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Abstract: We report a proof-of-principle demonstration of Shor’s algorithm with photons
generated by an on-demand semiconductor quantum dot single-photon source for the first time.
A fully compiled version of Shor’s algorithm for factoring 15 has been accomplished with a
significantly reduced resource requirement that employs the four-photon cluster state. Genuine
multiparticle entanglement properties are confirmed to reveal the quantum character of the
algorithm and circuit. The implementation realizes the Shor’s algorithm with deterministic
photonic qubits, which opens new applications for cluster state beyond one-way quantum
computing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Some quantum algorithms provide dramatic speedup in solving problems like factoring [1,2],
which is difficult for current computers for large numbers. The security of widely used
cryptography, like Rivest-Shamir-Adleman (RSA) public-key cryptosystem, relies on crucially
the difficulty of factoring a large number to be product of two large prime numbers [3,4].
Remarkably, the Shor’s algorithm utilizing quantum computer [1,2] provides an efficient way for
factoring, thus directly threatens the RSA’s security in the near future.

Demonstration of Shor’s algorithm requires lots of qubits and gates that is beyond the current
quantum technologies. Proof-of-principle demonstration, with some of the parameters being
initially determined to reduce the resource requirement, is sufficient to characterize the core
processes of Shor’s algorithm [5]. This kind of demonstrations have been presented with
systems ranging from liquid nuclear magnetic resonance [6], photonic qubits (qutrits) [7–10],
superconducting circuits [11,12], to ion-trap [13]. Among these architectures, polarization
encoded photonic qubits experience negligible decoherence and the fastest gates, are promising
candidates for quantum computing [14]. All existing implementations of Shor’s algorithm
with photonic qubits employ photons generated from spontaneous parametric down-conversion
(SPDC) sources [15]. Intrinsic noise of the SPDC, however, comes from multiphoton emission
[16]. Therefore, it must be set to low efficiency for detectors to suppress unwanted multiphoton
events, which, in return, pulls down the whole performance of quantum circuits. Semiconductor
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quantum dot (QD) single-photon sources, which, however, are able to generate photons one by
one [17], fit extremely well for this task. Recent progresses have demonstrated that photons can
be deterministically generated with high extraction efficiency, single-photon purity, and photon
indistinguishability altogether [18,19]. By embedding a single QD into a symmetry-broken
microcavity, photons being generated exhibit high degrees of polarization [20]. Here, we present
a proof-of-principle demonstration of Shor’s algorithm using photons from QD.

2. Methods and experimental implementations

In number theory, a strategy for factoring an n-bit composite number N = p × q, both p and q are
odd primes with p , q, is as follows:

1. Find the base b and the order r that satisfy:

(a) b is co-prime to N, and 0<b<N,
(b) r is a positive even integer,
(c) br ≡ 1 (mod N), and br/2 . ±1 (mod N).

2. Calculate the greatest common divisor (GCD): gcd (br/2 ± 1,N).

Here, the remainders of modular arithmetic (https://en.wikipedia.org/wiki/modular_arithmetic)
are non-negative and less than N. Two solutions of the GCD calculation are two nontrivial factors
p and q, by which way a composite number can be efficiently factored.

The bottleneck of this algorithm lies in difficulty of selecting b and finding r satisfying br ≡ 1
(mod N), or vice versa. For a classical computer, it needs at least exp [O(n1/3 log2/3 n)] operations
to complete this task [4,21]. Fortunately, Shor’s algorithm utilizing a quantum computer provides
an effective way to execute it in a polynomial complexity. The quantum routine of the Shor’s
algorithm needs two registers of qubits [2,5]: the argument register that employs l qubits to store
the argument x, and the function register that employs n = dlog2 Ne qubits to store the modular
exponential function: f (x) = bx mod N. Both x and f (x) can be represented by binary integer
sets of xk and fk satisfying x =

∑l−1
k=0 2

kxk, and f (x) =
∑n−1

k=0 2
kfk. The physical realization of the

Shor’s algorithm requires three distinct steps:

1. Initialization. Applying Hadamard gates on argument register so that the state |0〉⊗l

transforms to |+〉⊗l =
∑2l−1

x=0 |x〉/
√
2l, which is an equally weighted superposition. The

number of digit for the argument register l is determined by an accuracy that we wish
to estimate the order (usually l ≈ 2n) [5]. A not gate is applied on the last qubit of the
function register, transforms the initial state to be |00 · · · 01〉.

2. Modular exponentiation. According to what Deutsch called “massive quantum parallelism”
[22], one can calculate the modular exponential function f (x) with several controlled-Uf

gates, producing
∑2l−1

x=0 |x〉 |f (x)〉/
√
2l.

3. Inverse quantum Fourier transform (QFT). Owing to the fact that f (x) exhibits periodicity,
an inverse QFT can be then applied on the argument register to acquire “frequency”,
yielding

∑2l−1
x=0

∑1−2−l

y=0 exp (2πixy)|y〉 |f (x)〉/2l (the step of y is 2−l).

Here, y is represented by binary fraction set of yk satisfying y =
∑l

k=1 yk/2k. The probability
amplitude reaches to peak if y ≈ j/r for any integer j. Thus the order can be extracted with high
success rate.
However, even factoring the simplest number, N = 15, requires a total of 12 qubits for a

proof-of-principle demonstration (n = 4, l ≈ 2n = 8). It is quite challenging for current quantum
techniques to implement completely the Shor’s algorithm. Fortunately, the compiling technique

https://en.wikipedia.org/wiki/modular_arithmetic
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Fig. 1. (a) Quantum circuit for Shor’s algorithm applied by partial compilation. It consists
of three distinct steps: (i) Initialization, (ii) Modular exponentiation, and (iii) Inverse QFT.
The modular exponentiation is implemented by several controlled-Uf gates. The details of
Uf gates, which act as the quantum version of modular multipliers, are depicted in (b).

allows one to reduce the number of qubit resources. In N = 15 case, the base could be chosen
from b = 2, 4, 7, 8, 11, 13. All elements satisfy the condition that f (4) = 1, or r = 4. Hence, only
2 qubits in the argument register are sufficient to exhibit the periodicity of f (x). To avoid possible
errors, an additional qubit is further exploited for the analysis of the answers. Therefore, it requires
at least 7 qubits for a proof-of-principle demonstration (n = 4, l = 3). Figure 1(a) indicates the
quantum circuit applied by this level of compilation, or partial compilation. Furthermore, a full
compilation could then be implemented by further reduction of qubit requirement. As it is always
true that r<N, the function register can be represented with fewer (only n′ = dlog2 re) qubits. We
define a new function: F(x) = log2 [(−1)bxf (x) mod N], which acts as a mapping of f (x). It turns
out that F(x) maintains the periodicity of f (x), in which the inverse QFT applied on the argument
register is kept invariable [5]. The inverse QFT can be implemented in a semiclassical way that
performs only single-qubit operations conditioned on measurement outcomes [23]. Thus, there
is no need to perform two-qubit gates to achieve it. Moreover, from Fig. 1(b), the U2

f gates are
always equivalent to identity operation. Hence, the qubit x2 (or y3) is not relevant to the rest,
which the operations and measurements on that qubit can be performed independently. Therefore,
this fully compiled version of Shor’s algorithm for factoring N = 15 (or finding r = 4) only
requires four-qubit entanglement (n′ = 2, l = 2). In Fig. 2(a), we illustrate this fully compiled
version of quantum circuit. In Fig. 2(b), we depict the details of UF gates. For b = 4 or 11, the
state after modular exponentiation, or the intermediate state, is only a two-qubit entanglement
state that can be achieved with only one controlled-not gate. For b = 2 or 13, there are two sets of
states with two-qubit entanglement that can be achieved by performing the same operation twice
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Fig. 2. (a) Quantum circuit for Shor’s algorithm applied by full compilation. This circuit
reveals the same process as that indicated in Fig. 1(a), but requires reduced number of qubits
and gates. The modular exponentiation is implemented by controlled-UF gates instead, while
the inverse QFT is implemented in a semiclassical way. The qubit x2 (or y3, represented
by colored wire) is not relevant to the others, which the operations and measurements can
be performed independently. (b) Details of UF gates, which act as the quantum version of
modular adders.

as b = 4 or 11 case. The above two cases have already been demonstrated in previous literatures
[8,9], while we will unveil here a more complicated case—b = 7 or 8. The intermediate state for
this case is a genuine entanglement among all four qubits, which is of the form:

1
2

3∑
x=0
|x〉 |F(x)〉 =

|00〉 |00〉 + |01〉 |11〉 + |10〉 |10〉 + |11〉 |01〉
2

. (1)

The intermediate state represented by Eq. (1) is in fact equivalent to a four-qubit cluster (C4) state
[24], which can be achieved post-selectively with only linear optics in our photonic quantum
architecture (See Appendix A).

The schematic of experimental setup is sketched in Fig. 3, which consists of four distinct steps:

1. Single-photon emission. The state-of-the-art QD is embedded into a micropillar cavity
[18] with a diameter of 2 µm, and put into a cryostat cooled down to 4K. Under resonant
excitation with a repetition rate of 76MHz [25], single photons can be deterministically
generated. A cross-polarization configuration, which consists of several polarization optics,
is applied to extinguish unwanted laser background. The photons applied to this task have
a lifetime of ∼60 ps, and counting rate of ∼6.4MHz on the superconducting nanowire
single-photon detector (SNSPD) with a detection efficiency of∼80%. In previous literature,
single-photon purity is experimentally measured to be 0.973(1), and indistinguishability
with two-photon emission-time separations of 13 ns and 14.7 µs are 0.939(3) and 0.900(3)
[26,27].

2. Active photon demultiplex. Single photons collected by single-mode fiber (SMF) are
divided into four different modes with active demultiplexers [27]. Each demultiplexer
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consists of a Pockels cell (PC), a polarizing beam-splitter (PBS), and a half-wave plate
(HWP). The PC has an extinction ratio of 100:1 and high transparency of 99%. Driven
by ∼1800V half-wave voltage, the polarization of single photons can be rotated by 90°.
Then, a PBS with an extinction ratio of 2000:1 is used to convert different polarizations
into different modes. Immediately after single photons are divided, an HWP aligned at 45°
is applied on the reflection mode of PBS to invert the polarization. The photonic states
of |0〉 and |1〉 are represented by |H〉 and |V〉, where |H〉 and |V〉 denote horizontal and
vertical linear polarizations. All modes are initialized into the state |0〉 at this stage. Each
mode finally propagates inside a SMF with different lengths to compensate time delays.

3. C4 state preparation. The separated single photons after interference are projected into C4
state represented by Eq. (1) in a post-selective way that if there is only one photon being
detected at each mode. The HWPs aligned at 22.5° are equivalent to Hadamard gates.

4. Four-fold correlations. We measure all output photons along {|H〉, |V〉} basis using
SNSPDs with PBSs, and register four-photon events. A pair of wave plates before each
PBS act as single-qubit operations that enable one to measure along any desired basis.

Fig. 3. The schematic of experimental setup. It consists of four distinct steps: (i) Single-
photon emission, (ii) Active demultiplex, (iii) C4 state preparation, and (iv) Four-fold
correlations. All photonic states of |0〉 and |1〉 are represented by |H〉 and |V〉, where |H〉
and |V〉 denote horizontal and vertical linear polarizations. All HWPs in steps (ii) and (iii)
are aligned at 45° and 22.5°, which act as not gates and Hadamard gates respectively. A
pair of wave plates aligned before each PBS in step (iv) enable detection along any desired
basis. QD, quantum dot; PC, Pockels cell; PBS, polarizing beam-splitter; HWP, half-wave
plate; QWP, quarter-wave plate; SNSPD, superconducting nanowire single-photon detector.

3. Results

The inverse QFT on the argument register of Eq. (1) results in a mixed state, therefore it is
almost impossible to characterize the performance of the quantum circuit by estimating state
fidelity. The intermediate state represented by Eq. (1) is the persistent four-qubit entanglement
[28], one can thus perform measurements on that state to characterize the quantum circuit. The
measurement is performed both qualitatively and quantitatively. For qualitative measurement,
the four-fold correlations are performed by measuring all modes along {|H, |V〉} and {|D〉, |A〉}
bases, where |D〉 and |A〉 denote diagonal (45°) and anti-diagonal (−45°) linear polarizations.
Also two of four modes can be measured along {|R〉, |L〉} basis instead, where |R〉 and |L〉
denote right and left circular polarizations. The results are shown in Fig. 4, where peaks in each
pattern fit well with theoretical predictions described as Eqs. (5), (6), and (7) in Appendix A. As
for quantitative measurement, one can evaluate fidelity of the state using stabilizer correlation
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measurements, since the cluster state can be fully described by its stabilizers [29]. The evaluated
expectation values of stabilizer correlation measurements are listed in Table 1, where σ0, σ1,
σ2, and σ3 correspond to Pauli matrices [21]. In our case, one can accomplish detections with
only 9 measurements instead of a full tomography configuration. By averaging the expectation
values of all stabilizer correlation measurements, the fidelity can be estimated to be 0.756(8),
well above the classical limit of 0.5, indicating a genuine quantum computing in the modular
exponentiation step.

Fig. 4. Measured probability distributions of the intermediate state represented by Eq. (1)
with (a) all modes along {|H〉, |V〉} basis, (b) all modes along {|D〉, |A〉} basis, and (c,d)
two of four modes along {|R〉, |L〉} basis instead. The effective four-fold counting rate is
∼3.2Hz, and each measurement takes ∼5min. Error bars, shown in gray lines with a cross
at the top, arise from Poisson statistics for four-fold correlation counts. All data are adjusted
by detectors’ efficiency.

Table 1. Stabilizer correlation measurements of the intermediate state represented by Eq. (1).
Since this state embodies genuine persistent four-qubit entanglement, one can characterize

performance of quantum circuit by analyzing the state itself instead of the final answer. The cluster
state’s fidelity can be evaluated by averaging over all expectation values, yielding a value of
0.756(8). All values are derived from data adjusted by efficiency, while the uncertainties are

represented by standard deviations.

Stabilizer Expectation value Stabilizer Expectation value

+σ0σ0 ⊗ σ0σ0 1.000 ± 0.011 +σ1σ3 ⊗ σ1σ3 0.763 ± 0.047

+σ0σ3 ⊗ σ0σ3 0.878 ± 0.021 +σ1σ0 ⊗ σ1σ0 0.853 ± 0.020

+σ0σ1 ⊗ σ1σ1 0.745 ± 0.032 +σ1σ1 ⊗ σ0σ1 0.783 ± 0.032

+σ3σ0 ⊗ σ3σ3 0.716 ± 0.032 +σ3σ3 ⊗ σ3σ0 0.716 ± 0.032

−σ2σ0 ⊗ σ2σ3 0.751 ± 0.034 −σ2σ3 ⊗ σ2σ0 0.741 ± 0.034

−σ0σ2 ⊗ σ1σ2 0.708 ± 0.030 −σ1σ2 ⊗ σ0σ2 0.740 ± 0.030

−σ3σ1 ⊗ σ2σ2 0.650 ± 0.037 −σ2σ2 ⊗ σ3σ1 0.700 ± 0.030

−σ2σ1 ⊗ σ3σ2 0.704 ± 0.034 −σ3σ2 ⊗ σ2σ1 0.640 ± 0.032
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At the final stage, one can implement inverse QFT to acquire the answer. A rotation of θ
(θ = 0, π/2, π/4, . . .) along Z axis followed by a Hadamard operation with measurement along
{|0〉, |1〉} basis is equivalent to a measurement along {(|0〉 ± e−iθ |1〉)/

√
2} basis [24], which

has widely been used in characterization of the Greenberger-Horne-Zeilinger state [30]. To
acquire the answer, one needs to analyze the measured data both qualitatively and quantitatively.
Here, we analyze both l = 2 or 3 cases. Qualitatively, one can plot the probability distributions
indicated in Figs. 5(a) and 5(b), for l = 2 and 3, respectively. It seems hard to distinguish
any changes between two patterns, and peaks in both patterns appear at the position where
y = 0/4, 1/4, 2/4, and 3/4, for which it is easy to estimate r = 4. Quantitatively, one can
theoretically calculate the probability distributions from r = 1 to 4, which are plotted in Figs. 7
and 8 in Appendix B for l = 2 and 3 cases, and compare our measured data with them. One can
use the square of statistical overlap (SSO) [31], which is used to quantify similarities between
measured and expected probability distributions, to characterize the comparisons. The SSO,
derived from statistical overlap (SO) [32], is defined as: γ = (

∑7/8
y=0
√myey)

2, where my and ey
denote measured and expected probabilities of the state |y〉. From the comparison results listed
in Table 2, the maximums of γ = 0.999(41) and 0.996(41) for l = 2 and 3 appear at the place
where r = 4. But for l = 2, a high SSO of 0.956(39) also appears at the order of r = 3, meaning
that imperfections of quantum circuits may probably result in a wrong answer. Both qualitative
and quantitative analyses reveal the same answer of r = 4. Therefore, 3 qubits in the argument
register are needed at least to extract the correct answers with a higher success rate. After the
answer has been acquired, the solutions of gcd (br/2 ± 1,N) are two nontrivial factors of the
composite number, which are calculated to be 3 and 5 for N = 15.

Fig. 5. Measured probability distributions for the order finding with (a) 2 qubits and (b) 3
qubits in the argument register. These patterns fit well with the theoretical predictions of
P(y = j/4) = 0.25 (dashed lines), and both reveal the same answer of r = 4. Two nontrivial
factors of N = 15 are finally calculated to be: gcd (br/2 ± 1, 15) = 3 and 5, where b = 7 or 8.

Table 2. Calculated square of statistical overlap (SSO) from r = 1 to 4 for l = 2 and 3. The SSOs
reach to maximum, as shown in bold values, at r = 4, which can acquire the same answer as those
from Fig. 5. But a high SSO, as shown in italic value, appears at r = 3 for l = 2, which may probably
result in a wrong answer. Therefore, 3 qubits in the argument register are required at least to avoid

possible errors caused by the imperfect quantum circuits.

SSO l = 2 l = 3

r = 1 0.233 ± 0.009 0.232 ± 0.009

r = 2 0.501 ± 0.020 0.499 ± 0.020

r = 3 0.956 ± 0.039 0.429 ± 0.012

r = 4 0.999 ± 0.041 0.996 ± 0.041
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4. Discussions

We have so far presented a proof-of-principle demonstration of compiled Shor’s algorithm with
photons generated from QD single-photon source. A genuine four-photon entanglement has
been observed during the experiment. The fidelity is limited by imperfection of single-photon
source. For simplicity, we assume the final fidelity F is affected by single-qubit gate fidelity Fs
and two-qubit gate fidelity Fd. For an m-photon entanglement, it needs at least m − 1 two-qubit
gates to prepare the state. Thus, one can estimate the final fidelity via F = Fm

s Fm−1
d . From the

data of independently measured qubit in l = 3 case, the single-qubit gate fidelity, caused by
single-qubit operations, can reach to near-unity (Fs ≈ 0.997). Therefore, the final fidelity will
mainly be limited by two-qubit gate fidelity. The noise from residual laser leakage and sometimes
photons from other QDs lead to multiphoton events, which deteriorate the single-photon purity.
Impure single photons, together with other effects like charge noise, spin noise, and phonon
sidebands [33,34], decrease the indistinguishability. These imperfections contribute to unwanted
four-fold correlation background and reduce the fidelity of the prepared state. From the fidelity
of 0.756(8), one can estimate the two-qubit gate fidelity to be 0.914(5). Our experiment can be
extended to 8 photons, where the largest order that can be found should be r = 16. Compared to
the optimal SPDC sources nowadays with 12-photon entanglement [30], our QD single-photon
source shows shortcomings in this aspect. However, the purity and indistinguishability of this
solid-state single-photon source can be in principle both improved to near-unity [34]. Thus, the
number of photons being entangled can be greatly extended.
The QD used in current experiment has a lifetime of ∼60 ps, which is much shorter than

the timescale for any single-qubit or two-qubit gates of ion-trap or superconducting circuit
architectures [35], meaning a higher correlation counting rate (or a shorter computation time)
could be achieved by increasing the repetition rate in QD architecture. The correlation counting
rate can be estimated via R = R0η, where R0 and η represent repetition rate (76MHz in current
experiment) and system efficiency (including preparation, operation, and detection efficiency).
Assuming that both QD- and SPDC-based experiments experience the same repetition rate
and detection efficiency. The preparation efficiency for QD-based experiment includes the
efficiency at the incident ends (fiber output) ηQD, which relates to incident photon brightness,
and that of optical switches ηPC (mainly affected by PC). And the preparation efficiency for
SPDC-based experiment only includes the efficiency at the incident ends ηSPDC. The operation
efficiency denotes the success rate for each configuration. Therefore, the m-fold correlation
counting rate for QD- and SPDC-based experiments satisfy RQD ∝ (R0/m)(ηm

QDη
m−1
PC )/2

m−1 and
RSPDC ∝ R0η

m/2
SPDC/2

m/2−1 respectively. For direct comparison, we calculate the ratio between the
counting rates of both sources, yielding RQD/RSPDC = (ηQDηPC/

√
2ηSPDC)m/(mηPC). To show

the advantages of QD-based experiment, it must satisfy the condition that ηQDηPC/
√
2ηSPDC>1.

Consider the counting rate of ∼6.4MHz, detection efficiency of ∼80%, and ηPC ≈ 84%, the
value of ηQDηPC/

√
2ηSPDC is approximately 0.28 compared to the optimal SPDC source [30].

Even the optimal QD single-photon source can only increase this value to ∼0.68 [36]. Note that
due to the trade-off between fidelity and efficiency for SPDC source, ηSPDC almost reaches to
near-optimal. In contrast, high efficiency, high single-photon purity, and high indistinguishability
have simultaneously been achieved on QD single-photon sources [18,19]. By embedding that QD
into an asymmetric microcavity, both indistinguishability and efficiency are expected to reach
near-unity [20]. The value of ηQDηPC/

√
2ηSPDC is expected to be more than 2, which makes QD

single-photon sources perform a better scalability in quantum computing.
Furthermore, we have presented techniques that simplify complicated quantum operations like

modular exponentiation, and adapted the easy-to-get quantum states like C4 state to the specific
quantum task. This is an illustration of dramatic simplification in quantum computing. We have
also presented strategies for evaluation of the circuit and analysis of the data, which enable proper



Research Article Vol. 28, No. 13 / 22 June 2020 / Optics Express 18925

characterizations of the quantum task. Although imperfect quantum circuit, mainly caused by
possibly poor entanglement fidelity, limits its scalability, it has little effects on the computation
results due to the answer is acquired from the similarity between measured and expected data.

5. Summary

In summary, we have achieved a proof-of-principle demonstration of small-scale quantum
algorithm with photons generated from deterministic single-photon source. We have presented
every necessary stage of an r = 4 order finding routine with only four single photons. Our
approach of compilation reduces the required qubits from 3dlog2 Ne to 2dlog2 re (r<N), and
simplifies the gates by transforming modular multipliers to modular adders, finding a way to
make complicated quantum problems feasible. Genuine persistent entanglement [28] among all
photonic qubits has been maintained during the experiment, indicating quantum characters of the
algorithm and the circuit. Since the answer is acquired from the maximum of a parameter that
quantifies the similarity between measured and expected results, it is robust to the imperfections
of the quantum circuit. Besides, our experiment opens new applications for the cluster state
beyond one-way quantum computing [24]. By combining the compilation technique with qubit
recycling [37], one may accomplish the task with further reduced number of qubits. To scale up
for factoring larger numbers, finding larger orders, or even attaining a full-scale demonstration
that requires auxiliary qubits to store, and finally erase, the intermediate results [5], challenges
mainly come from the limited scalability caused by poor fidelity of multiphoton entanglement
due to noise from residual laser leakage, charge and spin noise, phonon sidebands, and process
of the post-selective entanglement generation.

Appendix A: C4 state preparation and characterization

The photonic states of |0〉 and |1〉 are represented by |H〉 and |V〉. For a polarizing beam-splitter,
as shown in Fig. 6(a), it has two input modes of 1 and 2, and two output modes of 3 and 4. If two
input photons are initialized into (|H〉1 + |V〉1)(|H〉2 + |V〉2)/2, the state of output photons would
be (|H〉4 |H〉3 + |H〉4 |V〉4 + |V〉3 |H〉3 + |V〉3 |V〉4)/2. Since we post-select two photons in the
opposite output modes simultaneously, the state is then projected into (|H〉3 |H〉4 + |V〉3 |V〉4)/

√
2

with a success rate of 1/2, by which way one can prepare entangled state on-demand.

Fig. 6. (a) A polarizing beam-splitter with input modes of 1, 2, and output modes of 3, 4.
(b) The schematic for photonic C4 state preparation. Three dashed lines represent three
distinct photonic quantum states |α〉, |β〉, and |γ〉. Labels remain in the reflection modes of
polarizing beam-splitters.

The schematic for photonic C4 state preparation is shown in Fig. 6(b). All half-wave plates in
Fig. 6(b) are aligned at 22.5° to act as Hadamard gates, while three dashed lines denote three
distinct photonic quantum states for C4 state preparation. At the beginning, all four photons are
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initialized into |H〉. A half-wave plate in each input mode turns four photons into:

|α〉 =
(|H〉 + |V〉)⊗4

4
. (2)

Then, two polarizing beam-splitters project the whole state into:

|β〉 =
(|H〉⊗3 + |V〉⊗3) ⊗ (|H〉 + |V〉)

2
. (3)

Next, three half-wave plates in x1, x0, and F1 modes transform the system into:

|γ〉 =
(|HH〉 |H〉 + |HV〉 |V〉 + |VH〉 |V〉 + |VV〉 |H〉) ⊗ (|H〉 + |V〉)

2
√
2

. (4)

At last, the x0 and F0 modes interfere at the final polarizing beam-splitter to achieve the C4 state,
by which way the intermediate state for current experimental configuration can be successfully
prepared.
The intermediate state is characterized in a qualitative way. The photonic C4 state can be

written in {|H〉, |V〉} basis:

|C4〉 =
|HH〉 |HH〉 + |HV〉 |VV〉 + |VH〉 |VH〉 + |VV〉 |HV〉

2
, (5)

and measurements of all modes along {|H〉, |V〉} basis will result in four peaks. The peaks
reveal only partial of possible entanglement property, additional measurements are still necessary.
One can use {|D〉, |A〉} basis, which can be written as the superposition of {|H〉, |V〉} basis, to
equivalently describe the C4 state. The state |D〉 is defined as (|H〉 + |V〉)/

√
2, while the state |A〉

is defined as (|H〉 − |V〉)/
√
2. Then, the C4 state can be written as:

|C4〉 =
|DD〉 |DD〉 + |DA〉 |DA〉 + |AD〉 |AA〉 + |AA〉 |AD〉

2
, (6)

and measurements of all modes along {|D〉, |A〉} basis also result in four peaks.
Next, one can also equivalently describe the C4 state with two of four modes use {|R〉, |L〉}

basis instead. Like {|D〉, |A〉} basis, {|R〉, |L〉} basis can also be represented by the superposition
of {|H〉, |V〉} basis: |R〉 = (|H〉 + i|V〉)/

√
2, and |L〉 = (|H〉 − i|V〉)/

√
2. Therefore, the C4 state

can also be written as the followings:

|C4〉 =
|RH〉 |LH〉 − i|RV〉 |RV〉 + |LH〉 |RH〉 + i|LV〉 |LV〉

2

=
|DR〉 |DL〉 + |DL〉 |DR〉 + |AR〉 |AR〉 + |AL〉 |AL〉

2
,

(7)

and measurements along these two sets of basis both result in four peaks.

Appendix B: analysis of inverse QFT

Since the order finding routine results in the periodic function F(x), the intermediate state of
routine can be rewritten as:

∑2l−1
x=0 |x〉 |F(x)〉/

√
2l =

∑j<r
j=0 |F(j)〉

∑
m |rm + j〉/

√
2l, where m, j are

non-negative integers satisfying rm + j<2l. By tracing out the function register, the argument
register will be projected into a mixed state. We introduce density matrix to represent the
mixed state, by which the argument register can be represented as: ρ =

∑j<r
j=0 |ψj〉〈ψj |, where

|ψj〉 =
∑

m |rm + j〉/
√
2l. Each element of density matrix |ψj〉 exhibits periodicity with a period

of r, in which l = dlog2 re qubits are sufficient to construct it. For the current experimental
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Fig. 7. Expected probability distributions for the answers of the inverse QFT, with the order
from 1 to 4, and 2 qubits in the argument register. Gray line in each plot represents half
of the maximum (and the same as in Fig. 8), and values exceed this line are identified as
“peaks”, which seem to appear at y = j/r.

parameter of r = 4, only 2 qubits are needed in the argument register. One can theoretically
calculate expected probability distributions of the inverse QFT applied on ρ with the order from
1 to 4, which have been indicated in Fig. 7.

As seen from Fig. 7, the peaks seem to appear at y = j/r [for r = 3, three peaks are equivalent
to appearing at y = 0/3 = 0.00(binary), y = 1/3 ≈ 0.01(binary), and y = 2/3 ≈ 0.11(binary)]. In
the experiment, we extract the order by comparing measured data with expected ones. However,
imperfections of quantum circuits may lead to a wrong answer, it is necessary to quantify the
measured results. We firstly perform the cross comparisons between expected data indicated in
Fig. 7. We use squared statistical overlap (SSO) [31], which is defined as: γ = (

∑7/8
y=0
√myey)

2, to
quantify the comparisons. By substituting expected probabilities into both my and ey, one can
calculate SSOs for the cross comparisons. The calculated SSOs for l = 2 are listed in the left part
of Table 3.

Table 3. Calculated square of statistical overlap (SSO) for cross comparisons of the patterns
shown in Fig. 7 for l = 2 (left part of the Table) and Fig. 8 for l = 3 (right part of the Table). The values
reach to unity, as shown in bold format, if the patterns are exactly the same. Some high values, as

shown in italic format, represent the wrong answers that may probably caused by imperfect
quantum circuits.

l = 2 r = 1 r = 2 r = 3 r = 4 SSO

r = 1 1.000 1.000 0.500 0.344 0.250 r = 1

r = 2 0.500 1.000 1.000 0.291 0.500 r = 2

r = 3 0.375 0.466 1.000 1.000 0.399 r = 3

r = 4 0.250 0.500 0.966 1.000 1.000 r = 4

SSO r = 1 r = 2 r = 3 r = 4 l = 3

In Table 3, the maximum of SSO (γ = 1, as represented with bold values) appears in the
position on the diagonal, meaning the extracted answer equals to the expected. However, for
r = 3 and 4, a high SSO of γ = 0.966 (as represented with italic values) appears off the diagonal,
which may result errors due to the imperfect quantum circuits. An additional qubit can be applied
on the argument register to avoid this. The expected probability distributions for l = 3 are shown
in Fig. 8, and the calculated SSOs for cross comparisons of the calculated data for l = 3 are listed
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in the right part of Table 3 respectively. Here, high SSOs no longer appear in the position off the
diagonal of Table 3. Therefore, 3 qubits are needed at least that make the quantum circuit be
more robust to noise.

Fig. 8. Expected probability distributions for the answers of the inverse QFT, with the order
from 1 to 4, and 3 qubits in the argument register. Peaks in these plots look sharper than
those in Fig. 7, meaning an additional qubit makes the quantum circuit to be more robust to
noise.
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