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Evolving Models for Incrementally Learning
Emerging Activities
Juan Ye and Elise Callus *

Abstract. Ambient Assisted Living (AAL) systems are increasingly being deployed in real-world environments and for long
periods of time. This significantly challenges current approaches that require substantial setup investment and cannot account for
frequent, unpredictable changes in human behaviours, health conditions, and sensor deployments. The state-of-the-art method-
ology in studying human activity recognition is cultivated from short-term lab or testbed experimentation, i.e., relying on well-
annotated sensor data and assuming no change in activity models. This paper propose a technique, EMILEA, to evolve an ac-
tivity model over time with new types of activities. This technique novelly integrates two recent advances in continual learning:
Net2Net – expanding the architecture of a model while transferring the knowledge from the previous model to the new model
and Gradient Episodic Memory – controlling the update on the model parameters to maintain the performance on recognising
previously learnt activities. This technique has been evaluated on two real-world, third-party, datasets and demonstrated promis-
ing results on enhancing the learning capacity to accommodate new activities that are incrementally introduced to the model
while not compromising the accuracy on old activities.

Keywords: Activity recognition, Continual learning, Smart home

1. Introduction

Ambient Assisted Living (AAL) refers to sens-
ing, communication, and intelligence technologies de-
ployed in living environments with the aim to improve
quality of life [22]. Recently AAL has made great
progress through the use of emerging sensing, machine
learning (esp. deep learning), and robotic technologies.
It spans a wide range of applications and we take an
example in personal healthcare in smart home environ-
ments. An environment can be deployed with passive
infrared motion sensors to track users’ whereabout,
RFID sensors to detect users’ interactions with every-
day objects, and resource monitoring sensors to mon-
itor consumption of water, electricity, and gas. These
sensor data will be collected and analysed to predict
users’ activities, which can be further used to health
tracking and disease diagnosis.

With the existing AAL systems, we can monitor
and recognise people’s daily activities [32], track their

*Ye et al. are in the School of Computer Science, University of St
Andrews, UK.
jy31@st-andrews.ac.uk

health [30], and provide assistance with their comple-
tion of daily activities [27]. This success is enabling
the move towards large-scale, in-the-wild, and long-
term deployment of AAL systems. This move however
comes with its own challenges, notably that neither the
sensing technologies being deployed, nor people’s ac-
tivity routines or health conditions, remain constant.
This creates a need for continual learning in AAL sys-
tems. Continual learning is a subfield in machine learn-
ing, referred to as the ability to continually learn over
time by accommodating new knowledge while retain-
ing previous knowledge [20].

Most of the existing activity models that are built
on supervised learning classifiers do not support this
ability, as they need to retrain their models with all the
data. For example, a system may collect a collection of
sensor data on two activities such as ‘watch TV’ and
‘sleep’, where a classifier is trained on these data to be
able to recognise them. Then after a while, the model
might need to be extended to recognise a new activity
‘do rehabilitation exercise’. Then either the classifier
needs to re-train the model with all the data on these
three activities, which can be undesirable if the num-
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ber of activities accumulates to a large number [1]. Al-
ternatively, we might use an updatable classifier so that
new instances can be used to incrementally and itera-
tively train the model, but the problem is that the clas-
sifier might suffer from catastrophic forgetting – the
performance on recognising previous activities might
be compromised by the update [19].

In this paper, we present EMILEA to evolve an ac-
tivity model incrementally with new types of activ-
ities, which is built on recent advance in continual
learning – Net2Net [8] and Gradient Episodic Memory
(GEM) [19]. The former provides operations to extend
the architecture of a neural network iteratively to en-
hance the learning capacity on an increasing number of
activities. The latter mitigates the effect of catastrophic
forgetting by controlling the gradient update while tak-
ing into account of the activities that have been learnt
before. We conduct a comprehensive evaluation of the
proposed technique on two real-world datasets to as-
sess the strength and limitation of EMILEA, which
sheds light on the future design of continual learning
techniques for human activity recognition.

The rest of the paper is structured as follows. Sec-
tion 2 reviews the literature of evolving activity mod-
els in human activity recognition and continual learn-
ing. Section 3 describes the approach including prob-
lem definition, workflow and the key components. Sec-
tion 4 introduces the evaluation methodology and Sec-
tion 5 presents the results and discusses the limitation
of EMILEA. The paper concludes in Section 6.

2. Related Work

In this section, we will review recent work on dis-
covering and recognising new activities with a particu-
lar focus on how to evolve the models and also briefly
look into continual learning techniques in the field of
machine learning.

2.1. New Activity Discovery and Recognition.

In recent years, there is an increasing number of
work devoted to discovering and recognising new ac-
tivities. Clustering and one-class classifier are the most
popular approaches. The idea is to add new clusters
and classifiers for each new type of activities. Gjoreski
et al. have used an agglomerative clustering technique
to enable real-time clustering of streaming data [13].
To validate clusters for new activities, they have pro-
posed two temporal assumptions on human activities;

that is, a human activity usually lasts for a certain pe-
riod of time and there should not be frequent transi-
tions between activities. With these assumptions, they
have filtered short outliers and been able to more accu-
rately discover meaningful clusters.

Ye et al. use distance-based clustering to incremen-
tally learn and recognise new daily routine activities
such as preparing breakfast or sleeping from binary
sensors embedded in a smart home [31]. An activity
profile is built on top of each pre-defined activity us-
ing training data and is modelled as a cluster. Math-
ematically proved sufficient statistics are summarised
on each cluster in order to enable model drift with-
out the need of storing any historical sensor data. Then
each incoming sensor data will be assessed on each
activity profile, and if the sensor data does not match
any existing activity profile; i.e., not falling into the
corresponding cluster, then it is considered as abnor-
mal and stored in a candidate pool. A clustering tech-
nique is consistently running on the candidate pool to
identify converged clusters whose sufficient statistics
do not significantly change. Once identified, the centre
node of the cluster is taken for annotation query and an
activity profile is built on this new cluster.

Shin et al. use Support Vector Data Description
(SVDD) with a Gaussian kernel to detect abnormal ac-
tivities of elder people, such as weakness or fall, based
on features extracted from infra-red motion sensor data
collected in houses [26]. The idea is to form a hyper-
sphere that encompasses all positive instances with the
minimal volume. An anomalous instance is the data
point that falls out of the hypersphere.

For clustering techniques and one-class classifiers,
it is less a problem that a new activity is just another
cluster(s) or another classifier. But simply adding a
new cluster or a new one-class classifier will make the
model fragile; for example, there might be overlap-
ping between clusters, which often needs to re-build.
To tackle this issue, Fang et al. have proposed a hi-
erarchical mixture model where each sub-model, built
on a conditional independent von Mises-Fisher distri-
bution, corresponds to a type of activity [12]. When
a new activity is discovered, a sub-model will be cre-
ated and added to the hierarchy. Then the contributing
parameters on each sub-model will be updated.

Cheng et al. have adapted a zero-shot learner to
recognise a new activity with limited training data [11].
A knowledge-driven model encodes the semantic re-
lationship between high-level activities and low-level
sensor attributes generated from accelerometer data.
To include a new activity, domain experts and devel-
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opers need to manually add new attributes and update
the activity-attribute matrix with manually specified
relationship between attributes and this new activity.

2.2. Continual learning

In this section, we describe recent advance in con-
tinual learning in the field of machine learning, includ-
ing regularisation and dynamic approaches and mem-
ory replay, that can be applied to mitigate this prob-
lem [20].

2.2.1. Dynamic Architectures
Approaches to alleviate forgetting include changing

the architecture of the network when new information
is received. The model consisting of a different number
of neurons or layers from the previous model is then
retrained.

Rusu et al. [25] have introduced a progressive net-
work that stops any changes on the network and ex-
pands it by adding a new sub-network for the new data.
The main idea is to keep a pool of models that are pre-
trained with previous knowledge and add lateral con-
nections to them for the new task [9]. To mitigate for-
getting, the parameters (θN) for previous tasks N are
never modified while the new parameters (θN+1) are
learned for the new task N+1 [20]. Furthermore, this
does not deteriorate the performance of previous tasks.
One drawback of using this technique is that the net-
work can become complex with the increasing number
of tasks learned. Since a new network is learned for
each task and it is connected to the previous network,
the complexity of the network structure and parame-
ters will increase very quickly [9, 20].

Aljundi et al. [1] introduce ExpertGate that consists
of a network of experts where each expert is a model
trained on a specific task. The new tasks are added to
the previously trained models in a sequential order in
which the knowledge is transferred. A gating mecha-
nism is built to decide which expert is required for ac-
tivation. This removes the requirement of loading all
models which is memory efficient as each model can
be computationally intensive [9].

Chen et al. [8] propose a Net2Net approach where
the networks can be widen (adding more neurons) and
deepen (adding more layers), and knowledge from the
previous network will be transferred or preserved in
the newly constructed network.

2.2.2. Regularisation Approaches
This subsection introduces approaches which en-

force constraints when the neurons’ weights are up-

dated such as Learning without Forgetting technique
and the Elastic Weight Consolidation approach.

Li and Hoiem [18] propose an approach called
Learning without Forgetting (LwF), where the shared
parameters (θs) and the parameters of the old tasks (θo)
influence how the model learns parameters for the new
task (θn). The latter parameters are updated in a way
that do not drastically decrease the performance on the
old tasks. LwF has faster learning rates when com-
pared to joint training [6] as it does not need access
to training and testing data for previous tasks. One of
the advantages of this approach is that the old training
data does not need to be retained as it will not be used
to re-adjust the network [18]. However, one drawback
is that if the tasks are very different, performance may
decrease.

Kirkpatrick et al. [16] have proposed Elastic Weight
Consolidation (EWC) to slow the training of the
weights related to the tasks so that the expertise on old
tasks can be retained. EWC is evaluated on the MNIST
dataset [17] where the new task consists of a modifi-
cation in the order of the input pixels of the images
in the dataset. The results are promising and indicate
that EWC can perform well on models that have the
catastrophic forgetting limitation [9].

Another model called Gradient Episodic Memory
(GEM), introduced by Lopez-Paz et al. [19], supports
continual learning by using an episodic memory and
by supporting backward transfer of important knowl-
edge to previous tasks. The episodic memory stores a
subset of data from the previous task to prevent the
GEM model from increasing the loss on previous tasks
when training of the current task. Parisi et al. [20] dis-
cuss how more memory is required during training for
the GEM when compared to other regularisation tech-
niques such as EWC.

Rebuffi et al. [23] have proposed incremental Clas-
sifier and Representation Learning (iCaRL), which
makes the use of stored exemplars for the old tasks.
Examples represent the most important information on
the tasks and for each task that is introduced, a set
of exemplars dedicated to that particular class is cre-
ated [9]. iCaRL classifies the new sample into a class
based on which class that has the most similar exem-
plars to it [9]. iCaRL also replays the stored data dur-
ing training which mitigates forgetting [28]. In this ap-
proach, resources are slowly increased with the num-
ber of classes introduced [9].

EMILEA is built on two of the above techniques –
Net2Net and GEM, with stored examples from learnt
classes, borrowed from iCaRL. This allows the ex-
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Fig. 1. EMILEA workflow

pansion of the network to learn more activities while
at the same time mitigating the catastrophic forget-
ting effect by controlling the gradient updates with
the stored examples. Net2Net and GEM target contin-
ual learning from different aspects. GEM updates pa-
rameters for the original network to optimise learning
towards new classes while not reducing the loss on
old classes, while Net2Net creates networks having a
different structure from the original. EMILEA novelly
integrates these two together to expand the network
while adjusting the parameters at the same time.

3. Proposed Approach

We define continual learning in activity recognition
as continually and incrementally learning activities in
a sequential manner. Let Dtn = ({(xi, yi)}

Ntn
i=1,Ctn) be

training data arriving at a time tn, where each exam-
ple (xi, yi) is composed of a feature vector xi ∈ X ,
and yi is an activity label yi ∈ Ctn . Ctn is a set of new
activities available at the time tn and Ctn ∩ (Ctn−1 ∪
Ctn−2

∪...∪Ct0) = ∅; that is, the new activities have not
been observed in the previous training data. The goal
of EMILEA is to learn and extend an activity model
ftn : X → C, where C = Ctn ∪Ctn−1 ∪Ctn−1 ∪ ...∪Ct0 .

Figure 1 presents the workflow of EMILEA. It
starts at the time t0 with a base set of activities, and
EMILEA constructs a model ft0 to recognise the activ-
ities in Ct0 . When there arrives a set of new activities
Ct1 , then the model ft0 will be expanded to accommo-
date the classification capability on both Ct0 and Ct1 .
This process will be repeated whenever there are new
activities to learn.

In this process, we need to address two questions:
(1) how to extend the model ftn and (2) how to pre-
vent catastrophic forgetting – a classic problem in con-
tinual learning. For question (1), we want to transfer
the knowledge from the previous model ftn−1 such that
the classification capability on Ctn−1

is preserved and

learning at the time tn can focus on new activities,
rather than learning all the activities from scratch. For
question (2), catastrophic forgetting is the phenomena
where learning new classes may compromise the per-
formance on the previous classes [15]. Figure 2 illus-
trates the catastrophic forgetting problem; that is, when
the model is extended and trained with new activities,
the model is optimised to recognise new activities only,
so the accuracy on the new activities is high (nearly
100%) while the accuracy on the old classes stays low
(less than 1%).

Fig. 2. An example to illustrate catastrophic forgetting

To tackle the above two questions, we novelly inte-
grate two advanced continual learning techniques from
the machine learning community: Net2Net [8] and
Gradient Episodic Memory (GEM) [19]. The Net2Net
introduces operations to extend a network with more
neurons and layers to enhance the learning capacity in
order to classify an increasing number of classes. GEM
alleviates the forgetting effect by controlling the gradi-
ent updates to balance the performance on old and new
classes. In the following, we will give a detailed de-
scription on these two techniques and present an algo-
rithm on integrating them to tackle continual learning
in activity recognition.

3.1. Model Extension

Net2Net introduces two operations to extend the
network: Net2WiderNet – adding neurons to the hid-
den layer and Net2DeeperNet – adding layers to the
network. Here we focus on Net2WiderNet as the sen-
sor data are often simpler (i.e., with less dimensions
and correlations between dimensions) than images.
For simplicity, we call the Net2WiderNet as Net2Net.

The principle of Net2Net is to add neurons to a hid-
den layer and redistribute the weights and biases of that
layer and the layer after. Let layer l and l + 1 be fully
connected layers, and layer l has m inputs and p out-
puts, and layer l+1 has p inputs and n outputs. Assume
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that we will extend the layer l with q new neurons,
we will need to update the weights W(l)(∈ Rm×p)
and W(l+1)(∈ (Rp×n)). The principle behind Net2Net
is function preserving – leveraging the functions or
knowledge in the previous model so that the model
still can recognise the old classes. To achieve this, the
model will be extended with the existing neurons and
the new weights on both old and new neurons will be
initialised with the original weights. This is in compar-
ison to a non-preserving approach where a new set of
neurons will be introduced and the weights on them
will be randomly initialised.

It starts with randomly sampling q neurons from the
original p neurons at layer l:

g( j) =

{
j j 6 p
random sample from{1, 2, ..., p} j > p

Then the new weight matrix U(l)(∈ Rm×(p+q)) is
constructed by firstly copying all the original weights
W(l) to U(l) and then copying the weights on the sam-
pled neurons to the new q neurons. For the weight ma-
trix U(l+1)(∈ R(p+q)×n), it starts with the same pro-
cess as for U(l) but accounts for the replication by di-
viding the weights on the replicated neurons.

U(l)
k, j = W(i)

k,g( j) (1)

U(l+1)
j,h =

1

|{x|g(x) = g( j)}|
W(l+1)

g( j),h (2)

where k ∈ [1,m], j ∈ [1, p + q], and h ∈ [1, n]. After
the replication process, a small amount of noise will be
added to break the symmetry.

The extension of the model often starts from the last
layer (the output layer) to accommodate new classes
and/or from the second last layer to enhance the learn-
ing capability to discriminate a larger set of classes.
Net2Net supports expanding the model at multiple lay-
ers. In this situation, the expansion will start from the
second last layer and gradually move forward to the
previous layers. The weights initialisation will be done
iteratively layer after layer. Algorithm 1 illustrates the
process.

3.2. Forgetting Effect Mitigation

Now we will describe how to use GEM to mitigate
the forgetting effect. GEM assumes a memory space to
host examples from the previous old classes. Learning

Algorithm 1 Neural network expansion

Input: NE – a list consisting of the number of neurons
to extend at each layer, starting from the second
last layer and moving forward layer by layer

Input: W – a list consisting of the weight matrices
from the previous model, whose layers map to
the layers in NE

for l ∈ 1, 2, ..., |NE | do
generate a mapping function g(l) :
{1, 2, ..., |W(l)|[1]} → {1, 2, ..., |W(l)|[1]+NE [l]}
c j ← 0 for j ∈ 1, 2, ..|W(l)|[1] + NE [l] do

cg(i−1)( j) ← cg(i−1)( j) + 1

end
for j ∈ 1, 2, ..., |W(l)|[1] + NE [l] do

U(l)
k, j ← 1

c j
W(l)

g(i−1)(k),gi( j)

end
end
Output: {U}: the transformed weight matrices for a

wider network

new classes is to minimise the loss function on both
old and new classes;

L( f θ,Mk) =
1

|Mk|
∑

(xi,k,yi)∈Mk

L( f θ(xi, k), yi)

(3)

whereMk holds the examples on the old classes in the
previous task arriving at the time k (< tn) in the mem-
ory and θ is the network parameters, such as weights
and biases.

To prevent forgetting, GEM guarantees that the loss
at previous tasks does not increase after each parame-
ter update. That is, when observing a new training ex-
ample (x, tn, y) at the current time tn,

minimizeθ L( f θ(x, tn), y)
subject to L( f θtn ,Mk) 6 L( f θtn−1

,Mk)

for all k < tn,
(4)

To assess whether the new update will increase the
loss or not, GEM leverages the examples held in the
memory by computing the angle between their loss
gradient vector and the proposed update; that is, the
above equation (4) will be re-phrased as the following:
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〈g, gk〉 :=
〈
∂L( f θ(x, tn), y)

∂θ
,
∂L( f θ,Mk)

∂θ

〉
> 0

(5)

for all k < tn

If all the inequality constraints in the equation (5)
are satisfied, then the proposed gradient update g is un-
likely to increase the loss on previous classes. Other-
wise, there is at least one previous class that would ex-
perience an increase in loss after the update. In this sit-
uation, the proposed gradient g will be projected to the
closest gradient g̃ that satisfy the constraints in Equa-
tion (5). That is,

minimizeg̃
1
2 ||g− g̃||22

subject to 〈g̃, gk〉 > 0 for all k < tn.
(6)

The primal of a Quadratic Program (QP) with in-
equality constraints is applied to solve the above equa-
tion, which is described as:

minimizev
1
2vT GGT v + gT GT v

subject to v > 0,
(7)

where gT g is constant and G = −(gt0 , gt1 , ..., gtn−1
)

[19]. This equation is a QP calculated on the number of
classes observed so far. Once the dual problem (Equa-
tion (7)) is solved for v∗, the projected gradient update
is calculated using ĝ = GT v∗ + g [19]. The calculated
gradient is then applied using the optimiser.

The overall algorithm of EMILEA is presented in
Algorithm 2.

4. Experiment and Evaluation Methodology

The objective of EMILEA is to assess the perfor-
mance of recognising both old and new activities over
time by incrementally introducing new activities.

4.1. Evaluation Process

The evaluation process works as follows. EMILEA is
initially trained on randomly sampled 2 activities with
50% of their training data. Then we gradually extend
the model with a new activity a time, which is ran-
domly sampled from the remaining set of activities.
For all the learnt activities, we hold out p% of the train-

Algorithm 2 EMILEA

Input: Dt0 – training data on the first batch of activi-
ties Ct0

Input: NE – a list consisting of the number of neurons
to extend at each layer, starting from the second
last layer and moving forward layer by layer

Input: W – a list consisting of the weight matrices
from the previous model, whose layers map to
the layers in NE

m← build_model train(m) M = {}
while new training data Dtn arrives do

m ← extend_model(m, NE ,W) for epoch train-
ing_epoch do

for batch training_batches do
g←5θ l( f θtn(batch), y)
gk ←5θ l( f θtn ,Mk) for all k < tn
ĝ← project(g, gt0 , gt1 , ...gtn−1)
θ← θ − αĝ

end
end
M←M∪ samples(Dtn)

end

ing data for retraining the model. When a new activity
is introduced, the network will be expanded and re-
initialised with the previous model’s weights and bi-
ases. Then it will be trained with the new class’ train-
ing data and the holdout data from the old classes.

At each expansion, we evaluate four types of accu-
racy:

– New – accuracy on the test data of the new activ-
ities Ctn , which is lastly trained on;

– Old – accuracy on the test data of the old activities
that have been learnt Ctn−1

∪Ctn−2
∪ ... ∪Ct0 ;

– All – accuracy on the test data of the old and new
activities;

– Base – accuracy on the test data of the initially
sampled activities Ct0 .

4.2. Comparison Techniques

We consider to compare with the baseline ap-
proaches and also variations of configurations in
EMILEA. More specifically,

– Offline – train a model with all the activities (with
50% training percentage);

– Naive – set up model the same as Offline with the
output layer matching to all the activities and train
the model with adding an activity a time (again
with 50% training percentage);
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– GEM – set up the model the same as Naive but
apply the GEM approach to update the gradients
with holdout data, which is p% of training data
on each previous activity.

– Net2Net – set up the model the same as Naive
with the output layer only containing the selected
base activities (which are 2), and then gradually
extend the network architecture. Here we con-
sider only extending the last output layer and the
second last hidden layer with a different number
of neurons. Also the holdout data is used together
with the training data on new activities to retrain
the model.

– Net2Net+GEM – the same as Net2Net but apply
GEM to update the gradient.

4.3. Selected Datasets

We consider two publicly available, third-party
datasets for evaluating the performance of EMILEA.
The first dataset is PAMAP2 – Physical Activity Mon-
itoring Dataset [24]. It contains 12 activities, includ-
ing lying, standing, sitting, ironing, and house clean-
ing. These activities and their distribution are recorded
in Figure 3. The sensor data are collected on 9 sub-
jects with 3 initial measurement units on each subject’s
dominant arm, chest, and dominant side ankle.
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Fig. 3. Activity Distribution on PAMAP2

The other dataset is DSADS – Daily and Sports Ac-
tivities Dataset [2–4]. It contains 19 activities, includ-
ing sitting, running on a treadmill, exercising on a step-
per, and rowing. Each of these activities is performed
by 8 subjects for 5 minutes. The sensor data are col-
lected on 8 subjects with 5 accelerometer units on each
subject’s torso, right arm, left arm, right leg, left leg.

As the paper does not aim for feature extraction, we
do not work on the raw accelerometer data on these
two datasets, but on the extracted feature datasets [29].
For each sensor, 27 features are exacted, including

mean, standard deviation, and correlations on axises.
The statistics of these two datasets are listed in Table 1.
Both datasets are ideal for validating EMILEA as they
contain a large number of activities and have a high-
dimensional feature space, which increases the chal-
lenge of continual learning.

Table 1
Dataset Description

Dataset No. Samples No. Activities No. Features
DSADS 9120 19 405
PAMAP2 7312 12 243

4.4. Model Configuration and Parameter Training

As EMILEA will expand the network with contin-
ually increased activity classes, the initial configura-
tion of the network should be small to avoid overfitting
and reduce computational cost [8]. To decide the ini-
tial configuration, we consider to use two designs with
2 and 3 layers respectively. With respect to the num-
bers of neurons, we have run grid search with different
numbers of neurons and choose the architecture that
achieves the best accuracy on the randomly selected 2
base activities. In the end, we have settled the model
with 2 hidden layers with 20 neurons and 40 neurons
per hidden layer for the PAMAP2 and DSADS datasets
respectively.

We set the learning rate as 0.001 and the batch size
as 16. The learning rate is chosen using a grid param-
eter search to decide the best accuracy while also de-
creasing the cost. We start from 0.005 to 0.001 with a
step size 0.001, and the setting is chosen because the
model is already initialised with the previous model’s
weights and the gradient update will benefit from a
small learning rate.

In order to determine the number of training epochs,
we run an experiment to see at which epoch the accu-
racy averaged on the activities that have been learnt so
far will stabilise. We use the setting of Net2Net with
GEM and a holdout percentage of 5%. For each new
activity, we train the model with 20 epochs. Figure 4
presents the accuracy on old, new and all activities over
time on the PAMAP2 dataset. As we can see, for ma-
jority of activities, the accuracy on all the activities
will stabilise after 10 epochs. We can also observe that
the accuracy on new activities is often high but occa-
sionally reduces significantly (e.g., on the 8th activ-
ity). This is caused by the activity variability between
the current and previous learnt activities. The order of
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learning new classes matters in continual learning. Ide-
ally, the model can gain higher performance if it trains
with easier classes and then gradually learns classes
with increasing difficulty level [5, 10].

Fig. 4. Accuracy on old, new, and all activities over time on intro-
ducing a new activity a time on PAMAP2

5. Results and Discussion

This section will present the results and discuss the
limitation of EMILEA.

Table 2
Summary result on PAMAP2

Base New All

Offline

Naïve 0.04 (0.05) 0.94 (0.10) 0.22 (0.04)
0.01 0.5 (0.04) 0.75 (0.02) 0.55 (0.02)
0.05 0.58 (0.06) 0.6 (0.01) 0.65 (0.01)

0 0.25 (0.05) 0.98 (0.01) 0.36 (0.04)
1 0.28 (0.15) 0.98 (0.01) 0.35 (0.07)
2 0.26 (0.14) 0.98 (0.01) 0.33 (0.05)
3 0.32 (0.15) 0.98 (0.01) 0.37 (0.07)
0 0.50 (0.11) 0.93 (0.02) 0.60 (0.08)
1 0.51 (0.11) 0.93 (0.04) 0.58 (0.04)
2 0.42 (0.18) 0.93 (0.03) 0.53 (0.08)
3 0.55 (0.12) 0.96 (0.01) 0.56 (0.04)
0 0.54 (0.15) 0.46 (0.19) 0.42 (0.11)
1 0.54 (0.06) 0.43 (0.20) 0.41 (0.09)
2 0.53 (0.10) 0.81 (0.08) 0.54 (0.06)
3 0.63 (0.06) 0.78 (0.20) 0.67 (0.19)
0 0.70 (0.08) 0.67 (0.09) 0.73 (0.07)
1 0.64 (0.03) 0.77 (0.08) 0.73 (0.09)
2 0.67 (0.12) 0.79 (0.06) 0.74 (0.05)

3 0.64 (0.11) 0.75 (0.11) 0.73 (0.07)

0.01

0.01

0.05

0.78 (0.07)

Model
Holdout 

Percentage
Neuron 

Expansion
Accuracy

0.05

Net2Net

Net2Net 
+GEM

GEM

Table 2 and 3 presents the comparison of accu-
racy with different variants of design and baseline ap-
proaches on the PAMAP2 and DSADS datasets. We
run each setting 10 times and present the mean and the
standard deviation for each type of accuracy. We con-
sider holdout percentages as 1% and 5%, which are
set low to reduce the memory cost. On the PAMAP2
dataset, we expand the number of neurons from 1 to

Table 3
Summary result on DSADS

Base New All

Offline

Naïve 0.06 (0.04) 0.99 (0.00) 0.19 (0.03)
0.01 0.33 (0.12) 0.86 (0.02) 0.41 (0.02)
0.05 0.65 (0.14) 0.65 (0.05) 0.6 (0.03)

0 0.33 (0.03) 0.98 (0.01) 0.44 (0.05)
2 0.31 (0.06) 0.96 (0.02) 0.42 (0.01)
4 0.32 (0.11) 0.97 (0.03) 0.45 (0.07)
6 0.22 (0.08) 0.99 (0.00) 0.39 (0.03)
8 0.38 (0.12) 0.98 (0.01) 0.43 (0.04)
0 0.65 (0.12) 0.94 (0.05) 0.67 (0.04)
2 0.63 (0.09) 0.95 (0.03) 0.68 (0.07)
4 0.63 (0.11) 0.95 (0.02) 0.70 (0.07)
6 0.75 (0.13) 0.94 (0.03) 0.68 (0.05)
8 0.74 (0.10) 0.92 (0.05) 0.68 (0.06)
0 0.31 (0.09) 0.92 (0.02) 0.59 (0.02)
2 0.31(0.10) 0.92 (0.03) 0.55 (0.05)
4 0.41 (0.16) 0.92 (0.05) 0.57 (0.05)
6 0.44 (0.17) 0.92 (0.01) 0.59 (0.04)
8 0.42 (0.12) 0.90 (0.05) 0.57 (0.03)
0 0.69 (0.15) 0.75 (0.05) 0.72 (0.04)
2 0.73 (0.06) 0.77 (0.01) 0.75 (0.04)
4 0.72 (0.03) 0.76 (0.03) 0.74 (0.04)
6 0.74 (0.09) 0.77 (0.05) 0.76 (0.03)

8 0.67 (0.15) 0.74 (0.05) 0.75 (0.04)

Net2Net 
+GEM

0.01

0.05

0.68 (0.13)

GEM

Net2Net

0.01

0.05

Model
Holdout 

Percentage
Neuron 

Expansion
Accuracy

3. Because the initial network architecture on DSADS
dataset is larger, we increase the number of neurons
from 2 to 8 in order to achieve observable enhancement
on learning capacity.

5.1. Performance on Recognising Base Activities

The Base accuracy measures the accuracy on the
first input activities Ct0 , which is used to assess the for-
getting effect. The combination of Net2Net and GEM
have achieved the best accuracy. On the PAMAP2
dataset, with 1% holdout percentage (which corre-
sponds to 3 examples per activity type), Net2Net+GEM
achieves the accuracy of 63%, which is 31%, 13%,
and 59% higher than the Net2Net, GEM, and Naive
approaches. GEM is the second best performing ap-
proach, 18% and 46% higher than Net2Net and Naive.
This shows that GEM helps maintain the accuracy on
the activities that have been trained long ago. Net2Net
that extends the network architecture does improve the
learning capacity to accommodate an increasing num-
ber of activities. However, without GEM, with a small
number of holdout examples, Net2Net still suffers the
forgetting effect. The reason is that the holdout data is
only 1% or 5% of training data, which is significantly
less than the training data on the new activities.

Figure 5 presents the trend of base accuracy (with
1% holdout percentage) over time on the PAMAP2
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Fig. 5. Accuracy on recognising base activities on PAMAP2

dataset. Net2Net+GEM has maintained more consis-
tent performance after adding 9 activities. GEM’s per-
formance drops after 5 activities. The base accuracy
on Net2Net stays low; i.e., between 20% and 40%.
Clearly Naive has no capability of recognising any
base activities at all.

When the holdout percentage increases to 5%, the
gap of the base accuracy between GEM and Net2Net
reduces; with GEM is 3% higher than Net2Net.
Net2Net+GEM still achieves the best accuracy 70%.

On the DSADS dataset, we can observe the similar
benefit of the combination of Net2Net and GEM. With
1% holdout data (which corresponds to 2 examples per
activity type), Net2Net+GEM achieves the base accu-
racy of 47%, which is 9%, 14%, and 41% higher than
Net2Net, GEM, and Naive approach. With 5% hold-
out data, Net2Net+GEM achieves the base accuracy of
77%, which is 2%, 12% and 71% higher than Net2Net,
GEM, and Naive approach.

The increase on holdout data (from 1% to 5%) has
more significant impact on the DSADS dataset than on
the PAMAP2 dataset, which leads to 30%, 37%, and
32% increment on base accuracy of Net2Net+GEM,
Net2Net, and GEM. The reason behind is that DSADS
has more activity types (19 in DSADS and 12 in
PAMAP2) and the difficulty level of discriminating
these activities is also higher (68% of offline accuracy
on DSADS and 78% of offline accuracy on PAMAP2).
The increased holdout data can potentially help opt-
mise towards the base activities. Figure 6 presents
the trend of base accuracy (with 1% holdout per-
centage) on the DSADS dataset. The accuracy of
Net2Net+GEM on DSADS drops much earlier than on
PAMAP2, after 5 activities and dips around 30% after
9 activities. GEM and Net2Net both keep the accuracy
between 30% and 40% over time.
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Fig. 6. Accuracy on recognising base activities on DSADS

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12

Ac
cu

ra
cy

Number of activities being learnt

Accuracy on New Activities (PAMAP2)

Naïve Net2Net (0.01, N=3) GEM (0.01) Net2Net + GEM (0.01, N=3) Offline

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ac
cu

ra
cy

Number of activities being learnt

Accuracy on New Activities (DSADS)

Naïve Net2Net (0.01, N=4) GEM (0.01) Net2Net + GEM (0.01, N=3) Offline

Fig. 7. Accuracy on recognising new activities on both PAMAP2 and
DSADS

5.2. Performance on Recognising New Activities

The New accuracy is the accuracy on recognising
new activities Ctn immediately after training, which is
used to indicate the learning capacity of the model;
that is, whether the model can accommodate new
classes. As we can see, Net2Net and Naive achieve
the best new accuracy: above 95% on both PAMAP2
and DSADS datasets. GEM suppresses the learning on
new activities, and the more holdout data we have, the
lower accuracy is achieved on new activities. This is
due to the fact that GEM needs to guarantee the loss
on old classes does not increase, which might stop the
loss on new classes from dropping quickly.

Figure 7 presents the trend of new accuracy on
both PAMAP and DSADS datasets. On the DSADS
dataset, Net2Net and Net2Net+GEM maintain high ac-
curacy on recognising new activities. On the PAMAP2
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dataset, the new accuracy of Net2Net+GEM drops sig-
nificantly. After checking the inference results, some
activities in the PAMAP2 dataset can be too similar
to each other to distinguish. For example, the new ac-
curacy drops from 77%, to 58%, 49%, and then to
17% when learning the following activities one by
one: ironing, descending stairs, standing, and ascend-
ing stairs. However, the new accuracy on ascending
stairs can be 100% when learning after vacuum clean-
ing and rope jumping. This shows that in continual
learning, the challenge in activity recognition is not
only on the activity itself but also the learning se-
quence. It is different from offline learning: the model
will aim to optimise the parameters to discriminate all
the classes. In continual learning, the model will opti-
mise the parameters to discriminate the classes on hand
and only adjust the parameters to accommodate new
classes. However, if distinguishing the new class from
the old classes requires drastic update on parameters,
then the learning will not be effective, leading to low
accuracy on new activities.

5.3. Performance on Recognising All Activities

Every time after learning a new activity, we test on
all the activities that have been learnt so far (Ctn ∪
Ctn−1

∪ ...∪Ct0 ). We average the accuracy at each time
and report the All accuracy in Table 2 and 3, which
is used to reflect the balanced overall performance
on learning both old and new activities over time.
On the PAMAP2 dataset, with 1% holdout percent-
age, Net2Net+GEM still achieves the best all accu-
racy of 67%, which is 30%, 12%, and 45% higher than
Net2Net, GEM, and Naive approaches. With 5% hold-
out percentage, it achieves the accuracy of 74%, which
is very close to the offline accuracy of 78% and is
14%, 9%, 52% higher than Net2Net, GEM, and Naive
approaches. Figure 8 presents the accuracy trend on
recognising old activities. GEM and Net2Net+GEM
perform the best over time and towards the end, GEM
achieves slightly better accuracy on old activities than
Net2Net+GEM. Another observation is that the accu-
racy of Net2Net+GEM has dropped significantly af-
ter learning 10 activities. This is due to the interfer-
ence between classes (that is, activities have overlap-
ping patterns). When this happens and there only ex-
ists a small amount of holdout data on the old classes,
then the network will be optimised towards to the new
classes and will be less able to recognise the interfering
old activities.
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Fig. 8. Accuracy on recognising old activities on PAMAP2

On the DSADS dataset, with 1% holdout percent-
age, Net2Net+GEM still achieves the best all accu-
racy of 59%, which is 14%, 18%, and 40% higher
than Net2Net, GEM, and Naive approaches. With 5%
holdout percentage, it achieves the accuracy of 75%,
which is better than offline accuracy of 68% and is 5%,
15%, 46% higher than Net2Net, GEM, and Naive ap-
proaches. Figure 9 presents the trend of accuracy on
recognising old activities. In this case, Net2Net+GEM
consistently outperforms than the other alternatives. At
the beginning, DSADS achieves better accuracy than
the offline approach, because learning with fewer ac-
tivities (which are 2 or 4) is easier than learning 19
activities altogether.
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Fig. 9. Accuracy on recognising old activities on DSADS

5.4. Discussion

Continual learning in activity recognition can be a
challenging task. In this paper, we propose a novel
combination of Net2Net and GEM to extend the model
to deal with the requirement on learning an increasing
number of activities over time. The approach achieves
much better accuracy in recognising old and new activ-
ities compared to Net2Net and GEM alone, and naive
approach.



11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Comparison of training time on PAMAP2

0.01 0.05 0.01 0.05 0.01 0.05
DSADS 0.43s 0.58s 4.3hr 15hr 0.38s 0.41s 0.2hr 0.8hr
PAMAP 0.17s 0.35s 0.9hr 1.9hr 0.31s 0.43s 0.2hr 0.5hr

Net2Net+GEMOffline Naïve Dataset GEM Net2Net

5.4.1. Computation Cost
GEM works well in tackling the forgetting effect,

maintaining the consistent accuracy on base and old
activities. However, the computation cost on GEM is
high. Table 4 shows the training time averaged per
epoch on a modest computer1 with Intel Core i5 8400,
32GB memory, and 2 × 500GB SSD.

GEM takes longest to train, and it reaches to 15
hours with holdout percentage 5% on the DSADS
dataset. The reason is that DSADS has 19 activities
and for each iteration, GEM needs to make sure the
loss on each activity does not decrease. Therefore, the
more activities, the more checking needs to be done
and gradient updates will take longer. Figure 10 shows
the increase in training time (in logarithm) after adding
a new activity a time on the DSADS dataset. One way
to improve the computation time is to relax the con-
straint; that is, not enforcing not compromising the ac-
curacy on the holdout data in all the previous tasks [7].

An interesting observation is that Net2Net+GEM
takes 20 times less than GEM alone. After investigat-
ing, we find that it is difficult to guarantee no decrease
in the loss on old classes in GEM, especially when
the number of old classes is large. However, after ex-
tending the network with Net2Net, adding new neu-
rons and redistributing the weights has weakened the
loss on old classes and made the inequality constraint
in Equation (5) easier to be satisfied.

Net2Net alone takes less time than the naive ap-
proach and similar to the offline approach. Now the
question is: would we achieve similar accuracy by in-
creasing the holdout percentage on the Net2Net alone
approach? To answer this question, we run another
set of experiments to increase the holdout percent-
age on both datasets and see when we can achieve
comparable All accuracy on Net2Net+GEM with 5%
holdout percentage. On DSADS in Figure 11, when

1Due to the high number of experiments, we are unable to run ex-
periments one by one on a GPU machine. Instead, we run the experi-
ments in parallel on the cluster nodes hosted in our school. The clus-
ter nodes are computing resources shared with all the researchers, so
the computation time can fluctuate due to the competition of mem-
ory and computation with the other tasks running at the same time.
Therefore, the computation time recorded here is just an indication.
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Fig. 10. Comparison of execution time (in logarithm) between GEM
and Net2Net+GEM after each training

the holdout percentage increases to 10%, Net2Net can
achieve similar accuracy to Net2Net+GEM. Compared
to 0.8 hours on Net2Net+GEM and 15 hours on GEM,
the training time per epoch on Net2Net only takes
0.5 seconds, which is more affordable with resource-
constrained devices and the requirement for real-time
training in human activity recognition. The increased
holdout percentage only results in holding 228 more
examples in memory. On PAMAP2 in Figure 11, the
holdout percentage needs to increase to 20% to reach
comparable accuracy to Net2Net+GEM, which means
that the memory needs to host 548 more examples. But
again the gain on the training time is significant, which
is 0.35 seconds compared to 0.5 hours and 1.9 hours
on Net2Net+GEM and GEM.

Since the increase in the holdout data can improve
the accuracy of continual learning, then one future di-
rection could be adaptive holdout data management.
For example, as the number of activities grows, the
system might not be able to accommodate the same
amount of holdout data for each learnt task. Then the
questions are: can we dynamically reduce the holdout
data on some of the old classes so as to accommodate
data from new classes? If so, then we can look into the
selection of holdout data in terms of different criteria,
including recency – how recent the data is, diversity
– whether the selected data covers the sensor feature
space, and difficulty-to-learn – whether the data leads
to high loss in training, indicating the complexity of
tasks.

5.4.2. Impact of Model Expansion
On Table 2 and 3, we have also observed that adding

more neurons to the network will enhance the learning
capacity but not significantly and the improvement be-
tween different numbers of neurons is within 3%. We
have only attempted one way to extend the network
by widening the second last layer, and there are many
other options to explore, including adding more layers
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Fig. 11. Comparison of all accuracy between Net2Net and
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or adding neurons to different layers. However, how to
determine the optimal expansion strategy is difficult. It
would be desirable to depend on the new data Dtn to
dynamically determine whether we need to expand the
network for the new set of activities, and how much to
expand. An interesting future direction can be investi-
gating self-organising network [21, 33] – evolving the
architecture of the network when necessary.

5.4.3. Accuracy Improvement
After investigating our approach with an extensive

set of experiments, we have built a comprehensive per-
formance profile of EMILEA and thus identify the fol-
lowing areas to improve. First of all, we can increase
the number of training epochs, however, which incurs
higher computation cost. We might be able to perform
training on a powerful GPU-powered workstation and
deploy the learnt model on a resource-constrained de-
vice for activity recognition. Secondly, we only ran-
domly sample training data as holdout data for each
activity, however, these holdout data might not be rep-
resentative. We will look into clustering techniques to
select centroid examples and also consider to use more
advanced techniques to assess the diversity of these ex-
amples so as to cover the whole input space [14].

6. Conclusion and Future Work

In this paper, we present EMILEA – evolving
model for incrementally learning emerging activities,
which is the very few first attempt that applies con-
tinual learning techniques to human activity recog-
nition. Through extensive experiments on two real-
world datasets, we have demonstrated the advantage
of EMILEA, especially Net2Net in learning new activ-
ities over time. GEM helps mitigate catastrophic for-
getting but the computation cost is too high, which
might not be feasible for sensor-based human activ-
ity recognition. With the followup experiments on in-
creasing the holdout percentage on Net2Net, we find
that if the system can afford more memory; holding
more examples in memory, Net2Net alone will be a
better option to go, which can achieve comparable ac-
curacy and also is more computationally efficient and
thus affordable in real-world sensor-based human ac-
tivity recognition systems. In terms of deployment and
application, EMILEA can be employed in conjunction
with new activity discovery techniques; that is, once
a new set of activities is discovered, EMILEA will be
activated to learn them.

In the future, we will extend the current technique to
tackle evolving feature space; that is, when a new sen-
sor is deployed and the input feature space is changed.
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