying grassland, the reflectance at band 7 on 

24 August for maize fields, Hue on 7 July for identifying potato fields, and the 

reflectance at band 6 for identifying wheat fields. 

The RF classifier using reflectance and spectral indices was found to generate 

the most accurate crop classification map for the study area, with an overall accuracy of 

93.6%. gcForest, which generates a deep forest ensemble with a cascade structure to do 

representation learning, was not found to give any advantage over other systems. 

Although their accuracies were almost same, the classification results were significantly 

different between RF and gcForest (p < 0.05, based on McNemar’s test), and it implied 

that combined use could offer further improvement on classification accuracies.  
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Table 

Table 1. Cultivation calendar for the crops. 

    May   June                   July               August             

    late early      mid     late     early        mid   late     early        mid     late 

Beans sowing       sproutin
g                                           

Beetroot transplanting                                                   

Grassland     appearance of 
ears of grain    first 

harvesting                                   second harvesting 

Maize sowing                                     appearance of 
tassel             

Potato planting      sproutin
g                                           

Wheat appearance of 
ears of grain                                               harvesting   

 

 

  



Table 2. Spectral indices used in this study. 

Index Formula Literature 

AFRI1.6 
Band5− 0.66 ∗ Band6
Band5 + 0.66 ∗ Band6

 Karnieli et al. (2001) 

AVI 2.0 ∗ Band5− Band4 Ashburn (1978) 

BGI 
Band1
Band3

 
Zarco-Tejada et al. 

(2005) 

BNDVI 
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑2
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑2

 Wang et al. (2007) 

BWDRVI 
0.1 ∗ 𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑2
0.1 ∗ 𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑2

 
Hancock and Dougherty 

(2007) 

CRI550 1/Band2− 1/Band3 Gitelson et al. (2001a) 

CVI Band5 ∗
Band4

Band32
 Vincini et al. (2008) 

DVI 
Band5
Band4

 
Birth and McVey 

(1968) 

EVI 2.5 ∗
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 6 ∗ 𝐵𝑎𝑛𝑑4− 7.5 ∗ 𝐵𝑎𝑛𝑑2 + 1
 Huete et al. (2002) 

EVI2 2.4 ∗
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4 + 1
 Miura et al. (2008) 

EVI3 2.5 ∗
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 2.4 ∗ 𝐵𝑎𝑛𝑑4 + 1
 Jiang et al. (2008) 

Fe2 
𝐵𝑎𝑛𝑑7
𝐵𝑎𝑛𝑑5

+
𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑4

 Rowan and Mars (2003) 

GARI 
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑3− (𝐵𝑎𝑛𝑑2− 𝐵𝑎𝑛𝑑4))
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑3 + (𝐵𝑎𝑛𝑑2− 𝐵𝑎𝑛𝑑4))

 Gitelson et al. (1996) 

GBNDVI 
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2)
𝐵𝑎𝑛𝑑5 + (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2)

 Wang et al. (2010) 

GDVI Band4− Band3 Tucker (1979) 

GLI 
2 ∗ 𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑4−𝐵𝑎𝑛𝑑2
2 ∗ 𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4−𝐵𝑎𝑛𝑑2

 Gobron et al. (2000) 

GNDVI 
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑3

 Gitelson et al. (1996) 



GOSAVI 
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑3 + 0.16
 Rondeaux et al. (1996) 

Gossan 
𝐵𝑎𝑛𝑑6
𝐵𝑎𝑛𝑑4

 Volesky et al. (2003) 

GRNDVI 
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4)
𝑎𝑛𝑑5 + (𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4)

 Wang et al. (2007) 

GRVI 
𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑3

 Gitelson et al. (2002) 

GSAVI 1.5 ∗
𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑3 + 0.5
 Tian et al. (2005) 

Hue 𝑎𝑡𝑎𝑛 �
2 ∗ 𝐵𝑎𝑛𝑑4− 𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑2

30.5
∗ (𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑2)� 

Escadafal et al. (1994) I 
𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2

30.5
 

IF 
2 ∗ 𝐵𝑎𝑛𝑑4− 𝐵𝑎𝑛𝑑3−𝐵𝑎𝑛𝑑2

𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑2
 

IO 
𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑1

 Hewson et al. (2001) 

IPVI 
2 ∗

𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4

�
𝐵𝑎𝑛𝑑4− 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3

+ 1� 

 

Crippen (1990) 

MNDVI 
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑7
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑7

 Miura et al. (1988) 

MSAVI 2 ∗ 𝐵𝑎𝑛𝑑5 + 1 −�(2 ∗ 𝐵𝑎𝑛𝑑5 + 1)2 − 8 ∗ (𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑4)
2

 Qi et al. (1994) 

MSRNIR/Red 

𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑4− 1

��𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑4 + 1�

 Chen and Cihlar (1996) 

MVI 
𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑6

 Thenkabail et al. (2002) 

NDSI 
𝐵𝑎𝑛𝑑6− 𝐵𝑎𝑛𝑑7
𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑7

 Richardson et al. (2002) 

Norm G 
𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3
 

Fraser et al. (2017) 

Norm NIR 
𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3
 



Norm R 
𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3
 

PNDVI 
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑2 + 𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4)
𝐵𝑎𝑛𝑑5 + (𝐵𝑎𝑛𝑑2 + 𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4) Wang et al. (2007) 

PPR 
𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑2
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑2

 
Metternicht (2003) 

PVR 
𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4

 

RBNDVI 
𝐵𝑎𝑛𝑑5− (𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑2)
𝐵𝑎𝑛𝑑5 + (𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑2)

 Wang et al. (2007) 

RGR 
𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑3

 
Gamon and Surfus, 

(1999) 

RI 
𝐵𝑎𝑛𝑑4− 𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑3

 
Escadafal and Huete, 

(1991) 

SBL Band5− 2.4 ∗ Band4 
Richardson and 

Wiegand (1978) 

SCI 
𝐵𝑎𝑛𝑑6− 𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑6 + 𝐵𝑎𝑛𝑑5

 Al-Khaier (2003) 

SIWSI 
𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑6
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑6

 
Fensholt and Sandholt 

(2003) 

SLAVI 
𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑4 + 𝐵𝑎𝑛𝑑7
 Lymburner et al. (2000) 

SR(550,670) 
𝐵𝑎𝑛𝑑3
𝐵𝑎𝑛𝑑4

 Carter (1994) 

SR NIR/SWIR 
𝐵𝑎𝑛𝑑5
𝐵𝑎𝑛𝑑7

 Malthus et al. (1993) 

SR (1650,2218) 
𝐵𝑎𝑛𝑑6
𝐵𝑎𝑛𝑑7

 Datt (1999) 

TC1 
0.3029 ∗ Band2 + 0.2786 ∗ Band3 + 0.4733 ∗ Band4 

+0.5599 ∗ Band5 + 0.5080 ∗ Band6 + 0.1872 ∗ Band7 
Baig et al. (2014) 

TC2 
−0.2941 ∗ Band2− 0.2430 ∗ Band3− 0.5424 ∗ Band4 

+0.7276 ∗ Band5 + 0.0713 ∗ Band6− 0.1608 ∗ Band7 



TC3 
0.1511 ∗ Band2 + 0.1973 ∗ Band3 + 0.3283 ∗ Band4 

+0.3407 ∗ Band5− 0.7117 ∗ Band6− 0.4559 ∗ Band7 

TC4 
−0.8239 ∗ Band2 + 0.0849 ∗ Band3 + 0.4396 ∗ Band4 

−0.0580 ∗ Band5 + 0.2013 ∗ Band6− 0.2773 ∗ Band7 

TC5 
−0.3294 ∗ Band2 + 0.0557 ∗ Band3 + 0.1056 ∗ Band4 

+0.1855 ∗ Band5− 0.4349 ∗ Band6 + 0.8085 ∗ Band7 

TC6 
0.1079 ∗ Band2− 0.9023 ∗ Band3 + 0.4119 ∗ Band4 

+0.0575 ∗ Band5− 0.0259 ∗ Band6 + 0.0252 ∗ Band7 

TNDVI �𝐵𝑎𝑛𝑑5− 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4

+ 0.5 Derring et al. (1975) 

TVI (NDVI + 0.5)
|NDVI + 0.5|� ∗ �|NDVI + 0.5| 

Perry Jr and 

Lautenschlager (1984) 

VARIgreen 
𝐵𝑎𝑛𝑑3− 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑3 + 𝐵𝑎𝑛𝑑4− 𝐵𝑎𝑛𝑑2
 

 Gitelson et al. 

(2001b) 

 

  



Table 3. J-M distance of the top 5 useful metrics for separation between given two crop 

covers. 

  Beans-Beetroot Beans-Grass Beans-Maize Beans-Potato 

1 July07_SIWSI 1.49  May20_MSAVI 1.86  Aug24_ SR 
(1650,2218) 1.07  July07_MSAVI 1.84  

2 July07_SCI 1.49  May20_EVI2 1.85  Aug24_Gossan 0.83  July07_EVI 1.82  

3 Aug24_ SR 
(1650,2218) 1.48  May20_GOSAVI 1.85  Aug24_Fe2 0.81  July07_EVI22 1.82  

4 July07_MNDVI 1.47  May20_GSAVI 1.85  Aug24_ SR(550,670) 0.54  July07_EVI2 1.82  

5 July07_MVI 1.44  May20_EVI 1.85  Aug24_CVI 0.49  July07_GSAVI 1.81  

                  

  Beans-Wheat Beetroot-Grass Beetroot-Maize Beetroot-Potato 

1 May20_Norm R 1.99  May20_MSAVI 1.83  Aug24_BGI 1.40  Aug24_MVI 1.70  

2 May20_RBNDVI 1.98  May20_GSAVI 1.82  Aug24_TC6 1.35  Aug24_ SR 
NIR/SWIR 1.63  

3 May20_PNDVI 1.98  May20_GOSAVI 1.81  Aug24_PPR 1.10  Aug24_SLAVI 1.51  

4 May20_GRNDVI 1.98  May20_EVI2 1.81  July07_MVI 1.07  Aug24_Band 5 1.51  

5 May20_Norm NIR 1.98  May20_EVI 1.81  Aug24_Fe2 1.05  Aug24_AVI 1.49  

         
  Beetroot-Wheat Grass-Maize Grass-Potato Grass-Wheat 

1 Aug24_VARIgreen 1.99  May20_MSAVI 1.73  May20_MSAVI 1.83  Aug24_RGR 1.79  

2 Aug24_PVR 1.99  May20_EVI2 1.72  May20_EVI2 1.82  Aug24_VARIgreen 1.77  

3 Aug24_RI 1.99  May20_EVI22 1.71  May20_EVI 1.82  Aug24_PVR 1.76  

4 Aug24_RGR 1.99  May20_EVI 1.71  May20_GSAVI 1.82  Aug24_RI 1.76  

5 Aug24_GLI 1.99  May20_GSAVI 1.70  May20_RGR 1.82  Aug24_Norm R 1.76  

         
  Maize-Potato Maize-Wheat Potato-Wheat   

1 July07_MSAVI 1.49  May20_Norm R 1.90  May20_Norm R 1.97    
2 July07_EVI 1.46  May20_PNDVI 1.90  May20_RBNDVI 1.97    
3 July07_EVI22 1.46  May20_RBNDVI 1.89  May20_PNDVI 1.97    
4 July07_EVI2 1.46  May20_Norm 

NIR 1.89  May20_Norm NIR 1.96    
5 July07_AVI 1.42  May20_GRNDVI 1.89  May20_GRNDVI 1.96    

 

  



Table 4. Accuracy results for CART, RF and gcForest. PA: producer’s accuracy; UA: 

user’s accuracy; OA: overall accuracy; AD: allocation disagreement; QD: quantity 

disagreement. 

  CART RF gcForest 

Metrics 
Reflectance 

+spectral 
indices 

Reflectance 
 

Reflectance 
+spectral 
indices 

Reflectance 
 

Reflectance 
+spectral 
indices 

Reflectance 
 

PA       
Beans 0.902  0.888  0.927  0.924  0.927  0.921  

Beetroot 0.927  0.902  0.939  0.930  0.935  0.928  
Grassland 0.930  0.919  0.936  0.935  0.937  0.928  

Maize 0.706  0.676  0.797  0.793  0.799  0.782  
Potato 0.907  0.909  0.939  0.930  0.939  0.928  
Wheat 0.964  0.960  0.974  0.970  0.971  0.968  

UA       
Beans 0.891  0.876  0.917  0.915  0.920  0.916  

Beetroot 0.934  0.924  0.956  0.954  0.959  0.951  
Grassland 0.927  0.928  0.948  0.950  0.946  0.944  

Maize 0.719  0.683  0.801  0.766  0.792  0.760  
Potato 0.913  0.904  0.938  0.933  0.932  0.926  
Wheat 0.961  0.953  0.964  0.961  0.965  0.960  

       
OA 0.914  0.904  0.936  0.931  0.935  0.928  
AD 0.082  0.091  0.059  0.062  0.060  0.066  
QD 0.003  0.005  0.005  0.007  0.005  0.006  
 

  



Table 5. Chi-square values from McNemar’s test. 

    CART RF gcForest 

  Reflectance 
Reflectance 

+spectral 
indices 

Reflectance 
Reflectance 

+spectral 
indices 

Reflectance 

CART 

Reflectance 
+spectral 
indices 

36.42  94.11  124.52  189.78  988.18  

Reflectance * 86.32  107.01  160.43  995.00  

RF 

Reflectance 
+spectral 
indices 

* * 82.30  51.31  135.50  

Reflectance * * * 69.15  60.93  

gcForest 

Reflectance 
+spectral 
indices 

* * * * 119.55  

Reflectance * * * * * 
 

  



Figure 

Figure 1. The study area and Landsat 8 OLI data acquired on 7 July, 2016 (R: Band 4, 

G: Band 3, B: Band 2). 
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Figure 2. Weather conditions in 2016. 
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Figure 3. Overview of the data processing. 
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Figure 4.Distributions of reflectance from OLI on the three dates. 
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Figure 5. Dendrogram based on the correlation relationship among reflectance and 

spectral indices. 

 
  



Figure 6. Variable importance (VIMP) of the top 10 metrics obtained from Landsat 8 

OLI data for identifying each crop: (a) totally, (b) beans, (c) beetroot, (d) grass, (e) 

maize, (f) potato, and (g) wheat.  
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