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Deep Learning Enabled Laser Speckle Wavemeter with a
High Dynamic Range

Roopam K. Gupta,* Graham D. Bruce, Simon J. Powis, and Kishan Dholakia

The speckle pattern produced when a laser is scattered by a disordered
medium has recently been shown to give a surprisingly accurate or broadband
measurement of wavelength. Here it is shown that deep learning is an ideal
approach to analyze wavelength variations using a speckle wavemeter due to
its ability to identify trends and overcome low signal to noise ratio in complex
datasets. This combination enables wavelength measurement at high
precision over a broad operating range in a single step, with a remarkable
capability to reject instrumental and environmental noise, which has not been
possible with previous approaches. It is demonstrated that the noise rejection
capabilities of deep learning provide attometre-scale wavelength precision
over an operating range from 488 nm to 976 nm. This dynamic range is six
orders of magnitude beyond the state of the art.

1. Introduction

A key property of monochromatic optical waves is their wave-
length. An accurate measurement of wavelength can enable
many studies in fluorescence spectroscopy, atomic physics, and
high precision metrology.[1,2] A standard wavemeter has a lim-
itation of a one-dimensional dispersion. Using a dispersive el-
ement such as a diffraction grating can provide high bandwidth
but resolution scales linearly with system size, whereas stabilized
Fabry–Perot cavities can obtain high precision over a narrow op-
erating range.[3] Recently, it has been recognized that speckle,
which is the granular interference pattern produced when
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light propagates through a disordered
medium, can overcome these limita-
tions by multiplexing spatial-to-spectral
mapping in a compact system. Tracking
changes in this speckle pattern allows
wavelength measurement with high res-
olution or broad operating range.[4] For
wavelength measurement, speckle may
be generated by passing light through ei-
ther a multi-mode fibre[5–10] or into an in-
tegrating sphere.[11,12]

Capturing the speckle is insufficient:
the critical step relies on the interpreta-
tion and understanding of the variation
in speckle pattern as a function of wave-
length. Without the detailed knowledge
of the details of laser beam and medium,

it is not generally possible to write a mathematical expression
for the dependence of the speckle pattern on the wavelength.
Instead, the extraction of wavelength must be accomplished by
a data–driven approach in which a training phase uses a set of
speckle images obtained at known wavelengths to identify the
dependence of speckle on wavelength. Most of the previous ap-
plications use a method of calculating the transmission matrix
of the given disordered medium,[13] and this gives the capabil-
ity to measure wavelength over a range restricted solely by the
sensitivity range of the camera used to image the speckle. How-
ever, the resolution of this method is limited by a high degree
of correlation between the speckle patterns produced at closely-
separated wavelengths,[14] typically on the picometre-scale. Mul-
tivariate analysis, in particular principal component analysis
(PCA), adds a new dimension to this methodology and has
allowed attometre-resolved wavelength measurements.[9] How-
ever, PCA allows for only a limited range of operation that has
been demonstrated to be, at most, five orders of magnitude
higher than the resolution.[11] Whilst these results are impres-
sive, to truly convert speckle into a very precise measurement, a
powerful single-step algorithm would be desirable. The speckle
patterns generated after transmitting light through a disordered
medium are unique for each wavelength, with the presence of
inherent noise due to environmental or instrumental variations.
As a consequence, speckle is likely to be an ideal candidate for
the training of a deep learning based classification method.[15]

Deep learning is a powerful technique which has providedma-
jor advances in many areas of sciences, from evolutionary biol-
ogy to quantum physics.[16,17] Particularly, deep learning based
artificial neural networks (ANNs) automatically learn to identify
and extract the relevant features present in an input dataset.[18]

Moreover, the methodology for the application of ANNs makes
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Figure 1. Speckle wavemeter assembly and CNN geometry. a) The exper-
imental assembly for a speckle wavemeter. The laser wavelength is set us-
ing an acousto-optic modulator (AOM) and injected into the disordered
medium via a single mode fibre (SMF). The output speckle pattern is cap-
tured by the camera. b) The convolutional neural network (CNN) used to
classify the speckle images with respect to the incident laser wavelengths.
The CNN consists of an input layer,multiple down-sampling blocks (DSBi)
and three fully connected layers (FCi). Here 𝜆i denotes the output wave-
length class. The white scale bar on the representative speckle pattern rep-
resents 224 µm, while the intensity is normalized as shown in the adjacent
color bar.

them universal functional approximators[19] which are widely ap-
plied across physical sciences.[20–22] Deep learning based convo-
lutional neural networks (CNNs) have already found application
in speckle analysis for imaging applications.[23,24] Of particular
relevance here, they have also been implemented to discrimi-
nate between different speckle-creating scatterers.[25] Addition-
ally, harnessing the spectral characteristics of speckle, CNNs have
found an application to achieve real-time recovery of hyperspec-
tral information with a wavelength resolution of 5 nm.[26]

In this study, we present a method based on deep learning and
t-distributed stochastic neighbor embedding (t-SNE)[27] to clas-
sify and segment the speckle images corresponding to a given
laser wavelength. An interesting aspect presented in this study is
the automatic rejection of instrumental or environmental noise
by the CNN, which enables a classification of speckle patterns
with a wavelength precision of two attometres, representing a
nine orders of magnitude improvement compared to previous
studies with deep learning.[26] This, coupled with the capability
of the pre-trained CNN to segment the speckle images covering
the entire visible spectrum, leads to a dynamic range improve-
ment by six orders of magnitude. Going beyond the capability
to identify the speckle-creating scatterer,[25] we additionally show
that the trained CNN, in combination with t-SNE, can recognize
the wavelength variations of speckle regardless of which scatter-
ing medium is used.

2. Experimental Section

The principle of the approach to measuring wavelength is out-
lined in Figure 1. The speckle patterns produced by scattering
laser light from a disordered medium (Figure 1a) were recorded
on a camera. Unless stated otherwise, a tunable diode laser which
is wavelength-locked to a rubidium reference (∼ 780 nm) was
used as the source of laser light, an acousto-optic modulator to

apply controlled wavelength variations, and an integrating sphere
to scatter light.
To extract the wavelength dependence of the accumulated

speckle images, a supervised deep learning based convolutional
neural network (depicted in Figure 1b) was implemented.

2.1. Data Acquisition

The speckle images corresponding to the incident laser wave-
length were generated by using a 1.5 inch diameter, spectralon
integrating sphere. The laser light from an external cavity diode
laser (Topica DL-100 / LD-0785-P220) was stabilized to the 87Rb
D2 line (F = 2 → F′ = 2 × 3 crossover at ∼ 780 nm) using satu-
rated absorption spectroscopy and top-of-fringe locking. The light
from the laser was passed through an acousto-optic modulator
(AOM) (Crystal Technologies 3110-120) in a cat-eye double pass
configuration to control the wavelength. Speckle is sensitive to
many other laser parameters, including the polarization[28] and
the transversemode profile of the beam.[29–31] To ensure the varia-
tions in the speckle arise only fromwavelength changes, the light
was linearly polarized using a polarising beam splitting cube. To
remove any variations in the spatial beam profile, the light was
coupled into an angle cleaved single-mode fibre (SMF) (Thorlabs
P5-780M-FC-10). This was connected to the integrating sphere
input-port via an FC/PC connector without collimation optics to
produce a diverging fundamental Gaussian mode within the in-
tegrating sphere. The SMF delivered 900 µW into the integrating
sphere. The highly Lambertian diffusive coating and multiple re-
flections create large optical path differences allowing a high res-
olution for the system. As the generated speckle pattern also de-
pends on the choice of observation plane, the light then propa-
gated for a fixed distance of 20 cm before impinging the CMOS
camera (Mikrotron EoSens 4CXP). This distance was chosen to
achieve fully developed speckle patterns with a mean grain size
of ∼3 pixels (Figure 1a) to prevent sub-Nyquist sampling and as-
sociated aliasing effects.
To test the wavemeter over a broader range of the opti-

cal spectrum, additional lasers were used at wavelengths of
488 nm (M-Squared frequency-doubled SolsTis Ti:Sapphire),
532 nm (Oxxius single-longitudinal mode diode-pumped solid
state laser), 671 nm (Thorlabs HL6756MG Diode Laser), and
976 nm (M-Squared SolsTis Ti:Sapphire). In order to test the gen-
eralization capabilities of the CNN, experiments were also per-
formed by replacing the integrating sphere with a ground glass
diffuser (Thoor-labs ED1-S20).
During the data accumulation, a continuous train of 10 000

128 × 128 pixel speckle images was recorded for each wavelength
at a frame rate of 1 kHz with an exposure of 998 µs which took a
total of 10 s. The time difference between the data accumulation
of the different wavelength classes was typically 0.5 s.

2.2. Deep Learning Model Architecture, Training, and Calibration

To extract the wavelength dependence of the accumulated speckle
images, a supervised deep leaning based convolutional neural
network (CNN) (depicted in Figure 1b) was implemented. The
implementedCNNarchitecture consisted of four down-sampling
blocks (DSB). Each block consisted of three convolution layers
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with 30 filters. Each convolution layer was followed by a batch
normalization layer and a rectifier linear unit (ReLU) activation
function layer. To systematically reduce the dimensionality of the
input image, each DSB was connected with a max pooling layer
with filter size of 2 px × 2 px. The filter sizes of convolution layers
vary as 5 px × 5 px, 4 px × 4 px and 3 px × 3px, respectively, with
a stride and padding of 1 px × 1 px. The DSBs were followed by
two fully connected (FC) layers with leaky ReLU[32] as the activa-
tion function. Each FC layer with 128 neurons was followed by
a dropout layer.[33] These layers were then fully connected to the
output layer having n neurons with softmax activation function,
here n denotes the number of wavelength classes. For attaining
maximum classification accuracy over the validation dataset, the
above-mentioned architecture was chosen after optimizing: the
number of DSBs on the range 1–10; the number of convolution
layers between 1 and 5 for each block; the filter sizes from 1 px ×
1 px to 8 px × 8 px; and the number of neurons from 8 to 512 by
doubling the neurons at each step.
The CNN geometry was optimized by considering the first

dataset comprising the speckle images corresponding to 30 dif-
ferent wavelengths at a deviation of 2 fm. This dataset was ran-
domly sampled into 70% training, 15% validation and 15% test-
ing images corresponding to each wavelength. The training was
implemented in Matlab 2018a over Nvidia Quadro P5000 GPU.
To remove any intensity dependent fluctuations, all the speckle
images were zero-center normalized. The CNN was trained to
minimize the cross entropy cost function

Cost = −1
k
Σx[y × log a + (1 − y) × log(1 − a)], (1)

for 10 epochs in the mini batches of 128 images using an ADAM
optimizer,[34] where Σx represents training over all the input im-
ages x, k is the total number of training data points, y is the target
output and a is the network output. Here y and a are the one hot
vectors representing the category of the input image. Initial learn-
ing rate was set at 1 × 10−6 and L2 regularization at 2 × 10−4. The
training process was validated after every 100 iterations.
During the training, the CNN learns to generalize the

wavelength-dependent variations of the speckle patterns and thus
classify them. The complete CNN architecture can be considered
as composed of two ANNs, namely a convolution network (in-
put layer to FC1) and a classifier network (FC2 and FC3). The
primary function of the convolution network is to down-sample
the 2D input image into a 1D descriptor vector by filtering out
the irrelevant / noisy features, whereas the classifier network is
trained to classify these 1D descriptor vectors. Thus for a given
time instant, where the speckle field is constant with respect to
the environmental fluctuations, the convolution network learns
to produce a 1D descriptor vector (128 px) corresponding to a par-
ticular wavelength for the input 2D image (128 × 128 px). Hence,
after training, the vector output of the convolution network can
be directly considered for further analysis.

2.3. t-SNE Analysis

To visualize the convolution network’s segmentation capabilities
over the different datasets, t-SNE was implemented over the gen-

erated 1D vectors. t-SNE is a well known non-linear method of
machine learning which works on the principle of embedding a
low dimensional space such that the neighborhood probabilistic
distribution of the higher dimensional data is preserved in the
low dimensional vector space. This was achieved by minimizing
the symmetric form of Kullback–Leibler divergence.[27] In this
study, t-SNE analysis with a perplexity of 30, was implemented
using MATLAB 2018b.

3. Results

In this section, we present the capabilities of deep learning to
measure wavelength deviation from the speckle pattern. Follow-
ing the training and optimization of the CNN geometry, we iden-
tified the limit of detection by showing attometre-scale wave-
length precision, a broadband operation range of the CNN based
speckle wavemeter, and explored the generalization capabilities
of the CNN by changing the disordered medium.

3.1. CNN Optimization

For the optimization and calibration of the CNN, we varied the
wavelength in 2 fm steps over a range of 60 fm. The complete
dataset consisted of 10 000 images corresponding to each wave-
length, which were randomly divided into training, validation,
and test datasets by the fraction of 70%, 15%, and 15% respec-
tively. To calibrate the CNN, training is performed using every
image in the training set.
During the training, a global error is computed by parsing

a batch of images sampled randomly from each class of the
training set. During the backward pass, this calculated error is
backpropagated such that the network can identify the fea-
tures representing each individual class. In this study, this pro-
cess is implemented to optimize a CNN architecture over the
femtometre-resolved speckle patterns for gainingmaximumclas-
sification accuracy over the validation dataset.
After the training process, images from the test set (a total of

45 000 images across all the wavelengths) were considered for
testing the performance of the CNN. The one-hot classification
by the CNN led to a very accurate measurement with 100% clas-
sification accuracy. To evaluate the probabilistic classification er-
ror of the CNN we calculated the softmax output of the FC3 layer
for the test dataset. The error was calculated by taking the sum of
all the incorrect classification values for each image and then tak-
ing the average of this summed value over all the images. This
leads to a probabilistic classification error of 2.2 × 10−6. To em-
phasize this fact, we calculated the confusion matrix from the
softmax output of the CNN over log10 scale, which is presented
in Figure 2. For the optimal architecture, the CNN classification
accuracy does not depend on the number of training classes, or
the step size between them.

3.2. CNN Noise Rejection Capabilities

It has been shown in a previous study that the CNN, once trained
on a given dataset, learns to overcome a low signal to noise
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Figure 2. Demonstration of high-accuracy discrimination of femtometre-
resolved wavelength changes. Confusion matrix for the output of the CNN
in classifying speckle patterns corresponding to wavelength separations
on the femtometre-scale, plotted on log10 scale. The color bar represents
the decibel values.

environment.[35] In our study we find analogous results. Through
the training process, the CNN learns to reject variations in the
speckle patterns which do not correspond to the control parame-
ter, that is, wavelength. This is demonstrated in Figure 3, where
we analyzed the speckle images by implementing PCA on both
the input raw images and the processed output of the CNN. To
evaluate an improvement in the stability of the speckle image
time series (accumulated for 1 second) before and after the CNN
transformation (Figure 3b and d) we estimated the smallest de-
tectable shift in wavelength to be three times the standard devia-
tion (𝜎) from the mean position. The 3𝜎 value of the first princi-

pal component (PC1) was evaluated as 0.014 for the raw speckle
images whereas it was evaluated as 0.003 for the output of the
CNN, an improvement by a factor of 4.66. Additionally, to ana-
lyze the periodic variations in the data, we calculated the Fourier
transform of PC1 (Figure 3c,e). For the raw input speckle im-
ages at a fixed wavelength, PC1 of the input images show sev-
eral periodic noise components. However, when the output of the
convolution network (FC1) is analyzed using PCA, PC1 does not
reflect any of the temporal noise components that were present
in the input dataset. This shows that the CNN, once trained to
classify the speckle images with respect to wavelengths, filters
the input speckle images and returns the output as a 1D vector
representing a single wavelength without any environmental or
instrumental noise.
Given the widely known capability of ANNs to operate as uni-

versal functional approximators,[19] the results in Figure 3d and
3e also orient us toward a conclusion that once the CNN is trained
to classify the speckle images for a single wavelength, it processes
the input images to down-sample them into one dimensional
vector such that any noisy components are rejected. This sug-
gests that we can further train the CNN to recognize the inci-
dent laser wavelength with a precision below the instrumental
circuitary noise.

3.3. Attometre Precision

In order to observe the limit of detection of the trained deep
learningmodel, we accumulated a second dataset where the laser
wavelength was tuned over separations on the attometre scale.
More specifically, the speckle images were captured by detuning
the acousto-optic modulator across five distinct wavelengths with
an increment of two attometres. The time taken to accumulate

Figure 3. CNN-enabled noise rejection. The CNN learns, through training, to reject instrumental noise from the wavelength measurement. For an
example dataset comprising 1000 images sampled over 1 second at a fixed wavelength, a) shows example speckle images captured at every 100 ms.
The color bar represents normalized intensity. b) PC1 of the full train of speckle images and c) the Fourier transform of (b) identify the presence of
continuous variations in the dataset. d) PC1 of the 1D descriptor vectors (which are the processed output of the CNN) and e) the Fourier transform of
(d) highlight the absence of any variations present in the output of the CNN. Here, PC1 denotes the first principal component
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Figure 4. CNN classification and segmentation capabilities of attometre-
resolved speckle data. a) Confusion matrix on the log10 scale depicting
the classification abilities of the CNN for wavelengths separated by 2 am.
Here Δ𝜆 = 0 am depicts a detuning of Δ𝜆 = 30.652 fm from the rubidium
crossover and the other values are relative to it. The color bar represents
the decibel values. b) t-SNE visualization for the output of the FC1 from the
CNN trained over femtometre-resolved speckle data, applied to speckle
data separated by two attometres. The speckle images at each wavelength
form a distinct cluster, showing that the CNN can be retrained simply by
using a single speckle image at a known wavelength.

the dataset for a single wavelength was 10 s whereas the time
difference between the different wavelength classes was typically
0.5 s. This ensures that any wavelength drift between measure-
ments should be small compared to the drift within a single mea-
surement period.Moreover, we see no evidence of drift within the
measurement period (see Figure 3), verifying that each measure-
ment is congruent to a single wavelength.
As the dataset is changed, the classification abilities of the

CNN needs to be re-tuned, hence by the virtue of transfer learn-
ing, we retrained the CNN by changing the number of neurons
in the output layer (FC3). A total of 7000 images per wavelength
class were considered for training/validation and 3000 images
per class were considered for the testing process. The retrained
CNN gave a one-hot classification accuracy of 100% and a soft-
max probabilistic classification error of 3.8 × 10−5. To emphasize
the accuracy of measurement, we show the log10 of the confusion
matrix in Figure 4a. This matrix was calculated from the activa-
tions of the softmax layer at the output of the trained CNN. These
results show that the re-training of a CNN can result in a wave-
length precision as low as 2 am. This wavelength precision of
two attometres is not a fundamental limit, but limited by the pre-
cision with which we can control the wavelength using the AOM
in the experiment.
To eliminate the process of retraining the CNN, the images

were also processed using the CNN trained to classify the fm-
resolved data. The output 1D vectors at FC1 were further anal-
ysed using t-SNE (see Section 2 Subsection 2.3) to visualize the
segmentation capabilities. Figure 4b denotes the output of FC1
layer of the CNN downsampled to a two-dimensional latent vec-
tor space. Each cluster represents the speckle images correspond-
ing to a specific wavelength. Evidently, using this method we do
not need to train the CNN further using 7000 images per class
but we can use only a single image for the further classification,
and still achieve attometre-scale precision.
The resolving power of a wavemeter is R = 𝜆0

𝛿𝜆
, where 𝜆0 is the

absolute wavelength and 𝛿𝜆 is the minimum detected deviation
from it. The resolving power of the deep learning enabled speckle
wavemeter is R > 1011 for a central wavelength at 780 nm with a
least deviation of 2 attometre.

Figure 5. Segmentation capabilities of the CNN over a broadband range
of data. a) t-SNE scatter plot of the output of the 1D descriptor vector
for the wavelength deviations corresponding to 770, 775, 780, 785, and
790 nm. b) t-SNE scatter plot of the 1D descriptor vector corresponding
to 488, 532, 785, and 976 nm.

3.4. Broadband Operation Range

We tested the broadband segmentation capabilities of the CNNby
accumulating the speckle patterns over two wavelength ranges:
from 770 nm to 790 nm in 5 nm increments and separately at
488 nm, 532 nm, 785 nm, and 976 nm (see Experimental Section
for details).
When the fm-trained CNN was implemented over the two

datasets, and the output of FC1 was analyzed using t-SNE, the
speckle images corresponding to individual wavelength were
clustered independently as depicted in Figure 5a,b. With re-
spect to the interpolative estimation, this result shows that once
the CNN is trained, it can be harnessed for the classification
of speckle images at a broadband range between 488 nm and
976 nm regardless of the variation in the incident laser wave-
length.
As before, without retraining the CNN, t-SNE evaluation of

the output of FC1 shows a clear clustering of the classes, mean-
ing that a full retraining is not necessary, but wavelength de-
tection can be accomplished simply by using one known wave-
length per cluster. The fractional bandwidth of the wavemeter is
B = (𝜆max − 𝜆min)∕

1
2
(𝜆max + 𝜆min), where 𝜆max is themaximumde-

tected wavelength and 𝜆min is the minimum detected wavelength
in the broadband operation range, givingB = 0.66 for the speckle
wavemeter presented here.

3.5. High Dynamic Range

Defining the dynamic range as the product B × R, these results
showcase the high dynamic range capability of the CNN in clas-
sifying the speckle patterns: identifying wavelength differences
with a precision of a few attometres over a range of 100s of
nanometres gives a high dynamic range of 3.25 × 1011.
To display the high dynamic range capabilities of the CNN we

also accumulated the data using diode lasers locked to the D2
lines of 87Rb (∼780 nm) and 7Li (∼671 nm). For each laser, we
use the AOM to generate two set of speckle patterns, with a wave-
length separation of 2 am between each of the two sets. This re-
sulted in a broadband wavelength measurement with a precision
of 2 am. As can be inferred from Figure 6, t-SNE plot shows the
presence of four distinct clusters corresponding to the four men-
tioned wavelengths.
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Figure 6. High dynamic range of the CNN. The graph visualizes the
speckle patterns accumulated at four distinct wavelengths at 780 nm,
780 nm + Δ𝜆, 671 nm and 671 nm + Δ𝜆. The inset graph represents
the t-SNE scatter plot of the output of the 1D descriptor vector for the
mentioned wavelengths. (Here Δ𝜆 = 2 am)

3.6. Generalization Capabilities of the CNN

The speckle pattern represents the spatial correlation function of
a given disordered medium and the incident light wavelength.
This means that if a different scattering medium is used, the
speckle pattern would also be different but maintain the wave-
length dependent deviations.[36] Therefore, with respect to the
generalization capability, a deep learning based model trained
to decorrelate the speckle patterns with respect to wavelength
should in principle be able to segment the speckle images gen-
erated from any random disordered medium. To consider this
theory of generalized segmentation properties, we accumulated a
dataset using a ground glass diffuser (Thorlabs ED1-S20) in place
of the integrating sphere. As can be observed from Figure 7a,b,
the speckle patterns generated from the integrating sphere and
the ground glass show completely different characteristic fea-
tures.
We accumulated two sub-datasets, one where the speckle im-

ages were accumulated by varying the incident wavelength with
an increment of 2 fm and the other with an increment of 20 am.
The segmentation capability of the CNN, trained over femtome-
tre resolved data, was tested by processing the speckle images
generated from each class. The output from FC1 was analysed us-
ing t-SNE and the results are presented in Figure 7. As shown in
Figure 7c,d, the CNN segments and clusters each of the speckle
images into their individual class.
The results clearly show that the CNN processed the images,

which represented completely different spatial variations, and
clustered them with respect to the incident laser wavelength.

4. Discussion

The combination of speckle with CNNs achieves a remarkable
classification accuracy since speckle patterns represent an ideal
candidate for the training of the CNN. As shown in Figure 2,
the CNN achieves a one-hot classification accuracy of 100%, with
a softmax probabilistic classification error of 2.2 × 10−6. If the
disordered medium and the laser wavelength are kept constant
then, ideally, the resulting speckle pattern should not change.

Figure 7. Transferring wavelength classification to a different scattering
medium. Speckle pattern generated using an a) integrating sphere and
b) ground glass assembly. The color bar represents normalized intensity
while the white scale bar represents 224 µm. Segmentation results us-
ing ground glass assembly for c) femtometre-resolved and d) attometre-
resolved incident laser wavelength modulations.

However, the environmental fluctuations or fluctuations due to
instrumental circuitry cause the speckle patterns to change with
time. Therefore, we have also demonstrated that the CNN, once
trained to classify the speckle patterns, automatically learns to re-
ject the environmental or instrumental fluctuations.
As can be inferred fromFigure 3, the structure of a CNNmodel

and backpropagation training, drives it to progressively learn the
filtering of the input images. As explained before, the training is
implemented such that the output only contains the features rel-
evant to the individual class of the images in the training dataset.
In the case of a speckle wavemeter, conceptually, the speckle im-
ages should be down-sampled such that the output only contains
the features with respect to the wavelength. In this study, we have
demonstrated that the CNNs can accurately classify speckle pat-
terns measured with a wavelength separation of 2 am (Figure 4)
which can be attributed to the automated noise rejection capabil-
ity of the CNN.
The results demonstrated in Figure 3, in combination with

the universal function approximator property of the CNN, pro-
vide an insight that this model once trained can be implemented
(in combination with a dimensionality reduction algorithm) to
segment the wavelength-dependent speckle with any deviation
and generated from any disordered media. The results presented
in Figures 5–7 highlight these properties of the deep learning
based model.
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ANNs, although powerful tools, also come with potential lim-
itations. When compared to other statistical methods, an ANN
takes considerably more time for the training process. Moreover,
for a classification problem, the training time increases exponen-
tially with the number of classes. Additionally, the ANN which is
trained to classify, can only identify data-points which are part of
training set classes. This would apparently restrict the range and
precision of the speckle wavemeter.Whilst a regression-based ap-
proach seems to be an attractive option to generalize over the
unknown data-points, this generalization capability seems to be
limited at a much lower precision.[37] Instead, this potential limi-
tation has been overcome here by the application of t-SNE which
enables relative wavelength measurement for speckle patterns
which are not part of the training set classes.

5. Conclusion

In conclusion, this study has implemented a deep learning based
method to classify the speckle patterns with respect to the inci-
dent light source wavelength. The combination of laser speckle
and deep learning provides an accurate method to distinguish
between laser wavelengths separated by as little as 2 am and as
much as 488 nm, showing a dynamic range of 3.25 × 1011 in a
single-step algorithm. This combination can also be applied to
a completely distinct scattering medium, and re-calibrating the
CNN using the method of transfer learning provides an efficient
training procedure for a highly accurate wavemeter.
Additionally, this study shows that a trained deep learning

model can be implemented to reject inherent instrumental or en-
vironmental noise. The results presented here will be beneficial
in not only automated laser stabilization but may also be useful
for noise reduction in multiple telecommunication applications.
In the future, we will investigate extending this work to the devel-
opment of robust and compact spectrometers with a capability to
measure multiple wavelengths, and will also investigate the pos-
sibility to train the CNN to simultaneously measure wavelength,
polarization, and transverse mode profile.
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