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Abstract 

 

Changes in elements of courtship behaviour can influence sexual isolation between species. 

Large-scale analyses of changes, including loss and gain of courtship elements, across a relatively 

complete phylogenetic group are rare but needed to understand the significance of such changes, for 

example whether the gain and loss of courtship elements are essentially arbitrary or equally reversible. 

In most species of Drosophila, courtship, including singing, mainly occurs before mounting as 

pre-mounting courtship. The Drosophila montium species group is unusual because loss of 

pre-mounting courtship and gain of post-mounting one has been detected in this group. Here we 

provide an extensive analysis on the courtship repertoire and songs of 42 species in this group. 

Synchronously captured video and audio recordings were analysed to describe courtship patterns and 

male courtship songs and changes were analysed in a phylogenetic context. Ancestral state 

reconstruction suggests that a gain of post-mounting courtship singing at the ancestor of this species 

group has been accompanied with a concurrent decrease in the incidence of pre-mounting courtship 

singing and has led to subsequent further decrease and eventually complete loss of pre-mounting 

courtship song in several lineages. Alongside this evolutionary trend towards post-mounting courtship, 

sine song and a special type of “high pulse repetition song” have become more widely used for 

courtship during species diversification in the montium group. It is likely that the elaboration of 

post-mounting courtship behaviours is associated with changes in the relative importance of pre- and 

post-mounting components of mating systems, such as sperm competition or cryptic female choice. 
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Introduction 

  

Premating isolation is often one of the first barriers to reduce gene flow between diverging species 

(Coyne & Orr, 1997; Servedio & Burger, 2014). Courtship behaviour and courtship signals are critical 

components of premating isolation between many animal species, and changes in the structure of 

courtship traits and preferences are often thought to be a major contribution to speciation (Ritchie, 

2007; Kraaijeveld et al., 2011). Less attention has been focussed on changes in the presence or 

absence of elements used during courtship, their origins or loss. However, some studies suggest that 

courtship elements can often be lost, sometimes despite the presence of female preferences for them 

(Wiens, 2001; Bailey et al., 2019). Traits can be lost due to changes in selection from environmental 

or social factors, or perhaps genetic drift. Also, the importance of different courtship elements can 

switch, when (for example) chemical communication may become more important than acoustic due 

to changes in the acoustic environment, or courtship may change from one type of acoustic signal to 

another. Studies detailing and examining such evolutionary trends require detailed descriptions of 

courtship behaviour alongside comparative studies, and are needed to understand the extent, causes 

and consequences of losses and gains in courtship communication. We have remarkably few detailed 

studies of changes in in the utilisation of courtship elements in a strong phylogenetic context.  

 

Courtship of Drosophila melanogaster Meigen is one of the best studied behavioural repertoires and 

is multimodal and complex (Pavlou & Goodwin, 2013; Grillet, Ferveur & Everaerts, 2018). The 

courtship repertoire within the genus Drosophila Fallén is more variable than is widely appreciated. 

Spieth (1952) produced a pioneering paper describing the courtship behaviour of 101 species within 

Drosophila. There are significant qualitative and quantitative differences among species, and many 

changes in the predominant mode or method of courtship (Ewing, 1983; Wen & Li, 2011; Jezovit, 

Levine & Schneider, 2017). Courtship signals produced by courtship elements include acoustic songs 

by wing vibration, chemical stimuli by tapping and licking, visual stimuli by body circling, wing 

scissoring, flicking, waving and rowing (Schneider, Dickinson & Levine, 2012; Yeh & True, 2014). 
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These courtship elements can be gained and lost repeatedly across the genus (Wen & Li, 2011) but 

whether changes amongst the elements are random or correlated is unknown.  

 

Wing vibration is probably the most noticeable component of the courtship of Drosophila (Sturtevant, 

1915) to observers, and in most species, wing vibration produces species-specific pulse songs 

(Alonso-Pimentel, Spangler & Heed, 1995; Ritchie & Gleason, 1995). Wing vibration may be 

triggered by the detection of visual or chemical sensory signals by the male during courtship 

(Greenspan & Ferveur, 2000). In many species, for example D. melanogaster, almost all successful 

males court females with wing vibration before they mount; song reduces female locomotion prior to 

mounting (Kowalski, Aubin & Martin, 2004). In some species the resulting courtship song is essential 

for mating success as females will not mate with silenced males or in the presence of heterospecific 

song, for example, D. montana Stone, Griffen & Patterson (Liimatainen et al., 1992), D. buzzatii 

Patterson & Wheeler (Iglesias & Hasson, 2017) and D. athabasca Sturtevant & Dobzhansky 

(Yukilevich et al., 2016). However in others, including D. melanogaster, song is only stimulatory 

because females mate more quickly with homospecific song, but not obligatory in that females will 

mate in the absence of song or in the presence of the song of closely related species (Ritchie, Halsey 

& Gleason, 1999; Tomaru, Yamada & Oguma, 2004). 

 

Most species produce song as part of the courtship repertoire before mounting. However, signals such 

as courtship song can continue to be delivered after mounting and during copulation (Wen & Li, 

2011). Wing vibration after mounting has previously been reported in 30 out of 94 species of the 

Drosophila montium species group of the subgenus Sophophora Sturtevant (Tomaru & Oguma, 1994; 

Hoikkala, Crossley & Castillo-Melendez, 2000; Chen et al., 2013), and in a few species of other 

species groups, such as D. algonquin Sturtevant & Dobzhansky in the affinis subgroup of the obscura 

group of Sophophora (Chang & Miller, 1978) and D. phalerata Meigen in the quinaria group of the 

subgenus Drosophila (Neems et al., 1997). The function of such songs is poorly understood. In three 

species of the D. lini complex, species-specific copulatory sine songs reduce repelling behaviour of 

conspecific females and extend the duration of copulation (Wen et al., 2011; Li, Wen & Ritchie, 
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2012), so it may favour males in processes such as cryptic female choice or sperm competition after 

mounting.  

 

The incidence of courtship before mounting is variable in some species of the montium group, e.g. in 

D. serrata Malloch, fewer than 30% of males sing before mounting (Chen et al., 2013). Hoikkala & 

Crossley (2000) suggested that all males of this species still have the ability to sing to a female before 

mounting, but that they only use this ability when required. There is genetic variation for the 

incidence of courtship before mounting in D. serrata because it can respond to artificial selection in 

the laboratory (Chen, 2016). Some species in the montium group (e.g. D. lini Bock & Wheeler) show 

no courtship before mounting, only producing courtship songs during copulation (Wen et al., 2011; Li, 

Wen & Ritchie, 2012; Chen et al., 2013). 

 

In addition to changes in the timing of producing song during courtship, the song pattern itself has 

rapidly differentiated among species. Courtship songs are very diverse in the genus Drosophila 

(Chang & Miller, 1978; Cowling & Burnet, 1981; Hoikkala & Lumme, 1987; Tomaru & Oguma, 

1994; Alonso-Pimentel, Spangler & Heed, 1995; Ritchie & Gleason, 1995; Wen et al., 2011). D. 

melanogaster and its relatives produce two types of song, pulse song and sine song (Bennet-Clark & 

Ewing, 1967; Rybak et al., 2002). In some species there are multiple types of pulse song. A primary 

song and a secondary song are detected among some species in the affinis subgroup of the obscura 

group, the bipectinata complex of the ananassae group and the willistoni group of the subgenus 

Sophophora and the funebris group of the subgenus Drosophila (Ewing & Bennet-Clark, 1968; Chang 

& Miller, 1978; Crossley, 1986; Ritchie & Gleason, 1995). In the repleta group of the subgenus 

Drosophila, there are two types of pulse song: “A song” with short, regular pulse trains occurs at the 

beginning of courtship; but “B song” with longer pulse trains of more widely spaced pulses occurs 

later in courtship (Ewing & Miyan, 1986). Variations in important parameters of courtship songs have 

been identified between sibling species, and can play important roles in sexual selection and isolation 

(Alonso-Pimentel, Spangler & Heed, 1995; Ritchie & Gleason, 1995; Wen et al., 2011).  
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We know little about the evolution of courtship songs, because few studies have revealed how 

courtship songs evolved in a phylogenetic context (Oliveira et al., 2013). Two types of song in the 

repleta group have undergone loss, elaboration and reduction during evolution, possibly due to 

physiological and energetic constraints (Ewing & Miyan, 1986). The evolution of courtship songs in 

the virilis group has gone in two different directions. The virilis phylad has probably evolved towards 

longer and denser pulse trains, while the montana phylad has evolved towards short interpulse 

intervals (Hoikkala & Lumme, 1987). In the willistoni group, song divergence is not correlated with 

genetic divergence. Their songs have evolved more quickly than divergence in sexual isolation 

(Gleason & Ritchie, 1998). In the buzzatii species cluster, courtship songs are also uncorrelated with 

the degree of species divergence, having evolved so rapidly that any signature of evolutionary affinity 

has been erased between closely related species (Oliveira et al., 2013). In order to shed more light on 

the evolution of this high variety of courtship songs among Drosophila species, it is necessary to 

compare their songs in a larger phylogenetic context.  

 

The montium group includes 94 species and is the largest in the subgenus Sophophora (Da Lage et al., 

2007; Yassin, 2018; Toda, 2019). Da Lage et al. (2007) upgraded two previous subgroups, i.e. the 

ananassae and montium subgroups, of the melanogaster group to independent species groups, 

respectively, and Yassin (2018) recently proposed a comprehensive classification of species 

subgroups and complexes within the montium group based on a well resolved molecular phylogenetic 

tree inferred from a large (44 species) taxon sampling (Yassin et al., 2016). Here, following their 

classification system, we present a detailed analysis on the courtship behaviour of 42 species of the 

montium group. We (Chen et al., 2013) already presented some results of a small-scaled study from 

the same perspective. The present study increased the taxon sampling from 28 species in Chen et al. 

(2013) to 42 spp. as ingroup and added 14 spp. of Sophophora as outgroup, and also increased marker 

genes for phylogenetic analyses from three (mitochondrial COI, COII and nuclear Adh) to five (by 

adding two nuclear genes, Amy1, and Amyrel). This has radically improved the resolution of the 

resulting tree topology. Based on this phylogeny, we estimate ancestral states for some courtship traits 

by various analytical methods, and describe the loss or gain of courtship song types before or after 
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mounting and variation in song pattern in a phylogenetic context. This represents the most 

comprehensive analysis of the variation of courtship repertoire in any group of Drosophila, and we 

find an apparently systematic loss of courtship singing before mounting and diversification in song 

pattern through the evolution of this group. 

 

Materials and Methods 

Flies and recordings of courtship behaviour and songs 

The montium group is currently divided into seven subgroups: the parvula (including 4 spp.), 

montium (28 spp.), punjabiensis (5 spp.), serrata (19 spp), kikkawai (9 spp.), seguyi (22 spp.), and 

orosa (3 spp.) subgroups (Yassin, 2018). We obtained culture stocks of 42 species of all the seven 

subgroups (Table 1, Table S1) from the Drosophila Stock Centre of Ehime University (DSEU) to 

examine their courtship patterns and courtship songs. Flies were maintained on cornmeal-malt 

medium at 23°C under a 12:12 h light cycle and 50–60% humidity. Virgin flies were collected and 

separated into sexes without anaesthesia within 12 h of emergence. Male flies were kept individually 

in vials (9.5 cm height  1.5 cm diameter) containing culture medium before the experiment, while 

females were maintained in groups of five in vials. Reproductively mature (5–9 days old) virgin flies 

were used for all experiments (Wen et al., 2011), and each fly was used once. 

 

Videos were made of courtship behaviour of all species and the behavioural repertoire analysed from 

these recordings. Detailed song recordings were made using an ‘insectavox’, digitised and analysed 

using standard methods. Full details are provided in Appendix S1.  

 

Analysis of courtship incidence 

By observing courtship behaviour on video recordings, male performance of courtship before and 

during/after mounting (henceforth termed pre- and post-mounting courtship, respectively) was scored 

for each species. Less sexually active pairs, which did not succeed in mounting, were excluded from 

our data.  
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Pre-mounting courtship began with ‘orienting’ and ‘following’ in all observed species: the male 

pointed his head toward the female, approached her, and followed her when she moved. Some other 

courtship elements such as ‘tapping’, ‘circling’ and ‘licking’ were not observed in the montium group. 

Wing action (including ‘wing vibration’ and ‘wing waving’) was the only observable courtship 

element before mounting in the montium group. The incidence of wing action before mounting largely 

varied among different species, and even among males of the same species. We define here the 

pre-mounting courtship as the performance of wing action. Then, we calculated the incidence of 

pre-mounting courtship for each species as follows: Ipre = Npre /N, where Npre is the number of males 

that performed pre-mounting courtship, and N is the total number of observed pairs.  

 

Post-mounting courtship was performed with only wing actions, viz. vibrating wing(s) strongly to 

produce songs, or slightly vibrating or waving without obvious song production during/after mounting 

(i.e. even sometimes before copulation; therefore, the conventional term ‘copulatory’ courtship may 

be inappropriate). In this study, therefore, we judged the incidence of post-mounting courtship by 

performance of any wing action.  

 

Analysis of courtship songs 

Songs were categorized into three types, pulse song, a special type of high pulse repetition song and 

sine song (Fig. 1). The name of ‘high pulse repetition song’ comes from ‘high pulse repetition sound’ 

described by Chang & Miller (1978) for affinis group species; songs with a similar pattern have been 

called ‘A’ song in Ewing & Miyan (1986), or ‘pulse song of bursts of pulses’ in Tomaru & Oguma 

(1994). There were definite differences in oscillogram pattern among the three types of song (Fig. 1, 

Table S3). A pulse song is a burst of strong sound pulses, each of which comprises polycyclic waves 

and is interspaced with a pause (Fig. 1A). A high pulse repetition song is a burst of pulses, each of 

which is composed of a few waves different in amplitude and/or waveform, and such short pulses are 

repeated continuously without any pause, initially increasing and terminally decreasing gradually in 

amplitude (Fig. 1B). Hence they lack the clear inter-pulse interval of typical pulse song. A sine song 

is a burst of humming sound composed of more or less homogeneous sine-like waves with gradual 
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initial increase and terminal decrease in amplitude (Fig. 1C) as that in a high pulse repetition song. 

Song parameters were analysed in DataView10.2.1. For the pulse song, three parameters, pulse length 

(PL), interpulse interval (IPI) and intrapulse frequency (IPF), were measured. PL is the length of 

sound pulse, IPI is the interval between one pulse to the next pulse, and IPF is the carrier frequency of 

pulse sound measured by frequency spectrum analysis. Pulses were marked, and parameters were 

measured and outputted automatically from DataView. For the high pulse repetition song, pulses were 

marked in each song burst (Fig. 1B), PLs (= IPIs) of the marked pulses were obtained from Dataview, 

and the average PL of each burst was used for calculating the ‘pulse repetition rate (PRR)’ (Chang & 

Miller, 1978) by the following formula: PRR = 1000 (ms)/PL (ms). For the sine song, song bursts 

were marked, and sine song frequency (SSF) was calculated with the FFT (Fast Fourier Transform) 

event spectrum in DataView.  

 

Phylogenetic analysis 

A total of 56 species in the subgenus Sophophora of the genus Drosophila were used for the 

phylogenetic analysis, including the 42 species of the montium group and 14 outgroup species (Table 

S1). Two mitochondrial (COI and COII) and three nuclear (Adh, Amy1, and Amyrel) genes were used. 

Nucleotide sequences of COI, COII, and Adh genes were determined de novo for 26 species of the 

montium group (Table S1). The methods of DNA extraction, PCR amplification, and sequencing 

reaction were the same as those in Chen et al. (2013). The COI, COII, and Adh sequences for the 

remaining species and all the Amy1 and Amyrel sequences were obtained from GenBank (Table S1).  

 

Intron sequences of nuclear genes were removed before the analysis due to a high degree of alignment 

ambiguity. Nucleotide sequences of individual gene regions were aligned using MUSCLE (Edgar, 

2004) implemented in SeaView 4.6.1 (Gouy, Guindon & Gascuel, 2010) or MEGA 7.0.14 (Kumar, 

Stecher & Tamura, 2016) with default settings. Individual alignments were concatenated by using 

FASconCAT 1.0 (Kuck & Meusemann, 2010) to generate a dataset of 5862 base pairs. Phylogenetic 

trees were constructed with concatenated genes, using the maximum likelihood (ML) and Bayesian 

methods, in which sequences were partitioned by codon position (1st, 2nd, and 3rd). ML analyses 
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were conducted in RAxML 8.2.9 (Stamatakis, 2014) with raxmlGUI 1.3.1 (Silvestro & Michalak, 

2012), in which the “GTRGAMMA” model was applied for all data partitions. A bootstrap analysis of 

1000 pseudoreplicates was performed by using the “ML  rapid bootstrap” search. Bayesian analyses 

were conducted by using MrBayes 3.2.6 (Ronquist et al., 2012). The best fit substitution model for 

each data partition was determined with the Akaike information criterion (AIC) implemented in 

MrModeltest 2.3 (Nylander, 2004), together with PAUP* 4.0b10 (Swofford, 2003). A Markov-Chain 

Monte-Carlo (MCMC) search was performed with four chains, each of which was run for 10 million 

generations. Trees were sampled every 100 generations, and the first 25% of the samples were 

discarded as burn-in. The trace file generated by the Bayesian MCMC runs was inspected in 

TRACER 1.6.0 (Rambaut et al., 2014) to check whether the number of sampling generations and 

effective sample sizes (ESS) were large enough for reliable parameter estimates. A consensus of 

sampled trees was computed by using the “sumt” command with the “contype=allcompat” option, and 

the posterior probability for each interior branch was obtained to assess the robustness of inferred 

relationships. 

 

Ancestral state reconstruction 

Courtship incidence. Based on the rooted molecular phylogenetic tree resulting from the Bayesian 

analysis, ancestral states for the incidence (Ipre as a continuous variable) of pre-mounting courtship 

were reconstructed by the method of PCMs (Phylogenetic Comparative Methods) using the R 

Rphylopars package (Goolsby, Bruggeman & Ané, 2017). In our dataset, there were no data of Ipre for 

D. subauraria Kimura and the outgroup species (Table 1). For D. subauraria, Rphylopars imputed its 

Ipre value. For the outgroup species, we assumed, based on the literature shown in Table 1, that 

sexually active males of these species always perform pre-mounting courtships, i.e. Ipre = 1.00. It is 

known, for most of the outgroup species, that almost all successful males court females with wing 

vibration producing songs before they mount. However, wings are used differently during 

pre-mounting courtship in some species. For example, males of D. subobscura Collin wave wings 

silently in front of females (Wen & Li, 2011), and circling and silent wing scissoring are widely used 

by species with spotted wings, such as D. biarmipes Malloch, D. elegans Bock & Wheeler and D. 
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prolongata Singh & Gupta (Ewing & Bennet-Clark, 1968; Yeh, Liou & True, 2006; Lai, Gleason & 

True, 2009; Tomaru & Yamada, 2011; Kudo et al., 2015). Males of D. nebulosa Sturtevant perform 

wing-lifting movements without song and fan an anal droplet towards the female (Gleason et al., 

2012). 

 

The incidence of post-mounting courtship was all-or-nothing: C (the incidence Ipost = 1.00) or C 

(Ipost = 0.00). Males of all the studied species of the montium group always performed any wing action 

during/after mounting, but those of D. melanogaster never did it. Thus, they were assigned to C and 

C, respectively. Chang & Miller (1978) reported that D. algonquin produced courtship songs during 

copulation (thus to be classified as C+), but that its relative D. affinis Sturtevant only occasionally 

produced a loud high pulse repetition rate “buzzing burst” just before copulation (thus C). For the 

other outgroup species, no explicit description about their post-mounting courtship is available in the 

literature. Therefore, their states for post-mounting courtship were set as unknown (‘?’) in the 

following analysis. It is highly likely that these species do not produce post-mounting courtship song 

(personal observations), but a lack of an unusual courtship step is not usually explicitly included in 

courtship descriptions. Evolutionary gains/losses of post-mounting courtship were estimated 

parsimoniously by mapping the character states on the tree in ACCTRAN (accelerated transformation) 

and DELTRAN (delayed transformation) analyses, using PAUP* 4.0a164 

(https://paup.phylosolutions.com/). 

 

Song type. Ancestral states for song type were reconstructed in two ways. In one way (“A”), pre- and 

post-mounting courtship songs were treated as independent characters, and song types as states of 

each character. In addition to the three song-types, i.e. pulse song (P), high pulse repetition song (HPR) 

and sine song (S), songs composed of two song types, i.e. P+HPR and P+S, and no song (–) and 

unknown (?) states were incorporated as distinct song-type states into the character evolution analyses. 

The song-type states of the outgroup species were determined from the literature (see Fig. 2); 

especially, the ‘high pulse repetition sounds’ produced by D. affinis and D. algonquin were judged to 
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be HPRs based on oscillograms reported by Chang & Miller (1978: Fig. 2A, D). In the other (“B”) 

analysis, three song types, P, HPR and S, were treated as independent characters with states of 

presence and absence, where any combinations of them were allowed in the process of estimating the 

most parsimonious character evolution. In both “A” and “B” analyses, evolutionary changes, gains or 

losses of song-types were estimated, separately for pre- and post-mounting courtship, by ACCTRAN 

and DELTRAN of PAUP*.  

 

Results 

Courtship incidence 

By carefully observing 1594 video recordings of courtship behaviour in 42 species of the montium 

group, we confirmed that post-mounting courtship was constantly performed (i.e. C+) by males of 

every species, while the incidence of pre-mounting courtship varied even within and among species 

(Table 1). The incidence of pre-mounting courtship was very high in four species of three subgroups: 

D. asahinai Okada (Ipre = 1.00) and D. biauraria Bock & Wheeler (0.92) in the montium subgroup, D. 

nikananu Burla (1.00) in the seguyi subgroup, and D. parvula Bock & Wheeler (0.89) in the parvula 

subgroup. In contrast, pre-mounting courtship was completely lacking (Ipre = 0.00) in 12 species of 

three subgroups: 5 spp. out of 14 spp. in the montium subgroup, 5 spp. out of 6 spp. in the kikkawai 

subgroup, and 2 spp. out of 8 spp. in the serrata subgroup. Among the remaining species, except for 

D. subauraria with no available data in the present study, the incidence ranged from 0.03 to 0.75.  

 

Courtship songs 

Song types. We recorded analysable songs of pre-mounting courtship from 116 pairs, and of 

post-mounting courtship from 426 pairs (Tables S2, S3). Among the 42 species of the montium group, 

five species produced no analysable songs in pre-mounting or post-mounting courtship. Of the 

remaining species, 24 species sang only one type of song through the entire courtship repertoire (Fig. 

2, Table S3). 13 species produced two types of song (Fig. 2, Table S3): seven species produced 

different types (P/S, P/HPR or S/P) in pre-/post-mounting courtships; three species (D. barbarae Bock 

& Wheeler, D. burlai Tsacas & Lachaise and D. jambulina Parshad & Paika) produced two types (P 
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and S) in pre-mounting courtship; but three species (D. lini, D. ogumai Zannat & Toda and D. 

ohnishii) of the lini complex produced two types (P and S) in post-mounting courtship. Frequencies 

(i.e. the number of species that produced each type of song in pre- or post-mounting courtship) of the 

three song-types among the studied species of the montium group were not significantly different 

between pre- and post-mounting courtships (Chi-square test: χ2 = 4.005, df = 2, P = 0.135; Table 2). 

Of the 42 species, 25 species produced both pre- and post-mounting courtship songs (Fig. 2, Table 3). 

Among them, 16.5 species produced songs of the same type in pre- and post-mounting courtships 

(Table 3), but the remaining 8.5 species produced different types between pre- and post-mounting 

courtships. These frequencies were compared to those expected from random coincidence (see a 

footnote of Table 3), and were significantly different from the latter, showing a much higher 

frequency of coincidence (Chi-square test: χ2 = 11.408, P = 0.0007; Table 3). 

 

Song parameters. We analysed the following parameters of courtship song for each species: pulse 

length (PL), interpulse interval (IPI) and intrapulse frequency (IPF) for pulse song, pulse repetition 

rate (PRR) for high pulse repetition song, and sine song frequency (SSF) for sine song (Table S2). For 

species that produced the same type songs before and during/after mounting, parameter values were 

compared between pre- and post-mounting songs by the independent sample t-test using IBMSPSS 

statistics version 19.0.0. The following species produced songs with identical parameter values before 

and during/after mounting: D. biauraria, D. auraria Peng, D. rufa Kikkawa & Peng and D. bunnanda 

Schiffer & McEvey sang high pulse repetition songs; D. barbarae and D. diplacantha Tsacas & 

David sine songs; and D. mayri Mather & Dobzhansky, D. seguyi Smart and D. parvula pulse songs. 

On the other hand, parameter values were significantly different between pre- and post-mounting 

songs in the following species: pulse songs of D. punjabiensis Parshad & Paika, D. orosa Bock & 

Wheeler and D. malagassya Tsacas & Rafael; high pulse repetition songs of D. cauverii Muniyappa, 

Reddy & Prakash and D. truncata Okada; and sine songs of D. burlai. In D. jambulina, furthermore, 

pulse songs recorded before mounting from one pair were significantly longer in PL and IPI than 

those from the other pairs. Moreover, its post-mounting pulse songs were significantly different in PL, 

IPI and IPF from both or either type(s) of pre-mounting pulse song (Tables S2, S3). 
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Phylogeny  

Our phylogenetic analysis was almost comprehensive in taxon sampling from the montium group, 

including all the subgroups and complexes, except the megapyga complex (Yassin, 2018; Table S1). 

The ML and Bayesian analyses generated the same tree topology (Fig. S1, Fig. 2), which was largely 

congruent with those of previous studies (Schawaroch, 2002; Yassin et al., 2016; but see Zhang et al., 

2003). Of the seven subgroups, five were recovered as monophyletic groups. However, the 

monophyly of the serrata subgroup was not supported in the present study, and D. orosa representing 

the orosa subgroup, which was not included in Yassin et al. (2016), was placed as the sister to the 

punjabiensis subgroup. 

 

Ancestral state reconstruction  

Courtship incidence. The ancestral state reconstruction for the incidence of pre-mounting courtship 

revealed that the incidence (Ipre) largely decreased on the root branch (i.e. MRCA: the most recent 

common ancestor) of the montium group (Fig. 3). This trend of decreasing incidence continued in the 

subsequent process of diversification in this species group, resulting in nearly complete losses of 

pre-mounting courtship at the MRCA of the kikkawai subgroup, in some lineages of the montium 

subgroup and at several terminal species. On the other hand, secondary increase of the incidence 

occurred mostly on and near terminal branches, except for a slight increase at the MRCA of the seguyi 

subgroup (Fig. 3). 

 

The results of ACCTRAN and DELTRAN analyses to estimate evolutionary gains/losses of 

post-mounting courtship in the subgenus Sophophora were the same and are shown in Fig. 3. It was 

estimated that the MRCA for all the species was a typical Drosophila species performing courtship 

only before mounting but never during/after mounting (C–). Then, post-mounting courtship was 

estimated to have been gained (C) independently at least twice in the subgenus Sophophora: first at 

the MRCA of the montium group and then never lost in its descendants, and second at a terminal 

taxon, D. algonquin, of the outgroup. Thus, it is inferred that post-mounting courtship would have 
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newly arisen at the MRCA and then became prevalent throughout the montium group. 

 

Song type. The results of ancestral state reconstruction were quite different between the “A” and “B” 

analyses, in which song types were treated as character states or independent characters, respectively. 

Evolutionary song-type changes (including gains/losses) estimated by the character optimization 

analyses using PAUP* are mapped onto corresponding branches of the Bayesian tree (Fig. 2) 

resulting from the molecular phylogenetic analysis, separately for pre- and post-mounting courtship, 

in Fig. 4 (the “A” analysis) and Fig. S2 (the “B” analysis). The results of ACCTRAN and DELTRAN 

analyses were partly inconsistent with each other. The “A” analysis inferred that a few events of song 

gain had occurred in earlier ancestors with subsequent changes of song types in descendants (Fig. 4), 

while the “B” analysis inferred that most of song gains had independently occurred on or near 

terminal branches of extant species (Fig. S2). This may be due to the difference in the number of 

evolutionary steps necessary for song-type changes between the two analyses. When the song type 

changes from P to S, for example, such a change needs only 1 step in the “A” analysis, but 2 steps 

(loss of P and gain of S) in the “B” analysis. Thus, song-type changes would be more parsimonious in 

the “A” analysis, while independent song gains would be so in the “B” analysis. In terms of the tree 

length and goodness-of-fit parsimony statistics, the “A” analysis was better than the “B” analysis 

(Table 4). In addition, the inference from the “B” analysis for the post-mounting courtship song was 

inconsistent with the results of ancestral state reconstruction for the incidence of post-mounting 

courtship: the latter analysis inferred that post-mounting courtship had been gained at the MRCA of 

the montium group (Fig. 3), while the “B” analysis inferred that the post-mounting courtship song had 

been lacking in ancestors at deep nodes of the montium group (Fig. S2). Therefore, we adopted the 

results of “A” analysis as our preferred hypothesis of courtship song evolution in the montium group.  

 

The song-type state of the MRCA at the root of the phylogenetic tree was estimated to be P (pulse 

song) for pre-mounting courtship but – (no song) for post-mounting courtship. Pulse song is 

predominant in pre-mounting courtship among the outgroup species. This state is also kept in the 
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parvula subgroup that first branched off in the montium group, but was estimated to have once been 

lost in early branch(es): at the MRCA of the melanogaster + montium groups (ACCTRAN) or 

MRCAs of the montium subgroup and of the kikkawai subgroup (DELTRAN). In post-mounting 

courtship, HPR (high pulse repetition song) was estimated to have been gained by an early ancestor of 

the montium group: the MRCA of the montium group excepting the parvula subgroup (ACCTRAN) 

or the MRCA of the kikkawai + punjabiensis + orosa + serrata + seguyi subgroups (DELTRAN).  

 

From all the estimated changes, information about the frequency of each song-type change (e.g. P to 

S), gain (e.g. – to P) or loss (e.g. P to –) was extracted by ignoring taxon and phylogenetic 

information and summarized in Fig. 5, separately for pre- and post-mounting courtship and for 

ACCTRAN and DELTRAN. The evolution of pre-mounting courtship song in the montium group was 

characterized primarily by frequent losses and regains of pulse (P) song and secondarily by gains and 

changes (from pulse song) of high pulse repetition (HPR) and sine (S) songs (Fig. 5A). Most of these 

song-type state changes occurred on terminal branches representing extant species, except for the 

early loss of P song, gain of HPR song by the MRCA of the auraria complex, and change from P to S 

on a deeper branch in the seguyi subgroup (Fig. 4). It is noteworthy that S and HPR songs were gained 

in two lineages of outgroup as well, D. melanogaster and the affinis subgroup, respectively (Figs 4, 

5A). On the other hand, the evolution of post-mounting courtship song was characterized by frequent 

changes between P, HPR and S songs; after the early gain of HPR song, main transformation routes 

were HPR to S, or HPR to P to S (Figs 4, 5B). 

 

Discussion 

Loss of pre-mounting courtship and gain of post-mounting courtship 

Our results clearly suggest that the loss of pre-mounting courtship song and gain of post-mounting 

courtship singing is an evolutionary feature of the montium group. The ancestral state reconstruction 

analyses indicate that post-mounting courtship singing behaviour has been gained and pre-mounting 

courtship has decreased in incidence concurrently at the MRCA of the montium group (Fig. 3). After 

the gain of post-mounting courtship by the MRCA, this behaviour has never been lost in any of its 
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descendants in the montium group. Wing vibration is a typical element of post-mounting courtship in 

the montium group, and the resulting song is likely to lead to longer copulation. Three species of the 

lini complex produce species-specific sine songs which suppress female repelling behaviour during 

copulation (Wen et al., 2011). Courting males of all the 42 species in the present study always 

displayed wing vibration during/after mounting, so once adopted this seems to have become an 

important if not obligatory component of courtship behaviour of these species. 

 

The increased importance of copulatory courtship behaviour has alongside decreased the incidence of 

pre-mounting courtship in the montium group, eventually resulting in complete loss of the latter 

courtship in 12 out of the 42 studied species (Table 1, Fig. 3). However, pre-mounting courtship has 

secondarily increased in incidence or been regained on or near several terminal branches, recovering 

very high incidences (Ipre = 0.89–1.00) in four species, D. biauraria, D. asahinai, D. nikananu and D. 

parvula. In the other species that performed pre-mounting courtship at intermediate frequencies, some 

males courted before mounting but others did not even in cases of successful mating, suggesting that 

the pre-mounting courtship is not necessary or essential for successful mating. In D. serrata, the 

incidence of pre-mounting courtship varied among stocks from different geographic populations, and 

experimental selection for high and low incidence has been successful in some strains (Chen, 2016). It 

seems likely that the gain of post-mounting courtship has been associated with relaxed selection on 

pre-mounting courtship and allowed its incidence to decline during the diversification of the montium 

group. 

 

Why has post-mounting courtship evolved and, once appeared, been favoured? Most species of 

Drosophila produce signals prior to mounting but in the montium group they have switched to a 

post-mounting mode of courtship, especially singing. Little is known about the mating system or 

natural ecology of these species. Increased intensity of sperm competition might select for male 

tactics which favour sperm competition. Playback experiments with D. lini suggest that copulation is 

extended due to post-mounting song (Li, Wen & Ritchie, 2012), which might allow the delivery of 

more sperm or other ejaculate components. In D. serrata, there is a high level of polyandry in the field, 
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with wild caught females having mated with as many as 8 or 9 males with a skewed paternity success 

(Frentiu & Chenoweth, 2008), so the incidence of sperm competition is high. Interestingly, D. 

prolongata of the rhopaloa subgroup of the melanogaster group shows a prominent leg sexual 

dimorphism, and pre-mounting courtship includes leg vibration, increasing female receptivity, but 

with a risk of interception of the female by rival males. Therefore, males shift their courtship 

behaviour from leg vibration to ‘rubbing’ in the presence of rivals (Setoguchi et al., 2015). So the risk 

of mate interception might also lead to the evolutionary loss of some pre-mounting courtship elements 

alongside increasing post-mounting courtship. However, the incidence of sperm competition and male 

competition is widespread in Drosophila (Holman, Freckleton & Snook, 2008; Rouse, Watkinson & 

Bretman, 2018) and we do not know if the incidence covaries with the likelihood of post-mounting 

courtship, which would be very interesting to study further. It would also be interesting to correlate 

post-mounting courtship with reproductive features such as testes and accessory gland size or genital 

morphology. Cryptic female choice is often thought to be based on copulatory components of 

courtship (Eberhard, 1994) but often this is only presumed. Manipulation studies are required to 

decisively demonstrate that copulatory courtship allows this component of female choice (e.g. 

Edvarssn & Arnqvist, 2000) but once present, it may be more persistent than more arbitrary female 

preferences.  

 

A feature of the change to post-mounting courtship is the associated loss of pre-mounting courtship 

singing. At one level it is surprising that a major courtship trait can be lost, but sexually selected traits 

have often been lost during evolution, perhaps as they change in importance during cycles of 

trait-preference coevolution or under negative selection from eavesdroppers (Pascoal et al., 2014). We 

know that pre-mounting song in flies can vary from being obligatory in some species to only 

stimulatory in others, and in at least two species, D. heteroneura and D. venezolana, no stimulatory 

effect of pre-mounting song was found, even though males still commonly produce this as part of 

courtship (Boake & Poulsen, 1997; Iglesias & Hasson, 2017). That pre-copulatory courtship loss is 

reversible implies that preferences for pre-mating courtship have not been lost. It is extremely 

interesting that pre- versus post-mounting courtship do not seem to be equally “disposable” in an 
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evolutionary sense, so there may be switching of the importance of courtship elements rather than 

outright loss (c/f Wiens, 2001). It would be very interesting to asses if female preference for 

copulatory courtship song relies on the same neurogenetic substrates, perhaps facilitating the 

reversibility of loss of preference for pre-mating courtship song. 

 

It is, however, impossible to identify which possible mechanisms are responsible for the gain of 

post-mounting courtship and reduction/loss of pre-mating courtship in the MRCA of the montium 

group, from the current data. Candidate species for comparison of biological features relevant to the 

hypothetical mechanisms should be extant species that show different modes of courtship from close 

relatives. For the gain of post-mounting courtship, D. algonquin and D. phalerata can be compared 

with closely related species such as D. affinis and D. innubila Spencer, respectively, which produce 

no post-mounting courtship song (Wen & Li, 2011). For pre-mounting courtship, D. leontia Tsacas & 

David is the only species that regained the pre-mounting courtship (Ipre = 0.41) within the kikkawai 

subgroup, and is to be compared with its sibling species, D. bocki Baimai (Ipre = 0.00), which is 

morphologically indistinguishable but reproductively isolated from D. leontia (Baimai, 1979). 

Another candidate pair is D. birchii Dobzhansky & Mather, having completely lost the pre-mounting 

courtship (Ipre = 0.00), and D. mayri Mather & Dobzhansky (Ipre = 0.55) of the birchii complex. 

 

Evolutionary changes in song type 

We recognised three different types of song, viz. pulse, high pulse repetition and sine songs, produced 

during pre- and post-mounting courtships in the montium group. Alongside the gain of post-mounting 

courtship and changes (loss, decrease, increase or regain) in the incidence of pre-mounting courtship, 

the song type used for pre- and post-mounting courtships can also change during diversification in the 

montium group. However, the same type of song tended to be used for both pre- and post-mounting 

courtships in individual species (Table 3). The parsimonious estimation (by ACCTRAN and 

DELTRAN) of ancestral courtship song type inferred that pulse song sung before mounting by most 

of outgroup species and some early ancestors of the montium group was also employed for the 

post-mounting courtship in a number of their descendant species (Fig. 4), sometimes with 
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modification of song parameters as seen in D. jambulina, D. seguyi, D. malagassya, D. mayri, D. 

orosa and D. punjabiensis (Fig. 2, Tables S2, S3). On the other hand, pulse song changed to high 

pulse repetition or sine song in some lineages. Pre-mounting pulse song changed to sine song on a 

deeper branch in the seguyi subgroup, and the sine song has been applied to post-mounting courtship 

as well in D. diplacantha and D. burlai, with parameter modification in the latter (Figs 2, 4, Tables S2, 

S3). In the post-mounting courtship, high pulse repetition song was gained by an early ancestor of the 

montium group, and changed to sine song at the MRCA of the montium subgroup and then back to 

high pulse repetition song at the MRCA of the auraria + rufa complexes (Fig. 4). Therefore, high 

pulse repetition song sung before mounting by some species, such as those of the auraria complex, D. 

rufa, D. bunnanda, D. truncata and D. cauverii, would have derived from the same type of 

post-mounting courtship song evolved in their ancestors, with some modification of the song 

parameter PRR in the last two species (Figs 2, 4, Tables S2, S3). Thus, it is likely that the timing of 

singing the same type of song has shifted between before- and after-mounting phases of courtship 

throughout the evolution of the montium subgroup. In addition to these song-timing changes 

somewhat reflecting phylogenetic patterns, a number of song-type changes independently occurred on 

terminal branches, i.e. in extant individual species.. The types of pre- and post-mounting courtship 

songs were different between D. leontia (pre-mounting song: P, post-mounting song: S) and its 

siblings D. bocki/D. kikkawai (pre: –, post: HPR) of the kikkawai complex, and significant differences 

of song parameters were detected among four species of the auraria complex (Tomaru & Oguma, 

1994) and three species of the lini complex (Wen et al., 2011). Whether these differences all influence 

female preference is unknown, except in the lini complex, where female copulation is extended when 

species-specific song is heard (Li, Wen & Ritchie, 2011). It seems likely that song divergence is an 

important component of sexual isolation amongst these species. 

 

The frequency distribution of song-type changes (including gains and losses) extracted from the 

phylogenetic song-type transformation analyses (Fig. 4) did not show any prominent trend of 

directional changes in pre-mounting courtship; the three types (P, HPR, and S) of song were 

repeatedly lost and gained, and transformed to and from each other (Fig. 5A). In post-mounting 
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courtship, however, the song-type transformation was predominated by changes from HPR to S and 

from HPR to P to S (Fig. 5B). Thus, HPR seems to be at a key position in the evolution of post-mating 

courtship songs. In terms of sound oscillogram pattern, HPR can be changed to S by homogenising 

pulse-composing waves in amplitude and/or form and to P by inserting interpulse pauses, and P can be 

changed to S by prolonging a pulse (Fig. 1, Table S3).  

 

This study provides a detailed examination of losses and gains in elements of courtship behaviour. We 

demonstrate that the diversity of courtship singing behaviour across the largest species group of the 

subgenus Sophophora includes changes in the relative timing, elements and structure of song, and 

infer these evolutionary changes in a phylogenetic context. The ecological and mating system forces 

selecting for these changes are largely unknown. It has been concluded that copulatory courtship is a 

very labile element of courtship behaviour in insects (Eberhard, 1994) but it is extremely interesting 

that, within this group, copulatory courtship seems to become an essential, irreversible, component of 

courtship once adopted.  
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Figure legends: 

 

Figure 1. Three types of courtship song in the Drosophila montium species group. (A) pulse song of 

D. leontia; (B) high pulse repetition song of D. kikkawai; (C) sine song of D. leontia. 

 

Figure 2. A Bayesian phylogenetic tree and courtship song types for 42 species of the Drosophila 

montium group and 14 outgroup species of the subgenus Sophophora. The Bayesian tree was 

constructed, based on two mitochondrial (COI and COII) and three nuclear (Adh, Amy1, and Amyrel) 

genes, using MrBayes 3.2.6. Branch support is indicated by the Bayesian posterior probability (≥0.9; 

* = 1.0). Song types and/or other wing displays are indicated, separately for pre- and post-mounting 

courtship, in parentheses following species name: P, pulse song; HPR, high pulse repetition song; S, 

sine song; –, no courtship; ?, unknown. When a species produces songs of the same type but with 

different parameter values (see Table S2), those songs are discriminated with subscripts 1–3. 

Information from literature or personal communication is indicated with superscript showing its 

reference: [1] Tomaru & Oguma (1994); [2] Wen et al. (2011); [3] Lai, Gleason & True (2009); [4] 

Geng et al. (1989); [5] Wheeler, Field & Hall (1988); [6] Yeh, Liou & True (2006); [7] Yamada et al. 

(2002); [8] Crossley (1986); [9] Chang & Miller (1978); [10] Noor & Aquadro (1998); [11] Immonen 

et al. (2009); [12] Gleason et al. (2012); [13] Ritchie & Gleason (1995); [14] Gleason (personal 

communication). 

 

Figure 3. Ancestral state reconstruction for the incidence of pre-mounting courtship using the R 

Rphylopars package and for the occurrence of post-mounting courtship by parsimonious character 

optimization (ACCTRAN and DELTRAN) analyses of PAUP* 4.0a164, shown with superimposed 

mapping onto the Bayesian tree. The incidence (Ipre) values are shown with black (observed values for 

the ingroup species except Drosophila subauraria), gray (assumed values for the outgroup species) 

and blue (estimated values for ancestors at nodes and D. subauraria), and changes of more than 0.25 

between successive ancestors or terminal species are indicated on corresponding branches with bars 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

(light blue: decrease; dark blue: increase). In the character optimization analyses, post-mounting 

courtships were categorized into three classes: presence (C), absence (C) and unknown (?). The 

results (completely consistent between ACCTRAN and DELTRAN) are shown with red bars 

representing the gain on corresponding branches. 

 

Figure 4. Evolutionary song-type changes mapped onto the Bayesian tree (Fig. 2). The ancestral state 

reconstruction was performed separately for pre- and post-mounting courtship; pre- and 

post-mounting courtship songs were treated as independent characters, and song types as states of 

each character. Song-type states were coded as P (pulse song), HPR (high pulse repetition song), S 

(sine song),  (no song), and ? (unknown); and songs composed of two song types, i.e. P+HPR and 

P+S, were regarded as distinct song-type states. Song-type changes were estimated parsimoniously by 

ACCTRAN (accelerated transformation) and DELTRAN (delayed transformation), using PAUP* 

4.0a164, and are shown on corresponding branches with bars; inconsistent results of 

ACCTRAN and DELTRAN are shown with short bars and letter ‘A’ (ACCTRAN) or ‘D’ 

(DELTRAN). Gain of another type of song, which has caused a dual state of song-type, is indicated 

with ‘+’. Subgroups of the Drosophila montium species group are shown with Roman numerals 

corresponding to those of Yassin (2018): I, parvula; II, montium; III, punjabiensis; IV, serrata; V, 

kikkawai; VI, seguyi; and VII, orosa. 

 

Figure 5. Evolutionary changes of song-types in pre- and post-mounting courtships of the Drosophila 

montium species group (black arrows) and outgroup species (gray arrows), extracted from the 

song-type evolution (Fig. 4) estimated by ACCTRAN (accelerated transformation) and DELTRAN 

(delayed transformation). The number of changes from one type to another, gains or losses is shown 

beside each arrow; gain of another type of song, which has caused a dual state of song-type, was 

counted as 0.5. Song-types: P, pulse song; HPR, high pulse repetition song; S, sine song; , no song. 

The song-type state estimated for MRCA (the most recent common ancestor) at the root of the 

phylogenetic tree (Fig. 4) is shown with *. 
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Table 1 Incidence of pre-mounting courtship in the studied species of the Drosophila montium group 

and the outgroup species 

In-/Out-group   
 

Incidence of pre-mounting courtship (Ipre
*
) 

  Subgroup/(Group) Species Strain code N Observed/(Assumed) Reference
†
 

Ingroup 
     

 
montium D. auraria A662 20 0.15 

 

  
D. triauraria T544 36 0.08 

 

  
D. biauraria B16 25 0.92 

 

  
D. subauraria ONM29 1 NA 

 

  
D. asahinai AM2K-1 17 1.00 

 

  
D. rufa rufa-OGM 24 0.75 

 

  
D. lacteicornis IR96-1 40 0.00 

 

  
D. neoasahinai OKNH2K 34 0.00 

 

  
D. tani tani-YF 83 0.00 

 

  
D. fengkainensis XT33 26 0.00 

 

  
D. trapezifrons Bavi31 11 0.27 

 

  
D. pectinifera OGS98m 34 0.00 

 

  
D. baimaii 14028-0481.00 30 0.27 

 

  
D. pseudobaimaii K41 22 0.23 

 
       
 

kikkawai D. bocki IR2-37 29 0.00 
 

  
D. leontia AO-2 39 0.41 

 

  
D. kikkawai NAHA1 80 0.00 

 

  
D. lini BGS3146.1 32 0.00 

 

  
D. ohnishii MMY326 23 0.00 

 

  
D. ogumai RGN3 30 0.00 

 
       
 

punjabiensis D. punjabiensis CJB212 44 0.11 
 

  
D. watanabei 14028-0531.02 22 0.14 

 
       
 

orosa D. orosa 14028-0611.00 23 0.09 
 

       
 

serrata D. barbarae 14028-0491.01 31 0.42 
 

  
D. cauverii cauv-CNRS 31 0.68 

 

  
D. birchi 14028-0521.00 64 0.00 

 

  
D. mayri 14028-0591.00 42 0.55 

 

  
D. bicornuta BOG1 26 0.00 

 

  
D. truncata RGN179 25 0.24 

 

  
D. bunnanda 14028-0721.00 50 0.10 

 

  
D. serrata Q122 226 0.27 

 
       
 

seguyi D. burlai L6 20 0.20 
 

  
D. diplacantha 14028-0586.00 73 0.44 

 

  
D. nikananu 14028-0601.00 23  1.00  

 

  
D. greeni 14028-0712.00 27 0.44 

 

  
D. malagassya J6 27 0.41 

 

  
D. seguyi K59 34 0.24 

 

  
D. vulcana 14028-0711.00 70 0.03 

 

  
D. tsacasi 14028-0701.00 9 0.22 

 

  
D. jambulina F76 32 0.69 

 
       
 

parvula D. kanapiae 14028-0541.00 23 0.04 
 

    D. parvula SHL17 36 0.89   

Outgroup 

    
 

 
(melanogaster) D. biarmipes - - (1.00) [1] 

  
D. takahashii - - (1.00) [2] 

  
D. melanogaster - - (1.00) [3] 

  
D. elegans - - (1.00) [4] 

       
 

(ananassae) D. ananassae - - (1.00) [5] 
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D. bipectinata - - (1.00) [6] 

       
 

(obscura) D. affinis - - (1.00) [7] 

  
D. algonquin - - (1.00) [7] 

  
D. pseudoobscura - - (1.00) [8] 

  
D. subobscura - - (1.00) [9] 

       
 

(willistoni) D. nebulosa - - (1.00) [10] 

  
D. tropicalis - - (1.00) [11] 

  
D. willistoni - - (1.00) [11] 

         (saltans) D. saltans - - (1.00) [12] 
 

* The incidence of pre-mounting courtship: Ipre = Npre/N, where Npre is the number of males that 

showed pre-mounting courtship, and N is the total number of observed pairs. 

† References: [1] Lai, Gleason & True (2009); [2] Geng et al. (1989); [3] Wheeler, Field & Hall (1988); 

[4] Yeh, Liou & True (2006); [5] Yamada et al. (2002); [6] Crossley (1986); [7] Chang & Miller 

(1978); [8] Noor & Aquadro (1998); [9] Immonen et al. (2009); [10] Gleason et al. (2012); [11] 

Ritchie & Gleason (1995); [12] Gleason (personal communication). 
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Table 2 Number of species having produced songs of each type in pre- and post-mounting courtships 

among studied species of the Drosophila montium group 

 

Song type 
 

P 
 

HPR 
 

S Chi-square 

test†  
 

Ntotal
* NP %   NHPR %   NS % 

Pre-mounting 31 16 51.6 
 

8 25.8 
 

7 22.6 χ2 = 4.005 

Post-mounting 42 12 28.6   16 38.1   14 33.3 P = 0.135 

 

P, pulse song; HPR, high pulse repetition song; S, sine song. 

* Species that produced two types of song were counted twice.  

† By using SAS 9.21. 
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Table 3 Song-type coincidence between pre- and post-mounting courtships in species having 

performed both courtships 

 

Song-type
* 

No. of species having 

produced songs of each 

type† 

  

No. of species 

having produced 

songs of the same 

type in pre- and 

post-mounting 

courtships 

  

Chi-square test 

Song-types 

in pre- and 

post-mountin

g courtships 

No. of species 

χ2 

Pre-mountin

g 

Post-mountin

g 
  
Observe

d 

Expected
‡ 

  
Observe

d 

Expecte

d 

P 13.5 8 
 

6.5 4.3 
 

Same 16.5 8.5 7.529 

HPR 8 10 
 

8 3.2 
 

Different 8.5 16.5 3.879 

S 3.5 7 
 

2 1.0 
 

Total 25 25 11.408 

Total 25 25   16.5 8.5         
P = 

0.0007§ 
 

 * Song-type: P, pulse song; HPR, high pulse repetition song; S, sine song. 

† Species having produced two types of song in pre- or post-mounting courtship is counted half for 

each song-type. 

‡ The expected value was calculated by the following formula: 

          Ei = S×(Pri×Poi), 

  where Ei is the expected number of species that produce songs of type i in both pre- and 

post-mounting courtships, S is the total number of species (in the above case, S = 25), Pri is the 

probability that song of type i is sung in pre-mounting courtship (in the above case of P song, PrP = 

13.5/25), and Poi is the probability that song of type i is sung in post-mounting courtship (in the above 

case of P song, PoP = 8/25). 

§ Calculated by the function of Excel. 
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Table 4 Comparison of tree lengths and goodness-of-fit parsimony statistics between two ("A" and 

"B") analyses of ancestral state reconstruction for pre- and post-mounting courtship songs 

 

  Pre-mounting courtship song   Post-mounting courtship song 

Analysis* "A" "B"   "A" "B" 

Tree length 23 25 
 

19 29 

Consistency index (CI) 0.2174 0.1200 
 

0.2105 0.1034 

Homoplasy index (HI) 0.7826 0.8800 
 

0.7895 0.8966 

Retention index (RI) 0.4194 0.4634 
 

0.3750 0.3500 

Rescaled consistency index (RC) 0.0912 0.0556   0.0789 0.0362 
 

* "A": song types were treated as states of a character (pre- or post-mounting courtship song); "B": 

song types (P, HPR, and S) were treated as independent characters. 
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Supporting Information 

 

Appendix S1 Detailed methods for recording courtship behaviour and songs 

 

Table S1 Species of the sugenus Sophophora of Drosophila subjected to the phylogenetic analysis in 

this study 

 

Table S2 Parameters of courtship songs in the Drosophila montium species group 

 

Table S3 Songs produced during pre- and post-mounting courtships in the Drosophila montium 

species group 

 

Figure S1 Phylogenetic tree constructed by a maximum likelihood (ML) analysis of the concatenated 

dataset. Branch support is indicated by bootstrap value (≥50%). 

 

Figure S2 Evolutionary song-type changes mapped onto the Bayesian tree (Fig. 2). The ancestral state 

reconstruction was performed separately for pre- and post-mounting courtship; three song types, P 

(pulse song), HPR (high pulse repetition song) and S (sine song), were treated as independent 

characters. 
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