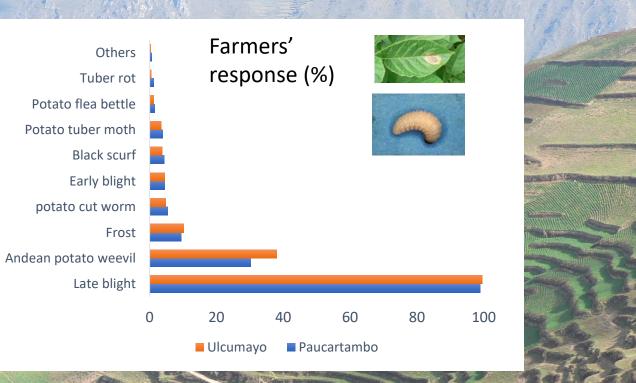
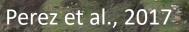
2 6 O C T 2 0 1 9

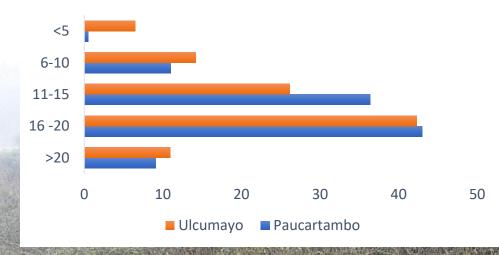
Screening for resistance in wild species and landraces in Peru, and the strategy and resistant materials from CIP's breeding program

J. Andrade-Piedra, W. Pérez, P. Rojas, L. Alarcón, S. Gamboa, M. Gastelo, C. Velasco, A. Njoroge, P. Kromann, H. Lindqvist-Kreuze

Third AsiaBlight International Meeting, Beijing



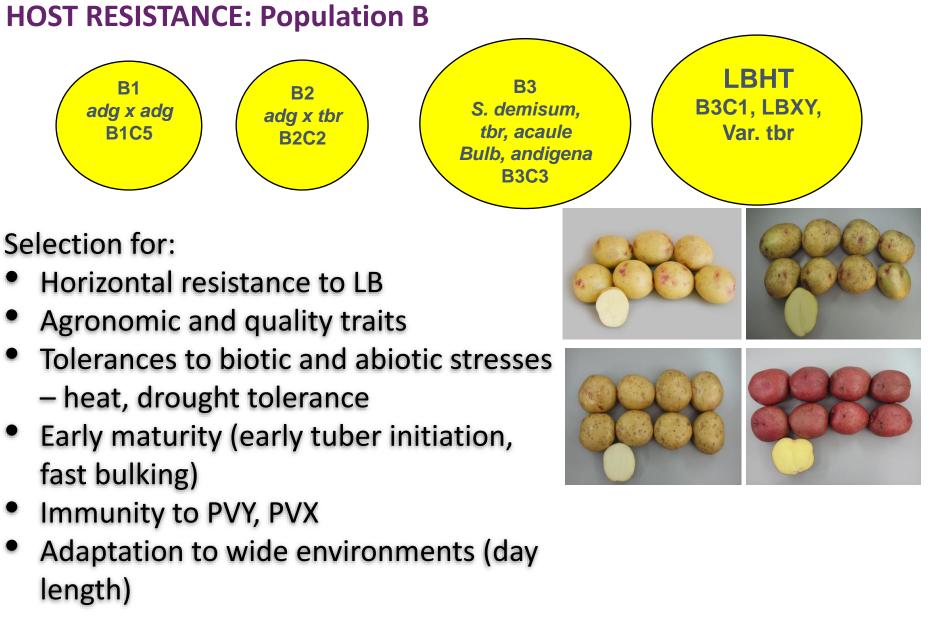

Outline


- LB in developing countries
- The cornerstone: Host resistance
- Knowing the pathogen: pathogen population studies
- Helping farmers to use fungicides: Decision support systems
- It is all about the farmers: Training
- Perspectives

Top ten priorities for CIP's partners

No.	Торіс	Mean	LAC	SSA	ESEA	SWCA
1	Late blight management	<mark>4.71</mark>	<mark>4.63</mark>	<mark>4.77</mark>	<mark>4.85</mark>	<mark>4.06</mark>
2	Late blight breeding	<mark>4.60</mark>	<mark>4.56</mark>	<mark>4.52</mark>	<mark>4.76</mark>	<mark>3.82</mark>
3	Breeding for drought tolerance	4.51	4.56	4.34	4.59	4.88
4	Breeding for earliness	4.49	4.48	4.66	4.48	4.88
5	Production and dist. of planting materials (formal)	4.45	4.31	4.42	4.67	4.76
6	Improving soil fertility	4.44	4.33	4.68	4.53	4.53
7	Germplasm enhancement and pre-breeding	4.41	4.42	4.43	4.39	4.69
8	Breeding for high yield	4.38	4.13	4.59	4.54	4.83
9	Development of farmer organizations	4.34	4.23	4.56	4.41	4.65
10	Improving potato cropping systems	4.32	4.46	4.60	4.26	4.06

Sprays in rainy season


R. Harari

W. Pérez

HOST RESISTANCE: Genetically engineered potato with 3 R genes stacked into farmer preferred varieties

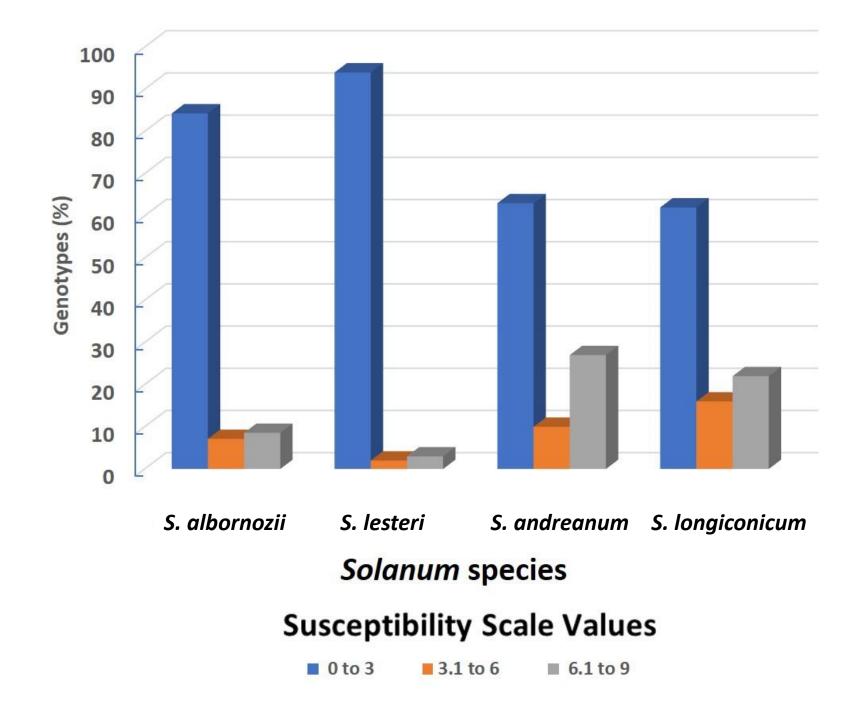
- ➢Confined field trial (CFT) in Uganda.
- ➢Natural epidemic and no fungicide sprays
- P. infestans population has been monitored before and during the CFTs
- > No virulent pathogen phenotypes found

Population	Elite Clones			
B3C1	56			
B3C2	57			
B3C3	50			
B1C5	71			
LBHT	44			
Releas. Var.	± 70 *			

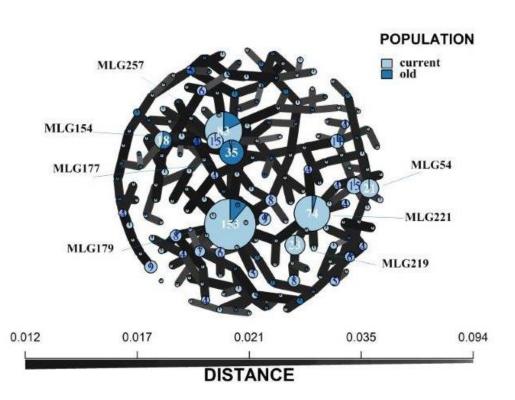
~ 15 countries

Screening for resistance in potato landraces and wild Solanaceae

Potato landraces and wild Solanaceae tested for resistance to late blight


	Number of	Assays				_
	Accessions*	2001	2014	2018	2019	Total
Landraces	4354		468	321	81	870
Wild	2337	133		57	15	205

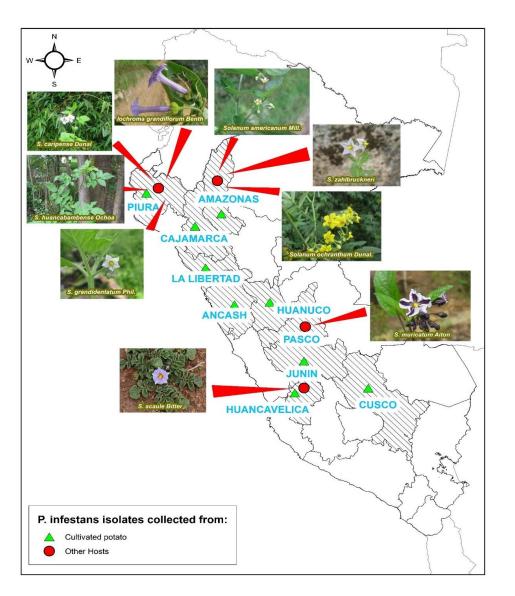
*Accessions in CIP germplasm



Yuen and Forbes (2009)

PATHOGEN POPULATION STUDIES: Example from Peru

Genetic Diversity

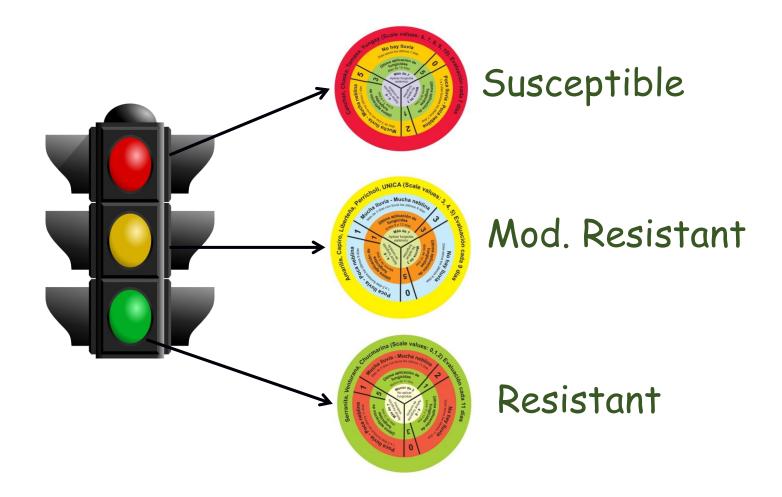

Using 12 plex SSRs (Li 2013)

- High variability, 141 MLGs
- EC-1 lineage predominant
- Cultivated potato: EC-1 and PE-3
- Alternate host: EC-1 and US-1

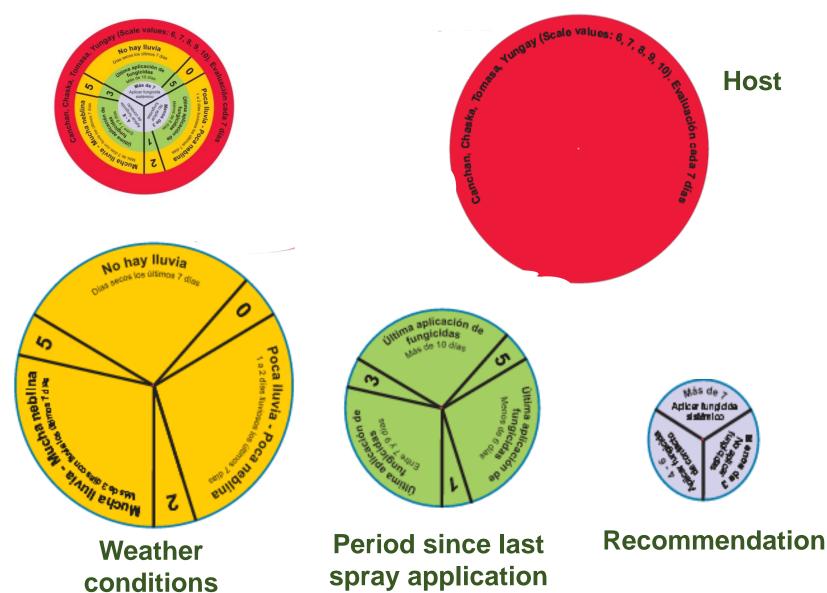
Minimum Spanning Network (MSN) of *Phytophthora infestans*

S. Gamboa, H. Lindqvist-Kreuze

PATHOGEN POPULATION STUDIES: Example from Peru



Wild Solanaceae's infected with *P. infestans:*


S. americanum S. zalbrukneri S. ochrantum S. candolleanum S. acaule S. muricatum (US-1) S. grandidentatum S. caripense S. huancabambense Lochroma grandiflorum

S. Gamboa and H. Linqvist-Kreuze

DISEASE MANAGEMENT: Decision Support System (DSS)

DISEASE MANAGEMENT: Decision Support System (DSS)

Perez et al.

Development and validation of the DSS

- Perú and Ecuador
- 2011-2016
- 15 experiments
- 51 epidemics
- 13 varieties

DSS test in Ecuador: Randomized Control Trial

<u>Group 1</u>: 150 farmers using conventional LB management

A. Taipe et al.

DSS test in Ecuador: Randomized Control Trial

<u>Group 2</u>: Farmers using DSS, including training and backstopping

Verieble	Control		DSS		D	
Variable	n	Mean	n	Mean	Р	
rAUDPC	135	1.17	130	1.89	0.0175	
Environmental impact	135	1180	130	497	< 0.0001	
Yield (t/ha)	133	52.2	129	52.3	0.6080	

IT IS ALL ABOUT THE FARMER: Training

CIP recognized with award of excellence at the International Pest Management Symposium (2018)

Oscar Ortiz and Modesto Olanya

Perspectives

- Understanding and using host resistance from landraces and wild Solanaceae
- Artificial intelligence algorithms and apps to diagnose late blight and other diseases
- Decision support system adapted for developing countries using apps
- Alliances with private sector to develop Latin Blight, Asia Blight and Africa Blight

The International Potato Center (known by its Spanish acronym CIP) is a research-for-development organization with a focus on potato, sweetpotato, and Andean roots and tubers. CIP is dedicated to delivering sustainable science-based solutions to the pressing world issues of hunger, poverty, gender equity, climate change and the preservation of our Earth's fragile biodiversity and natural resources. www.cipotato.org

CIP is a member of CGIAR

CGIAR is a global agriculture research partnership for a food secure future. Its science is carried out by the 15 research centers who are members of the CGIAR Consortium in collaboration with hundreds of partner organizations. www.cgiar.org