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Laser-assisted XUV few-photon double ionization of helium: Joint angular distributions
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We investigate few-photon extreme ultraviolet (XUV) double ionization of helium atoms without and in
the presence of an assisting infrared (IR) laser field by numerically solving the time-dependent Schrödinger
equation in full dimensionality within a finite-element discrete-variable-representation scheme. We discuss joint
energy distributions for coplanar emission where the emitted electron momenta and polarization axis of the
linearly polarized XUV and IR pulses lie in a plane. Our analysis focuses on joint angular distributions for
highly correlated equal-energy-sharing double ionization by absorption of one, two, or three XUV photons and
IR-laser-assisted single-photon XUV double ionization.

DOI: 10.1103/PhysRevA.89.063423 PACS number(s): 32.80.Fb, 42.50.Hz, 31.15.vj

I. INTRODUCTION

The exact quantitative description and full understanding
of the dynamics of three or more interacting particles is a
fundamental and ongoing problem in quantum mechanics.
While one of the most elementary systems for studying the
dynamics of three Coulomb-interacting particles, the helium
atom, has been examined extensively during the past few
decades, three-particle Coulomb breakup initiated by short and
intense pulses of electromagnetic radiation in the infrared (IR)
to the extreme ultraviolet (XUV) spectral range continues to
be of particular interest to experimentalists and theorists alike.
The complete investigation of such three-particle breakup
processes remains a demanding experiment that requires
advanced laser or synchrotron and coincident particle detection
systems [1–6]. In such experiments, the momenta of two
particles in the final, fully fragmented state, consisting of
the helium nucleus and the two released electrons, need
to be detected in coincidence. On the theoretical side, the
quantitative description of the three-body breakup process has
made significant progress over the past two decades [7–18],
most noticeably due to the development of improved analytical
models for the correlated final three-body Coulomb state
after the three-particle breakup [19,20] and extensive ab
initio calculations made possible by efficient numerical algo-
rithms [21,22] and much improved computational resources.

Despite the complicated nature of the three-particle
Coulomb-breakup dynamics in response to the absorption of
one [3,4,8,15,20], a few [6,8–16], or many [17,18] photons by
helium atoms in their ground state, basic physical principles
remain transparent in measured differential helium double-
ionization (DI) cross sections. These underlying principles
include most importantly angular-momentum, energy, and
parity conservation, and selection rules for the interaction
of atoms with electromagnetic radiation. They constitute a
link between the symmetry properties of the bound initial
and three-body final continuum state of the ground-state and
ionized helium atom, respectively, and help significantly in
understanding the comprehensive information contained in
both measured and numerically calculated differential DI
cross sections as functions of the two emitted electrons’
momenta [20]. For example for “coplanar” emission geometry,
where the emitted electron momenta and polarization axis of
the incident linearly polarized XUV radiation lie in a plane,

the DI probability can be expressed as a sum of terms that
each consist of a dynamical and an angular factor. While the
dynamical factors are typically complicated functions of the
kinetic energies E1 and E2 of the released photoelectrons
and their relative emission angle θ1,2 = θ2 − θ1, the angular
functions are simple expressions that only depend on the
emission angles θ1 and θ2. In particular, for equal energy
sharing (E1 = E2), the probability for DI by a single XUV
photon factorizes into a single dynamical factor and the
angular factor (cosθ1 + cosθ2)2, reminiscent of uncorrelated
dipolar angular distributions and implying the absence of
“back-to-back emission” [Fig. 1(a)]. For two-photon DI at
equal energy sharing and coplanar emission, the DI yield is
determined by four dynamical and four angular factors, and
thus much less analytically tractable than single-photon DI
yields [9].

Early XUV synchrotron radiation experimental results for
the triply differential direct double photoionization in helium
were reported by Schwarzkopf et al. [1], in excellent agreement
with the calculation of Maulbetsch and Briggs [7]. These
DI cross sections were obtained for equal energy sharing
of the emitted electrons and for coplanar emission geometry.
Bräuning et al. [3] measured absolute triply differential cross
sections for photo-DI of helium covering the full range of
possible energy sharing and emission angles of the two
photoelectrons. We note that the references addressed in this
work constitute a small and not representative part of the
very large number of investigations on the DI of helium
atoms and refer the reader to more comprehensive reviews
for single-photon [20,23,24] and two-photon [9,11,12,16,24]
DI, and references therein.

DI of helium is a convoluted process where photon-electron,
electron-nucleus, and electronic interactions compete. Ac-
cordingly, the detailed scrutiny of measured and calculated
DI data requires highly differential emission probabilities (or
cross sections). We therefore focus in this work on a specific
value of the energy sharing between the two emitted electrons,
equal energy sharing, and investigate highly differential joint
angular distributions (JADs) for coplanar emission. We point
out that for coplanar emission and equal energy sharing, JADs
correspond to triply differential DI cross section (TDCS),
both terms, JAD and TDCS, being used alternatively in the
literature. We will consider short XUV pulses with photon
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FIG. 1. (Color online) (a) Schematics for four different types of
photoelectron emission patterns in the double ionization of helium.
From top to bottom: back-to-back emission, side-by-side emission,
conic emission, and symmetric emission. (b) Schematics for the
identification of the corresponding emission patterns (with matching
line types and colors) in joint angular distributions (see text).

energies �ωXUV between 30 and 99 eV, thus covering the
nonsequential and sequential DI regimes.

JADs for helium DI exhibit four different typical electron
emission patterns (Fig. 1), which we will refer to repeatedly
throughout this paper. For coplanar emission, each pattern can
be related to a given range of θ1 and θ2 relative to the linear
polarization direction of the XUV and/or IR electric field,
which will serve as the quantization (z) axis in our calculation
below. The red solid arrow in Fig. 1(a) indicates the XUV
or IR electric-field direction E, and the remaining arrows
represent photoelectron momenta. Different colors and line
styles correspond to different emission patterns in the JADs,
as schematically depicted in Fig. 1(b):

(i) “back-to-back emission” [green solid arrows in Fig. 1(a)
and green solid lines with slope 45◦ in Fig. 1(b) with θ12 =
|θ1 − θ2| = 180◦];

(ii) “side-by-side emission” [blue dotted arrows in Fig. 1(a)
and blue dotted line in Fig. 1(b) with θ1 = θ2];

(iii) “conic emission” [purple dashed arrows in Fig. 1(a) and
purple dashed lines with slope −45◦ and θ1 + θ2 = 360◦ ±
180◦]; and

(iv) “symmetric emission” [blue dotted-dashed arrows in
Fig. 1(a) and blue dotted-dashed line along θ1 + θ2 = 360◦ in
Fig. 1(b)].

We will investigate few-XUV-photon coplanar DI of helium
by solving the time-dependent Schrödinger equation (TDSE)
within a finite-element discrete-variable-representation (FE-
DVR) scheme. For this purpose we developed a numerical
code. We start by reviewing our theoretical model and key
features of its numerical implementation in Sec. II. In Sec.
III A we discuss energy- and angle-differential correlated
electron-emission probabilities for DI due to the absorption
of up to NXUV = 3 photons, reproducing measured angular
distributions for single-photon DI. In Sec. III B we investigate
the DI of helium by absorption of a single XUV photon assisted
by an IR laser pulse and discuss energy- and angle-resolved
photoemission probabilities in view of the added influence the
absorption or emission of (effectively) NIR IR photons has
on the photoemission process. In this discussion, we focus
on JADs for specific numbers of effectively absorbed (or

emitted) IR photons. These JADs are thus differential not
only with regard to the momenta of both emitted electrons,
but also in NIR. They provide—to our knowledge—the
most highly resolved theoretical double-photoemission data
available. As we will show, the assistance of the IR field
induces characteristic modifications of the IR-laser-free JADs
that depend on NIR. We conclude this work with a summary
in Sec. IV. This paper includes two appendixes. Appendix A
gives details on our implementation of the angular momentum
coupling. Importantly, in order to validate our numerical
model, we carefully assess in Appendix B the dependence
of our numerical results with regard to their convergence in
numerical and physical parameters and compare our ground-
and excited-state energies for the helium atom with theoretical
and experimental energies from the literature. In order to most
critically test the convergence properties of our numerical
scheme, we examine JADs for physical parameters of the
emitted electrons at which electronic correlation matters most,
i.e., for equal energy sharing and side-by-side emission.
Unless otherwise stated, we use atomic units throughout this
paper. Furthermore, unless specified differently, we display
joint-energy distributions and JADs at their maximal yields
and color (gray-scale)-coded on a linear scale.

II. THEORY AND NUMERICAL IMPLEMENTATION

Our theoretical method for calculating energy and angle
differential DI processes for helium is based on the ab initio
numerical solution of the TDSE for two electrons subject to
their mutual interaction and their interactions with the nucleus
and the external electric fields of the XUV and IR laser pulses,

i
∂�(r1,r2; t)

∂t
= H�(r1,r2; t), (1)

with the Hamiltonian

H = H0 + Vint, (2)

where

H0 = −1

2

[∇2
1 + ∇2

2

] − 2

r1
− 2

r1
. (3)

The interaction potential

Vint = 1

|r1 − r2| + [EXUV(t) + EIR(t)] · (r1 + r2) (4)

includes the electronic correlation and interactions between
the electrons and external XUV and IR electric fields in the
dipole length gauge. We assume the external XUV and IR
electric fields to be linearly polarized along the quantization
(z) axis and to have cos2 temporal profiles,

Ea(t) =
{
E0,a cos2

(
π
2

t
τa

)
cos(ωat + ϕa), if |t | < τa,

0, if |t | > τa,

(5)

where the index “a” stands for XUV or IR and E0,a , τa ,
ϕa , and ωa denote the electric-field amplitudes, pulse lengths,
phases, and frequencies of the two pulses, respectively. We will
not discuss the carrier-envelope-phase dependencies of the DI
process in this work and set ϕa = 0 for both XUV and IR pulses.
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We solve (1) by expanding the time-dependent two-electron
wave function in bipolar spherical harmonics,

YLM
l1l2

(	1,	2) =
∑
m1m2

CLM
l1m1l2m2

Yl1m1 (	1)Yl2m2 (	2), (6)

according to

�(r1,r2; t) =
∑
LM

∑
l1,l2

ψ
(LM)
l1l2

(r1,r2; t)

r1r2
YL,M

l1l2
(	1,	2). (7)

The functions Ylimi
(	i) are ordinary spherical harmonics in

the solid angles 	i = (θi,φi) of the two electrons (i = 1,
2). The coupling of the two electrons’ individual angular
momenta with quantum numbers (l1,m1) and (l2,m2) to
the total angular momentum of the two-electron system
with quantum numbers (L,M) is written in terms of the
Clebsch-Gordan coefficients CLM

l1m1l2m2
. Assuming the helium

atoms are initially in the singlet-spin 1S0 ground state with
L = M = 0, angular momentum conservation implies that the
atoms remain in M = 0 states during their interaction with
the XUV and IR electric fields. Starting with helium atoms
in the 1S0 state further implies that the radial parts of the
atomic wave function are symmetric upon electron exchange,
i.e., �(r1,r2) = �(r2,r1), such that for our case (M = 0) only
terms with even L − l1 − l2 contribute to the expansion (6).

In order to obtain energy and angle-dependent double-
ionization probabilities, we need to analyze the final state of the
doubly ionized atom with regard to the asymptotic momentum
vectors of both emitted electrons. In principle, quantum
mechanics demands this to be done by projecting the wave
function of the system, �(r1,r2; tf ), at a sufficiently long time
tf after the action of the IR and XUV pulses onto asymptotic
two-electron continuum wave functions. Since no accurate
closed-form expressions of such asymptotic correlated two-
electron wave functions are known for the three-body Coulomb
problem [11], we proceed by neglecting the final-state in-
teraction between asymptotic emitted electrons, leaving the
inclusion of electronic correlation in the final state [19]
to future investigations. This allows us to approximately
compute DI probabilities by subtracting the 1S0 ground-state
wave function from �(r1,r2; tf ) before projecting this differ-
ence onto products of incoming-wave Coulomb continuum
wave functions ψ

(−)
ki

(ri) (i = 1, 2) with emitted electron
momenta k1 and k2,

P (k1,k2)

= ∣∣〈ψ (−)
k1

(r1)ψ (−)
k2

(r2)
[∣∣�(r1,r2; tf )

〉 − ∣∣�1S0 (r1,r2)
〉]∣∣2

. (8)

We compute the wave functions ψ
(−)
k (r) with the routine

COULFG of Barnett [25]. As long as ionization by more than
two photons is irrelevant, single-photon and two-photon DI
probabilities can be separated by restricting the sum in (7) to
include either only odd or only even total angular momentum
quantum numbers L, respectively. In general, starting with the
L = 0 ground state of helium, we obtain DI probabilities for
even (odd) numbers of absorbed (minus emitted) photons by
restricting the sum in (7) to even (odd) values of L.

Based on (8), we evaluate JADs for coplanar DI at vanishing
azimuthal angles (φ1 = φ2 = 0) and for fixed equal energy
sharing (k2

1 = k2
2) by integrating over the emitted electron

speeds,

P (θ1,θ2) =
∫

dk1dk2k
2
1k

2
2 δ(k1 − k2)P (k1,k2), (9)

and obtain the correlated two-electron energy distribution by
integrating over all angles,

P (E1,E2) = 1

k1k2

∫
d	1d	2P (k1,k2), (10)

where E1 = k2
1/2 and E2 = k2

2/2 are the final kinetic energies
of two continuum electrons.

In order to determine the radial wave functions ψL
l1l2

(r1,r2)
in (7), we adopt the FE-DVR method and numerically
propagate the radial TDSE for M = 0 [16,26],

i
∂

∂t
ψL0

l1l2
(r1,r2; t)

=
∑
L′l′1l

′
2

〈l1,l2,L,0|H |l′1,l′2,L′,0〉ψL′
l′1l

′
2
(r1,r2; t), (11)

on a two-dimensional numerical grid for the radii r1 and r2. In
order to simplify the notation we will drop the superscript M

throughout the remainder of this work. Details of the partial-
wave analysis and angular-momentum-coupling constraints
are given in Appendix A.

We apply the DVR method based on the Gauss-Lobatto
quadrature rule. This method is known as an efficient pro-
cedure for obtaining highly accurate results with relatively
small numbers of radial grid points. Subdivision of the
numerical intervals for the radial coordinates r1 and r2 into
smaller “finite” elements translates the Hamiltonian (2) into a
large sparse matrix that can be efficiently diagonalized. The
FE-DVR method is well established for solving the radial
two-electron TDSE and details for its implementation can be
found in the literature [16,21,22,24,26].

We solve (11) by numerical wave-function propagation on
the r1,r2 numerical grid, repeatedly applying the split time-
evolution operator [27] over equally spaced small time steps

t ,

ψL
l1l2

(t + 
t) = e−iĤ0(
t/2)e−iV̂int
te−iĤ0(
t/2)ψL
l1l2

(t)

+O(
t3). (12)

In order to propagate (11) in time we employ the Arnoldi-
Lanczos method [28,29], adopting the software package
EXPOKIT to perform the numerical matrix exponentiations [30].
At each numerical grid point (r1,r2) the Hamiltonian H0

and the interaction potential Vint are represented as N × N

matrices, Ĥ0 and V̂int, respectively, in the channel indices
and must be diagonalized. N is the total number of channels,
and each channel is defined by the set of quantum numbers
(L,l1,l2).

Since the FE-DVR scheme is based on the Gauss-Lobatto
quadrature rule [31], it requires the integrand to be a
polynomial function for highly accurate results. However,
part of our numerical effort consists in calculating the
matrix elements 〈ψL′

l′1l
′
2
(r1,r2)|1/(|r1 − r2|)|ψL

l1l2
(r1,r2)〉 of the

electronic interaction for which the Gauss-Lobatto scheme is
not appropriate. To diagonalize the potential matrix without

063423-3



AIHUA LIU AND UWE THUMM PHYSICAL REVIEW A 89, 063423 (2014)

loss of accuracy, we instead calculate this integral by solving
Poisson’s equation, following the work of McCurdy et al. [21].

III. RESULTS AND DISCUSSION

We submitted our new FE-DVR code to extensive tests in
order to assess the accuracy of our numerical results relative to
the numerical effort (in terms of computing time and random
access memory) and published data. For example, our FE-
DVR calculations reproduce the measured [32] energies for
the 11S ground state and the two lowest L = 0 excited states
of He to at least four significant digits at moderate numerical
effort. Appendix B contains details of the numerical tests we
performed in order to determine the convergence of energies
and JADs with regard to numerical and physical parameters,
such as the number of angular momenta included in (7), the
size and distribution of mesh points in the (r1,r2) numerical
grid, and the time interval for which the TDSE is propagated.

All calculations in this section are carried out using a
numerical grid with radial distances 0 � r1 � rmax

1 = 277 and
0 � r2 � rmax

2 = 277, including 151 FEs and 4 grid points in
each FE, in combination with the Poison-equation method (cf.
Sec. II and Appendix B). This grid will be referred to as “Grid
3” throughout this work, while the labels “Grid 1” and “Grid
2” are reserved for smaller grids used for numerical test in
Appendix B. All joint energy and angular distributions in this
section are evaluated by propagating the field-free TDSE for
the time τmax = 40 past the end of the XUV pulse. In agreement
with Zhang et al. [16] we find this time to be long enough to
yield converged distributions.

A. Multiphoton double ionization in a single XUV pulse

Depending on the number of XUV photons involved, NXUV,
and photon energy, ωXUV, DI of helium in intense XUV pulses
proceeds by either sequential DI or nonsequential DI. For
sequential DI the two electrons independently absorb one or
several photons in order to sequentially overcome the first
ionization potential, Ip1 = 24.6 eV, and second ionization
potential, Ip2 = 54.4 eV. In this section we discuss joint energy
and angle distributions of the emitted electrons for DI of
helium induced by the absorption of either one 90-eV, two
45-eV, or three 30-eV photons. For all three cases the total
energy transferred to the atom is 90 eV (Fig. 2), and the
electrons leave the atom with a combined excess energy of
Eexc = 90 eV−Ip1 − Ip2 = E1 + E2 ≈ 11 eV. While DI is
predominantly sequential for the absorption of three 30-eV
photons, the absorption of two 45-eV or one 90-eV photon
can only proceed through nonsequential DI.

For all numerical results in this subsection (Sec. III A) we
used the angular momentum limits (Lmax,l

max
1 ,lmax

2 ) = (3,3,3)
for one-photon DI and two-photon DI and (Lmax,l

max
1 ,lmax

2 ) =
(5,5,5) for three-photon DI in the expansion (7), unless
specified otherwise.

1. Energy distributions

Figure 3 shows joint photoelectron energy distributions for
the DI of helium by one, two, and three photons, with photon
energies �ωXUV = 90, 45, and 30 eV, respectively. The photon
energies in each case are the central energy in the spectrum

FIG. 2. (Color online) Energetics for nonsequential double ion-
ization of helium by two 45-eV or one 90-eV photons and sequential
double ionization by three 30-eV photons. Ip1 and Ip2 designate the
first and second ionization threshold, respectively. For the examples
considered in this section, the combined excess energy of the emitted
electrons is Eexc = E1 + E2 = 11 eV.

of an XUV pulse with peak intensity I0 = 1014 W/cm2 and
pulse duration 0.5 fs [full width at half maximum (FWHM)
in intensity], corresponding to the spectral width (FWHM in
spectral intensity) �
ωXUV = 3.64 eV.

As expected, the energy distributions in Figs. 3(a)–3(c)
show dominant DI yields at 11 eV excess energy. Corre-
sponding normalized DI yields, integrated over the XUV-pulse
spectral profile,

P (ε) =
∫ ∞

0
dE1P

(
E1,

1 − ε

ε
E1

)
, (13)

are given in Fig. 3(d) as a function of the energy sharing
parameter ε = E1/(E1 + E2) [cf. Eq. (10)]. For the spectrally
broad sub-fs XUV pulses considered in this work and for
nonsequential DI by one and two photons, the DI yields
are distributed over a broad range of energy sharings with
Eexc ≈ 11 eV. For nonsequential DI by a single 90-eV photon,
the DI yield is almost independent of the energy sharing
between the photoelectrons [Figs. 3(a) and 3(d)], a fact that
is well established in the literature, both theoretically and
experimentally, and also shown for a slightly higher XUV
photon energy (99 eV) in Ref. [33]. Nonsequential DI by
two 45-eV photons slightly favors asymmetric energy sharing
[Figs. 3(b) and 3(d)]. Our joint energy distributions in Fig. 3(b)
qualitatively resemble, but are less asymmetrical than, the
distributions calculated by Guan et al. [11] for a slightly higher
photon energy (48 eV).

In contrast, sequential DI by three 30-eV photons operates
by one-photon emission of the first electron with kinetic
energy E1 ≈ �ωXUV − Ip1 = 5.4 eV, followed by two-photon
emission of the second electron, leading to the energy release
E2 ≈ 2�ωXUV − Ip2 = 5.6 eV. Accordingly, the largest yield
in Fig. 3(c) occurs near E1 ≈ E2 = 5.5 eV. The small energy
difference of E2 − E1 = 0.2 eV is much less than �
ωXUV

and thus cannot be resolved in this graph within the spectral
width of the XUV pulse.
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FIG. 3. (Color online) Normalized joint photoelectron energy distributions for the double ionization of helium by (a) one 90-eV, (b) two
45-eV, and (c) three 30-eV photons of 1014 W/cm2 peak intensity 1-fs-long XUV pulses. (d) Corresponding normalized double-ionization
yields, integrated over the XUV-pulse spectral profile, as a function of the energy sharing ε between the photoelectrons.

2. Angular distributions

In this subsection we focus on XUV DI of helium at equal
energy sharing where correlation effects are expected to be
strongest [34] and analyze angular distributions for the three
cases in Fig. 2. Except for the XUV photon energies, we use
the same laser and numerical parameters as for the energy
distributions in Fig. 3. As for the preceding subsection, we
separately discuss one, two, and three XUV-photon DI.

Our calculated JAD for DI by one XUV photon at equal
energy sharing is shown in Fig. 4(a) for 90-eV XUV photon
energy. It is dominated by four peaks on the θ1 + θ2 = 360◦
axis that correspond to symmetric emission (cf. Fig. 1). It
excludes back-to-back, conic, and side-by-side emission, in
agreement with the selection rules B2 and F discussed by
Maulbetsch and Briggs [34] and Briggs and Schmidt [20]. The
absence of back-to-back emission agrees with the selection
rule B2 which challenges the intuitive expectation that strong
electronic correlation during nonsequential DI enforces back-
to-back emission. However, since this would violate parity
conservation, emission occurs instead with an angle of 130◦
between the emission directions of the electrons, rather
than 180◦. Side-by-side emission is forbidden because of

the electronic Coulomb repulsion, and is also excluded by
selection rule B2.

Figure 4(b) compares our calculated conditional angular
distributions for single-photon DI for XUV photon energies of
90 and 99 eV with the experimental data of Bräuning et al. [3],
taken at 99 eV (20 eV excess energy). In this polar plot the
emission direction of one electron is held fixed at θ1 = 60◦. For
this figure only we added results for 99 eV in order to facilitate
the comparison with the experimental data. The experimental
distribution (black dots with error bars) is normalized to
the absolute total DI cross section (8.76 kb) of Samson
et al. [4]. Our calculated angular distributions for 90 and 99 eV
are very similar, however, the magnitude of the calculated
90-eV distribution is scaled by the factor 0.55 relative to
our calculated 99-eV distribution. Our 99-eV distribution is
adjusted to the measured distribution at θ2 = 330◦ and agrees
well with the experimental distribution.

A comparison of conditional angular distributions for θ1 =
−76◦ and �ωXUV = 99 eV is shown in Fig. 4(c). We adjusted
our calculated angular distribution to the distribution measured
by Schwarzkopf et al. [35] at θ2 = 45◦. The green dashed-
dotted line shows our result, the solid black lines are convergent

FIG. 4. (Color online) (a) Calculated normalized joint angular distribution for the double ionization of helium by one �ωXUV = 90-eV
XUV photon at equal energy sharing. The XUV pulse has a peak intensity of 1014 W/cm2 and a pulse lengths of 1 fs. (b) Conditional angular
distribution for θ1 = 60◦. The red dashed line shows the calculated angular distribution for �ωXUV = 90 eV and is scaled by the factor 0.55
relative to the distribution calculated for �ωXUV = 99 eV (green dash-dotted line). The black dots with error bars show the distribution measured
by Bräuning et al. [3] for �ωXUV = 99 eV in units of b eV−1 sr−2. Adapted from [3]. (c) Conditional angular distribution for θ1 = −76◦ and
�ωXUV = 99 eV. The green dashed-dotted line shows our result, the solid black lines are convergent close-coupling calculations for different
gauges by Kheifets and Bray [36], and the black dotted line shows a calculation with screened final-state Coulomb wave functions by Pont and
Shakeshaft [37]. The black dots with error bars show the measured relative cross sections of Schwarzkopf et al. [35]. Adapted from [36].
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FIG. 5. (Color online) Calculated normalized (a), (b) joint angu-
lar distributions and (c), (d) conditional distributions for θ2 = 0◦ for
the double ionization of helium at equal energy sharing by (a), (c)
two 45-eV photons and (b), (d) three 30-eV photons in XUV pulses
with a peak intensity of 1014 W/cm2 and a pulse lengths of 1 fs (see
text).

close-coupling calculations (CCC) for different gauges by
Kheifets and Bray [36], and the black dotted line shows a
calculation with screened final-state Coulomb wave functions
by Pont and Shakeshaft [37]. The three gauges used in the
CCC calculation yield similar distributions, with almost indis-
tinguishable results for the velocity and acceleration gauges.

Our calculated angle-differential yield for equal-energy-
sharing DI of helium as a result of the absorption of two
45-eV photons is shown in Fig. 5(a). It has four distinct peaks
that correspond to back-to-back emission. Thus, features
prohibited for single-photon sequential DI (back-to-back and
conic emission) are dominant for two-photon DI, where the
preferred emission type is back to back. The same conclusions
can be drawn from the theoretical equal energy sharing JADs
calculated by Zhang et al. [16] for photon energies between
42 and 85 eV.

The JAD for DI by three 30-eV photons in Fig. 5(b) is sim-
ilar to the single-photon JAD in Fig. 4(a) in the sense that the
same forbidden emission patterns are present. In either case,
back-to-back, conic, and side-by-side emission are prohibited,
as mandated by selection rules [34]. For one- and three-photon
DI the JADs contain the same dominant nodal lines. We
calculated the three-photon JAD by propagating for the time
τmax = 100 past the end of XUV pulse in order to minimize
unphysical side-by-side emission. For this propagation time,
the contribution from side-by-side emission relative to the total
DI yield for three-photon DI, integrated over a 10◦-wide stripe
(5◦ on each side), centered about θ1 = θ2, is below 1.3%.
Calculating the three-photon JAD for the same propagation
time, τmax = 40, we used for the one- and two-photon JADs
in Figs. 4(a) and 5(a), we found a small contribution of
side-by-side emission for one- and two-photon DI, comparable
to the almost converged result in Fig. 11(c) (cf. Appendix B).

Variation of τmax, i.e., of the total propagation time, allows
us to disentangle effects that tend to influence the JAD in
opposite ways (not shown). Since three 30-eV-photon DI is
(predominantly) sequential in nature, electronic correlation
is not required to efficiently release both electrons. The
photoelectrons thus tend to individually follow the electric
force they experience in the linearly polarized XUV pulse.
Furthermore, since back-to-back emission would violate parity
conservation they initially tend to move in the same sense
along the polarization direction. However, for equal energy
sharing the effect of electron repulsion accumulates as time
goes on and prevents the detection of side-by-side emission.
As electron repulsion becomes increasingly influential, the
initial “side-by-side electronic density” is pushed away from
the θ1 = θ2 line and merges with the nearby peaks on the
symmetric emission line (θ2 = 360◦ − θ1) in Fig. 5(b) (cf.
disappearance of the side-by-side contribution in Fig. 11 of
Appendix B for increasing τmax).

Normalized DI yields for the emission of one electron along
the XUV polarization directions (θ2 = 0◦) corresponding to
the JADs in Figs. 5(a) and 5(b) are given in Figs. 5(c) and
5(d), respectively, where, in addition, contributions to the DI
yields from individual allowed angular momenta L of the two-
electron state are shown. These contributions are obtained by
restricting the sum over L in (7) to L = 0 or 2 in Fig. 5(c) and to
L = 1 or 3 in Fig. 5(d). The shape of the angular distributions
in Fig. 5 depends on the interference of the two contributing
partial waves. Our two-photon angular distribution in Fig. 5(c)
is dominated by D waves (L = 2) and is in fair agreement
with the CCC calculations of Kheifets and Ivanov [9] and
in good agreement with the time-dependent close-coupling
calculations of Colgan and Pinzola [38].

In general, successively increasing the number of absorbed
XUV photons leads to JADs with alternating forbidden and
dominant back-to-back and conic emission. This finding is
consistent with the selection rules for equal energy sharing
derived by Maulbetsch et al. [34,39] and is retained in the
simplified, reduced-dimensionality model of Ni et al. [15] who
constrained the center of mass of the two electrons to move on
a straight line along the XUV polarization direction.

3. Total cross sections for one and two XUV photon
coplanar emission

We calculated the total cross sections σ
NXUV
tot for coplanar

DI based on (10) by integrating over the energies E1 and E2

of the emitted electrons, using Eq. (11) of Ref. [16]. For DI
induced by the absorption of a single 90-eV photon we find
σ 1

tot = 7.40 × 10−21 cm2, in good agreement with the value
of 7.53 × 10−21 cm2 measured by Samson et al. [4]. For DI
upon absorption of two 45-eV photons, we obtain σ 2

tot = 8.9 ×
10−53 cm4 s, consistent with the cross section (8.5 × 10−53

cm4 s) calculated by Guan et al. [11].

B. XUV double ionization in the presence of an IR laser pulse

The presence of a comparatively weak IR pulse during the
DI of helium in an intense XUV pulse can strongly modify
the energy and angular distribution of photoelectrons. In this
section we discuss and quantify effects of an assisting IR laser
electric field on the XUV-DI process. The XUV and IR pulse
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FIG. 6. (Color online) Normalized joint photoelectron energy
distributions for IR-laser-assisted single-photon double ionization of
helium at equal energy sharing in a 10-cycle XUV pulse of peak
intensity 1014 W/cm2, central photon energy �ωXUV = 89 eV, and
pulse length 0.46 fs. The assisting single-cycle laser pulse has a peak
intensity of 3 × 1012 W/cm2, photon energy of �ωIR = 1.61 eV, and
a pulse length of 2.6 fs. (a) Even effective numbers of IR photons. (b)
Odd effective numbers of IR photons.

are assumed to have overlapping cosine-squared temporal pro-
files, as given in (5), with identical phases (ϕXUV = ϕIR = 0◦).
The XUV pulse has a peak intensity of IXUV = 1014 W/cm2,
the central photon energy �ωXUV = 89 eV, and a pulse length
(full width at half intensity) of 10 XUV cycles or 0.46 fs. The
IR parameters are IIR = 3 × 1012 W/cm2, and �ωIR = 1.61
eV. At this intensity the IR pulse by itself would not ionize the
atom [40]. We will discuss energy and angular distributions
for assisting IR pulses with pulse lengths of 1 and 4 IR
cycles or 2.6 and 10.3 fs, respectively. Unless otherwise
specified, all calculations in this Sec. III B are carried out
with angular momentum limits (Lmax,l

max
1 ,lmax

2 ) = (5,5,5) in
the expansion (7).

1. Energy distributions

Figure 6 shows the joint energy distributions for laser-
assisted single XUV photon DI for an IR pulse length of 2.6 fs.
Figures 6(a) and 6(b) display joint distributions where the
effective number of absorbed minus emitted IR photons is even
and odd, respectively. We separated the contributions from
even and odd IR photon numbers in order to clearly resolve
the sideband pattern [41,42] in the joint energy distribution.
Each stripe in the pattern complies with energy conservation,
representing a certain effective number NIR of absorbed minus
emitted IR photons.

In each graph, neighboring stripes are separated by the
energy of two IR photons (∼3.2 eV), as indicated by dashed
and dotted lines. Regardless of the photon number, the largest
DI yield occurs at equal energy sharing. The most intense
stripes in Fig. 6(a) occur at the total energies E1 + E2 ≈ 10,
13.2, and 16.4 eV, corresponding to the absorption of one
XUV photon and, effectively, 0, 2, and 4 IR photons. The
largest DI yields in Fig. 6(b) are located at E1 + E2 ≈ 11.5 eV,
corresponding to the absorption of (effectively) one XUV
photon and one IR photon.

2. Angular distributions for even and odd IR photon numbers

We analyze JADs for the special case of both emitted
electrons having the same final kinetic energy. As in the

previous subsection, we separately consider even and odd
effective photon numbers for clarity. Figures 7(a), 7(b), and
7(e) and Figs. 7(c), 7(d), and 7(f) show our numerical results
for laser-assisted XUV-photon DI of helium for odd and even
total photon numbers, respectively. We obtain these angular
distributions by integrating joint energy distributions across
all sidebands for equal energy sharing. Note that for odd total
photon numbers in Figs. 7(a), 7(b), and 7(e) we include one
89-eV XUV plus any even number of IR photons. Likewise,
for even total photon numbers in Figs. 7(c), 7(d), and 7(f), we
include one XUV plus any odd number of IR photons.

Figure 7(f) shows results for laser-assisted two-photon DI,
including two 45-eV XUV and any even number of IR photons.
We obtain the laser-assisted single XUV-photon JADs by
including combined excess energies of the two electrons up to
Emax

exc = 3.0 ≈ 82 eV, corresponding to NIR � 45. The IR pulse
lengths are 2.6 and 10.3 fs in Figs. 7(a) and 7(c) and Figs. 7(b)
and 7(d), respectively, corresponding to one and four IR
cycles. Figures 7(e) and 7(f) compare the JADs for symmetric
emission by one and two XUV photons, respectively.

The nodal lines in the JADs for single- and three XUV-
photon DI of helium without laser assistance in Figs. 4(a)
and 5(b) resist the addition of any even effective number of IR
photons in Figs. 7(a) and 7(b). Combinations of photoelectron
emission directions that are forbidden in the absence of an
IR laser pulse thus remain forbidden upon addition of the
laser pulse, as long as the total number of photons remains
odd. Likewise, for even total photon numbers, JADs without
[Fig. 5(a)] and with an assisting laser pulse [Figs. 7(c) and 7(d)]
are similar and dominated by back-to-back emission. For both,
even and odd photon numbers, the assistance of the IR pulse
adds structure to the JAD, along lines with θ1 + θ2 = const
and most obviously for symmetric emission.

In comparison with laser-free XUV DI in Figs. 4(a) and 5,
the laser-assisted yields in Fig. 7 show weak but enhanced
(not observable) side-by-side emission, indicating a more
pronounced influence of electronic correlation during the
laser-assisted DI process. Increasing the IR pulse length from
2.6 to 10.3 fs leads to a redistribution of yields in the JADs.
For odd total photon numbers, the four dominant symmetric
emission peaks along θ1 + θ2 = 360◦ in Fig. 7(a) recede as
the IR pulse length is increased to 10.3 fs in Fig. 7(b) and
the dominant yield becomes focused in eight peaks along
lines θ1 + θ2 = (360 ± 90)◦, consistent with the transfer of
discrete amounts of IR-photon momenta. For even total photon
numbers, the increase of the IR pulse length from 2.6 fs in
Fig. 7(c) to 10.3 fs in Fig. 7(d) preserves the dominant back-to-
back emission along the laser- and XUV-polarization direction.
As for odd photon numbers, the more diffuse appearance of the
JADs for the longer IR pulse can be understood as the result
of a prolonged momentum exchange with the IR-laser electric
field during the photoemission process.

Figures 7(e) and 7(f) include cuts of the JADs in Figs. 7(a)–
7(d) and 5(a) along the symmetric-emission line given by
θ1 + θ2 = 360◦. Since convergence in the propagation time is
slowest for side-by-side emission, the DI yield at θ1 = 180◦ in
Figs. 7(e) and 7(f) allows us to quantify the overall degree
of convergence achieved in the numerical calculation. For
a fully converged calculation this yield has to vanish. In
general, our JADs are closest to convergence for laser-free
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FIG. 7. (Color online) Normalized joint angular distributions for IR-laser-assisted double ionization of helium at equal energy sharing
in a 10-cycle XUV pulse of peak intensity 1014 W/cm2 and central photon energies of �ωXUV = 89 and 45 eV. The assisting IR pulse
has a peak intensity of 3 × 1012 W/cm2, central photon energy �ωIR = 1.61 eV, and pulse lengths (a), (c) 2.6 fs and (b), (d) 10.3 fs.
(a)–(d) Laser-assisted single-89 eV-photon double ionization for (a), (b) odd and (c), (d) even total effective numbers of XUV and IR
photons. (e) Normalized single-89 eV-photon double ionization for symmetric emission with and without assisting IR-laser pulses of pulse
lengths 2.6 and 10.3 fs for odd total effective numbers of XUV and IR photons. (f) Normalized single-89-eV-photon double ionization for
symmetric emission with an assisting 2.6 or 10.3 fs IR-laser pulse for even total effective numbers of XUV and IR photons, compared
with IR-laser-free two-45-eV-photon double ionization. Calculation with angular momentum limits (Lmax,l

max
1 ,lmax

2 ) = (4, 4, 4) in the
expansion (7).

XUV DI and least converged for the longest pulse lengths of the
assisting laser, for otherwise identical physical and numerical
parameters. The deterioration of the convergence induced by
the assisting laser pulse is more severe for odd photon numbers
in Fig. 7(e).

3. Angular distributions for specific effective IR photon numbers

Figure 8 shows normalized JADs for single-XUV photon DI
of helium for specific even and odd total numbers of photons
within the range −1 � NXUV + NIR � 4. Negative (positive)
IR-photon numbers NIR indicate that the number of emitted
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FIG. 8. (Color online) Normalized joint angular distributions for IR-laser-assisted single-XUV-photon double ionization of helium in a
10-cycle XUV pulse of peak intensity 1014 W/cm2 and central photon energy (a)–(f) �ωXUV = 90 eV. The assisting IR laser pulse has a pulse
length of 2.6 fs. All other parameters are the same as for Fig. 7. (a)–(c), (g) Odd and (d)–(f), (h) even total effective numbers of photons. The
effective number of absorbed IR photons is (a) NIR = −2, (b) 0, (c) 2, (d) −1, (e) 1, and (f) 3. Negative photon numbers indicate that more IR
photons are emitted than absorbed. (g), (h) Normalized yields for symmetric laser-assisted XUV double ionization. (g) Odd total numbers of
photons with NIR = −2, 0, and 2. (g) Even total numbers of photons with NIR = −1, 1, and 3.

IR photons exceeds (is smaller than) the number of absorbed
IR photons. The pulse length of the assisting IR laser pulse is
2.6 fs. All other laser, XUV-pulse, and numerical parameters
are the same as in the preceding Sec. III B 2. These JADs were
obtained from the energy distributions in Fig. 6 by integrating
over a small energy domain near equal energy sharing given by

|E1 + E2 − Eexc| < ωIR, (14)

where Eexc=NXUVωXUV + NIRωIR − Ip1 − Ip2 is the total
excess energy due to the (net) absorption of NXUV (= 1,2)
XUV and NIR IR photons. As for all JADs shown in this

paper, each JAD is normalized separately to its maximum
yield.

The IR-photon-number specific JADs in Figs. 8(a)–8(f)
resemble the distribution for unspecified odd and even photon
numbers in Figs. 7(a) and 7(c). For odd photon numbers, the DI
yields become more concentrated in the four prominent peaks
at and near symmetric emission while all other structures lose
intensity as NIR is increased from −2 to 2 in Figs. 8(a)–8(c).
As observed for laser-free XUV emission in Fig. 4(a) and for
laser-assisted emission in Figs. 7(a) and 7(b), back-to-back
and conic emission remain separately forbidden for each
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number of IR photons NIR, as long as the total photon number
is odd.

For even NIR symmetric emission is most likely. The
progressive concentration of the DI yield in four peaks along
the symmetric emission direction as NIR increases from −2
to 3 in Figs. 8(a)–8(f) is more pronounced for even than for
odd total photon numbers. As for laser-free DI by absorption
of two XUV photons in Fig. 5(a) back-to-back emission
contributes significantly for laser-assisted XUV DI with NIR =
−1 [Fig. 8(d)]. However, as more IR photon are effectively
absorbed, the momenta transferred from the IR-laser field
onto the photoelectrons progressively weaken back-to-back
emission and increase the relative importance of symmetric
emission in the dominant four peaks in Figs. 8(e) and 8(f).
For increasing numbers of effectively absorbed IR photons,
symmetric emission thus becomes more dominant for both
odd and even photon numbers. For equal energy sharing of the
photoelectrons, this can be regarded as a compromise between
(i) the simultaneous transfer of equal amounts of momenta
along the laser and XUV pulse polarization direction from the
IR-laser field to the emitted electrons (promoting side-by-side
emission) and (ii) electronic repulsion (prohibiting side-by-
side emission at sufficiently large propagation times).

The normalized DI yields for symmetric laser-assisted
XUV DI for odd total photon numbers in Fig. 8(g) show a
steady decrease of the DI yield near the back-to-back emission
direction at θ1 ≈ (90 ± 12)◦ as NIR is increased from −2 to
+2. Simultaneously, the dominant symmetric emission peaks
in this graph at θ1 ≈ 55◦ and ≈ 125◦ become broader, as one
would expect for larger numbers of absorbed IR photons. For
the case of even total photon numbers in Fig. 8(h) symmetric
back-to-back emission in direction perpendicular to the laser
polarization direction (θ1 = 90◦) becomes less likely as NIR

is increased from −1 to +3, in agreement with the intuitive
picture of increasing momentum being transferred from the
external IR electric field to the photoelectrons in direction
parallel to the laser polarization.

Our discussion shows that for equal energy sharing, back-
to-back emission oscillates between forbidden (for odd) and
dominant (for even totol photon numbers NXUV + NIR) as
the number of effectively absorbed IR photon increases.
This oscillation originates in dipole and parity selection
rules [7,34,39].

IV. SUMMARY

We investigated the IR laser-assisted XUV DI of helium
by applying the FE-DVR method for numerically solving
the TDSE equation in full dimensionality. We validated our
numerical results by comparison with experimental angular
distributions and by assessing the convergence in the number
of included angular momentum eigenstates, propagation time,
and numerical grid size. Our discussion focused on equal
energy sharing of the emitted electrons, where for side-by-side
emission convergence in the propagation time is slowed by the
Coulomb interaction of the emitted electrons and thus serves
as a lower limit for the degree of convergence at different
emission angles (and nonequal energy sharing). We classified
the distinct back-to-back, side-by-side, conic, and symmetric
double emission modes in JADs at equal energy sharing and

discussed their prominence and absence for sequential and
nonsequential DI upon absorption of up to three XUV photons
and with and without the presence of an assisting IR laser field.

We investigated JADs separately for odd and even numbers
of exchanged photons and for specific effective numbers
of absorbed (and emitted) IR photons. We found that an
assisting IR field retains some of the dominant features of
the laser-free JADs while modifying the distribution of DI
yields in compliance with known dipole and parity selection
rules. These modifications become more significant as the
effective number of absorbed IR photons increases, in support
of the intuitive picture of momentum transfer from the IR-laser
field to the photoemitted electrons in the laser-polarization
direction. In particular, we found that the IR pulse promotes
side-by-side and enables back-to-back emission. For even
numbers of absorbed (IR plus XUV) photons, the IR pulse was
found to enable back-to-back emission and conic emission.
This is in agreement with the dipole and parity selection rules
that forbid (allow) back-to-back and conic emission for odd
(even) total effective numbers of (IR plus XUV) photons,
respectively.

We plan to extend this study to nonequal energy sharing.
We also intend to apply our code to systematically investigate
the influence of the carrier-envelope phases of the XUV and
IR pulse, the XUV-pulse length, and the delay between XUV
and IR pulse have on the correlated electron dynamics during
the double-ionization process.
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APPENDIX A: RADIAL TDSE AND COEFFICIENTS OF
ANGULAR MOMENTUM COUPLING FUNCTIONS

The radial TDSE (11) can be written as

i
∂

∂t
ψL

l1l2
(r1,r2; t) = [T̂ + V̂c]ψL

l1l2
(r1,r2; t)

+
∑
L′l′1l

′
2

V̂F0 (λ,λ′)ψL′
l′1l

′
2
(r1,r2; t)

+
∑
L′l′1l

′
2

V̂F12 (λ,λ′)ψL′
l′1l

′
2
(r1,r2; t). (A1)

T̂ = −(1/2)∂2/∂r2
1 = −(1/2)∂2/∂r2

2 is the radial kinetic
energy operator for the two electrons, r< = min{r1,r2},r> =
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max{r1,r2}, and

V̂c = − 2

r1
+ l1(l1 + 1)

2r2
1

− 2

r2
+ l2(l2 + 1)

2r2
2

(A2)

includes the Coulomb interactions with the nucleus and the
centrifugal potentials. The angular-momentum coupling is
included in

V̂F0 (λ,λ′) =
∞∑
l=0

4π (−1)l√
2l + 1

rl
<

rl+1
>

F0(λ,λ′) (A3)

for the electronic interaction and

V̂F12 (λ,λ′) = 4π√
3
E(t)[r1F1(λ,λ′) + r2F2(λ,λ′)] (A4)

for the interaction of the external electric field E(t) = EXUV +
EIR, where the collective angular momentum quantum num-
bers are defined as λ = {L,l1,l2}, λ′ = {L′,l′1,l

′
2}.

Following Ref. [26], the angular-momentum coupling
matrix elements can be written as

F0 =
√

(2l + 1)2(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π )2

×C
l10
l0l′10C

l20
l0l′20C

L0
00L′0 ×

⎧⎪⎨
⎪⎩

l l′1 l1

l l′2 l2

0 L′ L

⎫⎪⎬
⎪⎭, (A5)

F1 =
√

9(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π )2

×C
l10
10l′10C

l20
00l′20C

L0
10L′0 ×

⎧⎪⎨
⎪⎩

1 l′1 l1

0 l′2 l2

1 L′ L

⎫⎪⎬
⎪⎭, (A6)

and

F2 =
√

9(2l′1 + 1)(2l′2 + 1)(2L′ + 1)/(4π )2

×C
l10
00l′10C

l20
10l′20C

L0
10L′0 ×

⎧⎪⎨
⎪⎩

0 l′1 l1

1 l′2 l2

1 L L′

⎫⎪⎬
⎪⎭, (A7)

where Clebsch-Gordan coefficients and 9j symbols [43] are
denoted as C...

... and {...}, respectively.

In terms of the collective quantum numbers λ and λ′, (A1)
can be cast in the more compact form

i
∂

∂t
ψλ(r1,r2; t) = [T̂ + V̂c]ψλ(r1,r2; t) +

∑
λ′

[V̂F0 (λ,λ′)

+ V̂F12 (λ,λ′)]ψλ′(r1,r2; t). (A8)

APPENDIX B: NUMERICAL TESTS

a. Convergence with respect to l1 and l2

As a first test, we computed the ground and two first excited
L = 0 state energies of helium. Using the imaginary time
propagation method [44], we replaced the real time variable
t in our FE-DVR code by the imaginary time variable τ = it

and numerically propagated (12) in imaginary time. We started
this propagation with an initial two-electron trial wave function
for the helium ground state, given as the product of Gaussian
functions,

ψ00
l1l2

(r1,r2; t = 0) = Ae−(r1−r0)2−(r2−r0)2
(B1)

with the normalization constant A, total angular momentum
quantum numbers L = M = 0, and r0 = 10.

To test our code, we represented the radial distances 0 �
r1 � rmax

1 = 57.2 and 0 � r2 � rmax
2 = 57.2 on two different

numerical grids. For each radial distance, Grid 1 consists of
50 FEs with 4 grid points in each FE. Taking overlapping
end points of neighboring FEs into account, this results in
50 × (4 − 1) − 1 = 149 points for Grid 1. Similarly, Grid 2
contains 20 elements with 10 grid points in each FE, resulting
in a total of 179 grid points for each radial coordinate.

We repeatedly applied (12), propagating the TDSE for 0.5 fs
with equidistant time steps for predetermined maximal values
l1

max and l2
max of l1 and l2. We used the same value for each

time step as Hu [26], 
t = 0.0041. For 0 � l1 � lmax
1 = 3,

0 � l2 � lmax
2 = 3, and L = 0, we found that the ground-state

energy has converged with regard to the propagation time and
number of time steps to at least four significant decimal digits
on either Grid 1 or Grid 2.

Our energies for the 11S ground state of He, computed by
FE-DVR imaginary-time propagation for l1

max = l2
max = 3,

including the four channels (L,l1,l2) = (0,0,0), (0,1,1), (0,2,2),
and (0,3,3), agree to four significant digits with our result

TABLE I. 11S ground-state and the lowest two L = 0 excited-state energies, 21S and 31S, of helium. The correlation matrix elements
(radial matrix elements of rl

</rl+1
> , cf. Appendix A) are computed by either Gauss-Labatto integration (referred to as “Direct integration”) or

by solving Poisson’s equation (“Poisson eq.”). The FE-DVR imaginary time propagation calculations were performed for two different radial
numerical grids covering 0 � r1 � rmax

1 = 57.2 and 0 � r2 � rmax
2 = 57.2: Grid 1 uses 50 elements with 4 grid points in each element, and

Grid 2 uses 20 elements with 10 grid points in each element. The three last rows show theoretical [16,45] and experimental [32] energies from
the literature.

Method/Source 11S 21S 31S

Direct integration (Grid 1) −2.889 6 −2.130 1
Direct integration (Grid 2) −2.901 7 −2.144 6
Poisson eq. (Grid 1) −2.903 363 5 −2.145 900 6 −2.061 272 0
Theoretical value [16] −2.903 669 0 −2.145 970 6 −2.061 271 0
Theoretical value [45] −2.903 724 4 −2.145 974 0 −2.061 272 0
Experimental value [32] −2.903 561 2 −2.145 898 6 −2.061 201 7
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FIG. 9. (Color online) Probability densities of the (a) 11S ground
state and (b) 21S first excited state of helium obtained by imaginary
time propagation on a logarithmic color (gray) scale. The blue solid
triangle in (b) indicates the node in r1 direction of the first excited-state
radial wave function.

for l1
max = l2

max = 10, including 11 L = 0 channels. Our
calculated ground-state energies also coincide to four sig-
nificant digits with published experimental [32] and recently
calculated theoretical [16] energies (Table I).

Following the same imaginary time-propagation procedure,
while projecting the converged ground state out of the trial
wave function (B1) every ten time steps, we obtain the energies
of the first excited 21S state listed in the third column of Table I.
Similarly, repeatedly projecting both the converged ground and
first excited states out of (B1) every ten time steps during the
numerical wave-function propagation, we arrive at the second
excited zero-angular-momentum 31S state energy in the fourth
column. We obtain our most accurate values for the energies of
the 21S state, −2.145 900 6, and the 31S state, −2.061 272 0,
by applying the “Poisson-equation method” (see below).
Our first and second excited L = 0 state energies are in
good agreement with the theoretical values,−2.145 970 6 and
−2.061 271 0, calculated by Zhang et al. [16] using the same
FE-DVR method with parameters lmax

1 = lmax
2 = 7, rmax

1 =
rmax

2 = 57.2 divided into 64 elements, and with the measured
energies, −2.145 898 6 and −2.061 201 7 of Martin [32],
respectively. The corresponding radial probability densities,

p(r1,r2) =
∑
Ll1l2

∣∣ψL0
l1l2

(r1,r2)
∣∣2

, (B2)

are calculated on numerical Grid 1 by imaginary time
propagation for the ground and first excited state and shown in
Fig. 9. The ground-state probability density has a maximum at
r1 = r2 ≈ 0.9. The first excited state has maxima at r1 = r2 ≈
0.5 and r1 = r2 ≈ 4.5, and a node at r1 = r2 ≈ 1.7.

b. Convergence with respect to the numerical grid size

We compared the ground-state and first-excited-state ener-
gies for imaginary time propagation calculations with different
numbers of FEs and different numbers of grid points in
each element. We performed these calculations for L = 0 and
l1

max = l2
max = 3.

Table I includes our results for the ground- and first-excited-
state energies of helium. As listed in the first two rows,
the calculation on Grid 1 results in the energies −2.889 6
and −2.130 1, while using Grid 2 we obtain −2.901 7 and

−2.144 6, respectively, for the 11S and 21S states of helium.
As expected, the numerical grid with more points (Grid 2)
yields results in better agreement with the measured energies
(last row).

c. Comparison of the “Poisson equation” and “direct integration”
methods

We next compared results for the lowest helium energies
obtained by either diagonalizing the matrices representing
the electronic correlation terms rl

</rl+1
> [r< ≡ min(r1,r2),

and r> ≡ max(r1,r2)] in (11) and (A1) via Gauss-Lobatto
integration or by solving Poisson’s equation [21]. Knowing
that the Poisson equation method is better suited to overcome
numerical problems related to the singular 1/|r2 − r1| elec-
tronic correlation interaction, it is nevertheless worth pointing
out that our ground- and excited-state energies agree better
with the calculated energies of Zhang et al. [16] and the
measured data by Martin [32] for calculations with the smaller
numerical grid (Grid 1) in combination with Poisson’s equation
than for calculations carried out on the larger grid (Grid 2) in
conjunction with a straightforward Gauss-Lobatto integration.
Using the Poisson equation method and the smaller Grid 1
we find that the three lowest helium energies in Table I are
converged to at least four significant digits and agree to at
least three significant digits with published experimental [32]
and recently calculated theoretical [16] energies.

The ground-state energy (−2.903 67) obtained by Zhang
et al. [16] is in slightly better agreement with the experimental
value (−2.903 56) than our best value in Table I (−2.903 36).
This is to be expected in view of the numerically significantly
more expensive FE-DVR calculation by Zhang et al. with
parameters rmax

1 = rmax
2 = 57.2, lmax

1 = lmax
2 = 7, 64 FEs, and

8 grid points in each element. Our best numerical value for
the ground-state energy in Table I agrees equally well with
the result of a calculation using an explicitly correlated basis,
−2.903 72, by Scrinzi et al. [45].

The third and fourth column of Table I compare first- and
second-excited L = 0 state energies from different sources.
Our best values for the energies of the 21S state (dominated
by the 1s2s configuration), −2.145 900 6, and 31S state
(1s3s dominated), −2.061 272 0, are in good agreement with
the theoretical values, −2.145 970 6 and −2.061 271 0, of
Zhang et al. [16], −2.145 974 0 and −2.061 272 0 of Scrinzi
et al. [45], and the experimental values, −2.145 898 6 and
−2.061 201 7, of Martin et al. [32], respectively. Our values for
the excited-state energies agree to five digits with the measured
energies, while we reproduce the measured ground-state
energy to three digits. We note that the experimental energies
quoted in Table I also agree slightly better with both relativistic
and nonrelativistic calculations by Alexander et al. [46] for the
excited states than the ground state.

d. Convergence in the number of included total
angular momenta L

In this subsection, we discuss the convergence of joint
angular distributions with regard to the number of total angular
momentum states ψLM

l1l2
included in (7) for the IR-laser-pulse-

assisted XUV DI of helium. The central frequency, intensity,
and pulse length for the XUV and IR pulses are �ωXUV =
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FIG. 10. (Color online) Normalized joint angular distributions for IR-laser-assisted XUV double ionization of helium at equal energy
sharing for maximal angular momentum quantum numbers (a), (e) (Lmax,l

max
1 ,lmax

2 ) = (3,3,3), (b), (f) (4, 4, 4), (c), (g) (5, 5, 5), and (d), (h)
(6, 6, 6). (a)–(d) Results for odd and (e)–(h) even photon numbers. The photon numbers correspond to one absorbed XUV plus the number of
absorbed minus emitted IR photons.

89 eV, IXUV = 1014 W/cm2, τXUV = 0.47 fs (10 XUV optical
cycles), and �ωIR = 1.61 eV, IIR = 3 × 1012 W/cm2, τIR =
2.6 fs (1 IR optical cycle), respectively. We assume that the
two linearly polarized pulses coincide (no time delay) with
equal energy sharing of the emitted electrons (E1 = E2). We
performed these calculations for the numerical Grid 3 (defined
in Sec. III A), with 151 elements, 4 grid points in each FE,
the first FE length (near the origin) set equal to 0.5, and
rmax

1 = rmax
2 ≈ 277. Grid 3 is an extension of Grid 1 with an

extra 101 elements.
The graphs in Fig. 10 show JADs for IR-laser-assisted XUV

DI obtained from separate calculations for maximal angular
momentum quantum numbers, (Lmax,l

max
1 ,lmax

2 ) = (3, 3, 3),
(4, 4, 4), (5, 5, 5), and (6, 6, 6), corresponding to 23, 42,
69, and 106 channels, respectively. All angular distributions
are snapshots taken 20 atomic time units after the end of the
cosine-squared-shaped IR laser pulse (5). The graphs in the

top (bottom) row show angular distributions for odd (even)
total photon numbers.

The JADS in Fig. 10 converge with increasing Lmax and
the not observable, low probability for side-by-side emission
becomes negligible. While the intensity distributions for
Lmax = 4, 5, and 6 show small discrepancies, their main
structures are the same, and the JADs appear to have converged
at Lmax = 5 with regard to their main characteristics. For this
reason we use (Lmax,l

max
1 ,lmax

2 ) = (5, 5, 5), corresponding to
69 partial-wave channels, for all subsequent numerical results
discussed in the work, unless specified otherwise.

e. Convergence in the propagation time

Figure 11 shows normalized JADs for laser-assisted XUV
DI of helium for equal energy sharing of the emitted
electrons. The calculations are performed on Grid 3, using

FIG. 11. (Color online) Normalized joint angular distributions for IR-laser-assisted XUV-double ionization of helium at equal energy
sharing for different propagation times τmax past the end of the IR pulse. (a) τmax = 4; (b) τmax = 24; (c) τmax = 104. (d) Normalized
double-ionization yields at θ1 + θ2 = 360◦. As the propagation time is increased, the side-by-side-emission yield at θ1 = θ2 = 180◦ disappears,
as physically expected.
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the Poisson-equation method for the electron-correlation-
interaction matrix elements and the angular-momentum limits
(Lmax,l

max
1 ,lmax

2 ) = (3, 3, 3). The three graphs display snapshots
of JADs calculated according to (9) and taken at different
propagation times τmax past the end of IR pulse.

The JAD for τmax = 4 in Fig. 11(a) differs from the JAD
for τmax = 24 in Fig. 11(b), mainly with regard to the smaller
not observable contribution of side-by-side emission (central
dot in each graph). This contribution is physically prohibited
at large distances from the residual helium nucleus due to
electronic repulsion. For τmax = 104 the JAD has converged
[Fig. 11(c)], is indistinguishable from Fig. 11(b), except for
side-by-side emission, and no longer displays side-by-side
emission. Indicative for the contribution of side-by-side emis-
sion for finite τmax and degree of convergence is the absolute
value of the JAD at θ1 = θ2 = 180◦. These absolute values
are not shown in the normalized graphs of Figs. 11(a)–11(c).
They decrease from 0.059 to 0.029 to 0.01 for τmax = 4, 24,
and 104 in Figs. 11(a)–11(c), respectively. We performed a
similar convergence test for even photon numbers (not shown)
and found much faster convergence in τmax than for odd photon
numbers.

We display in Fig. 11(d) the normalized angular yields
obtained from the JADs in Figs. 11(a)–11(c) on the diagonal
defined by θ2 = 360◦ − θ1. This graph thus highlights the four
dominant peaks in Figs. 11(a)–11(c) and side-by-side emission
with θ1 = θ2 = 0 or 180◦, where convergence in τmax is most
difficult to achieve.

For an alternative quantitative comparison of the conver-
gence in τmax, we calculated relative integrated side-by-side
yields obtained by integrating the JADs in Figs. 11(a)–11(c)
over a narrow diagonal stripe centered at θ2 = θ1. The width

of this stripe is taken as 10◦, i.e., |θ1 − θ2| � 5◦. The relative
integrated side-by-side yield drops from 0.24% at τmax = 4
to 0.13% at τmax = 24, and to 0.05% at τmax = 104, while
the side-by-side-emission-peak heights decrease from 0.06 to
0.03, and finally to 0.01, respectively. Thus, as physically
demanded, side-by-side emission disappears for sufficiently
long propagation times, while for relative emission angles
of the two photoelectrons outside the side-by-side range
converged JADs are readily obtained at the end of the IR pulse.
In particular, the nodal structure in Fig. 11 for non-side-by-side
emission is not affected by increasing τmax, as expected from
the selection rules discussed by Maulbetsch and Briggs [34].

f. Computing time and memory requirements

The numerical results in Figs. 10 and 11 were obtained us-
ing the open message parallel processing protocol (OpenMP)
on a 3.40-GHz Intel i7-2600 central processing unit (CPU)
with exclusive use of 24 cores and access to 30 GB of random
access memory (RAM). The CPU time for the results shown
in any of the graphs in Figs. 10 and 11 did not exceed 4700 h
(about 200 h wall-clock time).

For the angular-momentum limits (Lmax,l
max
1 ,lmax

2 ) =
(5, 5, 5), corresponding to 69 channels, the RAM requirement
in these calculations is of the order 4 × 8 × N2n2

grid/10243

GB. The factor 4 stands for the two large coupling matrices
V̂F0 and V̂F12 and two corresponding transformation matrices
used for their diagonalization (cf. Appendix A). The factor 8
is related to our use of double-precision variables. N is the
number of channels defined in Sec. II above and ngrid is the
number of grid points in each of the two radial dimensions.
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T. Havermeier, M. Smolarski, S. Schössler, K. Cole,
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