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Abstract
Supply chains of staple crops, in developed and developing regions, are 
vulnerable to an array of disturbances and disruptions. These include biotic, 
abiotic and institutional risk factors. Artificial intelligence (AI) systems have the 
potential to mitigate some of these vulnerabilities across supply chains, and 
thereby improve the state of global food security. 

However, the particular properties of each supply chain phase, from "the farm 
to the fork," might suggest that some phases are more vulnerable to risks than 
others. Furthermore, the social circumstances and technological environment 
of each phase may indicate that several phases of the supply chains will be 
more receptive to AI adoption and deployment than others. 

This research paper seeks to test these assumptions to inform the integration 
of AI in agricultural supply chains. It employs a supply chain risk management 
approach (SCRM) and draws on a mix-methods research design. 

In the qualitative component of the research, interviews are conducted 
with agricultural supply chain and food security experts from the Food and 
Agricultural Organization of the UN (FAO), the World Bank, CGIAR, the World 
Food Program (WFP) and the University of Cambridge. 

In the quantitative component of the paper, seventy-two scientists and 
researchers in the domains of digital agriculture, big data in agriculture and 
agricultural supply chains are surveyed. The survey is used to generate 
assessments of the vulnerability of different phases of supply chains to biotic, 
abiotic and institutional risks, and the ease of AI adoption and deployment in 
these phases. 

The findings show that respondents expect the vulnerability to risks of all but 
one supply chain phases to increase over the next ten years. 

Importantly, where the integration of AI systems will be most desirable, in 
highly vulnerable supply chain phases in developing countries, the potential 
for AI integration is likely to be limited. 

To the best of our knowledge, the methodical examination of AI through 
the prism of agricultural SCRM, drawing on expert insights, has never been 
conducted. This paper carries out a first assessment of this kind and provides 
preliminary prioritizations to benefit agricultural SCRM as well as to guide 
further research on AI for global food security.

KEYWORDS
Artificial Intelligence, Agriculture, Supply Chain  
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Introduction

Food security has been defined by the Food and Agricultural Organization of the UN as a 
state in which all people, at all times, have access to food to meet their dietary needs and 
preferences.1 This state can only be sustained by the continuous production, processing 
and provision of nutritionally adequate, safe and affordable agricultural commodities. 

Therefore, global food security depends on effective, efficient and risk-resilient agricultural 
food supply chains.2,3,4,5,6,7,8,9,10,11 That being so, agricultural supply chain risk management 
(SCRM) is crucial for achieving global food security.12 

The crux of supply chain risk management is the identification of supply chain vulnerabilities, 
the assessment of risks that the supply chain may be exposed to, and the actions prescribed 
to mitigate vulnerabilities and risks; actions referred to as either ex-ante or ex-post risk 
management measures.13,14,15,16,17,18,19 An extensive catalogue of ex-ante and ex-post measures 
is proposed in the literature to mitigate risks in agri-food supply chains.20,21,22,23,24,25,26 

More recently, scientists have recognized that emerging technologies can contribute to the 
mitigation of different types of supply chain inefficiencies, losses and risks, and to improve 
the overall agri-food system’s resilience, in order to achieve global food and nutritional 
security. “It is essential,” note Cole et al., “to explore how innovations from […] data science, 
robotics, artificial intelligence […] impact on food security.”27 

Of these emerging technologies and techniques, artificial intelligence (AI) systems are 
likely to have significant applications for SCRM, and thereby to improve the state of global 
food security.  
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1.1 Artificial intelligence

AI refers to a set of technologies that carry out functions that we traditionally think of as requiring 
human intelligence. They are computer systems that are used to identify objects, recognize patterns and 
anomalies, solve problems, allocate resources optimally, navigate, predict failures, make personalized 
recommendations, and learn.28 For certain cognitive functions, such as patterns and anomalies recognition, 
several AI systems can exceed human performance.29,30,31 *

AI is often used to control robots, autonomously or under the direction of a human. With robotics, AI could 
replace or aid humans in routine work in industrial-scale production, in domains where manual work can 
be done by robots; this is referred to as robotics process automation (RPA).

1.2  Artificial intelligence in agricultural supply chains 

Over the next decade, the time frame allotted to meet the second sustainable development goal of ending 
hunger, AI systems are expected to have the potential to benefit the global agricultural system in numerous 
important ways. They can increase crop and livestock yields, decrease food loss and waste, and allocate 
resources optimally.32,33,34,35,36,37,38

Several studies have outlined and illustrated these options, and AI systems and networks, in combination 
with smart sensors, communication technologies, big data sets and robotics, are already being experimented 
with and integrated in various phases of the global food chain.†

Examples include detection and diagnostics of plant diseases and pests,39,40,41,42,43 protection of aquaculture 
from bacteria,44 modelling soil physicochemical properties and composition,45 simulating and evaluating 
future degradation of the biophysical environment emanating from land clearing for food production,46 
supporting farmers’ choices in  crop cultivation through the analysis of data collected and transmitted 
by sensors,47 substituting animal pollination in farming with artificial pollinators,48 informing national 
agricultural policies through prediction of gaps between food production and eating,49 tracking and 
tracing agricultural commodities along shipping routes,50 targeting food-insecure populations,51 detecting 
real-time outbreaks of food-borne diseases, 52 recognizing and assessing risks to yields under warmer 
temperatures and climate variability, simulating future yield performance in different environments, and 
identifying improved agricultural management practices.53 

Given that AI systems show potential for widespread applications across supply chains, there is a need to 
conduct a more comprehensive examination of deployment constraints and deployment potentials of AI 
through the prism of SCRM.  

Several motivations warrant such a systemic analysis. First, the theory of SCRM notes that some phases of 
the supply chain are more vulnerable than others. Different phases are exposed to different types of risks 
and disturbances. These risks have different probabilities of occurrence, and an array of possible detrimental 
consequences.54 

*  As a category, AI encompasses a range of different types of systems, such as rule-based systems, in which human-crafted sets of rules are used to 
manipulate information and produce outputs, and machine learning systems, in which algorithms and statistical models rely on large quantities of data, 
referred to as big data, to carry out pattern identification and inference, producing predictions, decisions or actions for a particular task. Rule-based 
AI, and other AI techniques are all used, at times in combination, in a wide range of contexts. However, AI systems cannot be applied in all contexts, 
and typically require various types of additional information and infrastructure. Machine learning (ML), for example, typically requires carefully curated 
training datasets in order to train a model to perform well on a task, as well as ‘live’ data relating to the task in question in order to take the correct 
actions. Rule-based systems require a high degree of expert knowledge and design relating to the task to be used in the design and application of the 
system. Therefore, for AI systems to be applied successfully, additional resources may be necessary, such as high-quality labelled and unlabeled data, 
computing hardware, sensors for collecting input data, and actuators for taking action in the world. Human expertise on the use and limitations of AI is 
also necessary.  
† In this paper, the concepts “agricultural supply chain”, “food supply chain”, “agri-food supply chain” and “food chain” are used interchangeably. 
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An assessment of supply chain phases of disproportionate vulnerability should inform policies for the 
implementation of appropriate vulnerability mitigation measures.55,56,57 

Relatedly, the risk literature acknowledges distinctions between food chains in developing countries 
and developed ones in terms of institutions, inefficiencies, vulnerabilities, and risk-environments. This 
acknowledgement has led to a series of studies focused on supply chains in developing countries.58,59,60,61,62,63,64 

To this end, not all supply chain phases will present conducive environments for immediate AI integration. 
Constraints such as insufficient, inadequate or otherwise scarce technological infrastructure, for example 
sensors and broadband internet, human capital, for instance technological literacy, or operational 
standardizations of processes and data – will limit the opportunity for near-term application of AI.   

It is significant that not all agricultural activities are food-related. For example, crops are often cultivated 
for fibers and fuels. Importantly, within the broad category of food and feed crops, a minority of just four 
cultivars, wheat, maize, rice and soybean, comprise approximately 50 percent of total croplands. Global food 
security is overwhelmingly dependent on these four staple crops, and as a result the integration of AI in 
agriculture should be prioritized for the supply chains of these staple crops first. In this regard, it should be 
stated that supply chains of storable, calorie-dense staple crops, i.e. high in starches, fats and proteins – the 
focus of this paper – are different from the supply chains of more perishable products such as fruits and 
vegetables.

In view of the above, it is reasonable to hypothesize that entire supply chains, and specific phases along 
supply chains, for which AI systems are most readily applicable may not be the most desirable ones, in 
terms of vulnerability and urgency.

Therefore, when the deployment of AI across the supply chains of staple crops is considered, supply chain 
phases should be assessed in two respects: (a) vulnerability and (b) receptiveness to AI. In particular, it 
is necessary to draw distinctions between supply chains of staples in developed countries, and those in 
developing ones.
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This paper assumes that differences between supply chain phases in developed and developing countries, 
in relation to vulnerability and ease-of-AI-deployment, exist. To test this assumption, the paper employed 
the SCRM perspective and a mixed-methods research design was preferred combining qualitative and 
quantitative approaches. 

2.1 Qualitative research component

First, we articulated a staple crops supply chain model.‡ The model, consisting of eight phases, was jointly 
created with five global agri-food supply chains and SCRM experts: two agricultural SCRM specialists at the 
Institute for Manufacturing in the University of Cambridge, one agri-food chains specialist from the Food 
and Agriculture Organization (FAO), one agri-food chains specialist from CGIAR, and one agri-food chains 
expert formerly with the World Bank and the UN World Food Program (WFP). 

The supply chain that was eventually proposed and used in this research (see figure 1) is necessarily a 
simplified one. 

Simplification of phases and functions was designed to provide a degree of generality so that the model 
would represent the four staple crops, wheat, maize, rice and soybean, and other cereals and legumes 
supply chains.

‡  Based on the view that, at present, global food security, the access to sufficient, safe and nutritious food that meets people’s dietary requirements, 
depends on the production, processing and provision of a handful of agricultural commodities. Of the primary one-hundred global cultivated crops 
by land area, just four items comprise approximately 50% of total croplands (FAO STAT, 2017). These four items, wheat, maize, rice and soybean are 
considered the main plant-source foods (PSF) and are also referred to as global staple crops. In addition, the livestock industry and animal-source foods 
(ASF), which are comprised of chicken (and eggs), pork, beef (and milk) and fish, rely on cereal and legume crops as feed sources, primarily maize and 
soybean. These foods currently provide over a third of global protein intake and additional essential micro-nutrients. These dependencies narrow down 
the number of agri-food supply chains that ought to be prioritized for risk management – and in the context of this paper, for the integration of advanced 
technologies, namely AI – to just four supply chains (i.e. wheat, maize, rice, and soybean). This set or priorities sets clearer boundaries for the scope of the 
research.
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FIGURE 1. Agri-food supply chain model 
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2.2. Quantitative research component

In the second stage of the research, and with the supply chain model as a shared point of reference, we 
investigated how seventy-two scientists and researchers in the domains of digital agriculture, big data in 
agriculture and agricultural supply chains assess (a) the expected vulnerabilities of supply chains to risks 
and (b) the expected receptiveness of supply chain phases to AI systems. 

Respondents were recruited from the 15 research centers of CGIAR. The analysis in this paper was based on 
data collated from an anonymized survey of those respondents. All respondents were members of one of 
six Communities of Practice (CoP) of CGIAR's Platform for Big Data in Agriculture. Therefore, all respondents 
were involved in initiatives to develop and deploy big data resources, and algorithms and models for the 
analysis of data sets, in agriculture and agricultural supply chains.

Some 51 of the 72 respondents attended CGIAR's Big Data in Agriculture 2019 Convention in India, led by the 
International Center for Tropical Agriculture (CIAT), the International Food Policy Research Institute (IFPRI) 
and hosted by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Invitations to 
take part in the survey were sent out by email in the run-up to the convention in India via the CoP network, 
as well as in the proceedings of the convention. Experts were surveyed either online or at the convention. 
In both circumstances, participants were given at least three days to complete the in-depth questionnaire. 

We used a standardized questionnaire based on the staple crops supply chain model (figure 1). The survey 
comprised three sections, with two questions in the first section, two questions in the second section, and 
a third section in which personal information was elicited for screening purposes.

After obtaining respondents' consent to participate, we asked respondents to carefully review the 
agricultural supply chain model, its phases and functions. Respondents reviewed the supply chain model 
again, before each of the four questions.  
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The first section of the survey assessed staple crops supply chain vulnerabilities. In the first question, we 
instructed respondents to deliberate over various categories of vulnerabilities of the eight-phases supply 
chain model, and provided them with vulnerability categories and risk examples. These included biological, 
environmental, weather-related, infrastructural, operations-related, economic, institutional, and social and 
political vulnerabilities and risks.  

We then asked respondents to assess the expected vulnerability of each supply chain phase in developed 
regions and countries which lead staple crops production, processing and provision, focusing on North 
America; the US and Canada, within the next ten years. 

Respondents provided a numerical value on a scale of 1-100, where 1 is "not at all vulnerable to risks", and 100 
is "extremely vulnerable to risks". In addition, numerical value was situated within one of five score bands: 
1-20 for "not at all vulnerable to risks", 21-40 for "slightly vulnerable to risks", 41-60 for "moderately vulnerable 
to risks", 61-80 for "very vulnerable to risks", and 81-100 for " extremely vulnerable to risks". This allowed the 
generation of a heat map (see section 3, Findings). 

The second question in the first section requested experts to assess the expected vulnerability of each 
supply chain phase in the next ten years, this time focusing on developing regions and countries which 
lead staple crops production, processing and provision: South East Asia and South America; China, India, 
Bangladesh, Indonesia, Vietnam, Brazil and Argentina. 

The second section of the questionnaire focused on the ease of AI deployment across the same supply 
chain phases, in different regions. 

In the first question of the second section, respondents were asked to score each supply chain phase in 
developed regions and countries, focusing, again, on North America; the US and Canada, by the expected 
receptiveness of the supply chain phase to AI integration over the next ten years. Respondents used a scale 
of 1-100, where 1 represents "not at all receptive to AI integration", and 100 represents "extremely receptive 
to AI integration". The numeric value for each supply chain phase was situated within one of five score 
bands: 1-20 for "not at all receptive to AI integration", 21-40 for "slightly receptive to AI integration", 41-60 for 
"moderately receptive to AI integration", 61-80 for "very receptive to AI integration", and 81-100 for "extremely 
receptive to AI integration". 

Before respondents made assessments, they were asked to deliberate over the state of information and 
communication technology (ICT) infrastructures in developed regions today, and over the next ten years, 
as well as the non-technical factors influencing technological spread and access over the next ten years 
– i.e. availability and affordability of AI systems for each agricultural supply chain phase, AI supporting 
infrastructures, and the ability of individuals to apply and use AI systems, machines and networks as well as 
their knowledge of such systems.   

We provided a definition of AI, followed with a short description of the infrastructure typically needed to 
support the use of AI systems. We defined AI as a set of technologies that mimic cognitive functions. They 
are computer systems that have some of the qualities that the human mind has, such as the ability to 
identify objects, recognize patterns and anomalies, solve problems, allocate resources optimally, , navigate, 
predict failures, make personalized recommendations, and learn. We defined AI supporting infrastructure 
as the devices necessary to accumulate and analyze big data for decision making including data collection, 
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transmission, storage, processing, cleaning, and analysis apparatuses, for instance, sensor technology, 
broadband internet, satellite technology, mobile technology and global positions systems.  

In the second question of the second section, respondents scored each supply chain phase for ease of 
AI deployment in the previously-examined group of developing regions and countries: South East Asia, 
including China, India, Bangladesh, Indonesia and Vietnam, and South America, including Brazil and 
Argentina.  

The third part of the survey contained questions about employment and the educational background 
of participants. We did not elicit additional personal characteristics of respondents, such as gender and 
nationality. We excluded questionnaire respondents who were not employed with CGIAR and did not meet 
the professional and educational level criteria from our sample. Since most CGIAR centers are in developing 
regions, we were able to avoid potential knowledge biases. 

Data analysis was carried out using descriptive statistics. The complete and anonymized data elicited in 
the questionnaire is available in a supplementary file (see AI in Ag-SCRM Experts Survey Output Data 2019).
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Questionnaire results indicate that, within the next ten years, experts anticipate nearly all phases and 
functions in all regions will become more vulnerable to risks. With the sole exception of Pre-Production 
of Farming Inputs in developed countries, no phase was found "not at all vulnerable" to disturbances.  

Put differently, over the next ten years, in the production, harvest, handling, processing and provision of 
staple crops, everywhere, vulnerability to risks is expected to increase, thereby jeopardizing global food 
security.

3.1. Varying degrees of vulnerability

Results have confirmed the research assumption, and varying degrees of vulnerability across supply chain 
phases were registered.   

With comparatively high mean score, symbolized here with x̅ , and comparatively low standard error of the 
mean score, symbolized here with σM., the phases of Agricultural Production (x̅ =64.15, σM.=1.8 in developed 
countries; x̅ =75.75, σM.=1.5 in developing countries), Post-harvest Aggregation, Local Transport and Storage 
(x̅ =52.06, σM.=1.63 in developed countries; x̅ =69.29, σM.=1.93 in developing countries), and National Transport 
and Storage (x̅ =47.69, σM.=1.86 in developed countries; x̅ =51.58, σM.=2.23 in developing countries), were noted 
for greater vulnerability to risks in both developing and developed countries, warranting particular attention.   

Results further indicate that there exist significant differences between supply chain vulnerabilities in 
developing countries and developed ones: every single supply chain phase in developing countries received 
an average vulnerability score higher than the same phase in developed countries, standard errors taken 
into account. 

3.2. AI divide across regions and supply chains phases

Analyzing and comparing assessments for the ease of integration of AI systems, and AI-supporting 
infrastructures, in developed and developing regions, we receive the opposite picture. 
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Over the next ten years, the receptiveness of supply chain phases to AI systems in developed countries 
is estimated to surpass significantly that in developing countries, not only in overall average aggregate 
score (63.26 versus 37.39, correspondingly) but for each supply chain phase in separate, standard errors 
considered. 

The largest differences were recorded in the Retail, Agricultural Production, Production of Farming Inputs 
and Processing and Manufacturing phases (see figure 2).

FIGURE 2. The AI divide in agricultural supply chains, by type of region. 
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Experts estimated that within the next ten years, Pre-Production of Farming Inputs (x̅ =78.14, σM.=2.42), 
Agricultural Production (x̅ =70.05, σM.=1.29), Trade and Market Intermediaries (x̅ =55.58, σM.=2.19), National and 
International Transport and Storage (x̅ =61.33, σM.=2), Processing and Manufacturing (x̅ =62.83, σM.=2.08), and 
Retail (x̅ =72.83, σM.=2.52) in developed countries will become “Very receptive” to AI integration. 

However, no supply chain phase in developing regions received a score in the “Very receptive” score band, 
and only two supply chain phases in developing regions received a score in the “Moderately receptive to AI 
integration” score band: Pre-Production of Farming Inputs (x̅ =46.8, σM.=2.16) and National and International 
Transport and Storage (x̅ =49.2, σM.=2.09).

The research findings are summarized in two integrated maps: Figure 3 refers to staple crops’ producers, 
processors and providers in North America, and Figure 4 refers to staple crops’ producers, processors and 
providers in South America and South East Asia. 

FIGURE 3. Integrated assessments of supply chain phases' vulnerability to risk (x axis), and ease-of-AI 
 deployment (y axis), in developed countries.
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FIGURE 4. integrated assessments of supply chain phases' vulnerability to risk (x axis), and ease-of-AI 
 deployment (y axis), in developing countries.
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This research examined supply chains of staples for two distinct sets of socio-economic, socio-technical and 
environmental conditions: the first in developed regions, and the second in developing ones. Comparisons 
of rankings yield several conclusions.

First, although agricultural supply chain vulnerabilities in developing regions are projected to exacerbate, 
there are limits to the extent that AI can be applied as a way of mitigating vulnerabilities and improving 
food security. 

In other words, where AI is needed the most according to experts, i.e. highly vulnerable phases, the 
prospects for AI integration are estimated to be most limited. 

In contrast, while supply chains in developed countries are less vulnerable than those in developed countries, 
they were found significantly more receptive to AI technologies. 

With regards to the prioritization of AI deployment in agri-food supply chains, one further observation is 
worth noting. 

The phase of Pre-production of Farming Inputs, which refers to the research and development of seed 
varieties, plant breeding, seed production, inspection and distribution, was found to be highly suitable for 
AI integration while also being assessed as less vulnerable to risk. 

Technological interventions in this earlier stage of the supply chain show considerable potential for 
improving food security; examples include the use of sophisticated bioinformatics and bioengineering 
methods to produce genetically modified, weather-resistant crops. The use of AI is likely to complement 
such approaches well. Hence the integration of AI in this phase warrants prioritizing, in spite of a low score 
on vulnerability to risk.

4.1. Caveats and implications for future research

This research carried out an initial assessment of AI deployment potential and constraints across global 
supply chains. In exploring the potential for AI to aid in the mitigation of agricultural supply chain 
vulnerabilities, this study prioritized generalizability over specificity and nuance.
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Consequently, this paper distinguished between two categories of staple crops producers, processors and 
providers: developing and developed countries. While this strategy allowed the elicitation of some general 
observations and identified priority intervention areas, it is well-acknowledged that socio-economic, socio-
technical and environmental conditions vary vastly from country to country within each region. 

Different social and geographical conditions will yield different risk environments, and this has further 
implication for the manner in which AI can and should be applied. The most valuable applications of AI are 
likely to mitigate specific risks (e.g. plant pests and diseases) rather than playing a role in reducing general 
vulnerability.

Future research should therefore analyze supply chains phase-by-phase if not function-by-function (e.g. 
diagnosing plant diseases, inspecting produce for defects), and should do so risk-by-risk and AI application-
by-application. 

It will also be necessary to perform analysis region-by-region and country-by-country. Such analysis would 
provide insights that would be more sensitive to specific risks and circumstances.
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Summary 
This paper began from the view, generally accepted by the literature, that agricultural supply 
chain risk management – the implementation of measures to mitigate risks along the food 
supply chain – is essential for achieving and maintaining global food security. 

Focusing on the supply chains of staple crops and on AI as a risk mitigation measure, this 
paper carried out an initial assessment of AI deployment options in both developed and 
developing countries, accounting for both comparative vulnerability of phases and comparative 
receptiveness to AI systems for the next ten years.  

Some 72 global experts were surveyed for this purpose. Through the questionnaire, the 
anticipated vulnerability of supply chain phases was empirically analysed. This was followed by 
an assessment of ease-of-AI-deployment across supply chain phases in two categories of staple 
crops’ “breadbaskets”: a set of developed countries and a set of developing ones.  

The results suggest that, for the next ten years (2020-2030), where AI will be needed the most, 
in highly vulnerable supply chain phases in developing regions and countries, its integration is 
estimated to be most restricted. 

On the contrary, although agricultural supply chains in developed countries were estimated less 
vulnerable than those in developed countries, they were found significantly more receptive to AI 
experimentation and integration over the next ten years.

Only very cautious conclusions are possible, as distinguishing between two categories of global 
breadbaskets – developing and developed – may be too broad an approach to devise local 
interventions. Specifically, different local circumstances yield different risk environments, and 
this has further implication for the type of AI that can be employed.
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