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ABSTRACT The rapid progress of modern technologies generates a massive amount of high-throughput
data, called Big Data, which provides opportunities to find new insights using machine learning (ML)
algorithms. Big Data consist of many features (also called attributes); however, not all these are necessary or
relevant, and they may degrade the performance of ML algorithms. Feature selection (FS) is an essential
preprocessing step to reduce the dimensionality of a dataset. Evolutionary algorithms (EAs) are widely
used search algorithms for FS. Using classification accuracy as the objective function for FS, EAs, such
as the cooperative co-evolutionary algorithm (CCEA), achieve higher accuracy, even with a higher number
of features. Feature selection has two purposes: reducing the number of features to decrease computations
and improving classification accuracy, which are contradictory but can be achieved using a single objective
function. For this very purpose, this paper proposes a penalty-basedwrapper objective function. This function
can be used to evaluate the FS process using CCEA, hence called Cooperative Co-Evolutionary Algorithm-
Based Feature Selection (CCEAFS). An experiment was performed using six widely used classifiers on six
different datasets from the UCI ML repository with FS and without FS. The experimental results indicate
that the proposed objective function is efficient at reducing the number of features in the final feature subset
without significantly reducing classification accuracy. Based on different performance measures, in most
cases, naïve Bayes outperforms other classifiers when using CCEAFS.

INDEX TERMS Big data, feature selection, cooperative co-evolution, penalty-based wrapper objective
function, machine learning.

I. INTRODUCTION
Amassive volume of data is continuously generated by mod-
ern technologies in a variety of sectors including: healthcare,
finance, and economics. This high-throughput data genera-
tion is termed Big Data, characterized by large volume, vari-
ety, velocity, and veracity. These characteristics correspond
to the large amount of data generation, the varying structure
and serialization of the data, the speed of data generated,
and the accuracy of the data. The availability of large-scale
data allows the research community to rapidly discover new
knowledge [1]. Several machine learning (ML) algorithms
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can be applied to big data consisting of large data samples to
learn, predict, and classify data for producing accurate results.
An increased number of healthcare applications utilizing
ML classifiers are studied in the literature. Diagnosis and
identifying biomarkers from medical datasets are prominent
examples of widely used ML classifiers [2].

There are large number of real-world problems consisting
of many features (also called attributes in datasets). However,
not all of these features are important as some are irrelevant
or redundant, which may result in a lower performance of
ML classifiers [3], [4]. Feature selection (FS) is a technique
to select the relevant features to reduce data dimensionality,
which ultimately improves ML performance [1]. Formally
speaking, FS is a process to select a subset ofm features from

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 150113

https://orcid.org/0000-0002-8672-5023
https://orcid.org/0000-0003-3368-2215
https://orcid.org/0000-0002-0917-2277


A. N. M. B. Rashid et al.: Novel Penalty-Based Wrapper Objective Function for Feature Selection in Big Data

a full set of n features in the dataset by removing irrelevant
and non-important features and represent the dataset with a
reduced number of features [2]. FS process at first requires
a search technique (e.g., greedy search) to discover subsets
of features. Next, evaluation measures, such as classification
accuracy, are used to evaluate the subsets. A termination
condition, such as the number of generations, terminates the
FS process. Finally, a validation procedure tests the validity
of the selected feature subset [5].

2k possible solutions for a dataset of n features make
computational difficulties for an FS process. With this large
search space, a wide range of search algorithms have been
applied to the FS process, such as greedy search, best search,
and evolutionary search [6]. Among the search techniques,
evolutionary algorithms (EA) are best suited to FS processes.
However, as the search space increases with the number of
data samples and features, the effectiveness of EAs are not
satisfactory in most cases. The cooperative co-evolutionary
algorithm (CCEA), a meta-heuristic algorithm, applies a
divide-and-conquer technique, and is proven to be effective
for different applications, including a limited number of FS
applications. CCEA decomposes a large and complex prob-
lem into several sub-problems, optimizes each sub-problem
independently, and collaborates different sub-problems only
to build a complete solution of the problem [1].

However, as the objectives of FS are twofold (reducing the
number of features, and improving classification accuracy),
an appropriate single objective function is required that satis-
fies the FS objectives [2]. This objective function can be used
as the fitness function for the CCEA-based FS (CCEAFS) to
converge the algorithm in an attempt to reduce the number
of features without significantly decreasing the classification
performance of the ML classifiers.

In this paper, an FS process has been studied with the
CCEA using six widely used ML classifiers, naïve Bayes
(NB) [7], support vector machine (SVM) [8], k-Nearest
Neighbour (k-NN) [9], J48 [10], random forest (RF) [11], and
logistic regression (LR) [12] on six different datasets from the
UCI ML repository.1 At first, the ML classifiers have been
applied to all datasets without reducing the dimensions. Next,
CCEAFS is applied to all classifiers to reduce the dimen-
sions of the datasets. To support the CCEA search process
and satisfy the objectives of the FS process, a penalty-based
wrapper objective function has been proposed, which is used
in CCEAFS as the fitness function. The comparative results
have been analyzed based on different performance matri-
ces, including precision, recall, F1 score, accuracy, micro-
averaged, macro-averaged, and weighted averaged precision,
recall, and F1 score [13].

The contributions of the paper are as follows:
• presenting a systematic literature review onCCEA-based
FS approaches;

• investigating the application of cooperative co-evolution
for the feature selection problem;

1http://archive.ics.uci.edu/ml/

• proposing a new penalty-based wrapper objective func-
tion for feature selection process using cooperative co-
evolution;

• investigating the performance of six ML classifiers on
six datasets with and without using feature selection;

• proving that the feature selection process does not
degrade the performance of the classifiers to a signifi-
cant amount;

• analysing the effect of the feature selection process on
different datasets of a higher number of samples and a
lower number of features.

The rest of the paper is organized as follows: Section II
presents the literature review on feature selection using coop-
erative co-evolution. Section III includes the proposed feature
selection approach and review on cooperative co-evolution
technique. The proposed penalty-based wrapper objective
function is illustrated in Section IV. The experimental results
are presented and analyzed in Section V. The conclusion and
future work directions are included in Section VI.

II. LITERATURE REVIEW
In this section, a review of the feature selection techniques
using cooperative co-evolution technique is presented.

Many FS approaches studied in the literature are based on
different metrics, including information theory, probability
distribution, or classification accuracy [14]. Table 1 presents
a taxonomy of different FS approaches.

TABLE 1. Taxonomy of FS approaches [1], [15], [16].

In the literature, there is a limited number of FS research
works based on CCEA. One of them is a pedestrian detection
system using a sub-population size adjustment technique to
manage the feature proportion, and this method performed
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better with a genetic algorithm (GA), greedy approaches,
and random selection [42]. The maximum number of image
features used in the experiment was 400. This work has
been reproduced by [43] with the varying experimental envi-
ronment and with more negative samples; however, they
achieved comparable results only.

In 2009, Derrac et al. proposed a GA-based CCEA for the
combined use of instance selection (IS) and feature selec-
tion (FS) using three sub-populations (representing IS, FS,
and IS and FS together) [44]. Because IS and FS are per-
formed in a single process, this approach takes fewer compu-
tations; however, it requires the verification of datasets with
noisy instances and a large number of features. A year later,
the same research group proposed another IFS method based
on the previous concept of the three sub-populations and the
use of a k-NN classifier [45]. The used wide-ranging datasets
with a higher number of samples and a lower number of
features for the experiments, which resulted in improved per-
formance; however, it still required verification for datasets
having a greater number of features compared to a lower
number of samples.

A dual population-based CCEA was proposed by Tian
et al. in 2010 [31] for FS and network identification to
train the radial bias function neural network (RBFNN) on a
range of 26 real-world classification problems. There were a
maximum of 20,000 samples, 180 features, and 26 classes.
In terms of better accuracy and a reduced number of features
to tackle multi-objective optimization, the proposed method
performs better.

A CCEA-based embedded FS approach proposed in [46]
used learning classifier systems (LCSs) with MA as a local
search to improve the performance of LCS for evaluating the
fitness of the selected feature subset. 11 benchmark binary
class datasets from the UCI repository with a higher number
of samples and a lower number of features were used to
perform the experiment. Furthermore, the Wilcoxson paired
signed ranks test and a non-parametric pairwise statistical
test were used to validate the performance of the proposed
approach.

In 2018, Ebrahimpour et al. proposed an FS technique
based on CCEA by dividing datasets vertically in a random
fashion and using BGSA (binary gravitational search algo-
rithm) for each solution space [47]. They used information
gain weights and Pearson correlation coefficients for evalu-
ating the fitness function. Seven binary microarray datasets
with a large number of features and a low number of samples
were used to perform the experiment, and achieved better
results compared to other methods.

A framework for a clinical decision support sys-
tem (CDSS) was proposed, which used cooperative
co-evolution [48]. The proposed framework considers FS and
IS as independent sub-problems and used a wrapper-based
approach for FS and IS, where random forest classifier
evaluates the selected feature subset. Seven clinical datasets
from the UCI ML repository have been used to evaluate the
proposed approach and achieved the highest classification

accuracy in most cases compared to the state-of-the-art tech-
niques. Table 2 presents a summary of the papers reviewed
above with key features.

From the literature review of the FS based on CCEA, it is
observed that CCEA is an emerging area of research and
only a limited number of applications are available. Among
the papers reviewed, the majority of the papers focused on
FS and IS together; only a couple of papers addressed the
FS problem. The performance of the CCEA mostly depends
on the decomposition methods, optimizers, and collaboration
techniques [50]. Hence, CCEA based optimizations are still
unexplored in many areas and need to be investigated. Based
on this literature review, there is no extensive research per-
formed on these techniques using a range of datasets yet.
In addition, studies from [16], [51], [52] show that evolu-
tionary computations mostly use algorithms for complex and
large optimization problems, such as the FS problem for big
data. To address these issues, a CCEA-based FS approach is
proposed in the next section.

III. A NOVEL FEATURE SELECTION APPROACH
This section first describes CCEA, then illustrates the
methodology of the proposed FS approach based on CCEA.

A. COOPERATIVE CO-EVOLUTION
Potter and De Jong first introduced the cooperative
co-evolutionary approach in 1994 for solving large-scale,
complex optimization problems [53]. They used a divide-
and-conquer approach to split a large problem into several
sub-problems, and evolved the interacting co-adapted sub-
problems to build a complete solution. The general architec-
ture of the cooperative co-evolutionary algorithm (CCEA) is
illustrated in [1]. Examples of optimizing real-world prob-
lems with promising performance by CCEA includes func-
tion optimization [53], designing artificial neural networks
[54], and machine learning applications [55]. A CCEA is
comprised of three fundamental phases: 1) problem decom-
position, 2) sub-problems evolution, and 3) collaboration and
evaluation, as shown in Fig. 1. A brief description of each
phase is presented in the following section.

1) PROBLEM DECOMPOSITION
The first phase of the CCEA is to decompose a large problem
into multiple sub-problems, which usually depends on the
problem structure [50]. The problem decomposition tech-
niques can be static or dynamic.

Consider the function, y = f (x1, x2, . . . , xn). It can
be decomposed into y1, y2, . . . , ym, where y1 =

f1(x1, x2, . . . , xn), y2 = f2(x1, x2, . . . , xn), . . .ym =

fm(x1, x2, . . . , xn).
If the function is decomposed statically to have one

variable for each sub-problem, then y1 = f1(x1),
y2 = f2(x2), . . . , ym = fm(xn). In contrast, if the func-
tion is decomposed dynamically, the grouping of vari-
ables into sub-problems will be different than with static
decomposition.
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TABLE 2. Summary of the papers reviewed [1].

FIGURE 1. CCEA phases [50].

In the case of static decomposition, the problem is decom-
posed into sub-problems before the evolutionary process
starts, and all sub-problems are fixed [56]. In contrast, in the
case of dynamic decomposition, a problem is decomposed
at the beginning; however, at the time of the evolutionary
process, sub-problems can self-adaptively tune to appropriate
collaboration levels [57]. A few examples of decomposition
techniques are presented in [57]–[59].

2) SUB-PROBLEM EVOLUTION
After the decomposition phase, sub-problems are assigned
to different sub-populations, which are then optimized

independently by either the same or a different evolutionary
optimizer [50]. Sub-problem optimizations can be performed
either sequentially or in parallel. Only one sub-population
evolves per generation in the former [60], whereas all
sub-populations are evolved per generation concurrently in
the later case [61]. The most widely used evolutionary opti-
mizer in this area is a genetic algorithm (GA), whereas dif-
ferential evolution (DE) [62] is the most effective optimizer
for CCEA.

3) COLLABORATION AND EVALUATION
Once sub-problems are optimized, the next phase is to interact
with different sub-populations to build a complete solution
to the problem. The fitness of an individual is evaluated by
selecting a collaborator from each sub-population. The per-
formance of the collaboration is assigned as a fitness value to
the individual being evaluated. At the end of a CCEA process,
individuals with the best collaborations are combined to find
the final solution to the problem [50]. 1+1 collaboration
[63], the 1+N collaboration model [56], and reference shar-
ing (RS) [50] are examples of collaboration models used in
CCEA.

B. METHODOLOGY
In this paper, a novel CCEA-based feature selection approach
for Big Data is introduced, called CCEAFS. The proposed
methodology of CCEAFS is displayed in Fig. 2.
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FIGURE 2. Proposed CCEA based FS.

Datasets from the UCI ML repository were collected,
and preprocessed using Microsoft Excel and WEKA.2 These
datasets were processed using six ML classifiers, NB, SVM,
k-NN, J48, RF, and LR. The performance of these classi-
fiers was evaluated based on precision, recall, F1 score, and
accuracy. CCEAFS was applied to the datasets to reduce the
number of features. The datasets with reduced dimensionality
were then processed using the same six ML classifiers, and
the performance of each classifier was evaluated based on the
aforementionedmetrics. The performance results obtained by
the classifiers with and without FS were analyzed, and the
effect of FS on the performance of the classifiers was inves-
tigated. Formally, the proposed CCEAFS can be described as
follows.

Assume a dataset consisting of n features:

D = f1, f2, f3, . . . , fn (1)

Dataset D is decomposed into m sub-datasets with n/m fea-
tures in each sub-dataset:

D1 = {f1, f2, . . . , fg},D2 = {f1, f2, . . . , fg},

Dg = {f1, f2, . . . , fm} (2)

Each sub-dataset is represented by a sub-population in
CCEA. Here, g is the number of genes in each individual and
equals to n/m. Consider the size of each sub-population (sp)
is s. An example of sub-population sp1 consisting s individual
can be the following:

ind1 = {0, 1, 1, 0, . . . , 1}, ind2 = {1, 1, 1, 0, . . . , 0},

indg = {0, 1, 1, 1, . . . , 1} (3)

If a feature is selected in the individual, then it is represented
as 1; otherwise it is 0, i.e., the feature is not selected. To evalu-
ate an individual ind1 in sub-population sp1, consider collab-
orators from other sub-populations (ind2 from sp2 and ind4

2https://www.cs.waikato.ac.nz/ml/weka/

from sp3) selected to build a complete solution with reduced
features. If static decomposition of twelve features into three
sub-populations (each having four features) is assumed, and
if sp1{ind1} = {f1, f3, f4}, sp2{ind2} = {f6, f7, f8}, and
sp3{ind4} = {f9, f12}, then the complete solution is defined
as follows:

solution = {f1, f3, f4, f6, f7, f8, f9, f12} (4)

The solution with this reduced number of features is then
sent to the classifiers to measure accuracy and other metrics.
The best individual with a reduced number of features and
the highest classification accuracy survives the iterations. The
best individuals from other sub-populations are used to col-
laborators from generation 1 onwards. The process continues
until it reaches a fixed number of generations, or until no
better fitness is achieved over the generations. Algorithm 1
is the pseudocode of the proposed CCEAFS framework.
A JAVA-based implementation of the framework is available
at GitHub.3 In the next section, a new penalty-based objective
function is proposed to be used as the fitness function for
CCEAFS.

IV. A NOVEL PENALTY-BASED OBJECTIVE FUNCTION
Feature selection problem has two purposes: reducing the
number of features of the dataset to lower computational cost,
while maximizing the classification accuracy to increase the
performance of the classification model. However, two-fold
objectives are somewhat contradictory. Hence, classification
accuracy is not sufficient to evaluate the fitness function of the
optimization algorithm for obtaining an optimally reduced
feature subset. In the literature, the two objectives are com-
bined into a single objective function for such a problem
[2], [45], [64]. The objective function is defined using dif-
ferent variables, including the number of correctly classified
instances, the total number of test samples, the number of

3https://github.com/bazlurrashid/cooperative-coevolution/tree/CCEAFS/
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Algorithm 1 CCEAFS
Read the dataset to get the number of features f ;
Initialize subPop, subPopSize, generation;
Calculate the length of individual: l = f /subPop;
Statically (starting from the feature indexed at 1) decom-
pose f features into subPop having l features each;
generation = 1;
for x = 1 to subPop do
for y = 1 to subPopSize do

Initialize individual with 0 and 1;
end for

end for
for x = 1 to subPop do
for y = 1 to subPopSize do

Find random collaborators for each individual;
end for

end for
for x = 1 to subPop do
for y = 1 to subPopSize do

Evaluate all individuals according to (5) and sort them
in descending order of fitness;

end for
end for
for x = 1 to subPop do
Find the best individual from each sub-population and
sort them in descending order of fitness;

end for
Pick the globally best solution and store the optimal feature
subset with the highest fitness value;
while generation ≤ generationmax do
generation = generation+ 1;
for x = 1 to subPop do
Evolve each sub-population using a genetic algo-
rithm;

end for
for x = 1 to subPop do

for y = 1 to subPopSize do
Find the best individuals from the previous gen-
eration as collaborators for each individual in the
current generation;

end for
end for
for x = 1 to subPop do

for y = 1 to subPopSize do
Evaluate all individuals according to (5) and sort
them in descending order of fitness;

end for
end for
for x = 1 to subPop do
Find the best individual from each sub-population and
sort them in descending order of fitness;

end for
Pick the globally best solution and store the optimal
feature subset with the highest fitness value;

end while

features selected in the subset, the total number of features in
the dataset, and penalty terms. In this paper, a penalty-based
wrapper objective function is proposed by combining the two
objectives for the feature selection problem for big data using
the cooperative co-evolution technique, which is used here as
the fitness function. The new objective function is defined as:

f = w1 ∗ f1 − w2 ∗ f2 (5)

f1 = Tc/T (6)

f2 = S/N (7)

where
Tc is the number of correctly classified instances in the test

or training samples;
T is the total number of test or training samples in the

dataset (the test or training samples depend on the classifica-
tion mode of using cross-validation or the supplied test set);
S is the number of features selected in the subset;
N is the total number of features in the dataset;
w1 and w2 are two control parameters for the objective

functions f1 and f2, which are used to adjust the penalty term
for f1 and f2, with w1 + w2 = 1; and
f is the overall objective function.
Since f is the aggregation of f1 and f2, corresponding

weightings w1 and w2 are associated with f1 and f2, respec-
tively.w1 andw2 would affect the search optimization process
to find optimal individuals (solutions to the problem). There-
fore, an empirical experiment can be conducted to find the
appropriate values of w1 and w2 for a particular problem.

V. RESULTS AND DISCUSSIONS
The experimentation has been performed on six datasets,
which have been collected from the publicly available UCI
machine library repository.

A. DATASET DETAILS
The datasets used in the experimentation are listed in Table 3.
The six different datasets have been used with increasing
complexities. The datasets have been selected with a dimen-
sionality from 8 to 1,024 and samples from 170 to 8,992.

TABLE 3. The datasets used for the experiments.

The most common cancer in women is breast cancer,
resulting in many deaths worldwide. The Wisconsin breast
cancer dataset contains 357 benign and 212 malignant
classes. The features in the dataset include real values of
radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry, and fractal dimension
for each cell nucleus [65].

150118 VOLUME 8, 2020
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The dermatology dataset contains six types of diseases:
psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea,
cronic dermatitis, and pityriasis rubra pilaris. It has 12 clinical
features and 22 histopathological features. The differential
diagnosis of erythemato-squamous diseases in dermatology
is problematic, because they share the clinical features of
erythema. Furthermore, a disease can show symptoms of
other diseases [66].

The divorce dataset contains a number of features mea-
sured using the divorce predictors scale based on Gottman
couples therapy. 86 samples are married couples, and 84 sam-
ples represent divorced people, indicated by a class value of 0
and 1, respectively. The purpose of the dataset is to help fam-
ily counsellors and family therapists with case formulation
and the preparation of an intervention plan [67].

The diabetes dataset contains samples collected from
female patients of Pima Indian heritage aged 21 years or
over. The predictor variables in this dataset include the num-
ber of times the patients have been pregnant, their plasma
glucose, diastolic blood pressure, triceps skinfold thickness,
insulin level, body mass index, diabetes pedigree function,
and age [68].

The musk dataset describes a set of 102 molecules,
of which 39 have been annotated by human experts as
musks, and 63 as not being musks. These can be used to
predict whether new molecules are musks. The dataset has
5,581musk samples and 1,017 non-musk samples. The stored
features include ID, molecule names, conformation name,
f1 to f162 as distance features, and f163–f166 are OXY-DIS,
OXY-X, OXY-Y, and OXY-Z [69].

The QSAR Oral Toxicity dataset consists of 1,024 molec-
ular fingerprints with binary values and 8,992 samples of
chemicals divided into 2 classes: very toxic/positive and
not very toxic/negative. Among the chemicals, 741 chemical
samples are classified as very toxic/positive and 8,251 chem-
ical samples are classified as not very toxic/negative. The
objective of the dataset is to predict very toxic (LD50 lower
than 50 mg/kg) and nontoxic (LD50 greater than or equal to
2,000 mg/kg) endpoints [70].

B. CCEA PARAMETERS
The CCEA parameters that have been used in the experimen-
tation and are common to all of the datasets used are listed
in Table 4.

TABLE 4. CCEA parameters details.

Static decomposition with a variable number of parti-
tions based on the number of features in the dataset has
been used. For the Wisconsin breast cancer and divorce
datasets, three sub-populations have been used, whereas

for the dermatology, diabetes, and musk datasets, two sub-
populations. Sub-population size has been kept as 50 for all
datasets. In the case of GA optimization, the binary represen-
tation of the population is used, in which a binary 1 indicates
that a feature is selected and a binary 0 indicates that a feature
is not selected from the dataset. Sub-populations were ini-
tialized randomly at generation 0. Tournament selection was
used to select parent individuals and genetic operators, i.e., by
cross-over (cross-over rate = 100%) and mutation (mutation
rate = 15%) were used to populate next-generation individ-
uals. Elitism = 1 was used to keep the best individuals to the
subsequent generations. In generation 0, since there is no pre-
vious history, to evaluate an individual in a sub-population,
random collaboration was performed to collaborate with indi-
viduals from other sub-populations. In the subsequent gen-
erations, the best individuals from the previous generation
were used as the collaborators for evaluating an individual in
a sub-population. Collaboration performance, i.e., the fitness
value was assigned to the individual being evaluated. The best
individuals were combined from all sub-populations to obtain
the best individual in a generation.

C. EVALUATION METRICS OF THE MODEL
Evaluation metrics measure the quality of the machine learn-
ing model. The evaluation metrics, which are used in this arti-
cle are accuracy, precision, recall, F1 score, micro-averaged
precision, micro-averaged recall, micro-averaged F1 score,
macro-averaged precision, macro-averaged recall, macro-
averaged F1 score, weighted-precision, weighted-recall, and
weighted-F1 score [71]–[73].

D. PERFORMANCE EVALUATION OF THE PROPOSED
OBJECTIVE FUNCTION
The proposed objective function is used in conjunction with
CCEA for finding an optimal subset of features. The perfor-
mance of the proposed objective function is compared using
six different datasets of large sample and a low number of
feature characteristics with six classification algorithms, and
achieved better results of convergence in each case than the
state of the art. The objective function has been tested with
different values of penalty terms w1 and w2, and w1 = 0.60
and w2 = 0.40 were shown to be effective to converge
the CCEAFS with stable classification accuracy and feature
number for all of the datasets tested. Fig. 3-7 show CCEAFS
convergence on the six datasets.

In most cases, convergence was achieved through a termi-
nation condition, i.e., after a fixed number of generations,
or until there was no more significant improvement in the
fitness value (to avoid computational overhead, the itera-
tion was terminated after 50 successive generations with no
improvement). The algorithm was allowed to terminate with
30% of the total number of input generation being successful,
if there was no change in the fitness value (occurred in some
of the cases only).
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FIGURE 3. Objective function convergence of the Wisconsin breast cancer
dataset.

FIGURE 4. Objective function convergence of the dermatology dataset.

FIGURE 5. Objective function convergence of the divorce dataset.

E. PERFORMANCE EVALUATION OF CLASSIFIERS
WITH CCEA
For the experiments, six widely-used classifiers NB, SVM,
k-NN, J48, RF, and LR have been used [74]–[76]. First,
the datasets have been tested with these classifiers without
dimensionality reduction. Second, CCEA has been used to
reduce the dataset dimension, and all six classifiers have been
used to evaluate the performance of dimensionality reduction,

FIGURE 6. Objective function convergence of the diabetes dataset.

FIGURE 7. Objective function convergence of the musk dataset.

FIGURE 8. Objective function convergence of the QSAR oral toxicity
dataset for NB classifier.

i.e., feature selection. The performance results have been
obtained using cross-validation. Table 5 shows the confusion
matrices and Table 6 shows detailed accuracy by class and
summary results using all classifiers with and without FS for
the breast cancer Wisconsin dataset.

From the confusion matrices and detailed accuracy
in Table 5 and 6, it can be observed that with all features in the
dataset, SVM, k-NN, RF, and LR classifiers perform slightly
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TABLE 5. Confusion matrices of the wisconsin breast cancer dataset for
different classifiers.

better than NB, and J48 classifiers in terms of precision,
recall, and the F1 score. In the next phase, CCEAFS was
applied to all these classifiers to reduce the number of features
in the dataset. The number of features in the dataset is 30,

which was reduced to 1 using J48+CCEAFS. The reduced
number of features using NB+CCEAFS, RF+CCEAFS, and
LR+CCEAFS was 2, whereas using SVM+CCEAFS and
k-NN+CCEAFS, it was 3. The confusion matrices of these
combinations to reduce the number of features from Table 6
indicate that SVM, k-NN, and LR perform better than other
classifiers except NB in terms of the same performance mea-
sures. When NB is combined with CCEAFS, it performs bet-
ter and slightly less than RF; however, combining CCEAFS
with other classifiers actually reduced the number of features
in the dataset without significant reduction of performance
measures in terms of precision, recall, and F1 score.

The performance of all classifiers based on accuracy, pre-
cision, recall, F1 score, and features on the Wisconsin breast
cancer dataset is shown in Fig. 9. Simulation results from
Fig. 9 shows that all the classifiers are equally good without
using FS and when combined with CCEAFS using these
performance measures. The results from Fig. 9 indicate that
SVM, k-NN, and RF outperform NB, J48, and LR in terms

TABLE 6. Detailed accuracy by class of the wisconsin breast cancer dataset.
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FIGURE 9. Performance evaluation of classifiers on the Wisconsin breast cancer dataset.

of accuracy, precision, recall, and F1 score. NB, J48, and LR
have equally well results in terms of these measures. All these
classifiers, when combined with CCEAFS, achieved similar
improvements. In other words, NB, RF, and k-NN outperform
the other classifiers, and the rest of the classifiers have equally
good results. However, with an exception in NB, a reduction
in all measures is observed for the rest of the classifiers when
combined with CCEAFS.

The performance of all classifiers on the dermatology
dataset based on accuracy, precision, recall, F1 score, and
features is shown in Fig. 10. Simulation results show that
all the classifiers perform equally well without using FS
and when combined with CCEAFS, in terms of accuracy,
precision, recall, and F1 score. When CCEAFS is applied
to all classifiers, the number of features was reduced by
NB, J48, RF, and LR from 34 to 7, and by SVM, and
k-NN to 8. It can be observed that NB, SVM, RF, and LR
perform equally better than other classifiers without using FS.
When the classifiers are combined with CCEAFS, NB, k-NN,
and J48 perform equally good compared to other classifiers.
Accuracy, precision, recall, and the F1 score are compara-
tively similar in the case of k-NN and a slight reduction can be
observed for NB, J48, and RF. However, these performances

are reduced in the case of SVM and LR although a huge
reduction in the number of features can be achieved using
CCEAFS.

The performance of the classifiers based on accuracy, pre-
cision, recall, F1 score, and features on the divorce dataset
is displayed in Fig. 11. According to the simulation, all
classifiers perform equally well without using FS and with
CCEAFS. The number of features was reduced to only three
by all the classifiers when they are combined with CCEAFS
(from 54). With the exception of SVM, the performance of
all the classifiers has improved in terms of accuracy, pre-
cision, recall, and the F1 score. Accuracy using CCEAFS
was 98.24% of all the classifiers except SVM, for which the
accuracy was 97.65%—a small reduction compared to SVM
without using FS.

Fig. 12 presents the performance of all classifiers on the
diabetes dataset in terms of accuracy, precision, recall, and
F1 score. The results indicate that the highest accuracy was
obtained by LR without using FS, the second highest result
was achieved by SVM, and the third highest by NB. After
the classifiers were combined with CCEAFS, the number of
features reduced from 8 to only 1 by J48, and to 2 by the other
classifiers. The performance results show that without using
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FIGURE 10. Performance evaluation of classifiers on the dermatology dataset.

FS, LR achieved the highest accuracy (77.21%), while when
using FS, NB achieved the highest accuracy (76.56%).

Fig. 13 illustrates the performance of all classifiers on
the musk dataset in terms of accuracy, precision, recall,
F1 score, and features. The number of features was signifi-
cantly reduced when CCEAFS was applied to the classifiers.
The number of features reduced by J48+CCEAFS was only
14 (from 166), and all other classifiers achieved a reduction
to between 16 to 25. The results indicate that the highest
accuracy can be achieved by RF using all features in the
dataset (97.34%), while NB achieved the lowest accuracy
(84.04%). With the exception of NB, all classifiers, per-
formance decreased slightly, for some more than for oth-
ers. Although the performance in terms of all measures of
k-NN, J48, and RF without FS and with CCEAFS have not
been decreased significantly, these measures have dropped
substantially for SVM, and LR when using CCEAFS. How-
ever, NB+CCEAFS has achieved higher performance except
precision compared to NB without using FS.

Fig. 14 illustrates the performance of the NB classifier on
the QSAR oral toxicity dataset in terms of accuracy, preci-
sion, recall, F1 score, and features. The number of features
was significantly reduced when CCEAFS was applied to the
classifiers. The feature reduction rate was 80.37%, which
clearly indicates that without using FS, there is overfitting

TABLE 7. Summary of results for the wisconsin breast cancer dataset.

with all features. Except the precision value, the performance
of FS with NB has been greatly improved. The classification
accuracy has been improved by 10.04%.

The experimental results for all of the datasets used in this
paper are summarised in Table 7–12. The following points
can be listed from the summarised results of all datasets:

Wisconsin Breast Cancer Dataset (Table 7)

• Without FS, in other words, using the full training
dataset, the SVM classifier achieves the highest accu-
racy. Lower performance have been achieved by NB and
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FIGURE 11. Performance evaluation of classifiers on the divorce dataset.

TABLE 8. Summary of results for the dermatology dataset.

J48 compared to other classifiers, and k-NN, RF, and LR
achieved equally good performance.

• When the classifiers were combined with CCEAFS to
reduce the dimensionality of the dataset, the perfor-
mance of all the classifiers has been dropped except that
of NB. RF and NB achieved the highest performance,
and other classifiers achieved similar performance.

TABLE 9. Summary of results for the divorce dataset.

Dermatology Dataset (Table 8)

• The performance of k-NN and J48 classifiers is slightly
less than other classifiers in terms of accuracy and other
measures when the dataset is used with all of its features.
The highest performance is achieved here by NB and RF
classifiers together, whereas the lowest is achieved the
by k-NN classifier.
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FIGURE 12. Performance evaluation of classifiers on the diabetes dataset.

TABLE 10. Summary of results for the diabetes dataset.

• To reduce the number of features in the dataset, when
the CCEAFS is combined with different classifiers,
the highest classification performance is achieved by
NB, k-NN, and J48 classifiers, whereas the lowest one
is by SVM; other classifiers are equally good in terms of
all measures.

Divorce Dataset (Table 9)

• All classifiers performance is equally good except SVM
in terms of all measures when the dataset is used with

TABLE 11. Summary of results for the Musk dataset.

TABLE 12. Summary of results for the QSAR Oral Toxicity dataset.

all features. SVM achieved a higher classification per-
formance. It is noted that for all classifiers with an
exception of SVM, the same results were achieved in all
measures.
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FIGURE 13. Performance evaluation of classifiers on the musk dataset.

FIGURE 14. Performance evaluation of the NB classifier on the QSAR oral
toxicity dataset.

• An improvement of all performance measures was
observed for all classifiers except SVM as the number
of features is reduced by combining the classifiers with
CCEAFS. Similar to the results seen without using FS,
all the classifiers perform at a similar level in terms of
all measures except SVM.

Diabetes Dataset (Table 10)
• Equally good performance is observed by all classifiers
except k-NN using the full training dataset.

• With the feature reduction using CCEAFS, all the
classifiers perform with a slightly reduction in perfor-
mance except NB, where the performance measures are
increased in most cases.

Musk Dataset (Table 11)

• For the musk dataset using all features, it is reported that
except NB, all other classifiers performance is equally
good and RF achieved the highest performance in all
cases. The performance by NB is much less than other
classifiers.

• When the number of features is reduced in combination
with CCEAFS, similar performance is observed by all
classifiers except NB, and a performance drop is noted
for all classifiers except NB. Here, NB achieved the
highest performance in terms of recall, and accuracy
to its counterpart using all features. Though in most
cases, the overall performance is slightly dropped by all
classifiers, the number of feature reduction is significant,
with about 85% reduction in the number of features in
the dataset.

QSAR Oral Toxicity Dataset (Table 12)

• For the QSAR oral toxicity dataset using all features,
it can be observed that the NB classifier performs much
better with than without using FS.
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• Based on the performance of NB with CCEAFS, it is
expected that CCEAFS, together with other classifiers,
will also perform better along with a higher rate of
dimensionality reduction.

According to the experiments, when the dimensionality
of a dataset is low (as seen, for example, with the diabetes
dataset), performance does not decrease substantially with the
application of CCEAFS. With the increased number of fea-
tures in a dataset, neither classifier’s performance degrades
much. During the experiments the NB classifier performed
better in all cases except for one dataset when used in com-
bination with CCEAFS. Therefore, using NB with CCEAFS
can be recommended to reduce the number of features in
datasets with large samples and few features.

VI. CONCLUSION AND FUTURE WORK
In this paper, the effect of the cooperative co-evolutionary
algorithm for feature selection has been analyzed on
six different widely used machine learning classification
algorithms, namely, naïve Bayes, support vector machine,
k-nearest neighbor, J48, random forest, and logistic regres-
sion. To address the identified issues, a penalty-based wrap-
per objective function has been proposed to be used as the
fitness function for cooperative co-evolution, which leads
to algorithm termination. This function has been effective
at reducing the number of features in the dataset without
significantly degrading performance. The performance of
the classifiers was presented, both with and without fea-
ture selection. When keeping all the features in the dataset,
SVM performed best in most cases, and LR in some of the
cases. However, when the CCEAFS is applied, in most cases,
NB outperformed the other classifiers.

The effectiveness of the proposed feature selection frame-
work using cooperative co-evolution has been evaluated using
static decomposition, a genetic algorithm used as the opti-
mizer, and 1+N collaboration to build the complete solution.
CCEA performance can be improved by using a dynamic
decomposition technique, differential evolution as an opti-
mizer, and an improved collaboration technique. Apart from
the methods used in cooperative co-evolution, the datasets
used in this work are characterized by large samples and few
features. As future work, the effectiveness of the proposed
feature selection framework will be tested using datasets with
a larger number of features and a low number of samples.
Another aspect to be investigated is CCEA combined with
more effective decomposition methods, optimizers, and col-
laboration techniques studied in the literature.
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