
This is the author’s final, peer-reviewed manuscript as accepted for publication.  The 
publisher-formatted version may be available through the publisher’s web site or your 
institution’s library.  

This item was retrieved from the K-State Research Exchange (K-REx), the institutional 
repository of Kansas State University.  K-REx is available at http://krex.ksu.edu 

 

Real-time detection of wave profile changes 
 
Shing I Chang, Behnam Tavakkol, Shih-Hsiung Chou, Tzong-Ru Tsai 
 
 
How to cite this manuscript 
 
 
If you make reference to this version of the manuscript, use the following information: 
 
 
Chang, S. I., Tavakkol, B., Chou, S. -H, & Tsai, T. -R. (2014). Real-time detection of 
wave profile changes. Retrieved from http://krex.ksu.edu 
 
 
 
Published Version Information 
 
 
 
Citation: Chang, S. I., Tavakkol, B., Chou, S. -H, & Tsai, T. -R. (2014). Real-time 
detection of wave profile changes. Computers & Industrial Engineering, 75, 187-199. 
 
 
 
Copyright: © 2014 Elsevier Ltd 
 
 
 
Digital Object Identifier (DOI): doi:10.1016/j.cie.2014.05.020 
 
 
 
Publisher’s Link: http://www.sciencedirect.com/science/article/pii/S0360835214001739 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33353898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

REAL‐TIME	DETECTION	OF	WAVE	PROFILE	CHANGES	

Shing I Chang1, Behnam Tavakkol2, Shih‐Hsiung Chou1, Tzong‐Ru Tsai3 

1Quality Engineering Laboratory, Department of Industrial and Manufacturing Systems Engineering, 
Kansas State University, USA 

changs@ksu.edu, (785)532-3725 (Office), (785)532-3738 (Fax) 
 

2Department of Industrial and Systems Engineering, Rutgers University, USA 
 

3Department of Statistics, Tamkang University, Tamsui District, New Taipei City 25137 Taiwan 

ABSTRACTS	

A statistical process control (SPC) framework is proposed to detect potential 

changes of a wave profile on a real-time basis.  In regular profile monitoring, change 

detection takes place when a complete profile is generated. In this study, the detection of 

a potential profile change takes place before the entire information on the profile of 

interest is fully available. The main research goal is to make a correct process decision as 

soon as possible. A real-world example of condensation-water-temperature profile 

monitoring was used to demonstrate the proposed framework. A simulation study was 

also conducted. The simulation results confirm that the proposed framework is capable of 

detecting profile changes without having to wait for the entire profile to be generated.  

 

Keywords: Exponentially Weighted Moving Average Filter, Hotelling  Chart, 

Statistical Process Control, Profile Analysis, Real-Time Monitoring 

1.	Introduction	
Profile monitoring has drawn much attention in the field of quality engineering in 

recent years. A profile is a relationship between a response variable and explanatory 

variable(s) (Woodall, 2007). Usually, the explanatory variable can be either time or 

space. If there are two spatial explanatory variables, the response is a surface. In this 

study, only one explanatory variable over time is considered for a response with 

oscillating patterns. In profile analysis, a decision about the quality of a profile is usually 

made at the end of the period when a profile is completely generated. Most of the 

research conducted in the field of profile monitoring is based on this approach. In this 
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study, a new approach is proposed to detect profile changes based on real-time data feed 

before the entire profile is generated. The goal is to detect a possible deviation from a 

normal profile pattern as soon as possible.  

It would be extremely beneficiary to detect an irregular profile before the entire 

profile is generated. In manufacturing, if profile changes related to a process status can be 

detected as soon as possible, product costs can be reduced through defect preventions. 

For example, Chang et al. (2012) studied the strategy of implementing SPC in a curing 

process in which the condensation-water-temperature profile is considered here. Figures 

1 (a) to (k) contain the progression of a water temperature profile during the curing 

process. In a separate work, the authors aimed to detect whether the curing process is in 

control or not based on the information provided in Figure 1(k) while this research 

focuses on monitoring the same process but using partial information provided by Figures 

1 (a) to (j). If an abnormal profile be detected during earlier stages, process adjustments 

can be made to maintain product quality. The goal of this study is to provide a method to 

detect an out-of-control profile as soon and as accurate as possible. However, the practice 

of engineering process control (EPC) (del Castillo, 2002) is not in the scope of this study.  

2.	Background	

2.1	Current	Profile	Monitoring	Methods	
Profile monitoring is the use of control charts for cases in which the quality of a 

process or product can be characterized by a functional relationship between a response 

variable and one or more explanatory variables (Woodall, 2007). In terms of modeling 

approaches for profile monitoring, Woodall (2007) specifies two categories of profile, 

linear and nonlinear profile. A review of the most conducted current research will be 

summarized in the following sub sections. The main purpose of this review is to show 

that none of current research in profile monitoring has considered wave profiles. In 

addition, none of the current research attempts to provide a decision before a profile is 

fully generated. 

Methods	in	Linear	Profile	Monitoring	
Methods dealing with linear profiles can be found in many studies. Kang and 

Albin (2000) proposed two methods to detect abnormal profiles. First, they monitored 
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slope and intercept parameters using the Hotelling’s T2 control chart. Second, they used 

Exponential Weighted Moving Average (EWMA) and R chart to monitor average 

residuals between sample profiles and reference profile. Another model parameters 

monitoring methods can be found in Kim et al. (2003), Zou, et al. (2007), Mahmoud 

(2008), and, Zhu and Lin’s (2010) study. Kim et al. (2003) monitored slope, intercept, 

and the variance of deviation between samples and regression line simultaneously by 

their proposed three univariate exponentially weighted moving average (EWMA) charts. 

Zou, et al. (2007) proposed a multivariate exponentially weighted moving average 

monitoring scheme for linear profiles. Mahmoud (2008) monitored multiple linear 

regression model’s parameters, intercept, slope, and variance, from the multiple linear 

profiles. Soleimani et al. (2009) dealt with simple linear profiles with a first-order 

autoregressive relationship among observations within a profile. Zhu and Lin (2010) 

proposed a Shewhart control chart for monitoring slopes of linear profiles from the 

truncated vertical density profiles problem (Walker and Wright, 2002).  

Above mentioned methods dealing with linear profiles used the control charting 

approach. Mahmoud et al. (2006) proposed a change-point approach based on the 

segmented regression technique for testing the constancy of regression parameters in a 

linear profile data set. Hosseinifard et al. (2011) proposed a feed-forward neural network 

to detect and classify step shifts in linear profiles. More details regarding linear profiles 

monitoring methods can be found in Noorossana et al. (2011).   

Methods	in	Nonlinear	Profile	Monitoring	
To monitor the nonlinear profiles, Woodall (2007) categorized approaches into 

four types: (1) applying multiple and polynomial regression (Zou et al., 2007; 

Kazemzadeh et al. 2008; Mahmoud 2008); (2) applying nonlinear regression models 

(Ding et al., 2006; Williams et al., 2007; Shiau et al., 2009; Chang and Yadama 2010; 

Chen and Nembhard 2011); (3) use of mixed models (Jensen et al., 2008; Jensen and 

Birch, 2009; Qiu et al., 2010; Abdel-Salam, et al., 2013); and (4) use of wavelets (Reis 

and Saraiva, 2006; Zhou et al., 2006; Chicken et al., 2009).  In this section, we will 

update recent developed methods according to these categories. Also, we will briefly 

introduce some represented approaches. Detail of other approaches to monitor the process 

stability can be found in Noorossana et al. (2011). 
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Kazemzadeh et al. (2008) developed three methods for monitoring polynomial 

profiles in Phase I. These three methods are called the Change Point approach, F-

Approach and, the Hotelling  Charting approach. They also developed a method based 

on the likelihood ratio test to identify the location of shifts. 

Jensen et al. (2008) proposed a method of fitting the profiles for data where the 

within-profile measurements are correlated with each other, thus relaxing the assumption 

of independent errors. They did so by fitting a linear mixed model (LMM), which 

accounts for the correlation within profiles. The LMM also allows considering the 

profiles as a random sample of profiles from a common population distribution, which 

may be a more realistic assumption than assuming that the profiles are completely 

independent of each other. 

Shiau et al. (2009) proposed a method for monitoring nonlinear profiles with 

random effects by nonparametric regression methods. They used the technique of 

principal components analysis to analyze the covariance structure of the profiles. Based 

on the principal components scores they proposed a monitoring scheme. 

Chang and Yadama (2010) proposed a framework to monitor nonlinear profiles. 

Their framework was able to identify mean shifts or shape changes of profiles. They first 

applied Discrete Wavelet Transformation to remove noise from the profiles and then used 

B-splines to generate critical points to define the shape of profiles. Their methodology 

also allowed users to define number of segments that they would like to divide the profile 

into. A distance difference statistic for each segment provided diagnostic information. A 

Hotelling  chart was used for multivariate control charting. As a further analysis for 

diagnosis, a decomposition method such as MTY decomposition (Mason et al., 1995) 

could be applied to the Hotelling  statistics. 

Abdel-Salam et al. (2013) proposed a semi-parametric mixed model approach to 

Phase I profile monitoring.  Recently, in the absence of an obvious parametric model, 

nonparametric methods have been employed in the profile monitoring context. For 

situations where a parametric model is adequate over a part of the data but inadequate of 

other parts, the authors proposed a semi-parametric procedure that combines both 

parametric and nonparametric profile fits. They referred to their semi-parametric 

procedure as mixed model robust profile monitoring (MMRPM). For each approach of 
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parametric, nonparametric and MMRPM methods, they proposed a Phase I Hotelling  

testing procedure to identify abnormal profiles based on the estimated random effects and 

obtain the corresponding control limits. Their simulation results showed that the 

MMRPM method performed well in making decisions regarding outlying profiles when 

compared to methods based on a miss-specified parametric model or based on a 

nonparametric regression method. They applied all three methods to the automobile 

engine data of Amiri et al. (2010), and found that the nonparametric method and the 

MMRPM method indicated signals that were not identified using parametric approaches 

only. 

The literature on profile monitoring reviewed so far demonstrates that the wave 

profile has not been studied before. Furthermore, methods studied in this body of 

knowledge cannot be used to provide a solution before a profile is fully generated.  

2.2	Background	of	the	curing	process	research	
The condensation-water-temperature profiles in a curing process (Chang, et al., 

2012) are considered for process monitoring. This profile relates to one of the processes 

in producing high-pressure hose. This process is called curing. A curing process takes 

place in a sealed heat chamber, called an autoclave or vulcanizer (vulcanization 2010). 

High-pressure hose products in reels are loaded into the vulcanizer. Then the vulcanizer 

is heated according to a curing recipe to reach a set temperature for a fixed amount of 

time.  The housing that contains a vulcanizer is often called vessel. Figure 2 shows a few 

condensation-water-temperature profiles collected during the curing process. 

The traditional control charting approach on the condensation water temperature, 

Tt, does not work because Tt is not stationary even though the process is in control. As 

explained in the previous section, the behavior of Tt is dominated by the opening and 

closing of the water valve. Its mean level follows a functional (wave) form. In traditional 

control charting methods, this mean is usually a constant. But it is not the case here. A 

possible solution may be the use of moving center EWMA control chart (Montgomery, 

2013). But this approach will not work either because the wave function is not limited to 

a fixed location. For example, at t=1, the T1 observation can be large or small as long as 

the wave profile stays intact. As shown in Figure 2, there is no standard or gold template 
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that can be used to describe the “normalcy” for Tt. For this reason, any attempt to try to 

fit the wave forms directly faces the same difficulty.  

We have use of different types of functions such as the 2nd order polynomial, 3rd 

order polynomial, B-spline and, exponential decay to model the water-temperature 

profiles. Since these profiles look like waves, they are also called the wave profiles. We 

also consider the use of fast Fourier transform to analyze these wave forms. It turns out 

that the transformed signals do not simply the original wave forms because a typical 

wave form in this case does not have a constant frequency or amplitude.  Finally, the sum 

of areas generated from the enclosure between the exponential-decay cutting line and the 

wave profile can be used as a measure for further implementations.  The main reason for 

adopting the sum of areas statistic is that this statistic is about an overall estimate of how 

the general wave pattern of a cycle is generated rather than an attempt to find the exact 

location of each detailed peak and valley. The detail of the proposed method is 

introduced in the next section.  

3.	Proposed	Methods	
Our proposed strategy is to convert each wave profile using exponential-decayed 

function as cutting line into a statistic that can be directly fed into a univariate control 

chart that is available in any SPC software.  

During the phase I SPC, assume  in-control wave profiles are collected and each 

contains  observations. The following exponential-decayed function is defined as: 

 exp , 1,2, … , , 1,2, … , ,    (1) 

where 	 and 	  are the  wave profile and observed time for the  sample; ,  are 

unknown parameters to be estimated using least square calculated based on given in-

control wave profiles.  

The exponential-decayed cutting line cuts through a wave profile and forms areas as 

shown in Figure 3. The sum of areas from m in-control samples of wave profiles was 

denoted as	 . A polynomial model in equation (3) was proposed to account for the 

number of peaks and valleys that were different from cycle to cycle. 
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, 1,2, … ,  (2) 

 

where  is the number of waves of the ith profile. For example, in Figure 3, there are 28 
waves in the profile.  

A second-order polynomial model was then fit to remove noise due to the number of 
waves in each profile. Standardized residuals of this regression model form the quality 
characteristic for control charting: 

  (3) 

The standardized residuals should be independent and normally distributed. If the 

independent assumption was not met, an exponentially weighted moving average 

(EWMA) filter could be applied to remove the autocorrelation. The obtained statistic was 

then used for control charting purposes. Any control chart for individual observations 

such as the individual-X (IX) or EWMA control chart was used as an appropriate tool to 

monitor the residuals.  Note that IX chart is very sensitive to normal assumption. 

Therefore, one should check the normality assumption of the standardized residuals in 

equation (3) before an IX chart is used. 

We will use the same data set of the wave profiles for this research. Once again, 

the research goal is to detect a profile change as fast as possible before a curing process 

ends. It means that we would like to identify an abnormal wave pattern during, not after, 

a curing cycle.  

Figure 4 depicts the relationship of the original process monitoring approach 

based on entire profiles and the proposed research based on a partial profile. Figure 4(a) 

is a control chart for monitoring the curing process using complete profiles. The one 

point that plots outside the control limit indicates the present profile is abnormal and 

implies that the process is out of control. Figure 4(b) demonstrates that the proposed 

research uses a pair of control charts to detect this out-of-control process when only a 

quarter of information of this profile is obtained. In the following section, we will outline 

a couple of potential solutions to achieve the task illustrated in Figure 4(b).  

Note that the proposed pair of IX and Moving Range (MR) control charts in 

Figure 4(b) are different from the traditional implementation of control charts in three 

aspects. First, each data point in the proposed charts is correlated with points preceeding 
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it. This is due to the fact that an exponential curve is fit to the partial profile available up 

to that point. Second, the scope of the proposed control charts are limited to a fraction as 

oppose to the usual sample number, for example, 0.5 meaning 50% of the entire profile. 

Once the entire profile is generated, no new data point is to be plotted on the control 

charts. Finally, the proposed control charts do not rely on the same assumption of 

traditional control charting where an assigable cause may last from batch to batch until 

the cause is removed. In other words, an assignable cause may only exist in the current 

batch or production cycle only.  We only rely on the information at a current batch for 

decision making. If an assignable cause lasts from batch to batch, the proposed method 

will still work. 

The proposed methodologies in this research were motivated by the curing 

process demonstrated earlier. The curing process takes a fixed time unit for which we 

assign a number 100% cured or simply 1 without loss of generality. We divided the 

typical time frame of curing in this study into eleven portions represented by the 

fractions: 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, and 1. For example, 1/2 represents 

that a half of the wave profile or the data from the beginning to the midway point is 

obtained so far. Prior knowledge is needed to set up appropriate number of portions 

because it depends on the pattern and location of the changes in abnormal profiles which 

distinguish them from the normal profiles. In this case, eleven portions were enough for 

the analyses. In the next step, 100 normal profiles were selected for Phase I analyses. An 

exponential-decay function was used to model these 100 profiles. The sums of the areas 

generated from the enclosure between the exponential-decay cutting lines and the wave 

profiles were calculated for them. This calculation was done 11 times due to 11 different 

portions of the wave profile mentioned earlier. We now consider two possible phase II 

approaches for process monitoring. 

3.1	Method	I	(Filtering	then	Standardizing)	
The first proposed methodology is displayed in Figure 5. We consider variable  

as the accumulated area for the profile i from the starting point up to the point t. The time 

index t can gain different values but in the special case of curing process we only define 

eleven values of 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, and 1 as the time index. 

Note that this choice does not produce equal time intervals for the entire profile. One 
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advantage is that it provides more frequent check points at the beginning of the profile 

generation. This practice will lead to more opportunities for detections. It is clear that for 

profile i, different values of  at different times are dependent and correlated because 

the cumulated areas at a later stage contain those in earlier stages. We plotted both the 

autocorrelations (ACF) and partial autocorrelations (PACF) to confirm that this is true. In 

order to remove the correlation from  we needed to apply a filter as in Figure 5.  

 

According to the ACF and PACF we could conclude that the best type of filter to remove 
the autocorrelation in this case would be an AR(1) filter. This was because of having a 
single spike at the beginning of the PACF graph. After applying the AR(1) filter, the 

uncorrelated variable  was named 	 . Note that = -  where  is the 
estimated value of the regression between  and . This process works only 

because the underlying autocorrelation is AR(1). 

 Based on this uncorrelated data series from all profiles in Phase I, we then calculated the 
appropriate mean cumulated area  and its standard deviation  at time t. We assume 
that all profiles used in phase I are representative of an exemplary process. Finally the 
uncorrelated series  is standardized to generate a standardized series  (shown in 
equation (4)) which is then ready to be fed into any control chart for individual 
observations.  

′
  (4) 

 

3.2	Method	II	(Segmenting	then	Standardizing)	
Since the overlapping areas cause autocorrelation, this second proposed method 

aims to avoid the autocorrelation by redefining the accumulated areas. This method is 

depicted in Figure 6.  was defined as the difference of the enclosed areas for profile i 

between time t-1 and time t. Thus  was calculated according to the following formula 

in equation (5). 

 

  (5) 
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Note that 	is in fact the accumulated areas between t-1 and t. Since the non-overlap 

areas are taken into account, statistics, , are independent. We now standardize  

according to equation (6):  

, 1/8, 1/7,… ,1, 
(6) 

where   is the average of  ’s of 100 Phase I profiles at time t, and   is the standard 

deviation of ’s of 100 Phase I profiles at time t. The standardized statistics,  is then 

used for further analysis. The major advantage of using this approach over the first 

method is that ’s are not autocorrelated. Hence, there is no need to apply any type of 

filtering to remove the autocorrelation. Note that  are i.i.d. standard normal variables 

at 1/8, 1/7,… ,1. During the phase II monitoring, any sample i will generate a value 

to be plotted on a pair of standardized control charts as shown in the next section.   

3.3	Control	Charting 
We can now plot either  (method I: eq. (4)) or  (method II: eq. (6)) on a pair 

of IX and MR control charts. Since both statistics have been standardized, the control 

limits for the IX and MR control charts are defined in equations (7) and (8), respectively. 

Having n=2, values of , 	and  are set as 1.128, 0 and 3.267 respectively. For 

details, see Montgomery (2013).  

 

 
IX chart:      
 

   3 3
.

3 

                                           0 

         3 3
.

3 

(7) 

MR chart:   
3.267 3.685  

                                     1.128   
                                     0 

(8) 

 

Depending on the proposed method used, the MR for profile  is defined as either 

  or  at any location t=1/8, 1/7, …, 1. In 
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many applications, the MR of two successive observations is used as the basis of 

estimating the process variability.  

During the Phase I of control charting, a sample of representative observations should be 

collected to calculate  and . Normality assumption is important when IX chart is 

used.  We should point out the both the EWMA and CUSUM (Cumulative Sum) control 

charts are the other competent control charts to replace the IX chart for individual 

observations. The normality assumption is less of an issue for the EWMA and CUSUM 

charts. Although there are EWMA and CUSUM based control charts for monitoring 

process variations, the MR chart is a much simpler method if the normality assumption is 

not an issue. For more details, please refer to Montgomery (2013). 

Figure 7 demonstrates when IX and MR charts are used to detect potential out-of-

control profiles. The mean and standard deviation of   (see equation (4)) based 100 

normal profiles were calculated and summarized in Table 1. These values were used for 

equations (6), (7), and (8) for control charting. As illustrated in Figure 4(a), the proposed 

method was able to detect that that profile was abnormal right at 1/3 point of the profile 

generation before the entire profile was generated. Yet, in order to validate the 

performance of the second method, further analysis is needed. A simulation study will be 

conducted based on multiple runs in addition to the real-world profiles from a single case. 

4.	A	Simulation	Study	
Two types of profiles are simulated. First type of profiles, are those that are 

deemed normal profiles for an in-control process. These normal profiles are the ones that 

have a descending shape. An exponential decay function is chosen as the best fit to them. 

An example of real-world profiles of this type is shown in Figure 9 (a) while a simulated 

profile is shown in Figure 9 (b). Second type of profiles, are called abnormal profiles, 

those have inadequate frequency, i.e., number of peaks and valleys, and large amplitudes. 

There are six scenarios simulated to be abnormal profiles as shown in Figure 10. Note 

that a solid line represents a simulated normal profile while a dash line represents 

simulated abnormal profile. In scenario 1, the number of peaks and valleys is 

significantly small. In addition, the amplitudes after 300 time units is small as well. 
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Scenario 2 shows that the wave patterns are acceptable before 350 time unit but become 

flat after 350.  In scenario 3, not only the number of peaks and valleys is small but the 

profile patterns shift downward and become flat after 200 time unit. Scenarios 4 to 6 are 

all large amplitudes with different frequencies.  

  

4.1	Design	of	Experiments	
The purpose of the simulation study is to evaluate the performance of the 

proposed method. Both phase I and phase II samples were generated. We first generated 

500 normal profiles to establish the proposed IX and MR charts then we generated 

another set of 200 random mixtures of 100 normal and 100 abnormal profiles for 

validation. First 500 normal profiles shape as shown in Figure 9 (b) were generated and 

labeled as  from a descending shape and exponential-decay function defined below: 

1 cos   (9) 

and  

2

max min
2

max min
2

, 0, … , , (10) 

where t  is the simulated water temperature at time t,  is the scaled water 

temperature at time t,  is the scaling parameter of the water temperature,  is the 

amplitude parameter.  is the damping factor where  determines speed of the 

damping,  is the controller parameter of frequency of the wave,  accounts for time, and 

 is the time at the end of the profile. Intervals of 0.05 were used for t in this model. The 

default T in this study is 24.95, so that the number of data points within a profile will be 

500. Each parameter in equations (9) and (10) is simulated as a normally distributed 

random variable. To resemble real-world, condensation-water-temperature profiles, we 

chose to use the following settings: A~N(10, 0.72), f~N (260, 22), n~N(0.1, 0.0052), and 

m~N(5, 0.12) where the first parameter in the normal distribution is the mean and the 

second parameter is the standard deviation . 
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In order to simulate abnormal profiles for each scenario, equation (9) and (10) as 

well as equation (11) and (12) are obtained. Note that, the parameters f, m, and A in the 

equation (11) and (12) are all followed by normal distribution, as well. All parameters 

setting for generating abnormal profiles are shown in Table 2.  

 (11) 

2

max min
2

max min
2

, 0, … , . (12) 

 

The statistics of the average time of the proposed methods to alarm for out of control is 

studied via the following procedure:  

Step 1: The time domain, , is set as 24.95 for every profile so that all of the profiles 

consisted of 500 observed points. 

Step 2: Generate 500 in-control profiles as the Phase I sample based on functions (9) and 

(10). Calculate control chart parameters using the monitoring procedure in 

Section 3. See equations (7) and (8). 

Step 3: Generate a Phase II sample for each scenario, in which 100 in-control profiles 

generated from equations (9) and (10) are randomly mixed with 100 out-of-

control profiles generated from settings in Table 2.  

Step 4: Use the monitoring parameters calculated in Step 2 to detect the out-of-control 

signal from the Phase II sample generated in Step 3. Control chart performance 

statistics are collected.  

Step 5: Repeat Step 2 to Step 4 5000 times. Statistics of mean and standard deviation of 

first detection time are generated.  

4.2	Simulation	outcomes	
Based on the simulation procedure listed in the previous section, out of 200 phase 

II profiles generated 100 were normal profiles and 100 were abnormal profiles with 

various scenarios. Table 3 summarizes the simulation results of proposed methods among 

all scenarios. In Table 3, the true positives (TP) are the number of normal profiles 
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assigned to the normal group, while the true negatives (TN) are abnormal profiles 

classified as the abnormal group. If normal profiles are assigned to the abnormal group, 

they are called false negatives (FN) known as type I error. On the other hand, when 

abnormal profiles are classified to the normal group, they are called false positives (FP) 

as known type II error. Note that average run length (ARL) is not used to compare both 

methods because the “run length” in this study is really how fast to detect a shifted-

profile before the entire profile is generated. But in the case when the entire profile is 

used for monitoring, the traditional “run length” is the number of profiles generated 

before the control chart detects an out-of-control point. Note that there are only 11 

monitoring spots in the wave profile in this case.  

The accuracy rate in Table 3 defined in equation (14) is a more meaningful 

statistic than ARL. The accuracy is a function of sensitivity and specificity defined in 

equations (15) and (16), respectively. Sensitivity and specificity are known as the 

proportion of positive tuples and negative tuples are all correctly identified. The accuracy 

rate is a good indicator for comparison because it provides overall performance criteria in 

one value –   the higher the better. For more details of accuracy rate, please refer to Han 

et al. (2006).  

In this simulation study, the average type I error of method I and method II among 

all scenarios is 0.02 and 0.01, respectively. On the other hand, type II error of both 

methods is all 0, meaning that the proposed method is capable of detecting all abnormal 

profiles. With regards to accuracy rate of method I and method II, both methods provide 

high accuracy rate, i.e., 0.99 and 0.995. The next question is then: “How fast the 

proposed methods can detect abnormal profiles?”  

  (14)

  (15)

  (16)

 

According to Table 3, the mean of average detection time of method I and method 

II among all scenarios is 0.14 and 0.16, respectively. In other words, both methods can 



15 
 

detect an abnormal profile between 1/8 and 1/6 of the entire profile before the end of the 

process. Figure 11 provides more details of the average detection time of method I and 

method II in all scenarios. Since both methods’ standard deviations of detection time are 

all small, we only compare their average detection time. From Figure 11, average 

detection times from both methods show that method I is faster than method II in in 

scenarios 1, 2, and 3, while there is no difference between method I and method II in 

scenarios 4, 5, and 6.  Taking scenario 2 for an example, we found that abnormal profiles 

in scenario 2 of method I show better detecting power in term of the average detection 

time than method II. In other words, method I can detect abnormal profiles faster than 

method II.  

In summary, although the accuracy rate of both methods is very close, method I 

detects abnormal profiles in scenarios 1, 2, and 3 faster than method II does. Also, in 

scenarios 4, 5, and 6, there is no difference between method I and method II in term of 

average detecting time. We recommend method I for its high accuracy rate and faster 

detection time. However, we can also recommend method 2 although it is less efficient 

but it detect in advance the profile behavior. 

5.	A	Case	Study	
In this case study, out of the 186 wave profiles of the curing process obtained from 

March to April of 2011, and 91 of them were selected to construct the phase I process 

because their shapes are similar to the typical waveform profiles. We also pick three 

abnormal waveform profiles to test the robustness of the proposed methods. Figure 12 

shows three abnormal profiles (labeled abn1 to abn3) superimposed on 91 typical 

waveform profiles (labeled typical) that will be examined in this study. Abn1 indicates 

the valve was normal before time 400, while abn2 shows the thermocouple stopped 

working around time 100. Abn3 gives information that the valve was not closed for a 

period of time between time 10 and 100, as well as time 110 to 410.    

The objective of applying method I and method II to those three abnormal profiles is to 

investigate if the proposed methods can detect the abnormal profiles before the entire 

process is finished. The results of method I are shown in Figure 13. Figure 13 (a) shows 

the abn1 stayed in control before the 8th observation. In other words, before 2/3 of the 
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manufacturing, the process was normal. For abn2 and abn3 on the Figure 13 (b) and (c), 

both results show the method I catch the abnormal right after 1/7 of the process.   

The results of method II are shown in Figure 14. In Figure 14 (a), the method II indicates 

the out-of-control signal occurred during 1/7 of the process for abn1. And Figure 14 (b) 

and (c) state the out-of-control happened in 1/5 and 1/4 of the process, respectively.  Note 

that control limits and center line are drawn very close together in Figures 13 (b) and 14 

(b) because the out-of-control points are very large. 

Both results described above show that method I and method II are capable of detecting 

the abnormal waveform profiles. For abn1, method I signals out-of-control after 2/3 of 

the process, but method II states there is out-of-control starting from 1/7 of the process. 

Although method II detect abnormal signal faster than the method I does, the out-of-

control signals that provided by method II for abn1 are actually false alarm. In Figure 12, 

the abn1 profile is classified normal profile between time 0 to time 400, however, the 

method II indicates out-of-control signal starting from time 71. Therefore, for abn1, the 

method I provides better result than method II does. For abn2 and 3, method II detects 

out-of-control signals slower than method I does. Therefore, method I is our 

recommended approach to detect real-time waveform profiles monitoring.   

6.	Conclusions	
In this research, the process monitoring task for wave profiles is based on real-

time detection before entire profile information is obtained. The goal is to detect an 

abnormal profile at an earlier stage of profile generations. A curing process has been 

studied to demonstrate the proposed concept. 

We have studied two potential solutions but favored the first approach because of 

its high accuracy rate and fast detection time. The proposed method includes the 

following steps: determining the desired decision times (t’s), modeling the exponential 

decay function to the set of profiles at time t, calculating the values of enclosed areas of 

the profile over time, calculating the AR(1) filter of the enclosed areas and subtracted to 

the observation for each profile, and standardizing the statistics for each profile using the 

mean and standard deviation of the statistics obtained from the Phase I profiles. Finally, 
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the statistics obtained from these procedures for each of the profiles are fed to IX and MR 

control charts for process monitoring.  

Simulations provide various controlled out-of-control scenarios mixed with 

normal profiles. Six types of abnormal profiles in the simulation study included different 

numbers of waves and flat line starting at middle or at the end of process. Simulation 

results demonstrated that the proposed methods are capable of detecting these abnormal 

profiles although some false alarms were also generated. And both methods provide high 

accuracy rate. Furthermore, the proposed methods caught these abnormal profiles before 

an entire profile needed to be generated, i.e., between 1/8 and 1/6 of entire profile.  

The proposed method can be extended to other applications in which the quality 

characteristic of interest exhibits an oscillating pattern. For example, Hammond et al. 

(2013) consider a flow pattern from a syringe pump of an automated instrument for 

veterinary diagnostic. When extreme amplitudes emerge in the wave pattern, a failure 

mode occurs and results in yield loss and rework.  

Further research is needed to diagnose a process at any portion of a profile. The 

proposed method only calculated means and standard deviations at 11 fixed locations. 

There may be times that a diagnosis is required not necessarily at these locations.   

Monitoring a process at each data-collection time unit demands huge amounts of 

computations and is not feasible. A multivariate analysis approach can also be utilized for 

change detections with real-time data feed. The challenge for a multivariate approach is 

its huge amount of computations for estimating the variance covariance matrices at each 

profile segment. Further research is needed to overcome this computational obstacle and 

enhance its real-time detection functionality. 

  	



18 
 

Acknowledgments	
We would like to thank the editor and several reviewers for insightful suggestions which 
make the presentation of this paper better. The authors would also like to thank the grant 
from National Science Council, Republic of China, provided to Professor Tzong-Ru Tsai 
who visited the IMSE Department at Kansas State University during 2011-2012 
academic year.  Parts of this research are based Mr. Behnam Tavakkol’s M.S. thesis at 
Kansas State University.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Bibliography	
 Abdel‐Salam,  A.S.G.,  Birch,  J.B.,  and  Jensen, W.A.  (2013).  A  Semiparqametric Mixed Model 

Approach to Phase I Profile Monitoring. Quality and Reliability Engineering International, 

29(4), 555‐569. 

Amiri,  A.,  Jensen, W.A.,  and  Baradaran  Kazemzadeh,  R.  (2010).  A  Case  Study  on Monitoring 

Polynomial  Profiles  in  the  Automative  Industry.  Quality  and  Reliability  Engineering 

International , 26(5), 509‐520. 

Chang, S. I., and Yadama, S. (2010). Statistical Process Control for Monitoring Non‐linear Profiles 

Using Wavelet Filtering and B‐Spline Approximation. International Journal of Production 

Research, 48(4), 1049‐1068. 

Chang, S., Tsai, T., Lin, D., Chou, S.H., and Lin, Y. (2012). Statistical Process Control for 

Monitoring Nonlinear Profiles: a Six Sigma Project on Curing Process. Quality 

Engineering, 24(2), 251‐263. 

del Castillo, E. (2002). Statistical Process Adjustment for Quality Control. NY: Wiley. 

Chen, S. and Nembhard, H.B., (2011). A High‐dimensional Control Chart for Profile Monitoring, 

Quality and Reliability Engineering International, 27(4), 451‐464.  

Chicken, E. Pignatiello, Jr., J., andSimpson, J.R. (2009) Statistical Process Monitoring of Nonlinear 

Profiles Using Wavelets, Journal of Quality Technology, 41(2), 198‐212. 

Ding,  Y.,  Zeng,  L.,  and  Zhou,  S.  (2006).  Phase  I  Analysis  for Monitoring Nonlinear  Profiles  in 

Manufacturing Processes, Journal of Quality Technology, 38(3), 199‐216. 

Hammond, J., Haiss, A., Lavigne, S., Daniels, B., and Allen, J. (2013). A Functional Approach to 

Fixing Flow Oscillation. Quality Engineering, 25(4), 385‐391. 

Han, J., and Kamber, M. (2006). Data mining concepts and techniques (2nd ed.). Amsterdam: 

Elsevier  

Hosseinifard, S., Abdollahian, M., and Zeephongsekul, P. (2011). Application of Artificial Neural 

Network  in  Linear  Profile Monitoring.  Expert  Systems with  Applications,  38(5),  4920‐

4928. 

Jensen, W.A. and Birch, J.B. (2009). Profile Monitoring Via Nonlinear Mixed Models, Journal of 

Quality Technology 41(1), 18‐34. 

Jensen, W.A., Birch, J.B., and Woodall, W.H. (2008). Monitoring Correlation within Linear Profiles 

using Mixed Models, Journal of Quality Technology, 40(2), 167‐183. 

Kang, L.; Albin, S. L. (2000). On‐Line Monitoring when the Process Yields a Linear Profile, Journal 

of Quality Technology, 32(4), 418‐426. 



20 
 

Kazemzadeh, R., Noorossana, R., and Amiri, A. (2008). Phase I Monitoring of Polynomial Profiles. 

Communications in Statistics‐‐Theory and Methods, 37(10), 1671‐1686. 

Kim, K., Mahmoud, M. A.,  and Woodall, W. H.,  (2003). On  the Monitoring of  Linear Profiles. 

Journal of Quality Technology, 35(3), 317‐328. 

Mahmoud, M. A. (2008). Phase I Analysis of Multiple Regression Linear Profiles, Communications 

in Statistics ‐ Simulation and Computation, 37(10), 2106‐2130. 

Mahmoud, M. A., Parker, P. A., Woodall, W. H., and Hawkins, D. M. (2006). A Change Point 

Method for Linear Profile Data. Quality and Reliability Engineering International, 247‐

268. 

Mason, R., Tracy, N., and Young, J. (1995). Decomposition of T2 for Multivariate Control Chart 

Intepretation. Journal of Quality Technology, 27(2), 109‐119. 

Montgomery, D. C. (2013). Introduction to Statistical Quality Control (7th ed.). Wiley. 

Noorossana, R. S. (2011). Statstical Analysis of Profile Monitoring. Hoboken, New Jersey: John 

Wiley & Sons, Inc. 

Qiu,  P.,  Zou,  C.  and  Wang,  Z.  (2010).  Nonparametric  Profile  Monitoring  by  Mixed  Effects 

Modeling, Technometrics, Vol. 52(3):265‐277. 

Reis, M.S., SARAIVA, P.M. (2006). Multiscale Statistical Process Control of Paper Surface Profiles, 

Quality Technology and Quantitative Management, 3(3), 263‐282. 

Shiau,  J.J.H., Huang, H.L.,  Lin,  S.H.,  and  Tsai, M.Y.  (2009). Monitoring Nonlinear  Profiles with 

Random Effects by Nonparametric Regression, Communications in Statistics‐Theory and 

Methods, 38(10), 1664‐1679.  

Soleimani, P., Noorossana, R., and Amiri, A. (2009). Simple Linear Profiles Monitoring in the 

Presence of within Profile Autocorrelation, Computers & Industrial Engineering, 57, 3, 1015‐

1021. 

Vulcanization. (2010). In Encyclopaedia Britannica. Retrieved September 10, 2010, from 
Encyclopædia Britannica Online: 
http://www.britannica.com/EBchecked/topic/633433/vulcanization  

 

Walker, E. and Wright, S. P. (2002). Comparing Curves Using Additive Models, Journal of Quality 

Technology, 34(1), 118‐129. 

Williams,  J.  D., Woodall, W.  H.,  and  Birch,  J.  B.  (2007).  Statistical Monitoring  of  Nonlinear 

Product  and  Process  Quality  Profiles,  Quality  &  Reliability  Engineering  International, 

23(7), 925‐941. 



21 
 

Woodall, W.H. (2007). Current Research on Profile monitoring, Produção 17(3): 420‐425. 

Zhou, S.Y., Sun, B.C., and Shi, J.J. (2006). An SPC Monitoring System for Cycle‐based Waveform 

Signals using Haar Transform. IEEE Transactions on Automation Science and Engineering, 

3(1), 60‐ 72. 

Zhu, J., and Lin, D. K. (2010). Monitoring the Slopes of Linear Profiles. Quality Engineering, 22(1), 

1‐12. 

 Zou, C.,Tsung, F., and Wang, Z.  (2007). Monitoring General  Linear Profiles Using Multivariate 

Exponentially Weighted Moving Average Schemes, Technometrics, 49(4), 395‐408. 

 

 

   



22 
 

Figures	

(a) 1/8 of profile (b) 1/7 of profile 

(c) 1/6 of profile (d) 1/5 of profile 

(e) 1/4 of profile  (f) 1/3 of profile 
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(g) 1/2 of profile (h) 2/3 of profile 

(i) 3/4 of profile (j) 4/5 of profile 

 
(k) Complete profile 

Figure 1.   Completion of a condensation‐water‐temperature profile. 
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Figure 2.   In-control wave profiles. 

 

 

 

Figure 3. The enclosed area between the fitted exponential decay function and the profile. 
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Figure 4. A comparison of  (a) the original work: each point represents a 
summary of a profile, and (b) the proposed work: each point ( ) is based on a 

fraction of an entire profile.  
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Figure 5.  A scheme of the first proposed methodology. 

 

 

 

Figure 6.   A scheme of the second proposed methodology. 

 

 

Figure 7.   Detection Point at Time Index t 
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(a) (b) 

Figure 9. An Example of (a) a “typical” normal profile, and (b) a simulated normal profile. 

 

 

  

Figure 10. Six scenarios of abnormal profile patterns against a normal profile 
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Figure 11. Average detecting time of method I and method II among all scenarios. 

 

 

Figure 12. Three abnormal waveform profiles superimposed on 91 typical waveform 
profiles. 

 
   

0

0.05

0.1

0.15

0.2

0.25

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Average Detecting Time

Method I

Method II

0 100 200 300 400 500

2
5

0
2

5
5

2
6

0
26

5

Sample Sequence

T
e

m
p

e
ra

tu
re

abn1
abn2
abn3
Typical



29 
 

(a) (b) (c) 
Figure 13. The results of method I on I-MR chart for (a) abn1; (b) abn2; (c) abn3.  

 

 
(a) (b) (c) 

Figure 14. The results of method II on I-MR chart for (a) abn1; (b) abn2; (c) abn3.  
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Tables	
Table 1. Means and Standard Deviations of In-Control  at Various t 

i 1 2 3 4 5 6 7 8 9 10 11 

t 1
8

 
1
7

 
1
6

 
1
5

 
1
4

 
1
3

 
1
2

 
2
3

 
3
4

 
4
5

 1 

 236.3  29.36  36.69  50.76 78.01 106.07 185.99 165.65 86.47  46.83  187.30

 74.53  16.68  20.19  24.67 44.60 49.80  96.83  76.82  52.55  32.71  97.96 

 
Table 2. Numerical Setting of Abnormal Profiles 

Scenario Parameter Equation 

1 
m~N(1.5, 0.0052), n~N(0.2, 0.0052), A~N(10, 0.72), 
f~N (260, 22) 

(8) and (9) 

2 
m~N(5, 0.0052), n~N(0.2, 0.0052), A~N(10, 0.72), f~N 
(260, 22) 

(8) and (9) 

3 
m~N(5, 0.0052), n~N(0.5, 0.0052), A~N(10, 0.72), f~N 
(260, 22) 

(8) and (9) 

4 m~N(0.4, 0.0052), A~N(10, 0.72), f~N (260, 22) (10) and (11) 
5 m~N(0.6, 0.0052), A~N(10, 0.72), f~N (260, 22) (10) and (11) 
6 m~N(1, 0.0052), A~N(10, 0.72), f~N (260, 22) (10) and (11) 

 

Table 3. Simulation results of the proposed methods among all scenarios. 

Scenario  Method  TP  TN  FP FN  Sensitivity Specificity Accuracy
Average 
detecting 
time 

Standard 
deviation 

of 
detecting 
time 

1  I  0.98 1 0 0.02 0.98 1 0.99 0.1530 0.0120

1  II  0.99 1 0 0.01 0.99 1 0.995 0.1633 0.0089

2  I  0.98 1 0 0.02 0.98 1 0.99 0.1429 0.0005

2  II  0.99 1 0 0.01 0.99 1 0.995 0.2179 0.0408

3  I  0.98 1 0 0.02 0.98 1 0.99 0.1429 0.0000

3  II  0.99 1 0 0.01 0.99 1 0.995 0.1484 0.0101

4  I  0.98 1 0 0.02 0.98 1 0.99 0.1437 0.0047

4  II  0.99 1 0 0.01 0.99 1 0.995 0.1429 0.0000

5  I  0.98 1 0 0.02 0.98 1 0.99 0.1429 0.0006

5  II  0.99 1 0 0.01 0.99 1 0.995 0.1429 0.0000

6  I  0.98 1 0 0.02 0.98 1 0.99 0.1429 0.0000

6  II  0.99 1 0 0.01 0.99 1 0.995 0.1431 0.0022
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