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Abstract

If you cannot measure it, you cannot improve it. Quantifying security with metrics is

important not only because we want to have a scoring system to track our efforts in hard-

ening cyber environments, but also because current labor resources cannot administrate the

exponentially enlarged network without a feasible risk prioritization methodology. Unlike

height, weight or temperature, risk from vulnerabilities is sophisticated to assess and the

assessment is heavily context-dependent.

Existing vulnerability assessment methodologies (e.g. CVSS scoring system, etc) mainly

focus on the evaluation over intrinsic risk of individual vulnerabilities without taking their

contexts into consideration. Vulnerability assessment over network usually output one ag-

gregated metric indicating the security level of each host. However, none of these work

captures the severity change of each individual vulnerabilities under different contexts.

I have captured a number of such contexts for vulnerability assessment. For example, the

correlation of vulnerabilities belonging to the same application should be considered while

aggregating their risk scores. At system level, a vulnerability detected on a highly depended

library code should be assigned with a higher risk metric than a vulnerability on a rarely used

client side application, even when the two have the same intrinsic risk. Similarly at cloud

environment, vulnerabilities with higher prevalences deserve more attention. Besides, zero-

day vulnerabilities are largely utilized by attackers therefore should not be ignored while

assessing the risks. Historical vulnerability information at application level can be used

to predict underground risks. To assess vulnerability with a higher accuracy, feasibility,

scalability and efficiency, I developed a systematic vulnerability assessment approach under

each of these contexts.
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Chapter 1

Introduction

1.1 Vulnerability Assessment

Vulnerability assessment is a critical task for various roles in IT industry. System adminis-

trators need network security metrics in order to make hardening plans accordingly. Cloud

providers need to evaluate how much more risk has been brought by the new paradigm com-

pared to the traditional network environment. Image publishers need to use system-wide

attack surface metrics to track the risk level of their images. Image user also want to choose

reliable images by using risk metrics in order to minimize potential risks. Each of these con-

texts needs a vulnerability assessment approach to assist stake holders to make appropriate

decisions in an automatic manner. However, measuring security is a sophisticated work.

Unlike height, weight or temperature, security can not be measured directly through any

measuring instrument. Vulnerability severity can be determined by various factors. CVSS

scoring system introduces a number of such factors like access complexity: how much effort

an attacker needs to make in order to access and exploit the vulnerability; authentication: if

the attacker needs to be authenticated and number of times of being authenticated before he

can exploit the vulnerability; Access vector: if the vulnerability could be exploited locally,

within a LAN or remotely; and impact factors on confidentiality, integrity and availability,

etc. Other factors like the availability of exploit have been proposed as well. However, it is
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difficult to assign numeric values to those factors and the normalization of these values is

another challenging task. Moreover, these intrinsic metrics are not enough for security mea-

surement under different contexts. While evaluating security level of a complicated network

environment, similarity among vulnerabilities should be taken into consideration. Package

dependency also needs to be taken into account while accessing the system wide attack

surface of a given vulnerability. Cloud environment should also be evaluated differently

because of its more homogeneous and stable settings compared with traditional network

environment. Last but not least, unknown security holes need to be evaluated in comple-

mentary with known vulnerabilities in order to provide a comprehensive risk assessment

result under various cyber contexts.

As the topology and configuration of networks are getting complicated, understanding

the overall security situation of the whole network is becoming a challenging task. Reading

security reports for each host is infeasible for system administrator to understand the overall

security situation of the network. Existing work like attack graph and risk assessment

algorithm on top of it has been developed in order to tackle this issue. However, the

visualization and dependencies among attack paths need to be well addressed. Attack graph

for a mid-sized network can be difficult to comprehend. System administrator may not be

able to capture the key part among a large set of edges and nodes. Also the dependency

among attack paths need to be captured in order to provide a more accurate risk assessment

result.

While evaluating risks at a microscope (e.g.system level), a vulnerability scanning tool

can only output known vulnerabilities existed on the system. However, only the intrin-

sic security metrics (e.g.CVSS scores) can be automatically retrieved. These metrics do

not necessarily reflect the risk level of the vulnerability under this specific context. The

exploitability of each vulnerability is highly correlated to its exposability, which is mostly

based on its dependency relations over the whole system. Therefore, it is necessary to con-

struct a set of metrics with the consideration of the package dependency in order to assist

2



the image publishers to reduce the system based attack surface accordingly. Customers

could also utilize these metrics to choose reliable images.

Compared to traditional network, cloud computing especially infrastructure as a service

cloud offers more flexible service by providing a number of configurable VMs. With the

infrastructure empowered by virtualization, the attack surface has also been largely remod-

eled from the traditional network environment. As identified by [10, 13, 34, 54], there is a

number of cloud specific security issues. Other than that, cloud platform usually has more

stable settings than traditional networks. However, the system hardening usually depends

on the user but not the provider. Given the fact that most of the cloud customers are

individuals or small web service providers, a considerable number of hosts on cloud are ex-

posed to attackers and therefore form a large attack surface over the platform. Meanwhile,

a plenty of users are using the images provided by third party providers, therefore attackers

could first do a penetration test over the image to identify a number of easily exploitable

vulnerabilities and then compromise a large number of hosts by launching similar attacks

repeatedly in the cloud. Therefore, while evaluating risk under this context, the lowered

cost effective ratio from attacker’s side needs to be captured by cloud stakeholders.

Most existing work on risk assessment is about known vulnerabilities, but the risk from

underground security holes should not be ignored because a considerable amount of cyber

attacks originated from these unknown security holes. Different applications suggest dif-

ferent risk levels even when there is no known vulnerabilities detected on all of them. A

creditability like system is needed in order to let administrators or customer to estimate

the potential risk at application level. Along with the risk assessment approaches on known

vulnerabilities, a more completed security evaluation approach with the consideration of

unknown security holes is urgently needed.
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1.2 Related Work

1.2.1 Network Security Evaluation

Attack graph technique has become a common tool for network security evaluation and it

has been developed for the purpose of automatically identifying multi-stage attack paths

in an enterprise network [8, 21, 22, 24, 38, 42–44, 49, 51, 52, 72–74, 80, 87, 89, 94, 96]. It

has been observed that attack graphs are often too large to be easily understood by hu-

man observers, such as system administrators. In order to reduce the complexity of attack

graphs to make them more accessible to use by system administrators, various approaches

have been proposed to improve the visualization through abstraction, data reduction, and

user interaction [37, 40, 51, 52, 69, 103]. However, not much work has been done to study

the effect of attack graph complexity on quantitative security assessment approaches based

on attack graphs. My study found that complexity caused by repetitive information com-

monly found in attack graphs not only increases the difficulty for the system administrator

in digesting the information provided by the graph, but also distorts the risk picture by un-

realistically casting the attack success likelihood for some privileges under probability-based

security assessment. My approach [110, 111] show that such distortion can be avoided by

abstracting the input to the attack-graph generator, i.e., the network model, so that such

redundancy is removed a priori. By performing abstraction directly on the network model,

the attack graph result can also be rendered on a higher level of system description which

is easier to grasp by a human user.

Quantitative security assessment methods based on attack graphs have been proposed to

indicate the severity levels of various vulnerabilities [30, 35, 70, 88, 92, 99–101]. Such meth-

ods typically utilize the dependency relations represented in an attack graph to aggregate

individual vulnerability metrics to reflect their cumulative effects on an enterprise network.

However, not all dependency relations are explicitly presented in an attack graph, partic-

ularly the similarities among large numbers of attack paths leading to the same privilege.

4



Not accounting for the existence of this dependency on a large scale will significantly skew

the analysis results. One method of dealing with such hidden dependency is to introduce

additional nodes and arcs in the graph to model them, but this will make the visualization

problem even more severe. I provide a method based on model abstraction to remove the

redundancy, and thus the hidden dependency resulted from it, so that it is no longer a

problem for realistic risk assessment.

The size of enterprise networks could make vulnerability scanning prohibitively expen-

sive [105]. My abstraction technique provides a possible angle to address this problem.

Prioritization can be applied based on the abstract model for identifying scanning which

host can potentially provide critical information on the system’s security. For example, if a

host in the same abstract group has already been scanned, scanning one more host in the

group may not provide the most useful information about the system’s security vulnerabil-

ities.

1.2.2 Software Dependency Security Evaluation

Risks from package dependency have been well researched [6, 18, 26, 46, 66, 77, 81, 106,

117]. Neuhaus et al. [66] evaluate risk per Red Hat package based on historical security

vulnerabilities and package dependencies. But they do not evaluate attack surface exposed

by individual vulnerabilities. Besides, they only measure outgoing risk but not incoming

risk for each package. Raemaekers et al. [81] explore the risk from third party applications.

Instead of measuring attack surface from individual known vulnerabilities, they focus on

if a referenced package is well scrutinized and the prevalence of usage per package. A

set of work [6, 46, 77, 106, 117] study the importance of component level dependency when

assessing software quality but no concrete security metric has been proposed. Chowdhury et

al. [18] evaluate risk from source code (class) level of dependency (e.g. complexity, coupling,

and cohesion). However, their work is about inferring unknown vulnerabilities rather than

evaluate attack surface for known vulnerabilities.

5



A number of work study risks from Java applications [25, 32, 33, 58, 65, 78, 79]. Nasiri et

al. [65] evaluate the attack surface from J2EE and .Net platform by quantitatively comparing

their CVSS scores directly, but no package dependency is considered during the evaluation.

Drake et al. [25] evaluate JRE memory corruption attack surface from engineering point

of view, but they do not provide quantitative measurement of the attack surface. Gong

et al. [33] retrospect the evolution of security mechanism on Java in the past ten years at

high level. Both Pérez et al. [79] and Goichon et al. [32] propose vulnerability detection

approaches after scanning Java source code. Marouf [58] classifies vulnerabilities specific

to Java and proposes possible countermeasures against these threats. Similarly, Parrend et

al.[78] classify Java vulnerability at component level rather than source code level.

Work regarding attack surface evaluation have been conducted by researchers [17, 36,

39, 56, 57, 67, 67, 98]. Neuhaus et al. [67] rank vulnerable components in Firefox based

on historical detected vulnerabilities. Similar to my approach, they evaluate risk at com-

ponent level. However, they consider these components as independent units rather than

inter-depended nodes. My approach also captures incoming and outgoing risks at different

granularities, which has not been done by other related work.

The definition of attack surface is also adapted in industry. Similar to [56], which

evaluates attack surface over Linux systems, Microsoft attack surface1 focuses on Windows

by enlisting a number of threats based on the configuration of a given system. However,

none of these takes package dependency into consideration while measuring system attack

surface.

1.2.3 Cloud Computing Security Evaluation

Security issues regarding the public images in Amazon EC2 have been studied [10, 13, 108].

Sensitive information (e.g., SSH/SSL key and source code) leak has been detected by Bugiel

et al. [13]. They also suggested several solutions for various cloud specific threats. More

1http://www.microsoft.com/en-us/download/details.aspx?id=24487
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comprehensive experiments over EC2 have been conducted by Balduzzi et al. [10]. They

scanned a larger number of public AMIs and found more security issues like software vulner-

abilities and malwares. However, neither of them evaluate potential threat from prevalent

known software vulnerabilities, which I believe is the most straightforward and efficient

way for attackers to intrude an IaaS cloud. Patching frameworks have been proposed for

cloud [53, 114], but they also do not assess the threat of exploiting prevalent vulnerabilities.

Game theory has been used for modeling attacks and defenses [15, 16, 45, 47, 82, 83,

86, 107]. Activities (exploiting and hardening) between attackers and defenders perfectly

conform to a 2-player game. Yan et al. [107] model a game between DDoS attackers and

defenders. Cavusoglu et al. [15, 16] model the cost of patching and intrusion for both ap-

plication vendors and software users. They claim that the optimal patch plan can be made

once the vendors and enterprise software users can agree on the date of patch release and

deployment. However, this assumption is hard to achieve under cloud situation since preva-

lent applications usually have a large number of users, and software vendors usually do not

coordinate with every customer regarding the patch release and deployment. Jormakka et

al. [45] model information warfare with gaming theory. Their model analyzes what decision

should be made for both parties in order to obtain optimal expected payoff under four dif-

ferent information warfare scenarios. Rajbhandari et al. [82] propose a game theory based

approach in helping security professionals to prioritize countermeasures based on security

incident evaluations. Khirwadkar [47] constructs a game theoretic model between attack-

ers and defenders by using Fictitious-Play approach in order to make sure the two parties

are not under complete information environment. Game theory based analysis regarding

network security is surveyed in [86].

Another line of work is to visualize economic incentive from defender’s perspective [9,

11, 19, 27–29, 84, 85, 93], which helps the defender appropriately allocate resources to

security-related tasks. Studer et al. [93] evaluate DDoS attacks from both technical and

economic points of view, and provide evaluation on monetary loss due to these attacks
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in addition to the economic appraisal by [19]. Bilge et al. [11] evaluate threats from 0-day

vulnerabilities. They find that by average a 0-day vulnerability has already been in existence

for ten months. Moreover, around 42% of vulnerabilities can be exploited by a large volume

of attacks within one month from its original release, which suggests that exploits can be

obtained by attackers easily. Exploit tools like Blackhole 2 can be utilized by attackers in a

straightforward manner. Consequently, launching 1-day exploit [71] to unpatched systems

is much easier than 0-day exploits as attackers do not have to write and test exploits by

themselves. Dacey [20] point out that about 95% of exploits are rooted from unpatched

systems. Forbath et al. [27] evaluate patch management cost for both Windows and open

source software. Frei et al. [29] visualize time lengths between vulnerability disclosure date,

patch date, and exploit date, and believe these time periods represent the current status of

security industry. However, they do not consider the date of patch deployment, which is

captured in my model to evaluate the dynamic threat of individual platforms or systems.

Richardson et al. [85] conduct a survey indicating that 62.3% respondents apply patch

after a security incident happens. A report by Mellberg [64] indicates that only 59% of

small companies (≤ $50M revenue) have patch management which conforms to the number

investigated by Richardson et al. [85]. This motivates my modeling study [112] since a large

number of IaaS users are individuals and small companies [3].

1.2.4 Zero-day Risk Evaluation

Alhazmi and Malaiya [7] have addressed the problem of building models for predicting the

number of vulnerabilities that will appear in the future. They targeted operating systems

instead of applications. The Alhazmi-Malaiya Logistic model works well for fitting existing

data, when evaluated in terms of average error (AE) and average bias (AB) of number of

vulnerabilities over time. However, fitting existing data is a prerequisite of testing models:

predictive power is the most important criteria [75] . They did test the predictive accuracy

2http://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/
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of their models and got satisfactory results [75].

Ozment [76] examined the vulnerability discovery models (proposed by Alhazmi Malaiya [7])

and pointed some limitations that make these models inapplicable. One of them is that there

is not enough information included in a government supported vulnerability database (e.g.

National Vulnerability Database). This is confirmed by my empirical study.

McQueen et al. [61] designed algorithms for estimating the number of zero-day vulner-

abilities on each given day. This number can indicate the overall risk level from zero-day

vulnerabilities. However, for different applications the risks could be different. My work

aimed to construct software-specific prediction models.

Massacci et al. [59, 68] compared several existing vulnerability databases based on the

type of vulnerability features available in each of them. They mentioned that many im-

portant features are not included in most databases. e.g. discovery date is hard to find.

Even though certain databases (such as OSVDB that as I also studied) claim they include

the features, most of the entries are blank. For their Firefox vulnerability database, they

employed textual retrieval techniques and took keywords from CVS developer’s commit log

to get several other features by cross-referencing through CVE ids. They showed that by

using two different data sources for doing the same experiment, the results could be quite

different due to the high degree of inconsistency in the data available for the research com-

munity at the current time. They further tried to confirm the correctness of their database

by comparing data from different sources. They used data-mining techniques (based on the

database they built) to prioritize the security level of software components for Firefox.

Ingols et al. [41] tried to model network attacks and countermeasures using attack graphs.

They pointed out the dangers from zero-day attacks and also mentioned the importance of

modeling them. There has been a long line of attack-graph works [8, 21, 22, 24, 42, 44,

51, 73, 80, 89] which can potentially benefit from the estimation of the likelihood of zero-

day vulnerabilities in specific applications. I created a model [109] by using historical data

to predict risk from unknown vulnerabilities. The result from my prediction model can
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possibly be plugged into the attack graph based risk assessment algorithms and provide a

more comprehensive risk assessment result.

1.3 Original Contributions

This dissertation proposes several quantitative risk assessment approaches under various

contexts. Simply put, all of these approaches bridge the gap between standard industrial

risk assessment approach (e.g. CVSS scoring system for each vulnerability) and security

evaluation under specific contexts. These context aware risk assessment approaches are

illustrated as follow:

1. Network risk assessment. My work improved the accuracy and scalability of vulnera-

bility assessment on enterprise networks. By capturing the hidden correlations among

similar vulnerabilities (e.g. grouping vulnerabilities on same applications ), the attack

graphs representing network security status have been downsized with even higher

accuracy. By first grouping hosts by topology and then break down them based on

configurations, each host in attack graph will then represent a broken down subnet

(hosts within it have same reachability and configuration). The cluster-based process

provides stakeholder a clearer and preciser attack graph.

2. Package dependency risk assessment. The motivation of this work originates from my

2011 summer internship at VMware. Besides enriched functions, library dependency

brings risks to product at the same time. Prioritizing patching plan at vulnerability

level cannot simply rely upon metrics such like CVSS base score. Accurate measure-

ment on the package-dependency risk at vulnerability level is of vita importance. I

developed a methodology systematically assessing such risk at vulnerability, compo-

nent, application and system level respectively. Providing stakeholders with a full

stack of component dependency based risk metrics.
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3. IaaS cloud risk assessment. Known vulnerabilities pose exponential larger attack sur-

faces on public clouds than on individual machines. Amazon EC2 offers public images

which could be run by any user. However, a considerable amount of these images exist

known vulnerabilities due to out of date applications. A cloud is usually composed

by a number of centralized clusters of servers. As a result, prevalent vulnerabilities

on a public cloud open a large attack surface to attackers. Compared with traditional

network environment, attackers have a lower cost-effectiveness ratio by repeating same

attacks over adjacent hosts. My game theoretic model indicates current public cloud

platforms are under greater risky situation than traditional network environment. I

construct risk density model to illustrate the enlarged attack surface. Countermea-

sures against such risk are provided to reduce the attack surface by changing the

parameters value in the risk density models.

4. Zero-day risk assessment. This work aims at estimating zero-day risk at application

level through historical data. I extensively mined vulnerability data at NVD by using

data-mining algorithms provided by a popular data-mining/machine learning toolkit

WEKA. I use a number of attributes as predictive features, for instance, CVSS metrics,

length between vulnerabilities discovery dates, product name, version and vendor, etc.

I want to predict time to next vulnerability (TTNV) for each given application. My

experimental results indicate that for most of the applications, the target attribute

can hardly be validated. However for certain application, the validation results are

promising. This may be because of inaccuracy data created by either vendors (on the

security bulletin/advisories) or the vulnerability database maintainers.

The overall contribution of this dissertation is the construction of quantitative risk assess-

ment frameworks under various contexts. It bridges the gap between risk assessment of

intrinsic risk of individual vulnerabilities and the risk assessment needed by various roles in

IT industry under specific contexts. By providing automatic calculation algorithms under

these heterogeneous environments, it improved the feasibility of risk assessment task for

11



these IT stakeholders. The risk assessment toolkit ranges from micro to macro, not only

can cloud provider, network administrator but also software developer and service user can

benefit from this work. In short, it accelerates the security assessment and task prioriti-

zation through automatic manner. These risk assessment approaches can be linked and

output more accurate metrics if enough data enough data can be obtained in the future.

The overall contribution could also be depicted in Figure 1.1. A blue solid arrow represents

a completed construction of a risk assessment approach based on the existing standard risk

assessment approach (i.e. CVSS). A red dotted line represents a possible link between two

approaches.
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Figure 1.1: A comprehensive risk assessment approach under multi-context cyber environ-
ment
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Chapter 2

Network Risk Assessment through

Model Abstraction

Attack graphs are a common approach to security evaluation. It is often used in conjunction

with risk assessment tools to provide recommendations to system administrators on how to

mitigate the discovered problems.There are two main utilities of attack graphs: visualization

and risk assessment. A major obstacle in these utilities is the size and complexity of attack

graphs from even moderate-size networks. The large number of attack paths towards the

same target not only makes the graph too dense to read, but also distorts risk assessment

results by ignoring the fact that many of the attack steps are similar and not independent.

No solution proposed addressing the distortion problem in risk assessment caused by

the redundancy in attack graphs, especially in the context of quantitative security assess-

ment. Traditional approaches [35, 99, 100] would assess all the attack paths to the attacker’s

target without taking the similarities of these paths into consideration. Consequently, the

explosion in the attack-graph’s size could yield high risk metrics, often misleading the sys-

tem administrator’s judgment. While one could post-process the graph and remove such

redundancy, like in previous works [69, 103], I believe a better approach is to pre-process

the input to attack-graph generation so that such redundancy is removed by abstracting the

network model, instead of the attack graph. There are a number of benefits of abstracting
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the network model:

• From a human user’s perspective, removing redundancy in the network description

provides a better high-level view of both the system and the security vulnerabilities

identified therein. The semantics of the abstract network model matches better with

how a human would manage a large network system, and as a result the output of the

attack-graph analysis is natural to communicate to human users.

• After abstracting the network model, the distortion in quantitative security assessment

results due to repetitive similar attack paths will be rectified.

In this chapter, I will introduce a network abstraction model, through which the size

of attack graph can be significantly reduced. This abstraction model could increase both

visualization of attack graph and accuracy of risk assessment approaches. The abstraction

consists three steps: reachability-based grouping, vulnerability grouping and configuration

based break down. Each of the abstracted node will represent a number of hosts with similar

configuration and reachability. Under real network scenarios, the ratio between number of

hosts and abstracted node can be large because clustering management is common. My

approach is also easy to be extended with different grouping policies, which can help user

to find a balance between scalability and accuracy.

2.1 An Example

Figure 2.1 shows a simple network. An attacker could launch attacks from the Internet

against the web server, which then provides him a stepping stone to exploit the database

server in the internal network. The lower part of the figure shows a MulVAL attack graph [73,

74] generated from this network model. The labels of the graph nodes are shown at the

right-hand side. Diamond-shaped nodes represent privileges an attacker could gain in the

system; circle nodes represent attack steps that achieve the privileges; rectangular nodes

represent network configuration settings.
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Figure 2.1: Scenario of example one and its attack graph
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Figure 2.2: Scenario of example two and its attack graph
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Figure 2.2 shows the topology and attack graph of a similar scenario, but with five

identical servers in the DMZ zone. We can see that the attack graph gets very complicated.

Human users, like a system administrator, may have difficulty tracing through the many

identified attack paths. An abstracted view of the attack graph can highlight the real

underlying issues in the network. We must also consider whether the multitude of attack

paths shown in this attack graph reflects a realistic risk picture. The dotted lines in the

network topology illustrate a subset of the attack paths identified in the graph. There are

five ways to attack the database server, utilizing five different sources in the DMZ. However,

the five servers in DMZ are identically configured. Thus if an attacker can exploit any one

of them, he can exploit the others as well. In this case, having four more servers will not

significantly increase the attacker’s chance of success.

2.2 Network model abstraction

2.2.1 Abstraction criteria

Similarity among hosts

For large enterprise networks, it is not unusual to have thousands of machines in a subnet

with same or similar reachability and configuration. If an attacker could compromise one

of the machines, he is likely able to do the same for the others. This would result in

a large number of similar attack paths in the attack graph. These attack paths should

not be considered independent when assessing the system’s security risk: if the attacker

failed in compromising one of the hosts, he would probably fail on the others with the

same properties (reachability and configuration) as well. Network reachability and host

configuration determine to a large extent the exploitability of a host machine. For this

reason, the machines with the same reachability and similar configurations can be grouped

and treated as a single host.
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Similarity among vulnerabilities

A single host may contain dozens or even hundreds of vulnerabilities, each of which may

appear in a distinct attack path to further compromise the system. However, not all these

paths provide unique valuable information since many vulnerabilities are similar in nature.

They may belong to the same application, require the same pre-requisites to be exploited,

and provide the same privilege to the attacker. From a human user’s perspective, it is more

important to know, at a higher level, that some vulnerability in the application could result

in a security breach, rather than enumerating all the distinct but similar attack paths.

Since vulnerabilities in the same application are often exploited by the same or similar

mechanisms, if the attacker fails in exploiting one of them, it is reasonable to assume a low

chance of successful attack by similar exploits. For this reason, these vulnerabilities can

be grouped together as a single vulnerability and an aggregate metric can be assigned as

the indicator on the success likelihood of exploiting any one of them, instead of combining

them as if each exploit can be carried out with an independent probability. For example,

when a host has 10 vulnerabilities in Firefox, we can say with X likelihood an attacker can

successfully exploit any one of them, where X is computed based on each vulnerability’s

CVSS score [62], taking into consideration the similarity among the 10 vulnerabilities. One

simple approach would be to use the highest risk probability value as representative of the

whole set.

2.2.2 Abstraction steps

My network model abstraction process is carried out in three steps.

1. Reachability-based grouping. Hosts with the same network reachability (both to and

from) are grouped together.

2. Vulnerability grouping. Vulnerabilities on each host are grouped based on their simi-

larities.
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3. Configuration-based breakdown. Hosts within each reachability group are further di-

vided based on their configuration information, specifically the types of vulnerabilities

they possess.

Reachability-based grouping

I group all the hosts based on their reachability information. I first give two definitions.

Definition 1. reachTo(H) is a set of triples (host, protocol, port) where H can reach host

through protocol at port. Similarly, reachFrom(H) is a set of triples (host, protocol, port)

where host can reach H through protocol and port.

Definition 2. Let H1 and H2 be two hosts. I say H1 ≡r H2 if reachTo(H1) = reachTo(H2)

∧ reachFrom(H1) = reachFrom(H2)

I put hosts into the same reachability group if they belong to the same equivalence

class ≡r. Then all the hosts in the same reachability group can be abstracted as a single

node. Figures 2.3(a) and 2.3(b) illustrate this idea, and Algorithm 2.1 explains the grouping

process. The grouping is applied to all the machines in a subnet. The interpretation of a

subnet is a collection of machines communication among which is unfiltered. I incrementally

add reachability information into a set. If host H’s reachability has been recorded, I find the

existing group through a hash map and put H into the corresponding group. Otherwise store

the reachability information, create a new group label and map it to a singleton set with H

in it. I do this for all the hosts in each subnet. The time complexity for this algorithm is

O(n2) where n is the number of hosts in the network. I need to go over all the hosts within

the subnet and for each host linear time is needed to identify its reachability information.

Vulnerability grouping

I group vulnerabilities on each machine based on the application they belong to. Typically

vulnerabilities in one application will be of the same type (local, remote client or remote

service). For example, vulnerabilities of Adobe Reader are remote client since they are
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Figure 2.3: Before and after reachability-based grouping

Algorithm 2.1 Pseudocode for reachability-based grouping

Require: A set of (reachTo(h), reachFrom(h)) for each host h in a subnet.
Ensure: A hash map L, which maps a group label α to a list of hosts having the same

reachability (reachTo and reachFrom).
Lr ← {} {Lr is a set of triples (α, reachToSet, reachFromSet).}
Queue Q ← all the hosts of the given subnet
L ← empty map {initialize the return value}
while Q is not empty do
n← dequeue(Q)
if Lr contains (α, reachTo(n), reachFrom(n)) then

L[α] ← L[α]∪{n} {if the reachability of n is the same as some other host that has
been processed, add n to its equivalent class.}

else
create a fresh α
Lr← Lr ∪(α, reachTo(n), reachFrom(n)) {Otherwise put its reachability information
into Lr}
L[α]← {n}

end if
end while
return L
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always triggered when a user opens the application on a malicious input, possibly sent by

a remote attacker. Security holes in IIS, on the other hand, most likely belong to remote

service vulnerabilities. After grouping based on applications, I can provide the system

administrator a clearer view of the system’s vulnerabilities — instead of showing a long list

of CVE ID’s, I show the vulnerable applications that affect the system’s security. One issue

that needs to be addressed is how to assign an aggregate vulnerability metric to the virtual

vulnerability after grouping. Such vulnerability metrics, like CVSS scores, are important

in quantitative assessment of a system’s security. Intuitively, the more vulnerabilities in an

application, the more exploitable the application is. But the degree of exploitability does not

simply grow linearly since many of the vulnerabilities will be similar. My current grouping

algorithm (Algorithm 2.2) simply takes the highest value, but it will be straightforward to

plug in a different aggregation method.

Algorithm 2.2 Pseudocode for vulnerability grouping

Require: A set of ungrouped vulnerabilities on a machine (Su)
Ensure: A hash map L that maps an application to its vulnerability score

Lr ←{} {Lr is a set of applications that have appeared so far}
L ← empty hash map
while Su 6= {} do

take v from Su
if Lr contains (v.application) then

if L[v.application] < v.score then
L[v.application] = v.score

end if
else

L[v.application] = v.score
Lr.add(v.application)

end if
end while
return L
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Configuration-based breakdown

For hosts in the same reachability group, their configurations could be different from one

another. Thus, if an attacker is able to exploit one host within the group, it does not

mean he could compromise the others as well. This means grouping based on reachability

alone is too coarse. In order to reflect differences in attackability, we need to “break down”

the merged node based on configuration settings. In my current implementation, I have

only included software vulnerability as the configuration information. When deployed on

production systems, one can rely upon package management systems to decide whether

two hosts have the same or similar software set up. Algorithm 2.3 shows the process of

configuration-based grouping. The algorithm iterates over all the hosts in a reachability

group and records its configuration information. If a host’s configuration matches one

previously recorded, meaning some other hosts have the same types of vulnerabilities, this

host will not be recorded in the set. At the end of the algorithm, the returned set only

contains one representative host for each group of hosts with the same reachability and

configuration. The complexity of the algorithm is linear in the number of hosts.

Algorithm 2.3 Pseudocode for configuration-based break down

Require: A list L, each element of which is a set of machines belonging to the same reach-
ability group, and with the vulnerabilities grouped.

Ensure: Further-refined group Sc based on vulnerability information. Each element in Sc
is a representative for a group of hosts with the same reachability and configuration.
while L 6={} do

remove h from L
Lr ← empty map; {Lr is a set of pairs (hostname, configuration). It is used to store
the distinct configurations that have appeared so far.}
if Lr contains ( , h.configuration) then

continue {if its configuration has appeared before, skip}
else

Lr.add((h, h.configuration)) {if its configuration has not appeared before, record it}
end if

end while
Sc =

⋃
(h, )∈Lr

h {collect all representative hosts in Lr and put them into Sc}

return Sc
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Figure 2.4: After configuration-based breakdown.

2.3 Experimentation Result

To evaluate the effect of model abstraction on quantitative security assessment of computer

networks, I apply probabilistic metric models [35, 99] on the generated attack graphs. In such

metric models, each attack step is associated with a (conditional) probability indicating the

success likelihood of the exploit when its pre-conditions (predecessor nodes) are all satisfied.

The model then computes the absolute probability that a privilege can be obtained by an

attacker based on the graph structure. I use MulVAL [73, 74] attack-graph generator in the

evaluation. My security metric implementation follows Homer’s algorithm [35].

I created one scenario to illustrate the visualization effect and rectification on the dis-

tortion in metric calculation generated by the large number of similar attack paths. The

topology information of the example is shown in Fig. 2.5. There are three subnets: Inter-

nal Servers, DMZ, and Normal Users. Each subnet has ten machines, evenly divided into

two different types of configuration (one is Linux and the other Windows). Machines with
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Figure 2.5: Network topology.

Table 2.1: Reachability Table
source destination

protocol port
subnet group subnet group

Internet DMZ 1 tcp 80
DMZ 1 Internet tcp 25

Internet DMZ 4 tcp 80
DMZ 4 Internal 2 tcp 1433
User 2 Internet tcp 80
User 3 Internet * *

Internet User 2 tcp 80
User 1 Internet * *
User 1 Internal 1 nfs
User 1 Internal 1 Tcp 3306

different shapes represent different configurations. Machines in the same group have the

same configuration and reachability. There are two types of vulnerabilities on each host,

and the types of vulnerabilities could be either local, remote server or remote client. The

reachability relations among those host groups can be found in Table 2.1. The table does

not include reachability within a subnet, which is unfiltered. If a group does not have any

inter-subnet reachability, it will not show up in the table.
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2.3.1 Attack graph generation

I created the input for MulVAL based on the configuration of the network, and I ran

the abstraction model generator to generate an abstracted input. I ran MulVAL with

both original and abstracted input and obtained two different attack graphs, shown in

Figures 2.6(a) and 2.6(b). The size of the attack graph was reduced significantly after

abstraction (281 arcs and 217 vertices, to 55 arcs and 47 vertices). I verified that all the

“representative” attack paths leading to the attacker goal are retained in the abstracted

model.

2.3.2 Quantitative security metrics

I compared the quantitative metrics results obtained from the original input and the ab-

stracted input. There is a significant difference between the risk metrics on the original

network (0.802) and the abstracted one (0.486) for a three-hop attack which is the deep-

est chain in this experiment (illustrated in the red dotted lines in Fig. 2.5). This attack

chain includes three sets of attack steps: 1) from Internet to Group2 in the “Normal Users”

subnet, via client-side vulnerabilities; 2) from Group2 to Group 1 in the “Normal Users”

subnet, via service vulnerabilities; 3) from Group1 in the “Normal Users” subnet to Group1

in the “Internal Servers” subnet, via service vulnerabilities. Each group here refers to a

set of hosts with the same reachability and configuration (vulnerabilities). Usually there

are multiple attack paths between two groups since there are multiple hosts within each

group and they have similar configurations; thus the multiple attack paths have similar na-

tures. From a pure probabilistic semantics, the more paths between two groups, the higher

success likelihood the attacker will gain in moving on these paths. However, these paths

are not independent and failure on one of them would likely indicate failures on the other;

therefore the higher risk metrics are not justified. Moreover, the hosts in the two groups

are equivalent in terms of the network access they provide the attackers. Due to the above

reasons, the attack paths should be merged into one, before quantitative risk assessment.
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(a) Attack graph of the original model (281 arcs and 217 vertices).
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Figure 2.6: Comparison of attack graphs from original and abstracted models
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By removing redundancy in the attack graphs through model abstraction, the distortion in

the risk assessment result has been effectively avoided.

To demonstrate the effect of vulnerability grouping on the quantitative security assess-

ment result, I used the network topology shown in Fig. 2.1, assuming there are five client-side

vulnerabilities (from the same application) on the web server and the remote service vul-

nerability has been patched. I then computed the likelihood that the web server could be

compromised through any of the client-side vulnerabilities, assuming the client program

may occasionally be used on the server. The nature of client-side vulnerabilities from the

same application are similar from both attacker and the victim’s perspective, because the

victim would open the same application to trigger the exploits, and due to the similar

functionalities (and therefore program components) of the same application, the security

holes are also similar. If an attacker knows the structure of the application very well, he

should be able to utilize the vulnerability easily; if he does not understand the mechanism

of the software, he probably will not be able to utilize any of the security holes with ease.

Therefore viewing the same type (client-side or service) of security holes on an application

as one is more realistic than treating them independently. I compared the results before

and after grouping vulnerabilities. It is obvious that the complexity of the attack graph is

reduced significantly from Figure 2.7(a) to Figure 2.7(b). More importantly, the quantita-

tive metrics indicating the likelihood that the server can be compromised through one of

the client-side vulnerabilities drops from 0.71 to 0.45. This is a more realistic assessment,

since the five client-side vulnerabilities are similar and should not significantly increase the

attacker’s success likelihood.

2.4 Discussion

I have presented an abstraction technique to aid in network security assessment based on

attack graphs. I show that the large amount of repetitive information commonly found in

attack graphs not only makes it hard to digest the security problems, but also distorts the
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Figure 2.7: Effect of vulnerability grouping on a single host
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risk picture by disproportionately amplifying the attack likelihood against privileges that

have a large number of similar attack paths leading to them. I proposed an approach to

abstract the network model so that such repetitive information is removed before an attack

graph is generated. The abstraction happens at both the network and the host level, so that

machines that have the same reachability relation and similar configurations with respect to

vulnerability types are grouped together and represented as a single node in the abstracted

model. The experiments show that such abstraction not only effectively reduces the size

and complexity of the attack graphs, but also makes the quantitative security assessment

results more conforming to reality. This shows that appropriate abstraction on the input is

a useful technique for attack graph-based analysis.

The abstraction techniques I have proposed are mostly suitable for risk assessment on

the macroscopic level of an enterprise network. Abstraction unavoidably loses information

and in reality no two hosts are completely identical. The abstracted network model can help

in identifying security risks caused by the overall design and structure of the network, but

may lose subtle security breaches that may occur due to, e.g. misconfiguration of a single

host that is mistakenly deemed identical to a group of other hosts since the details of the

differences may have been abstracted away. In general the more homogeneous the system

is, the more pronounced the effect of abstraction will be. However, since no two hosts are

really completely identical, the process is a balancing act. Being overly detailed about a

host’s configuration may lead to no possibility of abstraction and result in a huge attack

graph where important security problems are buried. On the other hand, overly abstract

models may lose the important information for subsequent analysis. System administrators

need to define the granularity based on their expected available time and effort to run such

process.
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Chapter 3

Package Dependency Risk Assessment

The previous chapter improved accuracy and visualization of risk assessment over large scale

networks, whose accuracy highly depends attack surfaces of individual systems within the

network. Attack surface usually refers to exploitable resource exposed to attackers [56, 57].

The attack surface brought by a vulnerability could be dramatically enlarged when more

packages installed depending on the vulnerable application because more resource can be

accessed by the attacker to exploit the vulnerability. Therefore the attack surface metric

could serve as an effective indicator for vulnerability assessment, which is considered as

a critical task for security prioritization. Currently, the well known and de facto standard

vulnerability scoring system – common vulnerability scoring system (CVSS) [63] – quantifies

the risk for each known vulnerability. Specifically, CVSS measures exploitability metrics

(access vector, access complexity, and authentication) and impact metrics (confidentiality,

integrity, and availability loss) of a vulnerability, which are then used to calculate a base

score ranging from 0 to 10 indicating the severity of the vulnerability. Besides the base

score, CVSS also provides temporal and environmental scores for system administrators to

fill out in order to assess vulnerabilities appropriately, where a temporal score constructs

a correlation between the exploitability of a vulnerability and time, and the environmental

score evaluates the coverage of the vulnerability over entire network and potential loss
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associated with these machines. Even though the environmental score provides context

aware factors for CVSS, it is mostly subjective to system administrators.

Moreover, CVSS does not take into consideration of package dependency, which, based

on our analysis in this chapter, dramatically affects the exploitability of a vulnerability,

especially when it appears in a prevalent package used by many other packages. Therefore

current CVSS does not reveal the fact that vulnerabilities on highly depended packages

usually bring larger attack surfaces compared to those detected on a client application,

even when they have the same CVSS scores. Because packages depended by a number

of applications are usually more exposable than “ground” software (with no dependent),

attackers have more incentive to intrude a system through each of these dependents (or

their dependents). Therefore, the attack surface brought by package dependency should

not be ignored, and accurately measuring the attack surface is non-trivial when evaluating

vulnerability severity.

In this chapter, I will introduce a risk evaluation approach on system level attack surface.

I captured package dependency at system level by constructing a set of systematic risk

assessment approaches. Each of these approach is able to output a risk metric at different

granularities (vulnerability level, component level, package level or system level). These

approaches bridge the gap between the standard vulnerability assessment approach and

system wide attack surface evaluation. With my approach, vulnerability and component

level metrics can assist system administrators in prioritizing patching or hardening plans

towards the entire system, while the overall package and system level metrics can help

developers to choose secure and reliable development images, platforms, and specific systems.

My solution also helps other stakeholders to observe the evolution of package dependency

based attack surface for a given system.

I do experiments on systems with JRE vulnerabilities, with installed packages and ap-

plications relying on JRE. The experimental results confirm that the attack surface of a

vulnerability is enlarged as the number of its dependents increases. The same trend is
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observed at component and package levels.

3.1 Overview

3.1.1 A Real Motivating Example

To motivate my attack surface analysis with package dependency, I systematically analyze

the risk trend of a set of VMware products through VMware Security Advisories (VMSA)1.

Each VMSA indicates an official notification regarding a set of known security vulnera-

bilities that affects VMware products, each of which represents a Common Vulnerabilities

and Exposures (CVE) record included in the U.S. National Vulnerability Database (NVD2).

Each VMSA entry includes the origin of the vulnerabilities, vulnerability IDs, affected ap-

plications, and proposed solutions to the issue. Based on my analysis of VMSA entries

from July 2007 to December 2012, I find out that almost two thirds (56/90) of the VMSAs

include vulnerabilities originated from third party applications that affect VMware prod-

ucts, as Table 3.1 shows. For instance, ESX – the last generation hypervisor – may be

exploited by vulnerabilities described in 27 VMSAs detected on the Linux management

console, which provides management functions for ESX like executing scripts or installing

third party agents for hardware monitoring, backup, and system management [4].

For another instance, Java Runtime Environment (JRE) is required by a number of

VMware products including ESX, Server, vMA, vCenter, and vCenter Update Manager,

therefore a known vulnerability on JRE could possibly make each of these products ex-

ploitable. Other major attack surface carriers include OpenSSL (9 out of 90), Kerberos 5

(8 out of 90), Apache Tomcat (6 out of 90), and libxml (6 out of 90). Note that one VMSA

usually mentions multiple risks included in different applications (See Table 3.1 for details).

My analysis with VMSA motivates a security metric with the consideration of package

dependency, which can help system administrator and software developer to identify vulner-

1http://www.vmware.com/security/advisories/
2http://nvd.nist.gov/
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Table 3.1: Risks from Third Party Packages to VMware Products
Third-party Package Name # of VMSAs Affected VMware Products
Console Operating System 27 ESX

JRE 11 ESX, Server, vMA, vCenter,
vCenter Update Manager

OpenSSL 9 ESX, ESXi, vCenter
kerberos5 8 ESX, ESXi

Apache Tomcat 6 ESX, vCenter
libxml 6 ESX

Figure 3.1: Comparison of attack paths to a vulnerable client side application Q and a
highly depended library P.

abilities on highly depended programs (e.g., JRE and Linux console) with larger attack sur-

faces, compared to others such as client side vulnerabilities (see Figure 3.1). Consequently,

the system administrator may want to patch a JRE vulnerability affecting a number of

products earlier than others even they may have the same CVSS score. A system level

metric can also help stakeholders in choosing system images with smaller attack surface and

monitor how the dependency based attack surfaces evolve over time.

3.1.2 Why Component Level Dependency Analysis?

From the perspective of software engineering, a system can be decomposed into various of

packages. One package can usually be further divided into one or more components, each of

which is made up from classes with related functions. From above motivating example with
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Figure 3.2: One package level dependency with two different component level dependencies.

VMSA, we have seen attack surfaces from third party packages should not be ignored for

risk analysis, and we need to look into package dependencies to know how the attack surface

is injected by external packages to a system. When measuring such dependency based attack

surfaces, I analyze at component level for the following reasons.

More accurate dependency information than package level: Component level dependency

is finer-grained than package level, therefore it could locate attack surfaces with higher

accuracy. As Figure 3.2 shows, given two packages with the same dependency map at

package level, their attack surfaces could vary significantly if known vulnerabilities on the

two packages are on components with different dependency maps. Also, components on

the same package should be differentiated as their effects on the attack surface can be

significantly different. My experiments (see Section 3.3 and Table 3.4) indicate that com-

ponent 2d in a vulnerable JRE has the largest number (17) of vulnerabilities. However, it

is only lightly depended by installed applications in my system (see last three columns in

Table 3.2 ). Therefore, its attack surface ranks lower than the heavily depended component
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deserialization even though the latter only has one detected vulnerability.

Table 3.2: Historical Vulnerable JRE Components/Packages & Number of its Dependents
on Different Applications

Component Name JRE Package Name
# of Historical

Vulnerabilities
# of dependent classes

FreeHEP Weka LibreOffice

font java.awt.font 4 0 1 0
2d java.awt.geom 20 0 1 5

beans java.beans 1 0 114 19
deserialization java.io 3 14 378 1124

networking java.net/javax.net 2 1 14 88
rmi java.rmi 1 0 4 0

concurrency java.util.concurrent 1 0 1 2
imageIO javax.imageio 7 0 4 5

java web start javax.jnlp 18 0 0 0
jmx javax.management 4 0 0 0
ldap javax.naming.ldap 1 0 0 0

scripting javax.script 2 0 0 0
kerberos javax.security.auth.kerberos 1 0 0 0
sound javax.sound 13 0 0 0
swing javax.swing 8 2 167 128
xml javax.xml 3 1 4 26

corba org.omg.CORBA 3 0 0 0
deployment N/A 15 0 0 0

deployment toolkit N/A 4 0 0 0
hotspot N/A 4 0 0 0
install N/A 3 0 0 0

jsse N/A 2 0 0 0
jvm N/A 5 0 0 0

oracle jrockit N/A 1 0 0 0
(un)Pack200 N/A 5 0 0 0

proxy mechanism N/A 2 0 0 0
update N/A 3 0 0 0

Less complex dependency information than class level: I keep my dependency analysis at

component level rather than go further into class or object level because it is usually difficult

to distinguish the sources or causes of vulnerabilities at that level. Each component is a unit

to realize a set of related functions. Classes within the same component are usually more

integrated and interacted compared to those in different components. Therefore for each

vulnerability, its exploitability highly depends on its accessibility at the component level.

Previous studies also show that a vulnerability becomes significantly more exploitable when

attackers know that its component is accessible [77, 78]. Besides, it is usually difficult to

construct a map between vulnerabilities and the classes on which they detected. Further-

more, proprietary software vendors usually do not disclose their product information at class

level. However security bugs and alerts are usually maintained by database like Bugzilla
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at component level3, which makes the vulnerability-component map retrievable [67]. More-

over, the complexity of a class level dependency map is exponentially higher compared to a

component level dependency graph. I believe it is infeasible to achieve efficient analysis with

class level graph when dealing with a complex system including a large number of software

packages.

3.2 Dependency-based Attack Surface Analysis

This section explains the details of my dependency-based attack surface analysis. Before

that I explain the definitions for various attack surface metrics.

3.2.1 Package Dependency at Component Level

In general, a package dependency refers to a code reuse by a component from the library

packages that it relies upon. Such code reuse could be at either binary or source code level.

For example, third party code could be called as a compiled jar file or be imported as head

files in source code. As shown in Figure 3.2, each directed line represents one dependency

relationship, where the destination node represents the package or component that reuses

some codes from the source node package or component.

In the analysis, I do not differentiate dependency strength at component level. Even

though other metrics such as the number of references between the two components can be

obtained and used as the weight, the correlation between these metrics and the strength

of dependency is difficult to be determined and judged without a comprehensive analysis

over the source code of a target package. Therefore, I assign an equal weight 1 to each

dependency between two components in my analysis. But I still keep a weight variable in

the algorithms just for future customization of the dependency weight based on different

preferences.

3A vulnerability is usually identified as a security bug in Bugzilla.
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Figure 3.3: Incoming attack surface injected into Package S.

3.2.2 Attack Surface Metrics

The attack surface of a vulnerability refers to exposed resources can be utilized by attackers

to exploit the vulnerability successfully. The attack surface of a component, a package, or a

system is the aggregated attack surfaces of individual vulnerabilities that affect it. Based on

the origin and the entrance of the risk, I classify attack surface into two categories: outgoing

attack surface and incoming attack surface. Outgoing attack surface indicates how much

risk can be brought to the whole system from a given vulnerability, component, or package.

The right part of Figure 3.1 illustrates possible attack paths through outgoing attack surface

of package P, which is depended by many packages P0, P1, ..., Pn, each of which is in

turn depended by other packages. Incoming attack surface means the injected risk to a

given component, package or system from the packages it depends upon, as illustrated in

Figure 3.3.

I define several package dependency based attack surface metrics according to variant

evaluation granularities, as illustrated in Table 3.3 and explained briefly as follows.

• Vulnerability attack surface (VAS): the outgoing attack surface from a single vulner-

ability to the whole system;

• Component attack surface (CAS): the outgoing attack surface from a single component
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to the whole system;

• Package attack surface (PAS): the outgoing attack surface from a single package to

the whole system;

• System attack surface (SAS): package dependency based attack surface of the entire

system;

• inCAS: the attack surfaces of a given component injected by the code that it relies

upon;

• inPAS: the attack surfaces of a given package injected by the code that it relies upon.

Among these metrics, VAS, CAS, and PAS are outgoing attack surface metrics, and

inCAS and inPAS are incoming attack surfaces. SAS can be either incoming or outgoing

attack surface as the dependency based attack surface within one system is self looped.

Table 3.3: Attack Surface Definitions
Attack Surface Name Definitions

VAS Out-going attack surface from a vulnerability
CAS Out-going attack surface from a component
PAS Out-going attack surface from a package
SAS package dependency based attack surface for a system

inCAS incoming attack surface to a component
inPAS incoming attack surface to a package

3.2.3 Component-based Attack Surface Analysis

Vulnerability Attack Surface

I define VAS as a system wide package dependency based attack surface originated from a

given vulnerability. VAS can be used to compare the exploitabilities of different vulnerabil-

ities within the same system. The comparison results can be used to prioritize patching or

hardening tasks at vulnerability level.
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As Algorithm 3.1 shows, for each vulnerability, I first identify its component. Usually, the

vulnerability-component map is provided by software vendors through security advisories,

e.g., Oracle Security Advisories4. Starting from the component of the target vulnerability,

I do a breadth first search until depth d, where d is the level of dependency. For example,

if package pa depends on pb which depends on pc, then when evaluating pa, pa and pb are

considered but not pc if d is one. However, all of them are considered when d is larger

than one. The depth could be customized based on user preferences. Each component

(directly or indirectly) depending on the vulnerable component is considered as part of the

attack surface brought by the vulnerability. The impact factor on each component is the

attack surface of the target vulnerability exposed through that component. I assign the

CVSS score of the vulnerability as the impact factor of the component where it resides

(the ‘vulnerable component’)5. For components on multiple depending chains from the

vulnerable component, I only consider its closest dependency and ignore the rest. For

example, component ca depends on cb which depends on cc, and ca also depends on cc

directly. Under this circumstance, I ignore the dependency ca =⇒ cb =⇒ cc but only

consider ca =⇒ cc.

I define a damping factor6 (ranging from 0 to 1) to represent the residual risk after

each level of dependency, which is used to estimate attack surface from/to nested depended

packages. The impact factor on a given component equals to the multiplication of the

dependency impact value from the component it depends on (the dependency impact value

is returned by function depImpact (c1, c2) when c1 depends on c2. I assign “1” to all

impact values in the experiments because I treat all dependencies equally as mentioned in

Section 3.2.1), the damping factor and the impact factor of the component it depends on.

Their impact factor values will be eventually added up to one number, indicating the attack

surface of the given vulnerability to the whole system.

4http://www.oracle.com/technetwork/topics/security/
5The calculation of impact factors of dependent components will be illustrated in the following paragraph.
6I assign 0.1 as the damping factor for the experiments

40

http://www.oracle.com/technetwork/topics/security/


In a nutshell, I process a weighted (component-based) dependency graph through breadth

first search, I calculate an impact factor for each component (within the dependency graph

from the vulnerable component) from the given vulnerability. I then add up all of these

impact factors into one number, indicating the attack surface exposed by the target vulner-

ability.

Component Attack Surface

A component’s outgoing attack surface CAS indicates the attack surface brought by the

component to the whole system. The CAS helps a system administrator to identify depen-

dency based attack surface at component level. The calculation of CAS is based on VAS as

following:

CAS(c0, d) =
∑

component(v)==c0

V AS(v, d) (3.1)

where V AS(v, d) can be solved through Algorithm 3.1 and component(v) returns the com-

ponent containing vulnerability v. Basically, the CAS of a component is an aggregation of

the VASes of all vulnerabilities detected in the component.

Package Attack Surface

A package’s outgoing attack surface PAS indicates the attack surface exposed by the package

through package dependency to the whole system. Similar to the usage and calculation of

CAS, PAS can be used to compare the package dependency based attack surfaces among

packages installed on the same system. The PAS value of a package is an aggregation of

CAS of each component belonging to the package, as the following shows:

12I assign “1” to all DIV as mentioned in Section 3.2.1
8The damping factor represents the residual risk after each level of dependency. User can assign a value

between 0 and 1 based on their own estimation.
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Algorithm 3.1 Dependency-based Attack Surface Measurement for Individual Vulnerabil-
ities: VAS(v0, d)

Require: Parameters: v0 – the Target vulnerability; d – Depth of assessment.
System configurations:
A map between the vulnerability v0 and its component component (v0).
A system wide component dependency map (dependents of component c are depen-
dOn(c)).

Ensure: The package dependency based attack surface VAS brought by vulnerability v0.
c0 ← component(v0) {Retrieve the vulnerable component}
Queue Q ← (c0, 0) {Q is a queue of pairs (vulnerableComponent, depth)}
Table v0.t ← empty table
{v0.t is a table tracking processed components. The key is the affected component and
the value is its impact factor from vulnerability v0.}
v0.t.put(c0, v0.cvss) {The impact factor of c0 equals to the CVSS score of v0}
while Q is not empty do

(cn, n)← dequeue(Q)
if n ≥ d then

continue {if current component has already reached the pre-defined deepest level,
then no need to retrieve its dependents}

end if
for each ck in dependOn(c) do

if v0.t.containsKey (ck) then
continue
{If the component has been previously processed, then it will be skipped}

end if
Q.enqueue(ck, n + 1) {Update Q in order to process dependents of ck if within the
predefined depth}
IFc = v0.t.get(c) {retrieve the impact factor of the current component c}
DIV = depImpact(c, ck)
{ depImpact(c, ck) returns dependency impact value7between c and ck.}
IF = DIV × DF × IFc {DF means Damping Factor8. This is the calculation of
impact factor (IF) of component ck}
V AS+ = IF {Cumulatively update attack surface}
v0.t.put(ck, IF ) {Update processed element table}

end for
end while
return VAS {Sum up all impact factors of v0 into VAS}

PAS(p0, d) =
∑

package(c)==p0

CAS(c, d) (3.2)
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Algorithm 3.2 Incoming attack surface measurement for individual components:
inCAS(c0, d)

Require: Parameters: c0 – the target component; d – Depth of assessment.
System configurations:
A map between each vulnerability v and its component component (v).
A system wide dependency map (dependents of component c are dependOn(c)).
Detected vulnerabilities V of the whole system.

Ensure: An incoming attack surface inCAS to component c0.
for each v in V do

VAS(v, d) {Evaluate impacts of all vulnerabilities}
if v.t containsKey (c0) then
IF = v.t.get(c0) {If c0 is impacted by current vulnerability v, then retrieve its impact
factor and cumulatively update the attack surface to c0}
inCAS+ = IF

end if
end for
return inCAS

where CAS(c, d) is calculated by Equation 3.1 and package(c) obtains the software package

where component c resides.

inCAS

The inCAS of a component is injected attack surface to this component by third party

libraries. The inCAS value for each component is consistent with the number of vulnerable

components it relies upon and the number of vulnerabilities on each of these components.

Its calculation can be found at Algorithm 3.2. After each round of process, I validate the

component list against the current component. If the current component is affected by

the vulnerability, then its attack surface cumulatively updated, otherwise I skip to the next

vulnerability. After process all vulnerabilities, the incoming attack surface to the component

can be obtained.
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inPAS

The inPAS of a package is the incoming package dependency based attack surface to this

package. The calculation of inPAS is similar to that of PAS, where the incoming attack

surface to each component of the package is added into its inPAS, as the following shows.

inPAS(p0, d) =
∑

package(c)==p0

inCAS(c, d) (3.3)

where inCAS(c, d) can be solved by Algorithm 3.2, and as mentioned earlier at PAS calcu-

lation, package(c) returns the package containing component c. inPAS can assist a system

administrator to know to what extend that a package’s attack surface is affected by third

party applications.

System Attack Surface

SAS indicates the attack surface exposed to the whole system, by considering the dependency

among all packages of the system. SAS can be used to compare package dependency based

attack surfaces among different systems. This metric is helpful when a system administrator

needs to know how the overall security status evolves or how to choose a relative secure image

among a considerable amount of systems. The calculation of SAS can be like the following:

SAS(s0, d) =
∑

p∈installedPackages(s0)

PAS(p, d) (3.4)

where PAS(p, d) can be obtained by Equation 3.2, and installedPackages(s0) returns all

packages installed on the system s0.
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3.3 Experiments

In order to visualize the analysis of package dependency based attack surface, I do a number

of experiments. I use a public image on Amazon EC29 as the target system, and adopt Java

Runtime Environment (JRE) as the target library code, which is depended by three software

packages in the system: Weka, LibreOffice, and FreeHEP. The system comes with JRE 1.6

update 17. I install other applications in order to calculate and compare different attack

surfaces appropriately. The experiments are in four folds:

• Calculating outgoing attack surfaces from individual vulnerabilities (VAS) in JRE;

• Ranking vulnerable components (CAS) within a JRE;

• Calculating JRE outgoing attack surface (PAS) for the target system;

• Comparing system-wide package dependency based attack surface (SAS) with systems

under two different configurations.

In the experiment, I focus on the study of variant attack surfaces injected by known

vulnerabilities from JRE, therefore I do not calculate incoming attack surfaces of JRE and

other packages. I note that a complete component level dependency graph is required to

study both incoming and outgoing attack surfaces of all packages in a system. A system

administrator should have the motivation of drawing such graphs for a particular system

under investigation.

In the experiments, I select one public image in EC2 and run on two virtual machines

(VM). The image comes with JRE 1.6 update 17, which is not the up-to-date version and

has 134 known vulnerabilities according to National Vulnerability Database. I install two

different sets of applications in the two virtual machines. There are 45 JRE vulnerabilities

in the components that are depended by the installed applications. Table 3.4 shows the

component distribution of these vulnerabilities.

9http://aws.amazon.com/ec2
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Table 3.4: JRE 1.6 update 17 vulnerable components with dependents
Component swing AWT networking deserialization imageIO RMI beans 2D Concurrency

# of Vulnerabilities 6 4 10 1 2 2 2 17 1

In one VM, I install three JRE depended prevalent applications: FreeHEP, Weka, and

LibreOffice. I calculate their vulnerability, component, and package outgoing attack sur-

faces within this VM. I then install only one JRE depended application (FreeHEP) to the

other VM in order to compare the attack surfaces with the first VM at system level. Ta-

ble 3.6, 3.7, and 3.5 show the details of the component dependency of these applications,

where the component names are obtained from the the first level sub-folders under the main

application folder.

3.3.1 Calculating Attack Surfaces for Individual Vulnerabilities

(VAS)

I find out most of the JRE vulnerabilities are at high severity level – the average CVSS score

is 7.7 out of 10 in the target JRE. Therefore the VAS value is dominated by the number of

dependents of components. I observe that component deserialization, swing, beans, and

networking are highly depended by the installed applications (See Table 3.2 for historical

JRE vulnerabilities at component level and component level dependency between JRE and

these installed applications). As a result, most vulnerabilities detected on these components

have higher VAS values compared to the those with the lightly depended components, e.g.,

imageIO, 2d, rmi, and concurrency. More detail can be found at column 1, 2 and 4 at

Table 3.8.

3.3.2 Ranking Vulnerable Components (CAS) within a Package

Both component dependency and the number of vulnerabilities are considered while calcu-

lating the CAS of each component. Even though deserialization is the most depended

component (see Table 3.2) and 2d has largest number of vulnerabilities (column 6 at Ta-
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Table 3.5: LibreOffice Component Level Dependency: Each numeric value represents
the imported times of the depended component by the dependent component.
PPPPPPPPPDependent

Depended
2d beans (de)serializationnetworkingconcurrencyimageIO swing xml

bean 5 1 2
chart2 1
unoxml 1
toolkit 4 12 3 86
l10ntools 6 1

vcl 7
extensions 1

filter 14 4 11
linguistic 1

writerfilter 2
nlpsolver 3
android 3 2

sw 2
connectivity 7 2

javaunohelper 14 3
xmlsecurity 14 1 28 6

package 4 1
ridljar 4 5

scripting 17 167 41 123 11
framework 10 1 2

reportdesign 3 2
forms 3

sc 3
stoc 4 3

swext 4 14 4
odk 2 1 42 10 1 86

rhino 3 8
wizards 2 11 5 17 8

qadevOOo 823 8 2 2 2
ure 1

accessibility 5
hsqldb 1

sfx2 2
testtools 5

jurt 46 17
dbaccess 6 2

embeddedobj 5 4 2
reportbuilder 49 6 7
languagetool 4

bridges 5 1
unotest 5

ucb 2
xmerge 305 6 46
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Table 3.6: FreeHEP Component Level Dependency: Each numeric value represents the
imported times of the depended component by the dependent component.

PPPPPPPPPDependent
Depended

beans (de)serializationnetworking swing xml

util 5
io 6

menu 2 3 2 24 1
wbxml 14

Table 3.7: Weka Component Level Dependency: Each numeric value represents the imported
times of the depended component by the dependent component.

XXXXXXXXDependent
Depended

2d beans (de)serializationnetworkingconcurrencyimageIO swing xml font

associations 22
classifiers 5 108 36 2

core 7 305 9 3 8
estimators 7

filters 18
attributeSelection 5 22

clusters 3 31 28
datagenerators 8

experiment 4 66 3 2
gui 1 235 250 5 3 14 897 1

ble 3.8), neither of them has the largest CAS value. The experimental results indicate that

component swing has the highest CAS value (column 5 at Table 3.8). This is because it

is heavily depended by applications in the target system and has a considerable amount of

vulnerabilities as well. Therefore, when considering attack surface at component level, com-

ponent swing deserves more attention than others as it exposes the largest attack surface

to the system.

3.3.3 JRE Outgoing Attack Surface (PAS)

The experiments only consider JRE as a vulnerable package with outgoing attack surface.

Therefore I do not rank outgoing attack surfaces of different packages but only show the PAS

of JRE. Based on PAS calculation formula at Eq. 3.2. the PAS of JRE is 3002.9. When

multiple libraries exist on the system, the PAS can be used to compare exposed attack

surfaces by those packages. Higher PAS indicates the need of more attention from system
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Table 3.8: Component Level Risk Rankings: Depended Components with no vulnerabilities
are not shown

Component CVE Id CVSS VAS CAS (Rank) # of Vulnerabilities (Rank)
Deserialization CVE-2012-5084 7.6 1159.76 1159.76 (2) 1 (7)

swing

CVE-2012-1716 10 307

1743.76 (1) 6 (3)

CVE-2011-3549 10 307
CVE-2011-0871 10 307
CVE-2010-4465 10 307
CVE-2010-3557 6.8 208.76
CVE-2010-3553 10 307

beans
CVE-2012-5086 10 143

286 (4) 2 (4)
CVE-2012-4681 10 143

networking

CVE-2011-3552 2.6 29.38

562.74 (3) 10 (2)

CVE-2011-3547 5.0 56.5
CVE-2011-0867 5.0 56.5
CVE-2010-4448 2.6 29.38
CVE-2010-3574 10 113
CVE-2010-3573 5.1 57.63
CVE-2010-3560 2.6 29.38
CVE-2010-3551 5.0 56.5
CVE-2010-3549 6.8 76.84
CVE-2010-3541 5.1 57.63

imageIO
CVE-2010-0846 7.5 75

150 (6) 2 (4)
CVE-2010-0841 7.5 75

2d

CVE-2012-5083 10 16

232.88 (5) 17 (1)

CVE-2012-1531 10 16
CVE-2011-3551 9.3 14.88
CVE-2011-0873 10 16
CVE-2011-0868 5.0 8
CVE-2011-0862 10 16
CVE-2010-4471 5.0 8
CVE-2010-3571 10 16
CVE-2010-3567 10 16
CVE-2010-3566 10 16
CVE-2010-3565 10 16
CVE-2010-3562 10 16
CVE-2010-3556 10 16
CVE-2010-0849 7.5 12
CVE-2010-0848 7.5 12
CVE-2010-0847 7.5 12
CVE-2010-0838 7.5 12

rmi
CVE-2011-3556 7.5 10.5

19.98 (7) 2 (4)
CVE-2011-3557 6.8 9.48

concurrency CVE-2012-5069 5.8 7.54 7.54 (8) 1 (7)
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administrators.

3.3.4 System Attack Surfaces (SAS)

We want to compare SAS values with systems running with different sets of installed appli-

cations. I launch two VMs in EC2: VM 1 runs JRE 1.6 update 17, with FreeHEP, Weka, and

LibreOffice installed, and VM 2 runs the same JRE 1.6 update 17, but with only FreeHEP

installed. I calculate the SAS values from JRE vulnerabilities based on Eq. 3.410. As shown

in Table 3.9, for VM 1, the SAS value is 3002.9, while for VM 2, the SAS value decreases

to 305.76. This obviously confirms the significant difference of attack surfaces brought by a

single vulnerable package (JRE) to systems with different configurations. The SAS value in-

creases with more applications depending on vulnerable packages installed, which indicates

an escalation on the security level of the depended libraries.

Table 3.9: SAS for Two Different Systems on EC2
VM 1 (Vulnerable JRE with 3 dependents) VM 2 (Vulnerable JRE with 1 dependent)

SAS 3002.9 305.76

3.3.5 Observations

The experimental results lead to several observations. First, dependency at component level

dominates the value of vulnerability level attack surface (VAS). The source component of

each vulnerability basically determines its attack surface to the whole system. Secondly,

component level attack surface (CAS) is determined by both component dependency and

the number of vulnerabilities from the component itself. Either counting the number of

vulnerabilities or counting the number of its component dependents is a naive approach of

calculating attack surface exposed by a given component. Last but not least, the number

of dependents on vulnerable libraries of a system determines the attack surface value at

10the installedPackages() includes JRE and its dependents for the experiments, and only JRE has PAS
value as others are not depended by any packages.
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system level (SAS). The SAS value of the system increases as more applications installed

which depend on vulnerable third-party libraries.

3.4 Limitations

There are limitations regarding the applicability of my methodology.

Dependency Information Retrieval: Not all package dependencies can be automatically

captured. For accurate attack surface analysis, the component dependency graph of a system

should be obtained, e.g., by system administrators, as certain packages are close source.

Even for open source packages, they are not always written in the same programming

language. JRE is a suitable example for us as many of its dependents are open source

software written in Java. Besides, JRE has the largest number of known vulnerabilities

among all library packages, according to the National Vulnerability Database. Once the

component level dependency graph is available, my methodology could be generalized into

other library packages.

Nested Dependency: By checking the dependency graph generated by debtree, I

observe that in the target systems, even though there are packages depending on JRE’s

dependents, they all depend on JRE directly as well. Therefore I only count on the lowest

level dependencies at my experiments, which dominate the attack surface metrics. That

is, the experimental results are not affected by nested dependency. But this may not be

true for other vulnerable depended packages in a system, especially when the dependency

is objected-based instead of class-based.

Finer-grained Dependency Weighting: I treat each component dependency equally

in my experiments. However, the dependency measurement may be finer-grained. Static

code analysis or large scale data analysis may be helpful in gauging the dependency with

a higher accuracy. Types of different dependencies [6, 77] may also affect exposed attack

surfaces differently. Similarly, the accuracy of residual risk after each level of dependency
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(the ‘damping factor’) may be further improved by large scale experiments as well.

3.5 Discussion

We define attack surface exposed through package dependency at vulnerability, component,

package, and system levels, and propose a set of metrics to construct them. Besides outgoing

attack surfaces, I propose algorithms calculating incoming attack surfaces injected through

package dependency into individual components and packages. I validate the proposals and

algorithms through experiments over JRE vulnerabilities in systems with different com-

ponent dependency graphs. My approach provides systematic methodology to prioritize

security tasks for system administrators, and provides inputs for choosing system images

for application developers with multiple dependency options. Once researchers at software

engineer domain have a finer-grained dependency weighting approach among software pack-

ages, the model could naturally borrow the dependency strength and thereafter provide

more accurate risk metrics to users.
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Chapter 4

Cloud Platform Risk Assessment

Previous chapters mostly focus on risk assessment under traditional network environment.

Network modeling is mainly about capturing scenarios between a number of hosts. However,

cloud computing has attracted a significant amount of users since its inception. Cloud

specific threats need to be aware of as risk model on cloud environment has changed from

traditional network surroundings.

Even though security bulletins have been setup by cloud provider (e.g. Amazon) to no-

tify users about vulnerability information, previous experience has told us that significant

effort is needed to bridge the gap between the provided service and current security situa-

tion. Specifically, I find that Amazon security bulletin usually releases critical vulnerability

information more than two weeks later than original release date, e.g., by software vendors

or community (cf. Section 4.1 for our study result). The exploit window could be even

longer since there is no guarantee that every cloud user will and will be able to apply the

update with the release, even though he has got notified. Also, a cloud provider may not

be able to identify all known vulnerabilities on its platform. For known vulnerabilities, this

attack window is way longer than it should be [11]. Besides, the prevalence of individual

vulnerabilities has not been considered when publishing security bulletins. For example,

Amazon only use CVSS score [63] to indicate the severity of vulnerabilities, which is indica-
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tive for individual vulnerabilities on traditional in-house servers. However, threat from the

prevalence of individual vulnerabilities should be re-evaluated under cloud environment. A

prevalent image with known vulnerabilities can be instantiated by a large number of users

in cloud, therefore it may generate large number of security holes for attackers. Attackers

can do penetration test over public images, from where they can identify prevalent known

vulnerabilities of running VMs and launch the same attack repeatedly to different instances.

If the prevalent vulnerabilities indeed spread over the cloud, the attacker obtains an ideal

cost-effective vehicle by exploiting the vulnerabilities to a large number of VMs. Therefore,

with the new computing model of public cloud, it is even easier for attackers to launch

attacks through prevalent vulnerabilities.

On the other side, cloud also provides an ideal venue to deploy defense mechanisms in

large-scale. For example, with the homogeneous cloud environment, automatic patching

becomes more efficient than in traditional in-house environment. A number of patching

frameworks have been proposed towards known security holes in cloud [53, 114]. However,

there is no empirical study and analysis on the cost and gain effectiveness of defending in

cloud environment.

In this chapter, I will present my find about the attack cost effectiveness change over

the IaaS cloud compared to traditional network environment. I empirically analyze the

cost and effectiveness for exploiting known vulnerabilities under two different environments

(traditional in-house and public IaaS cloud). I take AWS in my study since it has more

publicly available information than other IaaS providers. I first identify with real data anal-

ysis that prevalent known vulnerabilities are very common in AWS AMIs, and demonstrate

with real penetrations test that attack with these vulnerabilities is very trivial by malicious

cloud users. I then statically analyze that both attack and patch are more cost-effective

in cloud than under traditional environment. By statically I mean my analysis is over one

time spot. To further investigate the relationship and strategy of attackers and defenders

in cloud environment, I map these scenarios into a two-player game theoretic model. The
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Empirical study : vulnerability scanning and
penetration test with public AMIs in EC2.

Identify
−−−−−−−−−→

Prevalent known vulnerabilities are
common in AMIs. Real exploits are
viable : e.g., more than half
(11 out of 20) of tested hosts
can be “killed” by one prevalent
vulnerability (CVE-2011-3192).

Incent←−−−−−−−−
Statically analyzing the cost-effectiveness
over the threat. The results indicate
both attack and patch are more
cost-effective in IaaS cloud than
under traditional environment.

Induce−−−−−−−−→
Tactical game modeling and risk-gain
analysis between attackers and defenders.

Reveal←−−−−−−−−
Both attack and defense become
less cost-effective as time goes by.
Each side has strong incentive to
act as early as possible.

Infer
−−−−−−−→

Countermeasures against such threats
with reduced expected cost: increase
defender’s responsiveness and activeness
while protecting cloud platform.

Figure 4.1: Contribution Map.

model indicates that the current security of public cloud is at the mercy of attackers. I then

construct risk-gain analysis to simulate the evolution of the cost-effectiveness from defenders

and attackers under different circumstances. The results show that cloud defender should

be more responsive and proactive when hardening cloud platform as the attack surface in-

creases dramatically compared to traditional computing environment. Moreover, our model

illustrates that both attack and defense are more time-sensitive in cloud as they become less

cost-effective as time goes by. I then propose countermeasures according to the evaluation

results. Figure 4.1 is a contribution map of this chapter.
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4.1 Empirical Study: Methodology and Finds

4.1.1 Background

Amazon EC2 I do experiments on public images over Amazon EC2. As a leading IaaS

cloud provider, Amazon EC2 provides a platform by allowing different principals sharing

their images publicly. Open source organizations like BitNami 1 and Ubuntu, IT companies

such as Oracle and Amazon itself, and arbitrary number of individual contributors have

published over 6,000 public images. Like potential attackers, I do penetration test over

these images by launching corresponding VMs in order to analyze the weakness of running

instances in the cloud.

Nessus Vulnerability Scanner Nessus 2 is a commercial vulnerability scanner developed

from an open source product. It checks against configuration settings of a host and outputs

a detailed report including security vulnerabilities, warnings, and system information, which

can be from 50 to hundreds of pages. Therefore it is usually difficult for cloud administrators

and users to read reports one by one in order to understand all security details in the cloud.

National Vulnerability Database (NVD) NVD 3 is an open database maintained by

National Institute of Standards and Technology (NIST), which is regarded as one of the

most comprehensive open vulnerability databases. Each entry in NVD is indexed by a

Common Vulnerability Exposure(CVE), which is associated severity base score with a set

of characteristics for that vulnerability. The base score is called “Common Vulnerability

Scoring System (CVSS) base score” ranging from 0 to 10. The score indicates the overall

severity of the vulnerability (the higher the worse). Vulnerability characteristics are called

CVSS vectors which include access vectors and impact vectors. Access vectors contains

Access Complexity (AC) indicating the difficulty level (High (H), Medium (M) or Low (L)

) of exploiting the vulnerability, Access Vector (AV) indicating under what (Local (L),

1http://bitnami.org/
2http://www.tenable.com/products/nessus
3http://nvd.nist.gov/
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Figure 4.2: Methodology of my empirical study.

Adjacent Network (A), or Remote (R)) environment the vulnerability can be accessed and,

authentication (Au) indicating required authentication times (Multiple (M), Singe (S), or

None (N)) while exploiting. Impact vectors include the loss of confidentiality (C), integrity

(I), and availability (A). There are three possible values associate with each impact metric:

none (N), partial (P), or complete (C). For example, if a vulnerability’s availability impact

metric is complete, exploiting this vulnerability results in a completely availability loss on

the target system. Besides CVSS metrics, NVD also provides affected applications, external

references, and textual description regarding a given vulnerability.

4.1.2 Methodology

Penetration test over public images is a straightforward approach to identify prevalent vul-

nerabilities. Figure 4.2 illustrates my overall methodology. When scanning available public

images on Amazon EC2, I first select a number of representative images to investigate,

then launch one instance for each selected image. I then adopt a dedicated scanning server

to transfer Nessus vulnerability scanner to each instance, and start scanning by running

my script on each target instance 4. After the scanning is complete, my script transfers

all scanning reports to the scanning server. I retrieve the characteristics of each vulnera-

4Thanks for Amazon’s approval for my scanning and penetration tests
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bility by looking it up at the NVD. Based on the distribution of vulnerabilities and their

characteristics, I obtain a single vulnerability report of all launched instances.

I launch and scan 80 public images in EC2. The selection of these images is based on

the distribution of the operating system (OS) types and versions of public AMIs, with the

assumption of the similar distribution of launched VM instances in the cloud.

4.1.3 What I Find

I summarize my finds in the following four aspects.

A considerable amount of prevalent vulnerabilities exist in AMIs

Similarly to what other researchers have found [10, 13], my scanning reveals a large number

of vulnerabilities existing in public AMIs. Besides, I have identified several prevalent ones

among all of these detected vulnerabilities. Table 4.1 lists the top prevalent vulnerabilities

from my scanning. The prevalence indicates the probability of the vulnerability’s existence

among all images I have scanned. I find out that most (8 out 9) of them are critical

vulnerabilities (with a CVSS score 7-10) by NVD standard, most (8 out of 9) of them can

be accessed remotely, most (8 out 9) of them can be easily accessed, and most of them (7

out of 9) can be utilized by attackers to crush corresponding applications completely.

Attackers can identify prevalent vulnerabilities without scanning individual VM

instances.

Amazon EC2 allows users to select public images based on platforms (OS types, versions,

and pre-installed applications). Figure 4.3 shows the public images distribution based on

OS types 5. As we can see, more than half of the images are Ubuntu based. A closer

look into the Ubuntu images indicates that more than half of them are either 10.04 or

12.04. Therefore under this circumstance, an attacker can keep monitoring newly released

5The data was collected in September 2012, which may change with new releases of AMIs.
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Table 4.1: Windows between Original Release and Amazon Announcement of Prevalent
Known Vulnerabilities

CVE
CVSS

Base Score Prevalence Original Release Amazon Announce
Attack Window

in (days)
CVE-2012-4244 7.8 0.5915493 09/14/2012 09/28/2012 14
CVE-2012-3955 7.1 0.57746476 09/14/2012 N/A > 26
CVE-2012-3817 7.8 0.52112675 07/25/2012 08/07/2012 13
CVE-2012-2807 10 0.49295774 09/07/2012 N/A > 33
CVE-2012-2337 7.2 0.46478873 05/18/2012 07/30/2012 73
CVE-2011-3102 10 0.45070422 05/16/2012 N/A > 117
CVE-2012-1033 5.0 0.45070422 02/08/2012 06/22/2012 135
CVE-2012-1667 8.5 0.45070422 06/05/2012 06/22/2012 17
CVE-2012-2110 7.5 0.33802816 04/19/2012 05/03/2012 15

vulnerabilities affecting these prevalent OSes and application frameworks. The attacker can

also leverage known vulnerabilities that have not been patched by the publishers of the

AMIs or the administrators of running instances, due to the patch window gap that I have

observed in EC2 (explain shortly).

As a result, statistical analysis of OS and application distributions can help attackers

in identifying the weaknesses and prevalent vulnerabilities in the cloud. This provides

a scope of target victims and reduces the cost for large scale scanning and penetration.

Attackers can roughly understand the overall potential weakness by simply noticing the

latest vulnerabilities associated with the most prevalent OSes and applications installed in

public images.

The patch window is long enough for attackers to exploit

I study several critical vulnerabilities and find that the gap between their original releases

and Amazon’s notifications is usually longer than two weeks (cf. Table 4.1). Attackers

could easily launch 1-day exploit repeatedly in the entire cloud. The length of exploit

window depends on the activities of cloud stakeholders (cloud provider and customers) such

as the date of notification and their hardening and patching mechanisms. Moreover, not

all known vulnerabilities can be easily detected by the cloud provider. As I have noticed, a
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Figure 4.3: Public images distribution by OS in Amazon EC2.

large amount of exploitable vulnerabilities have not been notified by Amazon after a long

time of their original releases. Therefore, attackers have enough time to prepare and launch

attacks. Even worse, existing study has shown that more than 40% of small companies

(under $50M revenue ) do not have patch management [64] deployed in cloud, which consists

of a considerable amount of current IaaS customers [3].

Running VMs in IaaS cloud offers more stable attack surfaces

VMs in IaaS cloud are more stable than traditional endpoints from an attacker’ perspective.

First of all, the IP range of each cloud provider is stable and can be predicted easily. Attack-

ers could identify the location of their target VMs by playing several tricks [95]. Besides, a

vast number of EC2 users are service providers with high availability requirement [3]. There-

fore their applications and port configurations are relatively easy to detect. Attackers could

reuse configuration information obtained previously to launch large scale attacks afterwards

(for new vulnerabilities on the same or similar applications and systems). However, this

does not work well under traditional in-house environments since the IP addresses of end

hosts are changing more frequently, and most in-house servers are behind firewalls, and it

is much more costly for an attacker to launch large scale attacks in order to locate a large

number of victims under such heterogeneous environment.
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100% of requests can be serviced before DoS attack.

The server stops responding after DoS attack.

Figure 4.4: Benchmarking results of a server before and after launching apache killer

4.1.4 Case Study: Penetration Testing on VMs in EC2

To confirm the viability of exploiting with prevalent vulnerabilities in EC2, I conduct a

penetration test towards running VMs launched from vulnerable AMIs upon Amazon’s

approval. I first identify a prevalent vulnerability CVE-2011-3192, which is referred as

“Apache Killer”. I note that this vulnerability was not detected by Nessus in my scanning

but it exists in 11 out of 20 AMIs 6 that I investigated with Ubuntu 10.04, most of which

have been published for more than one year. Surprisingly, no security advisory on Amazon

has been published for this vulnerability. I simply launch another instance in EC2 as an

attacker with Metasploit [60] installed. By following the online instruction, I simply setup

Metasploit with the number of packets sent to the target VM for DoS attack. I successfully

crashed the Apache server running on all of the target VMs by sending 400 packets. The

attack can be defended by running one line command (sudo apt-get update) to patch the

vulnerability.

In order to verify the DoS attack, I use ApacheBench to test the response of the target

server. As shown in Figure 4.4, before the exploit, all requests are served by the server; while

after the attack, the ApacheBench could not receive any response, indicating the server is

completely crashed.

I observe that the attack is very easy to launch with little interaction from the attacker.

6For safety reason I omit the AMI IDs here.
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Therefore, crushing a large number of web service hosts is trivial from the attacker’s per-

spective if any one of these vulnerable AMIs is widely used.

4.2 Static Cost-effectiveness Analyses

My empirical study has demonstrated that homogeneous settings in popular public cloud not

only enhance the efficiency of computing power, but also bring new economic considerations

for both attackers and defenders. Towards a first study on this, I do a comprehensive cost-

effectiveness analysis by comparing exploiting prevalent vulnerabilities in public IaaS cloud

and traditional in-house computing environments. While I refer a single attacker in both

cases, a defender refers to service owners in traditional case and all cloud stakeholders (both

cloud platform provider and cloud customers) in IaaS.

Assumptions: My analysis is based on the assumption that VM images are publicly

available and used by cloud customers, but I do not require either each image or certain

percentage of images are instantiated in the cloud. I further assume that prevalent types of

images (OS types, versions, and application frameworks) are also prevalent in the VMs of

the cloud.

Results: My analysis reveals that both attack and defense are more cost-effective in cloud

than in traditional in-house environment. Attack surface under cloud environment has been

enlarged with an increased density of potential victims. Moreover, attack cost has been

decreased in cloud because the homogeneous nature of public cloud platforms reduces the

effort required for target locating and vulnerability reconnaissance. On the other hand, cloud

stakeholders (providers and customers) can manage patch with batch processing, which can

patch larger attack surface per unit time than that in traditional environment.
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4.2.1 Cost-effectiveness Analysis for Attacker

Cost of Attacker

A cyber attack usually involves the following costs [31, 91]: (1) locating target victims, (2)

identifying vulnerabilities of victims, (3) choosing vulnerabilities , (4) obtaining exploits,

and (5) dealing with defense mechanisms. For target victims in the cloud and traditional

in-house environment, the costs (3) and (4) are the same. Therefore my analysis focuses on

(1), (2), and (5), and my results indicate that IaaS cloud provides dramatically lower costs

for attackers in these aspects.

Identifying victims. Under traditional environment, attackers could obtain target IP ad-

dresses in a straightforward way (e.g. by looking up DNS server). However, the external

firewall deployed by most in-house servers may make the IP addresses untraceable. For

certain types of threats like botnet or non-targeted DoS attacks by cyber terrorists, contin-

uous (in terms of IP address) nodes with weak defending mechanisms but stable and high

bandwidth are on the top of their target list. Consider that most bots in popular botnets

such as “Conflicker” have small bandwidth only [90], I believe high quality bots in cloud

are very appealing and can significantly increase the competitive strength of a bot master

in botnet market, thus give strong incentive for attackers.

Consider a botnet master that needs to harvest N bots with a certain vulnerability v.

Assuming for each reachable host, the probability of having v is ρv. Ideally, the search

space of the vulnerable hosts under traditional environment is the whole IP address space

(3,706,452,992), e.g., by generating random target IP addresses to exploit. Consider the

factors that not every IP is assigned a host, and not each host is accessible, let δi be the

probability that a single IP address is reachable in the Internet. Therefore the attacker

needs to have at least N/ρvδi tries. However, under public IaaS cloud environment, the

exploring range is significantly shrunk as the cloud provider offers the location and IP range

publicly. For EC2, the total IP addresses is around 1,500,000 [5]. Besides, most of these IPs

are located in a centralized manner as the IP addresses of VMs on the same data center are
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usually assigned continuously [95]. With the high density of VMs running in a single data

center, launching exploit to the cloud usually has much higher hit ratio δc. Therefore the

attacker needs N/ρvδc, where δc � δi, which indicates that the attacker needs dramatically

less cost in cloud.

Identifying vulnerabilities. Under traditional environment shown in Figure 4.5, if the

attacker wants to utilize known vulnerabilities to exploit a host, he may have to scan over

the target machine, which can be easily blocked by firewalls. Researchers have proposed

several passive scanning approaches in order to bypass IDS or firewall [31, 50], which may

lower the scanning cost but still take a considerable amount of time and rely on some other

assumptions (e.g., host administrators never modify packet headers).

On the other side, this vulnerability scanning cost can be reduced dramatically in public

cloud environment (cf. Figure 4.6). As shown in my study in Amazon EC2, attackers could

obtain the information of VM images (OS and applications installed) by browsing public

image description pages. A brute force scanning on all images can help the attacker to decide

the distributions of systems and applications in VMs, although in a rough manner. This

information can reduce the cost to identify existing vulnerabilities of VMs running in the

cloud. Furthermore, the attacker can keep tracking newly-released vulnerabilities associated

with these prevalent OSes or applications in public images. Once a new vulnerability is

released, it may exist on a large number of VMs in the cloud. Consider the usual patching

window gap that I have observed in the last section, the attacker has plenty of time to develop

and launch exploits, e.g., to harvest bots with vulnerable VMs. Therefore, identifying known

vulnerabilities over the cloud is dramatically faster than that under traditional environment.

Dealing with hardening mechanisms of hosts. Customers on IaaS cloud usually have

limited hardening support from the cloud provider, e.g,. Amazon EC2 only provides each

instance an external firewall called security group, but no patching management. At the

same time, a large number of cloud customers are small-sized service providers [64], and

usually do not have strong motivation of hardening their systems as large companies. This
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Figure 4.5: Attacks under traditional environment

Figure 4.6: Attacks under IaaS cloud

results in a weak link for the cloud provider. Once an attacker has managed to exploit a

prevalent vulnerability among the VMs of these small companies, a large scale of attack can

result in loss for both the cloud customers and the cloud provider.

However, under traditional environment, an enterprise level service provider usually has

dedicated team to maintain their platforms, which are usually hardened with several layers

of firewalls (cf. Figure 4.5) in order to protect their data and infrastructure. The in-depth

defense mechanisms increase the difficulty level for an attacker to compromise the server. It

is extremely hard for an attacker to compromise a large number of hosts at the same time.
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Therefore, I conjecture that compromising or bypassing hardening systems costs less

under public cloud than that in traditional environment. Consider the cloud provider as a

special service provider. Since it provides high flexibility of customizing infrastructure to

its customers, its own defense mechanism is less tightly controlled compared to traditional

in-house service providers, which makes it much easier to penetrate.

Gains of Attacker

An attacker could access confidential information for social or commercial benefits. Besides,

the attacker could gain from the loss of his competitors by disrupting or disabling their

services. These gains are the same under both cloud and traditional environment. One

cloud specific gain is that upon compromising, high-quality bots on the cloud are denser

than that in traditional computing environment with higher bandwidth and availability,

which makes cyber terrorists easier to identify their targets.

Summary of Cost-effectiveness for Attacker

Considering similar gains of compromising a fixed set of hosts, the cost of the attacker is

lowered by launching large scale attacks in an IaaS cloud, with lower costs in identifying

enough number of vulnerable hosts, identifying exploiting vulnerabilities, and dealing with

hardening mechanisms. Furthermore, exploiting prevalent vulnerabilities in the cloud usu-

ally brings the attacker more competing benefits with higher quality of bots than exploiting

targets individually under traditional environment. Therefore, the cost-effectiveness ratio

for an attacker is lower in public cloud than that in traditional computing environment; that

is, it is more economically efficient for an attacker to launch attacks in cloud.

4.2.2 Cost-effectiveness Analysis for Defender

I refer the single term defender as all stakeholders that benefit from defending attacks,

including the cloud provider and all of its customers. While facing attacks, the visible
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cost paid by the defender is the hardening cost, and the gain is the loss of being exploited

by attackers, or the commercial benefits from the services that otherwise are disrupted or

disabled by attacks.

Costs for Defender

Hardening cost against known vulnerabilities is mainly from patching [85]. The cost per

unit by patching in-house hosts is more pricey than batch patching over the cloud, since the

batch processing lowers the hardening cost in cloud than in house servers [114].

Loss (or Gains) of Defender

Avoiding potential exploit effectiveness is the gain from the cloud provider’s perspective.

Exploiting effectiveness has a considerable overlap with an attacker’s potential gains. Specif-

ically, classical losses including that of service availability, data integrity, and confidentiality

are the same for the defender in both cloud and traditional environment. Most of these

losses are transferred to the attacker’s benefit. However, there are cloud specific losses

caused by large scale attacks, including neighborhood loss, user reputation loss for services,

cloud provider reputation loss, and cloud utility misuse.

Neighborhood loss. As aforementioned, an attacker can lookup the IP range of a cloud

provider’s data center easily. The attacker could rent a VM and launch a large scale exploits

to the VMs in the same data center. The attacker does not need to know the exact IP address

of his target. Instead, all VMs on the same data center with the same vulnerability can

be exploited. This expanded attack surface causes exponentially higher loss than that in

traditional computing environment.

Reputation loss for cloud customers. Cloud customers usually are web service providers,

and can lose their reputation from their own users upon being compromised. Even though

this type of loss is invisible and indirect, it may completely affect the end users’ confidence

in continuing their services. Threats from prevalent vulnerabilities enlarge such fears as a
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large number of services on the same cloud platform may exist.

Reputation loss of cloud provider. Even worse than user’s reputation loss for cloud cus-

tomers, the cloud provider’s reputation can dramatically drop given a considerable amount

of their VMs are compromised. Typically, the healthy including safety level of a cloud

provider impacts the number of its users. A customer based survey [48] indicates that a

cloud provider’s reputation is the most important factor when a customer chooses which

provider to go with.

Cloud utility misuse. Once an attacker has managed to deploy bots on one type of VMs

in public cloud, he potentially could create a botnet with a large number of machines, which

can be powerful enough for crushing other services over the Internet. This further enlarges

the cloud provider’s reputation loss. As for monetary loss, existing study has pointed out

that a DDoS attack could cause up to $19M/hour loss for availability-sensitive services like

E-banking. For each DDoS attack, the cost can be up to $100M [19].

Summary of Cost-effectiveness for Defender

The cloud provider can patch prevalent vulnerabilities with a cheaper unit cost than patching

in-house servers individually. At the same time, the effectiveness of exploiting prevalent

vulnerabilities in IaaS cloud is exponentially higher than the same attacks under traditional

environment, consider much denser potential victims with the same vulnerabilities in cloud.

Furthermore, the defender has extra cloud-specific losses such as cloud provider’s reputation

loss and cloud utility misuses. Therefore, my conclusion is that the cloud defender has much

lower cost-effectiveness ratio than in traditional computing environment, which indicates that

with the same cost spent by the defender, he achieves more economic benefit in cloud.
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4.3 Tactical Game Modeling Between Attacker and

Defender

Above cost-effectiveness analysis statically considers the costs and gains for both attack-

ers and defenders. However, in real world several factors impact the relative costs and

benefits of each side, and thus both rational attackers and defenders adjust their behav-

iors by considering these dynamic factors to achieve maximum benefits. Among these, the

time-since-release has been considered as one of the main affecting factors that impacts the

effectiveness of exploiting known vulnerabilities. This comes from an assumption that more

VMs are patched for a given vulnerability as time goes by. Therefore, the sooner the at-

tacker acts, the larger number of victim hosts can be hit with the same cost. On the other

side, the sooner the defender acts, he can patch more VMs thus prevent more loss with lower

cost. Moreover, patching a more prevalent vulnerability (by means of the vulnerability dis-

tribution in images and VMs) results in more cost-effectiveness ratio for both the attacker

and defender, since it costs more for the attacker to identify vulnerable victims, and brings

less gain for the defender to patch the vulnerability.

Therefore, I believe the dynamic cost-effectiveness ratios result in a game-based tactics

between the attacker and defender. In this section, I construct a game theoretic model in

order to illustrate the actions that rational attackers and defenders should take. I further

map different cost-effectiveness scenarios into cost density functions to show their evolutions.

The model indicates that both the attacker and defender have stronger incentive to act

earlier, and their actions become less cost-effective as time goes by. After certain moment,

the defender only needs to maintain the security level (the prevalence of the vulnerability)

as the patching cost may exceed the cost from residual risk. The attacker may also lose the

motivation of launching further attacks after certain point as the attack gain may not be able

to compensate the attack cost due to the drop of the vulnerability prevalence. Therefore

the threat from prevalent vulnerabilities can be greatly mitigated as long as the defender
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patches security holes in a timely and proactive manner. However, cloud customers should

be advised to protect their systems against targeted attacks as this is not a cloud specific

threat.

4.3.1 Game Theory Background

An N-player game can be represented as a function G (S1, S2, . . . , SN , u1, u2, . . . , uN ), where

Si (0 < i < N) is a strategy set (si1, . . . , sim) for player i, and sj (sj ∈ Si) is a complete

strategy available for player i. Player i has a probability distribution Pi = (pi1, . . . , pim),

where pik is the probability of sik being adopted by player i. The payoff for player i is

ui(S1, . . . , Sn) (1 < j < n), where Sj is the strategy adopted by user j. For an N -player

game theory, the expected payoff for player i is:

vi(p1, . . . , pn) =
M1∑
m1=1

. . .
Mn∑
mn=1

[ n∏
k=1

Pkmk

]
ui(S1m1 , . . . , Snmn), (4.1)

where Mj is the pure strategy numbers available to player j. For a 2-player game, the

expected payoff of player 1 is:

v1(p1, p2) =

M1∑
m1=1

M2∑
m2=1

P1m1P2m2u1(S1m1 , S2m2), (4.2)

where p1 and p2 are two sets of probability distributions adopted by the two players, re-

spectively. Each distribution consists of a number of probabilities (sum up to 1), each of

which indicates the chance of a strategy adopted by the player. S1m1 and S2m2 represent

the strategies adopted by p1 and p2, respectively.
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4.3.2 Game Theory Modeling

I consider player 1 as the attacker and player 2 as the defender. Player 1 has two strategies:

attack (S11) or stay idle (S12). Player 2 also has two strategies: patching (S21) or stay

unpatched (S22). Pij indicates the probability of Sij being adopted. I say that K1 is a

proactive action adopted by each player, meaning attack and patch for the attacker and

the defender, respectively. K2 means a passive action: stay idle for the attacker and leave

the platform unpatched for the defender. Given each of the two players has two possible

strategies, there are four conditions as follows.

• Both players choose K1. The cloud defender needs to pay cost (−CP ) in order to

patch his platform in a timely manner. On the other side, the attacker has to pay the

cost (−AC) of exploiting but without gaining from the hardened platform.

• When both players choose K2, obviously both get 0.

• When the attacker chooses K1 and the defender chooses K2, the attacker gains (+AG)

from exploiting by paying attack cost (−AC). The defender suffers the cost of being

exploited (−CD).

• When the attacker chooses K2 and the defender chooses K1, the attacker gets 0 and

the defender pays patch cost (−CP ) to keep the platform up-to-date.

I use PS and PA to denote the probability of being proactive for the defender and the

attacker, respectively. Given the four possible conditions, their expected payoffs (VA and

VS) in the game are:

VA = −AC × PAPS + 0× (1− PA)× (1− PS)

+AG× PA × (1− PS) + 0× (1− PA)× PS

= AG× PA × (1− PS)− AC × PAPS (4.3)
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VS = −CP × PAPS + 0× (1− PA)× (1− PS)

−CD × PA × (1− PS)− CP × (1− PA)× PS

= −CD × PA × (1− PS)− CP × PS (4.4)

The equations indicate that the expected payoffs of both players depend on both of their

determinations of being proactive. Without exploiting intention, the attacker does not gain

anything. When being more aggressive, he has an increased potential gain (when facing an

unconscious defender) with the cost of launching attacks. A passive defender may end up

losing nothing given the attacker is passive as well. However, this assumption is unrealistic

as cyber attacks are ubiquitous. The defender (especially under cloud environment) should

have a reasonable expectation on the density of attacks per unit time in order to balance

the tradeoff between hardening cost and risk properly. Visualizing the game between the

attacker and the defender can assist cloud stakeholders to better understand current security

situation and make hardening plans accordingly.

4.3.3 Tactical Modeling between Attacker and Defender

We define risk as an instantiation of image with prevalent vulnerability. Risk density refers

to the number of the risk per unit time. The relation between risk density from one vul-

nerability and time is mapped into an exponential function. The function can be expressed

in Equation 4.5, where t is time and λ is the initial risk density. A larger λ means higher

initial risk density of the vulnerability. As time goes by, the instantiation of the particular

vulnerable image goes down proportionally as its popularity drops. After each time unit, the

risk density becomes the product of the current risk density and e−d, where d is a positive

number. Therefore, the prevalence of the vulnerability determines the initial risk density

72



Figure 4.7: Cost density distribution for cloud defender.

value λ, and the exponential function represents the risk density trend over time.

f(t, λ) =

 λe−dt t ≥ 0

0 t < 0
(4.5)

Tactical Modeling for Defender

Figure 4.7 illustrates the cost-effectiveness from the defender’s perspective with two differ-

ent strategies. The value of t0 indicates the exploit window of a prevalent vulnerability.

Therefore starting from t0, the defender can choose to deploy patch to the vulnerability.

Then the risk density is dropped to the patched risk density curve. A rational defender has

a lower risk density because the sum of residual risk and patch cost is regarded lower than

the unpatched risk cost density at the beginning. At the moment t1, the two curves have

a point of intersection. Starting from t1, the defender only needs to maintain the security

level. This is because the patch cost density has exceeded the residual risk density. The

value of t1 is can be calculated by Equation 4.6.
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λ1e
−d1t1 = λ2e

−d2t1

t1 =
lnλi − lnλr

di − dr
(4.6)

Therefore, the risk that could possibly be reduced by a rational defender can be expressed

with Equation 4.7 and is marked in Figure 4.7, where λi and λr are initial risk density values

of before and after the patch has been deployed. As indicated in Figure 4.7, minimizing the

value of t0 and initial risk density (λi) of the prevalent vulnerability can maximumly reduce

the risk.

R(di, dr) =

∫ t1

t0

λie
−ditdt−

∫ t1

t0

λre
−drtdt

= (1− e−dit)
∣∣t1
t0
− (1− e−drt)

∣∣t1
t0

(4.7)

Tactical Modeling for Attacker

The density of the attacker’s potential gain through exploiting is similar as but slightly lower

than the unpatched cloud loss due to being exploited, since some loss like neighborhood loss

cannot be gained by the attacker. Therefore, the attacker’s potential gain conforms to a

exponential function as well. The attack cost has both maximum and minimum values given

a fixed number of to-be exploited targets. The maximum value is paid while brute-forcing

over the whole cloud platform (if there are not enough hosts that can be compromised in the

whole platform) and the minimum cost is paid while exploiting each target with minimum

cost (each attack succeeds at its first attempt). The cost is negatively correlated to the

exploiting effectiveness because exploiting vulnerabilities with higher density costs less than

utilizing sparsely distributed security holes. Therefore, the attack cost can be mapped to

Equation 4.8. The function also has a base constant value B, which represents the basic

cost of each attack, e.g., target reconnaissance and vulnerability detection. de refers to the
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decaying factor of successful attack attempts. The chance of successfully exploiting a target

machine is as small as the product of the original chance and e−de after each time unit

passed.

F (t, de) =

 1− e−det +B t ≥ 0

0 t < 0
(4.8)

Figure 4.8 indicates the attacker’s cost-effectiveness as time goes by. Consider a de-

fender with strong security awareness which deploys patch at t0, the attacker’s gain is then

decreased dramatically. If the defender is unconscious, attacks could last until t2 as the gain

through attacks after t2 cannot compensate the attacker’s cost of launching these exploits.

Equations 4.9 indicates the attacker’s gain by exploiting unpatched (tp = t2) and well hard-

ened (tp = t0) platform, respectively. λg means the initial density of attacker’s gain and λc

means the initial attack cost density. In general the attacker loses the motivation of attacks

after t0 or t2 whichever comes first. t2 can be calculated through solving Equation 4.10.

Given t0 and t2, the attacker’s gain reduced by a rational defender can be obtained through

Equations 4.9 and is the marked area in Figure 4.8.

G(dg, dc) =

∫ tp

0

λge
−dgtdt−

∫ tp

0

(1− e−dct)dt− tp ×B

= (1− e−dgt)
∣∣tp
0
− (t+

1

dc
)

∣∣∣∣tp
0

(4.9)

tp =

 t2 t0 ≥ t2

t0 t0 < t2

λe−dgt2 = (1− e−dct2) (4.10)
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Figure 4.8: Cost and gain density distribution for cloud attacker.

Figure 4.9: Game between attacker and defender in cloud.

Two-player Game

The game between the attacker and defender can be seen in Figure 4.9. At the starting

point, both attack and defense are impacting. However, both of them become less cost-

effective as time goes by. There are three noteworthy moments. t2 is the moment when the

attacker’s cost and gain get balanced, after that a rational attacker stops launching attacks.

t1 is the moment when the cloud defender’s cost is minimized and further patching costs

higher than the residual risk. t1 is not necessarily less than t2. When t1 > t2, a rational

attacker stops attacking but the cloud defender continues patching as the expected potential
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Figure 4.10: Cost-effectiveness comparison between traditional and cloud environments.

loss is greater than patching cost, and the cloud defender stops hardening its platform until

t2. When t1 ≤ t2, the defender’s cost and gain get balanced first, and he stops patching

but maintains the security level. However, a rational attacker continues launching attacks

under this circumstance as he can still obtain more than attack cost. When t1 ≤ t2, we

say there is a range for both the attacker and the defender can be satisfied. If t1 > t2,

the attacker stops launching attacks as the expected gain cannot compensate attack cost.

The defender only needs to maintain the security level under this circumstance. After t0

the defender has patch available to the vulnerability. If the defender deploys patch, both

t1 and t2 could arrive earlier up to t0 because both exploiting effective density and attacker

gain density drop. Therefore, not only could an smaller t0 reduce the attacker’s gain and

exploiting effectiveness, it could also end the game between attacker and defender earlier.

Cost-effectiveness Comparison between Cloud and Traditional Computing En-

vironment

In order to compare attacks under cloud and traditional computing environment, and inves-

tigate how much risk can be reduced by rational defenders, we model the cost-effectiveness

from both the attacker’s and the defender’s perspective. We use the risk density functions

(Equations 4.7 and 4.9) to answer the following questions:
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• How much risk can be reduced by a rational defender in the cloud?

• How much risk can be reduced by a rational defender in traditional in-house environ-

ment?

• How much more gain can the attacker obtain when facing an unconscious cloud de-

fender than a rational defender?

• How much more gain can the attacker obtain when facing an unconscious defender

than a rational defender in traditional environment?

In Section 4.2 we have analyzed that prevalent vulnerabilities lead to lower patching

expense but higher potential loss in cloud than under traditional environment. Therefore

under the cloud environment, the risk density is higher but the patch cost density is lower

than those under traditional environment. Figure 4.10 illustrates the comparison. For

cloud environment, the initial risk and cost density value before and after patch deployed

are denoted by λi and λr. While λti and λtr represent initial risk and cost density under

traditional environment (before and after patch deployed, respectively). As we can see, the

defender in the cloud can achieve a better stable security level than in traditional because

of the lower cost in patching. The time t′1 does not need to be greater than t1. If the cloud

defender can handle hardening work appropriately, it can achieve a lower security level with

shorter period of time. Figure 4.10 also tells us that it is urgent for the cloud defender

to harden the cloud platform as the gap between the potential loss and hardening cost

is dramatically enlarged compared to that under traditional environment. Without patch

deployed, the potential loss in the cloud is exponentially higher , i.e., R(λi, λr)� R(λti, λtr).

4.3.4 Summary

Through dynamic cost-effectiveness analysis with gaming modeling, we have observed that

both attack and defense are more cost-effective in the cloud, and they become less cost-

effective as time goes by. Three factors determines the game between the two parties: the
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defender’s willingness (PS), responsiveness (t0), and activeness (λr). In a nutshell, the cloud

defender should be willing to harden its cloud platform in a timely and proactive manner.

4.4 Countermeasures

My gaming modeling indicates that in order to minimize attacker’s gain, which is the cost

marked in Figure 4.8, three parameters (t0, λg and B) can be tuned. This means that the

defender should be more responsive and proactive to known vulnerabilities. Minimizing

t0 means eliminating 1-day exploits, i.e., keeping all instances up-to-date and maintaining

running instances without severe known security holes. Minimize λg, which means reduce

the risk density at the beginning (or as soon as possible). Increase B, which means increase

the base cost of each attempt of attack. Based on the three directions. We propose the

following three countermeasures for cloud providers and customers.

Patching public VM images. Public VM images like AMIs should be up-to-date when

being launched by users. The cloud provider should setup policy in order to make sure

unpatched images should not be launched. Two options are available in order to achieve this

requirement: the provider can either force a user to update the image before it is launched,

or the provider or image publishers can update public images offline periodically [114]. This

could reduce the boot time at user end during launching. This countermeasure will reduce

the value of t0 in Figure 4.8.

Maintaining running instances. Every time when launching an image, the image should

be required to check against a configuration file in order to make sure all default apps are

up to date. The configuration file can be provided by the image publisher. Cloud users can

customize the configuration file on their own. Cloud users should also be responsible for

the applications installed by themselves. Similar to the above countermeasure, this will also

reduce the value of t0 in Figure 4.8.

Give patching priority to prevalent vulnerabilities. As Figure 4.7 indicates, higher
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prevalence is more time sensitive. Therefore, considering the prevalence (along with impact

factors) of vulnerabilities is needed when making patching plans. The moment (td) of

deploying a patch to a specific vulnerability can be inferred from a preset threshold of

tolerable risk. Given similar impact, a higher prevalent vulnerability usually has a smaller

td. This countermeasure will also reduce the initial risk density (λg) in Figure 4.8.

Shuffling cloud infrastructure smartly. Introduce a new defensive mechanism, which

could make the configuration of the cloud platform as an animation rather than a static pic-

ture. Similar to patching vulnerabilities periodically, configurations (e.g.IP address, topol-

ogy or applications) can be changed time to time. This type of moving target defense

paradigms [23, 97, 115, 116] could significantly mitigate security holes on the cloud. It

could also increase the base cost for each attempt of attack (value of B) in Figure 4.8.

Secure data in the cloud. More hardening approaches like seamless encryption in the

cloud [55, 102, 104, 113]. Attacker will be slowed down as less information can be obtained

after attacker compromised one instances in the cloud. Also attacker aims at stealing sensi-

tive data will become less motivated because decrypting data will be a nontrivial task after

he compromise the target machine. Therefore this countermeasure will also increase the

base cost per each attack.

4.5 Discussions

I identify the threat of exploiting prevalent vulnerabilities in IaaS cloud with an empirical

study and real penetration test in Amazon EC2. I pinpoint that such threat exponentially

increases the risk level of cloud due to two factors: the prevalent vulnerabilities can spread

quickly on public cloud as one image could potentially be instantiated by a large number

of users, and the nature of the cloud enables more cost-effective attacks than traditional

in-house computing environment. I analyze the cost and effectiveness of exploiting and

defending prevalent vulnerabilities under traditional and cloud environments. The results
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indicate that both cloud attackers and defenders have lower cost-effectiveness ratio, which

enables a game-like tactical scenario between them. To further illustrate the influence of

dynamic cost-effectiveness nature, I build a 2-player game theoretic model and a risk-gain

analysis to capture the risks associated with two types (rational or unconscious) of attackers

and defenders. The result reveals that both attack and defense become less cost-effective in

cloud as time goes by, which suggests the defender should be more responsive and proactive

under cloud environment. I stir up them with a number of possible countermeasures against

such threat. However, the following limitations need to be overcome in order to provide

better results.

First of all, I only consider prevalent vulnerabilities in large-scale cloud. I do not provide

an aggregated metric indicating the security level of the whole cloud platform and individual

VM systems. Cloud stakeholders can use my model to further calculate a metric for finer-

grained modeling. The calculation can be based on environmental factor or impact factor

of identified vulnerabilities.

Secondly, I do not have accurate statistics regarding cloud customers’ system information

of running VMs, e.g., exactly how many VMs are launched for a particular image, and

how many users usually patch their VMs in timely manner. In the model I take a simple

estimation by assuming that the prevalence of instances is similar to that of public images.
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Chapter 5

Zero-day Risk Assessment

All of the previous chapters focus on known vulnerabilities evaluation. Known vulnerabil-

ities are obvious and their characteristics are easy to be retrieved. However, the risk from

unknown vulnerabilities cannot be ignored. Each year a large number of new software vul-

nerabilities are discovered in various applications (see Figure 5.1). Moreover, A zero-day

vulnerability could last a long period of time (e.g. in 2010 Microsoft confirmed a vulnerabil-

ity in Internet Explorer, which affected some versions that were released in 2001). Therefore,

in order to have more accurate results on network security evaluation, one must consider

the effect from zero-day vulnerabilities. The National Vulnerability Database (NVD) is a

well-known data source for vulnerability information, which could be useful to estimate the

likelihood that a specific application contains zero-day vulnerabilities based on historical

information.

In this chapter, I will present my empirical experience of applying data-mining techniques

on NVD data in order to build a prediction model for an unknown risk metric per application

- Time to Next Vulnerability (TTNV). I conduct a rigorous data analysis and experiment

with a number of feature construction schemes and learning algorithms. The results show

that the data in NVD generally have poor prediction capability, with the exception of a

few vendors and software applications. In the rest of the chapter I will explain the features
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Figure 5.1: The trend of vulnerability numbers

I have constructed and the various approaches I have taken in my attempts to build the

prediction model. While it is generally a difficult task to show that data has no utility,

my experience does indicate a number of reasons why it is unlikely to construct a reliable

prediction model for TTNV given the information available in NVD.

5.1 Data Source – National Vulnerability Database

Each data entry in NVD consists of a large number of fields. I represent them as <D, CPE,

CVSS>. D is a set of data including published time, summary of the vulnerability and

external links about each vulnerability. CPE [14] and CVSS [63] will be described below.

5.1.1 CPE (Common Platform Enumeration)

CPE is an open framework for communicating the characteristics and impacts of IT vulner-

abilities. It provides us with information on a piece of software, including version, edition,

language, etc. An example is shown below:

cpe:/a:acme:product:1.0:update2:pro:en-us
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Professional edition of the "Acme Product 1.0 Update 2 English".

5.1.2 CVSS (Common Vulnerability Scoring System )

CVSS is a vulnerability scoring system designed to provide an open and standardized method

for rating IT vulnerabilities. CVSS helps organizations prioritize and coordinate a joint

response to security vulnerabilities by communicating the base, temporal and environmental

properties of a vulnerability. Currently NVD only provides the Base group in its metric

vector. Some components of the vector are explained below.

• Access Complexity indicates the difficulty level of the attack required to exploit the

vulnerability once an attacker has gained access to it. It includes three levels: High,

Medium, and Low.

• Authentication indicates whether an attacker must authenticate in order to exploit a

vulnerability. It includes two levels: Authentication Required (R), and Authentication

Not Required (NR).

• Confidentiality, Integrity and Availability are three loss types of attacks. Confiden-

tiality loss means information will be leaked to people who are not supposed to know

it. Integrity loss means the data can be modified illegally. Availability loss means the

compromised system cannot perform its intended task or will crash. Each of the three

loss types have the three levels: None (N), Partial (P), and Complete (C).

The CVSS Score is calculated based on the metric vector, with the objective of indicating

the severity of a vulnerability.

5.2 My Approach

I choose TTNV (time to next vulnerability) as the predicted feature. The predictive at-

tributes are time, versiondiff (the distance between two different versions by certain mea-

surement), software name and CVSS. All are derived or extracted directly from NVD.
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5.2.1 Data Preparation and Preprocessing

Division of training/test data:

As the prediction model is intended to be used to forecast future vulnerabilities, I divide

the NVD data into training and test data sets based on the time the vulnerabilities were

published. The ratio of the amount of training to test data is 2. I chose to use the data

starting from 2005, as the data prior to this year looks unstable (see Figure 5.1).

Removing obvious errors:

Some NVD entries are obviously erroneous (e.g. in one entry for Linux the kernel version

was given as 390). To prevent these entries from polluting the learning process, I removed

them from the database.

5.2.2 Feature Construction and Transformation

Identifying and constructing predictive features is of vital importance to data-mining. For

the NVD data, intuitively Time and Version are two useful features. As we want to predict

time to next vulnerability, the published time for each past vulnerability will be a useful

information source. Likewise, the version information in each reported vulnerability could

indicate the trend of vulnerability discovery, as new versions are released. Although both

Time and Version are useful information sources, they need to be transformed to provide

the expected prediction behavior. For example, both features in their raw form increase

monotonically. Directly using the raw features will provide little prediction capability for

future vulnerabilities. Thus, I introduce several feature construction schemes for the two

fields and studied them experimentally.
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Time:

I investigated two schemes for constructing time features. One is epoch time, the other

is using month and day separately without year. Like explained before, the epoch time is

unlikely to provide useful prediction capability, as it increases monotonically. Intuitively, the

second scheme shall be better, as the month and day on which a vulnerability is published

may show some repeating pattern, even in future years.

Version:

I calculate the difference between the versions of two adjacent instances and use the ver-

siondiff as a predictive feature. An instance here refers to an entry where a specific version

of an application contains a specific vulnerability. The rationale for using versiondiff as a

predictive feature is that we want to use the trend of the versions with time to estimate

future situations. Two versiondiff schemas are introduced in my approach. The first one is

calculating the versiondiff based on version counters (rank), while the second is calculating

the versiondiff by radix.

Counter versiondiff: For this versiondiff schema, differences between minor versions and

differences between major versions are treated similarly. For example, if one software has

three versions: 1.1, 1.2, 2.0, then the versions will be assigned counters 1, 2, 3 based on the

rank of their values. Therefore, the versiondiff between 1.1 and 1.2 is the same as the one

between 1.2 and 2.0.

Radix-based versiondiff: Intuitively, the difference between major versions is more sig-

nificant than the difference between minor versions. Thus, when calculating versiondiff, we

need to assign a higher weight to relatively major version changes and lower weight to rel-

atively minor version changes. For example, for the three versions 1.0, 1.1, 2.0, if we assign

a weight of 10 to the major version and a weight of 1 to each minor version, the versiondiff

between 1.1 and 1.0 will be 1, while the versiondiff between 2.0 and 1.1 will be 9.
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When analyzing the data, I found out that versiondiff did not work very well for the

problem because, in most cases, the new vulnerabilities affect all previous versions as well.

Therefore, most values of versiondiff are zero, as the new vulnerability instance must affect

an older version that also exists in the previous instance, thus, resulting in a versiondiff of

zero. In order to mitigate this limitation, I created another predictive feature for my later

experiments. The additional feature that I constructed is the number of occurrences of a

certain version of each software. More details will be provided in Section 5.3.

5.2.3 Machine Learning Functions

I used either classification or regression functions for the prediction, depending on how I

define the predicted feature. The TTNV could be a number representing how many days

we need to wait until the occurrence of the next vulnerability. Or it could be binned and

each bin stands for values within a range. For the former case, I used regression functions.

For the latter case, I used classification functions. I used WEKA [12] implementations of

machine learning algorithms to build predictive models for the data. For both regression and

classification cases, I explored all of the functions compatible to our data type, with default

parameters. In the case of the regression problem, the compatible functions are: linear

regression, least median square, multi-layer perceptron, RBF network, SMO regression, and

Gaussian processes. In the case of classification, the compatible functions are: logistic, least

median square, multi-layer perceptron, RBF network, SMO, and simple logistic.

5.3 Experimental Results

I conducted the experiments on my department’s computer cluster - Beocat. I used a single

node and 4G RAM for each experiment. As mentioned above, WEKA [12], a data-mining

suite, was used in all experiments.
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5.3.1 Evaluation Metrics

A number of metrics are used to evaluate the performance of the predictive models learned.

Correlation Coefficient:

The correlation coefficient is a measure of how well trends in the predicted values follow

trends in actual values. It is a measure of how well the predicted values from a forecast

model “fit” the real-life data. The correlation coefficient is a number between -1 and 1. If

there is no relationship between the predicted values and the actual values, the correlation

coefficient is close to 0 (i.e., the predicted values are no better than random numbers). As

the strength of the relationship between the predicted values and actual values increases,

so does the correlation coefficient. A perfect fit gives a coefficient of 1.0. Opposite but

correlated trends result in a correlation coefficient value close to -1. Thus, the higher the

absolute value of the correlation coefficient, the better; however, when learning a predictive

model, negative correlation values are not usually expected. I generate correlation coefficient

values as part of the evaluation of the regression algorithms used in my study.

Root Mean Squared Error:

The mean squared error (MSE) of a predictive regression model is another way to quantify

the difference between a set of predicted values, xp, and the set of actual (target) values, xt,

of the attributed being predicted. The root mean squared error (RMSE) can be defined as:

RMSE(xp, xt)=
√
MSE(xp, xt) =

√
E[(xp − xt)2] =

√√√√ n∑
i=1

(xp,i − xt,i)2

n

Root Relative Squared Error:

According to [1], the root relative squared error (RRSE) is relative to what the error would

have been if a simple predictor had been used. The simple predictor is considered to be the

mean/majority of the actual values. Thus, the relative squared error takes the total squared
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error and normalizes it by dividing by the total squared error of the simple predictor. By

taking the root of the relative squared error one reduces the error to the same dimensions

as the quantity being predicted.

RRSE(xp, xt) =

√√√√√√√
n∑
i=1

(xp,i − xt,i)2

n∑
i=1

(xt,i − x̄)2

Correctly Classified Rate:

To evaluate the classification algorithms investigated in this work, I use a metric called

correctly classified rate. This metric is obtained by dividing correctly classified instances by

all instances. Obviously, a higher value suggests a more accurate classification model.

5.3.2 Experiments

I performed a large number of experiments, by using different versiondiff schemes, different

time schemes, and by including CVSS metrics or not. For different software, different feature

combinations produce the best results. Hence, I believe it is not effective to build a single

model for all the software. Instead, I build separate models for different software. This way,

I also avoid potential scalability issues due to the large number of nominal type values from

vendor names and software names.

Given the large number of vendors in the data, I did not run experiments for all of them.

I focused especially on several major vendors (Linux, Microsoft, Mozilla and Google) and

built vendor-specific models. For three vendors (Linux, Microsoft and Mozilla), I also built

software-specific models. For other vendors (Apple, Sun and Cisco), I bundled all their

software in one experiment.
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5.3.3 Results

Linux:

I used two versiondiff schemes, specifically counter-based and radix-based, to find out which

one is more effective for the model construction. I also compared two different time schemes

(epoch time, and using month and day separately). In a first set of experiments, I predicted

TTNV based on regression models. In a second set of experiments, I grouped the predictive

feature (TTNV) values into bins, as I observed that the TTNV distribution shows several

distinct clusters, and solved a classification problem.

Table 5.1 shows the results obtained using the epoch time scheme versus the results

obtained using the month and day scheme, in terms of correlation coefficient, for regression

models. As can be seen, the results of the experiments did not show a significant difference

Table 5.1: Correlation Coefficient for Linux Vulnerability Regression Models Using Two
Time Schemes

Regression Functions
Epoch time Month and day

training test training test
Linear regression 0.3104 0.1741 0.6167 -0.0242
Least mean square 0.1002 0.1154 0.1718 0.1768
Multi-layer perceptron 0.2943 0.1995 0.584 -0.015
RBF network 0.2428 0 0.1347 0.181
SMO regression 0.2991 0.2186 0.2838 0.0347
Gaussian processes 0.3768 -0.0201 0.8168 0.0791

between the two time schemes that I used, although I expected the month and day feature

to provide better results than the absolute epoch time, as explained in Section 5.2.2. Thus,

neither scheme has acceptable correlation capability on the test data. I adapted the month

and day time schema for all of the following experiments.

Table 5.2 shows a comparison of the results of the two different versiondiff schemes.

As can be seen, both perform poorly as well. Given the unsatisfactory results, I believed

that the large number of Linux sub-versions could be potentially a problem. Thus, I also

investigated constructing the versiondiff feature by binning versions of the Linux kernel (to
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Table 5.2: Correlation Coefficient for Linux Vulnerability Regression Models Using Two
Versiondiff Schemes

Regression Functions
Version counter Radix based

training test training test
Linear regression 0.6167 -0.0242 0.6113 0.0414
Least mean square 0.1718 0.1768 0.4977 -0.0223
Multi-layer perceptron 0.584 -0.015 0.6162 0.1922
RBF network 0.1347 0.181 0.23 0.0394
SMO regression 0.2838 0.0347 0.2861 0.034
Gaussian processes 0.8168 0.0791 0.6341 0.1435

obtained a smaller set of sub-versions). I round each sub-version to its third significant major

version (e.g. Bin(2.6.3.1) = 2.6.3). I bin based on the first three most significant versions

because more than half of the instances (31834 out of 56925) have version longer than 3,

and Only 1% (665 out of 56925) versions are longer than 4. Also, the difference on the third

subversion will be regarded as a huge dissimilarity for Linux kernels. I should note that the

sub-version problem may not exist for other vendors, such as Microsoft, where the versions

of the software are naturally discrete (all Microsoft products have versions less than 20).

Table 5.3 shows the comparisons between regression models that use binned versions versus

regression models that do not use binned versions. The results are still not good enough

as many of the versiondiff values are zero, as explained in Section 3.2 (new vulnerabilities

affect affect previous versions as well).

Table 5.3: Correlation Coefficient for Linux Vulnerability Regression Models Using Binned
Versions versus Non-Binned Versions

Regression Functions
Non-binned versions Binned versions
training test training test

Linear regression 0.6113 0.0414 0.6111 0.0471
Least mean square 0.4977 -0.0223 0.5149 0.0103
Multi-layer perceptron 0.6162 0.1922 0.615 0.0334
RBF network 0.23 0.0394 0.0077 -0.0063
SMO regression 0.2861 0.034 0.285 0.0301
Gaussian processes 0.6341 0.1435 0.6204 0.1369
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TTNV Binning: Since I found that the feature (TTNV) of Linux shows distinct clusters,

I divided the feature values into two categories, more than 10 days and no more than 10

days, thus transforming the original regression problem into an easier binary classification

problem. The resulting models are evaluated in terms of corrected classified rates, shown

in Table 5.4. While the models are better in this case, the false positive rates are still high

(typically above 0.4). In this case, as before, I used default parameters for all classification

functions. However, for the SMO function, I also used the Gaussian (RBF) kernel. The

results of the SMO (RBF kernel) classifier are better than the results of most other classifiers,

in terms of correctly classified rate. However, even this model has a false positive rate of

0.436, which is far from acceptable.

Table 5.4: Correctly Classified Rates for Linux Vulnerability Classification Models Using
Binned TTNV

Classification Functions
Correctly classified

FPR TPR
training test

Simple logistic 97.6101% 69.6121% 0.372 0.709
Logistic regression 97.9856% 57.9542% 0.777 0.647
Multi-layer perceptron 98.13% 64.88% 0.689 0.712
RBF network 95.083% 55.18% 0.76 0.61
SMO 97.9061% 61.8259% 0.595 0.658
SMO (RBF kernel) 96.8303% 62.8392% 0.436 0.641

CVSS Metrics: In all cases, I also perform experiments by adding CVSS metrics as

predictive features. However, I did not see much differences.

Microsoft:

As we have already observed the limitation of versiondiff scheme in the analysis of Linux

vulnerabilities, for Microsoft instances, I use only the number of occurrences of a certain

version of a software or occurrences of a certain software, instead of using versiondiff, as

described below. I analyzed the set of instances and found out that more than half of the

instances do not have version information. Most of these case are Windows instances. Most
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of the non-Windows instances (more than 70%) have version information. Therefore, I used

two different occurrence features for these two different types of instances. For Windows

instances, I used the occurrence of each software as a predictive feature. For non-Windows

instances, I used the occurrence of each version of the software as a predictive feature.

Also based on my observations for Linux, I used only the month and day scheme, and

did not use the epoch time scheme in the set of experiments I performed for Windows.

I analyzed instances to identify potential clusters of TTNV values. However, I did not

find any obvious clusters for either windows or non-windows instances. Therefore, I only

used regression functions. The results obtained using the aforementioned features for both

Windows and non-Windows instances are presented in Table 5.5. As can be seen, the

correlation coefficients are still less than 0.4.

Table 5.5: Correlation Coefficient for Windows and Non-Windows Vulnerability Regression
Models, Using Occurrence Version/Software Features and Day and Month Time Scheme

Regression Functions
Win Instances Non-win Instances

training test training test
Linear regression 0.4609 0.1535 0.5561 0.0323
Least mean square 0.227 0.3041 0.2396 0.1706
Multi-layer perceptron 0.7473 0.0535 0.5866 0.0965
RBF network 0.1644 0.1794 0.1302 -0.2028
SMO regression 0.378 0.0998 0.4013 -0.0467
Gaussian processes 0.7032 -0.0344 0.7313 -0.0567

I further investigated the effect of building models for individual non-Windows applica-

tions. For example, I extracted Internet Explorer (IE) instances and build several models

for this set. When CVSS metrics are included, the correlation coefficient is approximately

0.7. This is better than when CVSS metrics are not included, in which case, the correlation

coefficient is approximately 0.3. The results showing the comparison between IE models

with and without CVSS metrics is shown in Table 5.6. I tried to performed a similar ex-

periment for Office. However, there are only 300 instances for Office. Other office-related

instances are about individual software such as Word, PowerPoint, Excel and Access, etc,

and each has less than 300 instances. Given the small number of instances, I could not build
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models for Office.

Table 5.6: Correlation Coefficient for IE Vulnerability Regression Models, with and without
CVSS Metrics

Regression Functions
With CVSS Without CVSS

training test training test
Linear regression 0.8023 0.6717 0.7018 0.3892
Least mean square 0.6054 0.6968 0.4044 0.0473
Multi-layer perceptron 0.9929 0.6366 0.9518 0.0933
RBF network 0.1381 0.0118 0.151 -0.1116
SMO regression 0.7332 0.5876 0.5673 0.4813
Gaussian processes 0.9803 0.6048 0.9352 0.0851

Mozilla:

At last, I built classification models for Firefox, with and without the CVSS metrics. The

results are shown in Table 5.7. As can be seen, the correctly classified rates are relatively

good (approximately 0.7) in both cases. However, the number of instances in this dataset

is rather small (less than 5000), therefore it is unclear how stable the prediction model is.

Table 5.7: Correctly Classified Rate for Firefox Vulnerability Models with and without
CVSS Metrics

Classification Functions
With CVSS Without CVSS

training test training test
Simple logistic 97.5% 71.4% 97.5% 71.4%
Logistic regression 97.5% 70% 97.8% 70.5%
Multi-layer perceptron 99.5% 68.4% 99.4% 68.3%
RBF network 94.3% 71.9% 93.9% 67.1%
SMO 97.9% 55.3% 97.4% 55.3%

5.3.4 Parameter Tuning

As mentioned above, I used default parameters for all regression and classification models

that I built. To investigate if different parameter settings could produce better results, I

chose to tune parameters for the support vector machines algorithm (SVM), whose WEKA
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implementations for classifications and regression are called SMO and SMO regression, re-

spectively. There are two main parameters that can be tuned for SVM, denoted by C and σ.

The C parameter is a cost parameter which controls the trade-off between model complexity

and training error, while σ controls the width of the Gaussian kernel [2].

To find the best combination of values for C and σ, I generated a grid consisting of

the following values for C: 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15, 20 and the following values

for σ: 0, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 5.0, and run the SVM algorithm for all possible

combinations. I used a separate validation set to select the combination of values that gives

the best values for correlation coefficient, and root squared mean error and root relative

squared error together. The validation and test datasets have approximately equal sizes;

the test set consists of chronologically newer data, as compared to the validation data, while

the validation data is newer than the training data.

Table 5.8 shows the best parameter values when tuning was performed based on the

correlation coefficient, together with results corresponding to these parameter values, in

terms of correlation coefficient, RRSE and RMSE (for both validation and test datasets).

Table 5.9 shows similar results when parameters are tuned on RRSE and RMSE together.

Table 5.8: Parameter Tuning Based on Correlation Coefficient

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 3.0 2.0 75.2347 329.2137% 0.7399 82.2344 187.6% 0.4161
IE CVSS 1.0 1.0 8.4737 74.8534% 0.4516 11.6035 92.2% -0.3396
Non-Windows 1.0 0.05 92.3105 101.0356% 0.1897 123.4387 100.7% 0.223
Linux CVSS 15.0 0.1 12.6302 130.8731% 0.1933 45.0535 378.3% 0.2992
Adobe 0.5 0.05 43.007 188.1909% 0.5274 78.2092 178.5% 0.1664
IE 7.0 0.05 13.8438 122.2905% 0.2824 14.5263 115.5% -0.0898
Apple Separate 3.0 0.05 73.9528 104.0767% 0.2009 91.1742 116.4% -0.4736
Apple Single 0.5 0.0 493.6879 694.7868% 0 521.228 1401.6% 0
Linux Separate 2.0 0.05 16.2225 188.6665% 0.3105 49.8645 418.7% -0.111
Linux Single 1.0 0.05 11.3774 83.2248% 0.5465 9.4743 79.6% 0.3084
Linux Binned 2.0 0.05 16.2225 188.6665% 0 49.8645 418.7% -0.111
Windows 5 0.05 21.0706 97.4323% 0.1974 72.1904 103.1% 0.1135
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Table 5.9: Parameter Tuning Based on RMSE and RRSE

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 0.5 0.2 19.4018 84.8989% 0.2083 61.2009 139.6667% 0.5236
IE CVSS 2.0 1.0 8.4729 74.8645% 0.4466 11.4604 91.1018% -0.3329
Non-Windows 0.5 0.1 91.1683 99.7855% 0.188 123.5291 100.7% 0.2117
Linux CVSS 2.0 0.5 7.83 81.1399% 0.1087 19.1453 160.8% 0.3002
Adobe 1.0 0.5 19.5024 85.3392% -0.4387 106.2898 242.5% 0.547
IE 0.5 0.3 12.4578 110.0474% 0.2169 13.5771 107.9% -0.1126
Apple Separate 7.0 1.0 70.7617 99.5857% 0.1325 80.2045 102.4% -0.0406
Apple Single 0.5 0.05 75.9574 106.8979% -0.3533 82.649 105.5% -0.4429
Linux Separate 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236
Linux Single 5.0 0.5 10.7041 78.2999% 0.4752 12.3339 103.6% 0.3259
Linux Binned 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236
Windows 5.0 0.05 21.0706 97.4323% 0.1974 72.1904 103% 0.1135

5.3.5 Summary

The experiments above indicate that it is hard to build good prediction models based on

the limited data available in NVD. For example, there is no version information for most

Microsoft instances (especially, Windows instances). Some results look promising (e.g. the

models I built for Firefox), but they are far from usable in practice. Below, I discuss what

I believe to be the main reasons for the difficulty of building good prediction models for

TTNV from NVD.

5.3.6 Discussion

I present my effort in building prediction models for zero-day vulnerabilities based on the

information contained in the National Vulnerability Database. My research found that due

to a number of limitations of this data source, it is unlikely that one can build a practically

usable prediction model at this time. I presented my rigorous evaluation of various feature

construction schemes and parameter tuning for learning algorithms, and notice that none

of the results obtained shows acceptable performance.

I believe the main factor affecting the predictive power of the models is the low quality
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of the data from the National Vulnerability Database. Following are several limitations of

the data:

• Missing information: most instances of Microsoft do not have the version information,

without which I could not observe how the number of vulnerabilities evolves over

versions.

• “Zero” versiondiffs: most of versiondiff values are zero because earlier-version applica-

tions are also affected by the later-found vulnerabilities (this is assumed by a number

of large companies, e.g. Microsoft and Adobe) and significantly reduces the utility of

this feature.

• Vulnerability release time: The release date of vulnerability could largely be affected

by vendors’ practices. For example, Microsoft usually releases their vulnerability and

patch information on the second Tuesday of each month, which may not accurately

reflect the discovery date of the vulnerabilities.

• Data error: I found a number of obvious errors in NVD, such as the aforementioned

Linux kernel version error.
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Chapter 6

Conclusion

In this dissertation, I have presented a number of quantitative risk assessment approaches

under different cyber environments. This work is significantly based upon attack graph and

standard risk assessment methodology - Common Vulnerability Scoring System (CVSS).

In Chapter 2, I introduced a network abstraction model, through which the size of

attack graph can be significantly reduced. This abstraction model could increase both

visualization of attack graph and accuracy of risk assessment approaches. This approach can

be widely applicable as the clustering management becomes common. It is straightforward

to abstract a node which could represent a large set of hosts with similar configurations

and reachabilities. Moreover, the abstraction level can be further customized by system

administrators due to their available resource or preference. A balance of accuracy and

scalability can be archived by adapting the model.

In Chapter 3, I introduced a risk assessment approach at a microscope - system level.

Similar to the inter-host dependency mentioned in the previous chapter, the dependency

among packages within the same system deeply affect the attack surface of the whole system.

I captured such dependency by constructing a set of systematic risk assessment approaches.

Each of these approach is able to output a risk metric at different granularities (vulnerability

level, component level, package level or system level). These approaches bridge the gap
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between the standard vulnerability assessment approach and system wide attack surface

evaluation. Not only the approach can help image publisher to track the risk trend of their

images, but also can help users to choose a reliable images among a considerable amount of

candidates.

In Chapter 4, I presented our find about the attack cost effectiveness change over the IaaS

cloud compared to traditional network environment. I did a penetration test on Amazon

EC2 to show how easy to make big impact over a public cloud. I created a game theoretical

model to model the game between attacker and defender. The model indicate defender

needs to have stronger motivation of hardening their environment over the cloud. I also

constructed a risk density model over time. The model can be used to model the cost

and risk/gain for both defender and attacker. Not only can this model illustrate the cost

effectiveness rate has significantly lowered for attacker under the cloud environment, but also

can provide us three directions to minimize attacker’s gain. Based on the three directions,

four countermeasures are recommended to shrink attacker’s potential gain. The model can

be more accurate once certain type of data (e.g. image instantiation rate, OS distribution

over running instances) from cloud provider’s side become available.

In Chapter 5, I introduced a data-mining based approach to evaluate potential risk

per application. I tried to use data in National Vulnerability Database to predict time to

next vulnerability for each application. I leverage WEKA a data-mining tool to train the

data. I did extensive experiments by using different combinations of features and I tune the

parameters with different algorithms. Part of the result is promising but most of them do

not have strong predictive power. The model is hard to be feasible as for now because of

the low quality of the available data.

Each of the above mentioned approaches is an attempt to bridge the gap between indus-

try standard vulnerability assessment approaches and risk assessment methodologies under

different classic contexts. My network risk assessment approach and system level software

dependency risk assessment approach is able to provide security metrics with higher accu-
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racy under their contexts compared to standard risk assessment metrics. Due to the lack of

reliable data, my cloud computing risk assessment approach and zero-day risk assessment

approach is currently in between qualitative stage and quantitative stage. I have built the

mathematical models, but more data is needed to train the models to make them output

security metrics with sufficient accuracy. My objective is to build a seamless risk assess-

ment approach under complex cyber environments. When more high quality data become

available, I am positive that we can normalize these approaches together and provide a com-

prehensive risk metric for stake holders to understand the risk situation over a complicated

cyber environment. For example, the microscope (system level) metric can be applied by

risk assessment approaches under macroscope (enterprise network or cloud) environment.

Unknown risk can serve as one factor and adjust the risk from known vulnerabilities in order

to provide a more comprehensive risk metric. Asset value associated with each component

under the cyber environment can be used to calculate and normalize the security metric per

ecosystem (the entire corporate cyber environment ).
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