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Abstract

Spatial interactions between cancer and immune cells, as well as the recog-
nition of tumour antigens by cells of the immune system, play a key role
in the immune response against solid tumours. The existing mathematical
models generally focus only on one of these key aspects. We present here
a spatial stochastic individual-based model that explicitly captures antigen
expression and recognition. In our model, each cancer cell is characterised
by an antigen profile which can change over time due to either epimutations
or mutations. The immune response against the cancer cells is initiated by
the dendritic cells that recognise the tumour antigens and present them to
the cytotoxic T cells. Consequently, T cells become activated against the tu-
mour cells expressing such antigens. Moreover, the di↵erences in movement
between inactive and active immune cells are explicitly taken into account
by the model. Computational simulations of our model clarify the conditions
for the emergence of tumour clearance, dormancy or escape, and allow us to
assess the impact of antigenic heterogeneity of cancer cells on the e�cacy
of immune action. Ultimately, our results highlight the complex interplay
between spatial interactions and adaptive mechanisms that underpins the
immune response against solid tumours, and suggest how this may be ex-
ploited to further develop cancer immunotherapies.
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1. Introduction

The immune system is a collection of cells, structures and processes that
work together to remove harmful foreign material from the body. Under-
standing the mechanisms which underpin the cellular immune response to
solid tumours is crucial for the development of new immunotherapy tech-
niques, which can strengthen the natural human immune response to support
the successful treatment of cancer (Couzin-Frankel, 2013; June et al., 2018;
Mellman et al., 2011; Ribas and Wolchok, 2018).

Immune cells, specifically dendritic cells (DCs) and cytotoxic T lympho-
cytes (CTLs), detect and target solid tumours through recognising and pro-
cessing the small peptides (i.e. the antigens) that are expressed by tumour
cells (Messerschmidt et al., 2016). The antigenic composition of solid tu-
mours can be heterogeneous, whereby each cell within the tumour mass may
have an antigen profile characterised by di↵erent expression levels of tumour
antigens. On the surface of a tumour cell, antigens are integrated with major
histocompatibility complex (MHC) molecules allowing the DCs to recognise
the antigens and present them to the CTLs. The CTLs then become ac-
tivated and subsequently express the corresponding antigen receptor, which
enables them to interact with the tumour cells expressing that particular
antigen at a su�ciently high level (Coulie et al., 2014). Further interactions
between CTLs and tumour cells can then trigger tumour cell death.

There are three distinct classes of tumour antigens: tumour associated
antigens (TAAs), tumour specific antigens (TSAs) and cancer testis antigens
(CTAs). These antigens are expressed, respectively, by: both normal and
cancer cells, cancer cells only, and both cancer cells and human germ-line
cells. Germ-line cells do not contain MHC molecules and, therefore, these
cells cannot present antigens that can be recognised by T cells. This makes
CTAs a viable target for immunotherapy as targeting these antigens implies
a lower risk of autoimmune reactions (Coulie et al., 2014). One specific
group of CTAs is represented by the melanoma associated antigen (MAGE)
genes (Boon et al., 2006; Connerotte et al., 2008; Müller-Richter et al., 2009;
Urosevic et al., 2005). Within this group, the MAGE-A family consists of el-
even genes that are linked to poor prognosis in various types of cancer (Coulie
et al., 2014; Hartmann et al., 2016; Zajac et al., 2017). In general, the expres-
sion of MAGE-A genes promotes tumour progression by enhancing tumour
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cell division and reducing apoptosis (Van Tongelen et al., 2017). Some of the
specific functions of MAGE-A genes have been discovered and include: indu-
cing chemoresistance through a decrease in p53 (Marcar et al., 2010; Monte
et al., 2006; Yang et al., 2007), enhancing tumour proliferation (Costa et al.,
2007) and decreasing the e�cacy of anti-tumour drugs (Hartmann et al.,
2013, 2014). The MAGE-A antigens are commonly expressed in melanomas
(Boon et al., 2006; Connerotte et al., 2008; Coulie et al., 2014; Urosevic et al.,
2005), oesophageal cancers (Zajac et al., 2017), lung, breast, prostate and
colorectal carcinomas (Coulie et al., 2014), and head and neck cancers (Hart-
mann et al., 2016; Müller-Richter et al., 2009). Therefore, finding an e↵ective
way of targeting these antigens via immunotherapy may be beneficial to the
treatment of multiple types of cancer (Zajac et al., 2017). For instance, clin-
ical trials have shown that targeting MAGE-A3 can be a successful treatment
option (Chinnasamy et al., 2011; Connerotte et al., 2008).

The antigen expression profiles of tumour cells can evolve over time due to
epigenetic and genetic mechanisms. Amongst epigenetic mechanisms, spon-
taneous epimutations are ‘stochastic and heritable changes in gene expression
that leave the sequence of bases in the DNA unaltered’ (Oey and Whitelaw,
2014). Through spontaneous epimutations, the MAGE-A antigen expression
levels of tumour cells can change over time, which may result in variability
between the antigen profiles of histological samples from the same patient or
between patients (Urosevic et al., 2005).

One potential cause of spontaneous epimutations is DNA methylation,
whereby methylation of specific promoter regions of the gene represses tran-
scription. Consequently, if the gene is methylated the corresponding protein
will not be expressed. MAGE genes are methylated in normal cells, but they
can be de-methylated, and thus expressed, in cancer cells (Boon et al., 2006;
Chalitchagorn et al., 2004; Chinnasamy et al., 2011; Müller-Richter et al.,
2009; Zajac et al., 2017). Demethylation of these genes can become more
prominent during cancer progression, which suggests that demethylation of
the MAGE genes may support tumour development (Coulie et al., 2014).

Cell-cell interactions involved in the immune response to cancer depend
upon the spatial position of both immune cells and tumour cells within the
tumour micro-environment (Chaplin, 2010; Messerschmidt et al., 2016). In
particular, as a result of tumour growth, cells within the tumour can be-
come more exposed to immune action depending on their location in relation
to other cells of the tumour micro-environment (Hanahan and Weinberg,
2011). Moreover, stochastic antigenic variations can induce further spatial
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heterogeneity within the tumour (Boon et al., 2006; Yarchoan et al., 2017).
Additionally, the movement of immune cells is dictated by the spatial distri-
bution of tumour antigens within the tumour micro-environment (Boissonnas
et al., 2007).

Mathematical models are a useful tool for simulating and investigating
biological systems, and have been increasingly used to describe tumour an-
tigen expression and tumour-immune interactions. Tumour antigen expres-
sion and the e↵ects of epigenetic and genetic events have been modelled
through di↵erential equation models (Asatryan and Komarova, 2016; Lorenzi
et al., 2016; Johnston et al., 2007; Tomasetti and Levy, 2010) and cellular-
automaton (CA) models (Bouchnita et al., 2017; Manem et al., 2014). Tra-
ditionally, tumour antigen expression and recognition by the immune system
have been implicitly modelled by tuning the rates of T cell recruitment, T cell
proliferation or tumour cell removal (Arciero et al., 2004; Balea et al., 2014;
Besse et al., 2018; De Boer et al., 1985; de Pillis et al., 2009; Köse et al., 2017;
Mallet and de Pillis, 2006). More recently, these processes have been expli-
citly captured by mathematical models formulated in terms of either ordin-
ary di↵erential equations (Balachandran et al., 2017; d’Onofrio and Ciancio,
2011;  Luksza et al., 2017) or integro-di↵erential equations (Delitala et al.,
2013; Delitala and Lorenzi, 2013; Kolev et al., 2013; Lorenzi et al., 2015).
However, these models rely on the assumption that cells are well-mixed and,
as such, they do not reflect spatial aspects of tumour-immune competition.
On the contrary, the spatial and temporal dynamics of tumour-immune in-
teractions have been described through partial di↵erential equation (PDE)
models (Al-Tameemi et al., 2012; Matzavinos et al., 2004; Matzavinos and
Chaplain, 2004) and hybrid PDE-CA models (de Pillis et al., 2006; Mallet
and de Pillis, 2006), but these do not take into account the antigen expression
and recognition processes.

In light of these considerations, we present here a spatial individual-based
model of tumour-immune competition that explicitly captures antigen ex-
pression and recognition. In our model, each cancer cell is characterised by
an antigen profile which can change over time due to either epimutations or
mutations. The immune response against the cancer cells is initiated by the
DCs that recognise the tumour antigens and present them to the CTLs. Con-
sequently, T cells become activated against the tumour cells which express
such antigens. Moreover, exploiting the modelling strategies that we have
previously developed (Macfarlane et al., 2018), the di↵erences in movement
between inactive and active immune cells are explicitly taken into account.
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Computational simulations of this model clarify the conditions for the emer-
gence of tumour clearance, dormancy or escape, and allow us to assess the
impact of antigenic heterogeneity of cancer cells on the e�cacy of immune ac-
tion. Ultimately, our results highlight the complex interplay between spatial
interactions and adaptive mechanisms that underpins the immune response
against solid tumours, and suggest how this may be exploited to further
develop cancer immunotherapies.

The remainder of this work is organised as follows. In Section 2, we
present the individual-based model and detail how each biological mechanism
is mathematically described. In Section 3, we parametrise the model and
present the results of computational simulations. In Section 4, we discuss
the results obtained and highlight their biological implications along with
potential further applications of this work.

2. The mathematical model

Building upon our previous work (Macfarlane et al., 2018), we consider
three cell types: tumour cells, dendritic cells and cytotoxic T lymphocytes.
We use an on-lattice individual-based approach to describe the interactions
between these three cell types. Our model is posed on a 2D spatial grid of
spacing �x in the x direction and �y in the y direction, with the constraint
that only one cell of any type is allowed at each grid-site, at any time-step
of duration �t.

The system is initially composed of cancer cells and inactive immune cells
only. The immune cells are randomly distributed on the spatial grid, while
the cancer cells are tightly packed in a circular configuration positioned at
the centre of the grid, to reproduce the geometry of a solid tumour. We
let the tumour grow through cell division. A cancer cell divides at rate �
into two progeny cells of which one occupies the position of the parent cell
while the other is positioned at an unoccupied neighbouring grid-site. This
ensures that only cancer cells with free grid-sites in their neighbourhood can
divide. Inactive immune cells update their position according to a Lévy-like
walk (Harris et al., 2012). This process allows them to move in a randomly
chosen direction for a number of time-steps s sampled from a Lévy distribu-
tion L(s) with exponent 0  ↵ < 2, i.e. L(s) ⇠ s�(↵+1). DCs are activated
at rate DAct upon contact with tumour cells, and CTLs become activated at
rate CAct upon contact with active DCs. Upon activation, DCs and CTLs
switch to Brownian motion, i.e. at each time-step they can move to any
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of the neighbouring grid sites with the same probability. Moreover, we let
active CTLs remove tumour cells, upon contact, at rate µ. Once activated,
both DCs and CTLs remain active throughout the simulations. For simpli-
city, we omit natural death of tumour cells and proliferation of both DCs and
CTLs (i.e. the total numbers of DCs and CTLs are constant over time). We
refer the reader to our previous paper (Macfarlane et al., 2018) for a detailed
description of these modelling strategies.

In this work, we develop each of these modelling strategies further to
include the antigen profiles of cancer cells and their possible variation, the
immune recognition of tumour antigens by DCs, and the targeted activation
of CTLs against specific tumour antigens. The modelling strategies used to
take into account such additional layers of biological complexity are described
in detail in the following subsections, and are also schematically illustrated
in Figure 1 and Figure 2.

2.1. Mathematical modelling of antigen expression

We denote by NT (t) the number of tumour cells in the system at time
t = h�t, with h 2 N0, and we label each cell by an index n = 1, . . . , NT (t).
We incorporate antigen expression into our model by letting each tumour
cell express eleven di↵erent antigens, to represent the eleven MAGE-A anti-
gens that, as mentioned in Section 1, have a key role in tumour development
(Coulie et al., 2014). These antigens are reported in Table 2 and we label
them by an index i = 1, . . . , 11. There can be high variability in each anti-
gen’s expression between patients with the same type of cancer (Hartmann
et al., 2016; Müller-Richter et al., 2009; Urosevic et al., 2005) and even within
cancer cell samples from the same patient (Hartmann et al., 2016; Müller-
Richter et al., 2009; Urosevic et al., 2005). Therefore, at each time instant
t, we characterise the antigen profile of the nth tumour cell by means of a
vector

ATn(t) = (A(1)
Tn(t), . . . , A

(11)
Tn (t)),

with A(i)
Tn(t) representing the expression level of antigen i. Biologically, there

is evidence that there can be correlation between antigen expression in some
cancers, e.g. epithelial ovarian cancer (Daudi et al., 2014), but not all can-
cers, e.g. hepatocelllular carcinoma (Roch et al., 2010). To consider a more
generalised situation, we assume that the expression levels of each antigen
i can evolve independently from the others. As schematically illustrated in
Figure 1, for each tumour cell n we define the initial expression of the ith
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Figure 1: Schematic representation of the mechanisms and processes included
in the individual-based model. We consider three cell types in the model: tumour

cells, DCs and CTLs, along with their corresponding antigen and receptor profiles (Key).
a Initially the tumour is composed of tumour cells characterised by di↵erent antigenic

profiles. The standard deviation of the initial tumour antigen profiles from the reference

experimental profile is given by the parameter VT . b Tumour cells divide at rate �. c
Tumour cells may undergo epimutations with probability ✓E. The standard deviation of

the epimutation altered tumour antigen profiles from the previous profiles is given by the

parameter VE. d DCs become activated upon contact with tumour cells at rate DAct.

The standard deviation of the antigen profiles recognised by DCs from the tumour antigen

profiles is given by the parameter VD. e Upon contact, active DCs present the antigen

profile they have recognised to inactive CTLs. This leads to the targeted activation of

CTLs against specific tumour antigens at rate CAct. f Activated CTLs remove tumour

cells, upon contact, at rate µ, on the condition that the tumour cells express a su�cient

amount of the antigens corresponding to the CTL receptors. The binding a�nity of the

CTLs is measured by the parameter �.

antigen as
A(i)

Tn(0) = (Mi + VT Ri)+, i = 1, . . . , 11. (2.1)

In equation (2.1), the parameter Mi denotes a mean expression level of an-
tigen i taken from published experimental data, the values of which are
reported in Table 2. The value of Ri is sampled from a standard normal
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distribution centred at zero. In equation (2.1) we take the positive part of
the right-hand side to ensure non-negativity of the antigen expression level.
As Ri is taken from a standard normal distribution, the parameter VT rep-
resents the standard deviation of the initial antigen profile from the experi-
mental value Mi (Kenney and Keeping, 1962). Therefore, the parameter VT

determines how close the value of A(i)
Tn(0) will be to the value of Mi.

2.2. Modelling variations in antigen expression

At each time-step, we let the tumour cells divide at rate � [refer to the
schemes in Figure 1b] and change their antigen profile either through epi-
mutations or through mutations. We assume that epimutations can occur
at any time during the life of a cell [refer to the schemes in Figure 1c and
Figure 2a], whereas mutations take place during cell division and may cause
the antigen profile of one progeny cell to be di↵erent from that of the parent
cell [refer to the scheme in Figure 2b]. We allow epimutations and mutations
to occur with probabilities ✓E and ✓M , respectively. In the absence of changes
in antigen expression (i.e. if ✓E = 0 and ✓M = 0), the antigen profiles of the
tumour cells will remain constant over time, that is, ATn(t) = ATn(0) for all
t > 0. If antigenic changes do occur through epimutations or mutations, the
antigen profiles of tumour cells are updated using the methods described in
the following paragraphs.

Epimutations. A variation in the level of expression of the ith antigen of
the nth tumour cell at the time instant t due to an epimutation is modelled
according to the following equation

A(i)
Tn(t+ �t) = (A(i)

Tn(t) + VE Ri)+, i = 1, . . . , 11. (2.2)

In equation (2.2), the value of Ri is sampled from a normal distribution
centred at zero and we take the positive part of the right-hand side to en-
sure non-negativity of the antigen expression level. Following on from the
definition of the parameter VT , since Ri is taken from a standard normal
distribution the parameter VE is the standard deviation of the updated anti-
gen profile from the previous expression profile (Kenney and Keeping, 1962).

Therefore, VE determines how close the value of A(i)
Tn(t + �t) will be to the

value of A(i)
Tn(t).
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Figure 2: Schematic comparison of the modelling strategies used to describe
changes in antigen expression induced by epimutations and mutations within
tumour cells. a Antigenic variations due to epimutations can occur, with probability ✓E,
at any time during the life of a tumour cell. The standard deviation of the new antigen

profile from the previous profile is given by the parameter VE. b Mutations can take place,

with probability ✓M , only during cell division, which occurs at rate �. Due to mutations,

one progeny cell may exhibit an antigen profile di↵erent from that of the parent cell. The

standard deviation between the parent and progeny cell antigen profiles is given by the

parameter VM .

Mutations. Upon division at the time instant t, the nth tumour cell is re-
placed by two cells, one labelled by the index n and the other one labelled
by the index NT (t) + 1. If mutations do not occur, the progeny cells in-

herit the antigen profile of the parent cell, i.e. A(i)
Tn(t + �t) = A(i)

Tn(t) and

A(i)
T NT (t)+1(t + �t) = A(i)

Tn(t). Conversely, if a mutation occurs, the antigen
profile of the progeny cells will be given by the following equations

A(i)
Tn(t+ �t) = A(i)

Tn(t), i = 1, . . . , 11 (2.3)

and
A(i)

T NT (t)+1(t+ �t) = (A(i)
Tn(t) + VM Ri)+, i = 1, . . . , 11. (2.4)

Equations (2.3) and (2.4) rely on notation analogous to that of equation (2.2)
and, therefore, VM is the standard deviation of the progeny antigen profiles
from the parent antigen profiles (Kenney and Keeping, 1962). The value of

VM determines how close the value of A(i)
T NT (t)+1(t+�t) will be to the value

of A(i)
Tn(t).
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2.3. Activation of immune cells

Activation of DCs. We denote by ND the number of DCs, which we assume
to be constant, and we label each DC by an index k = 1, . . . , ND. Activation
of DCs occurs, at rate DAct, through contact with tumour cells. At any time
instant t, the kth DC is characterised by a recognised antigen profile

ADk(t) = (A(1)
Dk(t), . . . , A

(11)
Dk (t)).

We let all DCs be initially inactive and thus assume

A(i)
Dk(0) = 0, i = 1, . . . , 11

for all k = 1, . . . , ND. There is biological evidence supporting heterogeneity
within the antigen presentation process where a less prevalent antigen may
be recognised and presented by the DCs (Boes et al., 2002; Fehres et al.,
2014; Ljunggren et al., 1990). Additionally, it is known that the MAGE-
A genes have similar homology (Roch et al., 2010; Zajac et al., 2017) and,
therefore, there is a potential that they could be mis-recognised as each
other (Gra↵-Dubois et al., 2002; Linette et al., 2013; Raman et al., 2016;
Schueler-Furman et al., 1998; Tong et al., 2004). As schematically described
by Figure 1d, we consider the case where there may be potential variation
in the antigen recognition process. To capture this idea, upon activation
through contact with the nth tumour cell at the time instant t, we assign the
recognised antigen profile of the kth DC using the following equation

A(i)
Dk(t+ �t) = (A(i)

Tn(t) + VD Ri)+, i = 1, . . . , 11. (2.5)

In equation (2.5), the value of Ri is sampled from a normal distribution
centred at zero and we take the positive part of the right-hand side to ensure
non-negativity of the antigen expression level. We can describe VD as the
standard deviation of the antigen profile recognised by each DC from the
actual tumour antigen profile (Kenney and Keeping, 1962). Therefore, VD

determines how close the value of A(i)
Dk(t+�t) will be to the value of A(i)

Tn(t).
Following the method of our previous work (Macfarlane et al., 2018), once
activated, we let the DCs remain activated against their recognised tumour
antigen profile.

Activation of CTLs. We denote byNC the number of CTLs, which we assume
to be constant, and we label each CTL by an index m = 1, . . . , NC . As
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schematically described by Figure 1e, activation of CTLs occurs, at rate
CAct, through contact with activated DCs. At any time instant t, each CTL
m has a receptor profile

ACm(t) = (A(1)
Cm(t), . . . , A

(11)
Cm (t)).

We let all CTLs be initially inactive and thus assume

A(i)
Cm(0) = 0, i = 1, . . . , 11

for all m = 1, . . . , NC . While DCs can recognise multiple types of antigens,
CTLs can produce copies of one antigen receptor only (Brenner et al., 2008;
Coico and Sunshine, 2015). This means that each CTL can only be activated
against one of the eleven MAGE-A antigens. To capture this fact, upon
activation through contact with the kth DC at the time instant t, we let the
mth CTL become activated against the highest expressed antigen within the
tumour antigen profile recognised by the kth DC, i.e. we assign the receptor
profile of the mth CTL using the following equation

A(i)
Cm(t) =

(
1 for i = î,

0 for i 6= î,
with î = argmax

j
A(j)

Dk(t), (2.6)

where the index î specifies the target antigen of the activated CTL. Note that,
if | argmaxj A

(j)
Dk(t)| > 1, then we arbitrarily choose î = min argmaxj A

(j)
Dk(t).

Using the same assumptions as in our previous work, once activated, a CTL
remains activated against the same tumour antigen.

2.4. Removal of tumour cells by activated CTLs

Upon contact, each activated CTL can induce death of the tumour cells
which express a su�ciently high level of the CTL’s target antigen (Coulie
et al., 2014; Stone et al., 2009), which we assume to be given by the mean
antigen expression levels reported in Table 2. In particular, as schematically
described by Figure 1f, when the mth CTL interacts with the nth tumour cell
at time t, we compare the receptor profile ACm(t) with the antigen profile
ATn(t) and let the tumour cell be removed from the system at rate µ provided
that

A(i)
Tn(t) � (Mi � �) for i such that A(i)

Cm(t) = 1. (2.7)

In equation (2.7), the parameter � describes the binding a�nity of the CTLs,
which determines the range of tumour cells that each CTL can interact with.
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Table 1: Model parameters and related values used in computational simulations. Note,

standard deviation has been abbreviated to StD.

Symbol Description Value(s) Reference

�t time-step 1 min (Boissonnas et al., 2007)
�x,y grid spacing in the x or y direction 10 µm (Macfarlane et al., 2018)
NT (0) initial number of tumour cells 400 cells (Christophe et al., 2015)
NC total number of CTLs 400 cells (Christophe et al., 2015)
ND total number of DCs 400 cells (Macfarlane et al., 2018)
n Index identifier of each tumour cell n = 1, . . . , NT -
k Index identifier of each DC k = 1, . . . , ND -
m Index identifier of each CTL m = 1, . . . , NC -
ATn(t) Antigen profile of tumour cell n at time t values � 0 -
ADk(t) Recognised antigen profile of DC k at time t values � 0 -
ACm(t) Antigen receptor profile of CTL m at time t values of 0 or 1 -
� tumour cell division rate 0.001 min�1 (Christophe et al., 2015)
✓⇤E Average probability of epimutations 0.23 (De Smet et al., 1996)
µ removal rate of tumour cells by CTLs 0.03 cells min�1 (Christophe et al., 2015)
DAct DC activation rate 0.07 cells min�1 (Bianca et al., 2012)
CAct CTL activation rate ⇡ 0.12 cells min�1 (Engelhardt et al., 2012)
↵ Lévy walk exponent 1.15 (Harris et al., 2012)
� T cell binding a�nity [0, 0.2] (Schmid et al., 2010)
VT StD of the initial tumour antigen profiles from the reference experimental profile M [0, 1] -
VD StD of the antigen profiles recognised by DCs from the tumour antigen profiles [0, 1] -
VE/M StD of the tumour antigen profiles from the previous profiles after epimutations/mutations same as VT -

If � is larger, then the CTL can recognise tumour cells with a lower level of
expression of the antigen that they target. Independently of the outcome of
the interaction, the CTL can subsequently interact with further tumour cells
following the same process.

3. Computational simulations

3.1. Model parametrisation and simulation set up

We use a 2D spatial domain with 100 grid sites, of length �x = �y =
10 µm, both in the x and in the y direction, which correspond to a domain
of size 1 mm2. Simulations were developed and run in Matlab, for an
appropriate number of time-steps, with one time-step chosen to be �t = 1
min, to allow for the resulting dynamics of the system to be investigated. All
quantities in the results we report on in this section were obtained through
averaging the results of 5 simulations. We refer the interested reader to
Macfarlane et al. (2018) for a detailed description of the parameterisation
of the original model, and we describe here the way in which the additional
components of the model were calibrated using the parameter values reported
in Table 1.

Initial tumour antigen expression levels. Hartmann et al. (2016) investigated
the levels of expression of the eleven MAGE-A antigens in oral squamous cell
cancers of 38 patients. The mean antigen expression levels were taken to
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Table 2: Average levels of expression of the MAGE-A antigens in oral squamous cell

cancer cell lines. The experimental data were taken from (Hartmann et al., 2016) and

then normalised.

Antigen (i) Mean Expression, Mi

MAGE-A1 (1) 0.10
MAGE-A2 (2) 0.25
MAGE-A3 (3) 0.41
MAGE-A4 (4) 0.24
MAGE-A5 (5) 0.36
MAGE-A6 (6) 0.35
MAGE-A8 (7) 0.17
MAGE-A9 (8) 0.16
MAGE-A10 (9) 0.38
MAGE-A11 (10) 0.06
MAGE-A12 (11) 0.32

be values between 0-12 arbitrary units as an immune-reactivity score, which
are normalised and reported in Table 2. In our model, the initial expression
level of each antigen for each tumour cell is defined by using equation (2.1)
along with the values of Mi from Table 2. To determine the value of the
product VT Ri in equation (2.1) we consider the properties of Ri, which
is a random value taken from a standard normal distribution. A standard
normal distribution N (0, 1), with mean 0 and standard deviation 1, has a
95% confidence interval of ±1.96 (Kenney and Keeping, 1962). Therefore,
for 95% of values we expect -1.96  Ri 1.96 with the majority of the
values being close to the mean value. We then use the parameter VT to
control the minimum and maximum value of the product VT Ri, i.e. when
VT=1 then VT Ri 2 [�1.96, 1.96], for most values. However, if VT is lower,
e.g. VT=0.1, then the values of the product VT Ri will also be lower, e.g.
VT Ri 2 [�0.196, 0.196]. To consider a wide range of biological situations
corresponding to di↵erent initial levels of heterogeneity in tumour antigen
profiles, we use a range of values, between 0 and 1, for the parameter VT . As
the experimental data in Table 2 are dimensionless, we consider also VT to
be dimensionless.

Probabilities of epimutations and mutations. De Smet et al. (1996) found
that cancer cell lines expressing the MAGE-A1 antigen were 23% more likely
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to undergo demethylation events than tumour cell lines that did not express
this antigen. Such a value is supported by other studies that consider the
likelihood of DNA demethylation in various cancers (Chalitchagorn et al.,
2004; Ehrlich, 2002). We make the assumption that this holds true for the
other ten MAGE-A antigens, and let the average probability of epimutations
in our model be

✓⇤E = 0.23.

In the model we consider the e↵ect of increase or decreasing the probability
of epimutations or mutations by setting ✓E and ✓M , respectively, as multiples
of ✓⇤E. The parameters VE and VM control how much the antigen expression
of a tumour cell can change through epimutations or how much the antigen
expression of a progeny tumour cell can change through mutations [refer to
equations (2.2) and (2.3)]. The values of VM and VE are chosen to match the
values of VT . Since the experimental data in Table 2 are dimensionless, we
also consider VE and VM to be dimensionless..

Antigen recognition process:. To consider a wide range of biological situations
corresponding to di↵erent scenarios in terms of the number of CTLs activated
against each antigen, we use a range of values, between 0 and 1, for the
parameter VD [refer to equation (2.5)]. As the experimental data in Table 2
are dimensionless, we also consider VD to be dimensionless.

T cell binding a�nity:. The binding a�nity of a T cell is related to the
association rate, that is the inverse of the dissociation rate KD. In general
this value is between 0.005 µM�1 and 1 µM�1 for all natural T cells (Davis
et al., 1998; Slansky and Jordan, 2010). Furthermore, the MAGE-A T cell
receptors association rates have been found to be even larger than this range,
e.g. for MAGE-A3 the values are between 0.018 µM�1 and 5.917 µM�1 (Tan
et al., 2015). However, Schmid et al. (2010) have shown that an association
rate of 0.2 µM�1 or higher did not improve the binding a�nity and, therefore,
higher binding a�nities may have a limited e↵ect. We take Mi to be the
minimal binding and allow the likelihood of binding to increase depending on
�. In line with experimental evidence, we investigate a range of dimensionless
values between 0 and 0.2 for the parameter � that models the T cell receptor
binding a�nity [refer to equation (2.7)].

3.2. Main Results
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Figure 3: Variability in the initial tumour antigen profiles determines the
e↵ectiveness of the immune response. Plots displaying the number of tumour cells

remaining after 1000 time-steps for increasing values of the parameter VT : a VT = 0.001,
b VT = 0.01 and c VT = 0.1. For each value of VT a range of values of the parameter

VD are tested. The tumour cell numbers presented have been obtained as the average over

5 simulations and the error bars display the related standard deviation. Here, � = 0.01,
✓E = ✓M = 0, and all the other parameter values are reported in Table 1.
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Variability in the initial tumour antigen profiles determines the e↵ectiveness
of the immune response. To investigate how the immune response is a↵ected
by variability in the initial tumour antigen profiles, we test for three increas-
ing values of the parameter VT (i.e. VT = 0.001, VT = 0.01 and VT = 0.1).
We choose � = 0.01 and we let the antigen profiles of the tumour cells re-
main constant over time (i.e. we choose ✓E = ✓M = 0). For each value of VT

considered, we also explore the e↵ect of increasing the value of the parameter
VD. In all cases, we carry out numerical simulations for 1000 time-steps. As
shown by Figure 3a, for a low value of VT , very few tumour cells remain in
the system after 1000 time-steps for all considered values of VD. Conversely,
the results presented in Figure 3c show that if we set a relatively large value
for VT , there is a significant number of remaining tumour cells after 1000
time-steps for all values of VD. Moreover, as shown by Figure 3b, for an in-
termediate value of VT , there appears to be a correlation between the number
of tumour cells remaining after 1000 time-steps and the parameter VD. In
particular, larger values of the parameter VD correspond to smaller numbers
of the remaining tumour cells after 1000 time-steps. These results suggest
that for tumours characterised by intermediate levels of initial antigenic het-
erogeneity between tumour cells, higher deviation between the antigen profile
recognised by DCs and the actual antigen profile of tumour cells may res-
ult in a more e↵ective immune response. This is further illustrated by the
computational results presented in the next paragraph.

Increasing variations between the antigen profile recognised by DCs and the
actual antigen profile of tumour cells can result in immune escape, chronic
dormancy or immune clearance of the tumour. The results discussed in the
previous paragraph illustrate how di↵erent cell dynamics can be observed
for increasing values of the parameter VD. We test this further by using
the parameter setting of Figure 3b (i.e. VT = 0.01, ✓E = 0 and � = 0.01)
and comparing the dynamics obtained for three di↵erent values of VD (i.e.
VD = 0.001, VD = 0.05 and VD = 0.1). In Figure 4, we compare the average
antigen profile of the tumour cells at the end of simulations with the average
antigen profile recognised by the DCs, and we show the corresponding time
evolution of the number of tumour cells. The insets also display the spatial
cell distributions observed at the end of simulations to allow for a clearer un-
derstanding of the resulting dynamics. We observe that VD is a bifurcation
parameter whereby three distinct situations result from choosing increasing
values of VD. In particular, Figures 4a,d refer to the case where the value of
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Figure 4: Increasing VD can result in immune escape or chronic dormancy or
immune clearance of the tumour. Plots in panels a-c display the average antigen

profile of tumour cells and the average antigen profile recognised by the DCs at the end

of simulations. The error lines represent the standard deviation between 5 runs of the

simulations. Plots in panels d-f display the time evolution of the tumour cell number with

an example of the observed cell spatial distributions at the final time-step shown in the

insets. Three values for the parameter VD are tested: a,d VD = 0.001, b,e VD = 0.05 and

c,f VD = 0.1. Here, VT = 0.01, � = 0.01, ✓E = ✓M = 0, and all the other parameter

values are reported in Table 1.
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VD is relatively low (i.e. VD = 0.001), and show that there is very little di↵er-
ence between the average antigen profile of the tumour cells and the average
recognised antigen profile at the end of simulations. Moreover, after an initial
decrease, the tumour cell number increases steadily over time resulting in a
relatively large final number of tumour cells. Furthermore, Figures 4b,e refer
to the case where an intermediate value of VD is considered (i.e. VD = 0.05),
and show that there a is larger variation between the average antigen profile
of the tumour cells and the average recognised antigen profile at the end of
simulations. Additionally, after a steep decrease, the tumour cell number
remains at a low, almost constant, level for the remainder of the simulation
time interval. Finally, Figures 4c,f refer to the case where the value of VD

is relatively large (i.e. VD = 0.1), and show that the di↵erence between the
average antigen profile of the tumour cells. Moreover, the average recognised
antigen profile at the end of simulations is even more varied than in the pre-
vious cases and the number of tumour cells decreases steadily over time until
eventually the tumour is completely removed.

Increasing the T cell receptor binding a�nity can benefit the immune system
response to cancer. To explore the e↵ect of altering the T cell receptor bind-
ing a�nity, we test for three increasing values of the parameter � (i.e. � = 0,
� = 0.0001 and � = 0.001). We choose VT = 0.0001 and we let the tumour
cell antigen profiles remain constant over time (i.e. we choose ✓E = ✓M = 0).
For each value of � considered, we also explore the e↵ect of increasing the
value of the parameter VD. In all cases, we carry out numerical simulations
for 1000 time-steps. As shown by Figure 5a, for � = 0, a considerable num-
ber of tumour cells remain inside the system at the end of simulations for all
values of VD. Conversely, the results presented in Figure 5c show that when
� is su�ciently high, very few tumour cells remain in the system after 1000
time-steps for all values of VD. Moreover, as shown by Figure 5b, for inter-
mediate values of �, there appears to be a correlation between the number of
tumour cells remaining after 1000 time-steps and the parameter VD. In par-
ticular, larger values of the parameter VD correspond to smaller numbers of
the remaining tumour cells after 1000 time-steps. These results suggest that
the T cell receptor binding a�nity plays a key role in the immune response
to tumour cells. In the same way as Figure 4, Figure 6 shows that, under
the parameter choice of the computational simulations related to Figure 5b,
increasing the value of the parameter VD leads to immune escape or chronic
dormancy or immune clearance of the tumour.
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Figure 5: Increasing the T cell receptor binding a�nity can benefit the immune
system response to cancer. Plots displaying the number of tumour cells remaining after

1000 time-steps for increasing values of the parameter �: a � = 0, b � = 0.0001 and c
� = 0.001. For each value of � a range of values of the parameter VD are tested. The

tumour cell numbers presented have been obtained as the average over 5 simulations and

the error bars display the related standard deviation. Here, VT = 0.0001, ✓E = ✓M = 0,
and all the other parameter values are reported in Table 1.
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Figure 6: For multiple parameter settings, increasing VD can result in immune
escape or chronic dormancy or immune clearance of the tumour. Plots in panels

a-c display the average antigen profile of tumour cells and the average antigen profile

recognised by the DCs at the end of simulations. The error lines represent the standard

deviation between 5 runs of the simulations. Plots in panels d-f display the time evolution

of the tumour cell number with an example of the observed cell spatial distributions at

the final time-step shown in the insets. Three values for the parameter VD are tested:

a,d VD = 0.001, b,e VD = 0.05 and c,f VD = 0.1. Here, VT = 0.0001, � = 0.0001,
✓E = ✓M = 0, and all the other parameter values are reported in Table 1.
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Figure 7: Increasing the probability of epimutations can lead to variations in
the immune response to tumour cells. Panels a and b display the time evolution

of the tumour cell number for increasing values of ✓E (cf. the legend below the panels).

For the numerical results reported in Panel a all the other parameter values are as for

Figures 4a,d and VE = 0.01, while for the numerical results reported in Panel b all the

other parameter values are as for Figures 6c,f and VE = 0.0001.

Increasing the probability of epimutations can lead to variations in the im-
mune response to tumour cells. So far, we have considered only the situation
where the antigen profile of each tumour cell remains constant over time
(i.e. the probability with which epimutations and mutations leading to an-
tigenic variations occur are ✓E = 0 and ✓M = 0). To investigate the e↵ect
of epimutations on the success of the immune response against tumour cells,
we consider the parameter setting that we have used in the computational
simulations shown either in Figures 4a,d or in Figures 6c,f but now we allow
the antigen profiles of tumour cells to change through epimutations (i.e. we
choose ✓E > 0). We consider eight distinct values of ✓E defined as fractions
or multiples of the average probability of epimutations ✓⇤E, given in Table 1.
The range we consider, 0  ✓E  0.92, is chosen to include the range of
De Smet et al. (1996), 012  ✓E  0.45. In all cases, we carry out numer-
ical simulations for 8640 time-steps and we report on tumour cell numbers
obtained as the average over 5 simulations. Figure 7a displays the time evol-
ution of the tumour cell number for the parameter setting of Figures 4a,d.
These results show that increasing values of ✓E correspond to decreasing
numbers of tumour cells inside the system at the end of simulations. In sum-
mary, by increasing the probability of epimutations the dynamics of tumour
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cells change from immune escape, through to chronic dormancy to immune
clearance. On the other hand, Figure 7b displays the time evolution of the
tumour cell number for the parameter setting of Figures 6c,f. These results
show that for su�ciently small values of ✓E there are no tumour cells left
inside the system at the end of simulations, whereas for larger values of ✓E a
small number of tumour cells persist at the final time-step. Generally, by in-
creasing the probability of epimutations the dynamics of tumour cells change
from immune clearance to chronic dormancy.

Mutations have a weaker impact on the immune response to tumour cells
compared to epimutations. We now compare the impact of mutations and
epimutations on the immune response to tumour cells. Following what we
have done in the previous paragraph, we consider the parameter setting used
in the computational simulations shown either in Figures 4a,d or in Fig-
ures 6c,f but now we allow the antigen profiles of tumour cells to change
through mutations (i.e. we choose ✓M > 0). We consider eight distinct
values of ✓M defined as fractions or multiples of the average probability of
epimutations ✓⇤E, given in Table 1. In all cases, we carry out numerical sim-
ulations for 8640 time-steps and we report on tumour cell numbers obtained
as the average over 5 simulations. Figure 8a displays the time evolution of
the tumour cell number for the parameter setting of Figures 4a,d and shows
that immune escape occurs for all values of ✓M considered. On the other
hand, Figure 8b displays the time evolution of the tumour cell number for
the parameter setting of Figures 6c,f and shows that immune clearance oc-
curs for all values of ✓M considered. Comparing these results with those
displayed in Figure 7a and Figure 7b, respectively, we reach the conclusion
that mutations have a weaker impact on the immune response to tumour
cells compared to epimutations.

4. Discussion and conclusions

Spatial interactions between cancer and immune cells, as well as the re-
cognition of tumour antigens by cells of the immune system, play a key role
in the immune response against solid tumours. The existing mathematical
models generally focus only on one of these key aspects. We have presented
here a spatially explicit stochastic individual-based model that incorporates
the adaptive processes driving tumour antigen recognition. Our model takes
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Figure 8: Mutations have a weaker impact on the immune response to tumour
cells compared to epimutations. Panels a and b display the time evolution of the

tumour cell number for increasing values of ✓M (cf. the legend below the panels). Here

✓⇤M = ✓⇤E. For the numerical results reported in Panel a all the other parameter values are

as for Figures 4a,d and VM = 0.01, while for the numerical results reported in Panel b all

the other parameter values are as for Figures 6c,f and VM = 0.0001.

explicitly into account the dynamical heterogeneity of tumour antigen ex-
pression, and e↵ectively captures the way in which this a↵ects the immune
response against the tumour.

Our computational simulation results show that the initial antigen expres-
sion profiles of cancer cells within the tumour have a crucial impact upon
the outcome of the immune response [refer to Figure 3]. In the situation of
an almost homogeneous tumour (i.e. where all tumour cells have a similar
antigen profile), immune clearance occurs. Conversely, when the antigenic
composition between cancer cells is highly heterogeneous the tumour may
be able to escape the immune system response and continue growing. In-
terestingly, for moderate levels of initial antigenic heterogeneity our results
demonstrate that the fate of the tumour is determined by the specificity of
the cellular immune response.

The computational outcomes of our model indicate that the parameter
controlling the specificity of the antigen recognition process of the dendritic
cells (i.e. the parameter VD) ultimately dictates which receptors are produced
by the cytotoxic T lymphocytes [refer to Figures 3 and 4]. A larger value
of this parameter brings about a more diverse receptor repertoire of the
CTLs, and in turn results in a better immune response. This suggests that
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it is advantageous for the T cell pool to be multi-specific, whereby several
di↵erent antigen receptors are simultaneously expressed by the CTL pool.
In this respect, the outcomes of our model recapitulate the conclusions of
experimental papers showing the success of a more diverse T cell repertoire
in response to cancer (Carreno et al., 2015; Gerdemann et al., 2011; Ott
et al., 2017; Sahin et al., 2017; Schumacher and Hacohen, 2016; Sharma and
Allison, 2015). We remark that new experimental techniques have recently
been developed to alter the specificity of T cell receptors (Smith et al., 2014).
One particular approach is to use gene editing, in vitro, to modify which
antigen the T cell receptors will respond to (Albers et al., 2019).

Moreover, our numerical results support the idea that varying the spe-
cificity of the immune response can result in three distinct scenarios, from
immune escape, through to chronic dormancy to immune clearance of the
tumour [refer to Figures 4 and 6]. The importance of tumour dormancy
controlled by the immune system (i.e. immunological dormancy) has been
highlighted by previous experimental and theoretical work (Kuznetsov et al.,
1994; Lorenzi et al., 2015; Matzavinos et al., 2004; Wu et al., 2018). In par-
ticular, immunological dormancy can explain situations where there is an
extended period of time before the occurrence of tumour relapse (Aguirre-
Ghiso, 2007; Gomis and Gawrzak, 2017; Manjili, 2018; Teng et al., 2008;
Wang and Lin, 2013; Yeh and Ramaswamy, 2015). In this regard, our model
suggests the existence of a possible relationship between the specificity of the
immune response and the emergence of prolonged immunological dormancy.

We have also explored the way in which altering the binding a�nity of
the CTLs to their corresponding tumour antigen may change the immune
response to the tumour. Our results indicate that a stronger binding a�nity
leads to a more e↵ective immune response, as the CTLs have a wider range
of tumour cells that they can interact with [refer to Figure 5]. Previously,
Gerdemann et al. (2011) found experimentally that a strong T cell binding
a�nity to tumour antigens played a key role in the overall immune response
to the disease. Integrating the outcomes of our model and such experimental
findings suggests that enhancing the binding a�nity of T cells – e.g. through
the modification of the receptors that the T cells of a patient can produce –
could be a potential target of adoptive T cell therapy.

The results from our computational simulations suggest that changes in
the antigenic expression of tumour cells due to epimutations can be either
beneficial or detrimental to the immune response to a solid tumour [refer
to Figure 7]. In more detail, we have found that in some cases increasing
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the probability of epimutations could transform situations of immune escape
into tumour dormancy and eventually tumour removal. These findings are
interesting in light of cancer therapy as they suggest that the e�cacy of
the immune response against solid tumours could be enhanced by increasing
the probability of epimutations. In this respect, the loss of DNA methylation
was the first epimutation to be identified in cancer cells (Feinberg and Tycko,
2004) and several experimental and clinical works found that the expression
of MAGE antigens could be increased through demethylation (Chinnasamy
et al., 2011; Gerdemann et al., 2011; Gra↵-Dubois et al., 2002; Wischnewski
et al., 2006). Taken together, the outcomes of our model suggest that by
combining a T cell therapy targeting multiple MAGE genes – e.g. using
approaches similar to those of Gerdemann et al. (2011) – and increasing
the probability of epimutations through demethylating agents – e.g. using
methods similar to those of Chinnasamy et al. (2011) and Wischnewski et al.
(2006) – a stronger immune response could be induced. However, in other
cases, we have observed that increasing the probability of epimutations can
turn instances of tumour removal into scenarios whereby a small number of
tumour cells persisted over time. These contrasting results were also sugges-
ted previously through experimental research, where epimutations could be
either beneficial or detrimental to tumour development (Chen and Mellman,
2017; Yarchoan et al., 2017).

We have additionally studied the e↵ect of variations in the antigenic ex-
pression of tumour cells caused by mutations. In all parameter settings we
have considered, increasing the probability of mutations did not change the
resulting dynamics of the tumour-immune response [refer to Figure 8]. This
suggests that mutations have a weaker e↵ect on tumour-immune competition
than antigenic variations caused by epimutations. This finding is coherent
with experimental observations indicating that epimutations generally oc-
cur more frequently than mutations in tumour development (Feinberg, 2004;
Peltomäki, 2012). Hence, our results demonstrate the importance of under-
standing the underlying causes of antigenic variations in tumour cells when
considering tumour-immune competition.

Looking to the future, our individual-based model could be developed
further in several ways. We could incorporate extended aspects of the tu-
mour micro-environment, such as, proliferation of the immune cells and the
interaction of tumour cells with abiotic factors (e.g. oxygen and glucose) that
can a↵ect the phenotypic composition of the tumour. Moreover, by posing
the model on a 3D domain, further understanding could be obtained regard-
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ing the spatial dynamics of the tumour-immune response. The flexibility of
our model would also allow for the inclusion of a wider range of antigens.
Finally, although useful for investigating the qualitative and quantitative
dynamics of a biological system, individual-based models like ours are not
amenable to mathematical analysis. In a variety of contexts the benefit of
relating stochastic individual-based models to deterministic continuum mod-
els has been highlighted (Champagnat et al., 2006; Chisholm et al., 2016,
2015; Deroulers et al., 2009; Painter and Hillen, 2015; Penington et al., 2011;
Stevens, 2000). Combining such modelling approaches makes it possible to
integrate computational simulations with analytical results, thus enabling a
more extensive exploration of the model parameter space. This is a line of
research that we will be pursuing in the near future by exploiting the formal
methods that we have recently presented (Chaplain et al., 2018; Stace et al.,
2019).
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