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Abstract

Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were
examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables
were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between
years 2005–2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA
Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable
Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources.
Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a
partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that
included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas
increased steadily from 2005–2012, and identified poverty status, relative humidity, and an interactive factor, ‘diurnal
temperature range x mixed forest area’ as significant county-level risk factors for HME. The identification of significant
spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the
areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases.
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Introduction

Human Monocytic Ehrlichiosis (HME) is a frequently reported

tick-borne disease in the south central and southeastern USA. The

severity of the disease ranges from a mild non-symptomatic

infection to death in humans. Although most known HME cases

are not fatal, approximately 3–5% of all ehrlichial infections in the

USA result in deaths despite patients receiving appropriate care

[1]. Prevention almost entirely relies upon how well humans can

avoid ticks; vaccines are not available and managing ticks or

quantifying management effectiveness can be difficult. Ehrlichia

chaffeensis, an obligate intercellular bacterium affecting the

monocytes and macrophages is responsible for HME, and

infections are vectored by the Lone Star tick, Amblyomma

americanum, a widespread tick species in the central Midwest and

southern regions of the USA. A second bacterium E. ewingii, that

target the granulocytes also results in similar clinical symptoms but

is relatively less frequently encountered [2].

The number of reported cases and the spatial distribution of

HME have steadily increased over the past decade since the

Centers for Disease Control and Prevention, USA (CDC)

designated HME as a reportable disease [2], and per Kansas

Administrative Regulations, Ehrlichiosis was first reportable in

Kansas in the year 2000. State epidemiologists believe during this

period in Kansas, the focus area of this study, HME has gone from

a disease that was reported only from a few counties in the

southeast corner of the state to being more numerous and

widespread across the eastern part of the state. Spatio-temporal

dynamics of tick-borne diseases could be influenced by geospatial

factors including climate, land cover/land use and socio-economic

conditions, which are currently not known for HME in Kansas but

could facilitate our understanding the mechanisms of HME

transmission and guide disease control strategies under the current

social, climatic and environmental changes.

Prior research on HME using GIS and remote-sensing methods

has established some very useful hypotheses. Yabsley et al., (2005)

[3], identified the relationship between E. chaffeensis and several

geospatial variables (land cover/land use, forest fragmentation)

using kriging surfaces and logistic regressions. Wimberly et al.,

(2008) [4] later showed the importance of including model

parameters to account for spatial autocorrelation and spatial

randomness in geostatistical studies using E. chaffeensis and

Anaplasma phagocytophilum examples. This study also identified

similar meteorological and land cover/land use variables as

important predictors for E. chaffensis. The spatial distributions of

the same pathogens were predicted using habitat-level ecological
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variables in the Mississippi valley by Manangan et al., (2007) [5]

wherein the relative importance of variables (soil moisture and

forest cover) at different spatial scales was shown. The former two

studies considered relatively large regions for the spatial extent,

and all had used seropositivity rates among deer populations as

indicators of county or public land-level ehrlichial pathogen

prevalence.

Influential factors affecting the prevalence and distribution of

diseases could differ from one region to another due to natural

changes in the geography, and they are quite scale-dependent [6],

[7]. In addition, the relevance of certain spatial determinants often

becomes evident only in the presence of others. Particularly,

climatic variables are often confounded or interactive with other

influential factors viz., land cover/land use and socio-economic

characteristics and can be difficult to detect [8], [9]. Further, much

of the prior work on HME spatial epidemiology is based on

conventional statistical approaches that have limitations when

epidemiologic datasets are analyzed. Bayesian hierarchical mod-

eling has been recognized as a powerful analytical technique to

provide more robust posterior estimates, since they allow for

incorporating errors that may arise from mean or median

estimates of the independent covariates and observed data through

the use of prior probability distributions [10], [11].

The purpose of this study was to evaluate the presence of spatio-

temporal autocorrelation and the relationship between key

environmental, climatic and socio-economic factors with HME

case reports in Kansas where this and other tick-borne diseases are

a growing concern. We used annual county-level prevalence data

for the period 2005–2012 and modeled the spatio-temporal

autocorrelation and effects of independent covariates using

Bayesian hierarchical modeling approach.

Materials and Methods

Data
Ethics statement. No patient names were recorded to

maintain patient confidentiality and to adhere to the International

Ethical Guidelines for Biomedical Research Involving Human

Subjects. All patient records/information was anonymized and de-

identified prior to analysis. The use of HME data was approved by

the Internal Review Boards at Kansas State University and Kansas

Department of Health and Environment (IRB # 6733).

HME data. Records of Kansas residents whose HME

diagnosis or HME-related laboratory results were reported to

the Kansas Department of Health and Environment (KDHE)

from 2005 through 2012 were used in the study. Records that were

classified as confirmed, probable or suspect as indicated by the

Council of State and Territorial Epidemiologists’ (CSTE) case

definition were considered to be cases [12]. Further detail on case

definitions is provided in File S1.

Cases were associated with their county of residence, due to the

difficulty in determining where each infection originated, and

because this was not routinely assessed or recorded.

Covariates. The publicly available 2006 National Land

Cover Dataset [13] for the study region was obtained from the

United States Geological Survey (USGS) in a raster grid format.

Land cover grids within each county were extracted from the

raster dataset and the percentage area they occupy were estimated.

A list of land cover variables evaluated in the study is present in

Table 1. Among climate variables, the maximum normalized

vegetation index (NDVI); minimum land surface temperature

(LST); mean LST; diurnal temperature range (DTR) (the

difference between daily maximum and minimum temperature

averaged over a thirty day period); precipitation and humidity

were extracted for each county in the study area. The LST and

NDVI estimates were derived from MODIS (Moderate Resolution

Table 1. Land cover types found in NLCD.

Land cover land use data Land cover types

National Land Cover Dataset
(source: MRLC (2011); years1: 1992–2001;
resolution2: 30 m; spatial scale3: 1:100,000).

Open water, developed—open space, developed—low intensity, developed—medium intensity, developed—high
intensity, barren land, deciduous forest, evergreen forest, mixed forest, scrub/shrub, grassland/herbaceous, pasture/
hay, cultivated crops, woody wetlands, emergent herbaceous wetland.

1Years represent the time period during which satellite images of land cover were captured for creating the data set, including multiple images within a year.
2Resolution indicates the fineness of ground data as captured by a satellite image, shorter resolution meaning higher clarity;
3Spatial scale indicates the scale for which interpretations are appropriate.
doi:10.1371/journal.pone.0100850.t001

Table 2. Population and housing variables evaluated in the study.

Census category Independent variablesa

Housing Housing units (total housing units), Tenure (owner occupied, renter occupied), Tenure (Historic or Latino Householder) (owner occupied, renter
occupied), Race of householder (white alone, Black or African American alone, Asian alone), Household size (1-person, 2-person, 3-person, 4-
person, 5-person, 6-person, or 7-more person household), Year structure built (Built 2005 or later, 2000 to 2004, 1990 to 1999, 1980 or earlierb).
(20 variables).

Population Population (total population), Race (White alone, Black or African American alone, Asian alone), Household income in the past 12 months (Less

than $10,000, $10,000 to $14,999, and thirteen other variables that represented $49,999 incremental income thereof up to $199,999, and

$200,000 or more), Poverty status in the previous 12 months (income in the past 12 months below poverty level, income in the past 12 months at
or above poverty level). (23 variables).

Definitions of different census variables can be found from their source (NHGIS) website at: https://www.nhgis.org/.
aObservations for all the independent variables are counts, in continuous form, and recorded per areal unit (block group, tract or county). Items in italics are Census
Table names, and items within parenthesis are independent variables.
bThe variable 1980 or earlier was derived by summing all the number of houses built prior to 1980 originally available in five-year increments in census.
doi:10.1371/journal.pone.0100850.t002
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Imaging Spectroradiometer) imagery [14]. DTR, precipitation

and relative humidity were derived from the Prediction of

Worldwide Renewable Energy (POWER) web portal of the

NASA Langley Research Center [15].

U.S. Census 2010 data on population and housing were

obtained from the National Historical Geographic Information

System (NHGIS), a publicly available online resource for U.S.

Census Bureau’s historical and current population data [16].

Identical census attribute information for Kansas was gathered at

the county level. Geographic boundary files for counties were also

obtained from the NHGIS. From the tables, 20 housing and 23

population related variables (Table 2) were extracted for each

county by spatial query and joined to the census shapefiles using

the common GIS codes.

Statistical analysis and model specification
Let Yijk be the observed number of HME cases among Nijk

individuals at risk in the population of county i, diagnosed with

HME in year j and of gender k. We modeled Yijk to follow a

Poisson approximation, Yijk *Poisson(Eijkhijk), where Eijk is the

expected number of the population at risk for HME and hijk is the

relative risk. Since HME prevalence is disproportionate among

different age groups and gender [17], [18], standardized rates were

calculated assuming 9 10-year age classes l,(l~1,::,9): Thus, the

expected number of HME cases was calculated by

Eijk~
X

l

nijkl

P
i

P
j

P
k YijklP

i

P
j

P
k Nijkl

:

We used a logit link function in an extended generalized linear

model (GLM) structure that incorporated stochastic spatial and

temporal functions and as well as different covariate effects.

Several models that allowed us to evaluate random and covariate

effects on HME prevalence were fitted individually. First, a partial

spatio-temporal model (partial ST) was fitted that was notated as

following,

Log(hijk)~b0zuizvizcizY ij :

Where, b0 represents the mean prevalence of HME in all

counties in all years, and ui and vi are random terms accounting

for spatially structured variation in HME prevalence and

unstructured heterogeneity, respectively. No interaction was

assumed to exist between ui and vi and were assigned

ui *CAR, and vi*Normal(0,s2
v) priors. Spatial dependence

inuiwas applied by assuming a conditional autoregressive model

(CAR)(c) with a Gaussian distribution, which implies that each ui

is conditional on the neighbor uj with variance (s2
i ) dependent on

the number of neighboring counties ni of county i, i.e.,

ui Du, j neighbor of i*N(
1

ni

cS
ni
j~1uj ,

s2
i

ni

):

A random effect cj to account for the temporal component of

the data was included and was assigned a random walk prior

cj*N(cj{1,t{1
c ) [19]. In order to detect potential spatio-temporal

interaction effects in HME prevalence, Y ij term was included in

the partial ST model, which had a Y ij*(Y i,j{t�Y ) prior [20].

For the covariate model, different covariates were included to

the partial ST model in several steps, starting with a model that

included all covariates followed by removal of one variable at each

step. Covariates were retained in the model unless their removal

resulted in the increase of DIC value by 5 units or more. Several

two-way interaction effects between covariates were also included

Table 3. Results of univariate logistic regression analysis of candidate covariates evaluated in the study.

Covariate Odds ratio (95% CI) P-value

Income in the past 12 months below poverty level 2.45 (2.02, 2.99) 0.04

Household size (.5 person) 1.61 (1.09, 2.39) 0.17

Relative humidity 2.77 (2.27, 3.37) 0.01

Minimum land surface temperature 1.34 (1.02, 1.77) 0.12

Diurnal temperature range 2.74 (1.03, 7.31) 0.17

% Mixed forest area 1.49 (1.00, 2.20) 0.18

Diurnal temperature range x % mixed forest area 1.82 (1.49, 2.21) 0.04

doi:10.1371/journal.pone.0100850.t003

Table 4. Odds ratios and 95% Credible Intervals (CrI) from two spatio-temporal models evaluating county-level Human Monocytic
Ehrlichiosis (HME) prevalence data in Kansas, USA.

Covariate Partial ST model [Odds ratio (95% CrI)] Covariate model [Odds ratio (95% CrI)]

Income in the past 12 months below poverty level 1.82 (1.49, 2.21) 2.22 (1.82, 2.70)

Relative humidity 3.38 (2.73, 4.20) 3.49 (2.81, 4.33)

Diurnal temperature range x % mixed forest area 3.00 (1.37, 6.57) 3.25 (1.48, 7.12)

Deviance information criterion (DIC) obtained by fitting a Bayesian equivalent was recorded as 3,754, and 2,472, and the s2 (variance component) was 3.41 (1.31–4.81),
and 2.33 (1.14–3.42) for the partial ST model and covariate models, respectively.
doi:10.1371/journal.pone.0100850.t004
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in these steps. Candidate explanatory variables to be included in

the Bayesian hierarchical models were screened a priori in order to

avoid model fitting issues. Several frequentist bivariate logistic

regression models evaluated each variable independently and only

variables that were significant at p,0.2 were kept. A logistic

regression takes the form,

log½hijk�~b0zbijvkij

Where hijk is HME relative risk, b0 the intercept coefficient, and

bk the coefficient for the explanatory variable vkij(k~1,::,n): Care

was taken not to remove candidate variables that were deemed

clinically relevant [19]. Multicollinearity among screened variables

was tested by estimating the variance inflation factor (VIF) and all

variables with a VIF$10 were considered to indicate multi-

collinearity [21], in which case, one of the variables was dropped

at a time until multicollinearity was absent. Non-linearity among

independent variables was evaluated at the screening stage with

logistic regressions. Significant variables with non-linearity were

categorized using cutoffs based on scatter-plots.

Model posterior parameters were estimated using a Bayesian

framework implemented using R-INLA software [22] on a Linux

Beocat cluster computing environment [23]. Distributions of

covariate effects on HME prevalence are seldom available for the

region; therefore non-informative, uniform priors were selected for

the regression parameters, bk and their variance components, s2
k:

This allows the observed data to have the greatest influence on

posterior distributions without being constrained by the choice of

prior [24]. The mean estimates from the posterior distribution and

their 95% credible intervals (CrI) were calculated and exponen-

tiated to provide odds ratios (ORs) and their corresponding

uncertainty measures.

Models were validated by randomly partitioning the county-

level relative risk estimates into five subsets and by running the

models using only four of the five subsets, while validating model

prediction with the fifth subset. The models were run for five times

to allow each validation with subset. Each time, the model’s

performance (prediction accuracy) was measured using area under

the receiver-operator’s curve (AUC) values with the observed

prevalence (dichotomized as 0 or $0)’’. The mean error and mean

absolute error were calculated to quantify prediction bias and

overall precision respectively.

Results

There were 347 HME cases reported to KDHE between the

years 2005–2012 predominantly distributed in the south and

eastern counties of Kansas. A HME case in the dataset was under

one of three categories: confirmed (n = 38), probable (n = 63), and

suspect (n = 246). Table 3 shows a list of all candidate variables

that were significant at p,0.2 level that were evaluated in this

study, and Table 4 has the odds ratios and 95% CrIs for significant

variables from the Bayesian spatio-temporal models. Non-linearity

among significant variables was not observed. The best fitting

model indicated significant spatio-temporal effect, income in the

past 12 months below poverty level (henceforth, poverty), relative

humidity, and an interaction term, ‘DTR x % mixed forest

vegetation’ to be significantly associated with HME.

The covariate model which incorporated terms for individual

covariates in addition spatio-temporal interaction effect performed

relatively better than the partial ST model for all years (Table 5),

and all further interpretations were based on this model alone.

The spatio-temporal autocorrelation parameter (Y2005{Y2012)
and their 95% CrI estimates quantified the infection risk between

the counties over the study period and are plotted in Figure 1. The

plot reveals positive and increasing autocorrelation between

counties every year with a slight decrease in 2010–2011 period

Figure 1. Spatial autocorrelation parameter (yij) and 95% CrI for county level human monocytic ehrlichiosis (HME) relative risk
between years 2005–2012 in Kansas.
doi:10.1371/journal.pone.0100850.g001
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and only moderate increase during the latter part of the study

period. The crude rate ratio of reported HME infections per

county standardized by county population, and a smoothed map

of posterior relative risk of counties between years 2005–2012 is

shown in Figs. 2, 3, respectively. The posterior relative risk

estimates are based on the final model with environmental,

climatic and socio-economic predictors and correspond to the

median of the posterior predictive distribution.

Discussion

Results from this study shows that between years 2005–2012

there has been a general northwestwardly progression of HME

prevalence in Kansas (Fig. 1), and a combination of climatic,

environmental and socio-economic factors are important deter-

minants of HME. It is notable that our results are potentially

affected by our assumption that infections occurred within the

county of residence even though the disease may have been

contracted elsewhere. Only a fraction of cases were interviewed to

determine where their infections originated, and their responses

are subject to recall bias, another potential source of error.

Another limitation in the study is the likelihood for clinicians in

southeast Kansas to order more tests for HME than others where

tick related illnesses are less of a concern. These limitations are

typical for many retrospective spatial epidemiological studies,

which can only be mitigated by conducting carefully designed

prospective studies. Our study however underscores the need for

such efforts in Kansas and the general region.

The overall spatial distribution of high-risk counties found in

this study conforms to the approximate A. americanum tick

distribution in Kansas, the primary vector for this disease,

currently estimated by the CDC [25]. Although, CDC estimate

of A. americanum distribution in Kansas could be an underestimate

since their predictions were based on an acarologic survey

conducted around the year 1945 [26]. It is likely for environmental

and anthropogenic factors to have altered distribution of this

species over these decades. The spatial pattern found in the

present study is different from Wimberley et al., (2008) [4], which

were mostly discontinuous and sparse within Kansas. This study

considered a much larger spatial extent and had used deer

serology results for prevalence data. Among all the geospatial

variables evaluated in the present study, relative humidity, poverty

status, and the combined effect of diurnal temperature range and

mixed forest area appear to have played an important role in the

spatial and temporal aspects of HME prevalence and in the

vector/pathogen transmission cycle. While previous studies have

evaluated various geospatial factors as determinants for ehrlichia

‘endemnicity’ [3–5], to our knowledge, this is the first time socio-

economic factors were included and later identified as risk factors

Figure 2. Kansas county level crude rate ratios for human monocytic ehrlichiosis (HME) in relation to total population (normalized
by 10,000) between years 2005–2012.
doi:10.1371/journal.pone.0100850.g002
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for HME using human incidence rates, and our Bayesian models

provide some fresh information on HME spatial epidemiology in

Kansas that are perhaps applicable to the broader region of the

USA. This hypothesis, however, remains to be tested by

conducting similar studies spanning various geographical regions

of the USA. The current study lays the foundation for initiating

such studies.

Humidity, the amount of water present in the atmosphere has

been associated with tick survival in North America [27–29] and it

is considered to be an important climate related delimiter to the

spatial distribution of ticks [30]. There are large variations in the

yearly precipitation received across the state of Kansas, with

eastern Kansas receiving up to three times more rainfall than west

[31]. As a result, climate and vegetation are transitional between

the humid east and semi-arid western portion of Kansas that may

explain the noted geographic pattern for HME in the present

study. Humidity can often be seen associated with the survival and

abundance of ticks in the literature, with higher humidity

conditions often favoring the long-term survival of some ticks

species’ life stages through dry seasons [32], [33] among other

reasons. Also, higher humidity conditions that are typically

recorded during late spring and summer months correlate with

higher human outdoor activities, which may increase exposure to

infected ticks.

The interaction effect between diurnal temperature range and

% mixed forest area towards HME prevalence is similar to our

previous finding of the same association with feline cytauxzoonosis

in the region [9]. Like HME, this disease is also transmitted by A.

americanum ticks, but to felids and several wildlife hosts. One

interpretation of the noted interaction effect could be that it is

indicative of ticks’ biological response to changes in DTR, but that

is only specific to mixed forest areas and no other land cover types.

Although previous studies have found that the host-seeking

behavior of ticks [34] and the survival of tick-borne parasites

[35] to be strongly influenced by DTR, the reason for interactive

effect with mixed forest area is not clearly known. Mixed forest

areas in the study region are likely suitable deer habitats, and are

defined by the EPA as areas dominated by trees generally greater

than 5 meters tall, and greater than 20% of total vegetation cover.

Neither deciduous nor evergreen species are greater than 75

percent of total tree cover in mixed forests [13]. We suspect that in

addition to changes in DTR, factors such as deer density, E.

chaffeensis prevalence among deer and mixed forest wildlife hosts,

and human interactions with mixed forest areas for recreation and

hunting activities could be reasons behind this finding. A.

americanum is an important vector for many pathogens in the

region, and they appear to be influenced by DTR based on our

previous and present studies. Laboratory examinations of DTR

effects on the phenology and host-seeking behavior of A.

Figure 3. Smoothed relative risk maps for human monocytic ehrlichiosis (HME) in Kansas from 2005–2012.
doi:10.1371/journal.pone.0100850.g003
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americanum and the pathogenicity of ehrlichial pathogens the ticks

carry are warranted.

The mechanistic basis for humidity-HME linkage and DTR-

mixed forest interactive association with HME at the organismal

level (for both A. americanum and E. chaffeensis) is likely to involve

multiple pathways and their understanding is important in the

context of ecology and evolution of HME, and also in the context

of climate change effects on vector-borne diseases. Schwartz (1995)

[36] documented an increase in more humid air masses in the later

part of the 20th century for eastern Kansas and Missouri and

attributed this increase to climate change. The number of reported

HME cases in Kansas has increased during the 2005–2012 period,

and expanded from extreme southeastern Kansas to a large area of

eastern Kansas. This spatio-temporal expansion and changing

climate could be related and the linkages is worthy of investigation.

Similar suggestions for other tick-borne diseases can be found in

the literature [37–39]. Also, DTR is considered to be an important

climate-change index [40], [41] which has been steadily decreas-

ing since the 1950s due to daily temperature changes [40], [42].

Identifying consistent associations of relative humidity and DTR

(either directly or as an interactive factor) with tick-borne diseases

from other geographic regions will be useful in our efforts to

quantify climate change effects on tick-borne diseases.

Socio-economic status is not frequently associated with tick-

borne diseases in the US. Recent studies in Europe however have

found mainly poverty but also political and other socio-economic

factors with tick-borne encephalitis (TBE) [43], [44]. Also,

principal components analyses have revealed lower socio-econom-

ic conditions to be stronger predictors compared to climate related

factors for the TBE outbreak in Europe during the past decade

[45]. Although the diseases that are being discussed here are

caused and transmitted by different species, the role of socio-

economic factors on HME is worth considering in future

investigations. It is noteworthy that in Kansas, the spatial pattern

for HME found in the present study and the distribution of poorly

ranked counties for health is remarkably similar with only rare

exceptions [46]. Poverty association with HME could be related to

individuals engaging in outdoor occupations and/or living in close

proximity to areas that favor tick habitats. Poverty status could also

be a proxy for weakened immune system among individuals, lower

literacy levels, and less awareness towards tick-borne diseases and

their prevention methods. Studies to quantify individual level

socio-economic status on HME incidence and any disparities in

access to health care among high risk counties would be useful in

preventing this disease.

Conclusions

This study has shown a steady spatio-temporal progression of

HME prevalence in Kansas as indicated by the strong autocor-

relation estimates and the smoothed maps, and has also found

some previously unknown risk factors for this disease. HME

incidence in Kansas and much likely other endemic regions in the

USA are affected by a combination of factors including climate,

land cover/land use and socio-economic conditions. Quantifying

the linkages between meteorological factors and the distribution

and phenology of A. americanum and E. chaffeensis is needed for both

prevention of HME and also for understanding the ecology and

evolution of this disease and climate-change impacts. Bayesian

spatio-temporal modeling approaches have advantages over

traditional Frequentist inference methods and hold promise for

disease monitoring and evaluation purposes.

Supporting Information

File S1 HME case selection criteria.

(DOCX)

Table 5. Model validation summary for HME relative risk, Log hijk

� �
in Kansas between years 2005–2012.

Year Model AUC* Mean error{ Mean absolute error (%)`

2005 Partial ST 0.66 (0.61–0.71) 20.14 6.12

Covariate 0.69 (0.65–0.72) 20.16 5.08

2006 Partial ST 0.66 (0.62–0.71) 0.11 6.27

Covariate 0.72 (0.68–0.74) 0.09 5.14

2007 Partial ST 0.69 (0.59–0.72) 0.12 3.94

Covariate 0.72 (0.69–0.74) 0.11 4.01

2008 Partial ST 0.72 (0.65–0.73) 0.14 5.21

Covariate 0.74 (0.68–0.77) 0.12 4.88

2009 Partial ST 0.71 (0.58–0.72) 0.12 6.21

Covariate 0.73 (0.70–0.75) 0.11 5.47

2010 Partial ST 0.69 (0.61–0.72) 0.10 4.22

Covariate 0.76 (0.71–0.80) 0.09 4.18

2011 Partial ST 0.70 (0.65–0.71) 0.11 3.28

Covariate 0.74 (0.68–0.75) 0.11 3.08

2012 Partial ST 0.71 (0.67–0.72) 0.08 4.88

Covariate 0.73 (0.71–0.74) 0.09 3.97

*AUC values in the range of 0.5–0.7 indicates poor discriminative capacity, 0.7–0.9 is considered reasonable and .0.9 to be very good.
{Overall tendency to over or under-predict relative risk.
`Overall precision of models estimated using magnitude of error in predictions.
doi:10.1371/journal.pone.0100850.t005
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