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Microstructures can be carefully designed to reveal the quantum phase of the wave-like nature of 

electrons in a metal. Here we report phase coherent oscillations of the out-of-plane magnetoresistance 

in the layered delafossites PdCoO2 and PtCoO2. The oscillation period is equivalent to that determined 

by the magnetic flux quantum, h/e, threading an area defined by the atomic interlayer separation and 

the sample width; here h is Planck’s constant and e is the charge of an electron.  The phase of the electron 

wave function appears robust over length scales exceeding 10m and persisting up to temperatures of 

T>50K. We show that the experimental signal stems from a periodic field-modulation of the out-of-plane 

hopping. These results demonstrate extraordinary single-particle quantum coherence lengths in the 

delafossites.  

Electrons in vacuum carry the characteristics of both particles and waves, which is demonstrated in 

interference experiments directly probing the phase information
1
. In metals the transport properties are 

usually well captured by the particle nature of the electron only, described by the semi-classical Boltzmann 

equation. The wave-like character is masked by the high density of electrons and their interaction with 

the ionic lattice, which leads to a loss of the phase information in bulk phenomena. With experimental 

effort, samples can be fabricated on the mesoscopic length scale over which the phase of the electron is 

preserved, thus becoming observable in electronic transport. A well-known example is the Aharonov-

Bohm effect (ABE) in nanoscopic rings of gold
2,3

, which presents a solid-state analog of the interference 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/333537923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


experiment by Davisson and Germer
1
. Common to these experiments is the creation of an artificial loop 

enclosing magnetic flux which acts as a beam splitter. 

Here we report a surprisingly robust manifestation of phase coherence intrinsic to the out-of-plane 

transport in single bars of the ultra-pure delafossites PdCoO2 and PtCoO2. These materials are composed 

of highly conducting Pd/Pt layers separated by CoO2 layers, resulting in a large transport anisotropy 

c/a exceeding 1000. The layered triangular crystal lattice leads to an almost hexagonal Fermi surface 

(FS)
4
 with little warping, which has been well characterized by de Haas-van Alphen oscillations

5
 and 

angle-dependent magnetoresistance oscillations
6,7

. These materials are the most conductive oxides 

known, with an in-plane transport mean free path (mfp) of more than 20m at low temperatures
5,8,9

.  

The strong anisotropy is also reflected in the growth of thin plate-like crystals, a common property of 

layered materials. Although mesoscopic quantum phenomena are successfully probed in the plane of 

quasi 2D ultra-pure metals, achieving such electrical transport perpendicular to the layers is challenging. 

We have overcome this difficulty by employing focused ion beam (FIB) micro-structuring techniques
10

. 

Starting from as-grown crystals, we have milled pillars along the c-axis, thereby restricting the in-plane 

dimensions to a few micrometers. A typical structure designed for four-point resistivity measurements is 

shown in Fig. 1A.  Because the depth d and width w of the pillar are both well below the mfp, the system 

enters the ballistic transport regime in the plane. 

Applying an in-plane magnetic field at low temperatures, we find an oscillatory magnetoresistance (Fig. 

1B). These oscillations are clearly visible in the raw data (Δ𝜌𝑜𝑠𝑐 𝜌⁄ ~5%, Fig. 1). To perform further 

analysis, we focus on the second derivative of the magnetoresistance (Fig. 1C). The oscillations are 

periodic in magnetic field and their periodicity scales inversely with the width of the pillars over an order 

of magnitude, from 1.2m to 12m (Fig. 1D). 

The observed periodicity matches remarkably well with that expected for a magnetic flux quantum 

0=h/e, with the Planck constant h and electron charge e, threading through an area S enclosed by two 

adjacent Pd/Pt layers and the sample side walls (dashed line in figure 1D). This gives an area S = w*c/3, 

where w is the width of the sample and c denotes the crystallographic unit cell lattice constant (PdCoO2: 

1.774nm; PtCoO2: 1.781nm)
11

. Owing to the ABC stacking the unit cell contains three Pd/Pt layers, 

hence the relevant height is c/3. Such oscillations of the magnetoresistance, periodic in 𝛷0, demonstrate 



quantum transport of coherent electron waves spanning the width of the entire sample. Oscillations are 

readily observed in samples as wide as 12 m, indicating a macroscopic phase preservation in the metal. 

PdCoO2 has been shown to have an extremely long ballistic mfp
12

, but observation of phase coherence 

in a high carrier density metal over such a long distance is still surprising. It is particularly noteworthy that 

no special care to decouple the sample from the environment had to be taken, such as ultra-low 

temperatures or substrate decoupling (all samples are simply attached to a sapphire chip by epoxy glue, 

see methods
13

). Still, all samples from different crystals show a highly consistent picture of strong long-

ranged quantum coherence. 

So far, we have only considered magnetic fields applied perpendicular to the sample surface. If indeed 

the oscillation frequency is set by the flux through the area S, it would be natural to expect a sinusoidal 

dependence on the magnetic field angle when rotating within the Pd/Pt layer. The experimental frequency 

spectrum upon rotation is more complex, with multiple frequencies appearing (Fig. 2). A natural 

geometric interpretation of the angle dependence is found because of the FS topography of PdCoO2. 

The almost perfect hexagonal FS, in contrast to a circular one, exhibits three preferential directions of 

electron motion perpendicular to the flat faces of the FS. In real space this describes three interweaving 

subsystems of directional electron flow in the plane, each spanning its own area Si (i=1..3, sketched in 

Fig. 2A). The flux enclosed in each subsystem contributes oscillations of frequency |𝐵⃗ ⋅ 𝑆 𝑖|/𝛷0 to the total 

conduction, leading to three branches in the frequency spectrum, offset by 60° from each other. The 

difference in symmetry between the hexagonal FS and the rectangular sample shape divides the branches 

into two different types. The samples are cut such that one preferential direction of motion is aligned with 

a sample side wall. Therefore, one subsystem area is set by the full sample depth, whereas two symmetric 

branches are related geometrically to the sample width. The aspect ratio of the cross section is reflected 

in the relative ratio of the maximum frequency values in the two types of branches. From the in-plane 

angle dependence it follows that for the magnetic field aligned with both the sample sides (𝜃 = 0° and 

90°) an area 𝑆𝑖 scales with 𝑤 or 𝑑 respectively. In Fig. 1D the data for both angle configurations were 

combined by denoting the dimension perpendicular to magnetic field as sample width 𝑤. 

The period of all field-induced oscillations in quantum objects is expected to be the flux quantum 

threading through them, 𝐵𝑛 ⋅ 𝑆 = 𝑛Φ0. Usually, the relevant length scale in metallic systems is set by the 



magnetic field itself, in form of the cyclotron radius 𝑟𝑐, leading to oscillations periodic in 1/B (𝐵𝑛 ⋅ 𝑟𝑐
2 ∝

𝑛Φ0). The best known of such 1/B periodic magnetoresistance oscillations are Shubnikov-de Haas (SdH) 

oscillations
14

. Given the 2D nature of the FS in our system, SdH oscillations will not appear for in-plane 

fields as all orbits are open. However, as the magnetic field is rotated out of the Pd-layers, the out of 

plane field induces orbital motion and will lead to usual SdH oscillations. This leads to a particularly rich 

interplay between the different quantum transport regimes as a function of out-of-plane angle  (Fig. 3). 

For an in-plane magnetic field (=0°) B-periodic oscillations are observed as previously discussed. On 

tilting the field out of plane, those oscillations are limited to lower magnetic fields and vanish at a field 

scale B* defined by the mesoscopic size of our samples (Fig. 3B). B* corresponds to the angle-dependent 

field scale required to fit a bulk-like cyclotron radius into the pillar, given by the condition of 2rc=w. B* 

appears as a clear anomaly in the magnetoresistance, delineating a strong negative magnetoresistance 

above B*. Thereby, tilted magnetic fields induce a transition between mesoscopic quantum transport in 

the low field regime and bulk-like transport described by Landau levels at sufficiently high fields. This 

picture is straightforward to understand: Once the in-plane Lorentz force is sufficient to bend a wave front 

back on itself, it will self-interfere leading to Landau quantization. This detaches the wave function from 

the boundary; hence the Landau levels are entirely bulk-like and independent of sample width. This 

scenario is further supported by the negative magnetoresistance above B* (Fig. S3), which is caused by 

the suppression of the dominant boundary scattering in the clean devices thanks to bulk-like Landau 

tubes forming in the core of the pillar. Indeed, above B* conventional SdH oscillations are observed in 

our samples, which coexist with B-periodic oscillations in the intermediate angle range (Fig. 3B). The SdH 

frequencies and effective masses of m*≈1.5me (PdCoO2

5
) and 1.2me (PtCoO2

7
) are consistent with work 

performed on macroscopic crystals, clearly excluding the possibility that the microfabrication has strongly 

altered the material. The large size of the hexagonal Fermi surface leads to high-frequency oscillations 

around F~30kT, which are observed in the microstructure. However, resolving such high frequencies 

requires very slow field sweeps (<10mT/min), which are impractical to perform over large field ranges 

and multiple angles. Therefore, only the slow difference frequency corresponding to the beating of neck 

and belly frequencies is apparent in Fig. 3; the main frequencies were always observed consistently when 

sweeping more slowly (Fig. S5). 



Further insights into the quantum transport arise from a comparison of the transport and quantum mean 

free paths. The quantum coherence length extracted from SdH oscillations is found to be only 400nm 

(Fig. S6), more than an order of magnitude smaller than that observed in the B-periodic oscillations. 

Furthermore, the quantum coherence length remains almost unchanged in irradiated samples, whereas 

the in-plane transport mean free path is reduced by more than a factor 10. It is important to consider 

that the quantum mean free path obtained from a Dingle analysis represents an average over the entire 

FS orbit, whereas the B-periodic oscillations stem exclusively from the flat sections of the hexagonal FS. 

A resolution to this conundrum would be a large quantum scattering rate at the corners of the hexagon; 

evidence of this has previously been reported in an analysis of the Hall effect
15

.    

B-periodic oscillations in a metal, such as those reported here, arise when a field-independent area S 

enters the quantization condition, such that 𝐵𝑛 ⋅ 𝑆 = 𝑛Φ0. This most notably occurs in geometrically not 

simply connected samples. In these samples, e.g., Aharonov-Bohm rings or cylinders, a physical hole 

defines the relevant area. Such a physical area is naturally absent in our simply connected bar-shaped 

samples. The experimental situation is also far from the so-called ultra-quantum limit, at which the 

magnetic flux per crystalline unit cell is comparable to one flux quantum. This extreme limit requires fields 

on the order of Φ0 Å2⁄ ~105
T, at which B-linear oscillations from an atomic-scale flux box might be 

expected, yet such fields are inaccessible. The few known B-linear oscillatory phenomena in singly 

connected solids are either semi-classical (Sondheimer resonances
16

, Azbel-Kaner cyclotron motion
17

, or 

geometric resonances in the presence of acoustic waves); rely on a superconducting order parameter to 

establish macroscopic phase coherence (Fraunhoffer interference in Josephson junctions
18

) or exploit 

artificially introduced nanometric length scales Interference effects in tunnelling between parallel 

quantum wires or wells
19

). None of these can explain our data as the observed h/e-periodicity clearly 

indicates long ranged single particle phase coherence as their origin. 

Given the flux quantisation condition that we have identified, it is at first sight appealing to invoke a 

scenario akin to the Aharonov-Bohm effect (ABE) to account for our data. In this picture, the quasiparticle 

would encircle the area S with the Pd/Pt-layers resembling the arms of an interferometer. Because the 

nanoscopic dimensions of the interlayer distance would be combined with the macroscopic sample width, 

the necessary fields would be scaled to the range accessible in superconducting magnets. Although this 



would naturally lead to the observed periodicity, this scenario has severe shortcomings. For one, the Pd-

layers are too strongly coupled via the sizable out-of-plane hopping element 𝜏⊥ as determined by 

quantum oscillations (𝜏1=1eV; 𝜏⊥ =10meV)
8
 leading to an infinite number of paths, involving a large 

number of layers. Furthermore, the ABE is most commonly accompanied by a related self-interference 

effect caused by weak localization called the Al’tshuler-Aronov-Spivak (AAS) effect
20

, which gives  

oscillations periodic in h/2e in metallic rings
2,3,21

. This, or any other higher order quantum process 

involving multiple layers in a stack (2S,3S,…), would lead to higher harmonic content of the oscillations, 

which is not observed experimentally here within the noise level of 1% (see Fig. S2). A third key feature 

of our observation is its robustness to temperature (Fig. 3C).  The observation of the ABE in metallic rings 

was limited to below 4K because of decoherence from various types of interaction with the environment, 

something that is also a feature of reported ABE experiments on graphene
22

. This is in stark contrast to 

the T>50K temperature scale observed here in highly metallic PdCoO2 and PtCoO2. Similar high-

temperature quantum coherence has been seen in bismuth nano-wires
23

, topological nano-ribbons
24,25

, 

quantum dots
26

, carbon nano-tubes
27

 and 1/B superlattice oscillations in graphene
28

 but the key to its 

observation was the small length scale involved in those nano-scale systems. This is not surprising in light 

of the calculation presented in the methods
13

, in which we show that even if we impose a far larger 𝜏⊥at 

the sample edge than in the bulk, an ABE-style calculation predicts an experimental signal with an 

amplitude dying out as 1/w.  For our situation this signal would be unresolvable.  

Because the mfp decreases with increasing temperature one would expect the h/e oscillations to persist 

up to higher temperatures for samples with smaller width w. In contrast, the onset temperature appears 

independent of sample width, which suggests that the upper temperature limit is not set by the mfp in the 

sample. In order to further probe this observation, we performed an additional set of measurements on 

a device whose mfp had been reduced by a factor of 20 to 1m by the introduction of point defects 

created by 2.5 MeV electron irradiation
29

.  Oscillations were unresolvable when the device width was 

8m and reappeared when it was narrowed to 1m (Fig. S7), in line with the expectation that the mfp 

must be of order of the sample width or larger for the signal to be seen. Strikingly, the temperature 

dependence of the oscillations in the disordered device is the same as that in the cleaner devices within 

experimental error (see Fig. 3C).  This strongly suggests that if the zero temperature in-plane mfp exceeds 

the sample width, the oscillatory signal persists until kBT (here kB is the Boltzmann constant) becomes a 



substantial fraction of  𝜏⊥ despite the mfp becoming smaller than the device width at elevated 

temperatures. 

This leads to a different scenario, in which the purity of the experimental system plays an intriguing dual 

role. Firstly, it provides a wavefunction with full phase coherence across the length of the ab plane. 

Secondly, the microscopically regular structure of the essentially perfect delafossite crystals gives rise to a 

periodic array of tunnelling paths between the layers in the c direction. 

In our picture, a phase coherent wave in the ab plane is transmitted to an adjacent plane with tunnelling 

matrix elements  𝜏⊥<< 𝜏1 in each unit cell of the lattice. For a field applied along b, the phase of the 

tunnelling matrix elements at site j=1...L is modulated by a factor 𝑒𝜄 2 𝜋
𝜑

𝐿
 𝑗
.  The field strength is written 

such that there are 𝜑 =  |𝐵⃗ ⋅ 𝑆 𝑖|/Φ0 flux quanta per layer across the system of width L (=w/lattice constant) 

in the a-direction.  Summing the resulting series yields  

 

𝐴(𝜑) = ∑𝑒𝜄 2 𝜋
𝜑
𝐿
 𝑗

𝐿

𝑗=1

= 
1 − 𝑒𝜄 2 𝜋𝜑

𝑒−𝜄 2 𝜋
𝜑
𝐿 − 1

 . 

 

The reader will recognise this as equivalent to the far-field diffraction pattern from a diffraction grating 

of finite width L illuminated by a coherent light field.  The finite width of such a grating is modelled by 

multiplying the transmission function of an infinite grating with a boxcar function (also known as a top-

hat function), rect(L).  Invoking the convolution theorem of the Fourier transformation, its far-field 

diffraction pattern becomes convolved with the Fourier transform of rect(L) namely sinc(L).  This is, we 

believe, the key physics behind our observation, because this convolution gives rapid oscillations at a 

frequency that depends on L but with a relative amplitude from one oscillation to the next that is 

approximately L-independent.  In our experiment, the applied field is small, such that 
𝜑

𝐿
≪ 1, and we 

observe only the first few oscillations of the sinc function.   

Reflecting this intuitive picture, we have performed a transport calculation using the finite system Kubo 

formula
30–32

 in the anisotropic Hofstadter model, which is summarized in Fig. 4 and presented in detail 

in the materials and methods. The calculation reproduces the qualitative experimental signal very well, 



with the expected sinc function clearly evident in Fig. 4C.  It also provides a further key insight.:  The 

bandwidth for interplane transport (Fig. 4B) is seen to be modulated by the field, even vanishing for 

special field at which  is an integer, even though the bare hopping 𝜏⊥ remains unchanged. 

The extremely anisotropic nature of the area pierced by the flux quantum -- truly microscopic in one 

direction, almost macroscopic in the other -- extends the experimentally accessible regime of the famous 

Hofstadter Hamiltonian to a region in which the hopping terms in the plaquette are highly anisotropic.   

A natural question is why these oscillations, seen so clearly in our raw data, have not been observed 

before. The answer is that, in addition to the rarity of crystalline perfection at the level found in the 

delafossites, only recent technological advances have enabled experimental investigations of this 

regime
10

. The technical key to this observation is to reduce w to a few m as well as to shape the sample 

cross-section into an ideal rectangle by FIB. This acts as a magnifying glass that allows us to venture 

deeper into the mechanism behind coherent inter-layer transport. 

We believe that the observations and analysis reported in this paper will stimulate further experimental, 

theoretical and technological research.  The framework that we have presented for understanding the 

data invites refinement, and similar physical picture might be developed from slightly different starting 

viewpoints.  It may also be possible to extend the experiments to other high purity layered compounds 

such as the ruthenates.  Furthermore, the evolution of the signal could be studied by fabricating bi- and 

few-layer thin films. Such thin films may also be used to explore technological possibilities. As quantum 

coherence emerges as its own subject in technology, it will be interesting to explore if applications can 

exploit the rare macroscopic single-particle phase coherence in the delafossites.  
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Figure 1: Magnetoresistance oscillations periodic in magnetic field  

(A) Experimental setup: (left) Current is passed along a bar shaped sample, 

perpendicular to the layered structure. The bars have a width w and a thickness d. 

Magnetic field is applied and rotated within the Pd/Pt-layer. (middle) Scanning 

electron microscope image of PdCoO2 microstructure to measure c-axis resistivity. 

(right) Crystal structure of PdCoO2 and PtCoO2. Alternating layers of Pd/Pt and CoO2 

lead to a high anisotropy of the resistivity. The area S relevant for the h/e-oscillations 

is spanned by two adjacent Pt/Pd layers. 

(B) Magnetoresistance of PtCoO2 and PdCoO2 at T=2K of various sample widths for 

fields along the a-axis. The apparent difference in the high field background is caused 

by a sharp feature in the angle dependent magnetoresistance when fields are close to 

parallel with the Pd/Pt-layers
7

. 

(C) The second derivative of the resistivity highlights the oscillatory part of the 

magnetoresistance in panel B. Multi-frequency components are well explained by 

small sample misalignment (see Fig. 2). 

(D) The oscillation period is shown for different sample widths. The sample width 

dependence shows a remarkable agreement with the oscillation period expected for a 

single particle magnetic flux quantum, h/e, per area S = w*c/3 (as indicated in the 

panel above).  



 

 

 

Figure 2: Angle dependence of quantum coherent oscillations. 

(A) Pd/PtCoO2 possess almost hexagonal Fermi surfaces
4,32

. This leads to three 

preferred directions of motion in contrast to the case of a circular Fermi surface. The 

magnetic field is rotated in the planes. The three ballistic paths and their angle 

dependent projections on the magnetic field are shown. In rectangular samples two 

symmetric branches are set by the sample width and one by the sample thickness d 

(see discussion in main text). The left panel illustrates the relevant 3D flux box limited 

by the sample width, thickness and two adjacent Pd/Pt-layers. This box defines the flux 

surfaces. The oscillations are periodic in integer flux quanta threading through them. 

(B), (C) Angle dependence of the quantum coherent oscillations of PdCoO2 (B) and 

PtCoO2 (C). Solid symbols represent the measured data points, solid lines show the 

expectation from the model sketched in (A). (B) shows data from a sample with a d/w-

ratio of 1.4, whereas the aspect ratio for the sample in (C) is close to 0.9.  

 

Figure 3: Angle dependence tilting the field out of the plane.  

(A) Second derivative of the magnetoresistance with respect to the magnetic field. For 

angle =0° B-periodic oscillations in agreement with Fig. 1 are shown. As the field is 

tilted out of the Pd-layers in 5° steps the oscillation period is modified as 1/cos . At 

higher tilt angles the B-periodic oscillation vanish and SdH oscillations are observed.  

Detailed analysis of these is shown in Fig. S5. The dashed line represents the field B* 



at which the cyclotron diameter coincides with the sample width w. B-periodic 

oscillations are seen over a wide-angle range below B*, whereas SdH oscillations only 

appear above B*. The data have been offset proportional to the magnetic field angle. 

(B) Subset of the data in (A) at a magnetic field angle of =40°. At low field the B-

periodic oscillations are seen, whereas at high field 1/B-periodic oscillations are 

observed.   

(C) Mesoscopic oscillation amplitudes extracted from Fast Fourier Transform (FFT) 

analysis (see raw data in Fig. S4) in the field range from 3T to 12T and =0° are 

shown for PtCoO2 (w=4.8m; squares and w=2.0m; circles), and PdCoO2 (mfp 

20m, w=3.9m; diamonds and mfp 1m, w=1m; triangles). In spite of the large 

changes of width and mfp, the temperature dependence of the signals from the 

different samples is very similar, and the oscillations can be observed to temperatures 

of > 50K. In comparison the temperature dependence of the conventional bulk SdH 

oscillations (=90°) are shown for the two main orbits (see Fig. S5).  

  



 

  

Figure 4: Transport analysis for the anisotropic Hofstadter model. 

(A) The anisotropic Hofstadter model with tunnelling parameters 𝜏1 = 100 𝜏⊥ = 1 as a 

toy model to study the origin of the h/e magneto-oscillation shown in Fig. 1. Interlayer 

transport occurs as an electron in one layer, in an extended standing wave state, 

tunnels to an adjacent layer. In the presence of a magnetic field, the tunneling matrix 

element is modulated by a phase factor 𝑒𝜄 2 𝜋
𝜑

𝐿
 𝑗
 due to the c-direction gauge field 

𝐴 (𝑗) = 2𝜋
𝜑

𝐿
𝑗, where 𝜑 is the flux per area between adjacent layers. This model 

naturally yields an effective interplane bandwidth given by  2 𝜏⊥𝑅𝑒 𝐴(𝜑) in the large L 

and anisotropic limit that vanishes for integer values of 𝜑, where the factor 𝐴(𝜑) 

resembling a diffraction grating effect is explained in the main text. 

(B) The energy spectrum of the anisotropic Hofstadter model around zero energy for 

L=51 showing vanishing bandwidth at 𝜑 = 𝑛 (integer).  

(C) Resulting calculations of the interlayer resistivity.  Full details of the calculation are 

presented in materials and methods
13

.  In the absence of incoherent (e.g. phonon 

assisted) interlayer processes, the resistivity would diverge for integer 𝜑  because only 

intraband term 𝜎𝑖𝑛𝑡𝑟𝑎 in the Kubo formula contributes (inset). However, for large L the 

level separation of Fig. 4B becomes smaller than the level broadening from such 

incoherent processes, motivating the inclusion of interband contributions 𝜎𝑖𝑛𝑡𝑒𝑟 in the 

calculation whose results are shown in Fig. 4C. 

^
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