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Abstract 

 

This study estimates cumulative infection rates from Covid-19 in Great Britain by geographical units 

and investigates spatial patterns in infection rates. We propose a model-based approach to calculate 

cumulative infection rates from data on observed and expected deaths from Covid-19. Our analysis of 

mortality data shows that between 5 and 6% of people in Great Britain were infected by Covid-19 by 

the last third of April 2020. It is unlikely that the infection rate was lower than 3% or higher than 12%. 

Secondly, England had higher infection rates than Scotland and especially Wales, although the 

differences between countries were not large. Thirdly, we observed a substantial variation in virus 

infection rates in Great Britain by geographical units. Estimated infection rates were highest in the 

capital city of London where more than 10% of the population might have been infected and also in 

other major urban regions, while the lowest were in small towns and rural areas. Finally, spatial 

regression analysis showed that the virus infection rates increased with the increasing population 

density of the area and the level of deprivation. The results suggest that people from lower 

socioeconomic groups in urban areas (including those with minority backgrounds) were most affected 

by the spread of coronavirus in March and April.  

 

Keywords: Covid-19, infectious diseases, infection rates, mortality, statistical modelling, spatial 

analysis 

 

 

 

 

 

 

 

 

 

 

Address 

ESRC Centre for Population Change, School of Geography and Sustainable Development, University 

of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, United Kingdom 

E-mail: Hill.Kulu@st-andrews.ac.uk 

E-mail: psd3@st-andrews.ac.uk 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/333537808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Background 

The Covid-19 pandemic has become a major public health threat in many countries. Observed 

infections are well documented - they vary across countries and across regions within countries (1). 

However, observed cases significantly underestimate the actual number of infected individuals and 

they cannot be easily compared across countries as they depend on the scale of testing, which varies 

substantially across countries. Little is still known about the actual number of infected people in 

Europe and other industrialised regions and their proportion of the population. This has led to 

speculation as to how widely coronavirus is spread and has caused debate in the media on whether 

the worst is over or is yet to come in the form of a second (and subsequent) wave. For example, 

Lourenco et al. argued that the majority of the population in the UK might have already been infected 

by mid-March (2). Others have shown that the virus is not widely spread, although the infected 

numbers are much higher than reported cases. In a US study Benavid et al. estimated some 54 

thousand infected individuals in Santa Clara County (California), which was much higher than the 

reported cases in the country by early April (approximately one thousand). However, the estimated 

infection rate was still only 2.8% of the population (3). A study on Gangelt, a small German community, 

by Streeck et al. reported the  proportion of infected individuals  to be 15.5%, which was 5 times higher 

than reported cases (4). However, the area is one of the worst-affected areas in Germany, where the 

virus spread rapidly and widely during the carnival season. Most estimates of the virus prevalence 

from other locations lie somewhere between these limits. 

National Statistical Offices increasingly provide information on individuals who have died from 

Covid-19. Normally the data include deaths from Covid-19 by age, sex and geographical region (5–7). 

An increasing number of studies from various countries also provide information on the infection 

fatality rates. Although the estimated infection fatality rates vary, most studies report estimates of 

between 0.4% and 1.3% (4,8–11). It is widely known that data on the likelihood of dying from Covid-

19 exhibit a clear age pattern with the infection fatality rates low among young and middle-aged 

populations. They increase by age and are at their highest among those in their eighties and nineties. 

Mortality data by age and sex support these patterns - for example, in England and Wales 83% of 

people who had died by 8th May were aged 70 and older (this includes registered deaths by 8/5/20) 

(5). Therefore, by bringing together information on the infection fatality rates and data on the number 

of deaths from Covid-19 the virus infection rate can be estimated with a high degree of accuracy for 

countries, for various regions within countries and, increasingly, for population subgroups. 

The aims of this study are threefold. Firstly, to estimate cumulative infection rates from Covid-

19 in Great Britain by geographical units. Secondly, to investigate spatial patterns in infection rates 

and thirdly, to examine determinants of geographical variation in infection rates. We propose a model-

based approach to calculate cumulative infection rates from mortality data. To the best of our 

knowledge this is the first study to investigate spatial variation in infection rates within a country. 

Previous studies have either estimated infection rates in one region or town or at the country level 

(4,12). To date no study has estimated cumulative infection rates using a statistical model. Research 

has shown that the spread of infectious diseases follows spatial patterns - they normally spread from 

a few places (often big cities) to other settlements and areas (13–15). Therefore, determining spatial 

patterns in infection rates and detecting affected areas is important in order to gain a better insight 

into how widely and where coronavirus has spread. In Great Britain recent mortality data published 

by the Office for National Statistics (for England and Wales) and the National Records of Scotland 

provide indirect evidence of significant variation in the virus prevalence rate across the regions (16).    
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Methods 

Estimation of infection rates 

Kulu and Dorey calculated expected deaths from Covid-19 using the following formula (17): 

𝐷𝑖 = 𝑐 × ∑ ∑ 𝑃𝑥,𝑔,𝑖 × 𝐹𝑥,𝑔𝑥𝑔   (1) 

where Di is the number of expected deaths in geographical unit i, Px,g,i is the number of individuals 

aged x in sex g in a geographical unit, Fx,g is the infection fatality rate (IFR) in age x by sex, which is the 

same for all spatial units, and c is the infection rate, which they assumed to be a constant (0.2) or the 

same across spatial units. They calculated expected deaths for each geographical unit if everyone 

becomes infected over time (or the virus spreads widely). Given that we have now data available on 

observed deaths from Covid-19 we can re-arrange the formula to find the true infection rate for each 

geographical unit: 

𝐼𝑅𝑖 =
𝐷𝑖

∑ ∑ 𝑃𝑥,𝑔,𝑖×𝐹𝑥,𝑔𝑥𝑔
    (2) 

where IRi is the estimated infection rate for geographical unit i. The reader may already have noticed 

that, essentially, this is a conventional formula for the Standardised Mortality Ratio (SMR) where we 

calculate the ratio of observed and expected deaths, which we find by applying external (i.e. 

‘standard’) mortality rates by age and sex to our study population.  Here the expected deaths are the 

deaths from Covid-19 assuming that the infection rate is 1 (or everyone is infected). If we can estimate 

how many people would die if everyone was infected by the virus and we know the observed number 

of deaths at time moment t, we can interpret the ratio of the observed and expected deaths as the 

Covid-19 infection rate at time t, minus two to three weeks, which is normally the time from infection 

to death.  

 Clearly, the approach raises a number of questions about its underlying assumptions. Firstly, what 

infection fatality rates should be used? Currently, the most reliable estimates come from a study by 

Verity et al., which are based on the analysis of Covid-19 mortality in China (11). Ferguson et al. have 

adjusted these estimates to the UK’s context - they received an overall infection fatality rate of 0.9% 

(10). We have used the age-specific estimates provided by Ferguson et al. in our baseline model. 

However, we also examined how much the results would change for Great Britain with higher or lower 

infection fatality rates using the estimates provided by Verity et al (11). Secondly, can we assume the 

same IFRs across geographical units? Studies show a significant variation in health and mortality in the 

UK across regions (18,19). Hence, a 75-year old individual living in a region with relatively poor health 

is more likely to have an underlying health condition and so to die from Covid-19 rather than a 75-

year living in a region with high life expectancy (as this individual is more likely to be healthy). There 

are several ways of adjusting IFRs to regional differences in mortality and health. We can use 

estimated life expectancy at age 50 or 65 by region if the data are available and the spatial units are 

not too small (to avoid a bias because of a small number of deaths); use age-adjusted information on 

self-reported health by region; or estimate an adjustment factor using a statistical model on deaths 

and some explanatory factors (e.g. deprivation) on lower level units if data are available. We 

calculated the age-standardised illness rate for individuals aged 60 and over for each geographical unit 

and used this as a multiplicative factor for infection fatality rates. We thus slightly modified formula 2 

to adjust it to regionally varying mortality and health:           

𝐼𝑅𝑖 =
𝐷𝑖

∑ ∑ 𝑃𝑥,𝑔,𝑖×𝐹𝑥,𝑔×ℎ𝑖𝑥𝑔
    (3) 
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where hi is an age-standardised coefficient to adjust infection fatality rates for geographical unit i. We 

used the 2011 census data on self-reported limiting long-term illness for the population aged 60 and 

over (20). 

Finally, can we assume that all deaths from Covid-19 are recorded? Although this will not 

influence our estimates on regional differences in the Covid-19 infection rate (assuming that the same 

death recording practice is followed across Great Britain), it has potentially an effect on the estimated 

infection rate at the country level. Clearly, the Great Britain’s official statistics have reported an excess 

of deaths from causes other than Covid-19 in the last month or so (5). Indeed, increased mortality 

from other causes explains most of this excess (the so-called indirect effect of the pandemic), but 

some increase may be directly related to Covid-19 mortality (e.g. multiple causes of deaths etc). We 

thus also estimated the Covid-19 infection rate in Great Britain assuming that some excess mortality 

from other causes is directly linked to deaths from Covid-19.     

 We can use formula 3 to estimate the Covid-19 infection rate by geographical units and also 

calculate other relevant measures, e.g. standard errors and confidence intervals for the estimates. 

However, we propose to estimate infection rate using the modern regression approach. As we used 

deaths from Covid-19 in our estimation we can apply a Poisson regression model, which is an 

appropriate method for count data. The general form of the Poisson regression model without any 

covariates is as follows: 

log(𝜆) = 𝛽0       (4)  

where 𝜆  is infection rate. Since log 𝜆 = log (𝐷) − log (𝐸)  (see formula 3), then 

log(𝐷)  = log (𝐸) + 𝛽0      (5) 

where D is the observed number and E is the expected number of deaths (or an offset). In order to 

estimate the Covid-19 infection rates by geographical units we stratified the analysis by spatial units 

to obtain strata-specific estimates for 𝜆𝑖 and their standard errors. There are several advantages in 

using a regression framework to estimate the Covid-19 infection rates. Firstly, the model will provide 

an estimate for infection rate and its standard errors and confidence intervals can be easily calculated. 

Secondly, infection rates can be estimated for different strata, e.g. for geographical units. Further 

stratification is straightforward (e.g. by education, occupation or ethnic origin) provided that the data 

are available. Thirdly, the variation in infection rates by strata (e.g. geographical units) can be 

modelled including explanatory factors (e.g. population density). Finally, the model can be extended 

to also account for spatial autocorrelation, which is an ingredient of modelling any geographical data.   

Spatial patterns in infection rates 

We used Moran’s I statistics to describe the spatial clustering of infection rates. Moran’s I is calculated 

using the following formula (21,22): 

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1 (𝑛

𝑖=1 𝜆𝑖−𝜆)(𝜆𝑗−𝜆)

(∑ ∑ 𝑤𝑖𝑗)𝑛
𝑗=1

𝑛
𝑖=1 ∑ (𝜆𝑖−𝜆)2𝑛

𝑖=1

    (6) 

where n is the number of spatial units, 𝜆 i and 𝜆 j are log infection rates for geographical units i and j, 

𝜆 is the country’s log infection rate and wij is a measure of the spatial proximity between spatial units 

i and j. We used a binary connectivity definition where wij = 1 if spatial units i and j share a common 

boundary, and wij = 0 otherwise. The interpretation of Moran’s I is straightforward - the value 1 shows 
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the perfect spatial clustering of similar values, whereas the value 0 shows no spatial autocorrelation 

in the variable of interest. 

Modelling spatial variation in infection rates 

A Poisson regression model (5) can be extended to also include explanatory variables to investigate 

why infection rates vary across geographical units. For example, infection rates are likely to depend 

on the population density or the level of deprivation present in the area. However, conventional 

regression models, when applied to spatial data, violate the assumption of independence of 

observations. The residuals of such models are spatially autocorrelated. In order to control for spatial 

autocorrelation we need to apply a spatial regression model. The simplest way of extending an aspatial 

Poisson regression model to a spatial one would be to include the spatial lag term in the model (23). 

However, the auto-Poisson model suffers from severe shortcomings and its application should be 

avoided. A number of suggestions have been made on how to overcome these shortcomings (24), but 

none of the suggested improvements or models has become widely accepted by the wider research 

community. For the sake of simplicity we applied a spatial linear model. This approach has several 

advantages - firstly, it is easy to understand as it is an extension of a conventional OLS regression 

model. Secondly, sophisticated models have been developed in this research area in the past decade, 

which allow the measurement not only of direct, but also indirect effects of explanatory variables 

(25,26). We applied a spatial lag model, which is as follows: 

𝜆𝑖  = 𝜌 ∑ 𝑤𝑖𝑗𝜆𝑗
𝑛
𝑗=1 +𝛽0 + 𝛽𝑋𝑖 + 𝜀𝑖    (7) 

where wij is a spatial weight (see formula 6) and ρ is a spatial autocorrelation parameter to measure 

the effect of the dependent variable λ of neighbouring regions; X is an explanatory variable (e.g. 

population density or deprivation level). The spatial effects are thus included in the model as a 

weighted sum of the values of neighbouring regions. For the sake of simplicity and interpretation we 

used rate as an outcome variable. 

Data 

Information on deaths from Covid-19 come from the weekly mortality statistics provided by the Office 

for National Statistics (England and Wales) and the National Records of Scotland. We used mortality 

data from weeks 10 until week 19 (8th May). The number of registered deaths from Covid-19 were 

35,454 in England, 1,775 in Wales and 3,213 in Scotland (6,7). Data on mid-year population by age and 

sex (one-year intervals) in England, Wales and Scotland by local authority or council areas come from 

2018. This is the latest year in which we have detailed information on population age-sex structure by 

geographical units (27,28). We applied the age-specific fatality rates provided by Ferguson et al. to 

calculate the number of expected deaths by geographical units (10). We multiplied these estimates by 

1.2 and 0.8 to obtain age-specific fatality rates for males and females, accordingly1. In order to adjust 

our estimated number of deaths to regionally varying health conditions we used the 2011 census 

individual-level data on (self-reported) limiting long-term illness for the population aged 60 and over 

(20). Although the UK’s population health has improved over the last ten years, we used rich 

individual-level data from 2011 to calculate an adjustment factor assuming that regional differences 

in health have persisted. We also used deaths from Covid-19 by middle super output areas (MSOAs) 

in England and Wales (16), population by age and sex (one-year intervals) by MSOA in mid-2018 and 

 
1 The UK experienced 41,020 registered deaths from Covid-19 by 8/5/20. The deaths of males formed 56% of the total number of deaths 

and those of females 44%. Multiplying the age-specific fatality rates provided by Ferguson et al. by 1.2 and 0.8, respectively, and applying 
the obtained rates to the UK’s population will lead to a 56/44 split. 
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information on MSOA-level deprivation to calculate an alternative adjustment factor for regionally 

varying health conditions (see Table A1 in Appendix). All analyses were performed using R (29–34). 

Results 

Country level 

We have estimated the cumulative Covid-19 infection rates in Britain based on deaths that occurred 

between 2nd March and 8th May (weeks 10 to 19). With our baseline infection fatality rate about 3.4 

million people had been infected by coronavirus in Britain by the second half of April (assuming that 

the time between infection and death is 2 to 3 weeks). This is 5.2% of Britain’s population [95% 

confidence interval: 5.1-5.2] (Table 1). This estimated number depends on the assumptions we make 

on the actual infection fatality rate; if we used a higher infection fatality rate the number of infected 

people would be 2.0 million, which is 3.1% of the population [95% CI: 3.1-3.2]. The number of infected 

cases is smaller because with higher death rates from Covid-19 fewer people are needed to observe 

the same death counts. With a lower infection fatality rate the number of infected individuals would 

be 7.2 million or 11.1% of Britain’s population [95% CI: 11.0-11.3]. Which ever estimate we take these 

figures are many times higher than reported cumulative Covid-19 cases in Britain by the last third of 

April (e.g. 134,638 in 22/4/20 (1)).    

 Table 1 shows the Covid-19 infection rate by the Great Britain’s constituent countries with the 

IFR of 1.2%, which is our baseline scenario2. We see that England has an infection rate of 5.3% [95% 

CI: 5.3-5.4], which is the highest among the three countries. The infection levels in Scotland and Wales 

are lower, 4.8% [95% CI: 4.6-4.9] and 4.0% [95% CI: 3.8-4.2], correspondingly. However, the 

differences between countries are not substantial, suggesting that the virus has spread to all of Great 

Britain’s constituent countries. The (small) variation between countries persists if we use a lower or 

higher infection fatality rate to calculate infection rates. 

Table 1. Estimated infection rates (IR) from Covid-19 in Great Britain. 

 

Notes: Baseline scenario: Ferguson et al., Table 1 (10), Low scenario: Verity et al., Table 1 (11), Upper CrI; High scenario: Verity et al. (11), 

Lower  CrI; 95% Confidence Intervals.   

Local authority level  

We have estimated the cumulative Covid-19 infection rates in Great Britain by local authorities. We 

observe a clear spatial pattern in the spread of the virus (Figure 1). The estimated infection fatality 

rates are highest in the capital city of London, where 10% of the population had likely been infected 

by the last part of April. Infection rates are also higher than average in other major British cities and 

their surrounding areas, i.e. Birmingham, Manchester, Liverpool, Cardiff, Newcastle and Glasgow. The 

infection rates in other major urban areas varied between 7 and 10% by the last third of April. 

Unsurprisingly, the virus is relatively little spread outside the main urban areas, i.e. in small towns and 

rural areas. These are large areas of South-West England (Cornwall, Devon, Somerset and Dorset); 

coastal areas of South-East and Eastern England; Northern England and Central and North Wales; 

 
2 An overall IFR for our baseline scenario is 1.2%, which is higher than the IFR reported by Ferguson et al, which is 0.9%. We received this 
estimate by applying ASFRs provided by Ferguson et al. to GB’s population by age and sex from 2018. We adjusted these age-specific fatality 
rates for males and females (see footnote 1). 

Country IR Lower CI Upper CI IR Lower CI Upper CI IR Lower CI Upper CI

England 5.3 5.3 5.4 3.2 3.2 3.3 11.4 11.3 11.5

Scotland 4.8 4.6 4.9 2.9 2.8 3.0 10.2 9.9 10.6

Wales 4.0 3.8 4.2 2.4 2.3 2.5 8.6 8.2 9.0

Great Britain 5.2 5.1 5.2 3.1 3.1 3.2 11.1 11.0 11.3

Baseline scenario Low scenario High scenario
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Southern Scotland (Scottish Borders, South Ayrshire, Dumfries and Galloway) and the North West of 

Scotland (Highlands and Islands). The estimated infection rate in most of these areas is below the 

average for Great Britain. However, there are also a few clusters outside the main cities. For example, 

the virus has also spread in the Lake District where the infection rate is higher than the average for 

Great Britain.    

 Next, we calculated the values of Moran’s I, a global measure of spatial autocorrelation using 

the local authority level data for England and Wales and council areas for Scotland. The value of the 

index is 0.49 (with p<0.01), which indicates a substantial spatial clustering of infection rates in Britain, 

which is not surprising. Figure 2 shows the estimated infection rates for selected Great Britain regions 

to illustrate variation within regions and the local clusters of high infection rates. The estimated 

infection rates in most areas of the capital city of London are above the national average (Figure 2a). 

The highest infection rates are observed in the Northwestern part of the city including Brent and 

surrounding areas. Another cluster is in the Central-Eastern part of the city extending from the North 

to the South with the highest estimated infection rates in Newham. By contrast, lower infection levels 

are observed in several boroughs on the edge of the city region including Bexley and Bromley in the 

Southeast and Kingston, Richmond upon Thames and Sutton in the Southwest. Interestingly, infection 

rates are also relatively low in some boroughs in the city centre. 

 In the Midlands the highest infection rates are observed in Birmingham and its surrounding 

areas (Sandwell and Walsall), but also in East Staffordshire and Derby (Figure 2b). Infection rates are 

low in Lincolnshire, Rutland and Herefordshire in the Eastern and Western corners of the Midlands 

accordingly. In South West England the highest levels are observed in Gloucestershire; infection rates 

are slightly higher in Bristol, but perhaps not as high as one would expect for a large city (Figure 2c). 

By contrast, infection rates are low in large areas of Cornwall and Devon, and also Dorset and 

Somerset. In Wales the highest levels are observed in Cardiff and Newport, the largest and third largest 

city of the country. They are located in the proximity of the English border and thus also helps to 

explain the high infection levels observed in Gloucestershire (Figure 2d). Estimated infection rates are 

still low in large areas of Southwestern Wales especially in Ceredigion and also in the Isle of Anglesey 

in North Wales.  

 In North West England the areas mainly affected by coronavirus are Merseyside and Greater 

Manchester and, as expected, the infection rates are highest in Liverpool and Manchester (Figure 2e). 

Interestingly, there is also a region with higher-than-average infection rates in Cumbria including the 

districts of Barrow-in-Furness and South Lakeland. This indicates that the virus had also spread to parts 

of the Lake District before the lockdown was introduced in late March. Significant spatial clustering 

and regional variation are also observed in Scotland. The highest infection rates are found in the 

Glasgow region, with the highest levels in Inverclyde (Figure 2f). The infection rates are also above the 

national average in other main cities including Edinburgh and Dundee. By contrast, the virus has not 

spread much to the Southern part of Scotland or the North West of Scotland (Highlands and Islands). 

Interestingly, the infection levels are also low in Aberdeen. 

 Finally, we have estimated the Covid-19 infection rates by area-type for England and Wales 

using the ONS urban-rural classification of local authority districts. We have modified the ONS 

classification by also distinguishing Inner and Outer London. Although the classification is based on 

local authority districts rather than lower (i.e. LSOA or MSOA) level area classification, and it does not 

capture all regional variation observed in the UK, it does provide a good summary of the spread of 

coronavirus in the country. The analysis reveals a clear urban-rural gradient in the spread of Covid-19. 

The highest levels are observed in Inner and Outer London where the infection rate is 9.7% [95% CIs: 

9.3-10.1] and 10.2% [95% CIs: 9.9-10.5], accordingly, followed by other major cities with an infection 
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rate of 6.8% [95% CIs: 6.7-7.0]. The lowest levels are observed in the areas classified as largely and 

mainly rural, 3.6% [95% CIs: 3.5-3.7] and 3.0% [95% CIs: 2.8-3.1], respectively. 

Table 2. Estimated infection rates from Covid-19 in England and Wales by area type. 

 

Notes: Baseline scenario.   

Regression analysis 

Finally, we have fitted a regression model to explain spatial variation in infection rates across local 

authority districts and council areas. We included in analysis the following explanatory variables: 

population density (persons per square km) and the level of deprivation measured by the Index of 

Multiple Deprivation (between 0 and 100). The rationale for choosing these variables is as follows. 

Infection rates vary significantly between urban and rural areas, and population density is a good 

measure of the level of urbanicity. Further, more densely populated areas are more likely to bring 

together different people and thus promote the spread of infectious diseases. Deprivation is believed 

to be associated with increased infection rates; this may be related to poorer housing conditions (e.g. 

living in flats) and overcrowding. Furthermore, it is also an indicator of social class and occupation. 

People from lower socioeconomic groups are more likely to work in occupations exposed to infections 

(e.g. bus drivers, shop assistants) and are also less able to protect themselves than those from higher 

socioeconomic groups who can often work from home. In preliminary analysis we also examined the 

percentage of ethnic minorities (or non-white population). However, the variable has a strong 

correlation with the level or deprivation and population density so we decided to exclude it because 

of the issue of multicollinearity. 

 In a first model we included in analysis population density and the level of deprivation 

separately (not shown). Both variables showed a significant relationship with the Covid-19 infection 

rates. In a second model we included both variables simultaneously (Table 3). The coefficient changed 

only slightly for population density but reduced for the level of deprivation indicating that part of the 

deprivation effect is explained by population density. Nevertheless, both variables display a significant 

effect on the virus infection rate. Clearly, infection rates increase with increasing levels of population 

density and deprivation. (Table 3 reports the coefficients of a spatial lag model. The direct, total and 

indirect effects, which are required to calculate the exact effect of explanatory variables are displayed 

in Table A2 in Appendix.) We also observed a significant impact of the spatially lagged dependent 

variable. The estimate for rho is 0.69 (i.e. it is significantly different from zero) suggesting that infection 

rates of neighbouring areas are closely related. In substantive terms, the results are largely consistent 

with the idea of the spread of a virus as a spatial process where spatial proximity and spillover effects 

play an important role.     

 

Urban-Rural Classification Population (%) IR Lower CI Upper CI

Inner London 6 9.7 9.3 10.1

Outer London 10 10.2 9.9 10.5

Urban with Major Conurbation 20 6.8 6.7 7.0

Urban with Minor Conurbation 4 5.1 4.8 5.3

Urban with City and Town 26 4.8 4.7 4.9

Urban with Significant Rural 13 4.5 4.4 4.6

Largely Rural 12 3.6 3.5 3.7

Mainly Rural 9 3.0 2.8 3.1
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Table 3. Results of a spatial lag model on the Covid-19 infection rate.   

 

 

Conclusions 

The aim of this study was to estimate cumulative infection rates from Covid-19 in Great Britain by 

geographical units. To the best of our knowledge this is the first study to investigate spatial variation 

in Covid-19 infection rates. We proposed an integrated model-based approach to estimate cumulative 

infection rates by geographical units and to study determinants of spatial variation in the spread of 

the virus. Statistical agencies increasingly provide data on the number of deaths from Covid-19 in 

countries by geographical units and the research community has provided reliable information on 

infection fatality rates by age, which may vary across geographical units. Our study demonstrates how 

the cumulative virus infection rates can be estimated with a high degree of accuracy by applying a 

statistical model to existing mortality data. 

 Our analysis showed the following. Firstly, based on mortality data up to 8th May we 

estimated that about 3.4 million people might have been infected by Covid-19 in Britain by the last 

part of April, which is 5.2% of the population [95% CIs: 5.1-5.2]. Secondly, England exhibited a higher 

infection rate than Scotland or especially Wales, although the variation between the countries was 

relatively small. Thirdly, we observed a significant variation in the virus infection rates by geographical 

units, especially by the level of urbanicity. Estimated infection rates were highest in London and 

surrounding areas, followed by other major British cities. By contrast, virus infection rates were below 

average for Great Britain in small towns and rural areas, which included large areas of South-West 

England, coastal areas of the South-East and East of England, Northern England, Central and North 

Wales, Southern Scotland and the North West of Scotland. Finally, regression analysis showed a 

significant effect of population density and levels of deprivation on Covid-19 infection rates. The virus 

infection rates were higher in areas with higher population densities and deprivation levels.  

 How much uncertainty is there in our estimates? We quantified uncertainty by using different 

scenarios and confidence intervals around the estimates for each scenario. In our baseline scenario 

we used the infection fatality rate of 1.2%, which is an adjusted estimate for Great Britain based on 

the analysis of Chinese data (10,11). We also used lower and higher infection fatality rates based on 

uncertainty in the Great Britain estimate and on the recent studies from Germany, Italy and France 

(4,8,9). Our baseline scenario provided the cumulative infection rate of 5.2%; our low and high 

scenario gave estimates of 3.1% (95 CIs: 3.1-3.2] and 11.1% [95% CIs: 11.0-11.3] (see also Table A3 in 

Appendix). How likely are the lower or higher estimates? Lower or higher estimates for infection rates 

in Great Britain are possible only if our current knowledge of infection fatality rates by age is seriously 

biased. We also assumed that some excess deaths from causes other than coronavirus in Great Britain 

in recent months are actually deaths from Covid-19 (e.g. the actual number of deaths from Covid-19 

was 10% higher than the reported number); however, the infection levels increased only by a percent 

point. But equally it is possible that some deaths from causes other than coronavirus have been 

N=365

Min Q1 Median Q3      Max

-0.06041 -0.00920 -0.00190 0.00698 0.05755

Rho 0.69476 0.08875 <0.01

                                                         Residuals

Log Population Density 0.00529 0.00088 <0.01

Index of Multiple Deprivation 0.00022 0.00011 0.036

Variable Coefficient Std. Error p-value

Intercept -0.02165 0.00351 <0.01
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recorded as Covid-19 deaths. Recent report shows that the number of deaths from seasonal flu and 

pneumonia are below the five-year average. From a geographical point of view, regional differences 

persist whatever infection rate we use.  

 Our study shows that coronavirus is still not as widely spread in Great Britain as some believe, 

supporting similar research elsewhere in Europe. On the one hand, this may not be such good news 

to those who hope that ‘herd immunity’ will be achieved rapidly (without a heavy death toll). On the 

other hand, if coronavirus is not widely spread then its suppression and control is still possible with 

various public health measures before a cure and vaccine become available. Our analysis showed that 

coronavirus is mostly spread in big cities with a younger-than-average population. This may have 

reduced the number of deaths in comparison with what would have happened if the virus had spread 

widely in areas with an older population, although, as we know, Covid-19 has hit hard some pockets 

of elderly population in cities (e.g. care homes). Our analysis also showed that the virus has hit harder 

in areas of higher deprivation in cities, exacerbating existing social and spatial inequalities in Great 

Britain. Many of these areas have an above-average share of ethnic minorities. Although various 

factors related to living conditions may explain higher infection rates (poor housing conditions, 

overcrowding, etc.) we believe that the main reason is occupational structure. Many people from 

lower socioeconomic groups and minority backgrounds work in occupations directly exposed to 

infections (e.g. bus drivers, shop assistants). These are less able to protect themselves than those from 

higher socioeconomic groups who can often work from home. A recent analysis by the ONS of deaths 

from Covid-19 by occupation and ethnicity seems to provide indirect support for this argument 

(35,36). 

 It is needless to emphasise that policy-makers should learn from these findings. Firstly, to 

mitigate the effects that Covid-19 has already had among people in the cities from lower 

socioeconomic and ethnic minority backgrounds. And secondly, to ensure that people who are 

exposed to virus infections due to their employment are properly protected, including those in 

occupations outside the National Health Services. Looking ahead it is also important to ensure that 

after easing the lockdown the virus should not spread rapidly from the cities to rural areas and small 

towns with older populations. If the virus spreads rapidly and widely in Great Britain (e.g. during a 

possible second wave) the effects could be devastating to remote rural communities with an elderly 

population. Some of these areas in England, Wales and Scotland are strongholds of minority languages 

and cultures.  
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Figure 1. Estimated infection rates from Covid-19 in Great Britain by local authority districts. 
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Figure 2. Estimated infection rates from Covid-19 in the UK for selected regions. 

a) London 

 
b) Midlands 
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Figure 2. Continued. 

c) South West 

 
d) Wales 
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Figure 2. Continued. 

e) North West 

 
f) Scotland 
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Appendix. 

Table A1. Estimated infection rates (IR) from Covid-19 in Great Britain. 

 

Notes: Baseline scenario; 95% Confidence Intervals.   

 

We calculated infection rates (IR) by LADs adjusted to regionally varying health and deprivation:           

𝐼𝑅𝑖 =
𝐷𝑖

∑ ∑ 𝑃𝑥,𝑔,𝑖×𝐹𝑥,𝑔×ℎ𝑖𝑥𝑔
    

 

where hi is a coefficient to adjust infection fatality rates for geographical unit i. We explored three options: 

A. 

Remove hi from the formula and calculate unadjusted IRs (the first three columns in Table A1). 

 

B. 

Calculate health-adjusted IRs (the next three columns in Table A1). This was conducted in two steps. Firstly, 

using the 2011 census data we calculated age-standardised (or weighted) proportion of people with a limiting 

long-term illness (LLTI) for people aged 60 and older (ASIP) for each LAD (20): 

 

 𝐴𝑆𝐼𝑃𝑖 = ∑
𝐿𝐿𝑇𝐼𝑥,𝑖

𝑃𝑥,𝑖

90+
60    

 

We then calculated a ratio between expected deaths for LAD i and that of Great Britain given that individuals 

with a LLTI have 2.5 times higher mortality rate than individuals without a LLTI (37,38).Therefore, the share of 

individuals with a LLTI in a LAD determines whether mortality there is higher or lower than average for GB:   

  

ℎ𝑖 =
(1−𝐴𝑆𝐼𝑃𝑖)+2.5∗𝐴𝑆𝐼𝑃𝑖

(1−𝐴𝑆𝐼𝑃)+2.5∗𝐴𝑆𝐼𝑃
    

 

where ASIP is the age-standardised (or weighted) proportion of people with a LLTI for Great Britain. 

 

C. 

Calculate IMD-adjusted IRs (the last three columns in Table A1). IMD takes into account multiple factors related 

to mortality including health, income, overcrowding, access to healthcare and other services. We used 

population estimates at LSOA level for England and Wales and at Datazone level for Scotland. We also used 

information on the number of deaths from Covid-19 at MSOA level for England and Wales. We calculated IMDs 

for Scotland and for England and Wales using the methodology developed by Abel et al (39).  

We follow the methodology of Kulu and Dorey to estimate the expected number of deaths for each 

MSOA given 100% infection (17). We use Poisson regression to model deaths in an MSOA 𝑗 within a local 

authority 𝑖:  

log (𝐷𝑖𝑗) =  log (𝐷𝑖∑𝑗 ∗
𝐸𝑖𝑗

𝐸𝑖∑𝑗

) + 𝛽1(𝑋𝑖𝑗 − 𝑋𝑖) + 𝜀𝑖𝑗  

where D is observed deaths, E is the expected number of deaths and 𝑋𝑖𝑗  is the population weighted mean of GB 

comparable IMD for all LSOA k in MSOA j and 𝑋𝑖  is the population weighted mean of IMD for all MSOA j.  We get 

a point estimate for 𝛽1 with CIs. 

Rearranging the above equation and letting now 𝑗 be local authorities within Great Britain 𝑖 we get the 

following:  

Country IR Lower CI Upper CI IR Lower CI Upper CI IR Lower CI Upper CI

England 5.3 5.2 5.3 5.3 5.3 5.4 5.3 5.3 5.4

Scotland 4.8 4.6 5.0 4.8 4.6 4.9 4.9 4.7 5.0

Wales 4.2 4.0 4.4 4.0 3.8 4.2 4.0 3.8 4.2

Great Britain 5.2 5.1 5.2 5.2 5.1 5.2 5.2 5.2 5.3

Unadjusted Health-adjusted Deprivation-adjusted
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log (𝐷𝑖𝑗) = log (
𝐷𝑖∑𝑗

𝐸𝑖∑𝑗

) + log (𝐸𝑖𝑗 ∗ exp(𝛽1(𝑋𝑖𝑗 − 𝑋𝑖)) + 𝜀𝑖𝑗  

where log (
𝐷𝑖∑𝑗

𝐸𝑖∑𝑗
)  is simply the intercept of any model to be estimated thus giving us a deprivation adjustment 

factor of exp(𝛽1(𝑋𝑖𝑗 − 𝑋𝑖) where 𝑋𝑖𝑗  is the IMD for local authority 𝑗 and 𝑋𝑖  is the population weighted IMD for 

Great Britain. 

 

Overall, our analysis shows that differences in the estimated infection rates across countries are not large (Table 

A1). However, a closer look at the results shows that the unadjusted IR overestimates infection rates in Wales; 

the health- and IMD-adjusted infection rates are smaller. The reason for that is that there are more people aged 

60 and older with an LLTI in Wales than in England and Scotland and more people living in deprived areas. We 

need to consider this when calculating expected deaths in formula for IR. (Scotland’s health record in those ages 

and IMD are not that different from those of England.) 

 

 

Table A2. Full results of a spatial lag model on the Covid-19 infection rate.   

 
 

Table A3. Estimated infection rates (IR) from Covid-19 in Great Britain. 

 

Notes: Verity et al., Table 1 (11); Rinaldi and Paradisi, Table 2 (8); 95% Confidence Intervals.   

 

Simulated

Std. Error

Log Population Density 0.00615 0.00079 <0.01 0.01116 0.00937 0.190 0.01732 0.00940 0.050

Index of Multiple Deprivation 0.00026 0.00013 0.042 0.00047 0.00071 0.400 0.00073 0.00079 0.280

Total Effect
Simulated 

Std. Error

Simulated 

p-value

Iterations=5000

Variable Direct Effect
Simulated

 p-value
Indirect Effect

Simulated 

Std. Error

Simulated 

p-value

`

Country IR Lower CI Upper CI IR Lower CI Upper CI IR Lower CI Upper CI

England 6.2 6.1 6.2 3.2 3.2 3.3 11.4 11.3 11.5

Scotland 5.5 5.3 5.7 2.9 2.8 3.0 10.2 9.9 10.6

Wales 4.6 4.4 4.8 2.4 2.3 2.5 8.6 8.2 9.0

Great Britain 6.0 6.0 6.1 3.1 3.1 3.2 11.2 11.0 11.3

Country IR Lower CI Upper CI IR Lower CI Upper CI IR Lower CI Upper CI

England 7.3 7.2 7.4 4.5 4.5 4.6 10.8 10.6 10.9

Scotland 6.7 6.4 6.9 4.2 4.0 4.3 9.9 9.5 10.2

Wales 5.4 5.2 5.7 3.4 3.3 3.6 8.0 7.6 8.3

Great Britain 7.1 7.1 7.2 4.4 4.4 4.5 10.5 10.4 10.6

Rinaldi et al: medium Rinaldi et al: low Rinaldi et al: high

Verity et al: medium Verity et al: low Verity et al: high


