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Abstract 

Background Metabolomics, the identification and quantification of all metabolites in a biological 

system, is considered as a promising technique for biomarker discovery and mechanism elucidation. 

Chronic diseases occur at an elevated frequency in people with suboptimal health status (SHS). 

The recognition of SHS plays a significant role in the preventive, predictive and personalisded 

medicine (PPPM) of chronic diseases. Although a subjective screening tool for SHS has been 

developed, the objective biomarkers that give a better understanding of the pathophysiology of SHS 

warrant further investigation.  

Methods To report the original observations on the metabolomic feature of SHS, a liquid 

chromatography-mass spectrometry-based untargeted metabolomics analysis was conducted on 

plasma samples collected from 100 partciapnts (50 with SHS and 50 age- and sex-matched healthy 

controls).  

Results After controlling for the confounding factors (smoking, drinking, low-density lipoprotein 

cholesterol level, sleep duration, insomnia, anxiety, depression, and physical activity level) 24 

significantly differential metabolites were identified as the candidate biomarkers for SHS. Pathway 

analysis revealed that 1) sphingolipid metabolism, 2) taurine metabolism, and 3) steroid hormone 

biosynthesis are the disturbed metabolic pathways related to SHS. Protein-metabolite-disease 

network analysis showed that 148 proteins ? associated with 13 potential metabolic moelculaes for 

SHS, which could be potiential biomarkers for 17 typs of chornic diseases. A classification model 

was constructed based on the 24 candidate biomarkers, and the model yielded a sensitivity of 94.0%, 

a specificity of 90.0%, and an AUC of 0.977 (95% CI: 0.955 - 0.998, P < 0.001).  

Conclusion These findings support that plasma metabolomics could be used as an objectively 

diagnostic tool for SHS. Metabolic biosignature of SHS warrants further research in a larger 

population and the applications of SHS in PPPM practice. 
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Introduction 

Suboptimal health status (SHS) is a physical state between health and disease characterized 

by the perception of health complaints, chronic fatigue, and a constellation of physical symptoms 

lasting for at least three months (1, 2). It is recognized as a subclinical, reversible stage of chronic 

disease (3). Many health problems, such as psychosocial stress (4), cardiovascular risk factors (5, 

6), and type 2 diabetes mellitus (T2DM) (7) occur at an elevated frequency in people with SHS. The 

recognition of SHS plays a significant role in the prevention of chronic disease from the perspective 

of predictive, preventive and personalized medicine (PPPM) (3).  

Based on the perceived health complaints affected by SHS, a subjective screening tool for SHS, 

suboptimal health status questionnaire-25 (SHSQ-25), has been developed and validated in African,  

Asian and Caucasian ethnic groups (6-9). The SHSQ-25 includes 25 items encompassing five 

domains: fatigue, the cardiovascular system, the respiratory system, the immune system and mental 

status (2). A preliminary diagnostic criterion(score?)  for SHS (SHSQ-25 score ≥ 35) has also been 

recommended (10, 11). In order to understand the pathophysiology of SHS, several objective 

biomarkers, including cortisol, adrenaline, and noradrenaline, have been investigated (4, 12). 

Although previous studies have indicated that chronic psychosocial stress is associated with SHS, 

the underlying mechanisms of SHS remain partially understood. 

Metabolites are the small molecules of metabolism that drive essential cellular functions, such 

as energy production and storage, apoptosis and signal transduction (13). Metabolomics is an 

emerging “omics” tool involving the identification and quantification of all endogenous and 

exogenous metabolites in tissues, cells, and biofluids (14). It provides a snapshot of functional status 

of a biological system. Metabolomics has several advantages for the diagnosis of complex chronic 

disease. First, metabolites are the intermediate or end products of metabolism, which reflects what 

has been encoded by the genome and modified by environmental changes. Therefore, the levels of 



metabolites could be regarded as the ultimate response of biological systems to both genetic and 

environmental factors (15). Second, metabolome, which is connected with genome, transcriptome 

and proteome, represents the most downstream stage in the dynamic system of cellular processes. 

Metabolites are therefore easier to correlate with phenotype (16). In addition, because metabolomics 

provides downstream information of underlying biological pathways, the results can provide 

directions to develop treatments for disease (17). Given these advantages, the metabolome has 

become widely accepted as the dynamic and sensitive measures of the phenotype at the molecular 

level, and the metabolomics is at the forefront of biomarker and mechanism discovery. 

The main methodologies of metabolomics research are typically categorized as targeted 

metabolomics and untargeted metabolomics. Target metabolomics, which focuses on identifying 

and quantifying a predefined set of metabolites based on a priori information, is usually hypothesis-

driven. In the targeted approach, the chemical properties of the investigated metabolites are known, 

and methods are optimized for the analysis of specific metabolites and metabolic pathways of 

interest. By contrast, untargeted metabolomics aims to measure as many metabolites as possible 

from biological samples without a priori knowledge. The major advantage of untargeted 

metabolomics is the discovery of novel metabolites in relation to the study context, and it is therefore 

considered as hypothesis-generating method. Although untargeted metabolomics can be performed 

using nuclear magnetic resonance (NMR),  gas chromatography-mass spectrometry (GC-MS), or  

liquid chromatography-mass spectrometry (LC-MS) technologies, LC-MSenables to detect the 

broadest range of metabolites in a single analysis and therefore has been technique for metabolite 

profiling. LC-MS-based metabolomics has been applied in various research areas including 

biomarker discovery (18), precision medicine (15, 19), drug discovery (17), and systems biology 

(20).  

The aims of this study were to describe comprehensive metabolomic biosignature for SHS, and 



screen objectively metabolic biomarkers for SHS using LC-MS-based untargeted metabolomics. In 

addition, we investigated the metabolic pathways and the protein-metabolite-disease interaction 

network of the potential metabolite biomarkers to further understand the biological processes 

involved in SHS, which may prove to be useful for PPPM of chronic disease. 

 

Materials and Methods 

Study design and participants 

A population-based case-control study was conducted in a Chinese Han population who 

received routine health check-up at the student health centre of Weifang University between 

September 2017 and November 2017. In order to minimize the influence of age on metabolomics, 

the source population was undergraduate students aged 18 to 20 who were living in the university 

dormitory. 

All participants were required to meet the following inclusion criteria: (1) Chinese Han 

individuals; (2) aged 18 years or older; and (3) Shandong province native residents. Participants 

were excluded from the study if they met any of the following criteria: (1) history of somatic and 

psychiatric abnormalities; (2) intake of medication or supplements during the past three month; (3) 

history of any diseases involving the cardiovascular and cerebrovascular system, respiratory system, 

genitourinary system, digestive system, immune system and hematic system; (4) history of any 

surgeries or (5) pregnant or lactating women. 

Figure 1 shows the flow of potential participants through the study. ??? participants were asked 

to complete SHSQ-25 questionnaires at two time points of baseline and three? Months later, and 

participants with SHSQ-25 score ≥ 35 in both two surveys were selected as cases. Then, age- and 

sex-matched healthy participants with SHSQ-25 score < 35 in both two surveys were selected as 

controls. In total, the case group comprised 50 participants with SHS and the control group 



comprised 50 healthy participants without SHS were selected for blood biochemistry assays and 

LC-MS analysis . 

This study was approved by the Ethics Committee of the Weifang University, Weifang, China. 

Written informed consent was obtained from each participant at the beginning of the study. The 

ethics approval was given in compliance with the Declaration of Helsinki. 

 

Covariates 

Demographic characteristics of participants, including age, sex, marital status, and ethnicity, 

were collected by questionnaires. Lifestyle information on smoking, drinking, and sleep duration 

were also collected. Participants were assigned to be non-smokers (never regularly smoked daily) 

or smokers (former smoker or current smoker) according to their smoking status. Drinking status 

was classified as non-drinker, light to moderate drinker, or heavy drinker according to the 2015-2020 

Dietary Guidelines for Americans (21). 

Anthropometric measurements were carried out by trained nurses and physicians. Height, 

weight, waist circumference (WC) and hip circumference (HC) were measured with the participants 

wearing only indoor clothing and without shoes. Body mass index (BMI) was calculated as weight 

in kilograms divided by height in metres squared (kg/m2). Waist-to-hip ratio (WHR) was calculated 

as WC in centimetres divided by HC in centimetres. Systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) were measured twice on the right arm using a standard mercury 

sphygmomanometer with the participants resting for at least 10 minutes in a sitting position. 

The blood biochemistry assays included measurements of the levels of fasting plasma glucose 

(FPG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), low-

density lipoprotein cholesterol (LDL), uric acid (UA), creatinine, blood urea nitrogen (BUN), alanine 

transaminase (ALT), aspartate transaminase (AST), creatine kinase-MB (CK-MB), lactate 



dehydrogenase (LDH), and alkaline phosphatase (ALP). 

The levels of physical activity were measured using the long form of the International Physical 

Activity Questionnaire (IPAQ) and classified as low, moderate and high levels according to the 

protocol for IPAQ (22). The measurements of insomnia, anxiety, and depression were assessed 

using the Athens Insomnia Scale (23), the Hamilton Anxiety Rating Scale (24), and the Hamilton 

Depression Rating Scale (25), respectively. 

 

Plasma collection and metabolomics analysis 

Fasting blood samples were collected by venipuncture in the morning after an overnight fasting. 

The plasma samples were then separated in the laboratory after centrifugation at 3000 rpm for 10 

minutes and immediately stored at -80°C until metabolomics analysis. 

Plasma samples were thawed and proteins were precipitated by adding 300 μL of cold methanol 

to 100 μL of plasma. The mixture was then centrifuged at 12,000 rpm for 15 min at 4 °C and 200 μL 

of supernatant was transferred into polypropylene tubes for further analyses. To assess the stability 

and reproducibility of LC-MS analyses, a quality control (QC) sample was prepared by mixing equal 

volumes (10 μL) of the collected 100 plasma samples. The QC sample was also subjected to similar 

protein precipitation procedure and seven aliquots of QC sample were injected during LC-MS 

analyses. 

LC-MS analysis was performed using an LC-MS system consisting of an UltiMate 3000 liquid 

chromatography system (Thermo Fisher Scientific Waltham, USA) coupled with an Orbitrap Elite 

mass spectrometer (Thermo Fisher Scientific Waltham, USA). A 4 μL aliquot of each sample was 

injected onto a C18 column (100 x 4.6 mm, 3 μm) with the column temperature maintained at 40 °C. 

The flow rate was 0.3 mL/min, and the mobile phase consisted of ultrapure water with 0.1% (v/v) 

formic acid (A) and acetonitrile with 0.1% (v/v) formic acid (B). The gradient of the mobile phase is 



shown in Supplementary Table 1.  

The column eluent was directed to the MS and full-scan profiling data were acquired in the 

Obitrap mass analyser with the scan range of 50-1000 mass-to-charge ratio (m/z) in both positive 

and negative ion mode. The source ion parameters applied were as follows: heater temperature of 

300 °C, sheath gas flow rate of 45 arbitrary units, auxiliary gas flow rate of 15 arbitrary units, sweep 

gas flow rate of 1 arbitrary units, capillary temperature of 350 °C, spray voltage of 3 kV (positive ion 

mode) and 3.2 kV (negative ion mode). 

 

Statistical analysis 

The acquired mass spectrometry data were converted into .mzXML format by using 

ProteoWizard msConvert (26). The XCMS online was applied for pre-processing of raw 

metabolomics data, including feature detection, retention time correction and alignment (27). The 

80% rule was used to treat the missing values, then a list including m/z, retention time and peak 

intensity was generated.  

Normality distribution of all variables were tested by the Shapiro-Wilk test. Normally distributed 

continuous variables were reported as mean ± standard deviation (SD), and non-normally 

distributed continuous variables were represented as medians and interquartile ranges (IQR). 

Categorical variables were represented as frequencies and percentages. The differences in 

categorical variables between the two groups were tested by Chi-square test or Fisher’s exact test. 

The differences in continuous variables between the two groups were tested by Student t-test or 

Mann-Whitney U test. The Benjamini-Hochberg method was used to perform the multiple testing 

corrections and false discovery rate (FDR) was set to 0.05. The principal component analysis (PCA) 

was used to provide an informative summary of the metabolomics dataset and relationships 

between groups. To identify the metabolites responsible for the discrimination, the orthogonal partial 



least squares projection-discriminant analysis (OPLS-DA) model was performed by using SIMCA 

14.1 software (Umetrics, Umea, Sweden). Open source databases, including Kyoto Encyclopedia 

of Genes and Genomes (KEGG) (28), Human Metabolome Database (HMDB) (29), METLIN (30), 

and PubChem (31) were used to identify the metabolites and metabolic pathways. Correlation 

analysis was performed to estimate the association between identified metabolites by Spearman’s 

rank correlation method and correlation coefficients were shown in plot (R package “corrplot”). A 

protein-metabolite-disease interaction network was created by using MetaboAnalyst (32) based on 

information gathered from HMDB (29) and Search Tool for Interactions of Chemicals (STITCH) 

database (33), and the Cytoscape software 3.7.1 (National Institute of General Medical Sciences, 

Bethesda, USA) was used to plot the interaction networks. Multivariate binary logistic regression 

was used to construct classification models for SHS. Receiver operating characteristic (ROC) curves 

and the area under the curve (AUC) were used to assess the classification performance of the 

models.  

Data analysis was performed using SPSS 25.0 (IBM Corporation, New York, USA) and R 3.4.3 

(34). All reported P values were two-tailed, and P < 0.05 was considered statistically significant. 

 

Results 

Characteristics of participants 

In total, 50 participants with SHS and 50 age- amnd sex-matched healthy controls without SHS 

were included in this study. The demographic, anthropometric and biochemical characteristics of 

participants are described in Table 1. The average ages of SHS and control groups were 19.00 ± 

0.73 and 18.98 ± 0.65 years respectively, with the same age range of 18.00 - 20.00 years. The level 

of LDL and sleep duration in the SHS group was significantly lower than those in the control group, 

whereas higher SHS, insomnia, anxiety, and depression scores were observed in the SHS group (P 



< 0.05). In terms of other characteristics, there were no statistically significant differences observed 

between the two groups (P > 0.05). 

 

Discovery and identification of potential metabolic biomarkers 

LC-MS technique was used to performed metabolomics analysis on 100 plasma samples and 

7 QC samples, and the total ion chromatograms of these samples are presented in Supplementary 

Figure 1. PCA plots were performed to show the within-group and between-group variations 

(Supplementary Figure 2). After feature detection, retention time correction, alignment, and removal 

of missing values, 4399 features were detected in positive ion mode and 1976 features were 

detected in negative ion mode (Supplementary Table 2).  

The OPLS-DA model was used to calculate the variable importance on projection (VIP) values 

of each feature, and features with VIP values > 1 were considered the potential differential 

metabolites. The OPLS-DA score plot showed that the SHS group was obviously separated from 

the control group, indicating that the levels of metabolites in SHS participants  are different from 

the controls (Figure 2). The cumulative R2Y and cumulative Q2 values of OPLS-DA model were 

calculated to estimate the “goodness of fit” and the ability of prediction of the model. The OPLS-DA 

model yielded a cumulative R2Y of 0.858 and a cumulative Q2 of 0.646. 

Among 6375 detected features, 225 detected features with VIP values > 1, P values < 0.05, 

FDR adjusted P values < 0.05, and fold change > 1.2 (or < 0.83) were selected as the candidate 

features for SHS (Supplementary Table 2). Then the m/z values and retention times of these features 

were used to identified potential differential metabolites, and 26 of the 255 differential features were 

identified successfully (Table 2). After adjusting for the confounding factors, including smoking, 

drinking, LDL, sleep duration, insomnia score, anxiety score, depression score, and physical activity 

level, 24 significantly differential metabolites between the SHS group and the control group were 



finally selected as the candidate biomarkers for SHS (Table 2). Among these 24 metabolites, 12 

metabolites in SHS participants were significantly higher than those in controls, whereas lower 

levers of 12 metabolites were found in SHS participants. A heat map was performed to visualize the 

relative quantities of 24 metabolites, which indicated significant differences in metabolites between 

SHS group and control group (Figure 3).   

 

Pathway analysis of potential metabolic biomarkers 

In order to reveal the disturbed metabolic pathways related to SHS, the pathway analysis of 24 

candidate metabolites was performed using Metaboanalyst. As shown in Figure 4, these metabolites 

were involved in 12 metabolic pathways ( Supplementary Table 3). Among these 12 metabolic 

pathways, three pathways with P values < 0.05 and impact values > 0.00 were identified as 

sphingolipid metabolism, taurine metabolism, and steroid hormone biosynthesis pathways, 

respectively. Sphinganine 1-phosphate, sphinganine, sphingosine, sphingomyelin are involved in 

the sphingolipid metabolism. Acetyl phosphate and glutaurine are metabolites participated in the 

taurine and hypotaurine metabolism. Androstenedione, progesterone, and pregnanolone are 

involved in the steroid hormone biosynthesis.  

    

Correlation analysis of potential metabolic biomarkers 

To investigate the potential relationships of the 24 differential metabolites, the Spearman’s 

correlation coefficients between the metabolites were calculated based on the levels of metabolites 

(Supplementary Table 4). A correlation plot was performed to visualize the correlation coefficients of 

24 metabolites in Figure 5. In terms of the metabolites in sphingolipid metabolism pathway, the level 

of sphinganine was positively correlated with the level of sphingosine (r = 0.975, P < 0.001), and 

negatively correlated with the levels of sphinganine 1-phosphate (r = -0.713, P < 0.001) and 



sphingomyelin (r = -0.468, P < 0.001). No correlation was observed between the levels of acetyl 

phosphate and glutaurine (r = -0.026, P = 0.794) in the taurine and hypotaurine metabolism pathway. 

The level of androstenedione was positively correlated with the level of progesterone (r = 0.856, P 

< 0.001), whereas a negative correlation was found between the levels of androstenedione and 

pregnanolone (r = -0.323, P = 0.001) in the steroid hormone biosynthesis pathway. 

 

Protein-metabolite-disease network of potential metabolic biomarkers 

In order to provide a comprehensive view of potential functional relationships between potential 

metabolic biomarkers, proteins, and diseases, a protein-metabolite-disease interaction network was 

conducted based on the information searched from HMDB and STITCH databases. Finally, 13 

candidate metabolites associated with 148 proteins which were correlatied ? with 17 diseases  

pheno types (Figure 6). Progesterone and androstenedione in the steroid hormone biosynthesis 

pathway are associated with three diseases, including adrenal hyperplasia, adrenal insufficiency, 

and schizophrenia. Pregnanolone and progesterone are associated with major depressive disorder. 

Androstenedione is  associated with rheumatoid arthritis and polycystic ovary syndrome 1.  

 

Metabolite profiling as an objective diagnostic test for SHS 

To improve the classification accuracy of candidate metabolites for SHS, a logistic regression 

analysis was performed to construct a classification model based on 24 significantly differential 

candidate metabolites. Metabolomics dataset was standardized before logistic regression analysis 

and the step-wise method was used to select the best classification model. The classification model 

based on candidate metabolites was as follows: 

Logit (p = SHS) = -2.536 - 6.638 × (Sphingosine) + 1.156 × (Pregnanolone) + 1.929 × 

(Taurolithocholate sulfate) + 1.432 × (Cervonyl carnitine) 



ROC curve and the AUC were used to assess the diagnostic performance of the model. The 

model yielded a sensitivity of 94.0%, a specificity of 90.0%, and an AUC of 0.977 (95% Confidence 

Interval (CI): 0.955-0.998, P < 0.001) (Figure 7). 

 

Discussion 

Previous studies showed that untargeted metabolomics based on LC-MS is a promising high-

throughput approach for biomarker discovery. In this study, we described a comprehensive 

matabolomic feature of SHS and the metabolic phenotypes revealed significant differences between 

individuals with SHS and individuals with ideal health status. With 24 significantly altered metabolites 

in plasma samples, the pathway analysis suggested that three pathways (?????? Speciciy ???) 

were disturbed in individuals with SHS. ROC curve analysis showed that combination of metabolic 

biomarkers can distinguish individuals with SHS from individuals with ideal health status with a 

sensitivity of 94.0%, a specificity of 90.0%, and an AUC of 0.977. To the best of our knowledge, this 

study is the first metabolomics study of SHS. 

It is believed that SHS is an early stage of chronic disease >?, and reliable methods for the 

identification of the individuals with SHS are of great importance for PPPM of chronic disease (3). 

In the present study, SHSQ-25 was applied in a population of 2861 participants to assess their SHS 

scores at baseline. After follow-up for 3 months, we assessed their SHS scores for the second time. 

The aim of this design was to minimize the influence of subjective factors on SHS scores and to 

give each participant an SHS score  at a longgidutial time frame. On the other hand, the 3-month 

follow-up also can define an individual who has been a state of prolonged, profound suboptimal 

health. The potential confounding factors, including age, sex, smoking, drinking, level of LDL, sleep 

duration, level of physical activity, insomnia, anxiety, and depression, were also investigated and 

adjusted in this study. 



Sphingolipids are a class of bioactive lipids, which are key modulators of several physiologic 

and pathophysiologic processes, such as cell cycle, apoptosis, stress and inflammatory responses 

(35). Sphingolipid metabolism pathway is highly interconnected and branched, and the 

misregulation of one sphingolipid enzyme may lead to accumulation or depletion of one or more 

species of sphingolipids (36),. A umique (abnormal?)  sphingolipid profile may result in a 

pathological condition triggered by accumulation of sphingolipids (37). In this study, the levels of 

sphingomyelin and sphinganine 1-phosphate in individuals with SHS were significantly higher than 

those in healthy controls, whereas lower levels of sphingosine and sphinganine were found in 

individuals with SHS. Our findings indicate that one or more sphingolipid enzymes may be 

misregulated in individuals with SHS. Sphingomyelin is one of the main structural components of 

biological membranes (38), and the overexpression of sphingomyelin synthase increases 

cholesterol accumulation (39). Sphingomyelin plays an essential role in the formation of 

atherosclerotic lesions, and it is a risk factor for subclinical atherosclerosis and coronary artery 

disease (40, 41). Furthermore, our previous studies showed that SHS is associated with 

cardiovascular disease (5, 6). In the present study, the level of sphingomyelin is significantly higher 

in individuals with SHS, which strongly supports our idea that SHS is the subclinical stage of 

cardiovascular disease. 

Steroid hormones are the steroid that acts as hormones, and steroid hormones biosynthesis is 

the multi-step enzymatic conversion of cholesterol via intermediate steroid precursor into biological 

active steroid hormones (42). Steroid hormones are the key regulators of a diverse array of 

physiological processes, including the maintenance of carbohydrate metabolism, sodium and fluid 

homeostasis, development of secondary sex characteristics, and reproduction (43). This study 

observed lower levels of androstenedione and progesterone in individuals with SHS compared with 

individuals with ideal health status, whereas higher level of pregnanolone has been found in 



individuals with SHS. Our previous study also found that the level of cortisol, a steroid hormone, is 

elevated in plasma of individuals with SHS (4). These findings also indicate that hormonal disorders 

might play an important role in the pathophysiology of SHS. 

Taurine is one of the most abundant amino acids in the body and it can be synthesized from 

other amino acids such as methionine and cysteine (44). Taurine is involved in a wide range of 

biological processes, including antioxidant action, anti-inflammatory effect, glucose homeostasis 

and osmoregulation (45). In this study, acetyl phosphate and glutaurine, which involved in the taurine 

and hypotaurine metabolism, were identified as the metabolic biomarkers for SHS. The level of 

acetyl phosphate in participants with SHS is significantly lower than those in participants with ideal 

health status, whereas higher level of glutaurine was found in participants with SHS. These data 

proposed that taurine metabolism disorder is involved in the pathophysiology of SHS. 

The metabolite-protein interaction network enables exploration and visualization of interactions 

between functionally related metabolites and proteins. Based on the reactions from pathway 

databases, literature associations, similar structures, and similar activities, the interactions between 

metabolites and proteins were extracted from STITCH database (33). This network visualization can 

be used to gain novel insights into pathophysiology of SHS or assist with the development of new 

hypotheses for SHS research. According to the association obtained from HMDB database, 

metabolite-disease interaction network was also conducted to explore the disease-related 

metabolites. Several digestive system diseases, including cholestasis (46), Crohn’s disease (47) 

and bile acid synthesis defect (48), were found to be associated with bilirubin metabolism disorder. 

In this study, increased level of bilirubin was observed in the individuals with SHS, which indicates 

that bilirubin metabolism disorder might associate with the SHS phonetype of the digestive system 

symptoms, such as nausea and poor appetite. Previous studies reported that several mental 

disorders, including major depressive disorder (49) and schizophrenia (50), were associated with 



progesterone metabolism disorder. The higher level of progesterone in individuals with SHS 

indicated that progesterone metabolism disorder is associated with that mental symptom of SHS. 

The metabolite-disease interaction network might assist with the discovery of functional connections 

between SHS and diseases in this network. 

Several limitations in this study are noteworthy. First, because our study is a case-control study 

with a relatively small sample size, the universality of these findings could be questioned. However, 

the longitudial design ……….  In addition, considering the semi-quantitative nature of the 

untargeted metabolomics method, a targeted metabolomics study is underway against the same 

cohort to validate the putative biomarkers and pathways based on the findings in this study. Finally, 

although we attempted to control as many potential confounders as possible, the dietary information ? 

was not collected due to the complexity of dietary survey. Despite the limitations, this study has 

provided a new idea that plasma metabolomics might offer a novel alternative for the recognition of 

SHS. Building on the present findings, further studies of larger cohorts from diverse geographical 

areas and populations with different age ranges are warranted. 

 

Conclusions 

Individuals with SHS may involve a universal metabolic disturbance. SHS has a biosignature 

that can be identified using untargeted metabolomics technique. Three metabolic pathway 

disturbances are related to SHS and 24 significantly differential metabolites could be used as the 

candidate biomarkers for SHS. The combination of metabolic biomarkers offered excellent 

diagnostic performance for distinguishing individuals with SHS from individuals with ideal health 

status. The finding of an objective biosignature in SHS will give us better understanding of the 

etiology and pathophysiology of SHS, and help clinicians recognize individuals with higher risk of 

chronic disease from the perspective of predictive, preventive and personalized medicine. 
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SHSQ-25 = suboptimal health status questionnaire-25 
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WC = waist circumference 

HC = hip circumference 

BMI = body mass index 



WHR = Waist-to-hip ratio 

SBP = systolic blood pressure 

DBP = diastolic blood pressure 
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HDL = high-density lipoprotein cholesterol 

LDL = low-density lipoprotein cholesterol 
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BUN = blood urea nitrogen 

ALT = alanine transaminase 
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CK-MB = creatine kinase-MB 
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ALP = alkaline phosphatase 

IPAQ = International Physical Activity Questionnaire 

QC = quality control 

m/z = mass-to-change ratio 
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FDR = false discovery rate 
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Figure 1. Study population flow chart 

 



Table 1. Characteristics of the study participants 

Characteristics Control Group SHS Group P value 

N 50.00 50.00  

Sex   1.000 

  Male 10.00 (20.00%) 10.00 (20.00%)  

  Female 40.00 (80.00%) 40.00 (80.00%)  

Age (years) 19.00 (19.00 - 19.00) 19.00 (18.00 - 20.00) 0.888 

Smoking   1.000 

    Non-smoker 47.00 (94.00%) 47.00 (94.00%)  

    Smokers 3.00 (6.00%) 3.00 (6.00%)  

Drinking   0.695 

    Non-drinker 46.00 (92.00%) 44.00 (88.00%)  

    Light to moderate drinker 1.00 (2.00%) 3.00 (6.00%)  

    Heavy drinker 3.00 (6.00%) 3.00 (6.00%)  

Dietary   1.000 

    Omnivore 50.00 (100.00%) 50.00 (100.00%)  

    Vegetarian 0.00 (0.00%) 0.00 (0.00%)  

SBP (mmHg) 115.50 (109.00 - 124.50) 118.00 (111.75 - 126.25) 0.235 

DBP (mmHg) 74.86 ± 8.82 76.70 ± 9.95 0.330 

BMI (kg/m2) 21.41 (19.92 - 23.40) 21.26 (19.43 - 23.07) 0.442 

WC (cm) 71.01 ± 8.13 70.91 ± 8.09 0.951 

HC (cm) 92.03 ± 7.80 92.45 ± 6.76 0.774 

WHR 0.77 (0.74 - 0.80) 0.75 (0.72 - 0.80) 0.427 

FPG (mmol/L) 4.94 (4.78 - 5.14) 4.90 (4.75 - 5.09) 0.326 

TC (mmol/L) 4.22 ± 0.66 3.98 ± 0.63 0.066 

TG (mmol/L) 0.90 (0.80 - 1.10) 0.90 (0.70 - 1.00) 0.403 

HDL (mmol/L) 1.44 ± 0.27 1.48 ± 0.28 0.547 

LDL (mmol/L) 2.40 (2.00 - 2.90) 2.20 (1.90 - 2.50) 0.044 

UA (μmol/L) 317.50 (261.05 - 406.25) 308.85 (269.65 - 377.08) 0.788 

Cre (μmol/L) 59.55 (55.50 - 69.63) 58.95 (55.88 - 65.45) 0.674 

BUN (mmol/L) 3.95 (3.30 - 4.50) 4.15 (3.30 - 4.93) 0.446 

ALT (U/L) 12.65 (9.23 - 19.15) 13.30 (9.18 - 18.75) 0.852 

AST (U/L) 20.90 (17.90 - 24.18) 21.50 (17.78 - 25.10) 0.627 

CK-MB (U/L) 6.70 (5.28 - 8.55) 6.05 (5.18 - 7.33) 0.181 

LDH (U/L) 147.44 ± 24.09 143.09 ± 21.41 0.343 

ALP (U/L) 59.54 (50.12 - 75.72) 58.48 (51.71 - 72.44) 0.825 

Sleep duration (hours) 8.00 (7.00 - 8.00) 7.00 (7.00 - 8.00) 0.030 

SHS score (First survey) 12.00 (8.00 - 21.25) 40.00 (37.00 - 44.00) <0.001 

SHS score (Second survey) 16.00 (12.50 - 25.25) 35.00 (35.00 - 40.00) <0.001 

Insomnia score 3.00 (1.75 - 5.25) 6.50 (6.00 - 9.00) <0.001 

Anxiety score 2.00 (0.00 - 4.25) 9.00 (3.00 - 13.25) <0.001 

Depression score 2.00 (0.00 - 3.00) 5.00 (1.75 - 10.25) <0.001 

Physical activity   0.165 

    Moderate level 9.00 (18.00%) 16.00 (32.00%)  



    High level 41.00 (82.00%) 34.00 (68.00%)  

Note: Data are presented as means ± SD, medians (interquartile ranges) or frequencies (percentages). P < 0.05 is 

considered statistically significant. SHS, suboptimal health status; N, number of participants; SD, standard deviation; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WC, waist circumference; HC, hip 

circumference; WHR, waist-to-hip ratio; FPG, fasting plasma glucose; TC, total cholesterol; TG, total triglycerides; HDL, 

high-density lipoprotein; LDL, low-density lipoprotein; UA, uric acid, Cre, creatinine; BUN, blood urea nitrogen; TBIL, 

total bilirubin; ALT, alanine transaminase; AST, aspartate transaminase; CK-MB, creatine kinase-MB; LDH, lactate 

dehydrogenase; ALP, alkaline phosphatase. 

 

 

 

 

 

 



 

 

 

 

 

Figure 2. Metabolic biomarkers for SHS 

Note: (A) The orthogonal projection to latent structure-discriminant analysis (OPLS-DS) score plots. (B) The disturbed metabolic 

pathways in suboptimal health status. (C) The diagnostic performance of potential metabolic metabolites for SHS.



Table 2. Differential metabolites identified between SHS participants and controls 

Metabolites Mode Observed m/z RT (min) Trend   FC  VIP value P Value *P Value #P value 

Acetyl phosphate Positive 139.9881 15.8044 Down 0.815 3.744 0.004 0.006 0.016 

Spermine Positive 202.2167 5.0300 Down 0.528 1.282 <0.001 <0.001 <0.001 

Androstenedione Positive 219.2154 4.2883 Down 0.472 1.034 <0.001 <0.001 <0.001 

Progesterone Positive 247.2463 4.9932 Down 0.113 2.707 <0.001 <0.001 0.004 

Glutaurine Positive 255.0659 4.3251 Up 1.774 1.038 <0.001 <0.001 0.001 

Glycerophosphocholine Positive 258.1109 0.9428 Up 1.451 1.959 <0.001 <0.001 <0.001 

Hexanoylcarnitine Positive 260.1864 4.0222 Down 0.735 1.395 <0.001 0.017 0.476 

L-Octanoylcarnitine Positive 288.2178 4.6330 Down 0.739 2.524 0.005 0.008 0.397 

Sphinganine 1-phosphate Positive 298.3109 12.1612 Up 2.524 1.783 <0.001 <0.001 <0.001 

Sphinganine Positive 302.3061 6.8676 Down 0.085 15.831 <0.001 <0.001 0.042 

Glyerophosphoinositol Positive 317.0612 4.9279 Up 1.220 1.616 <0.001 <0.001 0.001 

Sphingosine Positive 318.3008 5.9321 Down 0.139 8.451 <0.001 <0.001 0.003 

Pregnanolone Positive 319.2636 11.3965 Up 1.386 3.833 <0.001 <0.001 0.001 

2-Arachidonylglycerol Positive 343.2636 11.0523 Up 1.401 3.040 <0.001 <0.001 0.001 

4alpha-Methylzymosterol-4-carboxylate Positive 375.3669 7.8852 Down 0.119 2.330 <0.001 <0.001 0.015 

S-Adenosylhomocysteine Positive 403.1396 5.6208 Down 0.065 1.119 <0.001 <0.001 0.002 

Reduced Vitamin K Positive 403.3981 8.7993 Down 0.088 1.909 <0.001 <0.001 0.046 

7'-Carboxy-alpha-chromanol Positive 416.2160 6.4400 Down 0.516 3.595 <0.001 <0.001 0.001 

Taurolithocholate sulfate Positive 480.3092 8.0890 Up 1.241 2.064 0.005 0.008 0.042 

Cervonyl carnitine Positive 494.3251 7.2723 Up 1.202 4.716 <0.001 <0.001 0.001 

Hexacosanoyl carnitine Positive 512.5042 12.2543 Down 0.399 1.353 <0.001 <0.001 0.001 

3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestanoate Positive 519.3287 7.0182 Up 1.340 1.576 <0.001 <0.001 0.005 

18-CoA-18-oxo-dinorleukotriene B4 Positive 542.1220 15.3080 Up 1.304 1.181 <0.001 <0.001 0.001 

Sphingomyelin Positive 703.5764 7.8690 Up 1.370 6.219 <0.001 <0.001 <0.001 



9'-Carboxy-gamma-chromanol Negative 374.2449 6.1306 Up 2.144 2.176 <0.001 <0.001 <0.001 

Bilirubin Negative 583.2558 4.9730 Down 0.723 1.769 0.001 0.001 0.032 

Note: m/z, mass-to charge ratio; RT, retention time; FC, fold chnage; VIP, variable importance on projection. Down trend, relatively lower levels of metabolites present in SHS group. Up trend, relatively 

higher levels of metabolites present in SHS group.   

P Value, P value from Student t-test without adjustment; *P Value, P value adjusted for false discovery rate using Benjamini-Hochberg method. #P Value, P value adjusted for smoking, drinking, low-

density lipoprotein cholesterol, sleep duration, insomnia score, anxiety score, depression scores, physical activity and false discovery rate; P < 0.05 is considered statistically significant. 



 

Figure 3. The Heat map of 24 potential metabolic biomarkers for SHS



 

 

 

Figure 4. Correlation coefficients of 24 potential metabolic biomarkers for SHS 

Note: Statistically significant correlations between two metabolites are shown, while the insignificant correlation coefficients are blank in the boxes. 

The positive correlations are represented by blue color, while negative correlations are represented by red color. P < 0.05 is considered statistically 

significant. The detailed correlation coefficients and P values were shown in Supplementary Table 4. 
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Figure 5. The metabolite-gene-disease network analysis of potential metabolites for SHS 
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