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ARTICLE

Whole genome landscapes of uveal melanoma
show an ultraviolet radiation signature in iris
tumours
Peter A. Johansson1,20, Kelly Brooks1,20, Felicity Newell1, Jane M. Palmer 1, James S. Wilmott2,3,

Antonia L. Pritchard1,4, Natasa Broit1,5, Scott Wood1, Matteo S. Carlino2, Conrad Leonard1,

Lambros T. Koufariotis1, Vaishnavi Nathan 1,5, Aaron B. Beasley 6, Madeleine Howlie1, Rebecca Dawson1,

Helen Rizos 2,7, Chris W. Schmidt 1,8, Georgina V. Long2,9, Hayley Hamilton1,10, Jens F. Kiilgaard 11,

Timothy Isaacs12,13,14, Elin S. Gray 6,13, Olivia J. Rolfe10, John J. Park7, Andrew Stark10, Graham J. Mann2,15,16,

Richard A. Scolyer 2,3,17, John V. Pearson1, Nicolas van Baren18, Nicola Waddell 1, Karin W. Wadt 19,

Lindsay A. McGrath 10, Sunil K. Warrier10, William Glasson10 & Nicholas K. Hayward 1✉

Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical

or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease.

Therapeutic options for metastatic UM are limited, with clinical trials having little impact.

Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal

tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB),

two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by

ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a

known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We

identify three other significantly mutated genes (TP53, RPL5 and CENPE).
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Uveal melanoma (UM) arises from melanocytes in the uveal
tract, and though less common than cutaneous mela-
noma, a higher proportion of UM patients die from the

disease1–3. Risk determination of metastatic spread can be
obtained through assessment of specific chromosome copy
number alterations (CNAs)4, gene expression profiles5 and
mutation status of known UM driver genes6.

Previous genomic studies have pointed to the existence of four
UM categories, strongly linked to prognosis7–9. Similarly we
segregate our tumours into four categories based on CNAs:
category 1 are chromosome 3 disomy (D3) tumours lacking
chromosome 8q copy-number gain and frequently possessing
EIF1AX mutations; category 2 are D3 UM with chromosome 6p
and 8q gain and a high proportion of SF3B1mutations; category 3
are chromosome 3 monosomy (M3) tumours lacking chromo-
some 8q gain dominated by BAP1 mutations; category 4 UMs are
M3 with chromosome 8q gain and BAP1 mutations. These
genomic stratifications, while prognostic, are not indicative of
treatment responses once progression has occurred.

To improve knowledge of UM genomics and to identify
potential therapeutic targets, we conduct a whole-genome
sequencing (WGS) study of 103 UM, comprised of 91 primary
tumours and 12 metastases, with matched germline DNA. Eighty-
four tumours originate from the choroid, eight from the iris, four
from the ciliary body, and seven without known primary uveal
site (Supplementary Data 1).

Results
Recurrent copy number aberrations. In line with previous stu-
dies8–11, TMB was low in the majority of UM (median 0.50
mutations per megabase, range 248–42,669, Supplementary
Data 2) and tumours generally displayed low counts of structural
variations (SVs) (median: 13; range 0–213) (Fig. 1). One sample
had noticeably more SVs, of which the majority (71%) were
midsized (<100 kb) deletions, suggesting this was not due to
chromothripsis. There were no additional notable features or
known driver mutations in this sample. Commonly observed
losses of chromosome 1p, 3, 8p, 6q and 16q were present, as were
gains of 1q, 6p and 8q (Fig. 2)4,12. Two samples presented with
whole-genome duplication (WGD). Tumours were grouped into
the four categories described. Category 4 was predominant, with
55 samples (53%) displaying M3 and copy-number gain of
chromosome 8q. In previous studies8,9, the vast majority
(93–95%) of M3 tumours also displayed 8q gain, whereas in this
cohort a notable proportion (13/68, 19%) of the M3 samples
showed no 8q gain (category 3) (two-sided Fisher’s exact test, P
= 0.04). Some D3 samples (11/35, 31%) had gain of 8q (category
2), as previously observed8,9. Chromosome 8p loss was only
observed in samples with 8q gain (categories 2 and 4), reflecting
the formation of isochromosome 8q, whereas the other alterations
were spread across categories 2, 3 and 4. The majority of category
1 tumours lacked these common, large CNAs, instead displaying
either few or more dispersed rearrangements.

UV mutation signatures in iris tumours. Assessment of single
base substitution (SBS) signatures revealed SBS5 to predominate
in most cases, with strong representation of SBS3, SBS39 and
SBS40 in some samples (Fig. 1)13. Two samples were dominated
by mutation signature SBS1 (associated with spontaneous dea-
mination) and had correspondingly high TMB (>3 mutations per
Mb). As previously observed14,15, these features corresponded to
the presence of germline loss-of-function (LOF) MBD4 muta-
tions; this takes the published tally of germline MBD4 mutant
UM cases to six14,15, strengthening its role as a UM predisposi-
tion gene. The two UMs with germline LOF BAP1 mutations

displayed no unique features. Strikingly, all iris melanomas dis-
played the genomic features associated with UVR damage
(mutation signatures SBS7a, SBS7b and DBS113 combined with a
high TMB). While exposure to UVR has been suggested as a
cause of the elevated UM risk among arc-welders16, no molecular
evidence of UVR as an aetiological factor has yet been observed in
UM sequencing studies. The iris is located anteriorly within the
uveal tract and is directly exposed to sunlight that breaches the
cornea; we now show that UVR-associated DNA damage results
from this exposure and is a unique genomic feature of iris UM.

Patterns of driver mutations and chromosomal aberrations.
Assessment of known UM driver genes revealed an oncogenic
driver mutation in 102 of 103 tumours: 51 in GNAQ (48 p.
Q209P/L, two p.R183Q, one p.G48L), 46 in GNA11 (44 p.Q209L/
P, two p.R183C), five in PLCB4 (three p.D630Y, two p.D630N)
and two in CYSLTR2 (p.L129Q). These mutations were generally
mutually exclusive except for two PLCB4 p.D630 mutations that
co-occurred with GNAQ/GNA11 p.R183H mutations. This co-
occurrence between PLCB4 mutation and the minor hotspot p.
R183, rather than the stronger oncogenic p.Q209 hotspot muta-
tions, has previously been described in the UM TCGA data8.
Though not previously highlighted, GNAQ p.G48L mutations
have been reported in two UM samples from two separate stu-
dies8,17, as well as in two hepatic small vessel neoplasms, which
are driven by activating GNAQ/GNA14 mutations18. This sug-
gests that GNAQ p.G48L is another minor UM oncogenic hot-
spot mutation. Similar to previous observations19,20, BAP1 was
the most altered gene in M3 samples (75%), including eight splice
site mutations, two germline and 32 somatic LOF mutations, and
three cases with disrupted BAP1 due to SV breakpoints. In
addition, two D3 tumours carried BAP1 mutations, indicating
that although BAP1 inactivation typically occurs after M38, BAP1
aberration can also occur in D3 tumours, which may or may not
later undergo loss of chromosome 3. Of note, one of these D3
tumours (MELA_0800) had a low BAP1 variant allele frequency
(VAF= 9/80) suggesting it was only present in a subclone, and as
copy number tools are not as sensitive as mutation callers, it is
possible that the subclone had loss of heterozygosity (LOH) that
was not detected by the algorithm. Five tumours had BAP1
mutations and copy-neutral LOH, suggesting that the mutations
occurred before WGD in the two tetraploid UMs and before the
LOH event in the three diploid UMs. SF3B1 mutations were
present in 15 tumours, the majority occurring in category 2, in
line with other studies7–9. EIF1AX hotspot mutations were
observed in 19% of tumours. EIF1AX mutations were first dis-
covered in D3 UMs21 and in the TCGA cohort they were
restricted to category 1 tumours (D3 and no 8q gain)8, while in
the cohort presented by Royer-Bertrand and colleagues two of
seven mutations were seen in tumours with M3 and/or 8q gain9.
Similarly, here six of the 20 EIF1AXmutations (30%) were seen in
UM with M3 (n= 5) or 8q gain (n= 1) (Fig. 3a).

Significantly mutated genes. In addition to these known UM
genes, three other statistically significantly mutated genes (SMGs)
were identified (CENPE, TP53, RPL5; Supplementary Table 1).
Three missense mutations and two LOF SVs were identified in
CENPE, along with one LOF germline mutation (late truncating)
(collectively ~5% of UM). An additional six samples were
hemizygous for CENPE (Fig. 3a). CENPE is a plus end-directed
kinetochore motor protein which plays a critical role in mitosis
and chromosome segregation. Knockdown of CENPE has been
shown to cause chromosome misalignment and lagging22,23. Two
of the missense mutations (p.R14W and p.R251W) occurred in
the kinesin motor domain (Fig. 3c) at highly evolutionarily
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conserved regions (ECRs) and the third (p.Q1098P) occurred
in a reasonably conserved residue (Supplementary Fig. 1). An
additional two missense mutations were identified in the UM
TCGA cohort at p.I1038T (weak ECR) and p.K1821N (rea-
sonable ECR), both also in a coiled-coil domain24. CENPE has
been shown to interact with CENPF, BUB1B and Aurora B, the
latter two being critical in the activation of the spindle
assembly checkpoint25–27. In the UM cohort described here,
one sample had a BUB1B missense substitution (p.R691H)
within the region reported to directly interact with CENPE25;
another had a p.D303E substitution in a highly ECR of the
Aurora B catalytic domain. It is possible that disruption of this
pathway is responsible for creating genomic instability allow-
ing for chromosome aberrations to occur. Indeed, the twelve
UM with CENPE alterations had significantly higher genome
percentages with CNAs (Mann–Whitney, P= 0.028, median
23% vs 15%), though this association is confounded since
tumours with high CNA generally have more genome-wide
regions of LOH. Studies both in cell line and mouse models
have demonstrated that CENPE/Cenpe functions in a hap-
loinsufficient manner, with elevated levels of chromosome mis-
segregation observed in heterozygous cells and animals28,29.
Functional work on CENPE missense mutations is required to
determine their impact in UM.

TP53 is commonly disrupted in uveal melanoma. High
expression of p53 has been reported in some UM, often asso-
ciated with histological and clinicopathological features correlated
with poor prognosis, but the potential genetic basis of these
observations was not assessed30–32. Somatic mutations in TP53
have been described in two UM. A hotspot mutation p.R175H
(n= 1216 in IARC TP53 database) was observed in a hypermu-
tated metastatic UM with deficient MBD433 and another hotspot
mutation p.M237I (n= 196 in IARC TP53 database) was
observed in a UM in a pan-cancer study of metastatic tumours17.
Here we identified TP53 as an SMG and report six somatic TP53
mutations across four tumours in addition to eight cases of LOH
(Figs. 3a, b). One LOH case overlapped with an LOF mutation
(p.C277*) resulting in a double-hit in TP53. Another double-hit
was seen in a sample with two missense mutations (p.H193R and
p.T155I) confirmed as occurring on different alleles by assessing
read pairs spanning both mutations. To evaluate the consequence
of these mutations, we applied a computational prediction tool,
FATHMM34, and assessed the results of two comprehensive
characterisation studies of TP53 mutations (Table 1)35,36.
p.H193R is a recurrent hotspot classified as pathogenic by
PHANTM, RFS and FATHMM, while the consequence of
p.T155I is more uncertain, as the variant is classified pathogenic
by PHANTM but predicted to have neutral impact by RFS and
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FATHMM. Finally, one UM had a LOF mutation (p.R342*,
COSM11073) and a missense p.R248Q mutation, both of which
frequently occur in malignancies and are classified as pathogenic
(Table 1). RNA-seq data revealed one read pair spanning both
positions, which contained p.R248Q and was wildtype for p.R342;
furthermore, there was a significantly lower VAF at p.R342 (4/78)
than at p.R248 (25/68) (two-sided Fisher’s exact test, P= 2 × 10−6).
These data suggest the two mutations occurred on different
alleles, with the majority of the transcripts from the p.R342* allele
undergoing nonsense mediated decay. TP53 is a tumour sup-
pressor gene frequently deleted or mutated, resulting in either no
production of p53 or the expression of a truncated and unstable
protein. The spectrum of a few highly recurrent missense muta-
tions, including p.R248Q, has, however, given rise to hypotheses
that these hotspot mutations translate to mutant p53 with gained
oncogenic functions37. For example, the p.R248Q mutation
reported here has been shown to increase the migratory potential
of cells in an in vitro model38.

RPL5 is significantly mutated in uveal melanoma. SMG analysis
also identified RPL5, with truncating mutations in three cases and
LOH in an additional 30 cases (Fig. 3a). No UM had a double hit
in RPL5, in line with previous studies suggesting RPL5 is a
haploinsufficient tumour suppressor, with heterozygous inacti-
vation in glioblastoma (11%), breast cancer (34%) and cutaneous
melanoma (28%)39. In UM the majority of RPL5 LOH occurred
through loss of chromosome 1p, where the gene is located, but in
four cases, focal loss occurred, suggesting that RPL5 may drive
positive selection for 1p loss. Chromosome 1p loss in UM has
been reported as a marker of poor prognosis, independent of
M312. RPL5 encodes ribosomal protein L5, which complexes with
5S rRNA and forms an important part of the impaired ribosome
biogenesis checkpoint (IRBC). Together with RPL11 and ARF,

RPL5 binds to and inhibits MDM2, resulting in p53 stabilisation
in response to blocks in ribosome biogenesis and nucleolar
stress40–42. Of note, one truncating mutation in RPL11 was
observed in the UM TCGA cohort8 further supporting the
importance of this pathway in UM. Given the link between RPL5
and p53, we tested for an association between aberrations in RPL5
and TP53. Indeed, mutations in these genes were mutually
exclusive, but when also considering copy-number loss there was
no association. However, as p53 functions in multiple pathways,
it may be inactivated in some tumours with defective RPL5 due to
selective pressures outside the IRBC response. Interestingly, the
IRBC is often triggered by oncogene-induced translational
stress40–42, with oncogenic MYC being shown to significantly
increase IRBC activation41–44. In addition to their IRBC role,
RPL5 and RPL11 have also been shown to bind to MYC tran-
scripts, mediating RNA-induced silencing and interfering with c-
Myc driven transcription45,46. Overexpression of MYC is thought
to be the driving force behind positive selection of chromosome
8q gains in UM. It is possible that c-Myc overexpression leads to
ribosomal stress and IRBC activation, likely inhibiting tumour
growth. To overcome this, it may be necessary to disrupt this
pathway through mutation/loss of either RPL5, RPL11 or TP53.
Supporting this notion, RPL5 and TP53 disruption (including
mutations, SV breakpoints and chromosomal copy loss) was
more common in cases with 8q gain (48%) than in cases without
8q gain (22%) (two-sided Fisher’s exact test, P= 0.01). Tumours
with alterations in this pathway were predominantly M3, making
it difficult to disentangle the prognostic impact; however, these
individuals had poorer prognosis (Supplementary Fig. 2).

Genomic categories correlate with prognosis. To correlate UM
genomic categories with prognosis, time from first presentation to
metastasis was examined for all patients. Comparing the four
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TCGA categories, there was a trend that category 4 tumours had
shorter relapse-free survival (RFS) (median: 2.5 years) than UMs
in category 3 (median: 7.5 years) and similarly category 2 had
shorter RFS (median: 7.0 years) than category 1 (median not
reached), but the differences were not statistically significant

(P3vs4= 0.11, P1vs2= 0.28) (Fig. 4a). However, M3 UM had sig-
nificantly shorter RFS (median: 2.9 years) than D3 UM (median
7.0 years, log-rank test, P= 0.001, Fig. 4b), confirming the
prognostic strength of M3/D3 status. Interestingly, while iris
melanomas are associated with earlier detection and favourable
prognosis, 4/8 iris cases had M3, with two already having pro-
gressed to metastatic disease. The high TMB in iris UM reported
here suggests they are more likely to respond to immunotherapy,
given the observations for MBD4 germline UM patients14,15, who
have high TMB, a predictor of response to immunotherapy
response in cutaneous melanoma and other cancers47. In com-
bination with previous reports of metastatic iris UM48, these data
suggest a subset of iris UM are at high risk for disease progression
and will likely respond to immunotherapy in the event of pro-
gression and perhaps even in the adjuvant setting.

Methods
Human melanoma samples. Fresh-frozen tissue and matched normal samples
were obtained from the Terrace Eye Centre (Brisbane, Australia), Rigshospitalet
(Copenhagen, Denmark), Melanoma Institute Australia (Sydney, Australia), Lions
Eye Institute (Perth, Australia), Royal Perth Hospital (Perth, Australia), St John of
God Hospital (Subiaco, Australia), and Ludwig Institute for Cancer Research
(Brussels, Belgium). All tumour and blood/saliva samples were accrued with
written informed patient consent following institutional review board approval
from the Human Research Ethics Committees of the QIMR Berghofer Medical
Research Institute, the Sydney Local Health District RPAH zone, the University of
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Fig. 3 Significantly mutated UM genes. Samples are arranged in the same order as Fig. 2 by their category (1–4). a Alterations (substitutions, indels, SVs
and CNAs) in significantly mutated genes and known UM driver genes. Nonsense mutations and frame-shift indels are labelled LOF. Loss-of-function
breakpoints due to structural variants are labelled SV. b Copy number status of the commonly aberrant chromosomes 1, 3, 6 and 8, in UM. c Positions of
mutations in encoded protein of significantly mutated genes, CENPE, TP53 and RPL5. Mutations are coloured black (LOF) and green (missense). Proteins
domains are depicted wider and structurally important regions are coloured dark grey (disorder), light green (coiled-coil) and light blue (low complexity).

Table 1 Classification of TP53 mutations.

Variant Effect PHANTMa RFSb FATHMMc Countd

p.R342* Nonsense 0.70 na 0.73 96
p.R248Q Missense 0.81 −0.04 0.98 946
p.C277* Nonsense 0.42 0.01 0.96 9
p.H193R Missense 1.48 0.38 0.99 101
p.T155I Missense 0.97 −1.13 0.39 21
p.G187fs Frameshift

deletion
na 0.48e na 5

PHANTM phenotypic annotation of TP53 Mutations, RFS relative fitness score, FATHMM
functional annotation through Hidden Markov Models.
aThe score is 0 for common benign polymorphisms and 1 for recurrent somatic hotspot
mutations.
bThe score is on average −2.50 for synonymous variants and 0.42 for protein truncating
variants.
cScores above 0.5 are considered deleterious.
dNumber of somatic cases in the IARC TP53 database.
eThe exact nucleotide variant was not characterised in RFS; the average score of LOF variants at
codon 187 is shown.
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Western Australia, the Capitol Region of Denmark and the Ludwig Institute for
Cancer Research. Patient information was stored in Progeny 10.

DNA extractions. Tumour DNA was extracted using the AllPrep DNA/RNA Kit
(80204, Qiagen Ltd, Hilden, Germany), blood DNA using standard salting out
methods, and saliva DNA was collected and extracted using the Oragene DNA kit
(OG-500, DNA Genotek, Ottawa, Canada) according to the manufacturer’s
instructions. All samples were quantified using a NanoDrop (ND1000; Thermo
Fisher Scientific, Waltham, Massachusetts, USA) and Qubit dsDNA HS Assay
Q32851; Life Technologies, Carlsbad, California, USA).

Whole-genome sequencing. Sequencing libraries were constructed using TruSeq
DNA Sample Preparation kits (Illumina, San Diego, California, USA) according to
the manufacturer’s instructions. WGS was performed on Novaseq or HiSeq X Ten
instruments (Illumina) by Macrogen (Seoul, South Korea). Sequence data were
adapter trimmed using Cutadapt v1.949 and aligned to the GRCh37 assembly using
BWA-MEM v0.7.12 and SAMtools v1.850,51. Duplicate reads were marked with
Picard MarkDuplicates v1.129 (https://broadinstitute.github.io/picard).

Similarly, RNA sequence reads were adapter adapter trimmed using Cutadapt
and aligned using STAR v2.5.2a to the GRCh37 assembly with the gene, transcript,
and exon features of Ensembl gene model v7052.

Somatic mutations. Somatic SNV and indels were detected using an established
pipeline53 in which SNVs were called with qSNP54 and GATK HaplotypeCaller

and indels were detected with GATK55. The contribution from different mutation
signatures was inferred by approximating (minimising the squared error) the
distribution of mutations as a linear combination of COSMIC signature v313 with
the constraint that contributions were non-negative. SMGs were identified using
MutSigCV 1.3.5 (via GenePattern) as well as Oncodrive-fm and OncodriveClust
(via IntOGen)56. A Benjamini-Hochberg adjusted p-value (q-value) below 0.05 was
considered significant. To avoid false negatives in hotspots of known UM genes,
these regions (GNAQ p.48, p.183, and p.209; GNA11 p.183 and p.209; SF3B1
codons p.625, p.666 and p.700; EIF1AX codons p.1-20, PLCB4 p630; and
CYSLTR2 p.129) were called with higher sensitivity. For each sample and genomic
position the variant and reference read counts were compared with the variant and
reference read counts in the pool of all 103 normal/germline samples at that
specific position. Fisher’s exact test was used to identify somatic mutations and a
Bonferroni corrected p-value below 0.001 was considered statically significant.

Classification of TP53 mutations. To evaluate the TP53 mutations, they were
compared with two comprehensive characterisation studies. The Phenotypic
Annotation of TP53 Mutations (PHANTM) score v1.0 is a weighted sum of z-
scores for which common (i.e. benign) germline variants have values around 0 and
recurrent somatic hotspot mutations have scores around 135. The relative fitness
score (RFS) is on average −2.50 for synonymous variants, while the average score
for protein truncating variants is 0.4236. FATHMM is an in silico tool predicting
the probability that variants are deleterious34. Scores above 0.5 are considered
deleterious. The IARC TP53 mutation database (R20, July 2019) was used to
evaluate how frequent mutations are57.
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Copy number aberrations and SV. Copy number aberrations were identified
using ascatNgs58. Copy number of at least 6 was considered high gain. The
underlying model of ascatNgs assumes the data come from two clones of cells: the
tumour and normal contamination. For a heterogeneous tumour it may therefore
overestimate copy numbers; to distinguish heterogeneity from WGD, the dis-
tribution of VAF for somatic mutations within regions with allelic balance were
used. For a tetraploid tumour, two peaks in VAF are expected corresponding to
mutations occurring before and after the copy number gain, with the latter having
half the VAF of the former. Statistical models for the data coming from a
homogeneous tetraploid tumour and from a heterogeneous diploid tumour,
respectively, were inferred using maximum-likelihood and if the heterogeneity was
significantly more likely (P < 0.001), copy numbers were adjusted.

Structural variants were identified using an in-house tool, qSV, as previously
described53. Gene truncating breakpoints and consequence of the SVs were
determined using in-house scripts and transcript annotation from Ensembl.

Survival analysis. Relapse-free curves were estimated using the Kaplan–Meier
method. Difference between curves was assessed with the log-rank (Mantel-Cox) test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The BAM files are deposited in the European Genome-phenome Archive ([https://www.
ebi.ac.uk/ega/]) with accession number EGAS00001001552. The source data underlying
Fig. 2 are provided as a data source file. All other data are available in the Article,
Supplementary Information or available from the author upon reasonable request.

Code availability
Tools used in this publication that were developed in-house are available from the
SourceForge public code repository under the AdamaJava project ([http://sourceforge.
net/projects/adamajava/]). Updated versions of software are available at [https://github.
com/AdamaJava].

Received: 2 December 2019; Accepted: 22 April 2020;

References
1. Lane, A. M., Kim, I. K. & Gragoudas, E. S. Long-term risk of melanoma-

related mortality for patients with uveal melanoma treated with proton beam
therapy. JAMA Ophthalmol. 133, 792–796 (2015).

2. Damato, B. E., Heimann, H., Kalirai, H. & Coupland, S. E. Age, survival
predictors, and metastatic death in patients with choroidal melanoma:
tentative evidence of a therapeutic effect on survival. JAMA Ophthalmol. 132,
605–613 (2014).

3. Zbytek, B. et al. Current concepts of metastasis in melanoma. Expert Rev.
Dermatol. 3, 569–585 (2008).

4. Damato, B. et al. Multiplex ligation-dependent probe amplification of uveal
melanoma: correlation with metastatic death. Investigative Ophthalmol. Vis.
Sci. 50, 3048–3055 (2009).

5. Onken, M. D., Worley, L. A., Ehlers, J. P. & Harbour, J. W. Gene expression
profiling in uveal melanoma reveals two molecular classes and predicts
metastatic death. Cancer Res. 64, 7205–7209 (2004).

6. Yavuzyigitoglu, S. et al. Uveal melanomas with SF3B1 mutations: a distinct
subclass associated with late-onset metastases. Ophthalmology 123, 1118–1128
(2016).

7. Vichitvejpaisal, P. et al. Genetic analysis of uveal melanoma in 658 patients
using the cancer genome atlas classification of uveal melanoma as A, B, C, and
D. Ophthalmology 126, 1445–1453 (2019).

8. Robertson, A. G. et al. Integrative analysis identifies four molecular and
clinical subsets in uveal melanoma. Cancer Cell 32, 204–220.e215 (2017).

9. Royer-Bertrand, B. et al. Comprehensive genetic landscape of uveal melanoma
by whole-genome sequencing. Am. J. Hum. Genet. 99, 1190–1198 (2016).

10. Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in
uveal melanoma. Cancer Discov. 3, 1122–1129 (2013).

11. Johansson, P. et al. Deep sequencing of uveal melanoma identifies a recurrent
mutation in PLCB4. Oncotarget 7, 4624–4631 (2016).

12. Kilic, E. et al. Clinical and cytogenetic analyses in uveal melanoma.
Investigative Ophthalmol. Vis. Sci. 47, 3703–3707 (2006).

13. Alexandrov, L. B. et al. The repertoire of mutational signatures in human
cancer. Nature 578, 94–101 (2020).

14. Johansson, P. A. et al. Prolonged stable disease in a uveal melanoma patient
with germline MBD4 nonsense mutation treated with pembrolizumab and
ipilimumab. Immunogenetics 71, 433–436 (2019).

15. Rodrigues, M. et al. Outlier response to anti-PD1 in uveal melanoma reveals
germline MBD4 mutations in hypermutated tumors. Nat. Commun. 9, 1866
(2018).

16. Shah, C. P., Weis, E., Lajous, M., Shields, J. A. & Shields, C. L. Intermittent and
chronic ultraviolet light exposure and uveal melanoma: a meta-analysis.
Ophthalmology 112, 1599–1607 (2005).

17. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from
prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713
(2017).

18. Joseph, N. M. et al. Frequent GNAQ and GNA14 mutations in hepatic small
vessel neoplasm. Am. J. surgical Pathol. 42, 1201–1207 (2018).

19. van de Nes, J. A. et al. Comparing the prognostic value of BAP1 mutation
pattern, chromosome 3 status, and BAP1 immunohistochemistry in uveal
melanoma. Am. J. Surgical Pathol. 40, 796–805 (2016).

20. Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal
melanomas. Science 330, 1410–1413 (2010).

21. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in
EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45,
933–936 (2013).

22. Tame, M. A., Raaijmakers, J. A., Afanasyev, P. & Medema, R. H. Chromosome
misalignments induce spindle-positioning defects. EMBO Rep. 17, 317–325
(2016).

23. Ciossani, G. et al. The kinetochore proteins CENP-E and CENP-F directly and
specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J.
Biol. Chem. 293, 10084–10101 (2018).

24. Chang, K. T., Guo, J., di Ronza, A. & Sardiello, M. Aminode: identification of
evolutionary constraints in the human proteome. Sci. Rep. 8, 1357 (2018).

25. Chan, G. K., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore
binding domain of CENP-E reveals interactions with the kinetochore proteins
CENP-F and hBUBR1. J. cell Biol. 143, 49–63 (1998).

26. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F. & Cleveland, D. W. CENP-E
forms a link between attachment of spindle microtubules to kinetochores and
the mitotic checkpoint. Nat. Cell Biol. 2, 484–491 (2000).

27. Mao, Y., Abrieu, A. & Cleveland, D. W. Activating and silencing the mitotic
checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell
114, 87–98 (2003).

28. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D.
W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer
Cell 11, 25–36 (2007).

29. Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of
tumorigenesis. Cancer Res. 67, 10103–10105 (2007).

30. Liu, H. & Zhou, M. Evaluation of p53 gene expression and prognosis
characteristics in uveal melanoma cases. OncoTargets Ther. 10, 3429–3434
(2017).

31. Brantley, M. A. Jr. & Harbour, J. W. Deregulation of the Rb and p53 pathways
in uveal melanoma. Am. J. Pathol. 157, 1795–1801 (2000).

32. Hussein, M. R. The relationships between p53 protein expression and the
clinicopathological features in the uveal melanomas. Cancer Biol. Ther. 4,
57–59 (2005).

33. Rodrigues, M. et al. Evolutionary routes in metastatic uveal melanomas
depend on MBD4 alterations. Clin. Cancer Res. 25, 5513–5524 (2019).

34. Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N. & Gaunt, T. R. Predicting
the functional consequences of cancer-associated amino acid substitutions.
Bioinformatics 29, 1504–1510 (2013).

35. Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53
mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

36. Kotler, E. et al. A systematic p53 mutation library links differential functional
impact to cancer mutation pattern and evolutionary conservation. Mol. Cell
71, 178–190 e178 (2018).

37. Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring
Harb. Perspect. Biol. 2, a001107 (2010).

38. Yoshikawa, K. et al. Mutant p53 R248Q but not R248W enhances in vitro
invasiveness of human lung cancer NCI-H1299 cells. Biomed. Res. 31,
401–411 (2010).

39. Fancello, L., Kampen, K. R., Hofman, I. J., Verbeeck, J. & De Keersmaecker, K.
The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in
multiple cancer types. Oncotarget 8, 14462–14478 (2017).

40. Dai, M. S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination
and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482
(2004).

41. Sloan, K. E., Bohnsack, M. T. & Watkins, N. J. The 5S RNP couples p53
homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 5, 237–247
(2013).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16276-8 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2408 | https://doi.org/10.1038/s41467-020-16276-8 | www.nature.com/naturecommunications 7

https://www.ebi.ac.uk/ega/
https://www.ebi.ac.uk/ega/
https://ega-archive.org/studies/EGAS00001001552
http://sourceforge.net/projects/adamajava/
http://sourceforge.net/projects/adamajava/
https://github.com/AdamaJava
https://github.com/AdamaJava
www.nature.com/naturecommunications
www.nature.com/naturecommunications


42. Sun, X. X., Wang, Y. G., Xirodimas, D. P. & Dai, M. S. Perturbation of 60 S
ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53
activation. J. Biol. Chem. 285, 25812–25821 (2010).

43. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome
biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010).

44. Morcelle, C. et al. Oncogenic MYC induces the impaired ribosome biogenesis
checkpoint and stabilizes p53 independent of increased ribosome content.
Cancer Res. 79, 4348–4359 (2019).

45. Liao, J. M., Zhou, X., Gatignol, A. & Lu, H. Ribosomal proteins L5 and L11 co-
operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene
33, 4916–4923 (2014).

46. Challagundla, K. B. et al. Ribosomal protein L11 recruits miR-24/miRISC to
repress c-Myc expression in response to ribosomal stress. Mol. Cell. Biol. 31,
4007–4021 (2011).

47. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines
sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348,
124–128 (2015).

48. Shields, C. L. et al. Iris melanoma: risk factors for metastasis in 169
consecutive patients. Ophthalmology 108, 172–178 (2001).

49. Martin, M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. https://doi.org/10.14806/ej.17.1.200 (2011).

50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

51. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

52. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

53. Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes.
Nature 545, 175–180 (2017).

54. Kassahn, K. S. et al. Somatic point mutation calling in low cellularity tumors.
PLoS ONE 8, e74380 (2013).

55. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Res. 20,
1297–1303 (2010).

56. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across
tumor types. Nat. Methods 10, 1081–1082 (2013).

57. Bouaoun, L. et al. TP53 variations in human cancers: new lessons from the
IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876 (2016).

58. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl
Acad. Sci. USA 107, 16910–16915 (2010).

Acknowledgements
We are indebted to the patients and their families for their participation and support of
this study, and the many clinicians and allied health professionals involved in their
management. We gratefully acknowledge the participation of Sharon Morris, Nicholas
O’Rourke, David Cavallucci Thomas O’Rourke, Helen Marfan and Rachel Susman. As
well, we thank Kevin Whitehead, Gary Quagliotto, and Sullivan Nicolaides Pathology
staff for processing the Queensland samples. This project was funded by the National
Health and Medical Research Council (NHMRC; 1093017), the Walking On Sunshine
Foundation, Anne Stanton, Nicola Laws and Lloyd Owen in Memorial and Civic Solu-
tions. This study was also funded by Fight for Sight, Denmark. A.L.P. is supported by
Highland Island Enterprise (HMS9353763). This work was supported by an NHMRC
Program Grant (G.V.L., G.J.M., R.A.S. and N.K.H.). G.V.L. is supported by an NHMRC
Practitioner Fellowship and The University of Sydney, Medical Foundation. R.A.S. is
supported by an NHMRC Practitioner Fellowship. Support from Melanoma Institute

Australia and The Ainsworth Foundation is also gratefully acknowledged. J.S.W. is
supported by a NHMRC early career fellowship (1111678). N.W. is supported by an
NHMRC Senior Research Fellowship (1139071). N.K.H. is supported by an NHMRC
Senior Principal Research Fellowship (1117663).

Author contributions
P.A.J. and K.B. were responsible for data interpretation and writing the manuscript. N.K.
H., R.A.S. and G.J.M. conceptualised the study. P.A.J., F.N., C.L., S.W., N.B., L.T.K., J.V.P.
and N.W. performed data analysis. K.B. N.B., V.N., C.W.S., R.D. and A.B.B. were
responsible for sample processing and extraction. R.A.S., N.K.H., R.A.S., G.V.L., H.R.,
E.G. acted in a supervisory capacity. A.L.P., J.M.P., J.S.W., M.S.C., M.H., H.R., G.V.L.,
H.H., J.J.P., O.J.R., J.F.K., T.I., N.vB., K.W.W., L.A.M., A.S., S.K.W., W.G. were
responsible for patient data curation, recruitment and tumour acquisition. All authors
reviewed and edited the manuscript.

Competing interests
J.V.P. and N.W. are founders and shareholders of genomiQa Pty Ltd, and members of its
Board. K.W.W. participated in one Advisory board meeting for MSD and AstraZeneca.
R.A.S. receives fees for professional services from Merck Sharp & Dohme, Glax-
oSmithKline Australia, Bristol-Myers Squibb, Dermpedia, Novartis Pharmaceuticals
Australia Pty Ltd, Myriad, NeraCare and Amgen. G.V.L. is consulant advisor for Aduro,
Amgen, Array, BMS, MERCK MSD, Novartis, Pierre-Fabre, Roche. None of these
relationships involve the work described in this manuscript. The remaining authors
declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-16276-8.

Correspondence and requests for materials should be addressed to N.K.H.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16276-8

8 NATURE COMMUNICATIONS |         (2020) 11:2408 | https://doi.org/10.1038/s41467-020-16276-8 | www.nature.com/naturecommunications

https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/s41467-020-16276-8
https://doi.org/10.1038/s41467-020-16276-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours
	Authors

	Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours
	Results
	Recurrent copy number aberrations
	UV mutation signatures in iris tumours
	Patterns of driver mutations and chromosomal aberrations
	Significantly mutated genes
	TP53 is commonly disrupted in uveal melanoma
	RPL5 is significantly mutated in uveal melanoma
	Genomic categories correlate with prognosis

	Methods
	Human melanoma samples
	DNA extractions
	Whole-genome sequencing
	Somatic mutations
	Classification of TP53 mutations
	Copy number aberrations and SV
	Survival analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


