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Abstract
Crop varieties should fulfill multiple requirements, including agronomic performance and product quality. Variety evaluations
depend on data generated from field trials and sensory analyses, performed with different levels of participation from farmers and
consumers. Such multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these data should be
optimized. Data synthesis can help to take advantage of existing and new data, combining data from different sources and
combining it with expert knowledge to produce new information and understanding that supports decision-making. Data
synthesis for crop variety evaluation can partly build on extant experiences and methods, but it also requires methodological
innovation. We review the elements required to achieve data synthesis for crop variety evaluation, including (1) data types
required for crop variety evaluation, (2) main challenges in datamanagement and integration, (3) main global initiatives aiming to
solve those challenges, (4) current statistical approaches to combine data for crop variety evaluation and (5) existing data
synthesis methods used in evaluation of varieties to combine different datasets from multiple data sources. We conclude that
currently available methods have the potential to overcome existing barriers to data synthesis and could set in motion a virtuous
cycle that will encourage researchers to share data and collaborate on data-driven research.
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6.3 Use cases can spur further data sharing and model
development

Acknowledgements
References

1 Introduction

Farmers, especially smallholders in developing countries, are
facing ever more challenging production conditions and prod-
uct requirements. Extreme weather events are on the rise as
one of the effects of climate change (Lesk et al. 2016; Coumou
and Rahmstorf 2012). Emerging pests and diseases, as well as
declining soil fertility, are also constraining farm productivity.
Evolving crop production practices require the development
of new genotypes that meet specific agronomic traits (Collard
and Mackill 2008). Markets are also evolving, and taste pref-
erences need to be considered if new crop varieties are to
easily find their way to the consumer (Dawson and Healy
2018). Furthermore, there is growing knowledge of the differ-
ent product needs and preferences relative to gender, which
are influenced by their different roles in the value chain, dif-
ferences in access to land and other inputs and differences in
decision-making power (Christinck et al. 2017). There is also
an increasing interest in more sustainable crop production sys-
tems, which would require a redesign of the whole food sys-
tem and the role of players involved, including breeders
(Lammerts van Bueren et al. 2018). Crop improvement aims
to address the multiple challenges faced by farmers through
delivering improved varieties (Malosetti et al. 2013).
However, simply using the most recently released variety will
not always lead to improvement, as breeding cannot address
all requirements in all contexts. Decision-makers involved in
crop improvement, including breeders, agronomists and
farmers, evaluate multiple aspects and trade-offs relevant to
the context in which they use the varieties. Crop variety eval-
uation is critical in decision-making in crop variety release,
crop seed marketing or distribution and generating crop vari-
ety recommendations for farmers.

Crop variety evaluation is mainly conducted through field
trials (Fig. 1), which are expensive and time-consuming
(Lecomte et al. 2010; Tenkouano et al. 2012; Kipp et al.
2014). The limitations in resources, space, time and the re-
quired logistics in field trials also make it almost impossible
to test all the varieties of interest in the same trial or in all the
possible environments (Simko et al. 2012; Singh et al. 2014;
Lecomte et al. 2010). Crop variety evaluation usually con-
siders yield as the main trait while disease resistance and cli-
mate adaptation are secondary traits. Other characteristics of
interest in crop variety evaluation, such as product quality and
consumer preferences, are obtained through quality assess-
ments and sensory evaluations, which are also expensive
(Tomlins et al. 2004). An exception in terms of costs of data

relevant to crop variety evaluation is climatic data, which ac-
quiring costs have been decreasing due to advances in remote
sensing and computational power.

Crop variety evaluation has not always kept pace with the
growing complexity of agricultural production and the grow-
ing availability of data. As a data-driven type of research, crop
variety evaluation can benefit from multiple revolutions oc-
curring in several fields such as genomics, phenomics, big
data and machine learning (Bolger et al. 2019; Esposito
et al. 2020; van Etten et al. 2017; Tardieu et al. 2017). These
revolutions are driven by increased data storage and comput-
ing capacity, the availability of sensors, improved DNA se-
quencing technologies and new field data collection ap-
proaches, such as high-throughput and high-precision field
phenotyping and crowdsourcing (Tardieu et al. 2017;
Esposito et al. 2020; Chawade et al. 2019; Reynolds et al.
2020; Van Etten et al. 2016). This has caused not only a
quantitative leap in data volumes but also a shift to ‘big data’
approaches that move beyond small-sample statistics to data
analysis based on machine learning (Breiman 2001; Thessen
2016; van Etten et al. 2017; Ersoz et al. 2020). While there are
multiple examples of useful applications of big data analysis
in agriculture (Kamilaris et al. 2017; Liakos et al. 2018), such
cases are still few compared to other industries (Kamilaris
et al. 2017).

Specifically, crop variety evaluation has taken little advan-
tage of the potential benefits of data synthesis. Data synthesis
allows the combination of data from different sources, produc-
ing new information and knowledge to support decision-
making (Pillemer and Light 1980; Pickett et al. 2007;
Carpenter et al. 2009; Wyborn et al. 2018).

Interest in the value from combining and (re)using datasets
in agriculture has grown, supported by open data and data
sharing initiatives (Leonelli et al. 2017). As new analytical
technologies and methods become available, legacy data
could be reanalysed (White and van Evert 2008; Hampton
et al. 2013). Data synthesis can improve the efficiency of data
use in crop variety evaluation by combining and repurposing

Fig. 1 NARITA hybrid field trials in Mbarara, Uganda, mulched with
swamp grass to reduce weeds and soil moisture loss. Photo credit:
Bioversity International/L. Machida
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new and legacy data from field trials, environmental measure-
ments, farmer requirements and consumer preferences
(Fig. 2). In the agricultural sciences, it has so far mainly taken
the form of meta-analysis (Philibert et al. 2012; Krupnik et al.
2019).

Data synthesis can play a role in different functions of crop
variety evaluation. The selection of genotypes to be released
as cultivars can benefit from data synthesis to assess genetic
gain (progress over time) (Streck et al. 2018), to benchmark
against other breeding programs, to improve accuracy through
multi-season assessments and to predict performance beyond
the trial environments. The latter involves analysing a combi-
nation of variety trial data and environmental data (Hyman
et al. 2013). The analysis of trial data can be made more
accurate when data from the last trial season is combined with
historical variety performance data (Arief et al. 2015).

To release a new variety, breeders need to evaluate the
proposed genotypes against existing varieties in a country or
region. Data synthesis could facilitate enriching data from
trials including the new varieties with data on the past perfor-
mance of the older varieties to gain accuracy (Damesa et al.
2017). Seed companies need to assess variety performance to
take seed production and marketing decisions. Service pro-
viders, such as agro-input suppliers, cooperatives, agricultural
extension organizations and NGOs, need to make recommen-
dations to farmers, considering the multiple dimensions of
variety performance (and trade-offs between these dimen-
sions) in different environments and under different types of
crop management. Information from existing crop trials to
formulate recommendations is often used for this end. Such
an analysis of existing data could benefit from data synthesis if

the data that is available comes from different sources. Some
service providers produce their own data about on-farm vari-
ety performance to generate recommendations or refine
existing ones, which could also benefit from data synthesis
to combine the new data with existing data. In many contexts,
variety evaluation is done in a fragmented way (Rangarajan
2002), which can preclude centralized coordination or stan-
dardization of data collection and weakens variety evaluation
as each entity assesses genotype by environment interactions
in a limited set of environments. Data synthesis could help to
gain a better understanding of genotype by environment inter-
actions across space and time. Flexible data synthesis could
take advantage of heterogeneous data from different actors in
the seed sector and provide value to the several functions that
variety evaluation plays in each step of the crop improvement
cycle.

A clearer perspective on data synthesis for crop variety
evaluation is needed to achieve these potentials. Here, we
review the literature relevant to data synthesis for context-
specific decision-making in variety management. The objec-
tive of this article is to provide an overview of the required
elements, current approaches and research gaps in data syn-
thesis for crop variety evaluation, focusing on decision-
making for variety pre-release and post-release. We limit our-
selves to these later stages of the breeding process, and there-
fore, we do not cover the genomic and high-throughput phe-
notyping data. Even though these types of data are clearly part
of the data revolution in crop improvement, they generally
concern early and intermediate stages of the breeding process.
We briefly refer to high-throughput field phenotyping data, as
it has the potential to support later stages of the breeding

Fig. 2 Different elements and processes involved in data synthesis for crop variety evaluation
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process. In Section 2, we discuss the types and sources of data
that are required. In Section 3, we discuss how data synthesis
relies on proper data management, including sharing data
across different trials and the compatibility of datasets. Data
synthesis requires not only combining datasets to assess vari-
ety performance but also beyond assessing average perfor-
mance, a careful analysis of how different genotypes respond
to diverse environments and match the preferences of farmers,
consumers and other stakeholders. Therefore, in Section 4, we
review how data analysis is currently dealing with the end-
users, their context and what is still lacking to evaluate crop
varieties through a data synthesis approach. In Section 5, we
review existing data synthesis approaches used in crop im-
provement and assess how they can be enhanced to include
use context. In Section 6, we present our conclusions and
recommendations.

2 Data required for crop variety evaluation

In this section, we describe the data types required by a data
synthesis approach for crop variety evaluation. Field trial data
are important to analyse the phenotypic response of a given
genotype, to the environmental characteristics of the testing
location and, in some cases, to management practices. Not
only yield but also product quality is considered in variety
evaluation. The evaluation of crop varieties also involves data
about the preferences of farmers obtained from participatory
and on-farm trials, and consumers, obtained from sensory
evaluations.

2.1 Agronomic performance data

Agronomic performance data are collected from field tri-
als, which can be set up in several ways depending on
the context and purpose. A rough classification of con-
texts includes (1) public international breeding programs
(e.g. breeding programs within the CGIAR, (2) private
breeding programs at commercial seed companies and (3)
agricultural research at national or regional level, con-
ducted by National Agricultural Research Systems, often
in partnership with International Agricultural Research
Organizations.

Field trials of breeding programs are usually known as
performance trials or yield trials, given the importance of yield
as the main trait (Acquaah 2012). There are two main types of
yield trials: (1) breeder trials and (2) official trials (Acquaah
2012). Breeder trials aim to assess the performance of a set of
genotypes to decide which ones should be released as culti-
vars (Priyadarshan 2019). An official variety trial is part of the
variety release and registration process, which varies among
countries, but in most of the cases, it is conducted by an inde-
pendent body, such as an official seed agency or under the

jurisdiction of a variety release committee. Depending on the
stage of the breeding process, the breeder’s trials can be di-
vided into preliminary yield trials (PYTs) and advanced yield
trials (AYTs) (Priyadarshan 2019). A PYT often concerns
many genotypes (and few replications), whereas anAYT eval-
uates a small number of genotypes (selected from the PYT),
with more replications over different environments, and dur-
ing several years (Priyadarshan 2019). In this review, we are
focusing on data generated from AYT. Crop variety trials can
also be established to test improved varieties to be recom-
mended to farmers (Yan 2014b). Both for breeding and to
generate variety recommendations, field trials aim to evaluate
varieties in different environments, where the environment is
considered a combination of location and season (Acquaah
2012). For this purpose, crop variety trials can be established
mainly in three different levels of combination of location and
season: (1) a single location in a single season, (2) multiple
locations in a single season and (3) multiple locations in mul-
tiple seasons (Yan 2014a). Crop variety trials can also be
established in a centralized or decentralized system. The cen-
tralized approach involves on-station trials; it is the conven-
tional approach for many crops and contexts. Decentralized
methods include establishment of trials at farm locations, with
different levels of participation from farmers. As not only
biophysical factors determine the suitability of a variety, it
has been suggested that the concept of environment should
be extended to include the socioeconomic context of the target
location (Desclaux et al. 2008). Participatory plant breeding
and participatory varietal selection methods aim to better con-
sider farmers’ preferences and context in order to increase the
adoption of improved varieties (Weltzien and Christinck
2017; Ceccarelli and Grando 2007). These approaches often
include participatory on-farm trials, which may produce in-
sights that are complementary to insights derived from con-
ventional trials (Coe 2007; Coe 2002; Atlin et al. 2001).
Although farmers’ participation is commonly associated with
on-farm trials, farmers can also be involved in on-station trials.
Participatory varietal selection (PVS) can be done through
mother-baby trials, where the mother trial includes the full
set of testing genotypes and the baby trial only includes a
subset of test genotypes alongside the control genotype
(Virk et al. 2009; Snapp 2002). On-farm trials may produce
unbalanced data, due to differences in the particular conditions
of farmers’ fields and the limited availability of seeds of the
new varieties (Virk et al. 2009).

Data collected from field trial evaluations typically include
trial design, the trial location, the date of establishment, trial
management, evaluated genotypes and observations of the
target traits (e.g. yield). Observations of the target trait can
be either measured or estimated and should be ideally refer-
enced to the observation date and to the phenological stage of
the plant during observation (Billiau et al. 2012; White et al.
2013; Germeier and Unger 2019). For instance, the second
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phase of the International Musa Testing Program (IMTP) used
the following attributes (Orjeda 2000): genotype, time from
planting to shooting (days), time from shooting to harvest
(days), time from planting to harvest (days), height of the
pseudostem at shooting (cm), height of the following sucker
at harvest (cm), bunch weight (cm), number of hands per
bunch (hands), total number of fingers per bunch (fingers),
average fruit weight (g) and leaf emission rate.

Technological innovations allowed the development of new
methodologies for collecting data from field trials. These include
high-throughput field phenotyping methods supported by satel-
lite imagery or data from unmanned aerial vehicles (UAVs) and
proximal phenotyping (Chawade et al. 2019).

Given the multiple context and evaluation objectives, each
organization conducting crop variety trials may use its own
experimental design and employ different methods and tech-
nologies for collecting, storing and publishing and/or sharing
data. In Section 3, we review potential obstacles for data inte-
gration resulting from these differences. Furthermore, the di-
versity of goals and evaluation methodologies also produce
different approaches to analyse collected data. We review
these in Section 4.

2.2 Environmental data

To analyse the phenotypic response of genotypes to the testing
environment, a fundamental step is to characterize the environ-
ment. The environment is the first source of yield variability in
plant breeding trials (Chenu 2015). Hence, environmental data
are required to characterize the trial location and to understand its
influence on the performance of tested genotypes in that partic-
ular location. It is known that the use of environmental data as
model covariates analysingmulti-location trial data improves the
degree of accuracy in the prediction of genotype performance
(Piepho 2000; Piepho et al. 1998). A recent study by van Etten
et al. (2019) demonstrated an improvement in variety recom-
mendations using seasonal climate data as model covariates.
Xu (2016) proposed to consider all environmental factors affect-
ing growth and production of plants through an approach called
‘envirotyping’. Environmental data can be collected at trial sites
directly. But even if environmental data were not collected dur-
ing trials, geolocating trial sites allows enriching the dataset with
existing environmental data. Adding environmental data to leg-
acy trial data allows comparisons among trials conducted at dif-
ferent locations. Some types of environmental data are increas-
ingly available through open and public repositories (Hyman
et al. 2013). For instance, data on rainfall, temperature, elevation
and soils are openly and freely available from open and public
databases such as Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) (Funk et al. 2015), MODIS Land
Surface Temperature (Wan et al. 2015), Hole-filled SRTM for
the globe version 4 (Jarvis et al. 2008) and SoilGrids (Hengl et al.
2017). The European Centre for Medium-Range Weather

Forecasts (ECMWF), through the Copernicus Climate Change
Service (C3S), provides a comprehensive collection of climatic
datasets, including the recently deployed ‘Agrometeorological
indicators from 1979 to 2018 derived from reanalysis’, known
as AgERA5. Available climatic data can be used to calculate
climatic indices (Table 1), which were proven to be useful as
model covariates in the analysis of crop variety trials (van Etten
et al. 2019; Kehel et al. 2016). Even though climatic data opens a
wide range of possibilities for crop variety evaluation, the reso-
lution of available data has to be carefully considered (Parkes
et al. 2019).

2.3 Food quality and consumer preference data

Sensory and nutritional evaluation has receivedmore attention
in recent decades, countering the narrow focus of crop im-
provement on yield, disease resistance and uniformity (Folta
and Klee 2016). At present, consumer markets are evolving,
with consumers seeking additional product qualities such as
nutritional and sensorial characteristics (Folta and Klee 2016).
Food quality involves both objective and subjective analyses,
involving measurements of contents, texture as well as senso-
ry analyses. Sensory evaluation is formally defined as ‘a sci-
entific discipline used to evoke, measure, analyze, and inter-
pret reactions to those characteristics of foods and materials as
they are perceived by the senses of sight, smell, taste, touch,
and hearing’ (Anonymous 1975; Stone et al. 2012). Consumer
preference data are obtained from sensory evaluations by
panels of regular or specialized consumers, with different
methods, such as descriptive analysis or rapid sensory evalu-
ations (Dawson and Healy 2018). Sensory and hedonic (i.e.

Table 1 Temperature and precipitation indices commonly used as
covariates in crop variety trial analyses

Environmental index Unit

Maximum daytime temperature °C

Minimum daytime temperature °C

Maximum nighttime temperature °C

Minimum nighttime temperature °C

Mean difference between daily maximum temperature and daily
minimum temperature

°C

Number of days with maximum temperature > 30 °C Days

Number of nights with maximum temperature > 25 °C Days

Maximum length of consecutive days with precipitation < 1 mm Days

Maximum length of consecutive days with precipitation ≥ 1 mm Days

Number of days with precipitation > 5 mm Days

Number of days with precipitation > 10 mm Days

Maximum 1-day precipitation mm

Maximum 5-day precipitation mm

Adapted from van Etten et al. (2019) and Kehel et al. (2016)
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related to pleasant or unpleasant) experiences cannot be mea-
sured directly and should be inferred from descriptive or nu-
merical representations (hedonic scales) of subjects’ responses
(Lim 2011). There are four main types of scales used in he-
donic scaling, which are presented in Table 2.

The 9-point hedonic scale developed by Peryam and
Girardot (1952) is the most widely used method for scaling
consumer preference and food acceptability (Lim 2011). It is
composed of the following values and their correspondent
description: 9, like extremely; 8, like very much; 7, like mod-
erately; 6, like slightly; 5, neither like nor dislike; 4, dislike
slightly; 3, dislike moderately; 2, dislike very much; and 1,
dislike extremely (Peryam and Girardot 1952). More recently,
other scaling methods have been proposed, such as the la-
belled affective magnitude (LAM) scale (Schutz and
Cardello 2001) and labelled hedonic scale (LHS) (Lim et al.
2009). This diversity of measurement scales can pose a chal-
lenge to combine data from different sources, such as different
laboratories testing food quality, or a sensory evaluation with
farmers testing different varieties as part of a breeding process.

Agronomic performance, food quality and preference data
are still expensive and complex to acquire and manage. In
contrast, weather and soil data are increasingly available at
significantly reduced costs. More effort is required to improve
the efficiency in data use in the evaluation of crop varieties.
The higher availability of weather and soil data can motivate
and increase data reuse, repurposing legacy crop variety trial
data by adding environmental data to extract new insights.

3 Data management challenges

As a data-driven research, data synthesis requires availability
of the data to be reused. It also requires careful data manage-
ment to integrate data of heterogeneous nature from different
sources and formats, as described in Section 2. Here, we
discuss the challenges in data management that are relevant

to data synthesis for crop variety evaluation, the main efforts
to address these problems and further research needs.

3.1 Main barriers for data availability and integration

Data should be available to be integrated and then synthetized
using formal statistical techniques. However, data are still
rarely shared for reuse, especially in the case of raw data from
variety trials. Diekmann (2012) and Williams (2012) found
that researchers are often unwilling to share raw data out of
concern about data being taken out of context, which could
lead to incorrect results and misinterpretation. Authors may
also oppose freely releasing data that cost them substantial
work and resources, whereas they may be more willing to
share data with colleagues (Diekmann 2012).

In addition to cultural constraints, technical challenges
arise for data sharing among both individuals and institutions.
It has been a common practice for researchers and research
centres to develop their own system for storing data, mainly
because they do not trust global repositories with which they
do not have a direct relationship and for which long-term
support may not be guaranteed (Leonelli et al. 2017). This
has resulted in a myriad of individual databases that are nei-
ther open nor compatible among research centres. This not
only inhibits collaboration among scientists but also promotes
duplication of efforts and increases costs, a luxury that the
scientific community cannot afford in times of scarce econom-
ic resources for agricultural research.

In cases when data are available, data integration some-
times encounters problems due to lack of standardization in
terms of syntax, semantics and structure. Crop variety trial
datasets are often very heterogeneous in terms of quantity,
quality, types and formats (Hyman et al. 2017; Leonelli
et al. 2017). Individual trial designs and observational
methods vary according to the specific purpose of trials
(Section 2). This lack of standardization of crop variety trial
data makes it difficult to compare results between trials and to
reuse datasets with traditional tools (Rijgersberg and Top

Table 2 Types of hedonic scales

Scale Basic empirical operation Number usage Permissible statistics Example scale

Nominal Determination of equality
(categorization)

As labels Non-parametric: number of cases;
mode

1 (good)

2 (bad)

Ordinal Determination of greater or less To recognize the rank order Non-parametric: median; percentiles Rank rating

Interval Determination of equality
of intervals or differences

To represent degrees of
differences

Parametric: mean; standard deviation Equal intervals

Ratio Determination of equality of
ratios

To represent relative
proportions

Parametric: log mean; standard
deviation

Labelled affective magnitude
(LAM)
scale; labelled hedonic scale
(LHS)

Adapted from Stevens (1946) and Lim (2011)
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2000; Leonelli et al. 2017). Combining crop trial datasets
often presents the following problems: (1) incomplete or in-
existent overlap among evaluated accessions across trials, (2)
measurements based on different rating scales and (3) the use
of different methods for observing the same trait (Simko and
Pechenick 2010). Methods to solve the problem of measure-
ment in different rating exist such as the threshold model
(Hartung and Piepho 2005), but it does not solve the problem
of partial overlap among tested varieties in the different trials.
In Section 5, we explore and evaluate how different data syn-
thesis methods deal with this kind of problems.

The dearth of relevant data in the public domain limits the
possibilities of data synthesis, as it provides a large initial cost
of assembling, cleaning and reformatting data. For individual
data synthesis efforts, this initial investment may be relatively
very high, even though it could be worthwhile if data can be
repurposed more than once. Furthermore, practices limiting
data reuse go against the aim of science of building universal
knowledge, in which public funds play a fundamental role.

3.2 Efforts to overcome data management problems

Several international agricultural research organizations
have made efforts to address the barriers of poor data
availability and data format incompatibilities (McLaren
et al. 2005; Ritchie 1995; Germeier and Unger 2019).
Several global funders of agricultural research are increas-
ingly seeking mechanisms to guarantee that research in-
vestments generate benefits for smallholder farmers in de-
veloping countries (Dalrymple 2008). Global open data
and sharing initiatives aim to facilitate data accessibility,
allowing the generation of new knowledge (Wilkinson
et al. 2016). With valuable contributions from diverse
partner organizations, CGIAR centres have been develop-
ing information systems and platforms, aiming to inte-
grate heterogenous data sources to support crop improve-
ment research (McLaren et al. 2005; Hyman et al. 2017).
Examples of this type of systems are the International
Crop Information System (ICIS) and its derivatives, the
International Rice Information System (IRIS) and the
International Maize Information System (McLaren et al.
2005; Shrestha et al. 2010). The recently created CGIAR
‘Platform for Big Data in Agriculture’ aims to materialize
the potential of big data–related methods and technologies
to improve agricultural production. Outside the CGIAR
system, agricultural researchers and organizations are also
endeavouring to construct better ecosystems of data and
methods. Table 3 contains a compilation of the main in-
ternational initiatives on standardization and data sharing.
Data standardization and sharing systems include online
databases such as AgTrials, YamBase, CassavaBase and
MusaBase, which all implement ontologies to standardize
vocabularies and terminologies (see Table 3). Ontologies

formally define the relationships among concepts within a
given domain (Matteis et al. 2013). Similar approaches
have also been proposed by other authors. For instance,
Rijgersberg and Top (2000) proposed data model
templates—a generalization of data models—to achieve
a balance between standardization and flexibility. See
Spyns et al. (2002) for an overview of specific differences
between data models and ontologies. Germeier and Unger
(2019) applied a modelling approach that goes further
than data models, considering also statistical models in
the implementation of a phenotyping information system.
Efforts to standardize phenotyping data include the
Minimal Informat ion About Plan t Phenotyping
Experiment (MIAPPE) (Krajewski et al. 2015; Ćwiek-
Kupczyńska et al. 2016; Papoutsoglou et al. 2020).
Efforts to standardize data from field experiments include
the International Consortium for Agricultural Systems
Applications (ICASA) standard, initially developed by
the Internat ional Benchmark Sites Network for
Agrotechnology Transfer (IBSNAT) and updated by
ICASA (White et al. 2013).

The FAIR (findability, accessibility, interoperability and
reusability) guiding principles are intended for producing
and publishing data, aiming to facilitate and enable data shar-
ing and reuse (Wilkinson et al. 2016). To achieve these prin-
ciples, a set of mechanisms is considered. These include
unique and persistent identifiers, a standardized communica-
tions protocol and the use of domain-specific standards for
both data and meta-data.

Despite these efforts, recent literature indicates that there
are still serious challenges in implementing data standardiza-
tion and sharing. About 85% of the more than 35,000 records
in the AgTrials database contain only meta-data; hence, those
interested in the underlying data should contact the original
data provider (Hyman et al. 2017). Problems persist on both
the supply and demand side. It has been found that researchers
are often reluctant to use data produced by others because
there is no guarantee about the quality (Diekmann 2012).
Data standards are now available (Table 3), but it is still diffi-
cult to persuade the agricultural research community to adopt
the suggested standards. The lack of flexibility to adapt to
scientific progress is indeed one of the arguments stated
against standards (Germeier and Unger 2019). For both new
and legacy data, standardization requires considerable efforts,
which will not immediately pay off, hindering its implemen-
tation. In addition, the efforts required for processing datasets
with the accompanying meta-data to facilitate open access and
use by others are often not acknowledged (Diekmann 2012;
White and van Evert 2008). From 112 surveyed users of the
AgTrials platform, 34% considered that their data are incor-
rectly organized to be shared publicly (Hyman et al. 2017). In
the cases where data are shared, it is mostly not through global
repositories but rather as supplementary data on the journal
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website where associated articles were published (Williams
2012). Sharing data as supplementary materials on a journal
website would be adequate if journals followed commonly
agreed guidelines, such as the FAIR principles. Although
there has been an increase in data shared by researchers during
the recent years, there is a still a lack of awareness and hence
compliance with FAIR principles (Mark et al. 2018).

3.3 Further work to improve data availability and data
integration

We identified barriers for data availability and data integra-
tion. The main efforts to stimulate data open access and
repurposing have focused on compliance with standards and
data sharing as a goal. Given the modest progress so far, we
suggest that this focus be complemented with efforts to make
data sharing more appealing, by the stimulation of data de-
mand for data synthesis. This might set in motion a virtuous
cycle of collaboration around data synthesis, providing clear
incentives in the form of authorships on joint publications and
citations to datasets (Fig. 3).

Therefore, we posit a need for simple methods that can deal
with highly heterogeneous datasets to start to show the poten-
tial benefits of data synthesis (see Section 5). Ecology research
is a concrete example of how increasing the number of
datasets, publications and collaboration among larger groups
of scientists through meta-analysis can result in even larger
collaborative initiatives which enhance the scope and potential
impact of research (Cadotte et al. 2012). Data journals may
help to boost this kind of data-centred collaboration (Candela
et al. 2015). This could provide further motivation and feed-
back to continue the consensus building processes around data
management.

4 Analysis of different types of data

Data synthesis requires the combination and analysis of dif-
ferent types of data as described in Section 2. Here, we review
current approaches to combine those types of data and re-
search gaps to achieve data synthesis for crop variety
evaluation.

4.1 Multi-environment trial analysis

As we discussed in Section 2, the most basic evaluation of
genotypes is the assessment of their agronomic performance,
such as plant growth parameters, yield, plant reaction to dis-
eases and tolerance to climate conditions (e.g. tolerance to
drought, cold and flooding), among others. This type of eval-
uation is conducted through field trials, which can be
established in different ways. Conventional trials are usually
established in research stations under controlled conditions.
Trials can also be established on farms and involve different

Fig. 3 A virtuous cycle set in motion by data synthesis

Table 3 Main international
initiatives to increase data sharing
and standardization in agriculture

Initiative URL

AgTrials http://agtrials.org

AgroPortal http://agroportal.lirmm.fr

Breeding Application Programming Interface (BrAPI) https://brapi.org

Breeding Management System https://bmspro.io

CassavaBase https://www.cassavabase.org

Crop Ontology http://www.cropontology.org

GARDIAN http://gardian.bigdata.cgiar.org

Global Open Data for Agriculture and Nutrition (GODAN) https://www.godan.info

Global Trial Data Management System https://research.cip.cgiar.org/gtdms

Integrated Breeding Platform https://www.integratedbreeding.net

MIAPPE https://www.miappe.org

MusaBase https://musabase.org

Sol Genomics Network https://solgenomics.net

YamBase https://yambase.org
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levels of farmer participation, from limited participation as
observers to full participation as citizen scientists (Ceccarelli
et al. 2009; Ceccarelli 2012; Van Etten et al. 2016).
Combinations are also possible, such as on-station trials with
some level of farmer participation. Regardless of the trial de-
sign, the idea is to establish trials at different locations for
several growing seasons. The combination of location and
time is known as the ‘testing environment’, and the trials are
known as ‘multi-environment trials’ (METs). Multi-
environment trials are conducted to evaluate the suitability
of crop genotypes for different agroecological conditions
(van Eeuwijk et al. 2005).

Genotype × environment (G × E) interaction is the relative
difference in phenotypic response that a group of genotypes
expresses depending on the environmental conditions (de
Leon et al. 2016). Hence, G × E assessment requires the eval-
uation of a minimum of two different genotypes in at least two
different environments (Kang 1997). The phenotypic re-
sponse of a genotype to the environment is described by a
function known as the reaction norm (Bustos-Korts et al.
2019). When the reaction norm lines of evaluated genotypes
in different environments are not parallel, there is presence of
G × E (Bustos-Korts et al. 2019). Especially in conventional
breeding, G × E is considered a challenge by breeders due to
its implications for genotype selection (Kang and Gorman
1989). Aiming for more specific adaptation, decentralized
breeding programs take advantage of G × E instead of
diminishing the effects (Ceccarelli 1989).

There are different statistical models for G × E analysis. For
an overview, we refer to recent reviews such as the work of
Malosetti et al. (2013), van Eeuwijk et al. (2016) and Bustos-
Korts et al. (2019). Most of the statistical models for G × E
analysis can be interpreted as (phenotypic) response functions
for each genotype to environmental variables (van Eeuwijk
et al. 2005). Therefore, G × E analysis represents a combina-
tion of two of the data types presented in Section 2: the agro-
nomic performance data and the environmental data.

Data frommulti-environment trials are usually summarized
in two-way tables of means, with genotypes as rows, and
environments as columns (Malosetti et al. 2013). Two major
groups of statistical models for the analysis of G × E can be
identified: (1) methods that only use the two-way table of
means and environmental information are included only im-
plicitly (usually as dummy variables) and (2) methods that use
additional information, explicitly included as genotype and/or
environment covariates (temperature, rainfall, etc.) (Malosetti
et al. 2013). Examples of G × E models from the first group
include additive models (ANOVA), regression on the mean
(Yates and Cochran 1938; Finlay and Wilkinson 1963), addi-
tive main effects and multiplicative interaction (AMMI)
models (Gauch Jr. 1992) and the genotype + genotype × en-
vironment (GGE) model (Yan et al. 2000). Since they only
require a two-way table of means as input, these models are

considered to be good for descriptive and explorative pur-
poses, but not for explaining G × E (Malosetti et al. 2013).
The second group of models includes factorial regression,
partial least squares regression, structural equation models
and mixed effect models. Factorial regression allows the use
of environmental or genotypic variables as covariates to ex-
plain G × E but has the limitation that only permits one de-
pendent variable at a time (Vargas et al. 2007). Another lim-
itation of factorial regression is its difficulty in dealing with
multi-collinearity when several covariates are used (Vargas
et al. 1999). For these cases, partial least squares regression
is a more convenient approach, as it can easily handle multiple
explanatory variables (Vargas et al. 1999). When the cause-
effect analysis of G × E is aimed for, partial least squares
regression becomes inadequate, and methods such as structur-
al equation modelling are more suitable (Vargas et al. 2007).

Mixed-effect models are one of the most used approaches
for analysing G × E, and they are usually implemented using
either single-stage or two-stage analysis (Möhring and Piepho
2009). Single-stage models analyse data from individual plots,
in which the residual effects and the G × E effects are estimat-
ed simultaneously (Smith et al. 2005). In contrast, two-stage
models include a first stage in which design features and spa-
tial variation are modelled using data from individual trials.
Next, the second stage involves fitting an overall mixed model
to the genotype by environment adjustedmeans obtained from
stage 1 (Malosetti et al. 2013; Smith et al. 2005). The analysis
can be extended to more than two stages, in which case the
approach is more commonly known as stage-wise analysis
(Piepho et al. 2012a; Damesa et al. 2017). Although single-
stage analysis is preferred from a theoretical point of view,
two-stage analysis is less demanding in terms of computation
requirements and provides similar results to single-stage when
appropriate weights are selected (Malosetti et al. 2013).
Therefore, most of G × E models are implemented using a
two-stage approach (Malosetti et al. 2013).

There are situations where non-parametric methods, such
as rank-based methods, are more convenient (Elias et al.
2016). This type of non-parametric methods has been used
mainly to rank genotypes at specific locations (Elias et al.
2016) and has a set of advantages that include no specific
modelling assumption about the distribution of the effects
and are easy to implement and interpret (Huehn 1990). Non-
parametric models are considered a useful option when the
interest is focused on the ranking of genotypes rather than to
evaluate the level of difference on performance between ge-
notypes (Brancourt-Hulmel et al. 1997). In the context of se-
lection in breeding and evaluation programs, Huehn (1990)
considered the rank order of genotypes to be the most impor-
tant information.

Other G × E models go beyond statistical analysis and
integrate knowledge on crop physiology and expert
assessments. For instance, Theobald et al. (2002) proposed
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the use of a Bayesian model to incorporate expert knowledge
about the analysed crop. In a bibliometric analysis, van
Eeuwijk et al. (2016) identified an important growth in the
application of both mixed models and crop growth models,
especially after 2005. A crop growth model incorporates plant
physiological aspects, along with the genotype and environ-
ment, in the analysis of interactions that produce a phenotype
(van Eeuwijk et al. 2016). Furthermore, crop growth models
also allow to consider the effect of cropping systems
(intercropping, fertility management, etc.) on G × E
(Jeuffroy et al. 2014).

One of the goals of crop growth models for variety evalu-
ation in multi-environment trials is to improve the characteri-
zation of the environment (Jeuffroy et al. 2014). For example,
Tesfaye et al. (2016) combined geospatial analysis with crop
modelling (1) to characterize a maize growing environment in
Southern Africa (Malawi, Mozambique, Zambia and
Zimbabwe) and (2) to evaluate the variety performance of five
new drought-tolerant varieties across the aforementioned re-
gion. The environmental characterization was conducted
using a standardized precipitation index, and it focused on
the frequency of drought occurrences rather than drought se-
verity (Tesfaye et al. 2016). To evaluate the variety perfor-
mance of new varieties, maize yields were simulated using the
Crop Estimation through Resource and Environment
Synthesis (CERES)-Maize model. Simulated relative yields
of five drought-tolerant varieties outperformed the commer-
cial check variety across many environments, but not in all
(Tesfaye et al. 2016).

Jeuffroy et al. (2014) reviewed the use of crop growth
models in variety performance prediction and concluded that
although their use is increasing, they are still not mainstream
for variety evaluation. For mechanistic models to have
predictive power to distinguish between varieties,
information is needed on the processes or the underlying
genotypic factors that give rise to these differences. Some
information can be derived from existing trial data through
model fitting, but overfitting often occurs. Acquiring
additional data to estimate crop model parameters directly is
often costly or not possible retrospectively in a data synthesis
context. Jeuffroy et al. (2014) argue that cost-benefit consid-
erations to assess the value of additional information are im-
portant. On the one hand, crop growth modelling generally
focuses on a narrow set of variables (mostly yield). Yield is
an important input into crop variety recommendations, but
other aspects cannot be ignored, including the user perspective
(see Section 4.2). Their relative complexity makes their appli-
cation often difficult. One possibility is to use (at least initial-
ly) very simple crop models and build up their complexity
gradually (Shorter et al. 1991). Another option is to generate
intermediate variables that can be used in statistical models or
machine learning approaches (see Feng et al. 2019).

4.2 Evaluation in target environments and including
user requirements

The current challenges in agricultural production are more
likely to be addressed by locally adapted solutions that con-
sider both environmental and socioeconomic information
(Van Etten et al. 2016). The socioeconomic context of the
target environment should be considered to match both farmer
and consumer preferences. Socioeconomic data like human
population, welfare and transportation infrastructure have
been proposed for targeting genotypes to environments, but
such recommendations mostly concerned logistics planning
on germplasm deployment (Hyman et al. 2013). While this
kind of socioeconomic data is indeed important, other types of
data, such as consumer preferences, should also be consid-
ered. For example, Desclaux et al. (2008) proposed that, in
addition to the usual biophysical and management factors, the
environment should be a wider concept that also includes
actors, markets, regulations and societal dynamics.

Participatory on-farm trials aim to take the variety trials
closer to the target environments and user requirements
(Ceccarelli and Grando 2007). On-farm trials can provide
much information, ranging from biophysical performance to
economic assessment (Franzel and Coe 2002). In this type of
trials, the concept of environment in a G × E analysis is ex-
tended to include socioeconomic factors, besides the usual
biophysical variables (Coe 2002). Data collected from on-
farm participatory trials is often in the form of ratings or rank-
ings, requiring different statistical models to conduct G × E
analysis (Coe 2002). For example, Coe (2002) proposes to
analyse ratings using proportional odds, and rankings with
the Bradley-Terry model (Bradley and Terry 1952). An ex-
tended Bradley-Terry model can incorporate covariates (Coe
2002; Dittrich et al. 1998). As discussed before, the possibility
of including covariates is especially relevant when location-
specific information is to be extracted from the experimental
data. It has been shown that environmental covariates can
improve predictions of variety performance (Piepho 2000;
Piepho et al. 1998). For data synthesis, in cases when envi-
ronmental data is not collected as part of the crop trial, envi-
ronmental covariates can be linked to experimental data
through geolocation, as shown by Lobell et al. (2011), van
Etten et al. (2019) and others.

An extended version of the Plackett-Luce model (Plackett
1975; Luce 1959) recently implemented by Turner et al.
(2020) includes the use of model-based recursive partitioning
(Strobl et al. 2011), allowing the incorporation of covariates
for predicting rank orders. Hence, subgroups of rankings with
significantly different worth parameters are identified based
on covariates (Turner et al. 2020). van Etten et al. (2019)
recently used this model to analyse data from on-farm partic-
ipatory trials in three countries, successfully identifying
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environmental covariates that consistently influence variety
performance across several seasons.

4.3 Multi-dimensional assessment for decision-
making

An overall evaluation of varieties requires joint analysis of
several traits, from both biophysical and socioeconomic per-
spectives. Different approaches have been proposed to handle
multi-criteria prioritization on ranking varieties according to
different traits of interest. Abeyasekera et al. (2002) developed
a methodology to combine scores and rankings assigned by
farmers evaluating bean (Phaseolus vulgaris) varieties, using
a weighted index, which allows the farmer’s preference to be
captured, thus combining multiple criteria. The work of
Abeyasekera et al. (2002) considered the farmers’ preferences
in terms of not only agronomic criteria (yield, pest resistance,
etc.) but also non-agronomic criteria, such as taste,
marketability and cooking time. Waldman et al. (2014) used
choice experiment models to estimate farmers’ preferences of
perennial pigeon pea. Smith and Fennessy (2011) applied the
PAPRIKA (Potentially All Pairwise RanKings of all possible
Alternatives) method (Hansen and Ombler 2008) to assess the
relative importance of traits on the improvement of perennial
pasture species. The PAPRIKA method asks participants to
compare pairs of options (varieties) and select one. It assumes
full transitivity to reduce the number of pairs compared. In
other words, when A > B and B > C, the model assumes
A > C. An alternative method for priority setting is
AgroDuos (Steinke and van Etten 2017), which is similar to
PAPRIKA but integrates the concept of gamification to in-
crease participants’ engagement (Deterding et al. 2011), while
it does not require interactive updating of questions and can
therefore be used without a digital device or Internet
connection.

Farmers’ comprehensive evaluations of the total value of a
variety can also be derived from on-farm trials. For example,
the ‘tricot’ (triadic comparisons of technologies) approach
proposed by Van Etten et al. (2016) integrates farmers’ feed-
back on variety evaluation as a ranking of varieties, based on
their overall appreciation of the varieties. In the tricot ap-
proach, each farmer receives three packages of seeds, each
with a different variety of the crop (Van Etten et al. 2016).
Each farmer ranks the three varieties from best to worst, ac-
cording to overall performance, considering traits such as pest
resistance and yield (Van Etten et al. 2016). Rankings of va-
rieties directly evaluated by farmers in on-farm trials are ag-
gregated by rank aggregation models (see Section 5.1).

Recent work of van Etten et al. (2019) is an example of
how a rank-based model was applied to consider several
criteria, such as disease resistance, yield and farmer
preferences into a single judgement, in combination with
local environmental conditions in the analysis crop variety

trials. The work of van Etten et al. (2019) includes three inde-
pendent studies in three countries: Ethiopia, India and
Nicaragua. For brevity, we focus on the case of Nicaragua,
where varieties of common bean were evaluated in 842 plots.
An extended version of the Plackett-Luce model, implement-
ed in the PlackettLuce package (Turner et al. 2020), was fitted
for the trial data collected from on-farm trials, which were
established following the tricot approach (van Etten et al.
2019). The Plackett-Luce model estimates a worth parameter
that represents the log probability of each evaluated element (a
crop variety in this case) to be ranked first. Environmental
conditions of the trial locations were included into the model
using climatic indices (Table 1) as model covariates, through
model-based recursive partitioning, implemented in the
PlackettLuce package as Plackett-Luce Trees. The use of cli-
matic variables as model covariates led to the identification of
environmental factors that influenced the probability of a va-
riety performing better than the other varieties tested in the
trials (see Fig. 4 for an example).

The evaluations mentioned above focus on average perfor-
mance of varieties, but other approaches focus on the variation
in performance across seasons to assess farmers’ risks. It has
been shown that multi-environmental trial data from several
seasons can be used to propose variety portfolios to reduce
risk and maximize farmers’ profits (Nalley et al. 2009; Nalley
and Barkley 2010; Sukcharoen and Leatham 2016). These
studies all focus on yield as the main evaluation criterion.
Fadda and van Etten et al. (2019) proposed the adaptation of
portfolio selection theory from financial asset management
field, based on the portfolio management method developed
by Dembo and King (1992). Instead of recommending a sin-
gle variety, a portfolio of varieties is recommended based on
calculations of the expected regret (Fadda and van Etten
2019). This method does not require absolute (yield) data
and can also be applied to ranking data. This is interesting
for progress in data synthesis, as ranking methods can play a
role in combining datasets from different sources (see
Section 5.1).

5 Data synthesis approaches

In the previous section, we reviewed methods for the analysis
of different data types used for crop variety evaluation. In
addition to that, data synthesis involves integration of datasets
from heterogenous sources. For instance, datasets come from
several research programs, each one with diverse types of data
formats, measurement units and experimental designs.

Data synthesis for crop variety evaluation has followed two
main lines of research: rank aggregation and network meta-
analysis. In the remaining part of this section, we review rel-
evant examples from both rank aggregation and network me-
ta-analysis, to finally weigh their advantages, disadvantages
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and existing gaps towards a data synthesis methodology for
crop variety evaluation.

5.1 Rank aggregation methods

Rank aggregation methods are rank-based non-parametric sta-
tistical methods that allow for aggregation of results from
individual studies to obtain one consensus ranking (Lin
2010; Yu et al. 2019). They have been applied to several fields
including advertisement research, psychology, Internet search
engines and biological studies (Lin 2010). Rank aggregation
methods are suitable for high-level meta-analysis, where ag-
gregation of different raw data is not feasible (Lin and Ding
2009). They also provide more statistical power than individ-
ual analyses (Simko and Pechenick 2010; Lin 2010). This
coincides with one of the widely argued characteristics of
meta-analysis (Cohn and Becker 2003).

Simko and Pechenick (2010) proposed to use rank aggre-
gation methods to combine heterogenous data from indepen-
dent plant breeding trials. Simko and Linacre (2010) demon-
strated how the Rasch model (Rasch 1960) can be used to
combine heterogeneous data. The Rasch model is, in princi-
ple, very similar to the Luce model (Rasch 1960; Luce 1959).

Simko and Linacre (2010) presented four different real
datasets as case examples; for brevity, we only focus on one
of the datasets, containing data of potato chip quality evalua-
tions. The analysis of this dataset implies two main constraints
already mentioned in Section 3: (1) data measurements in dif-
ferent rating scales and (2) only partial overlap among tested
varieties. Potato chip quality data were collected from online

databases of 10 different laboratories. As we described in
Section 2, assessment of food quality and consumer
preferences can be done using several rating scales. In the
case of quality assessments of potato chips, Simko and
Linacre (2010) explained that it is a common practice that each
laboratory uses a different rating scale such as one of the fol-
lowing: (1) a rating scale of 5, 9 or 10 categories (the number is
subjectively selected by each laboratory; lower values indicate
higher quality of potato chip); (2) a measurement of the potato
chip colour using specialized equipment with values ranging
from 0 to 100 (higher readings indicate a lighter colour of potato
chips, which is a desired trait); and (3) a percentage of chips
passing a given quality test defined by the laboratory. In this
example, it was not specified which rating scale was used by
each laboratory in each test, but indeed different ranges of
values exist across the different tests.

The data of potato chip quality assessments collected from
10 different laboratories were aggregated into one dataset. The
aggregated dataset contained 63 cultivars over 157 trials, with
only partial overlap among evaluated cultivars. For instance,
only one cultivar was evaluated in 154 trials, while only seven
cultivars were evaluated in a single trial (Simko and Linacre
2010). The resulting matrix contains 994 data points, around
10% of the expected total data points (9891) that would have
resulted if all the varieties had been evaluated in all the trials
(Simko and Linacre 2010). The original ordinal ratings are
replaced for relative rankings (Simko and Linacre 2010). The
relative rankings were used to calculate an overall performance
rating, by means of an extended version of the Rasch model
(Simko et al. 2012; Linacre and Wilson 1992). In this case, the
extended version of the Rasch model allowed to compare 63
cultivars, even when not all were tested in the same trial.

Interestingly, rank aggregation has also found a direct ap-
plication in variety trials, such as the work of van Etten et al.
(2019) presented in Section 4. The successful application of
rank-based methods in both trial analysis and meta-analysis
shows that this is an interesting way forward in data synthesis
for variety evaluation.

5.2 Network meta-analysis

Commonly used meta-analysis methodologies, especially in
the medical sciences, are often based on pairwise comparison
of treatments, usually in the form of an intervention against a
control or placebo (Lumley 2002; Tonin et al. 2017). Network
meta-analysis (Lumley 2002) allows the comparison of mul-
tiple treatments, even when some of them have never been
compared directly in trials (Tonin et al. 2017). Although net-
work meta-analysis is commonly used in medical sciences, it
has also been used recently in other fields such as plant pa-
thology (Madden et al. 2016). Network meta-analysis is also
known by several other terms, such as ‘multiple treatments

Fig. 4 Plackett-Luce Tree of farmer-participatory tricot trial data in
Nicaragua. The probability of each variety to perform better than the
others in the trial is presented on the horizontal axis. Grey vertical line
represents the average probability of better performance (1/number of
evaluated varieties). From the study of van Etten et al. (2019, p. 4196,
CC BY-NC-ND)
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meta-analysis’ and ‘mixed treatment comparison’, which are
often used interchangeably (Salanti 2012).

As explained by Tonin et al. (2017), the approach evolved
from the initial work of Bucher et al. (1997) on ‘adjusted
indirect treatment comparison’, which was called ‘network
meta-analysis’ after the improvements made by Lumley
(2002), and later evolved to ‘mixed treatment comparison’
by Lu and Ades (2004). A distinctive characteristic of network
meta-analysis is the case when both direct and indirect com-
parisons are available for a given pair of treatments. In this
case, evidence from both direct and indirect comparisons is
used to do a mixed treatment comparison (Fig. 5), hence the
alternative name (Dias and Caldwell 2019). For more details
about related terminology on mixed treatment comparisons,
we refer to Salanti (2012) and Coleman et al. (2012).

Network meta-analysis can be implemented with two dif-
ferent types of models: (1) contrast-based models, also known
as conditional models, in which the treatment effects per trial
are estimated as a contrast relative to a baseline treatment to
subsequently analyse all the contrasts across studies, and (2)
arm-based models, also known as unconditional models, in
which the treatment summaries per trial are analysed in a
two-way linear mixed model (Piepho et al. 2012b; Madden
et al. 2016). Arm-based models are commonly applied for the
analysis of multi-environment crop variety trials (Section 4)
(Piepho 1997; Albert and Makowski 2018; Damesa et al.
2017). As explained in Section 4, it is possible to use single-
stage or two-stage analysis in linear mixed models, although
for network meta-analysis, a single-stage analysis might be
constrained by the availability of data from individual primary
studies, rather than usual summary results such as the estimat-
ed effect sizes (Madden et al. 2016).

Both frequentist and Bayesian approaches can be applied to
network meta-analysis (Tonin et al. 2017), although the
Bayesian approach seems to be more popular (Piepho et al.

2012b). Network meta-analysis usually includes the use of
network diagrams, where the nodes represent the compared
elements (e.g. treatments or varieties), and the lines (edges)
connecting the nodes represent the direct comparison of ele-
ments, to evaluate network connectivity. This is relevant in
network meta-analysis, especially because poorly connected
networks might provide less reliable results compared to a
strongly connected network (Tonin et al. 2017). It is also pos-
sible the computation of ranking probabilities for each treat-
ment to be assigned a particular position in a ranking from best
to worst (Tonin et al. 2017).

Based on yield data obtained from 28 published papers se-
lected through a systematic literature review, Laurent et al.
(2015) applied both direct and indirect comparisons in a meta-
analysis for ranking crop species based on yield. Direct compar-
isons compare crops which were grown at the same site and in
the same year, whereas indirect comparisons compare crops
grown at different sites or in different years, using a third crop
grown at all sites as a reference (Laurent et al. 2015). In this case,
only results from experimental sites were considered (no
farmers’ fields), resulting in a database containing 856 records
of yield for 36 crop species (Laurent et al. 2015).Mean yield was
estimated using a linear mixed effect model, with a log transfor-
mation to normalize the yield data (Laurent et al. 2015). For the
direct comparison, four crops species (Miscanthus × giganteus,
Panicum virgatum, Triticosecale, Salix) were selected to be used
as reference crops, as they were included in the higher number of
comparisons with other crops for the same site-years (Laurent
et al. 2015). A model was fitted for each reference crop using
restricted maximum likelihood. Then, yield ratios of the mean
yield of each evaluated crop (except reference crops) to themean
yield of a reference crop grown in the same site and year were
calculated (Laurent et al. 2015).

Since direct comparison allows to compare only a limited
number of species, indirect comparison was used to compare
the yields of a crop of interest, Miscanthus × giganteus, to
yields of crops that were not grown in the same site-years as
the crop of interest. Three reference crops were selected for the
indirect comparison: Panicum virgatum, Triticosecale and
Salix. Therefore, Miscanthus × giganteus was compared to
crops not grown in the same site-years, by indirect comparison
using the reference crops, allowing to include more crop spe-
cies than using direct comparison only.

Albert and Makowski (2018) recently published a paper
describing the use of Bayesian mixed treatment comparison
models for ranking crop species. According to Albert and
Makowski (2018), the dataset used is the same as that
analysed in Laurent et al. (2015), although they also indicate
that 639 yield observations were analysed, which are less than
the 856 yield data observations analysed in Laurent et al.
(2015). Mixed treatment comparison combines direct and in-
direct evidence (Dias and Caldwell 2019). Five different
models were fitted (Table 4), of which four were contrast-

Fig. 5 Example of a network of treatments (varieties) allowing direct and
indirect comparisons. Adapted from Dias and Caldwell (2019). MD,
mean difference
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based models and one was an arm-based model. According to
Albert and Makowski (2018), the Bayesian contrast-based
models (1 to 4) are variants of the model presented by Dias
et al. (2010), while the arm-based is a Bayesian two-way
model. The model estimation was done using Markov chain
Monte Carlo simulations, while model assessment was made
using the deviance information criterion (DIC), in which the
models with the lowest DIC are preferred (Albert and
Makowski 2018). Compared to the rankings obtained by
Laurent et al. (2015) using direct and indirect comparison,
the results are very similar for the two species with higher
yields (Pennisetum purpureum and Arundo donax) when
compared against Miscanthus × giganteus.

5.3 Assessment of available data synthesis methods

The methods reviewed above address the challenge of combin-
ing crop variety trial data from multiple and independent
sources. In Section 3, we presented a set of challenges
identified by Simko and Pechenick (2010) that arise when
aiming to combine data from different trials. Here, we assess
both rank aggregation and network meta-analysis as solutions
to those problems. Additionally, we provide an overview of the
relative strengths and weaknesses of data synthesis methods.

5.3.1 Partial overlap in evaluated accessions between trials

The problem of partial overlap in the varieties evaluated
across trials can be solved by exploiting the capacity of rank
aggregation methods to handle partially ranked lists, although
the specific approach depends on the particular rank aggrega-
tion method. For example, somemodels are based on pairwise
comparison such as the Bradley-Terry model, while others
allow multiple comparisons, such as models based on the
Plackett-Luce model. In the case of network meta-analysis,
the problem of partial overlap is solved by indirect compari-
son. For example, in Fig. 5, items B and C are indirectly
compared with A. Examples are Laurent et al. (2015) and
Albert and Makowski (2018) who used reference crop species
to allow the comparison of crop species not tested in the same
trial.

5.3.2 Measurements based on different rating scales
or different methods

Rank aggregation methods solve the problems of measure-
ments in different rating scales or traits evaluated with differ-
ent methodologies, replacing the original raw data from each
trial by relative rankings (Simko and Piepho 2011; Simko
et al. 2012). In the work of Laurent et al. (2015) and Albert
andMakowski (2018) this was no issue, however, because the
data from the different yield studies were in the same units,
tons of dry matter per ha per year (Laurent et al. 2015).
Network meta-analysis and meta-analysis, in general, can deal
with measurements in different units by estimating either the
standardizedmean difference or the response ratio (Borenstein
et al. 2009; Makowski et al. 2019; Murad et al. 2019).

5.3.3 Relative strengths and weaknesses of data synthesis
methods

There are a few studies applying either rank aggregation or
network meta-analysis to crop variety evaluation. Future stud-
ies will need to consider the relative merits of each.

Network meta-analysis can provide absolute values (yield
differences in tons per hectare), which is difficult to obtain
with rank-based models. Even so, the item ‘worth’ estimated
by the rank-based methods is linearly correlated with the un-
derlying latent variable (for example, yield) (Coe 2002; Fadda
and van Etten 2019). Also, in theory, it should be possible to
combine ranking data and continuous variables in the same
model (Böckenholt 2004), but this is still challenging in prac-
tice, as suchmodels have not been implemented in general use
software.

A useful output that can be obtained from both rank aggre-
gation and network meta-analysis is ranking probabilities, the
probability of each variety to be ranked first. Ranking proba-
bilities are related to the concept of reliability in plant breed-
ing, the probability of outperforming a check variety (a refer-
ence; for example a previously released variety, commonly
used variety or market leader). The concept of reliability was
proposed by Eskridge (1990) in the context of crop improve-
ment as a ‘safety-first’ approach, with subsequent applications
by Eskridge and Mumm (1992) and Eskridge (1997).

Table 4 Description of models
used by Albert and Makowski
(2018)

Model number Model type Effect Variance DIC

1 Contrast-based Fixed Common residual 912

2 Contrast-based Random Common residual 348

3 Contrast-based Random Species-specific residual 287

4 Contrast-based Random Study-specific residual 214

5 Arm-based Two-way model 348
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Data synthesis approaches should consider the ease of use
and interpretation by decision-makers in crop variety evalua-
tion. In that sense, the complexity of network meta-analysis
can lead to confusion on model implementation and interpre-
tation (Madden et al. 2016). This complexity might be a bar-
rier to its wider adoption as a tool for data synthesis in crop
variety evaluation, just like the low level of expertise of users,
is limiting the uptake of more sophisticated G × E analysis
methods (Lecomte et al. 2010). Rank aggregation methods
might be easier to implement but have implicit trade-offs such
as information loss and less power to detect existing differ-
ences if compared to parametric methods (Simko and Linacre
2010; Whitley and Ball 2002; Sabaghnia 2016).

6 Conclusions and recommendations

We structure this section around three main statements based
on our review, which derive conclusions from our main find-
ings and translate these into recommendations.

6.1 Elements for a data synthesis approach are
available and aligned around ranks and reliability

Based on our review, we assert that the main elements are
available for data synthesis as an overarching approach that
integrates different components, such as data, models and
knowledge from experts (farmers and breeders), to efficiently
extract useful information to support decision-making. We
remarked in Section 5 data synthesis methods that have been
tested, exist and can integrate well with existing trial analysis
approaches. In particular, rank-based approaches fit within a
conceptual framework to analyse variety superiority based on
reliability (probability of outperforming a check). A rank-
based framework would be able to make versatile use of data
from different sources, without complex transformations or
doubtful assumptions, and would facilitate the integration of
objective measurements and preference data.

6.2 Data synthesis should progress from general to
specific and from simple to complex

Explicit crop growth modelling has been proposed more than
once as a way forward to integrate different types of data into a
single conceptual framework for the evaluation of variety per-
formance. However, model building starting from a detailed
crop model is not parsimonious and does not build up com-
plexity in a gradual way. For many crops, growth models are
not available, hence requiring a large upfront investment in
basic (eco)physiological research to enable model building.
Also, as shown in Section 4, it seems that progress in this field
is mainly theoretical, and that practical advances are limited.
Even for the attempts that result in generalizable results, the

focus is solely on yield and excludes user perspectives. For
crop variety evaluation, it seems more logical to start with the
‘big picture’ and work down to the details based on better
information indicating where the largest gain in accuracy
can be obtained (Section 4). This may involve some type of
explicit, physiological modelling, but perhaps of a limited
number of aspects, not requiring a fully fledged crop growth
simulation model. Therefore, we think that a further invest-
ment in simpler methods is warranted. This may be less stim-
ulating from a basic research point of view but may give rise to
new questions and priorities and give a better sense of the
societal relevance and external validity of data synthesis
efforts.

6.3 Use cases can spur further data sharing andmodel
development

Our review shows that engaging the research community in
data sharing is a major challenge (Section 3). Most efforts,
however, have focused on the supply side: by encouraging/
obligating researchers to share data and by providing the in-
frastructure to do so. While these efforts are certainly impor-
tant, in crop science, few concomitant efforts have looked at
the prospects of successful use of shared data that would drive
citations of data papers, shape collaborations around data anal-
ysis, and increase researchers’ motivation for further sharing.
Success may at least partially be the result of a siphon effect:
some early use cases can perhaps inspire other researchers to
engage in sharing and start a virtuous cycle, as described in
Section 3. Therefore, investment in a few use cases that use
relatively simple methods to show the potential benefits of
data synthesis for crop variety evaluation is needed. Our re-
view has shown that those methods are available in principle
(Section 5). Even so, they need a modest investment to be
adapted and demonstrated for this field of application. Next
steps would involve stepwise refinements to address compo-
nents of variety performance that substantially improve the
accuracy of predictions. Close collaboration with the
decision-makers interested in such evaluations could also spur
further interest in this area of research and demonstrate the
relevance of further investment.
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