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ABSTRACT

Many studies in biology involve data measured on a circular scale.
Such data require different statistical treatment from those measured
on linear scales. The most common statistical exploration of circular
data involves testing the null hypothesis that the data show no
aggregation and are instead uniformly distributed over the whole
circle. The most common means of performing this type of
investigation is with a Rayleigh test. An alternative might be to
compare the fit of the uniform distribution model to alternative models.
Such model-fitting approaches have become a standard technique
with linear data, and their greater application to circular data has
been recently advocated. Here we present simulation data that
demonstrate that such model-based inference can offer very similar
performance to the best traditional tests, but only if adjustment is
made in order to control type | error rate.

KEY WORDS: Circular statistics, AIC, Rayleigh test,
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INTRODUCTION

Circular data are common in natural sciences, ranging from
directional (e.g. animal orientation) to time-dependent data (e.g.
annual cycles and circadian rhythms) and treatment of such data has
been reviewed in several monographs (Batschelet, 1981; Fisher,
1995; Ley and Verdebout, 2017; Mardia and Jupp, 2009; Pewsey
et al., 2013). The most common statistical exploration of circular
data involves testing the null hypothesis that the data are uniformly
distributed across all possible values around the circle (versus some
form of concentration). Overwhelmingly the most common
approach to testing this null hypothesis is the Rayleigh test
(Rayleigh, 1880). Although it was one of the earliest circular
statistical techniques, the Rayleigh test is the most powerful test for
detecting some unimodal departures (e.g. Von Mises and projected
normal alternative) from circular uniformity (Bhattacharyya
and Johnson, 1969; Landler et al., 2018; Mardia and Jupp, 2009).
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Other tests that are often used in circular statistics and are known to
detect unimodal and multimodal departures from uniformity
include the Rao’s spacing test, the Watson test and the Kuiper’s
test (see Batschelet, 1981 for an overview). However, more
computationally-demanding simulation-based approaches have
been developed more recently (Pewsey et al., 2013). One such test
is the Hermans-Rasson test, which has high statistical power over a
broad range of situations and is considerably more powerful than the
Rayleigh test for certain multimodally clustered distributions
(Landler et al., 2019b). In addition, simulation approaches have
also been proven useful to correct for type I error rate inflation due to
rounded data (Landler et al., 2019a).

For linear data, there has been a broadening of statistical
approaches over the last 20 years, with reduced emphasis on null-
hypothesis testing and increased use of Bayesian and model-
selection techniques. Such statistical approaches could also be
applied to circular data, where null-hypothesis testing remains the
dominant statistical approach. Recently, Fitak and Johnsen (2017)
presented how model-based approaches can be used for circular
data. Their approach involved fitting a suite of ten potential models
to a sample of circular data and then using the Akaike Information
Criterion (AIC; Aho et al., 2014; Akaike, 1973) to compare how
well the data fitted the different models. The power of this
methodology lies in not just identifying if the data is concentrated in
some way (i.e. appears non-uniform) but describing the relative
likelihood of different underlying processes generating different
types of concentration. An example of the application of this
approach is a recent study of the orientation of shorebirds in
response to magnetic and visual cues (Vanni et al., 2017). The
authors first used a Rayleigh test to establish if the null-hypothesis
of uniformity can be rejected. In situations where it appeared that
there was solid evidence to reject uniformity, the authors then used a
model-based approach to compare the relative support for a
unimodal concentration of data (suggesting that birds integrated
conflicting magnetic and visual cues) or a bimodal situation
(suggesting different birds relied on different cues). In order to
exemplify the potential use of the approach described in here, we
use a pigeon orientation data set available in the R package ‘circular’
(see Materials and Methods). The data are from Gagliardo et al.
(2008). In this study, the authors tested the hypothesis that homing
pigeons use magnetic and/or olfactory cues for homing. They
accomplish this by performing anatomical lesions, where they either
sectioned the olfactory nerve, the trigeminal nerve (which is thought
to transmit magnetic information) or left both nerves intact. In their
analysis, they concluded that only the olfactory nerve lesion
impaired the pigeon homing performance and therefore magnetic
map cues are not necessary for pigeon navigational abilities.

Our interest here is in exploring to what extent the model-based
approach could be extended to encompass the role of the Rayleigh
test, since circular uniformity is simply another model to which the
sample of data can be applied. More generally, we want to offer
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advice to those interested in using model-based approaches to
samples of circular data as to whether they can streamline their
analysis or whether they should retain a traditional test of the null
hypothesis of circular uniformity as well as their model-fitting
exercise.

RESULTS AND DISCUSSION

Our results show that model-fitting based results have to be treated
with caution when the false discovery rate is not controlled for.
When using delta AIC=0 as a cut-off, up to 40% of instances where
we tested a sample from a truly circular uniform distribution,
rejection of that model was suggested by the AIC model fitting
(Fig. 1). Such type I error rate decreased with sample size but was
controlled for when we used the cut-off value Z (see Table S1),
which we derived by simulation (Fig. 1). The delta AIC=2 cut-off,
which was used by Fitak and Johnsen (2017), resulted in controlled
type I error only in cases where two models were tested against each
other (in these instances Z is very close to 2; see Table S1). In
comparison, the Rayleigh, Rao, Kuiper’s and Watson test as well as
the HR test reliably showed type I error rates close to the nominal
value (0.05). This suggests that a model-fitting approach shows
comparable performance to traditional tests of the null hypothesis of
circular uniformity if the suite of models tested is limited to two
(uniformity and a unimodal concentration). Larger suites can be
accommodated but the criterion for rejection of the null hypothesis
has to be tuned so as to avoid substantial inflation of the type I error
rate. This is true even for large sample sizes.

However, how powerful is the model fitting approach when using
distributions that are non-uniform? We compared power in detecting
a Von Mises distribution of all approaches with controlled false
discovery rate, the alpha-corrected AIC approach, Rayleigh,
Kuiper’s, Watson, Rao and HR tests (Fig. 2). Here we saw that
the AIC approach had broadly equivalent power to the Rayleigh,
Kuiper’s, Watson and HR tests and better power than the Rao test.
Indeed, when only two models (circular uniform and Von Mises)
were used, our version of the AIC approach even outperformed the
conventional tests (Fig. 2). The more models were added in the AIC
calculation, the lower the power. However, even when all ten
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Fig. 1. Type | error rate of all tests applied. For the AIC based model

fitting we used three different delta AIC criteria: 0, 2, Z. In the AIC approach
we either compared two, four or ten (all) models. Sample sizes are given in
the legend. The dashed line represents the 0.05 nominal significance level.
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Fig. 2. Power of all tests with controlled false positive rate using a Von
Mises distribution. In the AIC approach we either compared two, four or ten
(all) models, using Z as the cut-off. Sample sizes are given in the legend.

models were included, power was comparable to the HR, Kuiper’s
and Watson test, and only slightly lower than the Rayleigh test.

Results for the asymmetrical unimodal distribution, the wrapped
skew normal, showed similar behavior of the AIC approach, with
power levels comparable between the three approaches (Fig. 3).
Similarly, when we analyzed the AIC approach for the pigeon data,
the general results were comparable (Fig. 4). Both distributions that
were significant using the Rayleigh test (controls and vl) are
significant using the AIC approach (controlling type I error using
Z); the one distribution not significant using the Rayleigh test (on)
also failed to show a significance using the AIC model approach.
However, arguably, the AIC approach provides more information
on the distributions; it indicates for example that the best model in
the case of olfactory deprived pigeons may be axial instead of
unimodal. This potentially indicates that pigeons without intact
olfactory nerves still show a defined orientation behavior. Further
experimentation might be needed to differentiate between an axial
(relative to home) versus uniform (random) alternative.

We conclude that researchers keen to take a model-fitting
approach to samples of circular data can potentially streamline their
analysis by omitting a traditional test of the null hypothesis of
circular uniformity and subsuming its function into their model
fitting approach. However, if taking this approach, they must take
care to avoid inflation of type I error rate. We believe the approach
we take here offers a generally applicable template for that. Using
such an approach can potentially increase the information a
researcher can get regarding the resulting distribution while still
maintaining comparable power as well as control of type I error.
This is also shown in the presented pigeon example, where we might
get a more informed view on the non-significant part of the results
that allows us to plan follow up experiments.

However, for balance, we should also note that we do not have
evidence that this approach will offer substantial statistical power
benefits over the traditional tests. The motivation for subsuming the
function of these tests into the model fitting framework instead
come from brevity of presentation and philosophical uniformity
within an analysis. An author’s motivation for retaining the
traditional tests should come from their well-studied performance
and from commonality with previous works. The relative weighing
of these issues will vary between investigators and investigations,
but we hope this paper offers researchers the evidence-base for
making a good decision. Further, we hope that this paper leads to a
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Fig. 3. Power of all tests with controlled false positive rate, testing a
wrapped skew normal distribution. In the AIC approach we either
compared two, four or ten (all) models, using Z as the cut-off. Sample sizes
are given in the legend.

wider uptake of the AIC- and BIC-based approaches in circular
statistics. More research is clearly needed to expand the availability
of model fitting approaches in circular statistics to levels currently
available in linear statistics.

MATERIALS AND METHODS

Null-hypotheses tests of circular uniformity such as the Rayleigh test return
a P-value between 0 and 1, which is the probability of seeing data similar to
or more clustered than the observed sample if the underlying process was
actually one of circular uniformity. By convention P-values less than some
pre-specified level (often 0.05) are considered as evidence for rejecting the
null hypothesis, whereas larger values are considered as evidence for not
rejecting. The performance of such a test is evaluated in terms of its control
of type I error rate and its statistical power (see R code published alongside
the manuscript for all necessary code to re-run the analyses shown here). In
terms of control of type I error rate, the test behaves well if presented with
data from an underlying uniform distribution it generates a P-value below
0.05 (erroneously suggesting evidence against uniformity) on close to 5% of
occasions. Statistical power is the probability that when presented with data
from a specified non-uniform distribution the model generated a P-value
below 0.05 (correctly suggesting evidence for rejecting the null hypothesis
of uniformity).

A Control

C Olfactory nerve

We wanted to be able to evaluate equivalents to type I error rate and
statistical power from a model-comparison approach. First, we must identify
a suite of models. We used subsets of the models available in the R package
(CircMLE) introduced by Fitak and Johnsen (2017), and originally
proposed by Schnute and Groot (1992). In the first approach we only
included the random model of circular uniformity (denoted M1 in the
package documentation) and a Von Mises alternative (M2A). In the second
approach we added two more alternative unimodal distributions (M2B,
M2C), and in the last approach we used all unimodal and bimodal models
available in the package in addition to the uniform distribution (ten in total,
see Fitak and Johnsen 2017, for details).

As a measure of the evidence for or against circular uniformity, we used
the AIC difference between the model of circular uniformity (M1) and the
best model (i.e. that with the lowest associated AIC value) estimated from
the function circ_mle() (Fitak and Johnsen, 2017). In order to mimic null-
hypothesis testing we must specify a specific minimum difference in AIC
(denoted delta AIC) that we take to imply that hypothesis of uniformity
would be justified. We explored three different cut-offs for delta AIC: 0, 2
and Z. That is, with a cut-off of zero, if any of the other models considered
had a lower AIC than M1, then this was taken as evidence for rejecting the
null hypothesis of circular uniformity. With a cut-off of 2 we required that at
least one other model in the suite being compared had an AIC value at least 2
units lower than M1 for uniformity to be rejected.

We derived a calculated critical value Z, separately for each sample size
and suite of models, which preserved the type I error rate at the specified
level. That is, we generated 10,000 samples of a circular uniform distribution
and determined the value of Z that suggested erroneous rejection of
uniformity in exactly 5% of cases.

We estimated type I error of the AIC-model based approach by generating
10,000 samples of a random distribution and calculating the fraction of
samples resulting in delta AIC larger than 0, 2 and Z (see above). Of course,
by definition the type I error rate for a cut-off of Z will be 0.05. In addition
we tested the type I error for the Rayleigh test, using the function
rayleigh.test(), the Watson test using the function watson.test(), the Kuiper
test using the function kuiper.test(), the Rao spacing test using the function
rao.spacing.test() (Agostinelli and Lund, 2013) and the Hermans-Rasson
(HR) test (Landler et al., 2019b), as the fraction of significant tests (P<0.05)
out of the same 10,000 random samples. Distributions were generated using
the function rciremix() (Oliveira Pérez et al., 2014) and the samples sizes 10,
20, 50, 100. The parameter ‘model’ was set to 1 for the circular uniform
distribution.

For power estimation we generated the distributions using again the
function rcircmix() (samples sizes: 10, 20, 50, 100), the model parameter
was set to 2 for Von Mises and a wrapped skew normal distribution was
generated using the parameters k=30 and con=2. We restricted our analyses

Fig. 4. Example analysis of pigeon homing
data, showing three groups: (A) control
pigeon (B) bilateral section of the
ophthalmic branch (V1) of the trigeminal

r— nerve (C) bilateral section of the olfactory
0 0 nerve (on). Data from Gagliardo et al. (2008).
270 90 270 90
180

Rayleigh Z = 0.75, p < 0.001

Rayleigh Z = 0.74, p < 0.001

AIC: significant
Best model: unimodal

AIC: significant
Best model: non-axial bimodal

180

Rayleigh Z=0.09, p = 0.796

AIC: not significant
Best model: axial bimodal
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to unimodal alternatives, which is arguably the predominant type of
distributions in orientation biology. However, in order to test a non-
symmetric alternative, in addition to the well-studied Von Mises
distribution, the wrapped skew normal distribution was added (see Fig. S1
for examples of the distributions used in this study).

We estimated statistical power as the fraction of 10,000 samples that
resulted in delta AIC (defined as above) larger than Z (cut-offs of 0 and 2
were not used because of inflated type I error rates, see Fig. 1). The power of
the Rayleigh test and HR Test was defined as the fraction of tests that
resulted in P<0.05. Notice that power here is defined not as the probability of
correctly identifying the particular non-random model that underlies the data
— but correctly rejecting the null hypothesis of uniformity.

In addition to the simulation approach, we used the AIC model based
approach as described above on an example pigeon data set available from
the R package circular (Agostinelli and Lund, 2013). The pigeon data
includes initial orientation of three groups (control pigeons; v1: bilateral
section of the ophthalmic branch of the trigeminal nerve; on: bilateral
section of the olfactory nerve) of homing pigeons derived from the
experiment by Gagliardo et al. (2008). In addition, we performed a Rayleigh
test for the same data, to exemplify the similarities and differences between
the approaches.
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