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ABSTRACT Optimal placement of flexible AC transmission systems (FACTS) devices and the cyber-
security of associated data exchange are crucial for the controllability of wide area power networks. The
placement of FACTS devices is studied in this paper from a novel graph theoretic perspective, which unlike
the existing approaches, purely relies on topological characteristics of the underlying physical graphs of
power networks. To this end, the maximum matching principle (MMP) is used to find the set of required
FACTS devices for the grid controllability. In addition, the cyber-security of the most critical data related
to the FACTS controllers is guaranteed by introducing the concept of moderated-k-security where k is a
measure of data obscurity from the adversary perspective. The idea of moderated-k-symmetry is proposed to
facilitate the arrangement of the published cyber graph based on a permutation of nodes within the symmetry
group of the grid, called generator of automorphism. It is then verified that the published cyber-graph can
significantly obscure the data exchange over the cyber graph for adversaries. Finally, a similarity is observed
and demonstrated between the set of critical nodes attained from the symmetry analysis and the solution
of the FACTS devices placement that further highlights the importance of symmetry for the analysis and
design of complex power networks. Detailed simulations are applied to three power networks and analyzed
to demonstrate the performance and eligibility of the proposed methods and results.

INDEX TERMS Controllability, placement, FACTS devices, graph theory, power system security, cyber-
security, cyber-physical system, shunt voltage sourced converter.

NOMENCLATURE
ABBREVIATIONS
CN Complex network.
FACTS Flexible AC transmission systems.
MMP Maximum matching principle.
PID proportional integrative derivative.
VSC Voltage-source converter.
WAC Wide area controlled.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Li .

PARAMETERS
αsh Angle of shunt VSC.
β The bus voltage angles.
δi The angle of voltage of node i.
γsh Conversion ratio signal.
σ An automorphism or a Permutation.
A Adjacency matrix.
D Degree matrix.
E The set of edges.
Ec The set of critical edges.
F The determining set attained from Gen(F).
G Graph.
Gk The released graph.
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L Laplacian matrix.
V The set of nodes.
Vc The set of critical nodes.
Aut(G) Automorphism group.
Gen(G) Generators of automorphism.
Gendis(G) Set of disjoint generators.
Move(σ ) The set of moved nodes by permutation.
ε Identity (or trivial) permutation.
ϕ A generator of automorphism.
B Input matrix.
C Capacitor.
FGenvl The set of generators that fixes vl .
Idc Capacitor current.
Ish Shunt reactive current setpoint.
I∗sh Reactive current of the outer loop.
k The number of distinct mappings.
km Conversion ration between the voltage of AC

and DC sides.
M A matching.
MGen
vl The set of generators that moves vl .

p Multiplicity of critical node in Gen(G).
Pac Active power on AC side.
Pij Active power flow between nodes i and j.
q The size of disjoint generators.
Qij Reactive power flow between nodes i and j.
S Determining set.
u Control signal.
V Voltage.
Vm Voltage magnitude.
Vdc Capacitor terminal voltage.
Vref Setpoint voltage.
Z Line impedance.

I. INTRODUCTION
The imbalance between reactive power at the generating side
and the network demand causes voltage instability. The wide
area active compensation devices, collectively known as flex-
ible AC transmission systems (FACTS) devices ( [1]–[9]) are
power electronic based equipment which play a vital role in
enhancing the power system controllability and power flow
capability. The importance of FACTS devices for the grid
operation raises serious concerns about the cyber-security of
data exchange over these controllers as the false data injection
to one of the critical FACTS devices can lead to cascading
failure in the grid [10]. In this paper, these two problems are
addressed from a novel topological perspective.

A. STATE OF THE ART
The optimal placement of FACTS devices is a common yet
important research topic in literature and has been investi-
gated via various approaches. These include (1) conventional
methods (such as indexing [11], controlling [12], residue
analysis [13], numerical optimization [14], sensitivity [15],
and eigenvalue [16]), (2) optimization methods (such as
optimal power flow [17], linear programming [18], dynamic

programming [19], mixed integer programming [20],
stochastic load flow [21], and adaptive control law [22]),
(3) artificial intelligence techniques (such as Monte Carlo
simulation [23], artificial bee colony [24], artificial neural
network [25], symbiotic organism search algorithm [26],
fuzzy systems [27], and particle swarm optimization [28]), (4)
hybrid techniques (such as hybrid of bee colony and neural
networks [29], hybrid of genetic algorithm and fuzzy sys-
tems [16], mixed optimal power flow and particle swarm opti-
mization [30], mixed bee colony and optimal power flow [31],
and hybrid of fuzzy systems and Lyapunov theory [32]),
and (5) other approaches (such as energy approach [33],
active control [34], graph search algorithms [35], whale
optimization [36], Gray Wolf optimizer [37], salp swarm
optimizer [38], Grasshooper optimization [39], ant lion opti-
mization [40], and spider monkey optimization [41]).

At the same time, cyber-security has been one of the hot
topics related to the management, operation, and control of
power systems [48]– [51]. The reliability of wide area con-
trolled (WAC) power systems highly depends on the secu-
rity of the underlying communication networks. Information
exchange via cyber graph is one of the underpinning plat-
forms of all networks including power networks and smart
grids that has significant role in grid control and operation.
The interplay between power systems and the underlying
communication platforms raises various security concerns
about attacks from adversary agents. Thus the important grid
information such as the data associated with the critical trans-
mission lines, generation units, and the locations of FACTS
devices must be hidden or obscured for adversary agents.

Due to its significant impacts on various aspects of
network, graph topology has drawn the attention of engi-
neering communities including power system community
during the last two decades. The role of network topology
is investigated for a few power system problems such as
synchronization [43], flexibility of transmission lines for
day-ahead scheduling [44], and the patterns of attacks to
power networks [45]. Recently, graph symmetry, described
by automorphism groups, has been leveraged in literature
to address important network behaviors such as its con-
trollability [61], robustness [58], and synchronization [46].
It has been verified that symmetry is an obstruction to con-
trollability [61] meaning that systems with larger number
of automorphisms require more driver nodes to satisfy the
network controllability. In contrast, network robustness can
be improved by increasing the network symmetry (or the size
of automorphism group) [58]. Also, power networks with
high symmetry are more resilient towards desynchronization
propagation [47].

Early applications of symmetry in security emerged in the
computer science community targeting the cyber-security of
social networks ( [52]–[54]) by proposing the concepts of
k-symmetry, k-isomorphic, and k-automorphic. In fact, these
studies found that releasing a permuted graph by an automor-
phism or isomorphism instead of original cyber graph makes
it difficult for adversary agents to distinguish their targets.
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During the last decade, the applications of automorphisms
in cyber-security, categorized under the concept of ‘‘security
via obscurity’’, have been the main focus when implementing
the symmetry characteristics for investigating the networks’
cyber-security. However, the use of symmetry gives rise to
some practical challenges. Computing and sweeping over all
automorphisms to find the set of nodes with maximummulti-
plicities for a large network is a computationally challenging
task. Moreover, important questions arise when identifying
priorities for design and protection: Which cyber compo-
nents, if compromised, can lead to significant power delivery
disruption? What grid topologies are inherently robust to
classes of cyber attack? Is the information available through
advanced cyber infrastructure worth the increased security
risk?
k-isomorphic graphs can be attained only by adding/

deleting many edges through some modification algorithms
(for example see [52]–[55]). Satisfying k-automorphism for
a real world network imposes many modifications on the
original network which compromises its cost efficiency.
In k-symmetry it is enough that k distinct mappings exist
where for each node the set of k automorphisms may be
different. In practice, it is not computationally efficient to
impose such modifications. Furthermore, for k automor-
phisms, the same set of k automorphisms have to be applied
to all nodes. This makes k-automorphism an even more diffi-
cult property to satisfy. In k-isomorphism, in addition to the
above issues, connections among sub-graphs are deleted in
the released graph. This, in turn, causes the loss of data utility
in the published graph.

B. RESEARCH GAPS AND CONTRIBUTIONS
Although the placement of FACTS controllers has been
widely studied during the last decade, no study has considered
the possible impacts of network topology on the solutions.
Moreover, the majority of the existing approaches have com-
putational issues such as intractable nature of optimization
techniques [17]–[25] which is caused by the lack of an ana-
lytical, non-heuristic, or systematic approach for finding the
solution. In addition, the cyber-security of FACTS devices
have not been investigated in literature. In this paper, an ana-
lytical approach for the placement of FACTS controllers
is proposed based on the topological characteristics of the
network which does not suffer from the computational issues.
To this end, the maximummatching principle is implemented
which is a mechanism to find the set of unmatched nodes
that are considered as the set of driver nodes which are able
to drive the states of system from any initial state to any
desired state in reasonable time (network controllability).
The controllability of the complex networks (CNs) is then
attributed to the number of required driver nodes for full state
controllability [42].

In this paper, the placement of FACTS controllers is con-
strained to the controllability of the power grid. By realizing
the power grid as a complex network, the grid controllabil-
ity is attributed to the number of required driver nodes for

full state controllability. The FACTS controllers act as these
driver nodes which can be found by performing themaximum
matching principle on the physical graph of power systems.
To overcome the computational issues related to comput-
ing the whole set of automorphisms, we adapt a symmetry
benchmark according to a set of elementary automorphisms,
known as generators of automorphisms. It will be verified
that all essential symmetry characteristics can be realized via
this set which has a significantly smaller size than automor-
phism groups and it is computationally effective to calculate
and sweep over them. In addition, the graph symmetry is
implemented to find the most critical components of power
system in terms of their impact on the network controllability.
Nodes with bigger multiplicities in the automorphism group,
or in generators of automorphisms, are considered as the
most critical nodes. The computation of the symmetry groups
and the associated computation complexity are discussed in
details. Throughout simulation, it is observed that the set of
critical nodes identified by symmetry analysis is a subset of
unmatched nodes corresponding to the locations of FACTS
controllers. This overlap further reveals the importance of
symmetry in power network analysis and synthesis.

This study proposes an approach to secure the critical ele-
ments of power networks via obscuring the published graph
of the grid and, in turn, reducing the chance of distinguishing
andmanipulating the critical data of FACTS devices by adver-
saries. This has been accomplished via introducing a new
concept, namely moderated-k-security, which provides new
necessary and sufficient conditions for obscuring the network
critical data.

The rest of the paper is organized as follows. In Section II,
a topology-based solution to the placement of FACTS con-
trollers is presented using the maximum matching princi-
ple. The cyber-security of the critical data of the network
including the data exchange between FACTS controllers
is addressed in section III using the concept of symmetry
groups. The simulation is carried out on the 49-bus, 274-bus,
and 1, 176-bus systems in section IV and the effectiveness of
the proposed approaches are verified.

II. A TOPOLOGICAL APPROACH TO THE PLACEMENT
AND CONTROL OF FACTS DEVICES IN
POWER NETWORKS
In this section, we look at the placement of FACTS devices
from a controllability perspective. To this end, the problem of
FACTS placement is transformed to the problem of finding
the number and locations of the required FACTS devices that
can structurally control the system. First, some preliminaries
on graph theory and symmetry are reviewed and then themain
result of this section is presented.

A. PRELIMINARIES ON GRAPH THEORY
AND SYMMETRY GROUPS
A graph G is a composition of a set of nodes V and edges
E denoted by G(V, E). Two nodes are adjacent if there is
an edge between them. The size and order of G are denoted
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by |V| and |E |, respectively. An adjacency matrix A is a
square |V| × |V| whose elements aij indicate the connection
between every pair of nodes within the graph. aij = 1 if
there is an edge between nodes i and j, otherwise aij = 0.
The degree matrix D is a diagonal matrix whose diagonal
elements dii is equal to the number of nodes connected via
an edge to node i. The Laplacican matrix L is defined as
L = D − A. A permutation σ of a set of ordered nodes
V is a rearrangement of its members into a sequence. The
order of σ is the smallest positive integer m such that σm = ε
where ε is the identity (also known as trivial) permutation.
The composition of two permutations σ1 and σ2, denoted
by σ1 ◦ σ2 is the point-wise product of them. If a node is
rearranged by a permutation it is called a moved node by
that permutation, otherwise it is a fixed node. The set of all
permutations that rearrange a node vl is denoted by Movvl .
Two permutations σ1 and σ2 are disjoint if each moved node
by σ1 is fixed by σ2, or equivalently, every moved node by σ2
is fixed by σ1, otherwise, σ1 and σ2 are joint permutations.
Proposition 1: If a node is rearranged by a permutation

σ on G, it can not be fixed by the composition of σ and its
disjoint permutations on G.
Proposition 2: If a node is fixed by a set of disjoint per-

mutations, it can not be moved by the compositions of these
disjoint permutations.

Automorphism group is a quantified notion of symmetry.
Under the act of an automorphism, a graph can be mapped
to itself without changing the graph adjacency or Laplacian
matrices. It can be mathematically described as a permutation
σ for which {i, j} ∈ E(G) if and only if σ (i), σ (j) ∈ E(G).
The set of all automorphisms of G and its size are denoted by
Aut(G) and |Aut(G)|. Automorphism groups can be built up
from a set of elementary automorphisms called generators of
automorphisms Gen(G) (See Appendix A). Once the whole
set of generators are determined, the automorphism group
can be constructed from the compositions of all genera-
tors and automorphisms of order m up to generating unique
permutations. Throughout this paper, σ and ϕ are used to
indicate an automorphism and a generator of automorphism,
respectively. The symmetry elements, including Aut(G) and
Gen(G), are computed in Sage (System for Algebra and
Geometry Experimentation).

B. CN CONTROLLABILITY IMPLICATIONS FOR
PLACEMENT OF FACTS DEVICES
The above preliminaries on graph theory and symmetry will
be used later in this paper. Now, the necessary conditions
for controllablity by means of a set of FACTS devices are
presented using the maximum matching principle which can
be implemented for finding the number of required FACTS
devices in the next section. The necessary conditions for
uncontrollability of a pair of systemmatrices (A,B) is related
to a the determining set [57] which can be attained from the
symmetry group.
Definition 3: A subset S of the vertices of a graph G is

called a determining set if whenever g, h ∈ Aut(G) so that

g(s) = h(s) for all s ∈ S, then g = h. Equivalently, a subset
of nodes of a graph G is called a determining set S if every
automorphism of G can be uniquely determined by its action
on the nodes of S.
Corollary 4 [61]: A necessary condition for controllabil-

ity of the pair (A(G),B(S)) is that S is a determining set.
Lemma 5 adapts the necessary conditions for controllability
attained in [61] to the context of power networks where the
FACTS controllers act as the so called driver nodes.
Lemma 5 [57]: Assume that the adjacency matrix A of

the graph of power network G is diagonalizable and sym-
metry preserving. Then the pair of system matrices (A,S),
where S and |S| are the associated determining set and its
size, respectively, is uncontrollable if G admits a nontrivial
automorphism σ which fixes the input set S, i.e., σ (i) = i for
all i ∈ S.

A straightforward result of the Lemma 5 is stated in the
proposition 6.
Proposition 6: The necessary condition for controllability

of (A,S) is that for all σi ∈ Aut(G) there is at least one node
vl where vl ∈ Mov(Aut(G)).
The above proposition simply means that at least one moved
node of each automorphism must belong to the determining
setS in order to satisfy the controllability of (A,S). Although
Lemma 5 or Proposition 6 can theoretically be used to exam-
ine the controllability of power networks, in practice, check-
ing the whole set of automorphisms for medium and large
networks is not computationally effective. In [58], the size of
automorphism group of US power grid is computed which is
equal to 5.1851×10152. Clearly, this is a big computation bur-
den to calculate the determining set S by computing all auto-
morphisms and sweeping over them. In contrast, if we attain
the determining set from the generators of automorphisms,
which is significantly a smaller set than automorphism group,
then the determining set can be effectively computed using
the conventional processing tools.
Lemma 7: Assume thatA is diagonalizable and symmetry

preserving,F is a determining set (for which if the generators
of automorphisms ϕ1, ϕ2 ∈ Gen(G) so that ϕ1(f ) = ϕ2(f )
for all f ∈ F then ϕ1 = ϕ2), and J is the set of all
possible unique compositions of generators of order m with
at least one joint node. The pair of system matrices (A,F)
is uncontrollable if there exists at least one generator of
automorphism ϕj, where ϕj 6= ε, for which ϕj(i) = i for all
i ∈ S. Moreover, the necessary conditions for controllability
of the power system using the FACTS devices corresponding
to the nodes in F are
1) ∀JJ , J = 1, . . . , |J |, i = 1, . . . , |F |, F(i) 6= j where j

is a joint node of JJ ,
2) If ∀vl ∈ ϕg ⇒ vl is a joint node, then F(vl) 6= vl ,
3) ∀i ∈ F ⇒ ϕg(i) 6= i where g = 1, . . . , h and h =
|Gen(G)|.
Proof: Using the proof by contradiction, we assume that

if there is a generator ϕj for which ϕg(i) = i for all i ∈ S then
the pair (A,F) is controllable. This means

∃ σ, σ ∈ Aut(G) & σ (i) = i
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since all ϕ ∈ Aut(G). This contradicts the condition of
Lemma 5. For the second part of the proof, we have to verify
that the determining set or the locations of FACTS devices
attained in F must satisfy the conditions 1-3. The compo-
sition of joint generators may fix an unfixed node by one
or some of them. Condition 1 thus excludes the joint nodes
from F as it might be fixed in a composition and does not
emerge in the resulted automorphisms. Hence, another node
in those generators containing joint nodes must be included
inF . On the other hand, if all moved nodes of a generator are
joint nodes, then all nodes must be included in F , i.e., ∀vl ∈
ϕg, F(vl) 6= vl , as some of these nodes might be fixed by
the composition (condition 2). Condition 3 considers the case
where the composition is a product of disjoint generators.
In this case, selecting one node from each generator will
generate a set of nodes that necessarily satisfies the condi-
tion of being a determining set for the corresponding set of
automorphisms. This is because the composition of disjoint
generators does not fix a moved node by each of generators.
This verifies that S ⊂ F which means the determining set
attained from generator set contains all moved nodes by S.

�
Lemma 7 facilitates using generators of automorphisms
instead of automorphism group in order to find the deter-
mining set. According to Lemma 7, the whole set of FACTS
devices can be attained effectively from the set of generators
of automorphisms. However, Lemma 7 only provides the nec-
essary conditions for controllability. To attain the sufficient
condition for controllability of power systems, we use the
maximum matching principle.
Definition 8: A matching, M, of G is a subset of edges of

E such that no node in V is adjacent to more than one edge
in M, or intuitively, no two edges in M share a common node.
A matching M is called maximum matching if for any other
matching M ′, |M | ≥ |M ′|.
In [56], the CN controllability is addressed by maximum
matching principle where the set of all unmatched nodes are
considered as driver nodes. In our problem setup, the set of
FACTS devices can be considered as the set of required driver
nodes for full controllability of power network. Once the
maximummatching algorithm is implemented, all unmatched
nodes must be considered as the locations of FACTS devices.

Using the maximummatching principle, the set of required
FACTS devices for full controllability of power network can
be attained. The simulation results on 49-bus and 274-bus
systems in section IV confirm the effectiveness of using
maximum matching principle for the placement of FACTS
devices. Lemma 7 is also assessed in the simulations where it
is observed that the number and locations of FACTS devices
attained from MMP and Lemma 7 are very similar.

C. MODELING OF THE SHUNT FACTS DEVICES
IN POWER NETWORKS
Once the number and locations of the required FACTS
devices are determined, a dynamic control strategy can be
implemented to improve the power flow capabilities. Note

FIGURE 1. Shunt VSC converter. (a) The schematic diagram, (b) The
balanced positive-sequence model.

that there are various types of FACTS devices which we do
not intend to explore as the main focus of this paper is on
the proposed approaches for placement of FACTS devices
(Section II) and securing them (Section III) from the novel
topological perspectives.

The power flow equations can be written as

Pij =
ViVj
Xij

sin(δi − δj) (1)

Qij =
1
Xij

(V 2
i − ViVjcos(δi − δj)) (2)

where Vi and Vj are the voltage magnitudes at buses i and j,
Xij is the reactance of the line between buses i and j, and
δi− δj is the angle difference between phasor voltages Vi and
Vj. We have used the shunt voltage-source converter (VSC)
FACTS devices in two control modes: voltage magnitude
control mode and var control mode. The dynamic model of
a shunt VSC FACTS devices is shown in Figure 1.a and
its balanced positive sequence model is shown in Figure 1.b
where Vi, i = 1, 2, 3 is the bus voltage, and Z1 and Z2 are
the line impedances. Also, γsh and αsh are conversion ratio
signal to control the shunt converter voltage magnitude and
the angle of the shunt VSC measured with respect to β of
the shunt bus voltage phasor V . The dynamic model of shunt
VSC with PID (proportional integrative derivative) controller
in voltage magnitude mode and VAR control mode are shown
in Figure 2.a and 2.b, respectively. The voltage magnitude
Vm and the angle of the VSC voltage are determined from
the control signal generated by a PID controller. In volt-
age magnitude control mode, by fixing kdc to a constant,
the VSC voltage magnitude changes in response to chang-
ing the capacitor voltage. The bus voltage V1 is regulated
compared to setpoint voltage Vref using outer control loop
consisting an integrator with a gain which results in a droop
α. The outer loop generates a reactive current I∗sh which acts
as the setpoint for the inner control loop. Finally, the shunt
reactive current I∗sh is compared to real Ish via the inner PID
loop and a low-pass filter. The VSC voltage angle α can
then be computed from the bus voltage angle β. In VAR
control mode, the shunt reactive current setpoint Ish is directly
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FIGURE 2. Schematic control diagram of a shunt VSC in (a) voltage
control mode, (b) VAR control mode.

determined (without an outer loop) and compared with real
Ish to trigger the PID controller.

The inserted voltage by VSCs can be approximated as

Vm = kmVdcej(αsh+β) (3)

where Vdc and km are the capacitor terminal voltage and the
conversion ratio between the dc-side and ac-side voltages,
respectively. From Figure 1.b, the line current Is can be
written as

Ish =
Vm − V1
jXt

(4)

and the active power that can be injected to the system is

Psh = −
V1Vmsin(β − αsh)

Xt
(5)

and the reactive power injected to the system is equal to

Qsh =
V1(Vmcos(β − αsh)− V1)

Xt
. (6)

When the system is oscillating, the control signal is not zero
and the capacitor C will exchange reactive power with the
power system which results in increasing or decreasing the
capacitor voltage Vdc following the equation

C
dVdc
dt
= Idc (7)

where Idc is the capacitor current. After transition time,
the control signal converges to zero and, as a result, the energy
exchange between the capacitor and power system converges
to zero. With an ideal VSC model, the active power on its ac
and dc sides are equal (Pac = VdcIdc). Thus we can write

dVdc
dt
=

1
CVdc

Pac. (8)

The dynamic model of power system can then be constructed
by interfacing the dynamic model of FACTS device with
other network components attained from the Kirchhoff elec-
trical equations in order to analyze the power flow.

III. THE MODERATED k-SECURITY APPROACH FOR
OBSCURING THE CRITICAL NETWORK DATA FOR
ADVERSARIES
In this section, the cyber-security of critical elements of
power grid is addressed using a graph theoretic property,
i.e., graph symmetry. In discrete algebra, the graph symmetry
is quantified using the automorphism group. It is verified
that graph symmetry has a significant role in determining
the controllability of the underlying network [61]. In fact,
symmetry is an obstruction to controllability. The higher
the number of automorphisms, the more symmetric is the
network and, in turn, more driver nodes are required for full
state controllability. These driver nodes, in the context of
power networks, are the well known FACTS devices ([8], [9],
[16], and [18]) or wide area controllers ([64], [65]).

A. DEFINITIONS AND PROPOSED THEOREMS
A notion of symmetry, k-symmetry, is leveraged here to
make the critical nodes/edges indistinguishable by adversary
agents. Necessary and sufficient conditions for security are
attained and a novel algorithm is proposed for cyber-security
constrained placement of FACTS devices. The bigger the
symmetry group, the more symmetric the underlying graph
is. On the other hand, symmetry is an obstruction to control-
lability [61] meaning a bigger number of FACTS devices are
required when the network is more symmetric. We compute
the symmetry index (Aut(G) or Gen(G)) before and after
removing a node possessing a FACTS device as a measure of
how critical is this node. This index is computed in simulation
section for 49-bus and 1, 176-bus systems.

Now, we leverage on the concept of k-security to obscure
the identification of critical elements of power grid.
Definition 9 [55]: Let Gk be the released version of G.

The set of critical nodes Vc of G is k-secure if the adversary
cannot distinguish it from Gk with a probability greater than
1/k. The set of critical edges Ec of G is k-secure if the
adversary cannot distinguish them from Gk with a probability
greater than 1/k.

Now, we introduce the concept of moderated-k-symmetry
which will be used in Theorem 11 to adapt an approach for
securing the most critical elements of the power grid.
Definition 10: A graph G satisfies moderated-k-symmetry

if for the finite set of nodes vl there exists k − 1 distinct
automorphisms σi,1(vl), σi,2(vl), . . . , σi,k (vl) that satisfy
(i) σi,m(vl) 6= σi,n(vl) if m 6= n, and
(ii) σi(vl) 6= vl for l = 1, . . . , n.
Theorem 11: The critical nodes/edges of G are k-secure

if G satisfies moderated-k-security for the finite set of nodes
vc = {v1, . . . , vi}.

Proof: If G is moderated-k-symmetric, then for every
critical node vc there are k− l distinct mappings that preserve
the network structure after permuting vc. For any accessible
structural information Gk for the adversary targeting node vc
there are at least k distinct nodes that act the same structural
role as vc. Hence, the adversary cannot distinguish vc with a
probability greater than 1/k . Subsequently, for a successful
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attack on an edge, the adversary needs to identify the end
nodes of the targeted edge. Hence the probability of identi-
fying an edge is equal to 1/k × 1/k = 1/k2. �
Theorem 11 can be used to secure the cyber graph of the

power network by releasing a permuted graph to the public.
However, the approach is not optimal as usually not all critical
nodes are permuted by the k number of automorphisms in
Aut(G). We have improved this approach by relating the
concept of moderated-k-security to the case where only the
critical nodes are needed to be secured. Moreover, the auto-
morphism groups typically have a gigantic size for medium
and large networks [58] and it is not possible to compute and
sweep over all of them. Theorem 12 resolves these issues by
leveraging on the symmetric characteristics of generators of
automorphisms.
Theorem 12: Assume that the adjacency matrix of G is

diagonalizable and symmetry preserving, b is the indicator
vector associated to the set F containing |F | number of
FACTS devices, and GP is the published network to the public.
Having access to GP, the adversary cannot distinguish the
critical nodes and edges of the network with the probabili-
ties greater than 1/(p(1 + q) − 1) and 1/(p(1 + q) − 1)2,
respectively, where p and q are the multiplicities of the critical
node/s in Gen(G) and the size of disjoint generators denoted
by |Gendis(G)|.

Proof: Assume A′ is the adjacency matrix associated
with GP. Since GP is the permuted graph of G under an
automorphism σl , and σl ∈ Aut(G), we can write A′ = A
which simply means that the adjacency matrix of the pub-
lished graph is preserved under mapping that generates G.
Given FGenvl , MGen

vl , and F . ◦ M as the set of generators that
fixes vl , the set of generators that moves vl , and the pointwise
composition of FGenvl and MGen

vl , respectively, we can write

|MAut
vl | ≥ |M

Gen
vl | + |M

F .◦M
vl |. (9)

The above equation can be written as

|MAut
vl | ≥ p+ p.q. (10)

Therefore the multiplicity of critical nodes in Gen(GP) is
at least p(1 + q). Then the immediate result, according to
Theorem 11, is that the network is moderated-k-secure where
k = p(1+ q)− 1. �

B. PROPOSED ALGORITHM FOR LOCATING AND
SECURING CRITICAL FACTS DEVICES
Associating the cyber-security to p and q in Theorem 12
guarantees conservative bounds on the probabilities of rec-
ognizing the critical elements. The reason for this is that
conditions of Theorem 12 are derived assuming that all com-
positions of automorphisms moving a critical node with joint
generators and mediators will fix the joint nodes, which,
in practice, is a very rare possibility. In fact, since the size of
automorphism group is very big compared with generator set,
the probabilities of recognizing the critical nodes and edges
are far less than 1/(p(1 + q) − 1) and 1/(p(1 + q) − 1)2,

respectively. This means that the probability of recognizing
the critical elements is lower than the bounds guaranteed
by Theorem 12. The proposed symmetry-based approach
for identifying and protecting the critical data of the cyber
networks is summarized in the Algorithm 1.

Algorithm 1 An Algorithm for Finding and Securing the
Critical FACTS Devices
Input: The graph G of the power network
Output: The number and locations of FACTS devices and

the cyber-secured topology of the power network
1: Perform the maximum matching procedure on the graph

of power network to attain the set of unmatched nodes.
2: Assign a FACTS device to each unmatched node.
3: Compute the adjacency matrix A of the network
4: Compute Gen(G) from A using Sage.
5: Find the set of FACTS devices F with maximum multi-

plicity in Gen(G).
6: for i=1:|F | do
7: Remove the FACTS device number i.
8: Compute the symmetry index (Aut(G) or Gen(G)) after

removing the FACTS device number i.
9: end for
10: Sort all values of |Aut(G)| or |Gen(G)| attained in steps 6-

9 from the highest to the lowest value in a vector z which
will be correspondent to the critical FACTS devices from
highest to the lowest critical device.

11: The lowest amount of |Aut(G)| or |Gen(G)| corresponds
to the most critical node identified in Step 1.

12: Order the critical elements in a vector er from maximum
critical to the minimum critical element.

13: Determine the generator ϕ that moves the most critical
nodes.

14: Attain the cyber-secured graph under the act of ϕ attained
in Step 13.

C. DISCUSSIONS
In this paper, the placement of FACTS devices is pursued
using the network topology. The physical parameters of the
power systems are then used to analysis the power flow
with fixed FACTS controllers. As the network size increases,
the proposed approach is more effective since the typical net-
work symmetry group is bigger and the nodes with maximum
multiplicities in generators of automorphisms are more effec-
tive in determining the number of required FACTS devices.
Furthermore, for large symmetry sizes, the associated vast
obscurity can be realized by further reducing the probability
of distinguishing the most critical nodes of the grid. In a
similar manner, the proposed approach for identifying the
critical nodes can be used to identify the critical edges. We do
this by (a) removing the edges with at least one end connected
to a FACTS controller with maximummultiplicity in Gen(G),
and (b) following steps 3-12 for edges instead of FACTS
devices.
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TABLE 1. Parameters of the modified 49-bus system [66] for power flow analysis: Bus number, bus voltage magnitude |V | in volts, angle of bus θ , net
active power of the bus Pn in MW, and the net reactive power of the bus Qn in MVar.

A novel advantage of the proposed methodology is that the
symmetry concept is inherent in the graph of the network;
therefore, no manipulation is required as we only leverage
on an intrinsic property of the network. The impacts of
symmetry on the number and locations of FACTS devices
and their roles in the security of the underlying cyber graph
motivate the consideration of symmetry characteristics of the
grid in developing the existing networks or constructing new
networks. Embedding the asymmetrical structures makes the
system more controllable which, in turn, reduces the number
of required FACTS devices which leads to more security
realization.

The critical elements of the grid can be identified using
the proposed symmetry analysis. It will be observed in sim-
ulations of section IV that these critical nodes are usually
the same nodes that are selected as the locations of FACTS
controllers. This is quite interesting as the locations of FACTS
controllers are at the unmatched nodes attained from themax-
imummatching principle while the critical nodes are attained
from a totally different technique, i.e. nodes with maximum
multiplicities in the symmetry groups are identified as critical
nodes. This re-emphasizes the role of symmetry for explain-
ing the emergent behavior of a complex power network.

The proposed cyber-security approach is implemented
after placement of the FACTS devices. It obscures identifying
the data associated to FACTS devices by leveraging on the
symmetry characteristics of the grid. In fact, the proposed
security approach only deals with the cyber graph and has
no compromising implication for the physical graph of
power network. Thus the approach does not compromise
the original functionalities of the FACTS devices. However,

the placement result can, to some extent, impact on the level
of cyber-security. This is because the symmetry characteris-
tics of the set of FACTS devices might be slightly different
for different configurations of FACTS devices in the grid.
This difference is not significant since the majority of FACTS
devices are placed at the locations of driver nodes identified
from symmetry analysis.

IV. IMPLEMENTATION OF THE PROPOSED CYBER
CONSTRAINED PLACEMENT OF FACTS CONTROLLERS
ON THREE POWER NETWORKS
The proposed topology-based approach for placement, con-
trol, and securing FACTS devices is implemented for the
small 49-bus, moderate 274-bus, and a large 1,176-bus sys-
tems of references [66], [67], and [68], respectively. For the
274-bus and 1,176 bus systems, the emphasis is on the effec-
tiveness of the proposed approach for obscuring the critical
data for moderate/large networks.

A. SIMULATIONS AND ANALYSES OF 49-BUS SYSTEM
The physical graph of the 49-bus systemwith 59 transmission
lines is shown in Figure 3. There are 9 generation buses where
all of them are load buses as well. The rest of buses are
considered as load buses. The physical parameters of 49-bus
system including the voltage magnitude and angle, active,
and reactive power of all 49 busses are presented in Table 1.
The line parameters for each of 59 transmission lines are pre-
sented in Tables 2 where |V |, θ , R, X and B are the bus voltage
magnitude in volts, angle of bus voltage in degree, line resis-
tance in ohms (�), line reactance in ohms (�), and capacitive
susceptance in siemens (s), respectively. The conductance is
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FIGURE 3. The schematic diagram of the modified 49-bus system [66].

considered zero at all lines. Themaximummatching principle
is implemented on the graph of the 49-bus system and the
matched edges are illustrated with red lines in Figure 4.
Implementing the MMP has resulted in 7 unmatched nodes
at locations 4, 9, 10, 24, 25, 47 and 48 which, according to
the maximum matching principle adapted in Section III, can
be considered as the locations of FACTS devices. Therefore,
seven series VSC FACTS controllers with 100-MVA rating
at a voltage of 1 p.u. are located at the determined locations
(Figure 4). The power flow transmission is analysed in MAT-
LAB using Newton Raphson algorithm to solve for a vector
of bus voltage magnitudes and angles. The parameters of PID
controller are selected after trial and error. The proportional
coefficient is kp = 0.3, the integrator coefficient is ki =
0.5, and the derivative parameter is kd = 0.05. The power
flow analysis of 49-bus system is performed in MATLAB
by interfacing the 7 shunt VSC-FACTS devices with the net-
work. The network parameters including the line/bus voltage,
angle, and apparent power before and after adding the FACTS
controllers are presented in Figure 5. The Newton Raphson
algorithm has reached the solution after 28 iterations. The bus
voltage magnitudes of all busses before and after using the
FACTS controllers are illustrated in Figure 5.a. The voltage
drop from the voltage base of 1 p.u. has significantly reduced
after using the FACTS controllers. The average magnitude
voltage of all 49 buses before and after using FACTS devices
are 0.9233 p.u. and 0.9947 p.u., respectively, that means over
%7.7 increase in the average of bus voltage magnitudes. The
active power flow transfer of all 59 lines are compared and
demonstrated in Figures 5.b. The sums of active power flow

TABLE 2. Parameters of the modified 49-bus system [66] for power flow
analysis: line number as ‘‘l : i − j ’’ where l is the line number and i and j
are the the nodes at two ends of the line number l , line resistance R in
ohms (�), reactance X in ohms (�), and capacitive susceptance B in
siemens (s).

before and after using FACTS controllers are 3, 052 MW
and 3, 153 MW, respectively. Equivalently, there is 101 MW
power flow increase with using FACTS controllers. Also the
line power losses for all 59 transmission lines before and after
placing the FACTS controllers are shown in Figure 5.c. The
sum of power losses has been reduced from 8.65 MW to 7.08
MW indicating an overall improvement of over %18.

To secure the data exchange between FACTS controllers
using the proposed topological approach, first the cyber graph
of the 49-bus system is adapted from its physical graph as
shown in Figure 4. The size of Aut(G) for this network is
computed in Sage and is equal to 144 (More explanation
about computing the symmetry characteristics of the graph
is presented in Appendix A). Although this is not a signif-
icantly large number and we can effectively compute the
determining set by sweeping over all automorphisms, but
we proceed with Gen(G) instead to adhere to the proposed
approach of this paper. Later, for larger networks (274-bus
and 1, 176-bus systems), it will be shown that we can not
sweep over the corresponding automorphism groups due to
their gigantic sizes. The generators of automorphismsGen(G)
of 49-bus system are computed in Sage as

Gen(G) = {ε, (1, 4), (9, 10), (10, 11), (24, 25), (47, 48)}

and illustrated inside the dashed loops in Figure 4
(See Appendix A for calculating Gen(G)). The necessary
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FIGURE 4. The duplicated topology of the network shown in Figure 3
generated in Sage. Red nodes are the set of nodes in determining set, red
transmission lines are the matched edges attained from MMP, nodes
inside the dashed loops are the set of nodes in Gen(G), and the blue
rings with arrows represent the FACTS controllers which are positioned at
the unmatched nodes attained from MMP.

conditions of controllability in Lemma 7 are tested and
the determining set over Gen(G) is determined as F =

{1, 10, 11, 24, 25, 47}. Interestingly, it can be observed that
the set of determined locations for FACTS devices attained
from MMP is a subset of locations of generators of auto-
morphisms. This verifies the importance of symmetry in
controllability of power networks.

To investigate the cyber-security of FACTS devices,
we first construct the cyber-graph of the network based on
the available physical graph. The cyber graph is illustrated
in Figure 4. The cyber-security of the most critical nodes of
49-bus system can be investigated using Theorem 12. The
maximum multiplicity of the critical nodes in Gen(G) is 2,
i.e., p = 2, and the number of disjoint generators is 4.
Therefore, by publishing a permuted network instead of the
original network, the probability of the critical nodes and
edges being recognized by an adversary is not greater than
1/9 and 1/81, respectively. It should be noted that under
this permutation, the actual obscurity for adversary agent is
even more than these values. This is because the maximum
multiplicities of nodes in Aut(G) is 96 and the number of
disjoint automorphisms is 4. Thus the actual probability of
distinguishing the FACTS devices is less than 1/385. How-
ever, for networks with bigger sizes, it is not feasible to com-
pute the whole set of automorphisms and we have to rely on
generators of automorphisms. This is verified via the simula-
tion results on the next two networks, 274-bus and 1, 176-bus
systems.

FIGURE 5. The power flow analysis of 49-bus system before and after
using FACTS controllers. (a) The average of bus voltage magnitude has
increased from 0.9233 p.u. to 0.9947 p.u. that means %0.0774 p.u.
increase. (b) The active power flow, which shows the overall 101 MW
(or %3) addition of active power transfer throughout the transmission
lines. (c) The line power loss, which indicates %18 reduction in power
loss in the 59 transmission lines after using FACTS controllers.

B. SIMULATIONS AND ANALYSES OF 274-BUS SYSTEM
We perform simulations for the 274-bus system to bet-
ter clarify the advantages of the proposed approaches for
larger networks. Since the networks’ parameters such as
the impedances of the lines are not available for these two
networks, we have not investigated the impacts of the pro-
posed FACTS placement. We only determine the locations
of FACTS controllers, the cyber-security, and the symmetry
analysis for these networks. The FACTS placement impacts
can be investigated in the same way as performed on the
49-bus system.

The 274-buss system is the equivalenced representation of
US power grid [67] which has 274 nodes and 1, 338 edges as
illustrated in Figure 6. The number of automorphisms of this
network is 28, 311, 552. Therefore, it is not computationally
effective to sweep over this huge number of automorphisms.
However, the size of Gen(G) for this network is very small
compared to automorphism group and is equal to 23. The
maximummatching principle is implemented on this network
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FIGURE 6. The MMP performed on the graph of 274-bus system. The unmatched nodes are considered as the locations of FACTS controllers. For
clarification, a portion of matched edges is magnified on the right side of the figure. In total, 253 out of all 1338 edges are matched edges.

TABLE 3. The results of FACTS placement and cyber-security of critical data using moderated-k-security indicating the number of nodes |V|, edges |E|,
matched edges M, number of required facts controllers |F |, the average voltage of all buses in p.u. without FACTS controller |V0| and with FACTS
controllers |V∗|, the total power flow in lines without FACTS controllers |P0| and with FACTS controllers |P∗|, the total line power losses without FACTS
controllers PL0 and with FACTS controllers P∗L , the size of automorphism group |Aut| and generators of automorphism |Gen|, the size of determining set
|S|, maximum multiplicity of nodes in generators of automorphisms p, the number of disjoint generators q, the probability of distinguishing the data
associated to the critical nodes PV and edges PE by adversary. The results of FACTS placement on the voltage and power flow and power loss of
274-bus and 1,176-bus systems are not computed since these networks’ information are not available. ‘‘NC’’ stands for ‘‘Not computed’’.

and matched edges are identified (A portion of these matched
edges are denoted by red lines in Figure 6). This has resulted
in 20 unmatched nodes that are selected as the locations
of FACTS devices. Since it is not possible to compute the
maximum multiplicities of nodes in Aut(G) we compute the
multiplicities of nodes in Gen(G). The maximummultiplicity
of nodes in Gen(G) for 274-bus system is 1 and the size of
disjoint generators is 21. It follows from Theorem 12 that
p = 1 and q = 21. Correspondingly, the probabilities of the
critical nodes being recognizedwhen the adversary has access
only to a permuted version of 274-bus network is no greater
than 1/(1.(1+21)−1) ' 0.047. Similarly, the probability of
identifying the critical edges, assuming one end at the critical
node, is not greater than 1/(1.(1+ 21)− 1)2 ' 0.002.

C. SIMULATIONS AND ANALYSES OF LARGE
1,176-BUS SYSTEM
We also examine the security of the 1, 176-bus system [68]
which has 1, 176 nodes and 18, 552 edges. The number
of automorphisms of this network is approximately 10259.
Clearly, it is computationally prohibitive to generate the
whole set of automorphisms and then compute the maximum
multiplicities of nodes within the set. However, the size of
Gen(G) for this graph is 377. We performed the MMP on
this network and identified 437 unmatched nodes which are
then considered as the locations of FACTS devices. The
maximum multiplicity of the most repeated nodes in Gen(G)
is 4 and the size of disjoint generators is 237. Following the
conditions of Theorem 12, the probability of recognizing the
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TABLE 4. The determining set attained from symmetry analysis and the locations of FACTS controllers attained from MMP. The overlap between the set of
FACTS locations attained from MMP and the determining set underscores an important impact of symmetry on networked systems. The number of 4 out
of 6 nodes of determining set of 49-bus system, 8 out of 21 nodes of the determining set of 274-bus system, and 14 out of 33 nodes of determining set of
1,176-bus are also selected as the locations of facts controllers by MMP.

data associated to the FACTS devices and the critical edges
in 1, 176-bus system are 10−3 and 10−6, respectively. Due to
space limitations, it is not possible to illustrate the graph of
1, 176-bus system.
The simulation results are summarized in Tables 3-4.

As can be observed in Table 4, there is an overlap between
the nodes in determining set and the set of nodes that are con-
sidered as the locations of FACTS controllers by MMP. For
the 49-bus, 274-bus, and 1, 176-bus systems, these overlaps
are %66, %38, and %42, respectively. Although all nodes in
determining set are not selected as the locations of FACTS
controllers, yet it is inline with Lemma 7 since for every
node in determining set which is not selected as a FACTS
controller there is an alternative node belonging to F and
within the same generator of automorphism which plays a
same structural role in the network and, as such, can be
alternatively selected as the location of FACTS controllers.
For example, in 49-buss system, node 1 is in determining
set but is not in F . As demonstrated in Figure 4, nodes
1 and 4 belong to a same generator of automorphism and,
according to Lemma 7, a necessary condition for controlla-
bility is that only one of these nodes must be included in the
set of FACTS controllers. This further highlights the impor-
tance of symmetry in explaining some aspects of the network
behavior.

V. CONCLUSION
The placement of FACTS devices in power systems with the
consideration of cyber-security of associated data exchange
is addressed from a CN controllability perspective based
on advanced topological techniques which, unlike the con-
ventional methods, has no computational impediments. The
proposed solution is attained using: i) the concepts of MMP
and moderated-k-security to guarantee the cyber-security
of the most critical data related to the FACTS controllers.,
ii) the idea of moderated-k-symmetry to arrange the pub-
lished cyber graph based on generators of automorphisms that
will significantly obscure the data exchange over the cyber
graph for adversaries, and iii) the similarity between the set of
critical nodes attained from the symmetry analysis to enhance
the FACTS placement solution. The proposed solution pro-
cedure is implemented on the modified small 49-bus, mod-
erate 274-bus, and large 1,176-bus systems. The power flow

analysis of 49-bus system shows that the voltage magnitudes
of all buses have increased by reaching to near 1 p.u. and the
active power flow over the transmission lines has increased
by %3 while the total power losses has decreased by %18 due
to reactive compensation by FACTS controllers. In addition,
the most critical data of the cyber graph is attributed to data
exchange between FACTS controllers. This is in line with the
verified importance of these controllers for thewhole network
performance. The cyber-security of these controllers are then
addressed by obscuring the data exchange throughout the
nodes assigned as the locations of these controllers. To this
end, the network symmetry is leveraged to identify the set of
permutations within the symmetry group for which the most
critical nodes corresponding to the locations of FACTS con-
trollers are permuted. It is verified in the paper that publishing
any of the graphs associated to the network structure mapped
by one of these permutations can significantly obscure the
source of critical data for adversaries.

Throughout the simulations, an overlap is observed
between the set of nodes in determining set and the set of
nodes assigned as the locations of FACTS controllers by
MMP. This further reveals the importance of symmetry in
power network analysis. Therefore, another novel contribu-
tion of this paper is that finding the set of driver nodes for a
power system can be translated to finding the set of nodes
with highest repetitions in the symmetry group. Potential
forthcoming research directions may be on: i) considering
the network topology while addressing future expansions of
the existing networks or constructing a new network, and
ii) expanding the proposed approach to also address sizing
of FACTS devices.

APPENDIX A
COMPUTATIONAL CLARIFICATION
In this appendix, the computation process of the proposed
approaches are explained. First, we clarify how to compute
MMP in MATLAB and then the symmetry analysis is dis-
cussed in Sage.

A. COMPUTING THE MATCHED EDGES AND
UNMATCHED NODES OF MMP
The required data for performing MMP is the adjacency
matrix of the network. Once the adjacency matrix of the
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underlying graph of the network is constructed in MAT-
LAB, we can attain the full set of matched edges using the
command

� maximal_matching(A)

which uses a matching function in MATLAB. In all our case
studies, MATLAB was able to compute the whole set of
matched edges and unmatched nodes in a few seconds. Thus
finding the locations of FACTS devices (or unmatched nodes)
does not impose a big computation burden.

B. CALCULATING THE SYMMETRY GROUPS
The previous studies (for example [61]) rely on comput-
ing the automorphism group to identify the determining set
(which can be used to find the set of driver nodes) while the
proposed approach of this paper is based on computing the
generators of automorphisms. The computational advantage
of the proposed approach can be distinguished simply by
comparing the size of automorphism groups with the size of
generators of automorphisms. For the small grid of 49-bus
system, it is shown in section IV.A that there are only 144
automorphissms and it is possible to compute and sweep
over this range. However, for the moderate 274-bus system,
and the large 1, 176-bus system, it is shown that the sizes
of the corresponding automophism groups are 28, 311, 552
and 10259, respectively. Therefore, it is not computation-
ally effective to compute these sets and sweep over them.
In addition, the large number of automorphisms makes it very
difficult, if not impossible, to find the critical nodes as it
needs to compute all automorphisms and then sweep over
them to find the set of nodes with maximum multiplicities in
Aut(G). However, the novel approach of this paper addresses
these computational issues by adapting generators of auto-
morphisms instead of automorphism groups. As indicated in
sections IV.B and IV.C, the number of generators of auto-
morphisms for 274-bus is 23, and for 1, 176-bus systems it
is equal to 381. Clearly sweeping over these small sets of
generators is more computationally effective than sweeping
over the very large number of automorphisms associated with
theses systems. There are effective algorithms, such as those
in [63] for computing the automorphism group but, in gen-
eral, the algorithms for calculating automorphism group and
elementary automorphisms are well-known and rather trivial.
These algorithms are built in some commands in SageMath
or similar computing tools. Once the underlying graph is
constructed in Sage, computing the automorphism group and
the elementary automorphisms can be easily done using the
following commands:

> G.automorphismgroup().list()#ComputingAut(G)
> G.gens() #ComputingGen(G).

However, for moderate/large scale networks, the first com-
mand will not result in the list of automorphisms. Only the
cardinality of automorphism group can be computed using

the following commands:

> A = G.automorphismgroup()
> A.cardinality().
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