
RESEARCH ARTICLE

Cross-species reactivity of antibodies against

Plasmodium vivax blood-stage antigens to

Plasmodium knowlesi

Fauzi Muh1, Namhyeok Kim1, Myat Htut Nyunt2, Egy Rahman Firdaus1, Jin-Hee Han1,

Mohammad Rafiul Hoque1, Seong-Kyun Lee1, Ji-Hoon Park1, Robert W. Moon3, Yee

Ling Lau4, Osamu Kaneko5, Eun-Taek HanID
1*

1 Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon

National University, Chuncheon, Gangwon-do, Republic of Korea, 2 Department of Medical Research,

Yangon, Republic of Myanmar, 3 Department of Infection Biology, Faculty of Infectious and Tropical

Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom, 4 Department of

Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 5 Department of

Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan

* etaekhan@gmail.com.

Abstract

Malaria is caused by multiple different species of protozoan parasites, and interventions in

the pre-elimination phase can lead to drastic changes in the proportion of each species

causing malaria. In endemic areas, cross-reactivity may play an important role in the protec-

tion and blocking transmission. Thus, successful control of one species could lead to an

increase in other parasite species. A few studies have reported cross-reactivity producing

cross-immunity, but the extent of cross-reactive, particularly between closely related spe-

cies, is poorly understood. P. vivax and P. knowlesi are particularly closely related species

causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P.

knowlesi infections are rising in some areas. In this study, the cross-species reactivity and

growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. know-

lesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, west-

ern blotting, protein microarray, and growth inhibition assay were performed to investigate

the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the mole-

cules located on the surface or released from apical organelles of P. knowlesi merozoites.

Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P.

vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens

from both immune animals and human malaria patients inhibited the erythrocyte invasion by

P. knowlesi. This study demonstrates that there is extensive cross-reactivity between anti-

bodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently

inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic

areas.
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Author summary

In recent years, malaria initiatives have increasingly shifted focus from achieving malaria

control to achieving malaria elimination. However, the interventions used are leading to

drastic changes in the proportions of different Plasmodium species causing clinical infec-

tion, particularly within Southeast Asia. Little is known about how these different parasite

species interact/compete in nature or whether exposure to one species could cause some

level of protection against another. We examined cross-reactive antibody responses to key

parasite proteins with roles in red blood cell invasion and identified novel cross-species

reactivity among the closest of malaria affecting the human population (P. vivax and P.

knowlesi). This comprehensive analysis provides evidence that cross-reactive immunity

could play an important role in areas where species distributions are perturbed by malaria

control measures, and future efforts to identify the specific cross-reactive epitopes

involved would be invaluable both to our understanding of malaria immunity and vaccine

development.

Introduction

Malaria remains a deadly scourge in humans, with over 200 million cases and close to a half-

million deaths reported annually [1]. Protozoan malaria parasites are transmitted by sporozo-

ite inoculation by a mosquito vector into the human [2]. Five Plasmodium species infect

humans; Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and zoonotic malaria parasite

P. knowlesi [2,3]. P. falciparum is the most virulent species and leads to most severe cases in

Africa, while P. vivax is widely distributed and predominates in regions of Southeast Asia and

South America [1]. Recently, a monkey malaria parasite, P. knowlesi, has been found to be

cause a significant number of human infections in Southeast Asian countries [4–7].

In recent years, malaria initiatives have increasingly shifted focus from achieving malaria

control to achieving malaria elimination. Interventions are leading to drastic changes in the

proportions of different Plasmodium species affecting populations. For example, as P. vivax
forms latent hypnozoite stages, infection rates are often slower to decline under control mea-

sures that P. falciparum [8]. In most areas where malaria is endemic, two or more human para-

sites coexist [9], and mixed infections with three malaria parasite species (P. falciparum, P.

vivax, and P. knowlesi) have been identified in southern Myanmar, Thailand and Sabah,

Malaysia [10–12]. However, little is known about how the different parasite species interact/

compete in nature or whether exposure to one species could cause some level of protection

against another. If cross-species immunity is important, the successful control of one species

could lead to increases in the frequency or severity of infections from other Plasmodium spe-

cies [9,13]. Previous studies looking at patients concurrently infected with multiple Plasmo-
dium species demonstrated clear cross-regulatory patterns, including evidence for density-

dependent regulation of parasitaemia and peak parasitaemias for each parasite forming

sequential patterns [14]. Density-dependent regulation of parasitemia and specific immune

responses targeting particular antigens could explain the prevalence of coinfection patterns in

endemic areas [14].

An extreme example of how malaria control can affect species distribution is in Malaysia,

where successful control of human malaria has led to a significant decline in P. falciparum and

P. vivax cases at the same time as zoonotic P. knowlesi cases have dramatically increased. For

example, in Sabah, P. knowlesi caused less than 5% of malaria cases in 2004, but in 2017, it

was responsible for 98% of cases [15,16]. Equally, it is also possible that the removal of P.
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falciparum or P. vivax from populations could have an effect on the spread or pathogenicity of

other human parasites such as P. ovale and P. malariae which often cause subclinical infections

[17].

However, cross-species immunity in malaria has been largely ignored in the last few

decades [14]. Previous reports have observed cross-reactivity between P. falciparum and P.

malariae and between P. falciparum and P. vivax due to conserved/homologous plasmodial

proteins and the presence of shared B- and T-cells epitopes [18–25]. P. vivax antigens were rec-

ognized by sera from P. vivax and P. falciparum clinical patients [20,22]. Naturally acquired

antibodies in P. falciparum-infected patients inhibit the invasion of hepatocytes by rodent

malaria sporozoites [18]. Previous reports found that past exposure to P. vivax or P. malariae
leads to lower morbidity and mortality following P. falciparum exposure [14,26]. However, lit-

tle is known about which factors affect the cross-reactivity observed in those previous reports.

In addition, the identification of species-transcending inhibitory antibodies could provide a

powerful tool for vaccine development, particularly as these antibodies are far more likely to

result in strain-transcending effects, which has been a major challenge in malaria vaccine

research [27].

P. knowlesi and P. vivax are phylogenetically closely related [28], and approximately 89% of

P. vivax genes have orthologues in P. knowlesi [29]. In silico analysis has demonstrated that

there is a high degree of homology among plasmodial proteins, especially those of P. vivax, P.

knowlesi and P. cynomolgi [28]; thus, cross-reactivity may play an important role in the preva-

lence patterns observed in endemic areas of Southeast Asian countries where both human and

primate malaria coexist. It also remains interesting to explore the existence of cross-reacting

epitopes in blood-stage malaria vaccine candidates including P. knowlesi [30]. The disease

dynamic change has been seen in Malaysia while decreasing human Plasmodium species is

observed, the increasing of P. knowlesi infection is inevitable [15]. The possibility of waning

cross-protective P. vivax antibodies may contribute to increased zoonotic Plasmodium infec-

tion [31]. It is in line with our previous study that P. vivax antibodies inhibited the P. knowlesi
invasion in vitro [25].

This study presents a systematic analysis of cross-species reactivity of antibodies against P.

vivax blood-stage antigens and their inhibition activities against human erythrocyte invasion

by P. knowlesi. We also observed that antigen-specific IgG antibodies from P. vivax-infected

patients could inhibit erythrocyte invasion in P. knowlesi parasites. These data indicate that

significant cross-species reactive antibodies are generated during malaria infections and that

these may play a role in susceptibility or pathogenicity, particularly between closely related

species like P. vivax and P. knowlesi. It suggests that the potential for a developed vaccine

against multiple Plasmodium species should be examined in more detail.

Materials and methods

Ethics statement

Blood samples were taken from human subjects, age 18–70 years old after written-informed

consent was obtained from all subjects. All experimental protocols involving human samples

were approved by the Kangwon National University Hospital Ethical Committee (IRB No.

2014-08-008-002), the University of Malaya Medical Ethics Committee (Ref No. 817.18), and

the Medical Research Ethics Committee (MREC), Ministry of Health, Malaysia (National

Medical Research register ID No. 13079), in accordance with relevant guidelines and regula-

tions. Blood samples were collected from P. knowlesi-infected patients in EDTA-vacutainer

tubes provided by the University of Malaya Medical Center (UMMC), Malaysia during 2010–

2013, on the day when the patients were positively diagnosed with malaria. All P. knowlesi
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samples used for this study were confirmed by species-specific PCR as described elsewhere [4].

The patients’ serum were collected from symptomatic patient visiting at endemic areas of

Malaysia with parasitemia 0.207% in average (ranging from 0.003 to 1.380%) and age 38 years

in average (range from 6 to 72). However, we did not obtain information about history of pre-

vious malaria infection from patients. P. vivax-infected patients were recruited from a P.

vivax-endemic area in Gangwon province, the Republic of Korea (ROK) where P. vivax is

major Plasmodium species, there is no P. knowlesi infection in this area [1]. Patients with P. fal-
ciparum infection were excluded in this study. The sera were collected from symptomatic

patient visiting at local health centers and clinics in Gangwon Province, ROK with parasitemia

ranging from 0.027 to 0.630%, mean 0.121%) and age 18 to 60 years (mean 28). P. vivax and P.

knowlesi eight patient serum samples were pooled after species-specific PCR and eight health

individuals without any Plasmodium infection. A total 70 individual P. vivax-, P. knowlesi-
infected patients serum and health individuals were used for individual immunoscreening

after preliminary pooled-serum screening. Patients without malaria were recruited from a

population of healthy individuals living in nonendemic areas of the ROK; malaria negativity

was confirmed by microscopy and PCR.

Sequence analysis of amino acid identity

The target antigens were selected from our previous studies that were localized in different api-

cal organelles/ merozoite surface of P. vivax and were recognized by human patients serum

(Table 1, see references). Amino acid sequences of P. vivax (Sal I and P01 strains) and P. know-
lesi (H strain) were retrieved from PlasmoDB (www.plasmodb.org) [32] and aligned. Clustal

W program was used to make a pairwise alignment to determine the percent amino acid iden-

tity (Table 1 and S1 Fig).

In vitro culture of blood-stage P. knowlesi parasites

The human-adapted P. knowlesi A1-H.1 strain was maintained with fresh human erythrocytes

in RPMI 1640-based medium (Invitrogen/Life Technologies, Grand Island, NY) as described

previously [53].

Recombinant protein expression

P. vivax recombinant proteins were generated by wheat germ cell-free or E. coli expression sys-

tems in our previous studies [25,42,44,50]. DNA fragments encoding PvRBP1a-34, Pv41, or

PvRhopH2 were amplified from a Korean vivax isolate with primers PvRBP1a-34_F (ggtcgcg

gatccgaattcATGAACGAACTAGGTATAGACATT) and PvRBP1a-34_R (ggtggtggtgctcgag

TTCAAACTCTATCTTCAGTTC); Pv41_F (ggtcgcggatccgaattcATGGAACACATCTGCGAT

TTTAC) and Pv41_R (ggtggtggtgctcgagCTCCTGGAAGGACTTGGCA); and PvRhopH2_F

(ggtcgcggatccgaattcATGGAGCTGAGCCACAGC) and PvRhopH2_R (ggtggtggtgctcgag

CTTCTCCACATCCTCGTGGT), respectively. Small letters indicate the plasmid-derived

sequence and underlined letters indicate enzyme restriction sites, EcoRI and XhoI, respec-

tively. High fidelity KOD-plus kit (Toyobo Co., Osaka, Japan) was used with an initial denatur-

ation step at 94˚C for 2 min, followed by 35 cycles of 94˚C for 15 sec, 60˚C for 30 sec, and

58˚C for 1.5 min and a final extension step at 68˚C for 10 min. The amplicons were purified

using a gel extraction kit and ligated into the pET28a(+) expression vector (Novagen, Madison,

WI) for PvRBP1a-34 or the pET23a(+) expression vector for Pv41 and PvRhopH2 with a His-

tag. Correctly ligated plasmids were transformed into E. coli BL21(DE3) pLysS (Life Technolo-

gies) for recombinant protein expression. Recombinant protein expression was induced with
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0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG; Sigma-Aldrich, St. Louis, MO). All

recombinant proteins were solubilized, purified, and refolded as described elsewhere [47,54].

Meanwhile, P. knowlesi recombinant proteins were expressed for this study using wheat

germ cell-free system for immunoscreening using specific primers (S2 Table), the procedures

were described elsewhere[47]. Recombinant PkDBPα protein expression was described else-

where [47]. The DNA fragment encoding PkRhopH2 was amplified from P. knowlesi A1-H.1

genomic DNA with primer pair PkRhopH2_F (ggtcgcggatccgaattcATGGAGTTAGGCCA

TACCGTG) and PkRhopH2_R (ggtggtggtgctcgagCTTCTCGATGTCTTCGTAGTCCA).

Lowercase letters indicate the plasmid-derived sequence and underlined letters indicate the

enzyme restriction sites for EcoRI and XhoI, respectively. A high fidelity KOD-plus kit was

Table 1. Characterization of P. vivax blood-stage antigen-specific antibodies, colocalization and the degree of similarity of homologous domains.

P. vivax Sal-I P. knowlesi strain H

Name PlasmoDB ID (Sal-

I)

MW (full length/ functional

domain)

Localization Ref. PlasmoDB ID % identity (aa.) of

functional domain with

two P. vivax strains

Colocalization Ref

Sal-I P01

PvMSP1P PVX_099975 214.6/9.6 Surface [33] PKNH_0728800 86.0 87.5 Surface [34]

PvMSP1 PVX_099980 196.1/9.8 Surface [35] PKNH_0728900 82.0 87.4 Surface [36]

PvMSP10 PVX_114145 52.3/47.0 Surface [37] PKNH_1129800 62.4 63.0 Surface [38]

PvMSP8 PVX_097625 54.7/49.3 Surface [39] PKNH_1031500 82.8 84.1 ND [38]

Pv41 PVX_000995 44.1/41.7 Surface [40] PKNH_0303000 83.7 83.7 Surface [41]

Pv50 PVX_087140 50.4/48.4 Surface [42] PKNH_0730000 58.2 57.8 Surface -

Pv32 PVX_084815 32.6/26.7 Surface [43] PKNH_0421000 77.3 76.8 Surface -

PvMSA180 PVX_094920 182.1/43.0 (N)

57.9 (C)

Surface

(N & C)

[44] PKNH_0814000 61.8 (N)

74.5 (C)

61.6 (N)

74.9 (C)

Surface

(N & C)

-

PvGAMA PVX_088910 82.7/57.5 Microneme [45] PKNH_1322900 82.4 82.5 Microneme -

PvDBP PVX_110810 119.7/38.5 Microneme [46] PKNH_0623500 71.4 70.7 ND [47]

PvAMA1 PVX_092275 64.5/64.5 Microneme [42] PKNH_0931500 85.4 85.0 Microneme [47]

PvRBP1a PVX_098585 326.3/34.4 Microneme [48] PkNBPXa

PKNH_1472300

PkNBPXb

PKNH_0700200

22.9 (Xa)

22.3 (Xb)

20.2

(Xa)

24.3

(Xb)

Microneme -

PvRBP1b PVX_098582 303.7/32.0 Microneme [48] PkNBPXa

PKNH_1472300

PkNBPXb

PKNH_0700200

26.9 (Xa) 31.3

(Xb)

16.7

(Xa)

14.6

(Xb)

Microneme -

Pv12 PVX_113775 41.1/36.0 Rhoptry neck [49] PKNH_1137300 74.9 75.2 Rhoptry NA

PvRON2 PVX_117880 244.6/68.9 Rhoptry neck [42] PKNH_1230100 71.0 78.0 ND� NA

PvRAMA PVX_087885 81.3/27.9 Rhoptry

body

[50] PKNH_0105800 74.6 75.6 ND�� NA

PvRhopH2 PVX_099930 160.9/42.6 Rhoptry

body

[51] PKNH_0727900 73.3 71.2 Rhoptry NA

PvETRAMP

11.2

PVX_003565 11.9/9.5 PVM [52] PKNH_0418600 74.7 80.2 ND NA

PvEXP1 PVX_091700 15.0/12.7 PVM [52] PKNH_0919300 77.5 79.6 ND NA

Identity of amino acid sequences was obtained based on the alignment of the target region shown in S1 Fig and colocalization on P. knowlesi parasites was determined

by the r2 value (>70%) in S1 Table.

MW, predicted molecular weight; FL, full length; NA, not assigned; ND: not defined; PVM, parasitophorous vacuole membrane; N, N-terminal; and C, C-terminal.

�, probably on the rhoptry neck

��, not in the rhoptry bulb.

https://doi.org/10.1371/journal.pntd.0008323.t001
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used with an initial denaturation step at 94˚C for 2 min, followed by 35 cycles of 94˚C for 15

sec, 60˚C for 30 sec, and 58˚C for 1.5 min and a final extension step at 68˚C for 10 min. The

amplicons were purified using a gel extraction kit and ligated into the pET28a(+) expression

vector with a His-tag. Correctly ligated plasmids were transformed into E. coli BL21(DE3).

The protein expression and purification was performed as described above. P. knowlesi MSP1-

19 protein was cloned into pGEX-4T-2 vector (GE Healthcare Life Sciences, Uppsala, Sweden)

by In-Fusion cloning according to manufacturer’s manual, and the cloned pDNAs were trans-

formed into BL21(DE3) competent cells for recombinant protein expression. The proteins

were purified with Glutathione Sepharose 4B (GE Healthcare Life Sciences) and used for mice

antibody production.

SDS-PAGE and western blot analysis

Parasite lysates were prepared from P. knowlesi schizont as described previously [55]. Recom-

binant proteins were separated by 13% SDS-PAGE under reducing or non-reducing condi-

tions and stained with 0.25% Coomassie brilliant blue R-250 (Sigma-Aldrich) and used for

western-blotting analysis [25]. The membrane-transferred proteins were reacted with primary

rabbit polyclonal serum (1:50) or an anti-His monoclonal antibody (1:2,000, Hilden, Ham-

burg, Germany) and then reacted with secondary IRDye-labeled goat anti-rabbit or goat anti-

mouse antibodies (1:10,000) (LI-COR Bioscience, Lincoln, NE). An Odyssey infrared imaging

system (LI-COR Bioscience) and Odyssey software (LI-COR Bioscience) were used to visualize

the bands.

Animal antibody production and IgG purification

All P. vivax blood-stage antigen-specific antibodies were obtained during our previous studies

(Table 1, S3 Table). Total IgG was purified from 1 mL of rabbit serum by using a protein G HP

column according to the manufacturer’s protocol (GE Healthcare Life Sciences) as described

elsewhere [47]. All animal experimental protocols were approved by the Institutional Ethics

Committee and followed the Ethical Guidelines for Animal Experiments of Kangwon National

University (KIACUC-16-0158).

Antigen-specific IgG antibody purification from patient serum samples

The serum samples used in this study were pooled from eight P. vivax-infected patients from

the ROK with a high response to the particular antigen of interest, which was screened by

immunoscreening with a protein microarray. The control comprised pooled serum samples

from eight healthy individuals from a nonendemic area of the ROK. Total IgG antibodies were

purified from the pooled serum samples by using protein G columns according to the manu-

facturer’s protocol (GE Healthcare Life Sciences). The isolated IgG antibodies were dialyzed

against RPMI 1640 medium and concentrated using centrifugal devices (Merck Millipore,

Darmstadt, Germany) with a 30-kDa cut-off value to a concentration of 10 to 20 mg/mL.

PvRBP1a, Pv41, and PvRhopH2 recombinant proteins (2–3 mg each) were immobilized on

cyanogen bromide (CNBr)-activated Sepharose 4 fast flow beads (GE Healthcare Life Sciences)

according to the manufacturer’s instructions. The total isolated IgG antibodies (0.5 mL) was

loaded to the column filled with antigen coupled beads and eluted using an elution buffer (0.1

M glycine, pH 2.7). The eluted antigen-specific IgGs were immediately neutralized with a Tris

buffer (pH 9.0) and dialyzed against incomplete RPMI 1640 medium to the desired

concentration.
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Immunofluorescence assay (IFA)

An IFA was performed as described previously [47]. The slides were dual probed with a panel

of rabbit polyclonal serum against P. vivax antigens (1:50) and mice serum against P. knowlesi
antigens as localization markers (PkMSP1-19 for merozoite surface, PkDBPα-II for microneme,

and PkRhopH2 for rhoptry; 1:50). Alexa Fluor 488 goat anti-mouse IgG (H+L) and Alexa Fluor

568 goat-anti rabbit IgG (H+L) were used as secondary antibodies. Nuclei were stained with

4’,6-diamidino-2-phenylindole (DAPI, Invitrogen). Red and green pixel intensities were ana-

lyzed by ImageJ. The scatter plots of individual red and green pixel intensities were then com-

pared and coefficient of determination (r-squared) was obtained. The larger r-squared (as close

to 100%) represents the scatter value around the regression line suggesting the variation of red

and green pixel intensities around its mean. Colocalization was determined as spatial overlap

between red (control) and green pixel intensities as showed in larger r-squared value.

Protein microarray

The protein microarray protocol was described elsewhere [25]. Serum was pooled from eight P.

vivax- and P. knowlesi-infected patients, healthy donors and/or individually used without pooling to

evaluate cross-immunoreactivity. The pooled or individual P. vivax- or P. knowlesi-infected patient

serum or healthy serum were diluted as 1:25. The cut-off value was equal to the mean fluorescence

intensity (MFI) plus two standard deviations (SDs) of the negative samples. Normalized MFI values

were calculated from the MFI/cut-off values. The normalized MFI for the pooled patient serum was

subtracted from the corresponding normalized MFI for the pooled healthy serum.

Growth inhibition assay

The standardized protocol for the invasion inhibition assay has been described elsewhere [47].

Briefly, 2 mg/mL purified rabbit IgG antibodies, and a concentration gradient of antigen-spe-

cific IgG antibodies from patients (0.1, 0.2, and 0.5 mg/mL) was added to a 96-well culture

plate containing P. knowlesi schizonts with 1.5% initial parasitemia and 2% hematocrit from

fresh human erythrocytes. An anti-Fy6 monoclonal antibody (25 μg/mL), which recognizes

the 2C3 epitope in the DARC N-terminal region located on the red blood cell surface mem-

brane, was obtained as previously described [56]. This antibody was a kind gift from Dr. Oliv-

ier Bertrand and Dr. Yves Colin (Institut National de la Transfusion Sanguine, Paris, France).

After 10 h of post-invasion for P. knowlesi, the parasites were stained with SYBR Green I

(Sigma-Aldrich) and analyzed with an Accuri C6 flow cytometer (Accuri cytometer Inc., Ann

Arbor, MI). Two independent experiments were performed in duplicate; three independent

experiments in duplicate were not possible due to limited antibody amount.

Data analysis

All calculations and data analysis were performed with GraphPad PRISM 5 (GraphPad Soft-

ware, Inc., San Diego, CA). The Mann-Whitney test was used to assess differences between

means, and one-way ANOVA with Dunnett’s test was used to compare the means from more

than two groups with control anti-HisGST; 95% confidence intervals (CIs), and p< 0.05 was

considered significant. The 50% inhibitory concentration (IC50) was plotted against log-trans-

formed antibody concentrations, and curve fitting by nonlinear regression with Excel software

was used to identify 50% parasite growth inhibition. Hierarchical clustering was used to calcu-

late the profile of individual seropositivity using TIGR multiarray experiment viewer (MeV)

software [57]. The clustering analysis was performed using average linkage clustering with

Euclidean distance as a similarity metric.
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Results

P. vivax blood-stage antigens are similar to those of P. knowlesi
Twenty rabbit antibodies previously generated against 19 P. vivax blood-stage vaccine candi-

dates were evaluated for their cross-species reactivity against P. knowlesi (S1 Fig). Of those,

most of the P. vivax antigens were highly expressed, and previous studies localized 8 to the

merozoite surface, 5 microneme molecules, 4 rhoptry molecules, and 2 dense granule mole-

cules (Table 1). The sequence alignment with orthologs of P. knowlesi (n = 18) revealed a high

degree of similarity, on average 75.2% for P. vivax Sal-I and 72.4% for P01 strain., in the

regions selected for antibody production (Table 1).

P. vivax blood-stage antigen-specific antibodies bind to P. knowlesi
antigens

Immunofluorescence assay (IFA) revealed that these antibodies recognized mature schizont-

or merozoite stage parasites of P. knowlesi (Figs 1–3), whereas antibodies from a PBS-immu-

nized rabbit (NI) and antibody raised against recombinant HisGST protein had no specific

reactivity to P. knowlesi parasites (Fig 3B). For the analysis of cross-reactivity to the surface

antigen of P. vivax merozoites, anti-PvMSP1-19, anti-PvMSP1P-19, anti-PvMSA180-N, anti-

PvMSA180-C, anti-Pv41, anti-PvMSP8, anti-PvMSP10, anti-Pv50, and anti-Pv32 antibodies

were used. Most of the surface antigens in P. knowlesi parasites were highly cross-reactive with

the 9 P. vivax antibodies and a positive control anti-PkMSP1-19 antibody (Fig 1). The anti-

PvMSP1-19 and PvMSA180-N antibody showed the strongest recognition of the surface of the

P. knowlesi merozoite, as shown by full overlap (r2 > 95%) with the anti-PkMSP1-19 signals

(Fig 1, S1 Table).

Fig 1. Cross-species reactivity of antibodies against P. vivax merozoite surface proteins to P. knowlesi parasites by

immunofluorescence assay. Localization of a panel of antibodies for P. vivax surface proteins (green) in P. knowlesi co-

stained with anti-PkMSP1-19 (red) as a surface marker. DIC, differential interference contrast; DAPI, 4’,6-diaminidino-

2-phenylindole (blue). All parasites shown are segmented schizonts (24–28 hours post-invasion). Bars indicate 5 μm.

https://doi.org/10.1371/journal.pntd.0008323.g001
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Most signals with antibodies against P. vivax microneme proteins, PvRBP1a, PvRBP1b,

PvGAMA, PvAMA1, and PvDBP, were colocalized with signals with anti-micronemal

PkDBPα antibody in P. knowlesi parasites (Fig 2A). Interestingly, antibodies against PvRBP1a

and PvRBP1b, for which the syntenic orthologs are pseudogenes in P. knowlesi, showed signals

for these parasites (Fig 2A).

Antibodies against P. vivax rhoptry body antigens (PvRhopH2) and rhoptry neck antigens

(PvRON2) cross-reacted with P. knowlesi showing complete (PvRhopH2) or partial (others)

colocalization signals for rhoptry body protein PkRhopH2 in P. knowlesi parasites, respectively

(Fig 2B, S1 Table). Antibodies against PvETRAMP11.2 and PvEXP1, which localize to the

parasitophorous vacuole/dense granules, partially overlapped with the MSP1-19 (surface) con-

sistent with a parasitophorous vacuole localization (Fig 3A). The western blot analysis using

parasite lysates showed that the P. vivax antibodies also recognized bands at expected full-

length sizes or probably the processing proteins (S2 Fig). PvMSP1-19 and PvRhopH2 antibod-

ies were surprisingly recognized the full length of MSP1 protein in P. knowlesi lysate. However,

non- specific recognition was seen in PvETRAMP11.2 which is in line that the PvE-

TRAMP11.2 antibody did not cross-react with P. knowlesi parasite organelle protein, but did

recognize the parasite membrane.

Antibodies raised against P. vivax blood-stage antigens inhibited the

erythrocyte invasion by P. knowlesi
We next investigated if antibodies raised against P. vivax antigens block human erythrocyte

invasion by P. knowlesi in vitro. We found that the invasion of P. knowlesi was inhibited by all

antibodies except RON2 when 2 mg/mL of P. vivax rabbit polyclonal IgG were administered

Fig 2. Cross-species reactivity of antibodies against P. vivax apical organelles proteins to P. knowlesi parasites by

immunofluorescence assay. (A) Localization of a panel of antibodies for P. vivax micronemal proteins (green) in P. knowlesi
co-stained with anti-PkDBPα (red) as a microneme marker and DAPI as nuclear marker (blue). (B) Localization of a panel

of antibodies for P. vivax rhoptry proteins (green) in P. knowlesi co-stained with anti-PkRhopH2 (red) as a rhoptry marker

and DAPI as nuclear marker (blue). All parasites shown are segmented schizonts (24–28 hours post-invasion). Bars indicate

5 μm.

https://doi.org/10.1371/journal.pntd.0008323.g002
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(Fig 4). The inhibition levels varied between the different antigens, but several were higher

than 60% (P41, MSP10, P50, RBP1a, RBP1b). Mild inhibition with dose-dependen manner

was observed with PvMSP1-19 and PvAMA1 antibodies (Fig 4, S3 Fig). The negative control

antibodies, anti-HisGST and PBS-immunized rabbit IgG (anti-NI) showed little to no inhibi-

tion, respectively. Administration of 2C3 monoclonal antibody, which targets Duffy antigens

on the erythrocyte, resulted in a high degree of inhibition (92.8 ± 1.6%) (Fig 4). Control anti-

bodies, anti-PkDBPα, and anti-PkAMA1 antibodies showed inhibition activity with dose-

dependent manner as described in our previous study [47] (S3 Fig).

To determine whether these antibodies demonstrate additive erythrocyte invasion inhibi-

tion, a combination of antibodies against three different antigens localized on the surface

(Pv41), microneme (PvRBP1a), and rhoptry (PvRhopH2) were combined in a total concentra-

tion of 2 mg/mL and evaluated. We found that a combination of these antibodies significantly

increased the invasion inhibition efficacy than single antibodies (S4 Fig).

Human antibodies against P. vivax blood-stage antigens inhibit erythrocyte

invasion by P. knowlesi
To confirm the cross-species inhibition activity of antibodies against P. vivax antigens, we

examined whether human antibodies against the P. vivax antigens in the serum of patients nat-

urally exposed to P. vivax infection could inhibit P. knowlesi erythrocyte invasion. Three P.

Fig 3. Cross-species reactivity of antibodies against P. vivax parasitophorous vacuole membrane molecules and

negative control antibodies to P. knowlesi parasites by immunofluorescence assay. (A) Localization of antibodies

for P. vivax parasitophorous vacuole proteins (green) in P. knowlesi co-stained with anti-PkMSP1-19 as a merozoite

surface marker. (B) Localization of PBS-immunized (NI) and HisGST antibodies to P. knowlesi. All parasites shown

are segmented schizonts (24–28 hours post-invasion). Bars indicate 5 μm.

https://doi.org/10.1371/journal.pntd.0008323.g003
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vivax antigens, PvRBP1a, Pv41, and PvRhopH2 (Fig 5A and 5B) were successfully produced

and used for immobilizing on CNBr beads to purify antigen-specific IgGs from the serum of

P. vivax-infected patients. These antigens were selected because each of them exhibited the

highest inhibitory activities within the same localization group (merozoite surface, microneme,

or rhoptry). The folded and unfolded PvRBP1a was then reacted with P. vivax-infected

patients serum, and showed reduction of positive reactivity to unfolded protein as compared

to folded PvRBP1a. It suggested that the protein was also successfully refolded (S5 Fig). The

patients living in vivax malaria endemic area in the Republic of Korea, would have had no pre-

vious exposure to P. knowlesi and were used to purify those three antigens specific human IgG.

Anti-Pv41- and anti-PvRhopH2-specific IgGs showed a concentration-dependent invasion

inhibition activity to P. knowlesi, whereas anti-PvRBP1a-specific IgG showed a very little inhi-

bition activity to P. knowlesi compared to naïve human IgG (Fig 5C).

Serum from knowlesi- or vivax-malaria patients recognized a panel of

vivax- and knowlesi recombinant proteins

To determine the cross-reactivity in malaria patients living in an endemic area, cross- immu-

noreactivity of antibodies from P. knowlesi- or P. vivax-infected patients was assessed using a

protein microarray of vivax and knowlesi-recombinant proteins. Serum from vivax- and

knowlesi-infected malaria patients recognized recombinant P. vivax and/or P. knowlesi pro-

teins at different levels of reactivity (Fig 6). PvMSP8 and PvMSA180-N recombinant antigens

are found to be more reactive to pooled P. knowlesi-infected serum (Fig 6A), while Pk50 was

very reactive to pooled P. vivax-infected serum (Fig 6B).

To further investigate the individual immunoprofiling for cross-reactivity, three P. knowlesi
recombinant proteins were used. Three most reactive antigens were selected from

Fig 4. Cross-species activity of antibodies against P. vivax antigens to inhibit erythrocyte invasion by P. knowlesi
parasites. Graph showing inhibition activity (%) of antibodies against P. vivax antigens to erythrocyte invasion by P.

knowlesi A1-H.1 (2 mg/mL rabbit IgG). PkDBPα, PkAMA1 rabbit polyclonal IgG, and 2C3 monoclonal antibody

served as control. NI, PBS-immunized rabbit IgG; DG, dense granules; 2C3, Anti-Fy6 monoclonal antibody (25 μg/

mL). Graphs show the mean and error bars denote ±1 SD of duplicate test wells in two independent experiments by

using one-way ANOVA with Dunnett’s multiple comparison test of means of antibody inhibition rate with mean of

control anti-HisGST. ns, no significant difference, p>0.05.

https://doi.org/10.1371/journal.pntd.0008323.g004
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immunoscreening results using pooled serum (Fig 6B, S6 Fig). The mean average of seroposi-

tive rate of these three antigens was higher to P. knowlesi-infected patient serum (61.9%) than

P. vivax-infected patient serum (43.3%) (Fig 7, Table 2). Of those, the PkMSA180-N is the

most reactive to P. knowlesi- and P. vivax-infected patient serum; 77.1 and 51.4%, respectively

(Table 2). In total, 37.1% (26/70) of P. knowlesi-infected patients showed seropositive to all

three P. knowlesi antigens and 27.1% (19/70) of P. vivax-infected patients showed seropositive

to all three P. knowlesi antigens (S7 Fig). This data indicates that these three proteins are highly

immunogenic and posses shared/common epitopes in the two species.

Discussion

Mixed infections are frequently discussed in the context of parasite-parasite interactions

among different Plasmodium spp. and a high degree of amino acid sequence similarity and

shared common epitopes for some parasites antigens suggests a potential role for cross-species

Fig 5. Growth inhibition activity of antigen-specific IgG from P. vivax-infected patients to P. knowlesi parasites.

(A) Different migration on SDS-PAGE of reduced and non-reduced recombinant proteins immobilized on agarose

beads. Proteins were successfully refolded as shown with Coomassie Brilliant Blue in different migration patterns with

and without DTT treatment. BSA was served as control. Proteins were then used for immobilization with CNBr-bead

for antigen-specific antibody purification from P. vivax-infected patients serum. (B) Western blot analysis of

recombinant PvRBP1a, PvRhopH2, and Pv41 proteins with anti-His-tag antibody. (C) Growth inhibition activity of

IgGs specific to P. vivax antigens to P. knowlesi. Different concentration of antigen-specific antibodies from human

(Pv41, PvRhopH2, PvRBP1a) ranging from 0.1, 0.2 and 0.5 mg/mL were used. IC50 of Pv41 antigen-specific human

antibodies was higher than PvRhopH2 antigen-specific human antibodies. αNaive indicates IgG purified healthy

individual who have never experienced malaria infection.

https://doi.org/10.1371/journal.pntd.0008323.g005
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immunity [21]. A proof-of-concept study in our laboratory reported that cross-species reactiv-

ity between P. vivax and P. knowlesi was observed for an apical asparagine-rich protein [25]. In

the current study, we characterized antibodies against 20 recombinant proteins derived from

19 P. vivax blood-stage vaccine candidates for their cross-reactivity to P. knowlesi. Genome

analysis of P. knowlesi revealed approximately 80% of genes that are orthologous to P. vivax, P.

falciparum. Among the 19 blood-stage antigens, we selected domains for expression based on

their importance for immune response or host cell receptor recognition that we have found in

our previous studies (Table 1). Whilst the majority of these had direct orthologues in P. know-
lesi, some did not, including PvRBP1a and PvRBPb which are found as pseudogenes in the P.

knowlesi.
We observed the antibodies against P. vivax antigens showed the expected localization pat-

tern for the surface or apical organelles of P. knowlesi based on the localization information on

P. vivax. Complete surface colocalization was observed with the anti-PvMSP1-19 antibody in

P. knowlesi, consistent with the 82.6% amino acid identities of PvMSP1-19 to orthologs of P.

knowlesi MSP1-19 and suggestive to a previous report [21]. Although syntenic orthologs of

PvRBP1a and PvRBP1b do not exist in P. knowlesi, these antibodies reacted to the apical side

of P. knowlesi merozoites, suggesting that non-syntenic paralogues were recognized, PkNBPXa

or PkNBPXb. Protein similarities may explain this phenomenon as similar protein sequences

do not always produce similar protein structures [58,59]. Previous studies supported that the

structural similarities observed among P. falciparum Erythrocyte membrane protein 1 vari-

ants, PvDBP and Variant surface antigen 2-CSA, and PvAMA1 and PfAMA1 were shown to

mediate cross-reactivity to a conserved epitope [60–62].

Fig 6. Cross-species reactivity of sera from P. knowlesi- and P. vivax-malaria clinical patients against P. vivax and/

or P. knowlesi proteins. (A) IgG responses of pooled P. vivax-infected patient serum from the Republic of Korea

(ROK) and knowlesi-infected patient serum (Malaysia) with P. vivax recombinant proteins after subtraction with

pooled healthy serum tier in 1:25 dilution. (B) IgG responses of pooled P. vivax-infected patient serum from the

Republic of Korea (ROK) and P. knowlesi-infected patient serum (Malaysia) with P. vivax recombinant proteins.

https://doi.org/10.1371/journal.pntd.0008323.g006
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The functional activity of P. vivax-specific antibodies against heterologous parasites was

also evaluated to determine whether antibodies could inhibit P. knowlesi invasion. We found

that compared with controls, most of the P. vivax-specific antibodies could effectively block

the invasion of P. knowlesi. Among all the antibodies, the anti-Pv41, anti-PvRBP1a, and anti-

Fig 7. P. knowlesi blood-stage cross-reactivity with individual patient serum. The human IgG response of PkMSP1-

42, PkMSA180-N, and PkAMA1. Individual with outlier reactivity was indicated in black dot. The prevalence of

antibody response was compared to the patients (K, knowlesi; V, vivax) and healthy (H) using the Mann-Whitney test.
��� = p<0.001.

https://doi.org/10.1371/journal.pntd.0008323.g007

Table 2. Seropositivity of IgG responses to top 3 antigens in P. knowlesi and P. vivax malaria patients and healthy individuals.

Antigens

(P. knowlesi)
Sample (n) No. of samples Sensitivity (%)a/ 95% CI (%)c MFId P valuee

Positive Negative Specificity (%)b

MSP1-42 P. knowlesi patient (70) 39 31 55.7a/ 44.1–66.8 1.59 P <0.0001

P. vivax patient (70) 29 41 41.4a/ 30.6–53.1 1.24 P = 0.0008

Healthy (30) 1 29 96.7b 83.3–99.4 0.59

AMA1 P. knowlesi patient (70) 37 33 52.9a/ 40.0−62.8 1.82 P <0.0001

P. vivax patient (70) 26 44 41.4a/ 26.8–48.9 1.49 P <0.0001

Healthy (30) 1 29 96.7b 83.3–99.4 0.68

MSA180-N P. knowlesi patient (70) 54 16 77.1a/ 66.1–85.4 1.49 P<0.0001

P. vivax patient (70) 36 34 51.4a/ 40.0–62.8 1.27 P = 0.0016

Healthy (30) 1 29 96.7b 83.3–99.4 0.58

a Sensitivity/ seropositivity rate: percentage of positive in malaria patient samples.
b Specificity/ seronegativity rate: percentage of negative in healthy samples.
c Confidence intervals.
d MFI, mean fluorescence intensity was divided by the cutoff value + 2 standard deviations above the MFI of healthy samples.
e P value, the difference in the total IgG level for each antigen between knowlesi or vivax malaria patients and healthy individuals were calculated with the Mann whitney

U-test. P value of <0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pntd.0008323.t002
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PvRhopH2 antibodies appeared to have the highest growth inhibition assay, which is in line

with the recognition of either surface or apical organelles of the merozoite by these antibodies.

Interestingly, anti-PvAMA1 and anti-PvMSP1-19 antibodies, which also have strong recogni-

tion of native and recombinant proteins, did not show high inhibitory activity against human

erythrocyte invasion by P. knowlesi. This phenomenon was also observed in a previous study

[61] in which an anti-PvAMA1 antibody did not inhibit P. falciparum, even though immuno-

assays showed high cross-reactivity to merozoites, and highlights the need for functional char-

acterization of inhibitory activity. Despite the similarity in protein structure, the difference in

molecules charges in the MSP1-19 domain results in no functional antibody activity [36]. The

small change in the sequence may lead to a change in epitope recognition by changing the

affinity and avidity of the antibody due to the loss of the inhibitory effect of epitope-antibody

binding [63,64]. On the other hand, this study has limitation that we were not able to perform

the reverse-growth inhibition assay using P. knowlesi blood-stage antibodies against P. vivax
parasite, because of lack of long-term in vitro culture system of P. vivax parasites. Moreover,

the further studies are required to reinforce the cross-species reactivity study.

One of the critical issues of the current malaria vaccine development is the low efficacy, for

example, RTS,S vaccine showed only around 30% efficacy against children aged from 6–12

months after administration [65]. Such low protective efficacy would be improved if multiple

antigens are used. As compared to an antibody specific for the single antigen, pooled antibod-

ies for three antigens showed the additive effect to inhibit P. knowlesi invasion into human

erythrocytes. The selection of these antibodies may play a role in this observation, as it was

proposed that antibodies against merozoite surface slowed down the invasion to allow anti-

bodies against proteins secreted from microneme and rhoptry to bind their targets [66,67].

Southeast Asia is heavily endemic for P. vivax, and recently P. knowlesi is also recognized to

cause zoonotic human malaria in some regions in this area. Thus it is of interest to know if

antibodies against one species could play a role in the cross-protection against other Plasmo-
dium species. To this end, we found human IgG against P. vivax antigens is able to block the

erythrocyte invasion by P. knowlesi. Failure to inhibit P. knowlesi invasion with anti-PvRBP1a

IgG maybe because the epitopes recognized by this antibody were not protective epitopes of

PvRBP1a homologs in other Plasmodium species. However, the limitation of this study is that

we could not purify the knowlesi specific antibodies to perform the invasion inhibition assay

because we did not have enough P. knowlesi-infected patients’ serum at that time.

As part of the importance of cross-reactivity, the immunity produced against other species

could be one of the pivotal factors affecting the dynamic change in parasite-parasite interac-

tions. Previous studies have shown that serological cross-reactivity is observed between P. fal-
ciparum and P. vivax and between P. vivax and P. knowlesi [25,68]. In this study, three

different reactivities were observed for pooled P. knowlesi and/or P. vivax patients serum

against P. vivax and/or P. knowlesi antigens; (1) P. vivax patients sera are more reactive than P.

knowlesi patients sera to P. vivax antigens and vice versa, which is expected, (2) P. knowlesi
patients sera are more reactive than P. vivax patients sera to P. vivax antigens and vice versa,

which may be interpreted that cross-reacting epitopes exist not only in their closest orthologs

but also in other members encoded by a multigene family [60] so that the antibody binding

sites recognize the unrelated proteins [69], and (3) similar reactivity in both patients sera,

which suggests shared common epitopes with the closest orthologs. Surprisingly, this study

showed that approximately half of the human clinical patients from endemic area are cross-

reactive to P. knowlesi MSP1-42, MAS180-N or AMA1. These results are important evidence

indicating that immunity established against one Plasmodium species is able to cross-react

against other Plasmodium species through shared common epitopes. However, the regular

exposure to different Plasmodium species in one particular area may be correlated with the
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high reactivity of individual patient serum as it might lead to the accumulation of cross-

immune antibodies. It is also noted that some of the P. vivax-infected patients possess seropos-

itive to either single P. knowlesi antigen or in combination, highlighting the cross-protection

antibodies for which some patients in the endemic area develop less severe symptoms or low

parasitemia [70].

In the malaria pre-elimination era, the emergence of P. knowlesi and other zoonotic Plas-
modium species are one of the obstacles to successfully control malaria in Southeast Asian

countries. Cross-species invasion inhibition activities of antibodies against P. vivax shown in

this study provides important platform to design multi-component malaria vaccines and sug-

gesting the cross-species immunity affecting the disease dynamic change in Malaysia or

endemic area. Some patients in malaria-endemic area might possess different antibodies

against different Plasmodium species. However, the longevity of the cross-immune antibody is

still questioned, whether or not it can be maintained long enough to give a cross-protection

when the transmission change.

Supporting information

S1 Fig. Schematic diagrams of P. vivax blood-stage antigens with their homologs in P.

knowlesi. Regions used to raise antibodies are shown in brown boxes with the first and the last

amino acid positions at the top of diagram. The characteristic of each target was labeled into

different colors or patterns of the diagram with its amino acid position at the top. Four targets

(MSP1, MSP1P, MSP8, and MSP10) were identified the EGF-domain at the C-terminal region.

The characteristic of each target was obtained from www.plasmodb.org.

(TIF)

S2 Fig. Cross-species reactivity of P. vivax-specific antibodies with P. knowlesi parasites

assessed by western blot analysis. P. vivax-specific antibodies recognized P. knowlesi parasite

lysates. R, uninfected RBCs; P, P. knowlesi parasite lysate. The predicted full-length proteins

were shown in green, and the possible processing-protein products were indicated with red

arrowheads.

(TIF)

S3 Fig. The dose dependent growth inhibition activity of P. vivax and P. knowlesi antibod-

ies. Growth inhibition activity was evaluated using four different concentration (0.5; 1.0; 1.5

and 2.0/mL) rabbit IgG. The non immunized rabbit IgG and 2C3 monoclonal antibody were

served as controls. The dose dependent inhibition of activity of PkDBPα and PkAMA1 anti-

bodies were published online [47].

(TIF)

S4 Fig. Additive effect of combined antibodies against P. vivax proteins with different

localization to P. knowlesi. Growth inhibition activity was evaluated using 0.6 mg/mL rabbit

IgG as a single antibody or in combination of 3 antibodies at final 2 mg/mL. The single and

combination antibody was compared using one-way ANOVA with Dunnett’s test. ��� = p
value < 0.001.

(TIF)

S5 Fig. The human antibody response to PvRBP1a-F (folded) and PvRBP1a-UF (unfolded)

recombinant proteins. The prevalence of seropositivity was compared between patients (P: P.

vivax-infected patients) and healthy individual (H) using the Mann-Whitney test. � = p
value < 0.05; ns = non significant.

(TIF)
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S6 Fig. Western blot analysis of protein expression using the wheat germ cell-free analysis.

The expression level of each protein was detected by using anti-His tag antibody. Total fraction

(T) was then centrifuged to separate the soluble fraction (S) and pellet. A total 10 μL of proteins

were loaded in each well. His-tag antibody was used to confirm the positive band in western

blotting. The specific band that appears in the total fraction (T) was then said as non-soluble

protein. Otherwise soluble protein was showed in a specific band appear in both total fraction

and soluble fraction by western blotting.

(TIF)

S7 Fig. Heatmap of antibody response in each individual patient to the three different anti-

gens. (A) Antibody response to the three antigens in individual P. knowlesi-infected patients.

(B) Antibody response to the three antigens in individual P. vivax-infected patients. Hierarchi-

cal clustering of individual patients reactivity was showed by a vertical dendrogram. The clus-

ter of antibody reactivity in each patient for the three antigens was created based on the

Euclidean distance. The red asterisk indicates the same individual with all three seropositive

antigens. The color gradient (from blue to red) indicates the adjusted MFI value of antibody

reactivity.

(TIF)

S1 Table. The colocalization of P. vivax antibodies and P. knowlesi on IFA.

(DOCX)

S2 Table. Summary of cloning primers for P. knowlesi recombinant protein expression.

(DOCX)

S3 Table. Summary of P. vivax antibodies used in this study.

(DOCX)
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