
 

Crescent States in Charge-Imbalanced Polariton Condensates
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We study two-dimensional charge-imbalanced electron-hole systems embedded in an optical micro-
cavity. We find that strong coupling to photons favors states with pairing at zero or small center-of-mass
momentum, leading to a condensed state with spontaneously broken time-reversal and rotational symmetry
and unpaired carriers that occupy an anisotropic crescent-shaped sliver of momentum space. The crescent
state is favored at moderate charge imbalance, while a Fulde–Ferrel–Larkin–Ovchinnikov-like state—with
pairing at large center-of-mass momentum—occurs instead at strong imbalance. The crescent state stability
results from long-range Coulomb interactions in combination with extremely long-range photon-mediated
interactions.
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Introduction.—At low carrier densities, electrons and
holes in two-dimensional (2D) semiconductors pair into
bosonic excitons that can condense at low enough temper-
atures [1–5]. Exciton condensation is expected to survive the
frustration of unequal electron and hole densities [6–11],
which favors condensed electron-hole pairs that acquire a
finite center-of-mass momentum forming a state similar to
the Fulde–Ferrel [12] (FF) and Larkin–Ovchinnikov [13]
(LO) phases (abbreviated as FFLO) known from super-
conductors. The prospect of FFLO phases has also been
extensively discussed in the context of cold atoms [14].
Although FFLO phases are common to imbalanced two-
component fermions with attractive interactions, more
exotic alternatives, such as phase separation in momentum
space (also named “breached pair” or “Sarma” phases), have
been suggested in special cases [15,16]. In neutral systems,
these uniform density imbalanced phases compete with,
and are largely replaced by, phase separation in real space
[17–19]. For the charged electron-hole systems we focus on
here, however, the electrostatic energy forbids phase sep-
aration and exotic uniform states are a stronger possibility.
The Bose-Einstein condensation (BEC) temperature

increases significantly when optically pumped 2D semi-
conductors are placed in a planar microcavity, designed so
that long-wavelength confined photons are close to reso-
nance with excitons [20,21]. The resulting quasiparticles,
exciton-polaritons, are photon-exciton hybrids with greatly
reduced mass [22]. This favors long-range coherence and
yields more robust condensates than without a cavity [23].
In this Letter, we examine the influence of a resonant planar
microcavity on condensation phenomena in 2D semicon-
ductor structures with unequal electron and hole densities
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FIG. 1. (a) Semiconductor quantum well embedded in
a planar microcavity with net charge tuned by a gate voltage
between the bottom mirror and the grounded semiconductor.
(b) Occupied bands with finite excitation and charge. (c) Typical
anisotropic crescent state represented by the electron occupation.
This occupation reaches one at low temperatures inside the yellow
crescent-shaped region. (d) ky ¼ 0 momentum space slice of
(c) showing both occupations and electron-hole coherence. Inside
the Fermi surface [yellow in (c)], both conduction and valence
bands are occupied so coherence vanishes. Elsewhere only one
state is occupied. Parameters (as described in the text) are target
charge density n0 ¼ 8.125 × 10−2a−2B , excitation chemical poten-
tial μex ¼ EG þ EB, temperature kBT ¼ 0.04EB, photon cutoff
frequency ω0 ¼ 3.06EB, matter-light coupling momentum cutoff
κ ¼ 2.5a−1B , matter-light coupling g0 ¼ 0.8EBaB, mass ratio
me=mh ¼ 1, ε ¼ 1, and capacitive energy α ¼ 800EBa2B.
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[see Figs. 1(a) and (b)]. We find strong matter-light
coupling favors small pairing-momentum states over
FFLO states with larger pairing momentum. Specifically
it induces breached pair states and anisotropic crescent
states, explained below, which spontaneously break both
rotational and time-reversal symmetry. The anisotropic
states place excess carriers in a compact crescent-shaped
sliver in momentum space on the edge of the region
occupied by electron-hole pairs, as shown in Figs. 1(c)
and (d). Crescent states were in fact considered as a
potential state for small pairing wave vector [12,24] but,
as shown in Ref. [24], are not the ground state of the
superconducting problem. The crescent and breached pair
states are stabilized only because of the coupling to light
and the small photon mass. Further, as discussed later, the
anisotropy also requires long-range Coulomb interactions.
As such, while the electron-hole-photon model we will
introduce below is superficially similar to the two-channel
model of ultracold fermionic atoms [25], there are crucial
differences. For atoms, interactions are contactlike and,
most importantly, the analogue of the photon is a “closed
channel” molecule with a mass twice that of the atoms. In
addition, phase separation in real space dominates the
phase diagram of cold atoms [17–19]. The states we
propose here are thus unique to polaritons. These states
can be identified experimentally by strongly anisotropic
electrical transport that can be reoriented by altering the
polariton-confinement landscapes or by weak resonant
optical excitation. In the following we first explain the
calculations that predict the crescent states and then discuss
properties that could identify them experimentally.
Model.—We consider a model of electrons and holes,

confined in 2D quantum wells, subject to Coulomb
interactions, and coupled to cavity photons. The
Hamiltonian is thus (ℏ ¼ 1, 4πε0 ¼ 1):
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p ðê†kĥ†p−kâpþ â†pĥp−kêkÞ; ð1Þ

where S is the system area. The first term in Ĥ describes
noninteracting electrons and holes with masses me and mh
in a 2D semiconductor with band gap EG. The second term
is the mutual Coulomb interaction Vp ¼ 2πe2=εp, while
the third term gives the dependence of the electrostatic
energy on the system charge density. Here α ¼ e2S=2C is
an (intensive) capacitive scale that depends on the gating
geometry. The target charge density, n0, is proportional
to a tunable gate voltage. Typically α is large compared

to the corresponding interaction scale (e2n−1=2e =ε) so
that the actual charge imbalance that minimizes the free
energy is nearly identical to the target charge density, i.e.,
hn̂ci ≃ n0, where

n̂c ¼
1

S

X

k

ðê†kêk − ĥ†kĥkÞ ¼ n̂e − n̂h: ð2Þ

Including the electrostatic energy realistically, as we do in
Eq. (1), allows us to use the grand canonical ensemble
without generating unphysical phase separations and so
enables us to consider more general variational ansatz
states. The final line of Eq. (1) accounts for the photons
and their coupling to matter. We assume a single branch
of cavity photons with a quadratic dispersion, ωk ¼
ω0 þ k2=2mph, where mph ≃ 10−4me. In the following
we measure lengths in units of the 2D exciton Bohr radius
aB ¼ ε=ð2μe2Þ, where μ ¼ memh=ðme þmhÞ, and ener-
gies in units of EB ¼ 1=ð2μa2BÞ.
To avoid the ultraviolet divergences produced by a

momentum-independent matter-light coupling [26–30],
we take gk ¼ g0e−jkj=κ and choose 1=κ to be of the order
of the material lattice constant. This cutoff breaks the
theory gauge invariance under the replacement êk →
êkþeA; ĥk → ĥk−eA, which could be recovered by taking
κ → ∞ and renormalizing the photon frequency (see
Refs. [30,31]). Full gauge invariance requires consistency
of the band and matter-light coupling Hamiltonians [33]
and is crucial to recover the no-go theorems precluding
ground state superradiance [33,34].
To control the excitation density we introduce a chemical

potential, μex, and replace Ĥ → Ĥ − Sμexn̂ex, where

n̂ex ¼
1

S

X

k

�
â†kâk þ 1

2
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�
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The energy shift accounts for the time dependence of the
nonequilibrium condensates that form at finite excitation
density. The no-go theorem does not apply for a system at
finite excitation density [35]. We note that, because we
make the rotating wave approximation, equal shifts in ω0,
EG, and μex have no effect.
Variational approach.—To estimate the finite temper-

ature phase diagram of our model, we use a variational
ansatz for the density matrix [36], ρ̂v ¼ expð−βĤvÞ=Zv,
Zv ¼ Tr½expð−βĤvÞ�. We then minimize the free
energy corresponding to this density matrix, Fv ¼ hĤiv þ
kBTTr½ρ̂v ln ρ̂v� ¼ hĤ − Ĥviv − kBT lnZv, where hX̂iv ¼
Trðρ̂vX̂Þ. Standard thermodynamic identities allow one to
show that Fv is an upper bound on the true free energy. The
variational Hamiltonian Ĥv should be chosen to be solv-
able, and for our model, we should allow for electron-hole
coherence, photon coherence, population imbalance, and
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arbitrary polariton momentum Q. We therefore consider a
variational Hamiltonian of the form

Ĥv ¼ νQ
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ĥQ
2
−k

��
ηek Δk

Δk −ηhk

�� êQ
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We can derive an expression for Fv in terms of the
eigenvalues and eigenstates of Ĥv (see Supplemental
Material [31]). The first term in Eq. (4) is chosen so that
the photon density is ϕ2. The results below are then
obtained by minimizing over the variational parameters
(ϕ; νq; ηek; η

h
k;Δk;Q). Because this ansatz contains only

pairing of fermions and displacement of bosons, it is
equivalent to mean-field theory approaches. A challenge
for future work is to include higher order correlations such
as those responsible for trions or attractive polarons
[37,38]. Such correlations however can be suppressed by
considering a spin polarized gas.
Pairing phases.—Previous work [11] explored the

ground state phase diagram of Eq. (1) in the absence
of coupling to photons, using the grand canonical
ensemble with a charge imbalance chemical potential μc
(Ĥ → Ĥ − μcSn̂c) in place of a realistic electrostatic energy
[39]. It predicted first order phase transitions between a
balanced condensate with hn̂ci ¼ 0 and an imbalanced
hn̂ci ≠ 0 anisotropic FFLO condensate with nonzero
center-of-mass momentum Q ∼ jhn̂ei1=2 − hn̂hi1=2j. When
applied to the exciton only problem, our more realistic
description of electrostatics shows that the transition
between a Q ¼ 0 condensate and the FFLO state is
continuous as a function of gate voltage [31].
When the balanced condensate is coupled to photons, it

becomes a polaritonic state, with exciton-photon coherence,
further lowering its energy. In contrast, coupling to photons
has little influence on the FF state because excitons with
center-of-mass momentumQ couple to photons at the same
momentum, and the small photon mass places these far off
resonance. The photon fraction in the FF state is therefore
very small, andwe thus refer to this state as dark. Coupling to
photons therefore favors states with a small center-of-mass
momentum. Numerical minimization indeed reveals that, at
moderate imbalance, coupling to photons yields a bright
polaritonic condensate state with Q small but nonzero.
Surprisingly, this state accommodates excess carriers by
spontaneously breaking rotational and time-reversal sym-
metry. At larger imbalance, the expected FF phase is
recovered (for the extreme imbalance case, see Ref. [40]).
Figure 2 shows how the electron momentum distribution

changes with charge imbalance (corresponding cross sec-
tions also showing hole occupation and coherence are
presented in [31]). Panel (a) shows the case with n0 ¼ 0,
i.e., balanced populations. At small n0 [panel (b)], the state

maintains Q ¼ 0 to take optimal advantage of the photon-
mediated electron-hole coupling. In the zero temperature
limit, accommodating extra charges requires forming a
Fermi surface, enclosing regions of momentum space in
which both valence and conduction band states are occu-
pied. At low charge imbalance, the Fermi sea forms a ring
at the outer edge of the region of paired electrons. We will
refer to the state at low carrier densities as a “weak breached
pair” (WBP) state as it is reminiscent of the two-Fermi
surface breached pair state described in Ref. [16]. In
contrast to the fully breached pair, the coherence in
Fig. 2(b) is only weakly suppressed in the region where
extra electrons exist because the temperature is comparable
to the conduction band Fermi energy. For intermediate n0
[panels (c),(d)], we find a surprising broken rotational
symmetry anisotropic state with 0<Q≪ jhn̂ei1=2−hn̂hi1=2j.
Here, the unpaired carriers are contained in a Fermi pocket
with a crescent shape on the edge of the otherwise circular
electron distribution; hence we refer to it as the crescent
state (CS). As n0 increases further, the crescent extends in
angle. Eventually it is replaced by a filled annulus
[panel (e)], equivalent to the breached pair (BP) state of
Ref. [16]. Finally, at large enough n0, one recovers the dark
FF state. Further increasing n0 brings the system to a
normal state (not shown). This sequence occurs at high
excitation density n̂ex. At low n̂ex (not shown) the BP state
is replaced by a Sarma state where excess particles occupy a
single isotropic Fermi surface [15], matching the extreme
imbalance limit [40].
Phase diagram.—Figure 3 illustrates how the minimum

free energy state evolves with target charge density
and temperature by plotting charge imbalance, electronic
excitation density, photon density, and anisotropy
A≡P

k jk̂ ·Q̂jhê†Q=2þkêQ=2þki=
P

khê†Q=2þkêQ=2þki. This
figure demonstrates that the CS persists over a wide

Crescent 
   state

Crescent 
   state

(a) (c)(b)

(d) (f)(e)

FIG. 2. Electron occupation hê†Q=2þkêQ=2þki for various im-
balance values n0a2B: (a) 0, (b) 6.25 × 10−3, (c) 1.875 × 10−2,
(d) 0.125, (e) 0.1875, (f) 0.25. Labels on each panel indicate the
phases as described in the text. The values of QaB are
(c) 0.5 × 10−6, (d) 0.5 × 10−5, (f) 1.05, and zero for panels
(a),(b),(e). Other parameters are as in Fig. 1.
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temperature range before being replaced by the WBP
(isotropic) state. From this figure we see that most
transitions, other than those into and out of the BP state,
are continuous.
The quantities plotted in Fig. 3 allow us to classify

phases and extract the phase diagrams in Fig. 4. Because
the BP and CS have significant photon fractions, the small
photon mass should allow them to survive to high temper-
ature even when the collective fluctuations (absent in our
mean-field theory) are included [41]. In contrast, the larger
excitonic mass restricts the excitonic FF state to low
temperatures. The survival of the CS up to kBT ≃ 0.1EB
also suggests this state can survive the broadening intro-
duced by cavity loss, which varies between 10−4EB and
10−2EB depending on material.
Since the CS is stabilized by the matter-light coupling, an

experimentally accessible way to alter its robustness is by
changing the photon cutoff frequency, ω0, e.g., using a
wedge cavity. When the photon is detuned far above the
exciton energy, the cavity has little effect and excitonic
results should be recovered. Figure 4(a) shows such a phase
diagram as a function of n0 and ω0. Because physical states
require μex < ω0, the lower boundary of this phase diagram
cuts off just above this limit. As expected the CS becomes
less prominent with increasing ω0, although a narrow
stability interval persists up to large detunings. In all the
results we present here, μex − EG ¼ EB, providing an
excitation density in the BEC-BCS crossover regime.
Recent experiments suggest that this regime is attain-
able [42]. We avoid the lower excitation density BEC
regime as it is known that, at finite temperature, fluctuation
corrections to mean-field theory are important here [41,43].
Crescent state properties.—The CS is anisotropic

with the same symmetries as the FF state but, in distinction,

has a significant photon fraction and a qualitatively
smaller pairing momentum. Because of its anisotropy, it
is not immediately clear whether it has zero net current
as expected by Bloch’s theorem [44]. An explicit
calculation shows that the CS has a nonzero excitonic
current (electron current plus hole current) that is
balanced by an equal and opposite photon current, i.e.,
a counterflow condensate state, generated by a shift
in the condensate pair momentum from Q ¼ 0 to
Qmin ≠ 0 [45]. The momentum shift balances matter
energy gain against photon kinetic energy cost. Since
the shift is small enough to leave the electron and hole
distributions almost unchanged, we can approximate
Qmin ≃ ðmph=jϕj2Þð

P
k k½hê†kêki=me þ hĥ†kĥki=mh�Þ, i.e.,

jQminj is parametrically small due to the small photon to
electron mass ratio. Indeed, as noted in the caption of
Fig. 2, our numerical results for jQminj in the CS are orders
of magnitude smaller than in the FF state.
Since Bloch’s theorem [44] can be generalized to a

coupled photon-matter system, we expect that the charge
current (electron current minus hole current) also vanishes.
In our numerical calculations, we find that this cancellation
is imperfect but ascribe the nonzero numerical result to the
UV matter-light coupling cutoff κ discussed previously. In
Ref. [31], we show that this charge current vanishes as the
UV cutoff diverges.
The CS is a metal with a single Fermi surface for

unpaired electrons, and we expect that it will exhibit
metallic transport properties. The anisotropic Fermi surface
in Fig. 2 implies anisotropic electrical transport with larger
conduction along the thin direction of the crescent, i.e., in
the direction parallel to Q, that can be used to identify the
CS experimentally. Any weak perturbation, for example
weak resonant excitation or spatial anisotropy of a weak
polariton confinement landscape, can be used to control the
sense of anisotropy, possibly in situ. Also, since the CS
breaks inversion symmetry, nonlinear ac response is also
expected to exhibit rectification. The broken inversion
should also enable optical signatures of second harmonic
generation.

FIG. 3. Evolution of state with target charge density n0 at
kBT ¼ 0.04EB (left) and with temperature T at n0a2B ¼ 0.075
(right); other parameters as in Fig. 1. Top panels show excitonic
density (black; left axis) and charge imbalance (blue; right axis).
The dashed blue line shows n0. Bottom panels show anisotropy
(black; left axis) and photon density ϕ2a2B (blue; right axis).

(a) (b)

FIG. 4. Phase diagrams. (a) as a function of charge density n0
and photon cutoff frequency ω0 at kBT ¼ 0.04EB. (b) as a
function of charge density n0 and temperature T at ω0 ¼ 3.06EB.
The dashed lines indicate ω0 ¼ 3.06EB (left) and kBT ¼ 0.04EB,
respectively. All other parameters are as in Fig. 1.
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Notably, both strong matter-light coupling and long-
range Coulomb interactions are required to stabilize the CS.
While the photon promotes Q ≈ 0 pairing, it is the long-
range Coulomb interaction that favors anisotropy. Indeed,
screening the Coulomb interaction eventually leads to a
continuous transition from the anisotropic CS to an
isotropic state (see Ref. [31]). We therefore expect that
our mean-field calculations overestimate the stability range
of the CS. It is known that for the FF state (which has the
same symmetries as the CS) fluctuations destroy long-
range order [46,47] but some residual order survives [48].
Understanding the scales over which the CS order persists,
and the consequences for charge transport, is a challenge
for future work.
Conclusions.—Since the CS and BP states are polari-

tonic, they are expected to survive to high temperatures and
should therefore be accessible in current experiments
involving doped quantum wells [49–54] or 2D materials
in cavities [37,55,56]. Our work focuses on the small
imbalance regime where we are most confident about our
conclusions. At high doping, one instead may consider
Fermi-edge (Mahan) excitons (see e.g., [38,57] and refer-
ences therein). Open questions include how the states we
consider here connect to these Fermi-edge states, the effects
of electronic screening in a charge doped system, and
practical treatments that go beyond mean-field theory.
The research data supporting this publication can be

accessed at [58].
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