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Abstract 

 

Rheumatoid arthritis (RA) is a chronic autoimmune condition manifested by 

synovial inflammation and joint destruction and is associated with high morbidity 

and mortality. While the existing biologic therapies revolutionised the 

management of RA, considerable unmet needs in disease management require 

the development of new therapeutic agents. Janus kinases (JAKs) are 

intracellular tyrosine kinases employed by Type I and Type II cytokine receptors 

and transducing the signals from a range of cytokines and growth factors. They 

are indispensable in mediating the signaling of inflammatory cytokines 

implicated in the pathogenesis of autoimmune conditions, thus present 

attractive targets for therapeutic intervention. Tofacitinib was the first JAK 

inhibitor approved for the treatment of RA, which was effective in patients 

refractory to existing treatments. Among its immunomodulatory mechanisms, 

tofacitinib was reported to impair the proliferation, differentiation, and pro-

inflammatory cytokine production in CD4+ T cells, both in vitro and in vivo. 

However, the impact of tofacitinib as well as the stage of the drug interference 

(priming or re-activation) on cognate CD4+ T cell-dendritic cell (DC) interaction, 

which underlies both breakdown of self-tolerance and autoimmune response 

propagation in RA, remains to be elucidated.    

Using the antigen-specific cell system both in vitro and in vivo, I have shown 

that tofacitinib treatment impaired the priming of the CD4+ T cells by DCs, 

resulting in their diminished ability to differentiate into T helper 1 (Th1) subset 

and exhibit associated T-bet expression and IFNy production. This effect on CD4+ 

T cells was observed both in vitro and in vivo and persisted upon secondary 

antigenic challenge. On the contrary, the antigen-experienced CD4+ T cells 

primed in the absence of tofacitinib retained their functional capacity upon re-

activation in the presence of the drug. Tofacitinib efficacy assessment in the 

mouse model of early RA similarly revealed that the antigen-experienced CD4+ T 

lymphocytes, from both adoptively transferred and endogenous populations, 

remained unaffected by tofacitinib treatment. While JAK inhibitor had no impact 

on paw thickness, it induced notable (although non-significant) improvement in 

features of joint pathology, which, together with the absence of effect on CD4+ 
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T lymphocytes, suggested tofacitinib targeting other inflammatory cells 

contributing to the autoimmune response. Overall, these results have shown that 

tofacitinib interferes with the naive CD4+ T cell differentiation into the Th1 

subset, thereby indicating a mechanism by which tofacitinib might in part 

achieve clinical efficacy in RA patients. The antigen-specific system and early RA 

mouse model are warranted as useful platforms for further investigation of 

tofacitinib immunomodulatory mechanisms with the view of the optimization of 

its clinical use. 
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JAK            Janus kinase 
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LFA-1         Lymphocyte function-associated antigen 1 
 
LPS            Lipopolysaccharide  
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Lo            Low  
 
MCP-1      Monocyte chemotactic protein-1 
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MMP         Matrix metalloproteinase 
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NFκB        Nuclear factor Kappa B 
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1.1 Rheumatoid arthritis 

 Definition 

 

Rheumatoid arthritis is a chronic inflammatory autoimmune condition 

characterized by inflammation of the joint synovial membrane (synovitis) and 

progressive degradation of articular cartilage and bone erosion, manifesting in 

chronic joint pain and progressive deterioration of physical function. Articular 

symptoms are accompanied by constitutional symptoms and extra-articular 

(systemic) co-morbidities which contribute to diminished quality of life, 

increased disease severity and mortality.  

 

 Clinical manifestations 

 

Rheumatoid arthritis characteristically presents as a polyarticular disease with a 

symmetrical pattern of joint involvement, although an 

asymmetric/monoarticular arthritis can also occur at early presentation. The 

disease has a gradual onset and patients typically present with joint pain and 

swelling, alongside stiffness, which occurs after prolonged periods of inactivity 

(e.g. in the morning) and typically lasts for an hour or longer. Some patients on 

onset exhibit palindromic rheumatism, manifested by recurring acute self-

limiting episodes, with up to two-thirds developing a chronic disease form.1,2 

The swelling typically affects small joints of the hands and feet (including 

metatarsophalangeal, metacarpophalangeal and proximal interphalangeal joints) 

and wrist joints. Although more rarely affected, larger joints such as elbow, 

shoulder, ankle, and knee may also be involved. Distal interphalangeal joints are 

largely spared in RA. The swelling appears tender (‘soft’) due to the inflamed 

synovial joint membrane (synovitis) and fluid in the joint (effusion). When digits 

are involved, the swelling is usually focused around the joint (fusiform) without 

extending to the whole digit.3  
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Constitutional symptoms can also arise, which are non-specific for RA but are 

carefully considered during differential diagnosis. Fatigue is present in nearly all 

patients, with low-grade fever, low mood/depression, loss of appetite and 

weight loss also predominant at the disease onset.1 Extra-articular 

complications/manifestations are also evidenced to develop in approximately 

40% of patients and associate with more active/severe disease, thus requiring 

more aggressive treatment and close monitoring.4,5 The most common 

manifestation is rheumatoid nodules, found in as many as 30% of patients and 

associated with disease severity and worse prognosis6,7. The fibrinoid nodules are 

firm lumps typically present subcutaneously next to extensor surfaces (e.g. 

knuckles, elbows), but can also occur at internal sites such as lung or heart1,8,9. 

The nodules are normally painless and asymptomatic, but can also compromise 

function, ulcerate, and become infected. Rheumatoid vasculitis is a rare but 

potentially most severe extra-articular feature, manifested in patients with a 

long-term nodular seropositive RA.10 Vasculitis is a necrotizing inflammation of 

the small and medium-sized arteries, mostly involving the skin and peripheral 

nerves. The majority of patients develop subcutaneous vasculitis, manifested by 

purpura, ulcers and digital necrosis, but the involvement of major organs 

systems (cardiac, renal, nervous), although less frequent, can notably contribute 

to disease severity and mortality11. 

Patients with established RA can also present with multiple (2-3) comorbidities 

simultaneously. Among those, cardiovascular disease is the most common and is 

associated with excess mortality (by 50%) compared to the general population12. 

The development of atherosclerosis-related cardiovascular conditions in RA is 

potentiated by chronic inflammation and other RA-associated factors alongside 

the conventional cardiovascular risk factors13. Other frequent comorbidities 

include infections (particularly opportunistic), osteoporosis, pulmonary, 

gastrointestinal and neurological disorders14,15,8,16,17. The susceptibility to these 

similarly results from a combined contribution of traditional and RA-linked risk 

factors, as well as the presence of extra-articular manifestations or specific 

treatment regimen16,18. Apart from increasing mortality, comorbidities can 

impact the accuracy of the diagnosis, the overall patient (functional) 

performance and tolerability of certain antirheumatic drugs, thus their 
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monitoring, management, and prevention, if possible, is important in the overall 

treatment of RA.  

 

 Impact on patient quality of life 

 

Considering the burden of the above constitutional and disease-specific 

symptoms, the health-related quality of life (HRQoL) is evidently compromised 

in RA patients when compared to the general population.19 HRQoL is a 

multifactorial concept encompassing/overarching physical, mental and social 

domains of individuals’ well-being, and represents a valuable measure of disease 

clinical state and the treatment outcome from a patients’ perspective.20,21 The 

major determinants impairing the quality of life in RA sufferers appear to be 

diminished physical function, pain, fatigue, sleep disturbances and depression. 

The compromised physical function leads to reduced productivity in the 

workplace, and an estimated 44% of RA patients permanently lose their working 

performance, particularly if involving physically demanding work, within 10 

years from the diagnosis.22 However, the adjustments of working conditions may 

allow a substantial proportion of patients to remain employed. 23 The majority of 

personal and instrumental daily tasks (e.g. shopping, driving, household chores) 

also become progressively difficult to perform due to physical limitations, which 

leads to loss of independence and sense of control. The alterations in both work 

and daily activities, along with the limitations imposed on leisure/recreation, 

have a hugely detrimental impact on patient’s self-identity, their role in a 

family and social engagement.24 

 Pain, one of the key symptoms of RA, is another major concern among patients, 

and despite one of the therapeutic endpoints of most antirheumatic compounds 

being pain alleviation, the substantial levels of residual pain are nevertheless 

reported. The pain was found to increase with disease duration, while its 

incidence positively correlates with the older age of the patients.25 A history of 

depression appeared to predispose patients to experience higher levels of pain, 

while the pain itself likely contributed to the RA-associated sleep 
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disturbances.26,27 Patients indicated that pain, similarly to aggravated physical 

function, imposed limitations of their everyday activities and participation in 

any form of exercise/sport, thereby making them feel ‘frustrated’, ‘angry’ and 

‘helpless’.24,28  In line with this, in a cohort of RA patients, the pain was rated 

first among the factors affecting the quality of life. Fatigue is another common 

and debilitating symptom estimated to affect >80% of RA patients on a daily 

basis, with 40% of cases accounting for clinically relevant fatigue.29 RA-

associated fatigue was found to most strongly correlate with altered physical 

functioning, pain, and depression, and appeared to increase with symptom 

duration and lack of social support, suggesting its strong association with 

psychosocial variables and not simply a clinical disease status.30,31 The impact of 

targeted treatment on the fatigue is contradictory, and while some studies 

demonstrate the persistence of (baseline) fatigue levels despite clinical disease 

improvement, other research indicates a small to moderate significant 

alleviation of fatigue following biologic therapy.32,33 In a qualitative study 

evaluating patients’ perception of RA-associated fatigue, participants described 

the fatigue as ‘overwhelming’, ‘unresolving’ and unpredictable. The 

consequences of fatigue were reported to put restrictions on all spheres of 

individuals’ life (activities, relationships, emotions), and the patients were 

attempting to cope using various self-management strategies (pacing, rest, 

persistence) with varying success.34 The importance of fatigue was further 

reflected by it being identified among the key domains requiring improvement in 

order to achieve patient-perceived remission.35   

The experience of physical disability/limitations, pain and fatigue inevitably 

impacts the mental state of the RA patients, with the prevalence of depressive 

symptoms ranging from 6.4% to 41.5% in affected individuals.35 Depression is 

associated with increased health care utilization, reduced adherence to 

treatment regimens and poorer clinical responses to treatment.36,37 Remarkably, 

comorbid depression appeared to independently increase the risk of mortality in 

RA patients.38 A causal relationship was suggested between pain and depression, 

with severe pain leading to worsened mental state, and depression reciprocally 

worsening the pain experience.39 Patients reported depressive episodes to be 

more common during the early course of the disease and related primarily to 

decline in physical function and the associated loss of valued activities, as well 
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as uncertainty about the future.24,40  Expectedly, depression results in a more 

negative perception of illness and impaired coping strategies, together with a 

hopeless outlook on the possibility of cure.41 Thus, depression appears to be 

interlinked with all other major factors influencing RA-associated quality of life 

and represents a significant burden for the patient’s overall well-being. Hence, a 

number of factors aside from physical function appear to significantly influence 

the quality of life of RA patients and should be carefully considered during both 

diagnosis and assessment of the patient-centred treatment outcome. The 

management of these symptoms, either therapeutic or palliative, should also be 

considered where possible.  

 

 Diagnosis 

 

The identification of RA at the initial presentation and a rapid aggressive 

therapeutic intervention at the early disease stage is extremely important since 

it can determine the subsequent course of disease progression, prevent joint 

damage, and potentially allow to achieve remission. However, this approach 

presents with a number of challenges, including a considerable heterogeneity of 

the presentations of early synovitis and the subsequent disease course, as well 

as the administration of unsuitable treatment to the large proportion of patients 

lacking definitive RA diagnosis, which is both costly and unsafe. Despite current 

advances and arising challenges in the disease understanding, the staple 

diagnostic tools remain limited and are briefly discussed below. 

 

1.1.4.1 ACR/EULAR Classification criteria 2010 

 

No specific diagnostic criteria have been established for early (undifferentiated) 

arthritis, and the joint symptoms at the onset are also often difficult to 

distinguish from the other types of inflammatory polyarthritis. Until recently, 
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the classification criteria from 1987, developed by the American College of 

Rheumatology (ACR) for stratification and standardizing of the RA patient groups 

recruited for clinical trials and based predominantly on the symptoms from long-

term patients, was also widely employed for diagnostic purposes42. However, 

this approach lacked the power to provide differential RA diagnosis and 

discriminate patients at the disease onset that would benefit from early 

intervention/treatment. Thus, the criteria were revised by ACR in collaboration 

with European League Against Rheumatism (EULAR) in 2010, with the intention 

of improving the identification of patients with early undifferentiated RA that 

are at risk of developing the persistent/erosive disease43. 

According to the 2010 ACR/EULAR classification, a definitive RA requires the 

presence of at least 1 joint with clinical swelling (synovitis), the absence of an 

alternative condition that may better explain synovitis and a total score of ≥6 

(out of maximal 10) after combining the individual scores from 4 domains (Table 

1-1). The domains include: number and distribution of involved joints (0-5 

points), serological abnormality (presence of RF, ACPA or both antibodies) (0-3 

points); elevated levels of one of acute phase reactants (erythrocyte 

sedimentation rate(ESR) or C-reactive protein (CRP)) and symptom duration of 

≥6 weeks each contribute a single point43. The updated diagnostic criteria were 

repeatedly verified to have a higher sensitivity for recognising patients with 

early RA when compared to the older classification system44,45. Importantly, the 

patients with established diseases can also benefit from the revised 

classification, as it has the inclusion criteria for patients with the history of 

erosive disease characteristic of RA, as well as patients with long-term inactive 

disease and a history fitting the required criteria. 
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Table 1-1. Classification criteria for definitive RA diagnosis* 

 
*Adapted from the updated RA classification criteria developed by American College of 
Rheumatology (ACR) and European League Against Rheumatism (EULAR) in 201043 

 **Patients eligible for testing based on above criteria must have at least 1 joint with active clinical 
synovitis (swelling) in the absence of an alternative condition that might better explain the synovitis 

 

1.1.4.2 Serological markers 

 

Serological assessment of both specific acute phase reactant and autoantibody 

levels is a part of the ACR/EULAR 2010 diagnostic approach. The increased levels 

of acute phase proteins, erythrocyte sedimentation rate (ESR) and C-reactive 

protein (CRP), most accurately indicate the ongoing inflammatory response. 

Although not specific for a particular disease, the elevated CRP levels in RA 

closely correlate with clinical disease activity and radiographic damage 

progression46,47. Unlike ESR, changes in CRP levels indicate more recent changes 

in disease activity, and therefore also have a strong predictive value of the early 

response to treatment47,48.  

Rheumatoid factor (RF) and anti-citrullinated peptide antibody (ACPA) (more 

often termed anti-cyclic citrullinated peptide (anti-CCP)) antibodies are 

autoantibodies commonly used as diagnostic and prognostic markers in RA. RF is 

Classification criteria   **                                                                                                                 Points 

Domain A: Joint involvement  (0-5 points)   

1 large joint                                                                                                                                       0 

2-10 large joints                                                                                                                                1 

1-3 small joints (regardless of large joint involvement) 2 

4-10 small joints (regardless of large joint involvement) 3 

>10 small joints ( ≥1 small joint) 5 

Domain B: Serology  (0-3 points)   

Negative RF AND negative ACPA 0 

Low-positive RF OR low-positive APCA 2 

High-positive RF OR high-positive ACPA 3 

Domain C: Acute phase reactants (0-1 points)  

Normal CPR AND normal ESR 0 

Abnormal CRP OR abnormal ESR 1 

Domain D: Symptom duration (0-1 points)  

< 6 weeks  0 

≥ 6 weeks 1 
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an antibody recognising the crystallizable (Fc) fragment of the human IgG 

molecule. RF is detected in 60-90% of patients with established disease but only 

in half of the patients with early RA. RF can also occur in other autoimmune and 

infectious diseases and malignancies and occasionally detected in healthy 

controls, thus not being exclusively specific for RA. However, despite its 

moderate specificity (85%), high titres of RF are strongly predictive of the worse 

prognosis of erosive disease 48. 

Anti-CCP antibodies are autoantibodies recognising citrulline residue on the 

peptides and proteins and are long thought to be implicated in the pathogenesis 

of RA49. In line with that, anti-CCP antibodies exhibit high specificity (>90%) for 

RA at initial presentation/early RA and can be detected, particularly in older 

patients, prior to the clinical disease onset.50,51,52 Similarly, seropositivity for 

anti-CCP in patients with undifferentiated inflammatory arthritis can confer 

susceptibility for the RA development, particularly in genetically predisposed 

individuals.53 Anti-CCP antibodies are highly specific as a diagnostic tool for RA 

and can help to differentiate RA from other inflammatory arthritic conditions. 

The presence/high titres of anti-CCP at diagnosis was shown to significantly 

correlate with higher disease activity and poor prognosis (development of 

erosive RA).54 Overall, the detection of both RF and anti-CCP in the patient 

serum enhances the diagnostic specificity.55 

 

1.1.4.3 Imaging 

 

Together with clinical examination and laboratory assessment, imaging is the 

third essential part of the diagnostic process. The conventional imaging modality 

is radiography, performed on all patients on the first medical assessment and 

thus allowing the follow up on the disease progression. The benefits of this 

method include its universal availability, low costs, and high reproducibility. The 

early-stage features detectable by radiography are soft tissue swelling and 

juxta-articular osteoporosis, detected with most sensitivity in wrists, 

metacarpophalangeal and metatarsophalangeal joints, however, the technique 
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has limited sensitivity for identifying early inflammatory bone involvement and 

bone damage, important for the definitive RA diagnosis. The characteristic 

radiographic lesions, such as joint space narrowing, established bone erosions 

and joint malalignment, tend to appear later in the disease course.56 

Upon the emergence of the potent and costly therapeutics (such as anti-tumour 

necrosis factor (α-TNF) agents), there was an increased demand for improving 

the diagnosis of patients with early aggressive RA, who would benefit from an 

early (therapeutic) intervention57. Thus, ultrasonography (ultrasound 

sonography) and magnetic resonance imaging (MRI) were employed as more 

sensitive modalities for assessing joint changes in RA. While ultrasonography 

allows detecting both joint inflammation (synovitis) and structural changes in 

the joint (including tenosynovitis, bursitis and to some extent cartilage damage 

and bone erosions) with precision superior to clinical assessment, it has low 

reproducibility and the disease activity scoring has not yet been standardized for 

this method.56 MRI is the most sensitive technique to date, being superior to 

ultrasound (and radiography) in providing a three-dimensional view of the 

affected area and detecting subtle changes with the aid of contrast agents, thus 

allowing to predict the risk of joint damage development prior to its clinical 

appearance. Importantly, MRI enables to detect bone oedema, which is a strong 

independent predictor of subsequent bone erosion58. Lastly, semi-quantitative 

and quantitative measurements of synovitis can be performed by contrast-

enhanced MRI, thus providing additional details about disease activity59. 

 

 Epidemiology 

 

Rheumatoid arthritis is one of the most common chronic inflammatory disorders, 

with an average prevalence of 0.5-1% reported among several European and 

North American Caucasian populations.60,61,62,63 Studies in Southeast Asian and 

rural African populations have demonstrated the lowest disease occurrence (0.1-

0.3%) while Native American groups (Pima and Chippewa Indians) had the highest 

detected incidence of RA (up to 6.8%).64,65,66,67 Gender appears to affect 
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susceptibility to RA, with women two to three times more likely to develop a 

disease, possibly due to the effects of oestrogen on the immune and synovial cell 

function.68,69 However, female reproductive hormones may also be protective, as 

the use of oral contraceptive pill and pregnancy) are both linked to the 

decreased risk of RA development.70,71 Studies assessing familial recurrence risk 

in (co-)twins of an affected individual (proband) across several twin cohorts 

showed the increased concordance rates between monozygotic twins.72,73 In line 

with this, the family history of RA is considered one of the most notable risks for 

disease development, which, however, is relatively modest compared to other 

autoimmune disorders, such as type I diabetes and multiple sclerosis. The above 

facts suggest the importance of genetic component in the susceptibility to RA, 

which will be discussed further. While age represents another risk factor, with 

the disease onset being common at the middle age (around 45 years of age), RA 

occurs at the age range spanning from 16 years old to elderly age (75 and 

beyond).  

 

 Risk factors 

1.1.6.1 Genetic factors 

 

Rheumatoid arthritis has a complex/multifactorial aetiology, with the overall 

genetic contribution to the disease susceptibility estimated to be 60% and the 

remaining input conferred by environmental factors.72 Pioneering observations 

suggested a strong association between RA susceptibility and certain alleles of 

human leukocyte antigen (HLA) HLA-DR, over-represented in RA patients. With 

the advent of modern DNA sequencing techniques, Gregersen et al. in 1987 

identified a 5 amino acid motif (in positions 70-74) within the third 

hypervariable region of the HLA-DRB1 gene, encoded by several distinct DRB1 

alleles and thereby termed a ‘shared epitope’.74 This shared amino sequence 

was found to form part of the peptide-binding groove of HLA-DRβ1 molecule, 

leading to the assumption of antigen presentation playing a significant role in 

the disease pathogenesis. The most well-established risk-conferring alleles 
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encoding shared epitope motifs are members of HLA-DRB1*04 allele group 

(including *0401, *0404, *0405, *0408), HLA-DRB1*0101 or *0102  and HLA-

DRB1*1001 alleles, with the amino acid sequence most common in the Caucasian 

population, QKRAA, encoded by HLA-DRB1*0401 allele.75 A unique feature of 

these susceptibility alleles in RA, in contrast to other HLA-associated disorders, 

is the allele dosing effect, whereby patients carrying 2 shared epitope-coding 

alleles have a higher risk of developing a disease than patients with single RA-

linked allelic polymorphism. In line with that, the presence of HLA-DRB1 

variants, in particular 2 copies of the risk alleles, was consistently predictive of 

more severe erosive disease and higher premature death rates.76,77 Similarly, 

certain HLA-DRB1 alleles are strongly associated with anti-citrullinated protein 

antibody (ACPA)- positive disease phenotype, as shared-epitope DRB1 alleles are 

reported to preferentially bind citrullinated (self-) peptides with high affinity.78 

Interestingly, at least one DRB1-encoded epitope was found to be protective 

against severe disease independently of patient antibody status, but only in the 

absence of joint erosion.79  

Given the role of HLA (also known as MHC II) molecules in antigen presentation, 

the predominant hypothesis attempting to explain the mechanistic input of 

shared epitope in RA development suggested its role in pathology-associated 

self-peptide presentation80 and in the shaping of T-cell repertoire81. However, 

several other autoimmune disorders with unrelated causative epitopes and 

distinct pathogenic profiles, including autoimmune hepatitis81 and Type I 

diabetes82, also have their predisposition associated with DRB1 allelic variants, 

thereby contradicting the paradigm of antigen specificity attributed to the 

shared epitope. Recently, du Montcel and colleagues have re-defined a ‘shared 

epitope’ concept and proposed a new classification of susceptibility alleles 

based on the amino acid residues present at specific sequence positions, which 

improved the hierarchical classification of HLA-DRB1 alleles and thus refined 

prediction of HLA-DRB1-linked disease susceptibility, severity and treatment 

outcome.83 This advanced system might represent a tool for potentially 

unraveling the mechanisms underlying HLA-DRB1 allele contribution to RA 

development and possibly identifying the candidate arthritogenic epitopes. 
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The advent of genome-wide association studies (GWAS) and the subsequent 

trans-ethnic meta-analysis in both European and Asian populations lead to the 

identification of over 100 gene loci outside HLA/MHC gene region, the specific 

sequence variants (single nucleotide polymorphisms, SNPs) of which were 

associated with RA susceptibility. The relative contribution of each individual 

non-HLA SNP to phenotypic disease variance was estimated at 0.08%, while 

together with HLA susceptibility alleles they accounted for 19.5% of disease 

variance.84 Among non-HLA genes, the missense polymorphism in a gene 

encoding protein tyrosine phosphatase 22 (PTPN22) had the strongest association 

with RA susceptibility, primarily in Caucasian populations.84,85 The amino acid 

substitution (R620W) in PTPN22 gene results in the inability of its product, 

lymphocyte phosphatase (Lyp), to form a complex with its partner kinase (Csk), 

and thereby abrogates the Lyp/Csk synergistic capacity for effective negative 

regulation of proximal T cell receptor (TCR) signalling.86,87 Other important, 

albeit weaker, associations were identified between RA risk and gene variants 

crucial for immune system function, including tumour necrosis factor receptor-

associated factor-1/complement component 5 (TRAF1-C5), signal transducer and 

activator of transcription 4 (STAT4), CTLA-4, CD40, and peptidyl arginine 

deaminase 4 (PADI4).88,89,90 Interestingly, the disease risk association with some 

of these genes was more pronounced in certain ethnic groups, with PADI4 

polymorphisms having the strongest predictive value in Asian patient cohorts.91 

Moreover, certain non-HLA gene variants were found to be specifically linked 

with development of the anti-citrullinated peptide antibody (ACPA)-positive RA 

phenotype (e.g. IL-2RA) while others were predominantly reported in association 

with ACPA-negative disease (e.g. interferon regulatory factor 5, IRF5). In 

contrast, other gene variants (e.g. STAT4,PTPN22) were common in both disease 

serotypes.92 A number of individual candidate gene-association studies identified 

the association between (non-HLA) susceptibility genes and RA severity in the 

context of radiographic joint damage, but so far only the TRAF1-C5 variant has 

been repeatedly reported to correlate with severity of joint destruction.93,94,95,84 

One of the best estimates of the overall contribution of a genetic component to 

the RA susceptibility comes from the twin concordance studies. The degree of 

heritability reported in the two largest twin cohorts is very different. In the 

Danish cohort, the heritability in monozygotic twins was 12%, while shared and 
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non-shared environmental factors were estimated to contribute to RA 

development by 50% and 38%, respectively.73 However, the data from Finish and 

UK twin cohorts suggested the genetic contribution to be much higher (53-

65%).72 Thus, while the contribution of genetic factors towards susceptibility to 

RA is substantial, although variable between twin cohorts, the environmental 

component is also implicated to be an important predisposing factor for disease 

development.      

 

1.1.6.2 Microbiota 

 

Among environmental factors, intestinal microbiota, which has a crucial role in 

the early shaping of the host immunity in homeostasis, is considered an 

important candidate contributing to the autoimmune response development in 

susceptible individuals.96 Several studies in mouse models of both spontaneously 

occurring and inducible arthritis consistently demonstrated the animals kept in 

germ-free conditions to be protected from disease development. However, 

mono-colonization of these mice with certain species of intestinal bacteria 

appears sufficient to drive induction of inflammatory arthritis, by preferentially 

eliciting Th17 cell response.97,98 Specifically, the introduction of Prevotella copri 

species into antibiotic-treated mice demonstrated its capacity to establish 

dominance within gut microbiome and subsequently exacerbate the severity of 

chemically- induced colitis.99 Similar observations were made in the new-onset 

treatment-naïve patient US cohort, in which the RA manifestation correlated 

with overrepresentation of Prevotella corpi alongside with reduction in 

Bacteroides species.99 While the study in the Japanese cohort partly replicated 

these findings98, a metagenomic screening of the Chinese cohort gut 

microbiomes revealed a distinct pattern of dysbiosis, manifested by Haemophilus 

species depletion and Lactobacillus salivarius abundance100. Collectively, this 

data suggests that dysregulation of intestinal microbiota composition (dysbiosis) 

might represent an important factor underlying aberrant immune response in RA, 

but the universal inciting genera of symbiotic gut bacteria are yet to be 

identified.  
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Another possible epidemiological link was recently established between 

rheumatoid arthritis and periodontal disease. While this association is not 

universal, several studies so far showed periodontitis to be more prevalent in RA 

patients101,102, and the treatment of periodontal disease appeared to 

concomitantly improve RA clinical status103. Among several oral bacteria known 

to cause periodontitis, the investigation predominantly focused on 

Porphyromonas gingivalis, since it (exclusively) encodes a peptide peptidyl 

arginine deaminase (PAD) which can convert arginine residue to citrulline104 and 

thereby (potentially) promote neo-epitope formation. These mucosal neo-

epitopes subsequently potentiate self-tolerance breakdown and production of 

anti-citrullinated peptide antibodies (ACPA), which represent a highly specific 

RA biomarker and associate with poorer disease prognosis and lower remission 

rates105. Indeed, Porphyromonas gingivalis was experimentally confirmed to 

promote PAD-mediated citrullination of human fibrinogen and α-enolase 

peptides106. Concurrently, antibody responses to P.gingivalis in patients with 

early RA repeatedly/consistently correlated with the presence (and higher titres) 

of disease-associated autoantibodies, including anti-cyclic citrullinated 

antibodies and ACPA107,108. Collectively, the current data support the potential 

contributing role of periodontal disease and specifically the inciting P.gingivalis 

species in the immune tolerance breakdown and subsequent development of RA.   

 

1.1.6.3 Infectious agents 

 

Apart from the resident host microbiome, infections with certain 

microorganisms, including viruses, bacteria, and mycoplasma, may also play a 

part in RA etiopathogenesis. Among those, one of the most well-characterized 

association is between the disease and the Epstein-Barr virus (EBV) infection. 

The active EBV infection was detected in the synovial tissue cells of arthritis 

patients, while in another study ~90% of patients, in contrast to only 8% control 

individuals, presented with antibodies against the rheumatoid nuclear antigen 

(RANA), harboured by EBV-infected B lymphocytes109,110 Moreover, the 

diminished response of T cells specific for gp110, a major EBV replicative 
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antigen, might suggest a defective control of the infection in RA patients, 

resulting in the spread of the EBV antigens and thus promoting persistent 

synovial inflammation111. One of the proposed pathogenic mechanisms of EBV is 

molecular mimicry, which postulates that the microbial agent shares an epitope 

sequence with host self-proteins, thereby promoting epitope spreading and 

autoantibody generation. Thus, EBV glycoprotein gp100 harbours an amino acid 

motif homologous to that of the  HLA-DRB04*01 shared epitope111, while 

antibodies from RA patient serum binding to a sequence within EBV nuclear 

antigen-1 epitope appeared to be cross-reactive with epitopes on human 

keratin, type II collagen, and actin112. In addition, EBV antigens can also undergo 

citrullination and thereby represent additional targets for ACPA antibodies in 

patients with rheumatoid arthritis113. 

Urinary tract infection and its common causative bacterial agent, Proteus 

mirablis (P.mirablis), are also closely linked to aetiology of rheumatoid arthritis. 

Two independent studies described the presence of P.mirablis in the urine and 

the associated asymptomatic bacteriuria at much higher frequencies in RA 

patients compared to healthy controls or individuals with other autoimmune 

conditions including ankylosing spondylitis and osteoarthritis. The RA patients 

also presented with significantly elevated levels of antibodies against P.mirablis 

in both serum and urine samples when compared to age and gender-matched 

controls, while the antibody titres for other common causative agents of urinary 

tract infections (e.g. Escherichia coli) or intestinal commensal bacteria 

remained unaffected.114,115,116,117  These antibodies were shown to recognise 

bacterial epitopes on haemolysin protein (ESRRAL) and urease (IRRET) of 

P.mirablis, which closely resemble the amino acid motifs present in HLA-DR1/4 

molecule epitope (EQRRAA) and type XI collagen, respectively.117 Thus, one of 

the suggested mechanisms of P.mirablis contribution to RA development might 

be the potentiation of cross-reactive antibody generation, which would target 

both bacterial and self-epitopes and feed into the cycle of joint tissue damage, 

neoepitope formation and further autoantibody generation. 

Chikungunya, an emerging tropical arboviral infection, is widely reported to 

result in the development of post-chikungunya chronic inflammatory 

rheumatism, defined as musculoskeletal pain, unspecified arthralgia, or 



34 
 

34 
 

arthritis, with the latter being an RA ‘mimic’. Following the acute phase of 

infection, characterised by viremia, high-grade fever, skin rash, and 

polyarthritis/polyarthralgia, patients progress into the chronic phase with 

persistent joint involvement, with frequencies of chronic chikungunya arthritis 

varying among different populations/cohorts. Thus, in a Mauritius cohort 

examined 27.5 months post-infection 78.6 % of patients reported persistent 

musculoskeletal symptoms, with 5% of infected individuals fulfilling the updated 

ACR criteria for rheumatoid arthritis.118 In another study a similar proportion of 

patients (75%) developed rheumatism one month post-infection, and following 10 

months of illness as many as 36% of patients with joint pain were classified as 

having developed clinical form of RA.119 The infected individuals commonly 

presented with morning stiffness, polyarthritis affecting wrists, ankles and knees 

and chronic (joint) pain, all being reminiscent of clinical RA.119,120,121 Another 

indication of possible chronic arthritis development was the detection of joint 

effusion, bone erosion and synovial thickening in patients with chronic joint 

pain.119 However, the mechanisms by which the infection causes persistent 

chronic inflammatory arthritis remain elusive. One of the suggested underlying 

mechanisms might be long-term viral persistence, with significant levels of 

chikungunya virus RNA detected in the tissues of non-human primates, including 

joints, as well as in a single patient with chronic arthritis-like pathology.122,123 

Similarly, high titres of chikungunya-virus specific IgM antibodies were observed 

for up to 180 days post-infection in patients with RA-like pathology and no 

previous history of musculoskeletal disorders prior to infection, suggesting the 

possible contribution of viral antigen persistence to pathology establishment.124 

The viral persistence itself is hypothesized to result from an inefficient immune 

response. For instance, the NK cells in patients with chronic chikungunya 

arthritis were reported to be functionally dysregulated due to reduction in 

perforin-positive NK cells along with the increased frequency of TNFα-positive 

NK-like T cells.125 Another study in the chronically infected patient cohort 

reported the upregulation of inhibitory and downregulation of activating 

receptors on NK cells, with this receptor imbalance likely compromising cell 

anti-viral function and thus contributing to disease chronicity.126       
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1.1.6.4 Smoking and air pollutants 

 

Cigarette smoking is an environmental factor most strongly associated with 

predisposition to rheumatoid arthritis development. The disease risk is positively 

correlated with both the amount of smoking and the duration of cigarette use, 

and the increased susceptibility persists even after habit cessation for 20 years 

or longer127. In particular, cigarette use is associated with ACPA-positive disease 

phenotype128. A gene-environment interaction appears to further potentiate the 

relative risk of RA, as the smokers carrying a single or double copy of the shared 

epitope (of the HLA-DRB1 allele) have an extremely elevated risk of developing 

ACPA-positive disease129. Since smoking was found to increase the extent of cell 

citrullination in the alveolar lavage, it might thereby contribute to the neo-

epitope formation and promote the autoimmune responses to citrulline in the 

genetically predisposed individuals. The underlying mechanism might be 

explained by smoking-associated elevated lung expression levels of extracellular 

PAD2 enzyme, which catalyses post-translational citrullination of peptides130. 

Another mechanism might involve activation of aryl hydrocarbon receptor (AHR) 

by several of its ligands, present in cigarette smoke.131 The resulting impact on 

the immune system include enhanced Th17 differentiation of T cells132, 

dysregulated bone homeostasis and bone resorption133, and pro-inflammatory 

cytokine upregulation by fibroblast-like synoviocytes, all of which can contribute 

to RA pathogenesis134. 

The positive lung involvement in the RA pathogenesis led to the investigation of 

other air-borne pollutants as potential factors potentiating susceptibility to 

disease. Occupational silica exposure for the prolonged duration was 

incriminated as a significant risk factor for RA. More recently, high exposure to 

certain types of pesticides in the agricultural setting among males was also 

linked to the increased incidence of the disease135.    
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 Treatment      

 

1.1.7.1 Treatment goals and challenges 

 

Currently, rheumatoid arthritis remains an incurable condition, but the available 

therapeutic armamentarium allows the efficient control of the disease. The 

short-term treatment goals are the reduction of joint pain and swelling, and 

functional improvement, while the long-term goals represent the achievement 

of remission in early RA, defined by the absence of disease activity, or low-

disease activity in established RA, characterized by minimal remaining activity 

with low risk of damage progression. A treat-to-target approach is implemented 

to reach the above goals and comprises delivering the treatment to achieve the 

chosen target, assessing the intermediate response (at specific time point) and 

adjusting the therapy as required136. The improvement in composite measure of 

clinical disease activity of 50% or above at 3 months after treatment initiation is 

predictive of reaching the treatment target at 6 months, while the patients who 

demonstrate none or poor improvement require the change of therapy in order 

to achieve the treatment goal137. The treatment response on follow-up is 

assessed using composite measures, in which the total score combines 

information about several disease (activity) aspects, namely the number of 

tender/swollen joints, acute phase response and global health. While one of the 

composite measures, disease activity 28 (DAS28), was extensively validated in 

clinical trials, the clinical disease activity index (CDAI) and simplified disease 

activity index (SDAI) are equally sensitive and easier to use in daily clinical 

practice. Apart from the disease activity, the specific cut-off points of the above 

indices define the states of the disease and thus direct the appropriate 

treatment decisions138. However, despite the ongoing advances in the 

therapeutic options and treatment guidance in RA, approximately 40% of all 

patients remain refractory even after consecutive treatment with several 

biological disease modifying drugs (bDMARDs)(reviewed below), thus a new 

treatment strategy is urgently needed. The emerging aspiration, taking into 

account the heterogeneity of pathobiological and underlying immunological 
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profiles, is to provide a personalised therapy based on the individual patient 

disease endotype139.   

The main classes of current therapeutic agents employed for RA management 

are briefly described below and summarized (with exception of Janus kinase 

(JAK) inhibitors) in Table 1-2Error! Reference source not found.. 

 

1.1.7.2 Conventional synthetic disease-modifying antirheumatic drugs 
(csDMARDs) 

 

RA patients are treated with disease-modifying antirheumatic drugs (DMARDs), 

which are therapeutic agents designed to reduce disease symptoms, prevent, or 

reduce joint damage and maintain joint integrity and function. Conventional 

synthetic DMARDs (csDMARDs) were approved for RA treatment through empirical 

testing and include methotrexate, sulfasalazine, leflunomide, and 

hydroxychloroquine, used either as a monotherapy or in combination. 

Methotrexate is the first line DMARD used in the patients with active RA that 

demonstrates excellent efficacy as a monotherapy and allows to achieve 

sustained remission or low disease activity in nearly 50% of patients when 

combined with glucocorticoids140. Glucocorticoids or non-steroid anti-

inflammatory drugs are implemented only as adjunctive therapy for initial 

control of inflammation between the time of diagnosis and initiation of 

treatment with DMARDs, or during the time required for DMARDs to initiate a 

response, and are only used short term due to adverse side effects.141 

Methotrexate monotherapy also demonstrates comparable efficacy to biologic 

DMARDs (e.g. anti-tumour necrosis factor (TNF) therapy) and, importantly, both 

biologic and synthetic targeted DMARDs show greater efficacy when combined 

with methotrexate than either of the drugs have as a monotherapy140,142. 

Conversely, the combination of methotrexate with other csDMARDs does not 

appear superior to the methotrexate alone, mainly due to the increased 

toxicity.142 Methotrexate was designed as a competitive folate (folic acid) 

antagonist, which inhibits folate binding to enzyme dihydrofolate reductase and 
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thereby interferes with the generation of tetrahydrofolate, required for de novo 

synthesis of purines. However, the successful management of the drug side 

effects by folate supplementation without compromising its efficacy seems to 

contradict the above mechanism. The dominant hypothesis explaining 

methotrexate efficacy is based on the drug ability to increase the extracellular 

levels of adenosine (cAMP), and the subsequent binding of adenosine to its 

receptor A2A subtype results in immunosuppression through suppression of 

neutrophil and macrophage pro-inflammatory function, pro-inflammatory 

cytokine production, and inhibition of lymphocyte activation and 

proliferation142,143.  

If the use of methotrexate is contradicted, the prescription of alternative 

csDMARD such as leflunomide or sulfasalazine is preferential to any targeted 

DMARD, due to their oral formulation and a smaller risk of serious side effects. In 

case of patients failing to respond to a csDMARDs mono- or combination therapy 

within first 3 to 6 months, addition of biological DMARD (or targeted synthetic 

DMARD) is suggested as a second line treatment.141 

 

1.1.7.3 Biological  disease modifying anti-rheumatic drugs (bDMARDs) 

 

1.1.7.3.1 Anti-TNF therapy 
 
 
 
In contrast to conventional DMARDs, the biological DMARDs were developed to 

target specific molecules such as cytokines or cell surface receptors involved in 

the aberrant immune response. Among those molecules, the first cytokine 

validated as a therapeutic target was tumour necrosis factor (TNF), which has a 

central role in potentiating synovial inflammation, synovial hyperplasia, and 

subsequent cartilage and bone degradation in RA setting.144,145,146,146 In line with 

this, on the biological level TNF inhibition results in downregulation of a range of 

inflammatory cytokines, diminished leukocyte recruitment to the joints, reduced 

angiogenesis and lower levels of matrix metalloproteinases.147,148 Clinically, this 



39 
 

39 
 

translates into efficient and sustained symptomatic control alongside halted 

radiographic joint damage.149  

There are currently 5 anti-TNFα compounds approved for clinical use: infliximab 

and adalimumab (recombinant monoclonal anti-TNFα antibodies), golimumab 

(human anti-TNFα antibody) and etanercept (soluble TNF receptor-Fc fusion 

protein), and certolizumab (pegol)(humanised Fab fragment conjugated to 

polyethylene glycol). While all the compounds function by binding soluble form 

of TNFα and inhibiting its interaction with TNF receptor complex, they have 

different pharmacokinetic and pharmacodynamic profiles which might determine 

their differences in efficiency and safety.150,151 TNF inhibitors are recommended 

over csDMARDs as initial treatment for the patients with moderate to severe 

disease activity, as they allow to achieve more rapid symptom improvement with 

comparable efficacy152. Combination therapy of any anti-TNF agent with 

methotrexate demonstrated superior efficacy compared to either drug used as a 

monotherapy, leading to a reduction in inflammation, inhibition of radiographic 

progression, improvement in physical function, and when using infliximab or 

etanercept, the achievement of clinical remission in higher proportion of 

patients.153,154,155,156,157,158,159 The common adverse effects of the therapy include 

the occurrence of serious infections, such as tuberculosis and pneumonia, and 

injection site reactions, however, these are rare and usually well-tolerated. 

Other shortcomings include high cost and the secondary response failure (loss of 

response to infliximab and adalimumab) due to the formation of anti-drug 

antibodies.160  

Patients failing to respond to the initial anti-TNF agent may benefit from 

switching to a second anti-TNF drug, with this recommendation applying to other 

biologic DMARDs. In the absence of response, no significant advantage was 

demonstrated between switching to the different agent with the same mode of 

action compared to a bDMARD targeting a different pathway. If the treatment 

target (low disease activity or remission) is reached and maintained for at least 

6 months, the successful therapy is continued with potential dose reduction and 

increasing intervals between treatment. 142,141  
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1.1.7.3.2 IL-6 receptor inhibitors 
 
 

IL-6 is another major pro-inflammatory cytokine with pleiotropic function, which 

has an important role in the pathogenesis of RA. Elevated levels of IL-6 were 

detected in the serum and synovial fluid of RA patients, and significantly 

correlated with the disease activity and radiological joint damage.161,162 In the 

synovium, IL-6 is mainly produced by resident fibroblast-like synoviocytes (FLS), 

and in turn acts in autocrine fashion by promoting secretion of other bioactive 

molecules (e.g. interferon gamma (IFNy), receptor activator of nuclear factor-κB 

ligand (RANKL), matrix metalloproteinase 3 (MMP-3)) ,which contribute to 

arthritic symptom induction, stimulating FLS proliferation, as well as inducing 

other immune cell activation, thereby creating a self-sustained inflammatory 

loop.163 IL-6 is also responsible for systemic RA symptoms such as fatigue, 

anaemia and acute phase response.164,165,166,167 All the above distinguish IL-6 as 

an attractive candidate for therapeutic targeting. 

The IL-6 inhibitors are represented by tocilizumab (TCZ), a humanized anti-IL-6R 

antibody, and more recently developed sarilumab, a human anti-IL6R antibody, 

which has higher affinity and longer half-life but demonstrates efficacy similar 

to its predecessor.168,169 TCZ functions by binding to both membrane-bound and 

soluble IL-6R, preventing IL-6 binding to IL-6R and thus interfering with IL-

6R/gp130 receptor complex formation, necessary for IL-6 signaling.169 TCZ is 

used patients with moderate to severe RA and shows favourable efficacy in 

DMARD-naïve patients, as well as patients refractory to csDMARD, methotrexate 

or TNF inhibitor treatment.170,171,172,173 A notable benefit of TCZ is the 

improvement of clinical symptoms and halted joint damage when used as a 

monotherapy, but the addition of csDMARDs may further enhance its therapeutic 

effect.174,175 Importantly, TCZ reduces fatigue and morning stiffness while also 

improving physical function, thus positively influencing the patient quality of 

life.176 The drug also has low antigenicity, thus appears to be retained for longer 

than TNF inhibitors and has lower incidence of secondary response failure.177,178 

TCZ withdrawal most commonly occurs due to adverse events such as stealth 
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infections, presenting a serious problem due to TCZ suppressing early infection 

symptoms which are often overlooked. Other side effects include lower 

gastrointestinal tract perforations, liver enzyme abnormalities leading to liver 

damage, with neutropenia, thrombocytopenia, and dyslipidaemia also being 

common.178. Drug-free remission is attainable in patients both receiving TCZ 

long-term as a monotherapy and in combination with methotrexate, and the 

sustained low disease activity is achieved with the removal of concomitant 

administration of csDMARDs or with continued methotrexate use, 

respectively.179,180  

 

1.1.7.3.3 Anti-IL1 receptor antagonist 
 
 
 
IL-1 is another important pro-inflammatory mediator in RA, which promotes 

fibroblast-like synoviocytes to proliferate and, alongside with chondrocyte, to 

secrete matrix metalloproteinases, as well as indirectly promotes 

osteoclastogenesis, thereby potentiating cartilage degradation and bone 

erosion.181 IL-1 signals by binding to biologically active IL-1R1 and engaging an 

accessory protein IL-1R-AcP, while the naturally occurring IL-1 receptor 

antagonist (IL-1Ra) competitively binds to the IL-1R1 with no subsequent signal 

transduction, thereby regulating the biological activity of IL-1.181 In patients 

with RA, the balance between IL-1 and IL-1Ra is dramatically skewed towards IL-

1 overproduction, and the elevated plasma IL-1 levels closely correlate with 

disease activity measures.182,183With that in mind, a recombinant human form of 

IL-1Ra, anakinra, was developed as near-identical mimic of the endogenous IL-

1Ra molecule.184 However, since the complete IL-1 signaling blockade requires a 

high dose of the drug, anakinra needs to be delivered by subcutaneous injection 

daily, which is somewhat inconvenient for the patients.185 Anakinra was shown to 

achieve a significant clinical response and reduce radiographic disease 

progression, either alone or combined with methotrexate, but the magnitude of 

the improvements was inferior to TNF inhibitors.186,187,187,187 Anakinra can 

nevertheless be used in patients who have medical contraindications to anti-TNF 

therapy, experience an insufficient response or serious adverse events with the 

latter.187 The main advantage of the therapeutic IL-1Ra is a superior safety 
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profile with the most common adverse effect being injection site reactions, 

while the risk of serious  infection occurrence is similar to that with TNF 

inhibitor treatment.185 Similarly, patients with comorbidities such as congestive 

heart failure or demyelinating disease may benefit from anakinra therapy as 

opposed to anti-TNF compounds.188 Overall, anakinra has good efficacy and 

tolerability profile but is of limited use due to the superior efficacy of other 

bDMARDs. 

 

1.1.7.3.4 Anti-CD20 antibody 
 
 

Therapeutic agent rituximab, developed for the treatment B cell non-Hodgkin’s 

lymphoma, was recently adopted as another modality for RA management.189,190 

Rituximab is a chimeric  antibody consisting of mouse-derived variable domain 

linked to the human constant domain, and recognising CD20 molecule, expressed 

by pre-B cells, mature naïve and memory B cells, but absent on pro-B cells, 

plasmablasts, and plasma cells.191,192 By binding to CD20 on B cell surface, 

rituximab mediates B cell depletion by means of antibody-dependent cell-

mediated cytotoxicity, complement activation and B cell apoptosis.193,194,195 In 

line with B cell role in RA pathogenesis, B cell depletion results in the 

elimination of antigen-presenting B cells and the associated reduction in 

autoreactive T cell activation, reduced cytokine production and diminished 

levels of autoreactive antibodies and associated immune complexes.196,197 The 

treatment achieves transient depletion of circulating CD20 B cells and synovial B 

cells to various degree, but the extent of the clinical response does not 

correlate with the magnitude of cell depletion.198 

Rituximab is a therapeutic option for patients with inadequate response to TNF 

inhibitor treatment, with the efficacy being better for individuals failing only 

one anti-TNF agent rather than multiple.199,200 In particular, rituximab is shown 

to achieve a superior clinical response and radiographic damage reduction in 

patients seropositive for RF or ACPA autoantibodies.201,202 B cell depletion 

following rituximab injection is sustained on average for 6 months, and the re-
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treatment is most effective when administered according to treat-to-target 

strategy (usually at 24 weeks) rather than upon patient experiencing symptom 

exacerbation (flare) 202,203 The repeated treatment is efficacious and well 

tolerated, and may potentially increase sensitivity to the previously inefficient 

therapeutic option.204 Overall, rituximab had a favourable safety profile 

compared to other DMARDs, with the common adverse effects being infusion-

related reactions as well as leukopenia and hypoglobulinemia, which increase 

the risk of serious infections.205 

 

1.1.7.3.5 T-cell co-stimulation inhibition  
 
 
 
Due to their ability to activate macrophages and synovial fibroblasts, potentiate 

osteoclastogenesis and bone resorption, and provide help to B cells, T 

lymphocytes represent the crucial players in RA pathogenesis, and therefore the 

modulation of their function was explored in therapeutic purposes. To become 

fully activated, T cells require at least two signals from the antigen-presenting 

cell (APC): the initial engagement of T-cell receptor with its specific antigen 

(presented on the APC cell surface in the context of MHC-II molecule) and the 

secondary, co-stimulatory signal, provided by from the interaction between 

CD28 and its ligand CD80/86 (B7), expressed by T cells and APCs, respectively206. 

Following activation, T lymphocytes express cytotoxic lymphocyte antigen-4 

(CTLA-4) surface molecule, which exhibits 10 to 20-fold higher affinity to 

CD80/86 than CD28 and delivers an inhibitory signal suppressing activation of 

both naïve and effector T cells, thus acting as a negative regulator of T cell-

dependent immune responses207.  

With that in mind, abatacept was designed as a recombinant fusion protein 

comprising the extracellular domain of human CTLA-4 and modified Fc portion of 

human IgG1. By selectively binding to CD80/86, abatacept effectively abolishes 

T cell activation, while also modulating the potential of other cells, including 

monocyte migratory capacity208, and synovial fibroblast and B cell 

activation209,210. Abatacept is found to be clinically effective in methotrexate- 

naïve patients with early disease, or in patients with moderate to severe RA who 



44 
 

44 
 

have an inadequate response to either conventional or biologic DMARDs.211,212,213 

Abatacept is shown to achieve a good clinical response and physical function 

improvement when administered alongside methotrexate in methotrexate-

refractory patients, and this combination treatment resulted in 53% of patients 

achieving sustained remission214. The specific features of abatacept treatment 

include a progressive improvement in responses over time and the superior 

efficacy in RF- or ACPA-positive patients, as well as the greater efficacy 

achieved when the treatment is initiated early in the disease course (rather than 

following exposure to one/multiple bDMARDs)214,215,216. The common side effects 

include injection site reactions and serious infections, with the infection risk 

inferior when compared with other bDMARD therapy. The second generation 

CTLA4-Ig compound, belatacept, binds CD80/86 with higher affinity than 

abatacept) and thus exhibits enhanced immunosuppressive properties, but is 

currently only employed in transplantation217.    

 

 

Table 1-2. Conventional synthetic and biologic DMARDs currently approved for RA 
treatment* 

 

Drug category and 
name 

Structure Mode of action Administration 
route 

Adverse events 

Conventional synthetic DMARDs 

 
Methotrexate 

 
 
Small molecule 
compounds 

Competitive folate 
inhibitor, blocks 
purine synthesis 

 
 
Oral 

GI intolerance, stomatitis, 
headache, fever, skin rash, 
hepatic transaminase level 
elevation, hepatotoxicity, 
hypersensitivity 
pneumonitis severe 
myelosuppression (rare) 

Sulfasalazine Unknown  Gi intolerance, headache, 
hypersensitivity reactions 
(cutaneous), leukopenia, 
hepatic dysfunction, 
oligospermia   

Leflunomide Dihydroorotate 
dehydrogenase 
inhibitor, blocks de 
novo pyrimidine 
synthesis 

GI intolerance (nausea, 
diarrhoea), hepatic 
transaminase level 
elevation, skin rash, 
alopecia, foetal/neonatal 
toxicity   

Hydroxychloroquine  Unknown GI intolerance (nausea, 
diarrhoea),rash, changes 
in skin pigmentation (e.g. 
dark spots),muscle 
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weakness, retinal 
toxicity/retinopathy (rare) 

Biologic DMARDs 

Etanercept Soluble (TNF) 
receptor fusion 
protein 

 
 

 
 

TNFα 
inhibitors/antagonists 

Subcutaneous  Serious infections (e.g. 
pneumonia), reactivation 
of tuberculosis, 
opportunistic infections, 
non-melanoma skin 
cancer, exacerbation of 
demyelinating disease, 
congestive heart failure,  
neutropenia, injection 
site/infusion reactions, 
other cutaneous 
manifestations (psoriatic-
like skin lesions, 
leukocytoclastic vasculitis) 

Infliximab Mouse/human 
chimeric 
monoclonal 
antibody 

Intravenous  

Adalimumab Human 
monoclonal 
antibody 

Subcutaneous 

Golimumab Human 
monoclonal 
antibody 

Subcutaneous 

Certolizumab 
(pegol) 

PEGylated Fab 
fragment of 
humanized 
monoclonal 
antibody  

Subcutaneous 

Tocilizumab Humanized 
monoclonal 
antibody 

IL-6 receptor 
inhibitors 

Intravenous Serious and stealth 
infections, lower GI tract 
perforations (rare), liver 
enzyme abnormalities, 
neutropenia, 
thrombocytopenia, 
dyslipidaemia, injection 
site reactions  

Sarilumab  Human 
monoclonal 
antibody 

Subcutaneous 

Anakinra Recombinant 
human IL-1 
receptor 
antagonist  

IL-1 receptor 
antagonist 

Subcutaneous Injection site reactions, 
serious infections 
(pneumonia), RA 
progression 

Rituximab Mouse/human  
chimeric 
monoclonal 
antibody 

CD20+ B cell 
depletion 

Intravenous Serious infections, 
injection site reactions, 
leukopenia, 
hypoglobulinemia, 
Hepatitis B reactivation  

Abatacept Recombinant 
human CTLA-4-IgG 
fusion protein 

T-cell co-stimulation 
inhibition  

(via CD80/86 binding) 

Subcutaneous Serious infections, 
injection site reactions 
(mild/moderate) 

 

*For summary on targeted synthetic DMARDs (JAK inhibitors) see Table 1-3Error! Reference 
source not found.. 
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1.1.7.3.6 Janus kinase (JAK) inhibitors 
 
 
 

The arrival of biologic DMARDs and subsequent optimization of treatment 

strategies (i.e. treat-to-target approach) dramatically transformed the 

therapeutic outcomes for the RA patients by improving their physical function, 

suspending/halting disease progression and enhancing the overall quality of life. 

However, a substantial proportion of patients fail to achieve a therapeutic goal 

(low disease activity or remission) with bDMARD therapy, even after switching to 

the second- and third-line agents. Moreover, some patients develop the 

secondary therapeutic failure (i.e. loss of drug efficacy) due to immunogenicity 

of biologic agents and the development of drug-neutralizing antibodies. Other 

important limitations, which may result in bDMARD therapy discontinuation/non-

adherence, include drug-related toxicity, increased risk of serious infections and 

malignancies, along with the requirement for drug subcutaneous/parenteral 

administration and associated challenges. Importantly, despite the ongoing and 

clinically effective treatment, the patients reported the fatigue, chronic pain, 

and levels of physical disability to remain a considerable and unresolved burden, 

thus emphasizing the additional unmet requirement for novel therapies with an 

alternative mode of action. 

The attention was thus drawn to the protein kinases, the intracellular signalling 

cascade components responsible for mediating the signal transduction 

downstream of the cytokine receptors and thereby representing the alternative 

targets for therapeutically modulating cellular responses to cytokine stimuli. The 

advantages of agents targeting and inhibiting enzymatic activity of protein 

kinases included their ability to simultaneously modulate multiple intracellular 

signals and their low molecular mass allowing for their oral administration (in a 

form of a pill). The most rigorous and effective developments to date were 

made in targeting Janus kinases(JAKs), which are essential and non-redundant in 

transmitting the signals from a variety of cytokines and hormone-like growth 

factors and thereby mediating the resulting changes in metabolism and function 

of immune, hematopoietic (and synovial tissue/resident) cells. Among the JAK-

mediated stimuli are the proinflammatory cytokines which are associated with 
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both innate and adaptive immunity and are linked to the pathogenesis of 

multiple autoimmune disorders, including rheumatoid arthritis. The paramount 

relevance of JAK kinase therapeutic targeting was acknowledged after the 

characterisation of human JAK3 deficiency, which phenotypically mimicked the 

y-chain deficiency and manifested with severe impairment limited to the 

immune system.218,219 This suggested that inhibition of JAK kinases would allow 

the selective modulation of immune/hematopoietic system function.   

The first JAK inhibitor to be clinically approved for the management of 

moderate-to-severe RA was tofacitinib, a potent inhibitor of JAK3 and JAK1 

kinases.220 A number of clinical trials established tofacitinib to effectively and 

significantly reduce the disease activity in several patient populations, including 

treatment naïve and methotrexate refractory patients, and, most importantly, 

in individuals failing multiple biologic DMARDs with distinct action 

mechanisms.221,222,223,224 Strikingly, the significant clinically meaningful response 

rates were observed as soon as 2 weeks from treatment onset, while the drug 

also notably improved the patient-reported outcomes including physical function 

and pain.225 The success of tofacitinib promoted the intensive development of 

this class of compounds, resulting in approval of baricitinib, a JAK2/JAK1 

inhibitor, for the treatment of RA.225 While these first-generation JAK inhibitors 

exhibited promising efficacy and acceptable safety profile, the second-

generation agents recently entered the development with the aim of restricting 

their inhibitory capacity to a single JAK kinase and thereby attempting to further 

enhance their efficacy and reduce safety concerns. So far, a JAK1 inhibitor 

upadacitinib is the only FDA-approved second-generation compound, with 

several JAK1 and JAK3-specific inhibitors being at different stages of clinical 

testing for both RA and other common autoimmune disorders.  

The following sections review the components, mechanisms, and biological 

relevance of JAK/STAT pathway, as well as outline a more in-depth rationale of 

JAK inhibitor development and their current clinical use. 
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1.2 JAK-STAT pathway and implications of its therapeutic 
targeting 

 Signalling mechanism and functional role of the JAK-
STAT pathway 

1.2.1.1 Overview of the pathway discovery 

 

Cytokines and growth factors play an essential role in communication between 

cells, coordinating cell growth and differentiation, metabolism and 

haematopoiesis while also mediating host defence, immunomodulation, and 

autoimmunity. Some of these soluble factors, including interferons (IFN), 

erythropoietin, growth hormone and prolactin, were discovered over half a 

century ago, and are now among the many members (>50) of the Type I and II 

cytokine receptor superfamily, which employ Janus kinase (JAK)/Signal 

transduction and activator of transcription (STAT) signalling pathway. However, 

other cytokines, such is interleukins 1 (IL-1) and 8 (IL-8), tumour necrosis factor 

(TNF) and transforming growth factor β (TGFβ) utilize different receptor 

subgroups and alternative intracellular signalling pathways. 

While the role of cytokines was shortly established to be crucial, there was a gap 

in understanding how exactly they mediate the resulting specific changes in the 

cell. Thus, the initial insights into JAK-STAT pathway emerged (in late 1980’s) 

from the concurrent work of Stark226 and Darnell227 groups on identifying the key 

components of the IFN-dependent signalling. Following the identification of the 

rapidly inducible IFN-stimulated genes (ISGs) and the associated IFN-stimulated 

response elements (ISREs) at the promoter region, the multimeric nuclear 

complexes were found to bind to the ISREs, with the two of the elements (of the 

complex) being denoted as the first signal transduction and transcriptional 

activator proteins (STATs) STAT1 and STAT2228,229,230. One of the unique and 

crucial features of the STATs was phosphorylation of their tyrosine residue, 

suggesting their direct involvement in the signalling pathway. The subsequent 

studies revealed that the STAT proteins were able to directly interact with 
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cytokine receptors and then shuttle/translocate from the cytoplasm to the 

nucleus to potentially exert their transcription activator function231. 

 In the meantime, several tyrosine kinases, Janus kinases (JAKs) (JAK1 and JAK2) 

and Tyrosine kinase 2 (Tyk2), were already identified as a new class of protein 

kinases, but their functional significance remained unknown232,233,234. c. This 

discovery not only placed the JAK kinases as the linking element between the 

cytokine receptor and the STAT protein, but also demonstrated their 

indispensable role in the cytokine signalling. Over the next few years, the 

catalogue of all existing JAK and STAT proteins was completed, and they have 

been linked/assigned to their corresponding cytokines. Shortly thereafter, a loss-

of-function JAK3 mutation was found to underly a severe combined 

immunodeficiency (SCID) phenotype in a patient, thus directly demonstrating 

the clinical relevance of the JAK-STAT pathway235. 

 

1.2.1.2 Principal components: JAK and STAT proteins 

 

JAK kinases represent one of the key members of the JAK/STAT pathway. They 

are tyrosine kinases, thus function by phosphorylating a specific tyrosine residue 

on their target molecules, namely other JAKs molecules, cytokine receptors and 

STAT proteins, thereby promoting their activation. The mammalian family of JAK 

kinases consists of 4 members-JAK1, JAK2, JAK3 and Tyk2, with JAK1, JAK2 and 

Tyk2 being ubiquitously expressed and JAK3 expression limited to hematopoietic 

cells. All members are comprised of 7 JAK homology (JH) domains which form 4 

structural domains, including four-point-one, erzin, radixin, moesin (FERM) 

domain (JH5,6 and 7) and Src homology 2 (SH2) (JH3 and 4) domain. A unique 

feature of JAKs is the presence of two structurally related kinase domains- a 

‘true’ kinase domain (JH1) adjacent to a catalytically inactive pseudo-kinase 

(JH2), with the latter domain negatively regulating the JH1 enzymatic 

activity236. This architectural duality has prompted the kinases to be named 

after Janus, the two-faced Roman god of doors and new beginnings. JAKs are 

constitutively associated with intracellular domains of distinct cytokine receptor 
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subunits, and that in turn determines the pairing of the kinases, necessary for 

their function. For instance, JAK3 only associates with common gamma chain 

(γc) subunit, and thus always pairs with JAK1 to convey the signals from γc 

cytokines IL-2, IL-4, IL-7,IL-9, IL-15, IL-21, which are critical for lymphocyte 

maturation, differentiation and homeostasis. JAK1, on the other hand, can 

associate with several different receptor subunits and, in conjunction with JAK2 

and/or TYK2, mediate the signalling of gp130  family cytokines (IL-6, IL-11, 

oncostatin M, leukaemia inhibitory factor (LIF)), as well as Type I interferons 

(IFNα/β) and IFNγ. JAK2 is the only member which couples with itself and is 

indispensable in regulating the signalling of cytokines (IL-3,IL-5), hormone-like 

cytokines (erythropoietin, growth hormone, prolactin) and growth factors 

(granulocyte-macrophage colony-stimulating factor (GM-CSF)). All the existing 

JAK combinations, their associated STATs and signalling outcomes are illustrated 

in Figure 1-1.  

 

Figure 1-1. Type I and Type II cytokine receptors, their associated JAK- and STAT- family 
members and the biological significance of the signalling via the JAK/STAT pathway. 

Adapted from 237. Different members of JAK family selectively associate with intracellular domains 
of distinct cytokine receptor subunits, and that determines the combinations of kinases mediating 
the cytokine signalling. Distinct cytokines preferentially employ a single STAT family protein for 
signal transduction (e.g. Type I IFNs recruit STAT1)  but can also activate other STAT members 
with smaller potency (e.g. STAT3 and STAT4). The ligand (cytokine) binding to the receptor 
promote activation and phosphorylation of JAKs, which in turn recruit and activate latent 
cytoplasmic STAT proteins. Activated STATs form homo- or heterodimers, which translocate into 
the nucleus and act as transcription factors mediating the expression of target genes, products of 
which are involved in a range of crucial biological functions, including hematopoietic cell 
differentiation and function, immune host defence, inflammation and tumour surveillance.  
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The signal transduction and activator of transcription (STAT) proteins are latent 

cytoplasmic transcription factors and have a dual role as intracellular mediators 

of responses to cytokine stimulation and nuclear activators of cytokine-induced 

genes. The mammalian STAT family is represented by 7 members (STAT1, STAT2, 

STAT3, STAT4, STAT5a, STAT5b and STAT6) which share a highly conserved 

structure. STATs are distinguished among transcription factors by 2 unique 

structural features- Src homology 2 (SH2) domain, which mediates their 

recruitment from the cytosol, interaction with activated upstream receptors and 

JAK kinases, as well as dimerization with other STATs, and a conserved tyrosine 

residue within transactivation domain, which becomes phosphorylated by JAKs 

and also participates in dimer formation. Other important domains include DNA-

binding domain, determining the specificity for DNA binding and carrying nuclear 

import-export signals, and N-terminal domain, responsible for STAT tetramer 

formation (via dimer-dimer interactions) and their cooperative DNA binding. 

Latent STAT proteins, activated by the means of phosphorylation, typically carry 

out their function as homodimers, but can also form heterodimers (STAT1-

STAT2, STAT1-STAT3, STAT-STAT4), which are thought to diversify the range of 

specific signals conveyed by cytokines, given the limited number of available 

STAT proteins238. In the context of canonical JAK-STAT signalling, 

phosphorylation and dimerization of the STAT molecules appears to be a 

prerequisite for their activity, enabling them to translocate from cytoplasm to 

the nucleus and promote the transcription of their target genes. 

Following their activation, STAT dimers translocate from cytoplasm into the 

nucleus, where they were initially found to function as classical transcription 

factors by directly associating with DNA-response elements and mediating 

transcription of associated target genes. For instance, all STAT homodimers 

(except for STAT2) bind gamma interferon activation site (GAS) elements 

containing a palindromic DNA motif (although with slightly different affinities), 

whereas STAT1-STAT2 heterodimer together with IRF9 form an interferon-

stimulated gene factor 3 (ISGF-3) complex which engages with ISRE enhancer (in 

response to Type I IFN signalling)239,240.The advent of new-generation sequencing 

and its coupling with chromatin precipitation (ChiP-seq) allowed a 

comprehensive genome-wide mapping of the STAT-DNA binding, which, when 

complemented with loss- or gain-of-function transcriptomic approach, allowed 
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to identify genes which are both engaged by STATs and represent a target of 

STAT-dependent transcriptional regulation. This approach revealed STATs not 

only to localise at multitude of DNA-response elements other than GAS, proximal 

to target genes, but also to commonly associate with and instruct the distal 

binding sites such as enhancers, epigenetic hotspots and non-coding loci (micro-

RNAs and long intergenic non-coding RNAs)241. Notably, STATs appeared to be 

crucial in permissive epigenetic remodelling of enhancers at T cell lineage-

specific loci, including Ifng, Il-4/Il-13 and Il17a/Il-17f 242. Moreover, specific 

STATs were found to act upstream of the ‘master’ transcription factors such as 

T-bet and GATA3 and contribute to the T helper cell lineage commitment by 

creating an activate lineage-specific enhancer epigenetic landscape, while 

concurrently supressing the enhancers linked to the alternative cell fate243. 

Similar STAT-dependent epigenetic remodelling also occurred in T lymphocytes 

and other immune cells at the gene loci essential for inflammatory and 

homeostatic cell functions and is mediated by the deposition of permissive or 

repressive epigenetic marks244,245,246. The recent evidence suggests STATs to re-

shape the epigenetic landscape through recruitment and interaction with 

chromatin modifiers, such as (histone) methyltransferase EZH2, which in turn 

mediates H3K27me3 (tri-methylation of His3 at Lys27) deposition and thus the 

(target) gene silencing246. Genome-wide correlation of STAT DNA-binding 

patterns with those of the other transcription factors (TFs) identified that STATs 

can also combine with other TFs to form multi-molecular transcriptional 

regulatory networks. Thus, STAT3 in embryonic stem cells is found to cooperate 

with a network containing Oct4, Smad2 and NANOG TFs in shaping cell identity, 

while in T cells STAT3,together with IRF4 and BATF, initiate a transcriptional 

program which is subsequently coordinated by Th17 helper lineage-defining TF 

RORγt247,248. 

 

1.2.1.3 Canonical signalling pathway and its regulation 

 

The JAK-STAT canonical signalling cascade is initiated by the ligand binding to 

the (Type I/II) cytokine receptor, leading to receptor subunit multimerization 



53 
 

53 
 

(dimerization or heteromultimer formation). This reorientation of receptor 

subunits, associated with JAKs, brings two JAKs in close proximity to each other 

and allows their transphosphorylation (at the kinase domain JH1). In turn, 

activated JAKs phosphorylate tyrosine residues on the (cytokine) receptor 

cytoplasmic tail, creating the ‘docking sites’ for the recruitment and binding of 

latent STAT family proteins via their SH2 domains. The recruited STAT monomers 

are then activated by tyrosine phosphorylation at their transactivation domain 

by JAKs, and these phosphotyrosine residues are reciprocally recognised by SH2 

domains of the partner STAT proteins, leading to ‘parallel’ dimer formation. The 

resulting STAT dimers are recognised (through their nuclear localisation signal) 

by importin α/β complex and transported the nucleus, where Ran GTPase 

promotes the dissociation of STAT from the complex. In the nucleus, STATs 

engage with the promoters of the target genes and mediate their transcriptional 

activation or repression, alongside with exhibiting other DNA-associated 

functions described above. The STAT activity is transient (in the normal cells), 

and upon dephosphorylation in the nucleus inactivated STATs are transported 

back to the cytoplasm and utilized during the next signalling event, thereby 

completing the activation/inactivation loop. Thus, the JAK/STAT pathway has a 

remarkably uncomplicated design, facilitating an immediate conversion of 

extracellular cues into the transcriptional response. However, the seemingly 

straightforward JAK-STAT paradigm also entails several layers of complexity, 

which involve the regulation of signalling and the non-canonical aspects of the 

pathway, discussed further. 

Considering that the molecular products of STAT-dependent genes are involved 

in mediating proliferation, differentiation and survival of both hematopoietic 

and immune cells, the aberrant activation of any of the cascade components 

may result in the development of immune disorders and hematologic 

malignancies. Thus, the amplitude and kinetics of the JAK-STAT signalling are 

tightly regulated at the multiple levels of the pathway and involve several 

distinct mechanisms. 

The main regulatory components are a range of protein tyrosine phosphatases 

(PTPs), proteins of PIAS (protein inhibitor of activated STAT) family as well as 

suppressor of cytokine signalling (SOCS) proteins. Cytoplasmic tyrosine 
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phosphatases, such as SHP1 and SHP2, employ their SH2 domain to interact with 

a phosphotyrosine on activated cytokine receptors and JAK kinases, thereby 

promoting their dephosphorylation and preventing further activation of the 

downstream STATs.249,250 A transmembrane PTP CD45, expressed by all 

hematopoietic cells and crucial in mediating antigen receptor signalling in T and 

B lymphocytes, also acts as a negative regulator by associating with and directly 

inactivating/dephosphorylating JAK kinases251. The regulatory modules can also 

directly target phosphorylated STAT dimers both in the nucleus and the 

cytoplasm. The most prominent STAT tyrosine phosphatase is a T-cell PTP 

(TCPTP), found in both cytoplasmic and nuclear compartments and known to 

preferentially mediate dephosphorylation of STAT1, STAT3 and possibly 

STAT5252. Since a ‘parallel’ STAT dimer conformation, established by reciprocal 

binding of partner protein SH2 domains to phosphotyrosines, has a concealed 

tyrosine residue, the phosphatases target the inverted, ‘anti-parallel’ dimers, 

formed by STAT N-terminal interactions and thus bearing phosphotyrosine at the 

more accessible site252.  

Protein inhibitor of activated STAT (PIAS) are constitutively expressed nuclear 

proteins, represented by 4 family members (PIAS1, PIAS3, PIASX and PIASy) and 

implicated in the negative regulation of activated STAT dimers. Thus, PIAS3 is 

known to specifically interact with STAT3 and inhibit its DNA-binding capacity 

and associated gene activation253. On the other hand, PIASy exhibits an adaptor 

protein function, recruiting other co-repressors and thereby blocking STAT1-

dependent transcription254. In addition, PIAS were recently described to exhibit 

E3-type ligase function and conjugate ubiquitin-like SUMO molecules to STAT1 (a 

process termed ‘sumoylation), which in turn inhibited STAT1 transcriptional 

activity255. 

Suppressor of cytokine signalling (SOCS) family proteins are the third and most 

prominent facet of JAK-STAT signalling attenuation. SOCS proteins operate 

through a ‘classic’ negative feedback loop: their expression is cytokine-induced 

and mediated by activated STAT proteins, and the SOCS proteins in turn 

downregulate the pathway by interacting with activated receptors, kinases, and 

STATs . The 4 members of the family (SOCS1, SOCS2, SOCS3 and cytokine-

inducible SH2-domain protein (CIS)), acting as the negative regulators, all 
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contain SH2 domain for binding to the phosphorylated tyrosine residues as well 

as adjacent SOCS box domain, but each employ distinct inhibitory 

mechanisms256. Thus, SOCS1 via SH2 domain binds phosphotyrosine residue 

within JAK activation loop, thereby directly blocking its kinase/enzymatic 

activity.257 SOCS3 protein can both interact with JAKs or bind to the activated 

cytokine receptor phosphotyrosine proximal to JAKs and subsequently inhibit 

their function.258 Meanwhile, CIS proteins appear to interfere with STAT 

activation by competing with STAT monomers for the binding to the (activated) 

cytokine receptor ‘docking’ sites. Additionally, SOCS proteins can employ their 

SOCS box domain to interact with the elongins B and C, components of the 

ubiquitin E3 ligase complex, indicating their possible role in targeting proteins 

for proteasome-mediated degradation.259 Apart from controlling the duration 

and magnitude of the (JAK-STAT) pathway activity, SOCS proteins appear to 

fine-tune the quality/specificity of cytokine responses, as exemplified by the 

shift from the IL-6 induced gene expression profile towards IFNy-induced 

transcriptional program in response to IL-6 in the absence of SOCS3. Through this 

functional ability, SOCS proteins mediate a range of (cytokine-dependent) 

crucial processes in the immune cells, including early T lymphocyte development 

and determination of cell fate during Th cell differentiation, and play a key role 

in regulatory T cell function and macrophage polarization.259,260  

In addition to the above canonical aspects of the superficially simple JAK-STAT 

pathway, its signalling is further refined by the intricate modifications mostly 

involving STAT proteins, and the additional dimension of complexity arises from 

the pathway interaction with other signalling cascades. These non-canonical 

elements of JAK-STAT signalling are briefly outlined in the next section. 

 

1.2.1.4 Non-canonical aspects of JAK-STAT pathway and crosstalk with 
other signalling cascades 

 

In contrast to the activated STAT dimers operating in the canonical JAK-STAT 

cascade and entering the nucleus exclusively in phosphorylated form, STAT1 and 
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STAT3 proteins are also detected in the nucleus in the absence of tyrosine 

phosphorylation. These unphosphorylated STATs (U-STATs) also utilize a distinct 

nuclear import strategy, surpassing the need for carrier proteins and directly 

interacting with nuclear core proteins, which likely allows them to shuttle 

between cytoplasmic and nuclear compartments261. In the nucleus, U-STAT3 

proteins act as transcription factors predominantly mediating the expression of 

genes not targeted by their phosphorylated counterparts, including several 

oncogenes262. U-STAT1, on the other hand, can enhance the STAT1-dependent 

gene transcription and thereby promote sustained anti-viral and immune 

responses263. Thus, U-STATs act as secondary transcription factors in scenarios 

where the expression of the biologically active molecule, initially mediated by 

transiently phosphorylated STATs, is most advantageous for the cell response if 

sustained long-term261. This capacity is facilitated by the increase in U-STAT 

levels following a phosphorylated STAT-dependent expression of the 

corresponding STAT gene, which persist long-term after phosphorylated STAT 

deactivation261. In addition, U-STAT3 is involved in a crosstalk with nuclear 

factor Kappa B (NFκB) pathway, whereby accumulating in response to IL-6 

stimulation and cooperating with U-NFκB it promotes the expression of κB-

dependent genes, including RANTES and IL-6, which do not directly respond to 

phosphorylated STAT3264. 

While the conventional signalling paradigm primarily relies on JAK kinase activity 

for STAT activation, STATs were also found to be tyrosine phosphorylated by a 

number of other molecules. The examples include receptor tyrosine kinase Flt3, 

promoting JAK-independent tyrosine phosphorylation of STAT5, which in turn 

regulates hematopoietic progenitor cell proliferation, and nucleic acid sensor 

STING, mediating the activation of STAT6 and thereby contributing to the anti-

viral immune response262,265. Aside from acquiring phoshphotyrosine residue 

following cytokine stimulation, STAT proteins can undergo additional post-

translational modifications, including serine phosphorylation, methylation, 

acetylation and sumoylation. All STAT proteins are found to carry at least one 

phosphorylated serine residue, which can be present independently of tyrosine 

phosphorylation, and its phosphorylation is mediated by serine kinases belonging 

to several signalling pathways, including ERK, JNK and p38MAPK pathways266. 

The requirement of STAT serine phosphorylation for their maximal 
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transcriptional activity appears to be cell-type dependent and is shown to be 

indispensable for transcriptional STAT1 and STAT3 responses to respective IFNy 

and gp130 cytokines (e.g.IL-6)  in vitro, as well as for hematopoietic 

transformation and postnatal survival in mouse models267,268,269. The other 

potential STAT activities affected by the presence of phosphoserine are thought 

to be DNA binding and association with other proteins, although the biological 

significance of those remains to be elucidated266. STAT acetylation, similarly to 

serine phosphorylation, is induced by cytokine stimulus and appears to enhance 

STAT functions, including transcriptional activation capacity, protein-protein 

interactions and dimerization270. On the other hand, sumoylation is considered 

as a primarily negative regulatory mechanism, mediating inhibition of STAT 

activity by directly diminishing their phoshphorylation while also indirectly 

promoting dephosphorylation271. 

Other factors capable of influencing the JAK-STAT signalling are the crosstalk 

among the JAK-STAT pathways as well as interaction with distinct signalling 

cascades. One of the staple examples of the JAK-STAT pathway interplay is that 

of Type I (IFNα/β) and Type II interferon (IFNγ) signalling, whereby the cell 

stimulation with (low-level/subthreshold) IFNy triggers the enhanced STAT1 

expression. In turn, STAT1 can form a positive feedback circle and 

sensitize/prime the cell for subsequent IFNy exposure, while also (pre-) 

conditioning the cell for the increased IFNα response272,240. (Interestingly, 

another line of evidence suggests the crosstalk between interferons also 

happening in the opposite direction, with Type I interferons (IFNα/β) being the 

initial sensitizing factor273.) JAK-STAT pathway can also act in concert with other 

signalling cascades such as TGF-β-induced SMAD and LPS/NFκB cascades. Thus, 

in neuronal progenitors the synergistic signalling of leukaemia inhibitory factor 

(LIF) and bone morphogenic protein-2 (BMP-2) relies on cooperative activity of 

respective STAT3 and Smad1 molecules for mediating their differentiation into 

astrocytes274. However, in T lymphocytes TGF-β was shown to rather shown to 

inhibit IL-12 signal transduction by interfering with JAK2/TYK2 and associated 

(downstream) STAT3 and STAT4 phoshphorylation, thereby reducing cell 

proliferation and IFNy production275.  
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JAK-STAT signalling cascade is a distinctively uncomplicated pathway that 

involves only a few key ‘players’ and employs a number of additional modifying 

mechanisms, but is nevertheless capable of mediating, in a non-redundant 

fashion, a remarkably diverse range of responses, in particular in immune cells, 

ranging from cell development and maintenance of homeostasis to immune 

defence and protection from cancer. Such combination of simple pathway design 

and the complexity of the functional role, however, can present a serious 

disadvantage if the signalling becomes dysregulated, since the resulting 

aberrations in the immune responses are extremely harmful and manifest 

through a variety of autoimmune disorders. Additionally, the  dependency of the 

central pathway modules (JAKs, STATs and SOCSs) on the activation by the 

immediate upstream component of the cascade, along with the pathway forming 

an auto-regulatory negative feedback loop, implies that the impairment of any 

single molecule would disrupt the entire pathway and subsequently result in the 

development of a systemic disorder. The next section highlights the most 

common mutations in the JAK-STAT pathway in the context of both autoimmune 

disease and malignancy settings and links them with to the rationale for the 

therapeutic targeting of the pathway.  

 

 JAK inhibitor development and clinical applications 

1.2.2.1 Genetic links between JAK-STAT pathway and human disorders 

 

The utilization of the mutagenic cells lines and genetically modified (knockout 

and knock-in) mouse models were instrumental for delineating the association 

between distinct Type I and Type II cytokines and the specific JAK-STAT pathway 

components they recruit for signal transduction, while the resulting knockout or 

knock-in mouse phenotypes have further confirmed to indispensible roles of JAKs 

and STATs in the immune/hematopoietic cell development and immune 

responses. However, it was the identification of the genetic aberrations of the 

JAK-STAT pathway components in humans and the associated range of immune 
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and myeloproliferative disorders that evidenced the in vivo relevance of the 

pathway and subsequently prompted its therapeutic targeting. 

A large body of evidence suggests a strong link between constitutive JAK-STAT 

signalling activity and oncogenesis. The initial observations revealed a multitude 

of primary cancers to exhibit persistent phosphorylation of STAT proteins (mainly 

STAT1, 3 and 5), which was mediated by dysregulation of STAT-activating 

kinases or abrogated negative regulator function, and contributed to oncogenic 

cell transformation by transcriptional activation of cardinal anti-apoptotic genes 

and proliferation-associated proteins276. Currently, a number of (somatic) gain-

of-function mutations affecting JAK tyrosine kinases have been identified as 

causative factors of various myeloproliferative neoplasms. The most well studied 

is the activating JAK2 mutation V617F, located within the ‘pseudo-kinase’ 

domain (JH2), which normally confers negative regulation of the active (’true’) 

kinase domain (JH1). JAK2 kinase is invariably utilized for signal transduction by 

receptors for erythropoietin, thrombopoietin and GM-CSF, which mediate 

production of erythrocytes and platelets/megakaryocytes from pluripotent stem 

cells in the bone marrow. The myeloproliferative disorders polycythemia vera 

(PV), essential thrombocytopenia (ET) and primary myelofibrosis (PMF) exhibit 

distinct clinical phenotypes but share a feature of an excessive erythrocyte and 

platelet production. This common clinical characteristic appears to be conferred 

by a V617F mutation, which is present in all PV cases and in the majority of ET 

and PMF patients276,277. Importantly, the discovery of this activating JAK2 

mutation prompted the development of the novel pharmacological agent for 

targeted JAK kinase inhibition to treat myeloproliferative neoplasms, which 

subsequently inspired the development of other related compounds, termed JAK 

inhibitors (discussed in the next section). Other gain-of-function mutations of 

JAK2 are implicated in the development of acute pre-T or B-cell acute 

lymphoblastic leukaemia and T cell lymphoma, among other malignancies, while 

JAK3 kinase mutations are occasionally detected in patients with acute 

megakaryoblastic leukaemia (AML)278. 

Both loss- and gain-of-function mutations in JAK- and STAT-encoding genes are 

also associated with abnormalities in immune function, manifested as 

immunodeficiencies, autoimmune disorders and susceptibility to infections. An 
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outstanding example of such association is a link between an X-linked severe 

combined immunodeficiency (X-SCID) syndrome and inactivating JAK3 

mutation218,219. Traditionally, X-SCID is known to be caused by mutations in the 

common cytokine receptor γ chain (also known as interleukin-2 receptor γ 

chain), which is an essential subunit of receptor complexes for IL-2, IL-4, IL-7, 

IL-9,IL-15 and IL-21 cytokines responsible for lymphocyte proliferation, 

differentiation and survival. As a result, X-SCID patients exhibit the dramatically 

reduced numbers of circulating T and NK cells along with functionally defective 

B cells, which makes them extremely susceptible to serious and persistent 

infections279. Based on the observations of JAK3 kinase exclusively mediating 

common γ chain-dependent signalling, it was subsequently discovered that 

inactivating mutations in JAK3 can also account for SCID with the phenotype 

closely resembling common γ chain deficiency218,219. This finding was the first to 

demonstrate the essential role of JAK3 in lymphoid development in humans, and 

subsequently lead to a proposition that the compounds developed to specifically 

target JAK kinases (in particularly JAK3) might have a predominantly 

immunosupressive mode of action, which would be especially desirable in both 

autoimmunity and transplantation settings. 

STAT proteins are also found to be affected by loss- and gain-of-function 

mutations, resulting in dysregulated immune responses. A dominant negative 

mutation in STAT3 manifests in hyper IgG syndrome (also termed Job’s 

syndrome), characterised by recurrent cutaneous and pulmonary infections, 

dermatitis, highly elevated serum IgG levels and skeletal abnormalities280,281. 

The development of such multisystem disease phenotype is explained by STAT3 

involvement in signal transduction of at least six classes of receptors, while the 

immunological defects partially stem from the diminished STAT-3 mediated 

differentiation of Th17 lymphocytes and IL-17 production by other cells, 

necessary for neutrophil recruitment and control of fungal infections282,283,284. On 

the other hand, activating STAT3 mutations are associated with early onset 

multiorgan autoimmunity and lymphoproliferative disorders285. STAT1 

deficiencies occur in a spectrum ranging from negative dominant (partial) to 

autosomal recessive (complete), with the former causing susceptibility to a life-

threatening combination of both intramacrophagic bacteria (mycobacteria) and 

viruses due to abrogated IFN and IFN/-mediated signalling/responses, 
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respectively, while the latter selectively confers predisposition to milder 

mycobacterial disease while preserving anti-viral immunity285. Interestingly, 

while STAT1 activating mutation expectedly leads to the development of 

autoimmunity, it is also associated with chronic mucocutaneous candidiasis, 

potentially due to increased STAT1 activity overriding/diverting the (cytokine) 

signals otherwise mediated by STAT3 and driving anti-fungal responses282. 

STAT5B mediates the signalling of both IL-2 cytokine, prerequisite for regulating 

the differentiation and homeostasis of both pro- and anti-inflammatory T cells, 

and the growth hormone, therefore the patients with STAT5B deficiency exhibit 

a complex phenotype of autoimmunity, immunodeficiency and growth 

retardation286,287,288. 

In addition to the above rare monogeneic diseases, genome-wide association 

studies (GWAS) have also linked a multitude of more common disorders to the 

single nucleotide polymorphisms (SNPs) in the genes encoding Type I/II cytokines 

and associated JAKs and STATs. Multiple genes in the IL-23 signalling pathway 

are strongly implicated in the autoimmune disease development, with 

polymorphisms in JAK2 and STAT3 in particular being predisposing factors for 

Crohn’s disease, Bechet’s disease, psoriasis and ankylosing spondylitis, among 

others289,290,291. Polymorphisms in STAT4, which mediates signalling downstream 

of both IL-12 and Type I IFNs, appear to increase the risk for rheumatoid 

arthritis, systemic lupus erythematosus (SLE) and Sjogren’s syndrome, while 

SNPs in STAT6, required for IL-4 signalling, have a role in asthma and 

allergies292,293,294. 

Altogether, this vast body of evidence, obtained through identifying the genetic 

links between JAK-STAT pathway aberrations and human disorder development, 

explicitly/unequivocally demonstrates the importance of the cytokine signalling 

via the JAK-STAT pathway for the normal haematopoiesis and immune function. 

Consequently, JAK-STAT pathway became an attractive target, since its 

therapeutic manipulation could become an exciting novel approach for 

interfering with the cytokine signalling downstream of the receptor and thereby 

complementing (or possibly outperforming) the existing biological therapies in 

management of multiple autoimmune conditions. 
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1.2.2.2 JAK inhibitors and their clinical applications 

 

While the therapeutic inhibition of the JAK-STAT pathway signalling was 

envisioned since the identification of the fundamental JAK mutations (X-SCID 

associated JAK3 loss-of-function and JAK2 activating mutation V617F), it became 

an achievable prospect following the ground-breaking success of the targeted 

tyrosine kinase inhibitors, such as imatinib, in management of haematologic 

malignancies219,295,296,297. Since tyrosine protein kinase enzymes require binding 

of the triphosphate nucleotide (e.g. adenosine triphosphate, ATP) for their 

catalytic activity, the first inhibitors were designed to reversibly/competitively 

bind to the ATP binding site on the enzyme298. However, considering that the 

tyrosine protein kinase family, which includes JAKs, comprises of approximately 

90 members with highly conserved catalytic domain, along with the notion that 

among JAKs themselves the sequence within the ATP binding site is almost 

identical, the development/discovery of the selective inhibitors represent a 

significant challenge. Nevertheless, the identification of the crystal structures of 

JAK family members and the additional targeting of the specific amino acid 

residues prompted the generation of inhibitors with relatively high levels of 

selectivity. As subsequently identified, however, the selectivity of JAK inhibitors 

is concentration-dependent, and at higher concentrations they can function as 

pan-inhibitors298,299. 

The discovery of JAK inhibitors (JAKinibs) was also in part prompted by the 

success in the autoimmune disease management of the targeted biologic DMARDs 

(such as TNF and IL-6), also designed to interfere with cytokine signalling. 

However, with the large proportion of the patients failing to respond to one or 

multiple biological agents along with the parenteral administration mode and 

excessive costs of these drugs, the need for the novel therapeutic modality in 

the autoimmunity setting was apparent300. Thus, the emergence of the orally 

administered small molecule inhibitors with comparable, if not superior, clinical 

efficacy, which was achieved even in patients failing to respond to multiple 

targeted biologics, has greatly enriched the armamentarium of the existing 

immunomodulatory treatment options. The following sections review the 

currently available JAK inhibitor specifications and clinical use, as well as the 



63 
 

63 
 

second-generation compounds with enhanced selectivity currently under 

development. 

 

1.2.2.2.1 Tofacitinib 
 
 
 

Tofacitinib (Xelanjanz®; CP-690,55 during development) is a small molecule 

targeted synthetic DMARD, and the first-in-class JAK inhibitor approved for the 

treatment of rheumatoid arthritis. It was developed by Pfizer for the 

management of inflammatory conditions and was the first compound of its class 

to be tested in clinic. Tofacitinib was approved for the use in US by the Food and 

Drug Administration (FDA) for the treatment of moderate to severe rheumatoid 

arthritis in 2012, with the subsequent approval by European Medicines Agency 

(EMA) in 2017220,301. The originally established tofacitinib potency for selective 

JAK3 inhibition suggested that the compound might preferentially target JAK3-

expressing lymphoid cells, thereby providing a therapeutic 

immunomodulation/immunosuppression effect while exhibiting limited non-

immunological and haematologic cytotoxicity302. However, tofacitinib also 

appeared to potently inhibit JAK1 and to lesser extent JAK2, while having 

limited affinity to TYK2302,303. While this broader inhibitory profile underlies 

some of the compound adverse effects, it might also potentiate a remarkable 

(clinical) efficacy achieved by tofacitinib. Notably, the unique chemical 

structure of tofacitinib ensures its limited interference with the activity of 

kinases other than JAKs304. 

In vitro studies have demonstrated tofacitinib to potently block the JAK3-

mediated signalling of the common γ chain cytokines (IL-2, IL-4, IL-7, IL-9,IL-

15,IL-21), as well as signal transduction by JAK1/JAK2-dependent IFNy and IL-6 

and to a lesser degree by JAK2/JAK2-mediated IL-12 and IL-23. Such effect on 

the cytokine-induced signal transduction by JAK-STAT pathway in murine CD4+ T 

cells translated into abrogation of naïve lymphocyte differentiation into Th2 and 

Th17 helper subsets, as well as diminished generation of Th1 cells305. This result 

was consistent with the reduced Th1-associated IFNy and Th17-associated IL-17 
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production by CD4+ T lymphocytes from individuals with RA306. Along with the 

significant impact of the inhibitor on naïve B cell differentiation and function 

and the impaired ability of the compound-treated dendritic cells for CD4+ T cell 

activation/priming, the above observations highlight the tofacitinib potential to 

interfere with adaptive immune responses307,308,309. Importantly, tofacitinib was 

also demonstrated to inhibit innate immune mechanisms in the IFNy and STAT1-

dependent LPS-induced sepsis mouse model, indicating the effects of the 

inhibitor to be similarly facilitated through modulation of innate immunity305. 

Fascinatingly, osteoclast capacity for bone resorption was also suppressed 

following drug exposure, thus linking the immunological mechanisms of action of 

tofacitinib to its ability for limiting joint damage in both mouse models and RA 

patients310. In parallel, the evaluation of tofacitinib efficacy in multiple mouse 

and rat models of arthritis demonstrated a rapid and significant reduction in 

plasma levels of inflammatory mediators, diminished joint tissue inflammatory 

cell infiltration alongside with dose-dependent improvement in disease clinical 

score and amelioration of cartilage and bone destruction305,311,312,313. These 

encouraging findings in preclinical models have facilitated the entry of 

tofacitinib into clinical trials for RA.  

The Phase II clinical trials confirmed the safety and tolerability profile of 

tofacitinib, as well as its efficacy in patients with active RA in comparison to 

placebo or in combination with methotrexate in patients with inadequate 

response to methotrexate314,315. A further comprehensive assessement of 

tofacitinib efficacy was conducted in range of Phase III trials, which (together) 

encompassed more than 6000 patients across nearly all patient populations-from 

treatment-naïve to non-responders to targeted biologic DMARDs (tbDMARDs). In 

ORAL START trial tofacitinib was shown to be efficacious as a monotherapy in 

treatment-naïve patients and was superior to methotrexate at reducing disease 

activity and halting radiographic damage, which was not previously achieved 

with other available therapies. Notably, the drug demonstrated rapid mode of 

action, with the first improvements in disease score detected as soon as two 

weeks after treatment initiation221. ORAL Scan trial has demonstrated tofacitinib 

to reach primary endpoints and improve quality of life as a monotherapy in 

patients failing conventional synthetic DMARD therapy. Importantly, the 

response to tofacitinib monotherapy appeared to be comparable in subject with 



65 
 

65 
 

both early and established disease.222 Other trials have shown tofacitinib to be 

also effective in combination with methotrexate, and in this combination exhibit 

efficacy non-inferior to TNF inhibitor adalimumab in patients refractory to 

csDMARDs316. Most strikingly, the tofacitinib treatment achieved good clinical 

response in patients with previous inadequate response to one or several biologic 

DMARDs (TNF inhibitors)223, 224,317,. Across the trials, tofacitinib inhibited 

radiographic (joint) damage progression as well as improved patient quality of 

life. The two recently released long-term studies reported sustained 

improvement in clinical scores along with stability of (long-term) safety 

profile224,318. Supported by the above data, tofacitinib is currently approved for 

the management of moderate to severe active RA in patients refractory or 

intolerant to one or more csDMARDs. EULAR treatment recommendations were 

recently updated to include tofacitinib as an alternative to biological DMARDs, 

which can be added to the csDMARD in patients failing to meet an initial six-

month target (low disease activity or remission)141. 

Due to the contribution of Type I/II cytokine signalling to the development of 

autoimmune conditions other than RA, the clinical trials for tofacitinib extended 

across the spectrum of disorders. The encouraging results were so far observed 

in the patients with psoriasis, psoriatic arthritis, inflammatory bowel disease 

(IBD) and ankylosing spondylitis319,320,321,322. When evaluated in de novo kidney 

transplant patients, tofacitinib was comparable to cyclosporin in preventing 

acute renal allograft rejection and had beneficial effect on allograft 

preservation and function323. Recently, tofacitinib was approved for the 

treatment of moderate to severe ulcerative colitis in patients refractory to TNF 

inhibitor therapy324. 

The adverse events associated with tofacitinib treatment are generally 

comparable to those of biologics. Opportunistic and severe infections are among 

most common complications reported, including Mycobacterium tuberculosis, 

Cytomegalovirus, and  Pneumocystis jirovecii pneumonia. The absolute risk of 

these infections, however, is not significantly greater when compared to the 

biologic DMARDS, while the concurrent use of biologics, glucocorticosteroids and 

the development of lymphopenia greatly increase the susceptibility to 

infections325,326. The one exception is Herpes zoster infection, occurring at 
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higher rates with tofacitinib than with placebo or other DMARD therapies, but it 

appears to only affect certain populations and is mostly limited to its mild 

form327. The changes in lipid profile composition are observed in RA patients 

treated with tofacitinib, with significantly elevated levels of low- and high-

density lipoproteins, but it remains unclear whether these changes can be 

directly linked to the cardiovascular events. Due to tofacitinib blocking signalling 

of interferons, essential for cancer immunosurveillance coordination, the 

compound use might increase the risk of malignancy development328. The 

integrated data from tofacitinib clinical trials suggests the most common cancers 

to be lung, breast and lymphoproliferative neoplasms along with non-melanoma 

skin cancers, but their incidence was within the expected range for moderate-

to-severe RA patients group and did not exceed that of biologic DMARDs329. 

Other common complications associated with tofacitinib administration include 

headaches, diarrhoea, urinary and upper respiratory tract infections and mild 

neutropenia325.  

 

1.2.2.2.2 Ruxolitinib and baricitinib 
 
 
 
The development of another first generation JAKinib, ruxolitinib, was prompted 

by the discovery of  association between a JAK2 activating mutation V617F and 

the occurrence of several myeloproliferative disorders295,296. Ruxolitinib (Jakafi®) 

is JAK2/JAK1 inhibitor and the very first of this class to be approved by FDA in 

2011330. It is currently licensed for the management of intermediate- to high-risk 

myelofibrosis, with the patients demonstrating improvement in splenomegaly, 

disease-associated constitutional symptoms and overall survival with only 

modest toxicity331. Ruxolitinib was also recently approved for the treatment of  

(uncontrolled) polycythemia vera, another myeloproliferative neoplastic 

disorder, in patients who are intolerant or refractory to (conventional) 

hydroxyurea therapy, as well as for the management of steroid-refractory graft-

versus host disease332,333. Lastly, the topical form of ruxolitinib shows efficacy in 

treatment of (plaque) psoriasis, vitiligo and alopecia areata, with clinical studies 

currently underway334,335,336.  
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Baricitinib (Olumiant®) is a structural analogue of ruxolitinib which inhibits JAK2 

and JAK1 with high selectivity while largely sparing JAK3 activity. However, 

since JAK3 exclusively pairs with JAK1 kinase and thus mediates transduction of 

the same cytokine signals, the mechanistic advantage in terms of signal 

transduction inhibition is yet unclear299. Clinically, baricitinib was tested for the 

management of moderate to severe active RA and appeared to be the first JAK 

inhibitor to show efficacy with a once-daily oral dosing (4 mg)337. In RA-BEGIN 

clinical trial, baricitinib monotherapy outperformed methotrexate in efficacy in 

treatment-naïve patients, and in combination with methotrexate baricitinib 

showed superior efficacy to methotrexate alone338. In RA-BUILD study baricitinib 

treatment demonstrated clinical improvement and cessation of radiographic 

damage progression in patients refractory or intolerant to csDMARDs339. While 

the drug was similar to tofacitinib in achieving significant clinical improvement 

in patients with inadequate response or intolerance to one or more biologic 

DMARDs, including TNF inhibitors, baricitinib showed an unparalleled superior 

efficacy to TNF inhibitor adalimumab, which has not yet been achieved with 

other therapeutic modalities340,341. Baricitinib adverse event profile is largely 

similar to that of tofacitinib and included severe infections such as Herpes 

zoster, malignancies, thrombosis, urinary tract infections, hyperlipidaemia, and 

neutropenia. The outstanding efficacy and good tolerability prompted the 

approval of baricitinib (as monotherapy or combined with methotrexate) by FDA 

and EMA for the management of moderate to severe active RA in subjects 

refractory or intolerant to treatment by one or more biologic DMARDs342. The 

clinical trials evaluating the efficacy of baricitinib and moderate-to-severe 

atopic dermatitis are ongoing, while those for psoriasis and psoriatic arthritis 

were discontinued due to reallocation of resources for other program 

development.  

 

1.2.2.2.3 Second-generation JAK inhibitors 
 
 

Following the success of first-generation JAK inhibitors of relatively broad 

specificity, the next objective was to generate compounds with enhanced 
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affinity/selectivity for specific JAKs. This strategy was presumed to reduce the 

adverse event occurrence while retaining the favourable clinical efficacy330. 

Several JAK1-selective inhibitors were developed based on the notion of JAK1 

having a dominant role over JAK3 in c chain cytokine signalling in vitro, along 

with JAK1 heterodimer signalling inhibition demonstrated to underlie the 

therapeutic efficacy of tofacitinib in mouse collagen-induced arthritis (CIA) 

343,344. Upadacitinib is a selective JAK1 inhibitor, with its selectivity (over other 

JAKs) determined by its ability to bind JAK1 at two distinct sites. Filgotinib is 

another JAK1 inhibitor, which forms an active metabolite with similar JAK1-

selective inhibitor properties which contributes to the overall pharmacodynamic 

profile by prolonging JAK1 inhibition345. Both compounds were shown to exhibit 

rapid and notable dose-dependent improvement in signs and symptoms of 

disease when administered to RA patients refractory or intolerant to 

methotrexate, either alone or in combination with methotrexate, along with the 

tolerable safety profile346,347,348. In addition, upadacitinib also demonstrated 

rapid clinical improvements in patients with inadequate response to anti-TNF 

therapy349. Recently, upadacitinib was approved by the FDA for the management 

of moderate to severe RA in patients refractory or intolerant to methotrexate 

therapy. Other emerging second-generation compounds, peficitinib and 

decernotinib, are JAK3 selective inhibitors, with peficitinib exhibiting moderate 

selectivity and inhibiting all other JAK members, while decernotinib having a 

more potent JAK3 affinity350,351. These inhibitors have shown an efficacy and 

safety profile comparable to the JAK3/JAK1 inhibitor tofacitinib. While the 

clinical trial results employing more selective JAK inhibitors are very 

encouraging, further studies are required for potentially further improving their 

benefit/risk ratio (e.g. by dosage adjustments) and assessing their long-term 

efficacy and safety potential.  

The full list of JAK inhibitors, both currently approved for clinical use and tested 

in clinical trials is presented in Table 1-3. 
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Table 1-3. Janus kinase inhibitors currently clinically employed or tested for the treatment 
of RA and other autoimmune conditions. 

 
*The new-generation JAK-inhibitors not tested for RA are excluded 

 

 

 

 

Compound Molecular targets Indication/disease Development phase 

First-generation inhibitors 

 
Tofacitinib 

 
JAK3 > JAK1 ≥ JAK2 

RA 
Ulcerative colitis 
Psoriatic arthritis 

 
FDA approved 

Ankylosing spondylitis 
Juvenile idiopathic arthritis 

Phase III 

Transplant rejection Phase IIb (completed) 

 
Ruxolitinib 

 
JAK2,JAK1 ≥ TYK2 

Myelofibrosis 
Polycythemia vera 
Acute graft-versus-host disease 

FDA approved 

RA 
Psoriasis (topical) 
Alopecia areata, atopic 
dermatitis 

Phase II 

 
Oclacitinib 

 
JAK1 

 
Canine atopic dermatitis 

 
FDA approved 

 
Baricitinib 

 
JAK2, JAK1 ≥ TYK2 

RA FDA approved 

Atopic dermatitis Preregistration phase 

Chronic graft-versus-host 
disease 

Phase II 

Psoriasis, psoriatic arthritis Discontinued 

Second-generation inhibitors* 

Upadacitinib JAK1 RA FDA approved 

Psoriatic arthritis, atopic 
dermatitis 
Ulcerative colitis 

Phase III 
 

Filgotinib JAK1 RA Submitted for FDA approval 
(December 2019) 

Ulcerative colitis, Crohn’s 
disease 

Phase III 

Psoriatic arthritis Phase II 

Peficitinib JAK3 RA Phase III/Approved in Japan 

Psoriasis, ulcerative colitis Phase III 

Decernotinib JAK3 RA Discontinued 

Itacitinib JAK1 RA  Phase II (discontinued) 

Graft-versus-host disease Phase III (failed) 
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1.3 Dendritic cell-CD4+ T cell crosstalk 

  The role of dendritic cells during naïve CD4+ T cell 
activation and polarization 

 

Dendritic cells (DCs) are bone marrow-derived ‘professional’ antigen-presenting 

cells (APCs) which are found in virtually all tissues of the body apart from 

brain352. They function as the ‘guardians’ of the immune system by performing 

surveillance of their local tissue sites for the presence of foreign/exogenous or 

self-antigens, and as the essential orchestrators of the immune responses 

through the initiation of adaptive (immune) response or induction of immune 

tolerance.353 The immature DCs primarily specialise in antigen uptake and 

processing and are triggered to undergo activation/maturation following an 

intrinsic stimulus (e.g. internal milieu disturbance), or due to recognition of 

either conserved pathogen-associated molecular patterns (PAMPs) or damage-

associated molecules (DAMPs) of endogenous origin354,355. During 

activation/maturation DCs switch from phagocytosing to antigen-presenting 

phenotype by upregulating the expression of MHC-II-peptide complexes and co-

stimulatory molecules as well as producing high levels of inflammatory 

cytokines356. Concurrently, activated DCs enhance their motility and upregulate 

chemokine receptor CCR7, which allows them to migrate, via the lymphatic 

circulation, to the lymph node paracortex, mostly consisting of T cells357,358. 

While the expression of MHC-II and co-stimulatory molecules is also exhibited by 

other APCs, the above capacity of DCs to deliver the antigens from the periphery 

to the T cell zone in the lymph node and to concurrently provide cytokines 

promoting T cell differentiation into specific helper subsets makes them 

uniquely equipped for naïve T cell priming. 

 

Following their maturation in the thymus, naïve T cells continuously recirculate 

between secondary lymphoid organs via blood or lymphatic vasculature in 

pursuit of (their cognate) antigen encounter359. Since the naïve T cells 

bearing/expressing a T-cell receptor (TCR) specific for a certain antigen are 
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present at very low frequencies, their initial frequent transient interactions with 

(antigen-laden) DCs serve to enhance the probability of T cells encountering 

their cognate antigen360,361. These antigen-dependent interactions, known as 

‘clustering’, are mediated by molecules such as intracellular adhesion molecules 

(ICAMs; also known as CD54) on DCs, binding to LFA-1 on naïve T cells, and DC-

specific ICAM-3-grabbing nonintegrin (DC-SIGN), interacting with ICAM-2 and 

ICAM-3 on the T cells, and enable the T cells to efficiently probe/sample for the 

MHC- peptide complexes362,363. In vitro, T lymphocytes were shown to form 

(functional) synapses with DCs in the absence of both cognate antigen and MHC 

molecules, which promoted small Ca2+ flux, limited proliferation and long-term 

survival of T cells, and T lymphocyte survival in vivo was dependent on the 

contact with MHC-II-expressing DCs364,365. Thus, even without recognition of their 

specific peptide during the initial interaction with DCs T cell receives a survival 

signal, and this mechanism potentially serves for long-term preservation of the 

diverse T cell/TCR repertoire required for efficient protective immune 

responses352. In addition, the recognition of the self-MHC peptide complex on 

DCs by TCR (in CD4-dependent manner) provides a tonic signal to T cell which 

does not induce cell activation but rather promotes its optimal responsiveness to 

the subsequent exogenous/foreign cognate antigen encounter366. 

Induction of T cell signalling relies on the integration of stimuli from several 

surface molecules and their subsequent conversion into complex intracellular 

signalling events, which eventually determine T cell response, including 

effective cell activation, anergy or apoptosis. On the immune response scale, 

these translate into the induction of response, either beneficial (pathogen 

elimination) and harmful (insufficient protective response/immunodeficiency or 

autoimmunity), or alternatively promote maintenance of immune tolerance/non-

responsiveness. 

According to the three-signal hypothesis, full activation of naïve CD4+ T cells 

requires TCR engagement with its specific peptide presented in the context of 

MHC-II molecule by an APC (signal 1), the additional engagement of co-

stimulatory molecules (signal 2) and stimulation with specific cytokines which 

determine the T lymphocyte differentiation towards a specific effector cell 

phenotype (signal 3)367,368,369. All three signals can be provided concurrently by a 
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mature DC. The exact mechanism by which TCR-mediated T cell activation 

occurs is unknown, but the current theories suggest several possibilities. Thus, 

the kinetic segregation model proposes that the spatial separation of membrane-

spanning tyrosine phosphatase CD45 from the vicinity of TCR and its associated 

intracellular kinases would allow the accumulation of phosphorylated receptor 

residues and enable cell activation370. Kinetic proofreading model postulates 

that the different half-lives of the ligand binding to TCR enable the 

discrimination between self- and exogenous ligands, with the high-affinity 

(exogenous) ligands forming longer interactions with TCR to allow the number of 

biochemical modifications to occur to eventually trigger downstream signalling 

cascades371. Meanwhile, the conformational change model suggests that the 

MHC-II-peptide ligation to TCR promotes receptor conformation, which in turn 

triggers the exposure of the co-receptor CD3ε immuno-receptor tyrosine-based 

activation motifs (ITAMs), making those accessible for the tyrosine kinase 

phosphorylation and promoting the subsequent signalling events downstream372. 

Likely, the integration of these and multiple other theories is required to 

comprehensively explain the sensitivity, specificity, and dynamic nature of T cell 

activation. 

The early membrane-proximal signaling events during T cell activation are 

initiated by leukocyte-specific tyrosine kinase (Lck), constitutively associated 

with TCR co-receptor CD4 intracellular domain373,374. Upon TCR engagement with 

MHC-II-peptide complex CD4 also comes in contact with MCH-II molecule, thus 

positioning Lck in proximity to the ITAM domains of the TCR-associated CD3 γ-,ε-

,ζ- and δ chains and enabling their phosphorylation by the kinase375. 

Phosphorylated CD3 ITAMs recruit Syk family kinase Zeta-activated protein 70 

kDa (Zap-70) which also undergoes Lck-mediated phosphorylation and activation, 

and in turn phosphorylates its target membrane-associated protein, linker for 

the activation of T cells (LAT)375,376. Activated LAT, in conjunction with other 

proteins, subsequently functions as a scaffold complex (signalosome) for the 

recruitment of multiple adaptor and effector signaling molecules, which trigger 

the key downstream signaling cascades, such as MAPK and NF-κB pathways376. 

The major consequences of the above signaling events include: actin and 

microtubule cytoskeleton reorganisation, required for the establishment of 

immunological synapses; integrin activation, which mediates stabilization of T 
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cell-APC contact; and rapid changes in expression of genes responsible for T cell 

polarization, proliferation and survival377. Several negative feedback loops are in 

place to fine-tune the signaling through TCR since the aberrant T cell activation 

can lead to the development of the autoimmune responses377.  

The initial engagement of TCR with its cognate peptide-MHC complex on the 

dendritic cell surface triggers an intricate sequence of T cell morphological 

changes and surface receptor re-organization, resulting in the formation of the 

stable molecular ‘junction’ at the interface between T cells and DCs termed 

immunological synapse (IS). Immediately upon T cell recognition of its cognate 

peptide-MHC complex, T cell halts its migration and forms transient 

microclusters at the primary contact site with DC, containing 30-300 TCR 

molecules along with kinases and adaptor proteins required for proximal 

singalling, as well as CD28 molecules and associated protein kinase C theta 

(PKCθ).378,379 These TCR microclusters provide the initial signals for T cell 

activation, which are further sustained by a generation of new microclusters at 

the peripheral edges of the T cell, as it ‘spreads’ across the contact interface 

and engages more peptide-MHC complexes.380,381 Following maximal ‘spreading’, 

T cell contracts and the centripetal flux of F-actin potentiates TCR microcluster 

to migrate towards the centre of the junction, dissociate from proximal 

signalling molecules, fuse into larger aggregates and eventually form central 

supramolecular activation cluster (cSMAC). In the mature IS, the cSMAC is 

divided into two distinct regions-CD3hi inner region containing a cluster of TCR 

molecules, and an outer CD3lo area composed of CD28 and PKCθ, along with 

negative regulators of T cell co-stimulation, CTLA-4.382,383 While the inner cSMAC 

region is thought to represent a site of TCR signalling regulation through 

receptor internalisation and degradation, its outer edge enables to maintain 

persistent co-stimulatory/co-inhibitory signals essential for T cell activation 

fine-tuning.379,382,384 The cSMAC is surrounded by a peripheral SMAC (pSMAC) 

domain enriched in integrin molecules LFA-1, which serves to enhance the T cell 

adhesion to DC and thereby increases its sensitivity to the antigen. 382,385 The 

outermost region of the immune synapse is known as distal SMAC (dSMAC), 

composed of molecules with large ectodomains, including CD45 tyrosine 

phosphatase, which is segregated from TCR to enable receptor activation.385,386  

The key function of the immune synapse is to maintain the stable cognate T cell-
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DC contact for a prolonged period of time (5-12h), required for full naïve T cell 

priming.   

In addition to efficient TCR engagement, additional co-stimulatory signals (signal 

2) provided by accessory surface receptors are essential for complete T cell 

activation387,388. CD28 is a prototypical co-stimulatory surface receptor, 

constitutively expressed on the CD4+ T lymphocytes but exhibiting low affinity to 

its ligands in the resting cell. This ensures that in the absence of antigen 

recognition and associated agonistic TCR stimulus the T cell is prevented from 

unnecessary activation389. Upon TCR stimulation, CD28 undergoes a 

conformational change and can bind its ligands CD80 (B7.1) and CD86 (B7.2) on 

the surface of mature DCs with enhanced affinity390. CD80 and CD86 expression 

is notably upregulated on antigen-bearing DCs during their maturation 

process369,391. Stimulated CD28 receptor, similarly to TCR, is phosphorylated on 

its cytoplasmic tail by membrane-proximal kinases, thereby recruiting a number 

of adaptor proteins and activating signaling pathways, which converge with TCR-

induced intracellular cascades at the level of (aforementioned) 

signalosome/LAT-containing protein platform392,393. In this manner, the 

engagement of CD28 receptor results in the significant amplification of the 

signaling downstream of the TCR, and thus directly mediates the induction of 

naïve T cell proliferation, survival, and differentiation, the latter in conjunction 

with specific cytokine stimuli394,395,395. Such dominant co-stimulatory activity of 

CD28 requires tight regulation, mediated by cytotoxic T-lymphocyte antigen-4 

(CTLA-4) and programmed death-1 (PD-1) receptor proteins. CTLA-4 molecule, 

structurally related to CD28, is constitutively expressed on regulatory T cells but 

is upregulated on other T cells only following activation, and acts as a CD28 

competitor for shared ligands CD80 and CD86, which it binds with 10-fold higher 

activity396,397,398. Mechanistically, CTLA-4 binding leads to TCR/CD28 signaling 

supression in the T cell (via recruitment of inhibitory phosphatases), as well as 

the transmission of immunosupressive signals to DCs through its ligands and the 

capture of the ligands from the DC surface by trans-endocytosis399,400,401. 

Biologically, CTLA-4 inhibition is an important checkpoint in regulation of T cell 

autoreactivity, exemplified by numerous reports associating mutations and 

polymorphisms in CTLA-4 with susceptibility to autoimmune disorders in 

humans402,403,404. Programmed death-1 (PD-1) receptor is another potent inhibitor 
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of T cell activation. Cytoplasmic tail of PD-1 associates with SHP2 phosphatase 

enzyme, which suppresses the activity of kinases mediating signaling 

downstream of TCR405,406. Thereby, PD-1 engagement on T cell can promote cell 

cycle arrest, anergy and/or apoptosis407,408. A range of other co-stimulatory 

proteins is involved in collectively orchestrating the subsequent T cell response, 

including ICOS, OX40, and CD40L on T cells and their respective ligands ICOS-L, 

OX40L and CD40 on DCs409,410,411.  

While the TCR signaling strength and co-stimulatory or co-inhibitory molecule 

engagement can influence T cell differentiation by favouring a commitment 

towards a certain lineage or impeding cell ability for differentiation, the critical 

role for T cell polarization towards distinct effector subsets is played by the 

APC/DC-derived cytokines (signal 3)412,413,414,415. The polarizing cytokine-induced 

signals are transduced (mainly) through the JAK/STAT pathway, and specific 

STAT proteins mediate the transcription of the lineage-determining /master 

transcription factors and lineage-associated genes. The development of the Th1 

helper subset requires stimulation from both IL-12 and IFNy. While IL-12 is 

mainly produced by DCs, IFNy can be produced by differentiating Th1 cells 

themselves or by NK cells in response to DC-secreted IL-12416. The IFNy STAT1-

mediated signaling induces the initial expression of T-box transcription factor (T-

bet), a crucial master regulator of commitment towards Th1 lineage. In turn, T-

bet enhances IFNy production by T cells, thus amplifying its own expression 

through the positive feedback loop, and induces IL-12Rβ2 expression to sensitize 

cells to IL-12 stimulation417. In turn, IL-12-activated STAT4 also induces IFNy 

production to further promote sustained T-bet and IL-12Rβ2 expression418. At the 

later stages of commitment, IL-18 production is induced through IL-12/STAT4 

pathway, and IL-18 synergise with IL-12 for facilitating IFNy production by 

established Th1 cells419. The signals from both IL-4 and IL-2 are detrimental for 

naïve T cell commitment towards Th2 phenotype419,420. IL-4-induced STAT6 

mediates the expression of GATA3, a master regulator of Th2 differentiation, 

and subsequently functions in concert with GATA3 to promote the lineage-

specific gene expression421,422. IL-2 signaling, on the other hand, activates 

STAT5, which together with GATA3 coordinates (lineage-specific) IL-4 production 

and also promotes IL-4Rα expression423,424. Mature dendritic cells also provide IL-

6 and TGFβ, required for the early stages of T cell polarization into Th17 
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subset425,426. IL-6 and TGFβ cooperate in inducing master transcription factor 

RORγt expression and subsequently IL-6-induced STAT3 cooperates with RORγt 

for induction of IL-17A (and IL-17F) production, as well as expression of IL-21 

which further amplifies the above lineage-specific cytokine production426. Lastly, 

a combination of TGFβ, secreted by mature DCs and IL-2, generated at early 

stages of T cell activation, is responsible for coordinating polarization into 

regulatory T cell (Treg) lineage427,428. 

 

 Other outcomes of dendritic cell-CD4+ T cell interaction  

 

The requirement of at least two signals (Signal 1 and signal 2) for the naïve T 

cell activation and proliferation/clonal expansion are in place to ensure that the 

T cells respond only to the harmful exogenous antigens presented in the context 

of professional APCs, while remaining non-responsive to self-antigens. While the 

central tolerance mechanisms in the thymus govern the elimination of self-

reactive T lymphocytes, the responsiveness to some antigens (e.g. 

developmental and food antigens) is not controlled by thymic selection thus 

allowing some autoreactive T cells to escape to the periphery. Therefore, a 

number of peripheral tolerance strategies are present to effectively suppress the 

priming/activation of such cells, including T-cell intrinsic mechanisms such as 

anergy, phenotypic skewing, and activation-induced cell death.429  

 

1.3.2.1 Anergy 

 

Anergy is a long-term state of cell hyporesponsiveness, which is induced 

following TCR recognition of the self-peptide in the absence of CD28 co-

stimulatory signal.430 Since the cooperative TCR/CD28 engagement is necessary 

for optimal recruitment of transcription factors essential for IL-2 expression, the 

anergic T cells exhibit notably reduced IL-2 production upon re-stimulation.431,432 



77 
 

77 
 

Moreover, the anergic cells express anergy-associated molecules such as 

ubiquitin E3 ligases Itch and GRAIL, which facilitate degradation of the signaling 

components downstream of TCR, as well as specific transcription factors 

responsible for the maintenance of hyporesponsive cell state.433,434  

The inhibitory signals delivered by CTLA-4 and PD-1 co-receptors were also 

implicated in promoting autoreactive T cell anergy. CTLA-4 was shown to be 

essential for anergy induction, as the naïve CTLA-4-deficient T cells exposed to 

tolerogenic stimulus in vivo and subsequently re-activated in vitro retained the 

ability for proliferation and IL-2 secretion, in contrast to wild-type T cells 

maintaining cell cycle arrest435. Moreover, mice deficient in CTLA-4 develop a 

fatal autoimmune multiorgan disorder, further highlighting the crucial negative 

regulatory role of CTLA-4436. Another critical co-receptor, PD-1, functions by 

promoting dephosphorylation of membrane-proximal TCR-induced signaling 

molecules and interfering with downstream signaling cascades. Thus, the ligation 

of PD-1 on the autoreactive T cell leads to diminished cell proliferation and 

increased susceptibility for apoptosis, thereby ultimately inhibiting the 

expansion of self-reactive naïve T cell and their potential for acquiring an 

effector phenotype437. In line with that, the blockade of PD-1 engagement with 

one of its receptors, B7-H1, resulted in the reversal of T cell anergy, while the 

disruption of PD-1 gene in mice manifested in spontaneous lupus-like 

autoimmune phenotype development438,439. 

While being crucial in mediating T cell activation to the harmful antigens, DCs 

are also suggested to promote induction of non-responsive state in T cells. Such 

‘tolerogenic’ DCs, presenting self-antigens, usually exhibit an immature or semi-

mature phenotype with characteristic low-level expression of both MHC-peptide 

complexes and co-stimulatory molecules insufficient for optimal T cell 

activation440. In addition, some mature DC subsets were also described to 

promote T cell anergy as well as regulatory T cell generation. The suggested 

mechanisms of ‘tolerogenic’ DCs involve the delivery of inhibitory signals 

through expression of PD-1 receptors PD-L1 and PD-L2, secretion of anti-

inflammatory cytokines IL-10 and TGF-β, which potentiate generation of 

regulatory T cells, as well as Indoleamine 2,3-dioxygenase (IDO) secretion, 
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leading to T cell nutrient deprivation and also limiting T cell clonal 

expansion.441,442,443 

 

1.3.2.2  Activation-induced cell death (AICD) 

 

Along with anergy, activation-induced cell death (AICD) represents another 

fundamental mechanism for maintaining peripheral self-tolerance. AICD 

specifically occurs in CD4+ T cells repeatedly stimulated through their TCR in 

vitro, which are thought to represent the autoreactive chronically activated 

cells (escaping thymic selection) and repeatedly encountering their cognate self-

peptides in the periphery.444 The repetitive antigenic stimulation induces CD4+ T 

cells to upregulate the expression of the death receptor Fas (CD95) and its 

ligand, with the subsequent Fas-FasL interaction mediating the formation of 

death-inducing signalling complex (DISC) and induction of caspase cascade, 

which ultimately leads to cell death by apoptosis.445,446,447 AICD can occur either 

through Fas-FasL interaction between the two cells (fratricide) or as a cell 

‘suicide’, whereby the soluble FasL binds its receptor in an autocrine 

manner.448,449 The primary evidence of the connection between Fas-mediated 

AICD and immune tolerance came from lpr and gld mice bearing deactivating 

mutations in Fas and FasL genes, respectively, exhibiting failure in thymocyte 

selection, which manifested in lymphadenopathy and systemic lupus-like 

autoimmunity.450 However, the subsequent study demonstrated that Fas 

deficiency did not affect negative thymic selection but instead rendered mature 

peripheral T cells resistant to apoptosis, thus highlighting the importance of Fas-

mediated AICD in specifically maintaining T cell peripheral tolerance.451 
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 Evidence of the DC-CD4+ T cell crosstalk importance in 
RA 

 

Given the crucial role of DCs in the induction and fine-tuning of T cell responses, 

the alterations in their activation status, quality of antigen presentation and co-

stimulatory signal transmission can modulate the outcome of the DC-CD4+ T cell 

interaction and contribute to the development of multiple autoimmune 

conditions, including RA. The strongest evidence is provided by the increased RA 

susceptibility in individuals bearing one or several alleles of the HLA-DRB1 gene 

(including HLA-DRB1*0401, *0404 and *0405), which harbour a 5 amino acid motif 

(‘shared epitope’) within a peptide-binding groove pocket of the HLA-DRB1 MHC-

II molecule. The ‘shared epitope’-containing HLA-DRB1 molecules exhibit an 

increased propensity towards binding and presentation of citrullinated self-

peptides, and the recognition of such peptides by CD4+ T cells, reported in both 

mice and RA patients, leads to pro-inflammatory cytokine production by T cells 

and might also be linked to T cell-dependent B cell activation for ACPA antibody 

generation.452,453 Thus, the preferential presentation of modified self-epitopes 

by DCs (and other APCs) appears to have an important role in disease 

pathogenesis. Other RA-associated allelic polymorphisms in genes including REL, 

IRAK1, NFKBIE and CCL21 can potentially affect DC maturation and migration to 

the lymph nodes, and thereby further contribute to alteration of their T-cell 

stimulatory capacity.   

A more direct piece of evidence on the relevance of DC-CD4+ T cell interaction 

in the disease, in particular during the onset of autoimmune response, was 

obtained from the murine models of experimental RA. Thus, Brewer et al. 

demonstrated that the transfer of mature DCs, presenting collagen-derived 

peptide, into the footpads of recipient DBA/1 mice was sufficient for initiation 

of erosive RA in the adjacent joint, with the induction phase corresponding with 

the priming of endogenous collagen-specific CD4+ T cells and their 

differentiation into Th1 subset.454 In a model of acute early RA, developed in our 

lab, the transfer and repeated cognate re-activation in vivo of CD4+ Th1 cells of 

joint-irrelevant specificity created an inflammatory joint environment, which 

was proposed to promote the presentation of self-antigen (collagen II) to the 
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endogenous autoreactive CD4+ T cells by DCs in immunogenic fashion, leading to 

the self-tolerance breakdown.455 Indeed, a follow-up study demonstrated the 

endogenous conventional DC subset being activated and presenting antigen prior 

to the development of anti-collagen CD4+ T cell responses. In line with that, the 

selective depletion of conventional DCs in CD11cDTR mice by in vivo 

administration of diphtheria toxin prior to mice receiving secondary antigenic 

challenge lead to abrogation of autoreactive (collagen-II-specific) T cell 

responses and associated breach of self-tolerance, and resulted in amelioration 

of joint pathology characteristic for the model.456    

On the other side of the interaction, T cells in RA exhibit altered threshold of 

the TCR signaling and associated/consequent aberrations in cell activation. For 

instance, increased phosphorylation of extracellular-signal-regulated protein 

kinase (ERK), a member of the pivotal signaling pathway downstream of TCR, is 

observed in RA patient T cells, which appears to promote sustained TCR-

mediated signaling in response to suboptimal antigenic stimulation457. Genetic 

polymorphisms associated with RA were also identified at loci of CD28, CTLA-4, 

protein tyrosine phosphatase, non-receptor type 22 (PTPN22) and CD247 (TCRζ), 

which encode molecules mediating membrane-proximal TCR signalling events 

and is thus involved in regulating TCR stimulation threshold. Polymorphism(s) in 

PTPN22 gene product Lyp phosphatase, particularly strongly linked to RA 

susceptibility, results in Lyp failure to bind its partner kinase Csk and thereby 

abrogates Lyp capacity to negatively regulate the activity of proximal TCR 

signaling intermediates458. Thus, the perturbations in dendritic cell capacity for 

T cell stimulation in combination with altered T cell responsiveness in RA-

predisposed individuals result in aberrant cell crosstalk, which can occur during 

naïve CD4+ T cell priming in periphery but can also take place during the self-

reactive thymocyte elimination in the thymus. Given all the above, DC-CD4+ T 

cell interactions are considered indispensable in both breakdown of tolerance 

and initiation of adaptive immune responses in RA and represent an important 

‘immune checkpoint’ to be targeted therapeutically. 

Thus, additional evidence is provided by some successful therapeutic approaches 

designed to interfere with or modulate DC-CD4+ T cell crosstalk. One of such 

therapeutic modalities is CTLA-4 molecule homologue abatacept, comprised of 
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extracellular human CTLA-4 domain and modified Fc portion of human IgG1. 

Similarly to an endogenous CTLA-4, abatacept competes with CD28 for binding to 

CD80/86, thereby delivering a co-inhibitory signal and effectively suppressing T 

cell activation by APCs/ dendritic cells.459 In patients with different stages of RA 

and treatment background abatacept is reported to effectively reduce disease 

activity, improve physical function and halt the radiographic damage 

progression.212,211,213 The strategy of other therapeutic approach, tolerogenic DC 

(tolDC) therapy, involves in vitro generation of semi-mature ‘tolerogenic’ DCs 

which have the potential to induce hyporesponsive/anergic state in autoreactive 

T cells. In the initial clinical study in early RA patients, a single intradermal 

injection of tolDCs exposed to citrullinated peptides was administered, which 

lead to a reduction in effector T cells, increase in the regulatory-to-effector T 

cell ratio and diminished T cell responsiveness to citrullinated peptides, along 

with improvement in disease activity scores460. Another clinical study, 

AutoDECRA, used synovial fluid as the source of self-antigens for presentation by 

tolDCs and used intra-articular administration for cell delivery. The tolDC 

administration improved the local disease activity in a proportion of patients but 

did not induce any systemic immunomodulatory effects461. Thus, it appears that 

DCs with tolerogenic phenotype can modulate autoreactive effector T cell 

responses by inducing anergy and/or potentially promoting apoptosis in RA 

patients461. These observations further support the importance of DC-CD4+ T cell 

interactions in RA, as the therapeutic blockade or modulation of this crosstalk 

leads to diminished autoreactive T cell responses and subsequent clinical 

symptom improvement.   

  

1.4 Dynamics of DC-CD4+ T cell interactions during RA 
development 

  

The process of RA pathogenesis can be described to occur in several phases: 

genetically and environmentally-determined ‘at risk’ phase, preceding the initial 

loss of self-tolerance; initiation and propagation of autoimmune response, 

followed by immune cell infiltration into the joint; and transition to chronic 
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inflammation, which eventually culminates in joint pathology and symptomatic 

disease. Extensive research utilizing murine models was conducted to determine 

the contribution of specific cells and cell-cell cross-talk into each of these 

disease stages, with the aim to gain better insights into immune mechanisms 

underlying the RA progression and accordingly advance the therapeutic disease 

management. A number of studies specifically investigated the potential 

contribution of initial DC-CD4+ T cell interaction (i.e. cognate CD4+ T cell 

priming) to the inciting phase of the pathology. Thus, in a mouse model of acute 

early RA (described in detail in ref.455 and Chapter 5), the self-tolerance 

breakdown event and associated autoreactive CD4+ T cell response development 

were directly preceded by conventional DC activation and antigen presentation 

in the joint-draining lymph nodes, suggesting these cells to be responsible for 

priming of the self-reactive CD4+ T lymphocytes.456 The depletion of these 

conventional DCs by administering diphtheria toxin to CD11c-diphtheria toxin-

receptor (DTR) mice prior to administration of antigen triggering self-tolerance 

breakdown appeared to prevent self-reactive CD4+ T cell response generation, 

further confirming the indispensable requirement of cognate naive CD4+ T cell-

DC engagement for triggering the autoimmune response in this model.456 Andrew 

Cope and colleagues took a different approach and assessed the consequences of 

PTPN22R620W mutation, a single nucleotide polymorphism most strongly 

associated with genetic susceptibility to RA, on the quality of DC-mediated T cell 

responses. They elegantly demonstrated mice harbouring orthologous 

PTPN22R619W mutation to exhibit an enhanced expansion of the conventional DC2 

population, which was sufficient to augment T cell proliferation and T follicular 

helper cell generation. The authors thereby proposed that perturbations in DC 

homeostasis, driven by PTPN22 polymorphism, might be causal of aberrant 

autoreactive T cell priming and initiation of autoimmunity in RA. 462 In another 

study, the absence of PTPN22 in DCs resulted in enhanced immune complex-

derived antigen presentation and CD4+ T cell-DC conjugate formation, which 

subsequently augmented CD4+ T cell proliferation. These results provide an 

additional explanation on how PTPN22 R620W mutation in a specific context might 

contribute to dysregulated DC-CD4+ T cell interactions and potentiate 

autoimmunity initiation.463   Apart from the initial triggering of autoimmunity, 

the continuous (new) naïve CD4+ T cell activation by DCs is thought to crucially 

contribute to the propagation of the autoimmune response in RA through the 
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mechanism of epitope spreading. Epitope spreading is a process of diversification 

of T cell as well as B cell responses from a dominant antigenic epitope, 

triggering the initiation of the autoimmune response, to the recognition of other 

epitopes of the dominant antigen (generated by post-translational modification 

in the inflamed milieu) as well as distinct antigenic molecules, likely exposed 

following inflammation-associated tissue damage. In contrast to other 

autoimmune diseases (e.g. multiple sclerosis), the animal-model based research 

into mechanisms underlying epitope spreading phenomena and its contribution 

to the pathology development in RA is fairly limited. Khmaladze and colleagues 

employed a knock-in B10Q.ACB mouse strain, which spontaneously developed 

high-frequency autoreactive B cells specific for C1 epitope of collagen II (CII) but 

remained protected from collagen-induced arthritis (CII), and introduced a 

mutation (to Ncf1 gene) leading to deficiency in reactive oxygen species (ROS). 

This ROS deficiency appeared to break the resistance to CIA, and the disease 

progression and severity correlated with the development of antibodies specific 

for additional, non-C1 CII epitopes. The Ncf1-deficient mice also exhibited 

enhanced CII-specific T cell responses, suggesting that autoreactive B cells might 

have potentially received T cell help for enhanced response generation and 

possibly epitope spreading.464 Interestingly, in a hGPIc peptide-induced (GIA) 

murine arthritis model which was subjected to regulatory T cell depletion, Yang 

and colleagues observed not only B cell but also pronounced T cell response 

diversification, evidenced by detection of antigen-specific T cells recognising 

several collagen type II epitopes, unrelated to disease-inciting peptide, which 

possibly contributed to the disease perpetuation.465 The likely mechanism of T 

cell epitope spreading requires initial CD4+ T cell priming by an APC (DC) 

presenting immunodominant epitope, with subsequent migration of activated 

CD4+ T lymphocyte to the target tissue, where it might be reactivated by the 

same (primary) epitope and release cytokines and chemokines. These will 

promote recruitment and activation of innate immune cells (e.g. macrophages), 

which in turn promote tissue damage through release of proteolytic enzymes and 

ROS. The neoepitopes generated from the tissue debris can then be presented by 

APCs (DCs) to ‘new’ naïve autoreactive CD4+ T cells in the lymph node, leading 

to further recruitment of additional activated CD4+ T cells and tissue 

destruction, thereby creating a self-perpetuating cycle 466 Thus, the continuous 

autoreactive CD4+ T cell priming by DCs, underlying epitope spreading, plays an 
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important role in disease perpetuation and likely contributes to the chronicity of 

autoimmune response in RA. Along with the newly primed CD4+ T cells, the T 

cells of activated phenotype detected in the synovium of RA patients might also 

contribute to the progression and chronicity of autoimmune response. However, 

whether these cells specifically require interaction with DCs for secondary 

activation is largely unknown, as they could also be re-activated in an antigen-

specific manner by other APCs abundantly present in the joint, as well as 

undergo cytokine-dependent bystander activation which does not require TCR 

engagement. One of the clues suggesting the DC involvement in antigen 

presentation in the RA joint is the enrichment of the synovium compared to 

peripheral blood/circulation, with myeloid subset DCs of a mature phenotype 

expressing MHC-II and co-stimulatory molecules, which were capable of effective 

autologous T cell stimulation.467 Moreover, the presence in the synovial fluid of 

myeloid progenitors along with soluble factors capable of promoting their 

differentiation suggested that mature DCs can be generated locally within the 

joint and can also participate in the amplification of inflammation by joint-

infiltrating autoreactive CD4+ T cell (re-)stimulation. The direct evidence of the 

activated antigen-specific CD4+ T cell re-activation in the joint comes from an 

elegant study by Benson et al. which employed the aforementioned ‘breach-of-

tolerance’ RA mouse model. The study demonstrated the adoptively transferred 

OT-II CD4+ T cells of activated phenotype to infiltrate the joints following the 

secondary challenge with their cognate antigen (HAO) in vivo, and, using 

intravital microscopy, observed these cells within the articular environment to 

form prolonged interactions with endogenous CD11c+ DCs, consistent with the 

antigen-specific recognition and activation.468 Overall, while the evidence is very 

limited, these individual cues allow proposing that the antigen-experienced CD4+ 

T cells infiltrating the RA synovium might at least partially rely on cognate 

interactions with DCs to receive re-activation signals.  Thus, the cognate CD4+ T 

cell-DC interactions likely occur throughout the course of RA development, 

thereby highlighting their importance in the disease pathogenesis as well as 

emphasizing the value of this cell interaction for therapeutic modulation.  
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1.5 Hypothesis and aims 

 

A number of studies demonstrate the effect of tofacitinib on CD4+ T cell ability 

to proliferate and produce pro-inflammatory cytokines. Employing the antigen-

specific cell system, I wanted to specifically investigate the impact of the drug 

on CD4+ T cell interaction with its cognate antigen-presenting DC. I also aimed to 

further dissect whether the drug exerts the effect during the naïve CD4+ T cell 

priming or interferes with antigen-experienced CD4+ T lymphocyte re-activation, 

both of which play a crucial part in initiation and propagation of RA 

pathogenesis. Based on the ability of tofacitinib to inhibit cytokine signalling 

through the JAK/STAT pathway, I hypothesised that the drug would impact the 

efficiency of CD4+ T cell-DC primary interaction and lead to the alterations in 

CD4+ T cell phenotype and function. With the efficacy of tofacitinib on RA 

pathology being so far studied and confirmed in the murine models of 

established RA, I intended to determine if similar improvements in the disease 

pathogenesis could be achieved by introducing the drug very early in the 

disease, in line with the current trends for therapeutic interference at the onset 

of RA. 

 

Thus, the key aims of this project were:  

 To determine the effect of tofacitinib treatment on CD4+ T cell-DC 

interaction efficiency and functional outcome in vitro and in vivo 

 To determine at what stage of the CD4+ T cell-DC interaction, priming or 

re-activation, does tofacitinib have an impact 

 To assess the drug impact on disease pathogenesis in the ‘breach of 

tolerance’ early acute RA mouse model 
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2 Materials and Methods 
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2.1 Buffers and reagents 

 Complete medium 

RPMI-1640 (Life Technologies) supplemented with 10% foetal bovine serum (FBS) 

(Gibco), L-glutamine (Gibco) and Penicillin/Streptomycin (Sigma-Aldrich).  

 FACS buffer 

Dulbecco’s phosphate-buffered saline (DPBS) (Life Technologies) supplemented 

with 2% foetal bovine serum,1 mM EDTA, and 0.01% Sodium azide.  

 MACS buffer 

Dulbecco’s phosphate-buffered saline (DPBS) (Life Technologies) with 1% foetal 

bovine serum and 2 mM EDTA.  

 JAK inhibitor tofacitinib  

Tofacitinib free base and tofacitinib citrate salt were purchased from LC Labs, 

reconstituted in dimethyl sulfoxide (DMSO)(Sigma), and stored as single-use 

aliquots at -20 C. DMSO was serially diluted to achieve the concentration of 0.1% 

or 0.001% in the cell culture, corresponding to the two tofacitinib concentrations 

used. 

For administration to mice by oral gavage, tofacitinib citrate stock was further 

dissolved in sterile-filtered DPBS containing 0.5% Methylcellulose (Sigma) and 

0.025% Tween20 (Sigma) at the concentration of 6.25 mg/ml and sonicated for 5 

minutes. DMSO was utilized as a vehicle control at a maximal non-toxic dilution 

of 5 % dissolved in the same solution as the drug.  
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2.2 Mice 

 C57BL/6  

 

Male C57BL/6 mice were purchased from Harlan laboratories UK (currently 

ENVIGO) at 6 weeks of age and acclimatised for 1 week prior to their use for any 

procedures. C57BL/6 mice were used between 6-12 weeks of age as donors of 

bone marrow or adoptive transfer recipients.   

 CD45.1 OT-II  

 

OT-II T cell receptor (TCR) transgenic mice were bred in-house (Central Research 

Facilities, University of Glasgow, UK). The majority of the T cells of OT-II mice 

express αβTCR specific for chicken ovalbumin peptide (OVA) 323-339 presented in 

the context of MHC-II molecule469. In vitro co-culture of OT-II T cells with OVA323-

339 -pulsed dendritic cells generates robust T cells response and allows to 

monitor changes in this antigen-specific interaction. Our OT-II mice also express 

CD45.1 on all leukocytes, which is a pan-leukocyte marker with two allelic 

variants-CD45.1 and CD45.2-bearing the same function. This system allows 

discriminating the cells transferred from the CD45.1 OT-II donor into CD45.2 

C56BL/6 recipient by flow cytometry and manipulating them by introducing 

OVA323-339 peptide into the recipient. T cells from OT-II mice were used for in 

vitro co-cultures and adoptive transfer experiments. 

All animals were maintained on a 12/12-hour light/dark cycle with water and 

food ad libitum, and all the procedures were performed in accordance with local 

ethical and UK Home Office regulations. 
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2.3  Isolation and preparation of cells 

 CD4+ T cell isolation from mouse lymph nodes and 
spleen (StemCell EasySep kit) 

 

Lymph nodes and spleens were harvested from OT-II transgenic mice, passed 

separately through a 70 µm EASYstrainer (Greiner Bio) and cell suspension 

collected into complete media. Cells were spun at 400 g for 5 min at 4oC. Cell 

pellets from the spleens were then treated with 1xRBC lysis buffer (eBioscience) 

for 5 minutes at room temperature (RT), washed with complete media, and 

pellets from lymph nodes and spleen were pulled together for counting. Cell 

viability and number were determined using Trypan blue (Sigma) exclusion 

method and a haemocytometer. Cells were then resuspended in isolation buffer 

(DPBS with 2% foetal bovine serum and 1 mM EDTA) at 1x108 cells/ml and CD4+ T 

cells were isolated using EasySep Mouse CD4+ T cell isolation kit (Stemcell 

Technologies) following manufacturers’ instructions. In brief, 50 ul of rat serum 

per 108 total cells was added along with 50 ul per 108 total cells of Isolation 

cocktail, containing biotinylated antibodies labelling CD4- cell fraction. Cells 

were incubated for 10 minutes at RT and 75 ul per 108 total cells of streptavidin-

coated magnetic spheres were then added for another 2.5 minutes. The CD4- 

cells labelled with antibodies and magnetic spheres were then removed from the 

cell suspension by incubation in the EasySep magnet for 2.5 minutes, and the 

purified CD4+ T cell fraction was collected into a fresh tube for counting and 

CFSE labelling. 

Cell viability and number were determined as previously described, and the cells 

resuspended at 107 cells/ml in RPMI-1640 (Life Technologies) with 2% FBS for 

CFSE staining. 5 mM CFSE stock dissolved in DMSO (both- Life Technologies) was 

diluted to 1 mM in DPBS and then added to cell suspension at 1 uM 

concentration. Cells were stained for 5 min at 37C in the dark, washed twice 

with complete media, and assessed for viability and number as before. Cells 

were then resuspended at 2.5x106 cells/ml in complete media for co-culture 

assays.  
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 CD4+ T cells isolation (MACS kit) and Th1 polarization 

 

Lymph nodes and spleens were harvested from 5 OT-II transgenic mice, along 

with spleens from 4 C57BL/6 mice, and were passed separately through a 70 µm 

EASYstrainer (Greiner Bio). The strainers were washed with MACS buffer and the 

collected cells spun down at 400 g for 5 min at 4oC. Cell pellets from the spleens 

were individually treated with 1xRBC lysis buffer (eBioscience) for 5 minutes at 

room temperature (RT), washed with complete media, and the cells from OT-II 

mouse spleens and lymph nodes were then resuspended in MACS buffer and 

pulled together. Splenocytes from C57BL/6 mice were resuspended in MACS 

buffer and kept on ice. Cell viability and number of cells from OT-II mice were 

determined as described above, and the cells were resuspended in MACS buffer 

at 107 total cells per 40 ul for CD4+ T cell isolation using MACS CD4+ T cell 

isolation kit (Miltenyi Biotech). In brief, 10 ul of the biotin-antibody cocktail was 

added per 107 total cells, mixed and incubated in the fridge for 5 min. MACS 

buffer was then added at 30 ul per 107 total cells, followed by anti-biotin 

magnetic Microbeads at 20 ul per 107 total cells. While the cells were incubated 

for 10 min in the fridge, LS column (Miltenyi Biotec) was set up in the magnetic 

field of a MACS Separator (Miltenyi Biotec) and washed with 3 ml of MACS buffer. 

The cell suspension was then filtered through 70 µm EASYstrainer (Greiner Bio) 

and placed in LS column (Miltenyi Biotec), which retained magnetically labelled 

CD4- cells and allowed OT-II CD4+ fraction to flow through to be collected. The 

column was washed with 3 ml of MACS buffer to collect the remaining CD4+ T 

cells, then removed from the separator and flushed out with MACS buffer, using 

a plunger, to collect the magnetically labelled APCs into the sample containing 

C57BL/6 splenocytes. Both OT-II cells and C57BL/6 splenocytes were 

resuspended in complete media and counted. Splenocytes were then treated 

with 500 ul of mitomycin C (1 mg/ml stock in DPBS; Sigma) at 37oC for 45 min to 

inhibit their ability to proliferate. Thereafter, splenocytes were washed twice in 

complete media and combined with OT-II CD4+ T cell at 1:4 ratio in 200 ml of 

complete media supplemented with ovalbumin chicken peptide (OVA323-339)(1 

ug/ml), IL-12(R&D Systems) (10 ng/ml) and anti-IL-4 antibody (BioXCell)(2 

ug/ml). The resulting cell suspension was split into 75cm2 tissue culture flasks 

(Corning) at 50 ml/flask and incubated at 37oC 5% CO2 for 72 h.  
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After 72h, the media in the flasks changed its colour to the peachy pink and the 

large clumps of proliferating cells were observed. Cells from all flasks were 

pulled together, blasting cells counted and 3 ml of suspension was used for FACS 

staining to determine the percentage of the OT-II Th1 polarized cells obtained. 

The cells were stained according to the FACS surface staining protocol (see 

section 2.5.1) for viability, CD4, Vα2 and Vβ5 markers (Table 2-1) and the 

percentage of Vα2+Vβ5+ double-positive cells (from the CD4+ population) was 

used to calculate the total number of OT-II Th1-polarized cells obtained. The 

cells were resuspended at 10 x 106 cells/ml in sterile DPBS and utilized for the 

breach-of-tolerance RA mouse model induction. 

 

   Dendritic cell generation from the mouse bone marrow 

 

Femur and tibia bones from both mouse legs were harvested and cleaned from 

the surrounding tissue, the epiphysis cut off from both sides of each bone and 

the bone marrow flushed out with complete media using a 25G syringe. The 

marrow was then passed through a 70 µm EASYstrainer, a strainer washed with 

complete media, and a single cell suspension collected and spun at 400 g for 5 

min at 4oC. Red blood cells were removed by incubation with 1xRBC lysis buffer 

(eBioscience) for 5 minutes at room temperature (RT), cells washed with 

complete media and counted. Cells were then resuspended at 1.5 x 106 cells/ml 

in complete medium containing 5% GM-CFS supernatant and seeded at 1.5 x 106 

cells/well in 6-well culture plates (Corning) with additional 2 ml of 5% GM-CSF in 

complete medium. Cells were cultured at 37oC 5% CO2. On day 3, each well was 

supplemented with 2 ml of 5% GM-CSF in fresh complete medium. On day 6 of 

culture, medium from all wells was aspirated and 3 ml of fresh complete 

medium containing 5% GM-CSF were added. Cells also received 100 ng/ml of 

bacterial lipopolysaccharide (LPS) from Escherichia coli (E.coli) strain 0111:B4 

(Sigma), with control wells left unstimulated, and cultured overnight. On day 7, 

CD11c+ dendritic cells from an LPS-stimulated and control wells were assessed by 

FACS for the expression levels of MHC-II and co-stimulatory molecules CD40 and 

CD86 as indicators of their mature phenotype. Cultures containing ≥80% of 
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CD11c+ cells which upregulated the above molecules upon LPS stimulation were 

considered of satisfactory quality and used for in vitro assays. 

 

2.4 In vitro cultures  

 BMDC-CD4+ T cell co-culture 

 

On day 6 of culture, BMDCs were treated with 100 ng/ml of LPS (from E.coli 

0111:B4, Sigma) overnight to promote their maturation, followed by incubation 

in the presence of either 0.1 ug/ml or 5 ug/ml of OVA323-339 peptide (Sigma) for 2 

h at 37oC 5% CO2. CD4+ T cells were isolated from lymph nodes and spleens of OT-

II mice using EasySep kit (Stemcell Technologies) and labelled with CFSE to 

monitor their proliferation. BMDCs (0.2x105) were co-cultured with CD4+ T cells 

(2x105) in round-bottom 96-well plates (Corning) for 24 or 72 h in the presence 

of either 100 nM or 10 000 nM of Tofacitinib (base or citrate forms) (LC Labs) or 

corresponding concentrations of DMSO (Sigma).  

 

 BMDC-CD4+ T cell re-challenge co-culture 

 

BMDCs were treated as described above and the CD4+ T cells were isolated from 

lymph nodes and spleens of OT-II mice using EasySep kit (Stemcell 

Technologies). BMDCs (0.2x105) were co-cultured with CD4+ T cells (2x105) in 

round-bottom 96-well plates (Corning) for 72 h in the presence of either 100 nM 

or 10 000 nM of Tofacitinib base (LC Labs) or corresponding concentrations of 

DMSO (Sigma). The cells were then washed twice in complete media, CD4+ T 

cells counted and rested in complete media supplemented with 1 ng/ml of IL-2 

(Biolegend) for another 72 h. CD4+ T cells were subsequently CSFE-labelled and 

each treatment group split in half and co-cultured with fresh BMDCs in the 

presence or absence of OVA peptide for the final 72 h.  
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On other occasions, OVA-pulsed BMDCs (0.2x105) were co-cultured with CD4+ T 

cells (2x105) for 72 h, CD4+ T cells rested in the presence of 1 ng/ml of IL-2 

(Biolegend) for 72 h and CFSE-labelled. The final step involved incubation with 

fresh OVA-treated BMDCs in the presence of an appropriate concentration of 

Tofacitinib base (LC Labs) or DMSO (Sigma).    

 

 αCD3/CD28 CD4+ T cell activation assay 

 

96 well round-bottom plates (Corning) were coated with anti-CD3 antibody 

diluted in DPBS at 1 ug/ml and incubated overnight at 4oC. Control wells 

received the corresponding volume of DPBS alone. The next day, CD4+ T cells 

were isolated from lymph nodes and spleens of OT-II mice using EasySep kit 

(Stemcell Technologies) as described previously, viable cells counted and 

resuspended in complete media. Plate with anti-CD3 antibody solution was 

blotted dry and 150 ul (3x105) of CD4+ T cell suspension were added to both 

control and antibody-coated wells. Antibody-coated and control wells also 

received 50 ul of anti-CD28 (NA/LE) (BD Biosciences) diluted in complete media 

or complete media alone, respectively, to obtain a final concentration of 5 

ug/ml in the well. Cells received increasing concentrations of tofacitinib base 

(LC Labs) in DMSO or corresponding DMSO concentrations to set up a dose-

response assay and were incubated for 48 h at 37 oC.  
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2.5 Western blotting 

 BMDC monoculture and cytokine stimulation 

 

Dendritic cells were generated as described above, except for the LPS 

stimulation. Instead, on day 7 cells were harvested, counted, resuspended at 

1x106 cells/ml in complete media, and seeded at 1x106 cells/well in a 12-well 

culture plate (Corning). Cells were treated with either 0.001% of DMSO (Sigma) 

or 100 nM of Tofacitinib base (LC Labs), with 3 wells per condition, and 6 wells 

were left untreated. After overnight incubation at 37oC 5% CO2, half of the 

untreated cells together with cells receiving DMSO or Tofacitinib were 

stimulated with a 100 ul of cytokine cocktail (see below) for 15 mins at 37oC. 

Immediately after the cells were processed for analysis by Western blotting. 

Stimulant Final dilution ( in the 

well) 

Source 

PMA 10 ng/ml Sigma 

Ionomycin 500 ng/ml Sigma 

IL-4 20 ng/ml R&D Systems 

IL-6 20 ng/ml Biolegend 

IFNy 25 ng/ml Peprotech 

GM-CFS 200 ng/ml R&D Systems 
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 BMDC - CD4+ T cell co-culture  

 

Dendritic cells were stimulated with LPS on day 6 of culture and half of them 

also pulsed with OVA323-339 peptide on day 7 for 2 hours, as described above 

(section 2.4.1). Cells stimulated with LPS only or both LPS with OVA peptide 

were collected separately, spun at 400 g for 5 min, and resuspended at 0.2x106 

cells/ml in complete media. CD4+T cells were purified using the EasySep kit 

(Stemcell Technologies) and resuspended at 2x106 cells/ml in complete media. 

The co-culture was set up with 0.1x106 dendritic cells and 1x106 CD4+T cells per 

well in a 24-well co-culture plate. T cells were co-cultured with DCs in the 

presence or absence of OVA peptide, and both groups received either 0.001% of 

DMSO (Sigma) or 100 nM of Tofacitinib base (LC Labs) treatment overnight. The 

positive control wells contained OVA pulsed dendritic cells and CD4+T cells and 

received 20 ng/ml of IL-6 (Biolegend). Cells were rested overnight at 37oC 5% CO2 

and processed for analysis by Western blotting. 

 

 Sample preparation 

 

After overnight incubation, dendritic cells were washed in ice-cold PBS and lysed 

on ice in 40 ul of ice-cold RIPA buffer (Sigma) containing Halt protease inhibitor 

cocktail (Thermo Fischer). For co-culture samples, supernatants containing T 

cells were collected and dendritic cells were scraped from the wells and added 

to the supernatants. Supernatants were centrifuged at 12,000 rpm for 15 min 

and cell pellets lysed in RIPA buffer (Sigma) containing Halt protease inhibitor 

cocktail (Thermo Fischer). Resulting cell lysates were lysed for further 30 mins 

in the cold room (at 4oC) with rotation. Cells were then centrifuged at 12,000 

rpm for 15 min (at 4oC) and supernatants collected into fresh tubes. Pierce BCA 

protein assay kit (Thermo Fischer) was used to determine protein concentration 

for each sample and the loading volumes were adjusted to have equal amounts 

of total protein across samples. Lysates were mixed with 5xSDS loading buffer at 
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4:1 dilution, boiled at 95oC for 5 mins and then kept on ice for immediate 

blotting or stored at -20oC for future use.   

 

 Immunoblotting and protein detection 

 

RunBlue SDS 4-20% pre-cast gel (Expedeon) was set up in a buffer tank filled with 

running buffer (Expedeon). Equal amounts of protein from each sample were 

loaded onto the gel along with 7 ul of PageRuler Pre-stained protein ladder 

(Thermo Fischer). Proteins were separated by PAGE at 180 V for 45 mins and 

transferred onto 0.45 um nitrocellulose membrane (Amersham) in a transfer 

buffer (Biorad) at 100 V for 1 hour. The membrane was then washed on a shaker 

platform in 1xTBS buffer for 5 mins at RT and incubated with blocking buffer (5% 

dry milk in 1xTBS-T) for 1 h at RT to avoid non-specific antibody binding. The 

membrane was subsequently washed twice for 5 mins with 1xTBS-T with agitation 

and blotted overnight at 4oC with rotation in dilution buffer with primary 

antibodies recognising STAT3 or pSTAT3 (Cell Signalling Technology). The washing 

step was repeated, followed by incubation for 1 h at RT with species-specific 

detection antibodies (for antibodies-see Table 2-2) in 5% dry milk in 1xTBS-T. After 

the final wash, specific proteins were detected with WesternBright ECL HRP 

Substrate reagent (Advansta) according to manufacturers’ instructions and 

visualized using C-DiGit scanner and Image Studio Lite software (Licor 

Biosciences). After detection, the membrane was washed as previously, and the 

antibody incubation and detection steps repeated to assess β-actin protein levels.   
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2.6    Flow cytometric cell analysis 

 FACS staining for T cell surface markers 

 

Following 24 or 72 h incubation in co-culture with DCs, cells were washed in 

DPBS and stained for viability using fixable viability dye (Thermo Fischer) for 20 

mins at RT, followed by incubation with FC-receptor block (2.4G hybridoma 

supernatant) for 10 min at 4 oC. The activation status of T cells was subsequently 

assessed using antibodies against CD4, CD69, CD44, and CD62L (see Table 2-1 for 

a list of flow cytometry antibodies). Samples were washed with FACS buffer 

between each incubation step at 400 g for 3 mins, except for after FC blocking 

step, and the supernatants were discarded. After the final wash, samples were 

transferred through 40 µm nitex mesh into polystyrene FACS tubes and acquired 

using a BD LSR FORTESSA or BD LSR II Analyser (both Becton, Dickinson, and 

company). Data analysis performed using FlowJo software (Tree Star Inc). 

    

 CD4+ T cell PMA/Ionomycin stimulation and intracellular 
cytokine staining  

 

Cells from 72 h co-culture were washed and stimulated directly in the culture 

plate. For ex vivo stimulation of popliteal LNs, tissues were mashed through a 

nitex into a cell suspension and samples spun down in a 96-well plate. 

Stimulation cocktail was made up in complete media with PMA (10 ng/ml; 

Sigma), ionomycin (500 ng/ml; Sigma) and GolgiStop protein transport inhibitor 

(1:1000 dilution; BD Biosciences) and samples stimulated for 4 h at 37 oC. Cells 

were subsequently washed in DPBS, stained for viability and cell surface 

markers, and washed again in FACS buffer. Intracellular cytokines staining was 

performed using Fixation/Permeabilization solution kit (BD Biosciences). Cells 

were fixed and permeabilised using Cytofix/Cytoperm solution for 20 min at 4 oC, 

followed by a wash in 1x Perm/Wash buffer (diluted 1:10 in distilled H20). Cells 

were left in 1x Perm/Wash overnight or immediately stained with antibodies 
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diluted in 1xPerm/Wash and recognising IFNy and IL-2 (see Table 2-1) for 45 min 

to 1 h at RT. Cells were protected from light at all incubation steps. The final 

wash was repeated twice with 1xPerm/Wash, cells were resuspended in FACS 

buffer, transferred through nitex, and acquired as stated above.  

 

 CD4+ T cell transcription factor staining 

 

Cells from either in vitro co-culture or cell suspension obtained directly from 

secondary lymphoid organs were washed in DPBS and stained for viability and 

surface markers as before, followed by a wash in FACS buffer at 400 g for 3 

mins. eBioscience Foxp3/Transcription factor staining buffer set (Thermo 

Fischer) was employed for T-bet expression detection. Fixation/Permeabilization 

concentrate was diluted in the solution provided and cells fixed for 1 h a RT, 

followed by a wash in Permeabilization buffer. Cells were then either left in 

Permeabilization buffer overnight or immediately stained with an antibody for 

transcription factor T-bet diluted in Permeabilization buffer for 1 h at RT. Cells 

were protected from light at all incubation steps. The final step involved two 

washes in 1xPermeabilization buffer, followed by samples resuspended in FACS 

buffer and transferred through nitex for acquisition.   

 

 Apoptosis marker staining 

 

After being stained for viability and surface markers, cells were washed twice in 

FACS buffer and resuspended in Annexin V Binding buffer (Biolegend; diluted 

1:10 in dH20) at 2x106 cells/ml. 50 ul of cell suspension from each sample was 

transferred into 5 ml FACS tubes and incubated with Pacific Blue-conjugated 

Annexin V protein (Biolegend) at 1:50 dilution for 15 mins at RT and protected 

from light. 200 ul of Annexin V Binding buffer was then added to the samples 

and samples transferred through nitex and acquired as stated above.  
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 Phospho Flow cytometry assays  

2.6.5.1 Mouse whole blood stimulation and staining 

 

Mouse whole blood obtained through cardiac puncture was collected into 

Eppendorfs containing Heparin (1:500) in DPBS and kept on ice. 100 ul of each 

sample was transferred into FACS tubes together with 100 ul of a cocktail 

containing antibodies against CD4 and CD44 molecules and IL-6 (100 ng/ml, in 

DPBS with 5% BSA)(Sigma). Unstimulated samples received antibody cocktail 

alone. All samples were subsequently incubated at 37 oC for 15 mins and 

immediately fixed with 500 ul of pre-warmed Phospflow Lyse/Fix buffer (BD) for 

10 min at RT, protected from light. Cells were then spun down, washed twice 

with cold DPBS, and permeabilised with 1 ml of cold Perm Buffer III (BD) for 30 

min on ice, protected from light. Cells were washed twice with cold DPBS and 

once with cold 5% BSA in DPBS. Intracellular phosphorylated STAT staining was 

performed with pSTAT3(pY705)-AF647 antibody(BD)(see Table 2-1) prepared at 

1:5 in 5% BSA in DPBS. Cells were stained on ice for 30 min protected from light, 

washed twice with cold 5% BSA in DPBS, transferred through nitex, and 

resuspended in FACS buffer for acquisition. 

 

2.6.5.2 DC-CD4+ T cell co-culture stimulation and staining 

 

BMDCs were stimulated to maturation with LPS as described earlier (Section 

2.4.1.) and pulsed with 5 ug/ml of OVA323-339 peptide (Sigma) for at least 2 h at 

37 oC 5% CO2. CD4+ T cells were isolated from lymph nodes and spleens of OT-II 

mice using EasySep kit (Stemcell Technologies) and 1x106 of CD4+ T cells were 

co-cultured with 0.1x106 BMDCs in 24-well culture plates (Corning) overnight in 

the presence of 10 000 nM of Tofacitinib (base or citrate) (LC Labs) or 

corresponding concentration of DMSO (Sigma). Following incubation, cells were 

stimulated with either 100 ng/ml of IL-2 or IL-6 (both-Biolegend) for 15 min at 

37 oC and immediately fixed with 1.25 ml of pre-warmed Phospflow Lyse/Fix 
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buffer (BD) for 10 min at 37 oC. Samples were then collected into FACS tubes, 

spun down at 500 g for 5 min with resulting supernatant discarded, and then 

washed twice in FACS buffer. Cells were treated with FC-receptor block (2.4G 

hybridoma supernatant) and stained with extracellular antibodies against CD4 

and CD44 (see Table 2-1), as described before (see Section 1.6.1), and washed in 

FACS buffer before being permeabilised with cold Perm Buffer III (BD) for 30 min 

on ice protected from light. Cells were subsequently washed twice in FACS 

buffer and stained intracellularly with pSTAT3(pY705)-AF647 and pSTAT5 

(pY694)-PE antibodies (both BD)( see Table 2-1) diluted in FACS buffer (at 1:5) 

for 1 h at RT. Following the final wash, samples were resuspended in FACS buffer 

for acquisition. 

 

2.7 Enzyme-linked immunosorbent assay (ELISA) 

 IFNy ELISA 

 

Supernatants were collected from CD4+ T cell-DC co-cultures on day 3, stored at 

-20oC, and thawed thereafter at RT prior to use. IFNy capture antibody (Thermo 

Fischer)(see Table 2-3) was diluted in PBS at 1 ug/ml and used to coat 96-well 

high binding plates (Corning) overnight at 4oC. Plates were then washed twice 

with PBS/0.05% Tween20 wash buffer and incubated with 200 ul of PBS/1% BSA 

for 2 h at RT to prevent non-specific binding. Standard was reconstituted in 

PBS/0.5% BSA and diluted to obtain top standard solution at 800 pg/ml, which 

was used to set up an 8-point standard curve through serial dilutions. Plates 

were washed again and 50 ul of standard or sample of appropriate dilution were 

added to appropriate wells in duplicate, followed by 2 h incubation at RT. After 

another round of washes in PBS/0.05% Tween20, 50 ul of biotin-labelled 

antibody (Thermo Fischer)(Table 2-3) was added for 1 h incubation at RT. Plates 

were washed as before and 50 ul of detection reagent Extravidin-Peroxidase 

(Sigma) diluted in PBS/0.5% BSA was added to each well and plates incubated for 

45 min at RT. Following a final wash, 50 ul of SureBlue TMB substrate (Thermo 

Fischer) was added to each well and incubated at RT protected from light until 
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the colour developed in the standard wells. The reaction was terminated by 

adding 50 ul of 10% sulphuric acid and the resulting light absorbance of each well 

was measured using Sunrise Microplate reader (Tecan) at 450 nm wavelength.       

 

 OVA ELISA 

 

Whole blood was collected from RA model mice by cardiac puncture and left in 

the fridge for several hours to allow the clotting. To obtain the serum, the 

samples were spun down at 13,000 rpm for 5 mins at 4 oC and the clear fraction 

was moved into fresh tubes and spun down again. The resulting serum was 

aliquoted and stored in fresh tubes at -20oC until use.  

For ELISA, high binding 96-well plates (Corning) were coated overnight at 4 oC 

with chicken ovalbumin protein (Sigma) dissolved in 0.05 M carbonate buffer. 

The plates were then washed with PBS/ 0.05% Tween20 wash buffer and blocked 

with 200 ul of 10% FBS/PBS for 1 h at RT. Plates were subsequently washed, and 

the serum samples appropriately diluted in wash buffer were added in duplicate. 

Samples from the HAO-challenged mouse group were added as a positive control, 

and the negative control contained wild type mouse serum. Doubling dilutions 

were performed for all samples, starting at an initial 1:100 dilution. Plates were 

incubated for 2 h at RT allowing a-OVA antibodies from serum to bind to the 

protein in the wells, followed by another wash. 100 ul of biotin-labelled IgG1 or 

IgG2a antibody (both BD Pharmigen) (Table 2-3) was added for 1 h incubation at 

RT. After another round of washes, 100 ul of Extravidin-Peroxidase substrate 

(Sigma) diluted in wash buffer was added to each well and incubated for 30 min 

at 37 oC. Following a final wash, 100 ul of detection reagent SIGMAFAST OPD 

substrate solution (Sigma) was added and incubated, protected from light, until 

the colour has developed in the positive control wells. The reaction was 

terminated by adding 50 ul of 10% sulphuric acid and the resulting light 

absorbance of each well was measured using Sunrise Microplate reader (Tecan) 

at 492 nm wavelength.   
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 Collagen II ELISA        

 

High binding 96-well plates (Corning) were coated overnight at 4 oC with chicken 

Type II Collagen (Sigma) in 0.05M carbonate buffer. The plates were then 

washed with PBS/ 0.05% Tween20 wash buffer and blocked with 200 ul of 

Animal-free blocker (Vector Laboratories) overnight at 4 oC. The subsequent 

steps were the same as for the α-OVA ELISA described above. The positive 

control samples used to confirm assay efficacy were from the mouse with 

collagen-induced arthritis (CIA). The HRP-conjugated antibody (Sigma)(Table 

2-3) was used to detect total IgG levels. Following antibody incubation and a 

final wash, SIGMAFAST OPD substrate solution (Sigma) was used for signal 

detection as before, followed by reaction termination with 10% sulphuric acid. 

The resulting light absorbance of each well was measured as stated above.  

 

2.8 Luminex assay  

 

Following ELISA for cytokines, day 3 co-culture supernatants were assessed by 

Milliplex Mouse cytokine panel (Merck). Samples were thawed at RT and 

centrifuged at 10,000 rpmi for 5 min to eliminate cellular debris. Samples were 

then diluted 1:2 in assay buffer. Cytokine standards were prepared according to 

the instruction manual provided. Wells were incubated with 200 ul of Wash 

buffer with agitation for 10 min at RT and the remaining buffer decanted. 25 ul 

of each control and standard solutions were added to the appropriate wells, 

while 25 ul of assay buffer used for background wells. 25 ul of culture medium 

was then added to each of the above wells. 25 ul of diluted samples were plated 

as appropriate. Beads in each vile were mixed by vortexing and sonication, and 

60 ul from each antibody bead vial used to make up a master mix supplemented 

with Assay buffer. 25 ul of bead mixture was added to all the wells, plate sealed 

and incubated overnight at 4 oC protected from light. The plate was then washed 

twice with agitation with 200 ul of Wash buffer, rested in between washes on a 
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handheld magnet to settle the beads, and remaining buffer decanted. 25 ul of 

biotinylated detection antibodies were added for 1 h incubation at RT with 

agitation, followed by 25 ul of Streptavidin-PE reporter added for another 30 min 

incubation at RT with agitation. Plate contents were then decanted, and the 

plate washed as before. For acquisition, 150 ul of sheath fluid was added to all 

the wells, and the plate incubated for 5 min with agitation. Samples were then 

assessed using Bio-Rad Luminex 200 plate reader for the presence of IL-2, IL-5, 

IL-6, IL-10, IL-17A, IFNy, and TNFα. Sample cytokine concentrations were 

determined from the standard curves constructed by the software for each 

cytokine. Values below the detectable range were designated as 0 for graphic 

representation.   

 

2.9 In vivo adoptive transfer system for assessment of T 
cell responses 

 

CD4+ T cells were isolated from lymph nodes and spleens of male OT-II mice 

using EasySep kit (Stemcell Technologies) and labelled with CFSE as previously 

described (Section 2.3.1). Cells were then resuspended in sterile DPBS (Sigma) 

and a total of 1x106 OT-II CD4+ T cells in a final volume of 200 ul were adoptively 

transferred by intravenous injection (i.v.) into all C56BL/6 male recipient mice. 

One day following the adoptive cell transfer, recipients were immunized 

subcutaneously (right footpad) with either 8 ug of LPS from E.coli  strain 0111: 

B4 (Sigma) or the same LPS dose together with 25 ug of OVA323-339 peptide, both 

in the final volume of 25 ul. On the day of adoptive transfer, recipient mice 

received a 25 mg/kg dose of Tofacitinib citrate (LC Labs) prepared in 0.5% 

Methylcellulose/0.025% Tween20 solution in sterile DPBS (as described in Section 

1.1.4.) and administered by oral gavage in a final volume of 100 ul. For the 

consecutive 3 days, 25 mg/kg of the drug was administered twice daily. Control 

groups received twice-daily administration of 0.5% DMSO in the same solution 

and volume as the drug by oral gavage. Three days after the footpad challenge, 

the recipient mice received a single 25 mg/kg dose of the drug or DMSO and 

were sacrificed 40 min later. Whole blood was collected from each mouse by 
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cardiac puncture for assessment of the efficacy of JAK/STAT signalling pathway 

inhibition by the drug in vivo by Phospho Flow cytometry. Popliteal lymph nodes 

were harvested for analysis of adoptively transferred CD45.1 OT-II CD4+ T cells 

and their endogenous counterparts by FACS.  

 

2.10 ‘Breach of tolerance’ RA mouse model 

 Mouse model generation and drug treatment   

 

CD4+ T cells were isolated from lymph nodes and spleens of male OT-II mice 

using MACS CD4+ T cell isolation kit and polarized over 3 days towards Th1 

phenotype( Section 2.3.2). The sample from resulting culture was stained by 

FACS as described, and the percentage of Vα2+Vβ5+ double-positive cells was 

used to calculate the total number of Th1 polarized cells obtained. Cells were 

then resuspended in sterile DPBS and a total of 2x106 polarized Th1 cells in a 

final volume of 200 ul were injected i.v. into all C56BL/6 male recipient mice. 

The next day, all recipients were immunized subcutaneously (scruff) with 100 ug 

of OVA protein in Freund’s complete adjuvant (CFA; Sigma), and after another 

10 days two treatment groups were challenged by subcutaneous injection in the 

right and left hind limbs, close to the ankle joints with 100 ug of heat-

aggregated OVA (HAO) in 50 ul PBS. The control group received PBS injection 

instead. Starting one day prior to HAO challenge, mice from one HAO-treated 

group received Tofacitinib citrate (LC Labs) twice daily (at 25 mg/kg/dose) 

(prepared as described in Section 2.1.4. and administered by oral gavage) in a 

final volume of 100 ul. Another HAO-treated group and PBS control group 

received twice-daily administration of 0.5% DMSO in the same solution and 

volume as the drug by oral gavage. On day 7 after the HAO challenge, mice 

received a single 25 mg/kg dose of the drug or DMSO and were sacrificed within 

1 h of the last dose. 
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 Pathology assessment 

 

On day 3 post-HAO challenge, blood was collected by tail vein bleed for the 

assessment of phospho-STAT levels by Phospho-Flow cytometry. Starting one day 

after HAO challenge until the termination of the experiment, the thickness of 

both hind paws was measured daily using dial caliper (Kroeplin) to monitor the 

extent of inflammation. After the sacrifice, hind limbs were removed, fixed in 

10% neutral-buffer formalin, and decalcified in EDTA solution for 6 weeks. 6 um 

sections were cut on the sagittal plane and stained with H&E or toluidine blue. 

Sections were imaged used EVOS FL Auto 2 imaging system (Thermo Fischer). 

Histological assessment was performed by two observers blinded regarding the 

treatment group. Each section was scored on the scale 0-3 for cellular 

infiltration, hyperplasia, and cartilage/bone erosion with a maximal total score 

of 9 per section. Whole blood was collected by cardiac puncture for assessment 

of anti-OVA and anti-Collagen II antibody levels in mouse serum. Lastly, popliteal 

lymph nodes were collected for FACS analysis.  
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Table 2-1. List of antibodies used for flow cytometric analysis. 

 
Antibody 

target 

Conjugate Clone Isotype Species 

(host) 

Source 

CD4 PerCP-Cy5.5 GK1.5 IgG2b, κ Rat Biolegend 

CD4 eF450 RM4-5 IgG2a, κ Rat eBioscience 

CD4 BV605 RM4-5 IgG2a, κ Rat Biolegend 

CD44 APC IM7 IgG2b, κ Rat eBioscience 

CD44 BV395 IM7 IgG2b, κ Rat BD Biosciences 

CD44 PerCP-Cy5.5 IM7 IgG2b, κ Rat eBioscience 

CD45.1 eF450 A20 IgG2a, κ Mouse eBioscience 

CD62L PE Mel-14 IgG1, κ Mouse BD Biosciences 

CD69 PE H1.2F3 IgG1, λ3 Armenian 

hamster 

BD Biosciences 

CD69 PE-Cy7 H1.2F3 IgG Armenian 

hamster 

eBioscience 

IL-2 APC JES6-5H4 IgG2b, κ Rat eBioscience 

IFNy PE-Cy7 XMG1.2 IgG1, κ Rat Biolegend 

T-bet PE-Cy7 4B10 C Mouse eBioscience 

pSTAT3 

(pY705) 

AF647 4/p-STAT3 IgG2a, κ Mouse BD Biosciences 

pSTAT5 

(pY694) 

PE 47/pSTAT5 

(pY694) 

IgG1, κ Mouse BD Biosciences 
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(TCR) Vα2 APC B20.1 IgG2a, λ Rat eBioscience 

(TCR) 

Vβ5.1/5.1 

FITC MR9-4 IgG1, κ Mouse eBioscience 
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Table 2-2. List of antibodies used for Western Blot assay. 

 

 

Antibody target Clone Species 

(host) 

Isotype Source 

1o Antibody     

pSTAT3 (Tyr705) D3A7 Rabbit N/A Cell signalling 

STAT3 124H6 Mouse IgG2a Cell signalling 

β-actin C4 Mouse IgG1, κ Santa-Cruz 

2o Antibody     

HRP antibody 

(anti-mouse) 

 Donkey Targeting 

rabbit IgG 

GE Healthcare 

HRP 

antibody(anti-

rabbit) 

 Sheep Targeting  

mouse IgG 

GE Healthcare 
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Table 2-3. List of antibodies used for ELISA assays. 

 

Antibody target Clone Species 

(host) 

Isotype Source 

IFNy capture 

antibody 

AN-18 Rat IgG1, κ eBioscience 

IFNy-biotin 

conjugated 

R4-6A2 Rat IgG1, κ eBioscience 

IgG1 A85-1 Rat IgG1, κ BD Biosciences 

IgG2a R19-15 Rat IgG2a, κ BD Biosciences 

IgG (H+L; total) 

HRP conjugated 

- Goat Polyclonal eBioscience 
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3 Investigating the effect of JAK3/1 inhibitor 
Tofacitinib on the DC-CD4+ T cell interaction 
during priming and re-activation stages in vitro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Luminex samples were assessed using Biorad reader by Diane Vaughan.   
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3.1 Introduction 

 

Aberrant CD4+ T cell activation is important in RA development. Activation of 

self-reactive clones escaping negative selection in the thymus and the periphery 

and responding to the neo-epitopes generated in RA contribute to the initiation 

of autoimmune response and self-tolerance breakdown470,471,472. Once primed, T 

cells can migrate to the joint to exert their pathogenic functions through 

cytokine release and direct cell contact with other immune cells and resident 

synovial cells473,474,475,476. While CD4+ T cells are primed during the disease 

establishment phase, they also continuously encounter neo-antigens released 

from the joint tissues undergoing progressive degradation at later stages of RA. 

Thus, therapeutically interfering with CD4+ T cell initial antigenic encounter may 

allow one to potentially limit the replenishment of the activated T cell pool and 

thus, at least partly, control the disease chronicity. Understanding whether and 

how JAK inhibitor tofacitinib influences CD4+ T cells during priming would 

provide a deeper insight into its immunomodulatory functions and potentially 

contribute towards the improvement of the clinical efficacy of the drug.  

Alongside the newly primed T cells, the activated/memory effector T cells are 

equally important in sustaining and perpetuating the chronic autoimmune 

response. Since the initiation of an autoimmune response is observed in patients 

up to a decade before the symptoms begin to manifest, by the time the patients 

get diagnosed and start receiving treatment most of the immune cells and the 

resident synovial cells are activated477. This is evidenced by CD4+ T cells found in 

the RA patient synovium to exhibit activated phenotype 478,479,480. In addition, 

the antigen-experienced lymphocytes have a much lower activation threshold 

compared to their naïve counterparts and can bypass the requirement for TCR-

dependent re-stimulation and undergo bystander activation by a combination of 

co-stimulation signals and cytokine cues abundant in the inflamed synovial 

environment481,482. Therefore, the secondary stimulation of these activated CD4+ 

T cells provides another important checkpoint for potential therapeutic 

targeting and thus should be explored in the context of tofacitinib treatment.  
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Multiple studies using human lymphocytes from both healthy donors and RA 

patients have been  conducted to determine the effect tofacitinib treatment has 

on the lymphocyte populations, including the CD4+ T cell compartment. In a 

study by Maeshima et al. CD4+ T cells isolated from peripheral blood 

mononuclear cells (PMBCs) and synovium of RA patients and re-activated ex vivo 

in the presence of increasing tofacitinib concentrations demonstrated diminished 

proliferative potential alongside with reduced IFNy and IL-17 cytokine 

production, both affected in a dose-dependent manner.306 In another study, 

healthy individuals subjected to a 4-week treatment with clinically relevant 

tofacitinib dose demonstrated a profound reduction in all subsets of activated T 

cell subsets, including CD4+ T cells, which potentially correlated with inhibition 

of activated T cell proliferation rather than direct effect of the drug on the 

ability of the cells to undergo activation. By contrast, naïve and central memory 

CD4+ lymphocyte counts have increased through the treatment period. Further, 

IFNy-producing CD4+ T cells re-stimulated ex vivo in both antigen-specific 

manner and with plate-bound anti-CD3/CD28 antibodies showed reduced IFNy 

production levels after tofacitinib treatment. Interestingly, these effects were 

completely reversed upon drug withdrawal. The authors thereby suggest that 

tofacitinib preferentially targets activated CD4+ T cell subset proliferation and 

function while their naïve and central memory counterparts are preserved.483 

Correspondingly, a study by Piscianz et al. showed tofacitinib exposure during 

healthy human PBMC phytohemagglutinin (PHA)-activation ex vivo to almost 

completely abolish cell proliferation and reduce activation, assessed by CD25 

expression, as well as inhibited production of several cytokines, including IL-2, 

IL-17 and IFNy. While the removal of the drug restored cell proliferative ability 

and capacity for CD25 expression, the production of most cytokines remained 

supressed.484 The same group in the later study have confirmed the significant 

impairment of  CD25 expression and IFNy production by PBMCs but detected only 

a modest effect on cell proliferation.485 

While these studies overall demonstrate the ability of tofacitinib to inhibit both 

proliferation and cytokine production in re-activated human CD4+ lymphocytes, 

the PBMCs utilized contain a combination of naïve, effector and memory CD4+ 

subsets at different stages of activation, thus making it difficult to pinpoint 

whether the drug specifically interferes with the priming or reactivation of these 
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cells. Moreover, the polyclonal nature of the circulating human lymphocytes is 

not suitable for assessing T cell activation in the antigen-specific manner, which 

is more physiologically relevant in the context of the disease. The 

immunomodulatory effects of tofacitinib have also been extensively investigated 

in multiple rodent models of RA, but a thorough drug assessment in the in vitro 

setting is very limited.305,310,311,312. Therefore, in this project I utilize a 

reductionist approach by employing naïve CD4+ T cells from OT-II transgenic 

mice, expressing αβTCR specific for chicken ovalbumin peptide 323-339 (OVA323-

339) and recognised in the context of MHC-II (I-Ab) complex469. In vitro co-culture 

of these naïve antigen-specific CD4+ T cells with OVA323-339 peptide-presenting 

murine bone marrow-derived dendritic cells presents an excellent tool for 

effectively mimicking either T lymphocyte priming or re-activation and 

individually evaluating the impact of tofacitinib treatment on the outcome of 

both stages of CD4+ T cell-DC interaction. Importantly, the OT-II CD4+ T cells can 

be also be effectively employed for adoptive transfer experiments, thus allowing 

to replicate the in vitro experiments into the in vivo setting.  

Thereby, by employing the above antigen-specific co-culture system, I sought to 

address the following aims: 

 To confirm the inhibition by tofacitinib of the JAK/STAT pathway in the 

model CD4+ T cell-DC co-culture 

 To assess the effect of tofacitinib treatment on the activation status and 

proliferative capacity of antigen-specific CD4+ T cells during priming 

 To address the capacity of CD4+ T lymphocytes to differentiate and 

produce lineage-specific cytokines upon tofacitinib exposure during 

priming 

 To examine the persistence of CD4+ T cell phenotype acquired during 

priming upon secondary antigenic challenge 

 To investigate the impact of tofacitinib on the previously activated 

(antigen-experienced) CD4+ T lymphocytes 
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I hypothesise that inhibition of the signalling through the JAK/STAT pathway by 

tofacitinib will impact the efficiency of CD4+ T cell-DC primary interaction and 

lead to alterations in the resulting CD4+ T cell phenotypic and functional profile. 

I also propose that the acquired CD4+ T cell phenotype might persist upon 

antigenic re-challenge.   
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3.2 Results 

 Tofacitinib (base) effectively inhibits γc and gp130 
cytokine signalling by blocking JAK1 and JAK3 
enzymatic activity downstream of cytokine receptors in 
vitro 

 

Prior to investigating the effect of tofacitinib on CD4+ T cells, it was crucial to 

confirm that the drug in my hands had the capacity to block its target molecules 

and subsequently modulate the downstream signalling cascade. Tofacitinib is a 

potent inhibitor of both JAK3 and JAK1 kinases, which relay the signals from 

cytokine receptors by recruiting and phosphorylating different combinations of 

STAT proteins, depending on the type of the cytokine receptor upstream. Since 

inhibition of JAK enzymatic activity leads to their inability to phosphorylate 

STAT proteins, levels of phosphorylated STAT forms in the cells are routinely 

used to assess JAK activity. Hence, we used the changes in phosphorylated STAT 

levels to confirm the inhibitory capacity of tofacitinib. 

First, I assessed the changes in phosphorylated STAT (pSTAT) levels in bone-

marrow derived dendritic cell monoculture. The cells were stimulated with the 

modified stimulation cocktail developed for the Scottish Nested Arthritis 

Progression cohort (SNAP). The cohort was formed of patients with newly 

diagnosed RA who initiated methotrexate monotherapy, with the purpose of 

establishing the potential cellular signatures predictive of different clinical 

outcomes (disease progression or remission).486 The PBMCs of these patients 

were subjected to deep immunophenotyping, including the measurement of 

their STAT phosphorylation status following stimulation with a cocktail 

containing several cytokines, phorbol 12-myristate 13-acetate (PMA), ionomycin, 

as well as α-CD3 and α-CD28 antibodies (see Chapter 2, Section 2.5.1). The 

latter antibodies were amended as irrelevant for dendritic cell stimulation. 

Tofacitinib was used at 2 concentrations-100 nM and 1000 nM- corresponding to 

approximate maximal and total body exposure concentrations in the whole blood 

of RA patients achieved after a standard tofacitinib dose of 5 mg twice a day.344 



117 
 

117 
 

DMSO (vehicle) used to dissolve the drug is known to be toxic at high 

concentrations, therefore I included control samples treated with DMSO at 

concentrations corresponding to those at final drug dilutions in culture media to 

ensure the observed changes can be attributed to the direct effect of tofacitinib 

treatment rather than an above confounding factor.      

BMDCs were incubated overnight in the presence of either one of the above 

concentrations of tofacitinib or vehicle control. After subsequent stimulation 

with the SNAP cocktail for 15 min, cells were lysed and assessed by Western 

Blotting for the levels of phosphorylated STAT3, activated by IL-6 signalling 

through the gp130 receptor (in conjunction with IL-6R). The SNAP cocktail 

stimulation induced detectable STAT3 activation/phosphorylation levels in non-

treated cells, comparable to those in both vehicle-treated groups (Figure 3-1). 

Exposure to tofacitinib at 100 nM notably inhibited STAT3 phosphorylation in 

stimulated cells, which appears to be further reduced at higher tofacitinib dose 

of a 1000 nM, to a level close that of unstimulated cells. Total levels of STAT3 

remain unaltered under all conditions, confirming the treatment to specifically 

prevent STAT3 proteins from being activated through phosphorylation. This 

result demonstrated the ability of tofacitinib to interfere with the signalling 

through gp130 cytokine receptor by blocking the enzymatic activity of gp130-

associated JAK1 and thereby preventing the downstream STAT3-mediated signal 

transduction. 
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Figure 3-1. JAK inhibitor tofacitinib supresses phosphorylation of STAT3 signal transducer 
protein in BMDCs in response to cytokine stimulation.  

  
Mature BMDCs were cultured overnight in the presence of either 100 or 1000 nM tofacitinib base 
(in DMSO) or the vehicle alone and subsequently stimulated with SNAP cocktail (IL-4, IL-6, IFNy 
and GM-CSF supplemented with PMA/Ionomycin) for 15 min at 37oC. Levels of phosphorylated 
STAT3 form were assessed by Western blotting. The middle band, representing total levels of both 
phosphorylated and non-phosphorylated STAT3 forms, was employed as additional loading 
control. Ns, non-stimulated.  
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Most of the in vitro experiments in my project employ antigen-specific dendritic 

cell-CD4+ T cell co-culture, therefore the next step was to confirm the capacity 

of tofacitinib to modulate JAK/STAT pathway signalling in the co-culture setting 

with no external cytokine input. CD4+ T cells were co-cultured with mature 

dendritic cells in the presence or absence of OVA323-339 peptide and with or 

without 100 nM of tofacitinib, the dose which in the previous experiment 

appeared to be sufficient to induce detectable changes in pSTAT3 levels. 

In the absence of OVA323-339 peptide, OT-II CD4+ T cells did not engage in antigen-

specific interaction with dendritic cells, thus overall cells did not actively 

employ cytokine signalling and exhibit basal levels of phosphorylated STAT3 

protein (Figure 3-2). When the peptide was added to the culture, a cross-talk 

involving IL-6 signalling was established, evidenced by increased levels of 

pSTAT3, comparable to those in a control sample receiving additional IL-6 

stimulation. In the presence of tofacitinib IL-6 signalling in the co-cultured cells 

was notably diminished, with the levels of pSTAT3 close to the baseline. 

Thereby, I have confirmed that tofacitinib is able to inhibit the JAK/STAT 

signalling cascade in the context of antigen-specific CD4+ T cell-dendritic cell co-

culture in vitro. 
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Figure 3-2. Tofacitinib effectively supresses phosphorylation of STAT3 protein in antigen 
specific CD4+ T cell - DC co-culture. 

 

1x106 of purified OT-II CD4+ T cells were co-cultured with 0.1x106 of mature bone marrow-derived 
DCs overnight in the presence or absence of OVA323-339 peptide and with either tofacitinib (in 
DMSO) or vehicle alone. Positive control sample was stimulated with IL-6 (20 ng/ml) for 15 min at 
37oC. Levels of phosphorylated STAT3 form were assessed by Western blotting. The middle band 
representing total levels of both phosphorylated and non-phosphorylated STAT3 forms was 
employed as additional loading control.  
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Western blotting proved to be a sensitive enough method to detect the 

fluctuations in phosphorylation of STAT proteins induced by the drug. However, 

it required a high number of cells and inconsistent loading control levels have 

made a number of blots impossible to interpret. In the view of performing in 

vivo experiments later in the project, which would also require to confirm the 

drug blocking its target pathways but have a very limited yield of cells to assess, 

a more robust technique was needed. I have thus tested the Phospho-Flow 

cytometry approach, which allows to simultaneously evaluate levels of several 

pSTAT proteins even in a small number of cells while distinguishing between 

different cell populations. I have also utilized the additional stimulation with γc 

cytokine IL-2, which employs JAK3 and STAT5 for the downstream signalling, to 

confirm tofacitinib having an impact on its target JAK3 kinase activity.  

CD4+ T cells were co-cultured with DCs as previously described and exposed to 

10 000 nM of tofacitinib overnight. Samples were subsequently stimulated with 

either IL-2 or IL-6 for 15 min, immediately fixed and subjected to Phospho-Flow 

staining for pSTAT5 and pSTAT3 proteins, signalling downstream of IL-2 and IL-6 

receptors, respectively. CD4+ T cells presented with their specific antigen in the 

presence of a vehicle showed a subtle increase in pSTAT3 levels and more 

substantially elevated pSTAT5 levels in response to respective cytokine 

stimulation (IL-6 and IL-2) (Figure 3-3). When treated with tofacitinib, CD4+ T 

cells show impaired ability to receive cytokine signals, as evidenced by lower 

levels of pSTAT5 relative to vehicle control, and levels of pSTAT3 remaining at 

the baseline. I have thereby successfully confirmed the Phospho-Flow technique 

to be an alternative and more effective way to detect changes  in different 

pSTAT protein levels in a cell population of interest in vitro. I have also 

demonstrated that tofacitinib diminishes the function of both of its target 

kinases JAK1 and JAK3, resulting in impaired signalling downstream of gp130 and 

γc cytokine receptors, respectively. 
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Figure 3-3. Tofacitinib treatment reduces both STAT3 and STAT5 phosphorylation upon 
cytokine stimulation in CD4+ T cells in co-culture.  

 

Matured bone marrow-derived DCs were incubated with or without 5 ug/ml of OVA323-339 peptide for 
2 h at 37oC. CD4+ T cells were isolated from OT-II mice lymph nodes and spleens using 
STEMCELL EasySep kit and cultured with DCs overnight in the presence or absence either 10 000 
nM tofacitinib dissolved in DMSO vehicle, vehicle, or no treatment. Cells were subsequently 
stimulated with either IL-2 or IL-6 (both at 100 ng/ml) for 15 min at 37C, immediately fixed and 
stained intracellularly for phosphorylated STAT3 and STAT5. Histograms represent levels of 
pSTAT3 and pSTAT5 in CD4+ T cell populations in response to IL-6 and IL-2 stimulation, 
respectively.  Negative control (pink, no OVAp) received no external stimuli and depicts basal 
levels of both phospho-proteins in non-activated CD4+ T cells. Dashed lines represent approximate 
threshold for STAT phosphorylation from the baseline. 
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 Establishment of the optimal OVA323-339 peptide dose and 
effective tofacitinib (base) dose for co-culture 
experiments 

 

Next, I sought to determine the appropriate concentration of OVA323-339 peptide 

to be used for CD4+ T cell-DC co-culture assays. In our laboratory, a high dose of 

5 ug/ml of peptide is routinely used, which provides a strong stimulus to 

antigen-specific CD4+ T cells via their TCR and might make them less dependent 

on the cytokine signals during priming. Due to this, it might be harder to detect 

the potential changes in the T cells responses induced by tofacitinib treatment. 

Thus OVA323-339 peptide dose-response was performed with 10-fold increasing 

peptide concentrations and the levels of T cell activation marker expression 

were assessed by flow cytometry following 24 h co-culture with dendritic cells.  

CD69 is one of the first markers upregulated in response to antigen-specific T 

cell activation and was expectedly upregulated in about 60% of cells at the 

highest peptide dose(Figure 3-4A). CD44 and CD62L are late activation markers 

with their expression peak at approximately 72 h after T cell priming. 

Nevertheless, CD44 expression upregulation was detectable and its levels 

distinguishable between different peptide concentrations (Figure 3-4B). 

Similarly, loss of CD62L expression upon activation is clearly observed even at 

this early priming stage (Figure 3-4C). Among all three activation markers the 

significant change in their expression has occurred in the presence of 0.1 ug/ml 

of the peptide, which was therefore employed as a sub-optimal peptide dose, 

alongside with maximal (optimal) dose of 5 ug/ml in the subsequent co-culture 

experiments. 
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Figure 3-4. The effect of chicken ovalbumin 323-339 peptide dose range on the activation 
marker expression in CD4 T+ cells in co-culture.  

 

Mature DCs were incubated with increasing concentrations of OVA323-339 peptide for 2 h at 37oC 
and co-cultured for 24 h with CD4+ T cells isolated from lymph nodes and spleens of CD45.1 OT-II 
mice. Samples were then assessed by FACS for the percentage of CD4+ T cells expressing early 
activation marker CD69 (A) and late activation markers CD44 (B) and CD62L (C) when exposed to 
each of OVA323-339 peptide concentrations. Results show the percentage of viable CD4+ T cells 
expressing each of the above activation markers. Data represents mean ± SD for 2 wells per 
condition. Results represented are from a single experiment. Statistical differences between groups 
were assessed by performing One-way ANOVA and Turkey’s multiple comparison test in 
GraphPad prism. Ns, non- significant ≥ 0.05, *designates a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, 
**** ≤ 0.0001. 
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In the previous chapter section, a tofacitinib dose of 100 nM was shown to be 

sufficient to notably diminish STAT3 phosphorylation and thereby interfere with 

the ability of both DCs and CD4+ T cells to receive cytokine signals. In addition to 

that, a drug dose-response was set-up to determine whether tofacitinib can 

exhibit a dose-dependent differential effect on CD4+ T cell viability and capacity 

to express activation markers upon stimulation. CD4+ T cells were activated 

through incubation with α-CD3 and α-CD28 antibodies, with different tofacitinib 

concentrations (from 0 to 10 000 nM) added at the start of the assay. After 48 

hours cells were assessed by flow cytometry. The analysis demonstrated 

tofacitinib to have a significant impact on T cell viability when used at 1000 nM 

and 10 000 nM concentrations (Figure 3-5A). The percentage of T cell expressing 

activation marker CD69 was slightly reduced starting at 100 nM concentration 

and became significantly diminished at both 1000 and 10 000 nM concentrations, 

dropping to approximately 60% and 40%, respectively, when compared to 80% of 

CD69 positive cells in control group (Figure 3-5B). The percentage of CD44 

expressing T cells, on the other hand, was reduced by from 50% to 20% at 100 nM 

drug concentration and was further diminished at both 1000 nM and 10 000 nM 

doses to as low as 10% at the highest drug dose (Figure 3-5C). Based on these 

dose-dependent changes in T cell viability and activation potential, a 100 nM 

concentration of tofacitinib was selected as the lowest effective dose,               

while 10 000 nM was chosen as the maximal effective dose. These two drug 

concentrations were used in all the subsequent co-culture assays in vitro.  
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Figure 3-5. Tofacitinib affects CD4+ T cell viability and activation marker expression in a 
dose-dependent manner.  

 

CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit and cultured in the presence of anti-CD3 (1 ug/ml) and anti-CD28 (5 ug/ml) antibodies 
as an alternative method for T cell activation. CD4+ T cells were incubated in the presence of a 
range of tofacitinib (base) or corresponding vehicle concentrations for 48 h at 37oC and assessed 
by FACS for the effect of different treatment doses on cell viability (A) and activation marker CD69 
(B) and CD44 (C) expression. Cells were gated on total CD4+ T cell population (A) or viable CD4+ T 
cell fraction (B and C). Data represents mean ± SD for 3 wells per condition. Statistical differences 
between groups were assessed by performing Two-way ANOVA and Sidak’s multiple comparison 
test in GraphPad prism. *designates a p-value of ≤ 0.05, *** ≤ 0.001, **** ≤ 0.0001.  
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 Exposure to tofacitinib during priming has no impact on 
CD4+ T cell activation marker expression and modestly 
reduces their proliferative potential.  

 

I further sought to investigate if the presence of tofacitinib during CD4+ T cell 

priming by mature dendritic cells in an antigen-specific manner has an impact on 

the extent of CD4+ T cell activation. T lymphocyte engagement through TCR/CD3 

leads to differential regulation of a range of surface molecules involved in 

lymphocyte migration and tissue homing in vivo, including CD69, CD44, and L-

selectin (CD62L). 

CD69 is an early lymphocyte activation marker that becomes transiently 

upregulated following T cells activation and is involved in the regulation of cell 

ingress and retention in the lymph nodes, as well as egress/migration back to 

the lymphatic circulation.487,488,489 CD44 is a late lymphocyte activation marker 

that promotes T cell interaction with endothelial cells and thereby mediates 

their recruitment to the site of inflammation490. High CD44 expression is 

retained on the effector and memory cell surface, thus also serving as a 

permanent marker of antigenic encounter.491 L-selectin (CD62L) is another late 

activation marker, which contributes to the coordination of T cell homing to the 

lymph nodes through high endothelial venules (HEVs).492 Upon naïve T cell entry 

to the lymph node and its antigen-specific activation CD62L is terminally shed 

from the cell surface, allowing the cell to re-enter the lymphatic circulation and 

migrate to the site of inflammation.493,494 

Proliferation (clonal expansion) of the antigen-specific T cell population is 

another key response following naïve T cell priming. After initial TCR 

engagement leading to extended stable T cell interaction with APC, a T cell 

undergoes a number of rapid divisions over several days. In vivo, this rapid 

expansion of T cell precursors of a rare antigen specificity underlies the 

efficiency of adaptive immune response. 

To assess the effect of the drug on the T cell ability to undergo antigen-specific 

activation, CFSE-labelled OT-II T cells were primed as before, with either 0.1 or 

5 ug/ml of their cognate peptide presented by mature dendritic cells. After 1 
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day of co-culture, robust CD4+ T cell activation was confirmed by profound 

upregulation of CD69 expression at both peptide concentrations, in contrast to 

the low percentage of CD69-positive cells in the absence of OVA (Figure 3-6A). 

CD69 expression remained unaffected by the T cell exposure to either 100 nM or 

10 000 nM of tofacitinib throughout priming.  

Following 3 days of incubation, a majority of CD4+ T cells have proliferated and 

undergone 2-3 rounds of division (not shown), as indicated by decreased 

fluorescence intensity of CFSE staining. Treatment with 100 nM of tofacitinib did 

not impact T cell proliferative ability, however, it was slightly but significantly 

reduced in the cells treated with higher drug concentration (Figure 3-6B). 

Late activation marker assessment showed the expected increase in CD44 

expression levels 3 days after T cell priming in the presence of cognate peptide 

(Figure 3-6C). At suboptimal peptide concentration, CD44 expression was even 

further increased upon tofacitinib treatment, while at optimal peptide dose 

CD44 levels in the presence of the compound remained unchanged. Primed T 

cells also exhibited reduced levels of CD62L expression, and this reduction was 

slightly but significantly reversed by tofacitinib treatment (Figure 3-6D). 

Although the changes in activation marker expression following the drug 

treatment were statistically significant, they are relatively small and that should 

be considered when evaluating their biological relevance. I have therefore 

concluded that exposure of naïve CD4+ T cells to tofacitinib during their antigen-

specific priming had no major impact on activation marker expression and only 

modestly reduced cell proliferative potential. 
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Figure 3-6. Tofacitinib treatment during priming has no effect on CD4+ T cell activation 
marker expression and modestly inhibits their proliferation in vitro 

 

CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit and labelled with CFSE dye to monitor cell proliferation. CD4+ T cells were then co-
cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of OVA323-339 peptide or 
without peptide and were treated with either 100 or 10 000 nM of Tofacitinib (base) in DMSO or 
corresponding vehicle concentrations. After 24 (A) or 72 h (B-D) incubation at 37o C, cells were 
then stained with a viability dye followed by staining with fluorescent antibodies for CD4, early 
activation marker CD69 (A) and late activation markers CD44 (C) and CD62L (D). Lymphocytes in 
graphs (A, C-D) were gated on viable CD4+ cells and then analysed for the above activation marker 
expression. Percentage of proliferated CD4+ cells (B) was determined by gating on viable CD4+ 
cells which underwent at least one round of proliferation (designated by reduction in brightness of 
CFSE fluorescent label). Data represents mean ± SD for 3 wells per condition. Results are 
representative of 3 independent experiments. Statistical differences between groups were 
assessed by performing two-way ANOVA and Sidak’s multiple comparison test in GraphPad prism. 
*designates a p-value of ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001.  
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 Tofacitinib treatment during priming diminishes CD4+ T 
cell capacity for pro-inflammatory cytokine production in 
vitro 

 

As tofacitinib had no impact on naïve CD4+ T cell activation and small effect on 

proliferation during priming, I next aimed to assess if the functional capacity of 

these cells has been compromised. Since antigenic stimulation combined with 

polarizing signals from APCs (DCs) drive T cell differentiation into different T 

helper (Th) subsets, I used the production of cytokines specific for main Th 

subsets as the readout of their function. Following 3 days of OT-II T cell co-

culture with OVA peptide-pulsed dendritic cells in the presence or absence of 

tofacitinib, culture supernatants were collected and analysed for the presence 

of pro-inflammatory cytokines by Luminex assay.  

IL-2 is one of the first mediators secreted by activated CD4+ T cells, which 

signals in a both autocrine and paracrine fashion and is essential for proliferation 

and subsequent survival of antigen-specific effector T cells495,496,497,498. Starting 

at 24 h after initial TCR engagement, IL-2 produced by helper T cells initiates 

autocrine STAT5-dependent negative feedback loop thereby limiting its own 

production499. In our co-culture system, activated T cells secreted high levels of 

IL-2, which increased in an antigen dose-dependent manner (Figure 3-7A). 

Treatment with 100 nM of tofacitinib resulted in notably increased IL-2 levels in 

the supernatant when compared to those in the vehicle-treated samples. IL-2 

production was similarly enhanced by higher tofacitinib dose but did not reach 

statistical significance. Based on the tofacitinib inhibitory mechanism and its 

ability to reduce STAT5 phosphorylation in response to IL-2 stimulation, 

demonstrated earlier in this chapter, I propose that the drug interferes with 

autocrine IL-2 signalling in T cells by blocking JAK3 and JAK1 activation and 

downstream signalling through STAT5. As a result, a negative feedback loop 

limiting IL-2 production is disrupted, leading to increased IL-2 generation by 

activated T cells. 
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Th1 helper subset, shown to be responsible for arthritis development in both 

mice and humans, produces its signature cytokine IFNy upon differentiation, 

alongside TNFα and IL-2. Tofacitinib was able to suppress IFNy production by 

activated T cells to the levels beyond detectable by the assay, suggesting the 

ability of the drug to interfere with T cell polarization towards the Th1 subtype 

(Figure 3-7B). While the initial trigger for Th1 polarization is IL-12 provided by 

APCs (DCs), the resulting IFNy produced was demonstrated to engage in 

autocrine signalling to promote T-bet expression, which in turn facilitates 

further IFNy production500.  Since signalling through IFNy receptor requires STAT1 

activation, tofacitinib might act by inhibiting STAT1 phosphorylation and thereby 

inhibiting this self-enhancing loop of IFNy production. 

Production of TNFα, another Th1-specific cytokine, was also reduced upon 

exposure to high drug concentrations when compared to vehicle treated cells 

(Figure 3-7C). However, TNFα production was affected to a lesser degree than 

IFNy and the changes seen could be secondary to the direct drug interference 

with Th1 differentiation and IFNy-driven positive feedback loop signalling 

abrogation.    

IL-17 producing Th17 helper cells is another important subset mediating 

inflammation and joint destruction in murine RA models, while in patients Th17 

frequencies and IL-17 levels are associated with systemic disease activity501,502. 

Detection of IL-17A in co-culture supernatants from T cells receiving antigenic 

stimulation suggests some of those cells might have acquired a Th17 phenotype 

(Figure 3-7D). Their polarization in this in vitro setting might be driven by IL-6 

and TGFβ secreted by mature dendritic cells in combination with IL-21 produced 

by T cells in response to IL-6 stimulation503. Thus, reduction in IL-17A levels in 

the presence of high drug dose (Figure 3-7D) could be explained by tofacitinib 

interfering with STAT3-dependent IL-6 and IL-21 polarizing signals and thereby 

impairing Th17 differentiation.       

CD4+ T cell differentiation towards the Th2 subtype, similarly to Th17, also 

requires an initial specification signal from IL-6. STAT3- dependent IL-6 signal 

promotes T cells to secrete IL-4, which then acts in an autocrine manner for 

further differentiation towards Th2 lineage504. It was therefore expected for JAK 
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inhibitor to impair IL-6 driven Th2 polarization, which was evidenced by 

significantly diminished IL-5 levels in the presence of the drug (Figure 3-7E). 

I also assessed the supernatants for IL-6 production, which in this co-culture 

would be secreted by dendritic cells upon the interaction of CD40 on their 

surface with its ligand CD40L on activated T cells. Indeed, the increase in IL-6 

production is observed in the presence of T cell cognate antigen and is antigen 

dose-dependent (Figure 3-7F). However, tofacitinib treatment had no effect on 

IL-6 cytokine levels. This result confirms that the impaired differentiation into 

Th subsets, which require IL-6 contribution, is a result of the drug interference 

with cytokine signalling pathway rather than the scarcity of polarizing cytokine 

in the culture. 

Finally, I addressed the impact of tofacitinib on polarization towards the 

regulatory T cell (Treg) subtype, characterised by the production of IL-10 

cytokine and the ability, among others, to suppress Th effector responses. IL-2 

signalling (through IL-2Rβ/STAT5 axis) was shown to be a pre-requisite for 

inducing Treg transcription factor Foxp3 expression505, suggesting the potential 

of tofacitinib to also interfere with Treg polarization. However, Treg secreted 

IL-10 levels upon drug exposure did not decrease, and even increased with the 

optimal antigen and high drug dose combination (Figure 3-7G). To our 

knowledge, no studies to date have assessed the capacity of tofacitinib to affect 

naïve cell differentiation into the Treg subtype. Interestingly, fully 

differentiated CD4+CD25brightFoxp3+ Treg cells from transplant patients receiving 

tofacitinib treatment appeared to preserve their immunoregulatory function, 

and their ability to receive IL-2 signals, in contrast to effector T cells, was only 

partially inhibited by the drug506. It would, therefore, be interesting to 

investigate in more detail whether the drug has differential impact on initial 

differentiation into helper and regulatory T cell lineages, and if under specific 

Treg-polarizing conditions naïve T cells are less susceptible to inhibitory drug 

effect. 

Taken together, data from the Luminex assay suggests tofacitinib to diminish the 

ability of naïve CD4+ T cells, primed by their cognate antigen in vitro, to 

undergo differentiation towards Th1, Th2, and Th17 effector subsets. In turn, 

this results in reduced capacity for their signature pro-inflammatory cytokine 
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production. In contrast, T cell ability to polarize into the Treg subset is 

preserved. 
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Figure 3-7. Tofacitinib treatment impairs pro-inflammatory cytokine production by CD4+ T 
cells upon priming in vitro. 

 
CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit  and co-cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of  
OVA323-339 peptide or without peptide, and were treated with either 100 or 10 000 nM of Tofacitinib 
(base) in DMSO or corresponding vehicle concentrations. Supernatants were collected after 3 days 
of co-culture and analysed by Luminex for the presence of a number of pro-inflammatory cytokines 
implicated in RA pathogenesis. Graphs depict mean concentrations ± SD of (A) IL-2, (B) IFNy, (C) 
TNFα, (D) IL-17A and (E) IL-5, (F) IL-6 and (G) IL-10. n=3 wells for each condition. Data represents 
results from a single experiment. Statistical differences between groups were assessed by 
performing two-way ANOVA and Sidak’s multiple comparison test in GraphPad prism. *designates 
a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001.    
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I was concerned with the known ability of the drug to induce cell death at high 

concentrations, which could contribute to the effect seen in the Luminex assay. 

To address this possibility, a viability assay was performed. OT-II T cells were co-

cultured with DCs as before and following 24 h of tofacitinib exposure T cells 

were assessed for their viability and the presence of phosphatidylserine on their 

surface as a marker of early apoptosis. The percentage of viable cells remained 

unaltered in the presence of 100 nM of tofacitinib but have significantly 

decreased at higher drug concentration (Figure 3-8A). The same T cell 

population was then assessed for the signs of apoptosis as one of the possible 

reasons for reduction in the proportion of viable cells. The percentage of 

apoptotic cells, defined by exclusion of viability dye in combination with 

Annexin V protein binding to phosphatidylserine on their surface, remained 

similarly unaffected by low drug dose and have slightly, but significantly 

increased at high drug concentration (Figure 3-8B). These results suggest that 

the reduction in cytokine production observed in Luminex assay is partly due to 

tofacitinib compromising T cell survival. However, the production of some 

cytokines, in particular IFNy, was almost completely inhibited by the drug and 

cannot be solely explained by moderate loss of viable cytokine-secreting T cells. 
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Figure 3-8. Tofacitinib reduces CD4+ T cell viability at high concentrations by promoting 
apoptosis.  

 
CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit  and co-cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of  
OVA323-339 peptide or without peptide, and were treated with either 100 or 10 000 nM of Tofacitinib 
(base) in DMSO or corresponding vehicle concentrations. Control samples (in pink) were left 
untreated. Cells were incubated for 24 hours at 37oC 5% CO2 and then stained by FACS for 
viability and CD4+ marker expression. Subsequently, cells were incubated with fluorochrome-
conjugated Annexin V protein which binds to externalised phosphatidylserine residues on the cells 
undergoing apoptosis. Lymphocytes were gated on CD4+ cells and those negative for viability dye 
were deemed viable (A). Cells gated as CD4+ were further gated for viability against Annexin V, 
with viability-negative Annexin V-positive population representing early apoptotic cells (B). 
Representative scatter plots show samples stimulated with 5 ug/ml of the peptide. Graphs depict 
mean percentages ± SD of viable (A) and apoptotic (B) CD4+ T cells from one experiment, n=3 
wells for each condition. Statistical differences between groups were assessed by performing two-
way ANOVA and Sidak’s multiple comparison test in GraphPad prism. ** designates a p-value of ≤ 
0.01, *** ≤ 0.001, **** ≤ 0.0001.    
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I therefore decided to investigate the changes in the capacity of viable CD4+ T 

cells to produce cytokines after exposure to tofacitinib upon their priming. IFNy 

was selected for further assessment as the cytokine most affected by the drug, 

alongside with IL-2 as a homeostatic T cell cytokine, signalling of which was 

evidently inhibited and production enhanced by tofacitinib. In addition, while 

changes observed in the supernatant could be attributed to the whole cell 

population, the assessment of T cell capacity to produce cytokines would allow 

to confirm the intrinsic changes induced in individual cells. 

OT-II CD4+ T cells were primed with OVA323-33 peptide by mature dendritic cells 

for 3 days in the presence or absence of tofacitinib, with subsequent 

PMA/Ionomycin stimulation in the presence of Brefeldin A for 4 h at 37oC. The 

latter treatment induces intracellular cytokine production by T cells while 

retaining the cytokines within the cell, thus allowing to assess the potential for 

cytokine production of an individual cells. While the untreated and vehicle-

treated T cells notably increased IFNy production upon priming, the IFNy levels 

in their drug-treated counterparts remained as low as those of non-activated 

cells (Figure 3-9A). As expected, a large proportion of the activated T cells 

produced IL-2 when left untreated, and tofacitinib exposure further increased 

the percentage of IL-2-positive cells, with this change being significant at an 

optimal peptide concentration (Figure 3-9B). In addition, an ELISA assay was 

performed on the day 3 co-culture supernatants, and the dramatic impairment 

in drug-treated T cell capacity for IFNy production observed in this assay (Figure 

3-9C) replicated the results obtained by Luminex and intracellular FACS staining.  

Exposure to tofacitinib during priming was therefore demonstrated to induce 

intrinsic changes in antigen-specific CD4+ T cells, resulting in their reduced 

ability to produce Th1 lineage-specific cytokine IFNy. 
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Figure 3-9. Exposure to tofacitinib during priming reduces the capacity of CD4+ T cells for 
IFNy and IL-2 production.  

CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit  and co-cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of  
OVA323-339 peptide or without peptide, and were treated with either 100 or 10 000 nM of Tofacitinib 
(base) in DMSO or corresponding vehicle concentrations. Control samples (in pink) were left 
untreated. After 3 days, cells were stimulated with PMA (10 ng/ml) and Ionomycin (500 ng/ml) in 
the presence of Brefeldin A for 4 h at 37oC 5% CO2. Thereafter, cells were stained by FACS for 
viability and CD4+ marker expression, followed by fixation/permeabilization step and fluorescent 
labelling of intracellular IFNy and IL-2 cytokines. Lymphocytes were gated on viable CD4+ cells, 
with representative scatter plots depicting the difference in the percentage of IFNy (A) and IL-2 (B) 
producers between vehicle- and drug-treated samples, when cultured with 5 ug/ml of the peptide. 
Graphs shows mean percentages ± SD of viable CD4+ T cells producing IFNy (A) and IL-2 (B) 
upon stimulation. Results are representative of 3 independent experiments.  

Supernatants were collected prior to PMA/Ionomycin stimulation and assessed by ELISA for IFNy 
production in the co-culture over 3 days (C). The graph depicts mean concentration ± SD of IFNy, 
n=3 wells for each condition. Results are representative of a single experiment. Statistical 
differences between groups were assessed by performing two-way ANOVA and Sidak’s multiple 
comparison test in GraphPad prism. *designates a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 
0.0001.     
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 Tofacitinib administration upon priming impairs CD4+ T 
cell differentiation towards Th1 subtype 

 

After repeatedly demonstrating an abolishment of IFNy production upon drug 

exposure during CD4+ T cell priming, I sought to establish if this is a result of 

underlying impairment in cell differentiation on transcription factor level. T-box 

expressed in T cells (T-bet) belongs to the T-box transcription factor family and 

is found to be indispensable for lineage commitment in CD4+ T cells towards Th1 

subset. T-bet has a capacity to promote its own transcription as well as induce 

chromatin remodelling of Ifng locus, thereby regulating the expression of Th1 

signature cytokine IFNy.507,508 Therefore, I examined the effect of tofacitinib 

treatment on T-bet expression upon priming. In the control samples in the 

absence of any treatment (pink bars) T-bet expression in CD4+ T cells was 

induced with antigen addition in a dose-dependent manner, with the vehicle-

treated samples closely replicating transcription factor levels similar to those of 

untreated controls (Figure 3-10B). However, the addition of tofacitinib to the 

culture during priming profoundly inhibited T cell ability for T-bet expression, 

retaining transcription factor levels close to the baseline (Figure 3-10A,B). 

Unexpectedly high T-bet levels were detected in the absence of the peptide 

stimulation in drug-treated groups (Figure 3-10B, shaded bars). Cells from some 

of those samples have proliferated and undergone activation, as evidenced by 

CFSE dilution and upregulated CD44 expression (data not shown). However, as 

tofacitinib was earlier confirmed to have no pronounced effect on either of 

those phenotypic changes, the activation of the cells in the no-peptide group 

along with T-bet expression was most likely experimental artefacts and not the 

direct result of the drug exposure.  

These results suggest the ability of tofacitinib to interfere with CD4+ 

differentiation towards Th1 lineage by abolishing essential transcription factor 

T-bet expression. 
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Figure 3-10. Tofacitinib treatment during priming impairs CD4+ T cell differentiation towards 
Th1 phenotype.   

 
CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit  and co-cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of  
OVA323-339 peptide or without peptide, and were treated with either 100 or 10 000 nM of Tofacitinib 
(base) in DMSO or corresponding vehicle concentrations. Control samples (in pink) were left 
untreated. After a 3-day co-culture, cells were stained for FACS for viability and CD4+ marker 
expression, followed by permeabilization/fixation step using Foxp3/Transcription factor staining 
buffer set and intracellular staining for transcription factor T-bet detection. Lymphocytes were gated 
on viable CD4+ cells, with representative scatter plots depicting the difference in the percentage of 
cells expressing T-bet in the vehicle- and drug-treated samples (A) when cultured with 5 ug/ml of 
the peptide. (B) Graphs shows mean percentages ± SD of viable CD4+ T cells expressing T-bet, 
n=3 wells for each condition. The results are representative of 2 individual experiments. Statistical 
differences between groups were assessed by performing two-way ANOVA and Sidak’s multiple 
comparison test in GraphPad prism. *designates a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 
0.0001.     
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 Impaired T-bet expression and IFNy production following 
CD4+ T cell exposure to tofacitinib during priming 
persists upon secondary antigenic challenge 

 

After establishing the ability of tofacitinib to interfere with Th1 cell 

differentiation during priming, it was interesting to investigate if this effect is 

maintained after secondary antigen exposure when the drug is no longer 

present. To address this question, naive OT-II CD4+ T cells were primed with OVA 

peptide-pulsed DCs for 3 days in the presence of a vehicle or 100 nM Tofacitinib, 

then thoroughly washed to remove the drug from the media and rested in the 

media supplemented with IL-2 to support their survival. After being rested for 3 

days, activated T cells were labelled with CFSE and either re-challenged with 

the same cognate peptide dose or left unstimulated for the final 3 days (Figure 

3-11A). To confirm the efficiency of secondary antigenic challenge, T cells were 

assessed for proliferation and activation marker expression. After re-activation, 

approximately 60% of T cells have proliferated compared to only 10% of non-

stimulated cells in both treatment groups, with tofacitinib exposure exhibiting 

no effect on proliferation (Figure 3-11B). Similarly, CD69, although an early 

activation marker, was upregulated upon re-activation to 80% from 60% in the T 

cells receiving no secondary challenge, with the drug having no impact on 

marker expression levels (Figure 3-11C). 

Since T cell re-activation with cognate peptide has proven successful, the 

transcriptional and functional profile of these cells was examined next. 

Interestingly, T cells exposed to tofacitinib during priming expressed 

significantly lower levels of T-bet transcription factor upon re-activation when 

compared to vehicle-treated counterparts (Figure 3-11D). In addition, T cells 

primed in the presence of the drug and subsequently re-activated exhibited a 

reduced capacity for IFNy production upon PMA/Ionomycin treatment, with their 

IFNy levels comparable to those in the absence of secondary stimulation (Figure 

3-11E). Interestingly, T cells that were only primed but did not receive 

secondary peptide stimulation also retained lower IFNy production levels if 

exposed to the drug during initial stimulation, which is consistent with the 

changes in cytokine production detected upon T cell priming.     
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Together, this data suggests that the diminished T-bet expression achieved with 

tofacitinib treatment during priming and the resulting impairment in CD4+ T cell 

capacity to produce IFNy both persist upon secondary antigenic stimulation. In 

other words, once the drug compromises differentiation into Th1 subset during 

priming, this compromised cell state remains imprinted, possibly on epigenetic 

level, upon the subsequent re-activation and is manifested by diminished IFNy 

production by those T cells.  
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Figure 3-11. Impaired T-bet expression and IFNy production following CD4+ T cell exposure 
to tofacitinib during priming persists upon secondary antigen challenge 

(A) CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using 
STEMCELL EasySep kit  and co-cultured with mature DCs in the presence of 0.1 ug/ml of  OVA323-

339 peptide, and were treated with either 100 nM of Tofacitinib (base)  or 0.001%  of DMSO. After 3 
days, cells were washed, re-plated and rested in the presence of IL-2 (1 ng/ml) for another 3 days. 
Following this, T cells were labelled with CFSE and stimulated with fresh DCs, either untreated or 
pulsed with OVA323-339 peptide, for the final 3 days. Half of the cells were subjected to 
PMA/Ionomycin treatment in the presence of Brefeldin A, and then stained by FACS for 
intracellular IFNy production using BD Fixation/Permeabilization kit. Another half of the cells were 
directly stained for T-bet expression using Foxp3/Transcription factor staining buffer set. 
Lymphocytes were gated on viable CD4+ T cells and analysed for the percentage of cells which 
have proliferated (B), CD69 (C) and T-bet expression (D), and IFNy production (E). Representative 
scatter plots depict the percentage of T-bet expression (D) and IFNy producing cells (E) in samples 
treated with vehicle or 100 nM of Tofacitinib and receiving the secondary antigenic challenge. 
Graphs shows mean percentages ± SD of viable CD4+ T cells expressing the respective markers. 
Results are representative of 2 individual experiments assessing T-bet expression and 3 separate 
experiments assessing IFNy production. Statistical differences between groups were assessed by 
performing two-way ANOVA and Sidak’s multiple comparison test in GraphPad prism. *designates 
a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001.    
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 Antigen-experienced CD4+ T cells exhibit diminished T-
bet expression following re-activation in the presence of 
tofacitinib, but retain their capacity for IFNy production  

 

Next, I went on to investigate whether tofacitinib has the capacity to affect 

previously activated cells when administered during secondary antigenic 

challenge. This in vitro scenario might be particularly relevant if applied in the 

clinical context, where RA patients receive tofacitinib at progressive stages of 

the disease and therefore present with a high proportion of CD4+ T cells which 

are already activated.    

CD4+ T cells were primed for 3 days and then rested in the presence of IL-2, as 

described in the section above (Section 3.2.6.). The antigen-experienced CFSE-

labelled T cells were then re-challenged in the presence of  vehicle or 

tofacitinib for another 3 days (Figure 3-12A). Two individual co-cultures were 

performed to assess transcriptional profile and IFNy production of the resulting 

CD4+ T cells. To ensure that the T cells were re-stimulated effectively, their 

proliferative capacity and CD69 marker expression were examined. T cells have 

proliferated efficiently and significantly when compared to the cells in the 

absence of secondary stimulation (Figure 3-12B). Interestingly, tofacitinib 

treatment notably increased the percentage of proliferating cells at both drug 

doses, which has not been observed in other experiments. Early marker CD69, 

though slightly upregulated upon T cell re-stimulation, was expressed at 

relatively low levels (Figure 3-12C), which could be explained by its transient 

expression prominent at approximately 24 h after cell activation and 

significantly declining by 72 h post-activation498. The CD69 levels appeared to be 

even lower in the T cells re-activated in the presence of the drug. This effect of 

tofacitinib on CD69 expression was not detected previously, in either priming or 

re-activation co-culture experiments. One possible explanation could be that 

since more of the drug-treated T-cells have proliferated, they may be at the 

further/later stages of their activation and hence their CD69 expression might be 

already in decline. 
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The assessment of T cell differentiation status upon re-challenge showed the 

significant upregulation of T-bet levels relative to control cells receiving no 

secondary stimulation. Exposure to tofacitinib during secondary challenge 

notably diminished T-bet expression in activated T cells at both antigen 

concentrations (Figure 3-12D). In a separate experiment, a similar percentage of 

T cells producing IFNy upon re-activation was detected, regardless of the 

treatment administered (Figure 3-12E). In fact, the percentage of IFNy-

producing cells was slightly increased in the group treated with 100 nM 

tofacitinib during re-challenge.  

These results convincingly demonstrate that while tofacitinib supresses Th1-

specific transcription factor expression in antigen-experienced cells upon re-

activation, their capacity for cytokine production might be at least partly 

independent of the T-bet levels and remains unchanged following the drug 

treatment.     

    



146 
 

146 
 

 

Figure 3-12. Tofacitinib treatment upon reactivation impairs T-bet expression in antigen-
experienced CD4+ T cell but does not affect their capacity for IFNy production 

 

CD4+ T cells were isolated from lymph nodes and spleens of CD45.1 OT-II mice using STEMCELL 
EasySep kit and co-cultured with mature DCs in the presence of either 0.1 ug/ml or 5 ug/ml of 
OVA323-339 peptide. After 3 days, cells were washed, re-plated and rested in the presence of IL-2 (1 
ng/ml) for another 3 days. Following this, T cells were labelled with CFSE and stimulated with fresh 
DCs pulsed with the same peptide dose in the presence or absence of tofacitinib. Negative control 
samples received no antigen during secondary challenge, and positive control samples received 
antigen with no other treatment. 3 days after secondary challenge, cells were subjected to 
PMA/Ionomycin treatment in the presence of Brefeldin A and then stained by FACS for intracellular 
IFNy production using BD Fixation/Permeabilization kit. Alternatively, cells were directly stained for 
T-bet expression using Foxp3/Transcription factor staining buffer set. Lymphocytes were gated on 
viable CD4+ T cells and analysed for the percentage of cells which have proliferated (B), CD69 (C) 
and T-bet expression (D), and IFNy production (E). Representative scatter plots depict the 
percentage of T-bet expression (D) and IFNy producing cells (E) in samples treated with vehicle or 
10 000 nM Tofacitinib during the secondary antigenic challenge. Graphs shows mean percentages 
± SD of viable CD4+ T cells expressing the respective markers. Results are representative of a 
single experiment for T-bet and a single experiment for IFNy. Statistical differences between 
groups were assessed by performing two-way ANOVA and Sidak’s multiple comparison test in 
GraphPad prism. *designates a p-value of ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001.   
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3.3 Discussion 

 Tofacitinib interferes with JAK/STAT signalling pathway 
downstream of both gp130 and γc cytokine receptors 

 

I was able to demonstrate, in both dendritic cell monoculture and DC-CD4+ T cell 

co-culture, an abrogation of IL-6-induced STAT3 phosphorylation following cell 

pre-treatment with tofacitinib. Similarly, tofacitinib potently inhibited  STAT3 

and STAT5 phosphorylation in the CD4+ T lymphocytes stimulated with IL-6 and 

IL-2 cytokines, respectively. In line with this, an extensive study by Ghoreschi et 

al.305 also showed tofacitinib was capable of interfering with the signalling of 

both IL-2 and IL-6 in murine CD4+ T cells by abolishing phosphorylation of 

respective STAT proteins. Also, the study observed the same effect of the drug 

on IL-6-dependent pSTAT3 phosphorylation in human PBMC-derived CD3+ T cells. 

While the purpose of this experiment was to mainly confirm the ability of 

tofacitinib to inhibit its target pathway in our co-culture system, I have also 

demonstrated, although indirectly (via STAT activity), the ability of the drug to 

effectively inhibit not only JAK3 kinase (upstream of STAT5), for which 

tofacitinib has the highest potency, but also the signalling via JAK1 and JAK2, 

required for IL-6 signalling via STAT3. 

 

 Tofacitinib does not affect naïve CD4+ T cell activation 
and has a modest effect on their proliferative potential 

 

The expression of activation markers is one of the changes detected in the T cell 

phenotype shortly after the priming event. In my co-culture, the exposure of 

naive CD4+ T cells to tofacitinib throughout priming had no impact on the 

expression of early activation marker CD69 or late activation markers CD44 and 

CD62L. One of the functions of CD69 is the retention of newly activated T cells 

in the lymph node488. CD62L expression allows naïve CD4 T cells to enter the 

lymph node and is downregulated upon cell priming to promote activated cell 
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migration out of the lymph node, while the upregulation of CD44 potentiates the 

entry of the activated cells from the circulation to the inflamed tissue 

sites.492,493,494,490 Thus, maintenance of the above activation marker expression 

levels independent of tofacitinib exposure suggests that the drug-treated cells 

undergo efficient activation and presumably, in the in vivo setting, are able to 

migrate to the site of inflammation.  

Several studies investigating tofacitinib impact on human PBMCs employed CD25 

as an activation marker and found its expression levels to be diminished by the 

treatment484, 485 and subsequently restored upon drug withdrawal484. However, 

CD25 functions as an IL-2 receptor α chain (IL-2Ra) on activated T cells thus 

relaying signals controlling cell proliferation. As mine and other studies have 

shown, tofacitinib treatment prevents T lymphocytes from responding to IL-2 

stimulation, which can ,in turn, result in failure to upregulate CD25 expression 

as a part of IL-2-driven autocrine negative feedback loop.509 Thus, impaired 

CD25 expression upon drug exposure is not a direct result of tofacitinib 

interference with CD4+ T cell priming (activation) by dendritic cells, but rather a 

consequence of impaired ability of newly activated T cells to respond to the 

autocrine/paracrine IL-2 signal.  

I  next assessed tofacitinib impact on CD4+ T cell proliferation following the 

priming event. Newly activated CD4+ T cells maintained normal levels of 

proliferation at the physiological drug concentration of 100 nM, which were 

slightly but significantly reduced at the higher drug concentration. Similarly, 

tofacitinib exhibited no effect on naïve murine CD4+ T cell proliferation when 

used at up to 1000 nM concentration in the study conducted by Ghoreschi et 

al.305 In contrast, even at 100 nM dose the drug markedly reduced proliferation 

of lymphocytes derived from PBMCs of healthy patient donors and subjected to 

PHA stimulation in vitro. Interestingly, this effect was completely reversed upon 

drug removal.484 A comparable dose-dependent effect on proliferation was 

observed in CD4+ T cells purified from PMBCs and synovium samples from active 

RA patients and stimulated in vitro in the presence of tofacitinib.306 While in all 

of the above studies lymphocytes were exposed to the drug only during in vitro 

culture, Sonomoto and colleagues examined lymphocytes from RA patients 

receiving tofacitinib treatment as a part of clinical trial510. After 12 months of 
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treatment, CD4+ T cell proliferative potential was notably suppressed and 

correlated with disease activity improvement. Thus, one of the mechanisms of 

action of tofacitinib appears to be through the suppression of proliferation in 

both murine and human T lymphocytes, although murine cells appear to require 

higher drug doses (in the in vitro setting) to achieve a significant effect. The 

mechanism could involve drug inhibition of IL-2 and IL-7 signalling required for 

cell proliferation, together with reduced expression of their receptors. 484,485,305    

 

 Tofacitinib treatment impairs CD4+ T cell differentiation 
and function  

 

Due to the ability of tofacitinib  to inhibit cytokine signalling in CD4+ T cells, I 

sought to assess if the drug could also utilize this strategy to interfere with naïve 

T cell specification towards T helper subtypes and thereby affect lineage-

specific cytokine production. Indeed, tofacitinib treatment during priming 

resulted in the reduction of Th2-specific IL-5 levels, as well as Th1-associated 

IFNy and Th17 hallmark cytokine IL-17 production in my co-culture. Similar 

observations were made in another study using naïve murine T cells, which, 

when exposed to tofacitinib, failed to efficiently differentiate into either of the 

above Th subtypes and produce lineage-specific cytokines even under specific 

polarizing conditions.305 Maeshima et al. reported similar dose-dependent effect 

of the drug on both IFNy and IL-17 production by CD4+ T cells from synovium and 

peripheral blood of RA patients.306 However, the latter study is not directly 

comparable as the examined T cell population being heterogeneous and 

containing activated T cells alongside with their naïve counterparts. Thus, my 

observations confirmed the ability of tofacitinib, due to its broad inhibitory 

effect on cytokine signal transduction, to non-selectively interfere with IFNy, IL-

5, and IL-17 production, and hence presumably the differentiation into 

respective Th1, Th2 and Th17 subsets. The clinical efficacy of tofacitinib in RA 

might be, therefore, at least in part explained by the drug limiting generation of 

functional pathogenic IFNy-producing Th1 and IL-17 producing Th17 cells. 
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Alongside alterations in Th subset-specific cytokine production, the production 

of IL-2 was also affected by the drug treatment. The observed increase in IL-2 

production was likely a consequence of IL-2 receptor signalling inhibition and the 

resulting disruption of a negative feedback loop.499 While IL-2 is important in 

controlling CD4+ T cell proliferation and survival during priming, it can also act 

as an additional signal supporting T cell polarization. IL-2 was shown to induce 

the expression of IL-12 receptor, beta 2 (IL-12Rβ2), thus enhancing naïve (Th0) T 

cell sensitivity for IL-12, which drives terminal Th1 differentiation. Likewise, IL-2 

was observed to directly regulate Th2 polarization by promoting both IL-4 and IL-

4Rα expression by CD4+ T cells during priming. Th17 differentiation, on the other 

hand, was suppressed by IL-2, although the cytokine was capable of driving 

clonal expansion of the Th17 lineage cells once they were fully polarized511. In 

the context of this data, interference of tofacitinib treatment with IL-2 

signalling in naïve CD4+ T cells might be viewed as an additional checkpoint for 

preventing their differentiation into ‘pathogenic’ T helper cells. 

IL-6 plays an important role in RA pathogenesis, and its importance is highlighted 

by the clinical efficacy of treatments targeting the IL-6 receptor. While in naïve 

murine T cell monoculture tofacitinib appeared to profoundly inhibit the 

generation of IL-6305, I did not observe any changes in IL-6 levels in the co-

culture setting. This is likely to result from the presence of dendritic cells in my 

co-culture, which are also a source of IL-6. Thus, in my current system, it is not 

possible to establish if tofacitinib impairs IL-6 production by CD4+ T cells. 

I also detected IL-10 in our co-culture supernatant, which might be produced by 

naïve cells polarized towards Treg subtype. This observation of IL-10 production 

and thus presumably Treg generation preserved during tofacitinib treatment is 

rather controversial, as the signalling through IL-2-STAT5 axis and the resulting 

induction of associated transcription factor Foxp3 expression, prerequisite for 

Treg differentiation, would be inhibited by the drug.512 While at present the 

direct effect of tofacitinib on de novo Treg differentiation has not been 

addressed to help contextualise my findings, several studies demonstrated the 

drug to re-direct dendritic cells towards tolerogenic phenotype. The tolerized 

dendritic cells, in turn, enhanced CD4+Foxp3+  Treg differentiation in vitro513, 

and, when adoptively transferred into an experimental autoimmune 
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encephalomyelitis (EAE) mouse model, reduced Th1/Th17 cell population size 

and their functional capacity in favor of Treg expansion.514 Remarkably, already 

differentiated CD4+ Foxp3+CD25bright  Treg cells from kidney transplant patients 

receiving tofacitinib therapy were reduced in numbers, but preserved their 

suppressive activity and demonstrated lesser sensitivity to treatment than the 

effector T cells.506 Based on my preliminary findings and the published data, it 

could be speculated that in addition to interfering with CD4+ T cell 

differentiation into T helper subtypes and their subsequent ‘pathogenic’ 

function, tofacitinib treatment could provide an additional benefit of potentially 

unaltered generation and preserved function of existing Treg cells. 

I further demonstrated that the particularly notable reduction in IFNy production 

was a result of tofacitinib abolishing Th1 polarization through suppressing T-bet 

expression. This finding comes in line with the requirement of functional IFNy 

signalling through activated STAT1 to initiate T-bet expression, which in turn 

leads to enhanced IFNy production, as well as induction of IL-12Rβ2 expression. 

In turn, these result in subsequent T-bet expression enhancement, the 

establishment of IFNy self-enhancing loop and cell sensitization to IL-12 

stimulation515. Inhibition of IFNy signalling by tofacitinib thereby precludes 

initial T-bet expression and abolishes the successful establishment of mature Th1 

phenotype. Similar changes were detected following naïve murine CD4+ T cell 

exposure to the drug, which exhibited dose-dependent T-bet reduction 

comparable with that in CD4+ T lymphocytes from STAT1-deficient mice.305 Thus, 

tofacitinib has a capacity to effectively suppress the generation of Th1 helper 

cells, which, particularly in the context of Th1-driven pathology such as acute 

graft-versus-host disease (GvHD), is shown to prevent lethal outcome while 

extending graft survival.516   
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 Functional impairment following exposure to tofacitinib 
during priming persists upon CD4+ T cell re-activation 

 

I subsequently showed that the cells compromised by tofacitinib treatment in 

their differentiation and associated functional state during priming remain 

functionally diminished after secondary antigen exposure when the drug is 

withdrawn. The ability of the untreated cells to exhibit a normal ‘memory’ 

response upon re-activation is determined by the presence of open chromatin 

sites in the enhancer and promoter regions of Ifng gene, which could be easily 

accessed initially by NF-κB and subsequently replaced by T-bet to rapidly re-

initiate IFNy production517,518. However, since the drug treatment abolishes CD4+ 

T cell ability to properly undergo priming and thus (likely) prevents the 

acquisition of permissive chromatin state at both Tbx21/T-bet and Ifng gene 

promoters, the cells might require more time for the above gene expression de 

novo after drug withdrawal. Also, the magnitude of their response to secondary 

activation might also be compromised for this reason. However, our results do 

not clarify if these compromised cells might recover their full function over 

time, or whether due to chromatin remodelling being compromised during initial 

antigenic challenge the cells will permanently remain in a functionally immature 

state. A comparison of epigenetic profiles of control and drug-treated cells 

would likely provide more insights into their functional potential. Replicating 

this experiment in the in vivo context might also add to the evaluation of the 

CD4+ T cell pathogenic potential after the treatment termination. 

Some attempts have been made to elucidate cell fate upon drug removal using 

human PMBCs. Piscianz et al. observed the recovered responsiveness of 

lymphocytes to re-activation after tofacitinib withdrawal in the in vitro culture, 

and while some cytokine production remained inhibited, the production of IL-2, 

IL-13 and TNFα was preferentially restored.484 Another study demonstrated that 

IFNy-producing CD4+ T cells collected from healthy individuals 4 weeks after 

termination of tofacitinib therapy recovered their responses to antigenic 

stimulation after transient suppression of their function during treatment.483 Due 

to both studies utilizing the CD4+ cells of both naïve and activated phenotype 

and exerting no control over the presence of the drug during cell priming, their 
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results cannot be directly correlated with my findings. Following these 

preliminary results, it would be important to further investigate, possibly in the 

in vivo setting, whether tofacitinib treatment permanently impairs CD4+ T cells 

function when present at priming or whether the drug withdrawal may lead to 

recovery of their functional capacity. This would help to inform the potential 

adjustment of the therapeutic regimens for both tofacitinib monotherapy and 

combined treatment with other immunosuppressive agents.    

  

 Antigen-experienced cells preserve their function after 
tofacitinib exposure 

 

In the co-culture system employed, I primed naive CD4+ T cells and after a brief 

resting phase re-stimulated them with their cognate antigen, adding tofacitinib 

at this stage. Upon re-activation, T cells sustained their normal IFNy production 

levels despite the notable impairment in their T-bet expression. Since these 

cells were primed in the absence of the drug, they would be able to normally 

initiate T-bet expression which is essential for commitment towards Th1 

lineage.507 However, while T-bet activity is required during this commitment 

phase to drive Th1 lineage-specific gene expression and chromatin remodelling 

of the Ifng locus, the fully mature Th1 cells and their descendants were reported 

to retain heritable chromatin modification and can re-express IFNy 

independently of T-bet519. A detailed analysis of temporal T-bet requirement in 

mature CD4+ T cells by Lai et al.518 has conversely demonstrated that whereas 

the rapid IFNy production by previously activated CD4+ T cells was driven by NF-

κB transcriptional activity 6 h after re-activation, T-bet was required at later 

time points to sustain cytokine response. Similarly, Jun Kui Chen (thesis, 2017) 

has shown IFNy production by Th1 polarized cells following T-bet ablation to be 

initially preserved and to decline in the long-term in the absence of T-bet. Since 

in my experiment re-activated T cells retained relatively high levels of T-bet 

expression, their IFNy production might remain partly dependent on T-bet 

activity and possibly partly compensated by the alternative mechanism such as 

NF-kB pathway, potentially unaffected by tofacitinib treatment. 
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Interestingly, the production of IFNy in antigen-experienced CD4+ T cells 

following re-activation in the presence of the drug was preserved. This 

potentially might be explained by either lesser susceptibility of mature effector 

CD4+ T cells to the cytokine signalling inhibition by the drug, or lower threshold 

required for their activation that for differentiation of the naïve cells. Another 

possible reason might be that the recruitment of the alternative signalling 

pathways independent of JAK kinase activity might be sufficient for effectively 

inducing IFNy production. However, the existing studies with human PBMCs seem 

to contradict my findings. A study by Sewgobind et al. demonstrates tofacitinib 

to potently inhibit IL-2 induced STAT5 phosphorylation in effector T cells and 

suppress their function (proliferative ability).506 Moreover, CD4+ lymphocytes 

isolated from peripheral blood and synovium of patients with active RA exhibited 

a reduced capacity for IFNy and IL-17 production upon CD3/CD28 stimulation in 

presence of tofacitinib in vitro.306 Similar results were obtained with CD4+ cells 

from healthy donors receiving short-term tofacitinib treatment.483 The analysis 

of their PBMCs showed a profound reduction in all subsets of activated T cells, 

including CD4+ T cell compartment. Moreover, exposure to tofacitinib resulted in 

a short-term decrease in IFNy production by IFNy-producing activated cells upon 

both antigen-specific and CD3/CD28 re-stimulation. While the above data cannot 

be directly correlated with my findings as they mostly employ heterogeneous T 

cell populations, overall, they might suggest the ability of tofacitinib to impact 

effector T lymphocyte functional ability. Replicating the above experiment in 

the in vivo setting might provide more reliable results.      

Since one of my main findings in this chapter was the ability of tofacitinib to 

interfere with CD4+ T cell differentiation towards Th1 subset, I have proceeded 

to enquire if the same effect could be observed in the inflammatory setting in 

vivo.  
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4 Investigating the impact of tofacitinib 
administration on CD4+ T cell-DC cross- talk in 
vivo 

 

 

 

 

 

 

 

 

 

 

All animal experiments were done with help from Bob Benson. 
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4.1 Introduction 

 

In the previous chapter, I demonstrated that CD4+ T cells exposed to tofacitinib 

during priming with their cognate antigen in vitro, failed to effectively 

differentiate and exhibited a profoundly diminished capacity for IFNy 

production. However, the in vitro setting represents a highly controlled 

environment where the drug is easily accessible to the target cells. In vivo, the 

action of the compound will be influenced by its pharmacokinetic and 

pharmacodynamic properties, as well as biodistribution and bioavailability in 

relation to the cells of interest and target tissue. Thus, my next step was to 

determine whether the inhibitory effect of tofacitinib on CD4+ T cell 

differentiation and function could be translated in vivo.  

Multiple studies have employed various rodent models of arthritis to assess 

tofacitinib efficacy in vivo. These mostly investigated the broader therapeutic 

effect of tofacitinib in the context of systemic inflammatory mediator levels, 

histological and structural changes in the joint, and clinical disease 

score305,310,311. Apart from a study in the SKG arthritis model, where the 

reduction in disease severity following tofacitinib treatment was associated with 

reduced levels of IFNy and IL-17, and thus potentially impaired Th1 and Th17 

cell function312, there has been little specific focus on the activity of CD4+ T 

cells in vivo. The relevant human studies investigating tofacitinib impact on CD4+ 

T cell function, discussed in the previous chapter, employed PBMCs containing 

CD4+ T cells at different activation stages and were thereby unable to dissect 

the effect of the drug specifically on naïve CD4+ T cells.483,484,485 Thus, to our 

knowledge, there are no studies to date that directly address the impact of 

tofacitinib on naïve CD4+ T cells in vivo.        

To this end, I sought to replicate the in vitro TCR-transgenic OT-II CD4+ T cell 

activation studies (Chapter 3) in the in vivo setting by means of adoptive 

transfer experiments. As the majority of these T cells express a TCR specific for 

chicken OVA323-339 peptide in the context of I-Ab, they can be challenged in vivo 

in a controlled manner and assessed in the context of antigen-specific response. 

Adoptive transfer circumvents issues relating to detection of low frequency of 
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endogenous antigen-specific cells, enabling measurement of antigen-specific T 

cells responses such as clonal expansion and cytokine production in vivo, and 

assessment of any changes arising through drug treatment. Use of the congenic 

marker CD45.1 on OT-II CD4+ T cells allowed them to be distinguished from the 

endogenous T cells, which express CD45.2 isoform in the (C57BL/6) recipient 

mice. Together with all the above, the naïve state of these OT-II CD4+ T cells 

makes this transgenic system a desirable tool for addressing the questions of this 

chapter. 

 

The key aims of this chapter are the following: 

 To determine the capacity of Tofacitinib to inhibit the JAK/STAT pathway 

in CD4+ T cells in vivo 

 To investigate the impact of Tofacitinib treatment on the outcome of 

antigen-specific priming of CD4+ T cell in vivo 

 To assess whether tofacitinib treatment influences endogenous CD4+ T 

cell functional capacity in vivo 
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4.2 Results 

 Tofacitinib citrate supresses STAT phosphorylation in 
CD4+ T cells upon cytokine stimulation with comparable 
efficacy to tofacitinib base form in vitro 

 

For conducting the in vivo experiments, I employed an alternative formulation of 

the drug, tofacitinib citrate salt. The manufacture of the drug in the crystalline 

citrate salt form enhances its dissolution rate and solubility in the intestine, 

compared to a poorly soluble base form, while preserving the pharmacological 

properties of the compound520, and thus a citrate salt form of tofacitinib was 

selected for in vivo testing and clinical use. To confirm that the molecular mode 

of action of this drug formulation was comparable to that of the tofacitinib base, 

I have first assessed its capacity to inhibit STAT protein phosphorylation in vitro 

prior to employing tofacitinib citrate form in the in vivo setting. For this 

purpose, mature dendritic cells were co-cultured with naïve OT-II CD4+ T cells 

overnight in the presence of OVA323-339 peptide and with either a vehicle or 10 

000 nM tofacitinib citrate. 24 hours later, cells were stimulated with either IL-6 

or IL-2 for 15 min and subsequently assessed by Phospho-flow cytometry for 

levels of phosphorylated STAT3 or STAT5, respectively. CD4+ T cells stimulated 

with their cognate antigen in the presence of a vehicle and respective cytokine 

demonstrated a subtle increase in pSTAT3 levels and a more pronounced 

increase in pSTAT5 levels relative to those in the co-culture in the absence of 

the peptide (Figure 4-1). The addition of tofacitinib citrate inhibited CD4+ T cell 

responsiveness to either cytokines produced by cells or those added to the 

culture, resulting in pSTAT3 level reduction below the baseline alongside a 

notable decrease in pSTAT5 levels. Unlike lymphocytes treated with tofacitinib 

base, the CD4+ T cell population exposed to the citrate drug form did not 

segregate into distinctive  pSTAT5-positive and  pSTAT5-negative fractions but 

rather presented as a more uniform population. This intra-experimental 

variability could be due to differential CD4+ T cell response to the cytokine 

stimulation or the inhibition by distinct tofacitinib formulations. Overall, both 

tofacitinib citrate and base (see Fig.3-3) blocked cytokine signalling and 

downstream STAT protein phosphorylation in CD4+ T cells with similar efficacy. 
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Figure 4-1. Tofacitinib citrate effectively supresses STAT3 and STAT5 phosphorylation upon 
cytokine stimulation of CD4+ T cells in vitro.  

 
Matured bone marrow-derived DCs were incubated with or without  5 ug/ml of OVA323-339 peptide 
for 2 h at 37oC. CD4+ T cells were isolated from OT-II mice lymph nodes and spleens using 
STEMCELL EasySep kit  and cultured with DCs overnight in the presence or absence either 10 
000 nM tofacitinib citrate dissolved in DMSO vehicle, vehicle, or no treatment. Cells were 
subsequently stimulated with either IL-2 or IL-6 (both at 100 ng/ml) for 15 min at 37C, immediately 
fixed and stained intracellularly for phosphorylated STAT3 and STAT5 for flow cytometric analysis. 
Histograms represent levels of pSTAT3 and pSTAT5 in CD4+ T cell populations in response to IL-6 
and IL-2 stimulation, respectively.  Negative control (pink, no OVAp) received no external stimuli 
and depicts basal levels of  both phospho-proteins in non-activated CD4+ T cells. Dashed lines 
represent approximate threshold for STAT phosphorylation from the baseline. The histograms are 
representative of the phosphorylated STAT levels of the samples from a single experiment.     
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 Tofacitinib citrate exposure during priming has an impact 
on CD4+ T cell viability, activation, and function 
comparable to tofacitinib base form in vitro 

 

After demonstrating tofacitinib citrate capacity to block cytokine signalling in 

CD4+ T cells, I sought to establish if it also exerted the same effect as tofacitinib 

base on CD4+ T cell phenotype and function, when present during priming. Naive 

CD4+ T cells were co-cultured with OVA323-339-pulsed dendritic cells in the 

presence of increasing concentrations of vehicle or tofacitinib citrate. For direct 

comparison, some samples were treated with a 1000 nm dose of tofacitinib base, 

previously shown to have an impact on the parameters of interest. After 3 days 

of co-culture, CD4+ T cells were assessed by flow cytometry for their viability, 

activation status and capacity for IFNy and IL-2 production. 

 Across all the treatment doses in both vehicle and drug groups, CD4+ T cell 

viability appeared to be relatively low compared to the unstimulated control 

samples (Figure 4-2A). Since all of the peptide-treated samples have a rather 

low percentage of viable cells regardless of treatment, it could potentially be a 

consequence, of the antigen-specific interaction, rather than the type of 

treatment. At 100 nM and 1000 nM tofacitinib citrate doses the percentage of 

viable cells increased significantly, and this change is comparable in tofacitinib 

base-treated samples, contrary to what was observed in the previous co-

cultures. However, at a maximal dose of 10 000 nM tofacitinib citrate leads to a 

profound reduction in cell viability, consistent with the previously observed 

effect of the treatment with base drug formulation. When assessing CD4+ T cell 

activation, CD44 expression was slightly but significantly upregulated in the 

tofacitinib citrate-treated cells compared to vehicle controls at both 1000 nM 

and 10 000 nM doses, with a similar effect observed in samples receiving 

tofacitinib base (Figure 4-2B). This effect was observed previously but should be 

interpreted with caution regarding its biological relevance.  

Most importantly, the impact of tofacitinib citrate and base forms on the CD4+ T 

cell capacity for cytokine production was closely comparable. Tofacitinib citrate 

treatment induced increased IL-2 production at 100 nM dose and this effect 
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persisted at higher drug doses, replicating the effect of the tofacitinib base 

(Figure 4-2C). Similarly, tofacitinib citrate demonstrated a dramatic inhibitory 

effect on IFNy production by CD4+ T cells starting at the 100 nM dose, with the 

extent of inhibition comparable to that of the base formulation (Figure 4-2D). 

Collectively, this data demonstrates that the changes in CD4+ T cell phenotype 

and function, resulting from tofacitinib citrate presence during their priming, 

are closely comparable to those induced by the tofacitinib base.  

 

  



162 
 

162 
 

 

Figure 4-2. Tofacitinib citrate treatment during priming  has similar effect to tofacitinib base 
form on CD4+ T cell viability, activation, and cytokine production capacity in vitro. 

 
Matured bone marrow-derived DCs were incubated with 5 ug/ml of OVA323-339 peptide for 2 h at 
37oC. CD4+ T cells were isolated from OT-II mice lymph nodes and spleens using STEMCELL 
EasySep kit and cultured with DCs in the presence or absence of either increasing concentrations 
of tofacitinib citrate, vehicle, or no treatment. Positive control samples were treated with 1000 nM of 
tofacitinib base (designated 1000*). Negative control samples received no peptide and were left 
untreated.  After 72 h incubation, cells were stimulated with PMA (10 ng/ml) Ionomycin (500 ng/ml)  
in the presence of Brefeldin A for 4 h at 37oC 5% CO2. Thereafter, cells were stained by FACS for 
viability, CD4 and CD44 marker expression, followed by fixation/permeabilization step and 
fluorescent labelling of  intracellular IFNy and IL-2 cytokines. Lymphocytes were gated on viable 
CD4+ T cells expressing either, CD44, IL-2 or IFNy. Graphs show mean percentages ± SD of viable 
CD4+ T cells (A), CD4+ T cells positive for CD44 (B), and CD4+ lymphocytes expressing either IL-2 
(C)  or IFNy (D). Results are representative of a single experiment. Statistical differences between 
groups were assessed by performing two-way ANOVA and Sidak’s multiple comparison test in 
GraphPad prism. *designates a p-value of  ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001.  ns = not significant. 
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 Single tofacitinib citrate dose administration in vivo 
reduces STAT3 phosphorylation levels in whole blood 
leukocytes at both basal state and following ex vivo 
cytokine stimulation 

 

Upon demonstrating the efficiency of tofacitinib citrate treatment in vitro and 

its comparable effects to tofacitinib base formulation, it was next required to 

test the drug efficacy in vivo. Prior to employing a relatively intricate 3-day 

adoptive transfer model, I sought to first demonstrate that the administration of 

tofacitinib in vivo can effectively inhibit the signalling through the JAK/STAT 

pathway. According to the pre-clinical pharmacokinetic/pharmacodynamic 

(PK/PD) tofacitinib profiling, a single oral dose of 50 mg/kg tofacitinib citrate 

sufficiently inhibits signalling mediated by JAK1-containing heterodimers 

(JAK1/JAK3 and JAK1/JAK2), and nearly complete inhibition of signalling is 

achieved 1 h post-dose.344 Based on the publication by Ghoreschi et al.305 and 

personal communication with the authors, I decided to use 50 mg/kg/day of 

tofacitinib citrate to be administered across two doses. Accordingly, a single 

dose equivalent of 25 mg/kg was employed in this preliminary experiment. 

C57BL/6 mice were administered with either a single dose of DMSO or tofacitinib 

citrate (25 mg/kg) dissolved in 0.5% methylcellulose/0.025% Tween20 vehicle 

solution and were sacrificed approximately 40 minutes later. For each mouse, 

the whole blood was collected by cardiac puncture and either received a surface 

antibody cocktail alone or was also simultaneously stimulated ex vivo with IL-6. 

After 15-minute incubation at 37oC, cells were immediately fixed and stained for 

phosphorylated STAT3 protein. Flow cytometry analysis revealed that the in vivo 

exposure to tofacitinib citrate did not notably affect the background pSTAT3 

levels in circulating CD4+ T lymphocytes, but has profoundly reduced the 

percentage of pSTAT3 protein in CD4- leukocytes in cytokine-unstimulated 

samples (6.13 %), compared to vehicle-treated controls (28.4 %) (Figure 4-3A). 

The proportion of pSTAT3-positive CD4+ T cells increased by 5.43 % from the 

background levels with IL-6 stimulation in the presence of a vehicle, in contrast 

to less than 1% in drug-treated cells. Similarly, drug exposure reduced the 

percentage of CD4- pSTAT3-expressing cells upon cytokine stimulation from 
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21.4% to 15.47%. The effect of tofacitinib treatment is also well illustrated in 

the histograms contrasting the levels of pSTAT3 in unstimulated and stimulated 

whole blood cells (Figure 4-3B). The difference between the fluorescence 

intensity of the peaks, representative of unstimulated and stimulated cells, 

demonstrates the diminished capacity of both CD4+ and CD4- cells to respond to 

IL-6 signals and to subsequently induce effective STAT3 phosphorylation 

following the drug exposure. 

Collectively, the above results show that a single oral dose of 25 mg/kg 

tofacitinib citrate resulted in a detectable reduction of the background pSTAT3 

levels in vivo in the unstimulated whole blood cells. Moreover, when the cells 

exposed to the drug were stimulated with IL-6 ex vivo, they retained their 

reduced responsiveness to cytokines manifested by the impaired ability for 

STAT3 phosphorylation.   
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Figure 4-3. A single tofacitinib citrate dose administration in vivo reduces STAT3 
phosphorylation in the whole blood cells at both basal state and following ex vivo cytokine 
stimulation.   

 
C57BL/6 mice were administered with a single dose of either vehicle (5% DMSO in methylcellulose 
solution) or tofacitinib citrate (in the same solution at 25 mg/kg) by oral gavage and sacrificed 40 
minutes later. Whole blood was obtained by cardiac puncture, split into two parts for each 
treatment group and incubated with surface antibody cocktail either without or with IL-6 (100 ng/ml) 
for 15 min at 37oC 5% CO2. Cells were then immediately fixed, permeabilized and stained 
intracellularly for phosphorylated STAT3 for flow cytometric analysis. Lymphocytes were gated 
based on FSC and SSC and analysed for their expression of CD4 and pSTAT3. Representative 
scatter plots show the levels of pSTAT3 in both CD4+ and CD4- cell populations present in the 
whole blood from vehicle and drug-treated mice either at their basal state or after IL-6 stimulation 
(A). The numbers indicate percentage of cells in each quadrant, with percentage of CD4+ and CD4- 
cells expressing pSTAT3 shown in the top right and bottom right quadrants, respectively. 
Representative histograms demonstrate the shift in pSTAT3 levels upon ex vivo cytokine 
stimulation individually in CD4+ and CD4- cell populations from vehicle and drug-treated animals 
(B). The experiment was done once with a single animal for each vehicle and drug treatment 
groups.  



166 
 

166 
 

 Tofacitinib citrate effectively diminishes background 
STAT3 phosphorylation in the whole blood leukocytes 
but does not affect proliferation or activation of OT-II 
CD4+ T cells in the adoptive transfer model.  

 

The next step was to perform the adoptive transfer experiment. While this 

experiment aimed to establish the impact of the tofacitinib citrate treatment on 

differentiation and function of antigen- specific CD4+ T cells, it also provided 

groundwork for the more technically challenging and biologically complex RA 

mouse model experiment (Chapter 5). Naïve OVA323-229-specific CD4+ T cells 

isolated from OT-II transgenic mice were transferred into C57BL/6 recipients and 

received the first 25 mg/kg dose of vehicle or tofacitinib citrate. The aim of this 

was to saturate the system with drug prior to in vivo priming of the transferred 

CD4+ T cells. The following day recipient mice were challenged in the footpad 

with either a mixture of LPS and OVA323-229 peptide or LPS alone. Several hours 

after the injection, the challenged feet appeared red and swollen, confirming 

successful induction of local inflammation. Utilizing OVA323-339 instead of the 

whole protein allowed to circumvent the potential impact tofacitinib treatment 

might have on the antigen uptake and processing.  

While most animal studies employing tofacitinib used osmotic mini pumps, the 

surgical procedure required for their subcutaneous implantation was regarded to 

be unnecessarily invasive for conducting this preliminary short-term experiment, 

and thus oral gavage was chosen as a more optimal method for drug delivery. 

The vehicle or tofacitinib citrate (at 25 mg/kg/dose) was administered by oral 

gavage twice daily, with such regimen previously reported to achieve 

therapeutic efficacy in the CIA mouse model.344 On day 3 post-challenge, mice 

received a final single dose of either drug or vehicle followed by sacrifice 40 

minutes later.    

To confirm the inhibitory effect of tofacitinib regimen on the JAK/STAT pathway 

signalling, whole blood was collected from mice by cardiac puncture and stained 

for surface markers, followed by intracellular staining for pSTAT3. Flow 

cytometric analysis established the percentages of CD4+ and CD4- circulating 

cells expressing pSTAT3 at their basal state in the vehicle-only treated mice, 
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which were 2.5% and 23.4%, respectively (Figure 4-4A). In the OVA323-339-

challenged animals receiving vehicle, the fraction of pSTAT3-positive cells in 

both cell populations has notably increased to 8.58% for CD4+ cells and 65 % for 

their counterparts, correlating with the ongoing antigen-specific inflammatory 

response. Interestingly, mice receiving a peptide challenge together with 

tofacitinib treatment exhibited a profound reduction in the percentage of 

pSTAT3-expressing cells in both populations to the levels below those in the 

vehicle-only group. Similarly, when depicting changes in pSTAT3 levels 

individually in CD4+ and CD4- populations as histograms, peptide treatment in 

the presence of vehicle revealed notable STAT3 phosphorylation in both cell 

populations, while tofacitinib treatment retained the pSTAT3 levels at or below 

the baseline (Figure 4-4B). While I was particularly interested in the effect of 

the drug on OT-II CD4+ T cell capacity for STAT3 phosphorylation, I could not 

assess this population individually due to the majority of adoptively transferred 

CD4+ T cells presumably accumulating in the draining lymph node at this 

timepoint and thus being represented by a small fraction in the whole blood.  

Thereby, I have confirmed that the tofacitinib dose and delivery route chosen 

for the adoptive transfer experiment effectively inhibited JAK activity leading to 

STAT3 phosphorylation in the circulating leukocytes within 1 h of drug 

administration. Together with the data from pharmacokinetic tofacitinib 

profiling and my in vitro studies, these results suggested that the chosen 

therapeutic regimen would ultimately promote changes in CD4+ T cell 

responsiveness to cytokine signalling and the associated capacity for effective 

priming.  

Next, I sought to determine whether the effective JAK/STAT pathway inhibition 

by tofacitinib translated into an impact on the antigen-specific CD4+ T cell 

ability to undergo activation and clonal expansion. The adoptive OT-II CD4+ T 

cell transfer and the footpad challenge were performed as described earlier in 

this section, and tofacitinib citrate (25 mg/kg) was administered once on the 

day of the adoptive transfer and then twice daily for the following 3 days (Figure 

4-5A). On the last day of experiment, mice received a single drug dose and were 

sacrificed 40 minutes later. This was an optimal experiment termination time 

point as the peak T cell accumulation in the draining lymph nodes is known to 
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occur 3(-4) days after the antigenic challenge. Popliteal lymph nodes, draining 

the foot, were harvested, mashed into a single cell suspension and the CD4+ 

lymphocytes were first assessed for their proliferation and activation status by 

flow cytometry. Distinguishable populations of transferred OT-II (CD45.1+) and 

endogenous (CD45.1-) CD4+ T cells were observed in all three treatment groups, 

with OT-II cells undergoing notable clonal expansion in response to cognate 

peptide challenge, which was unaffected by the drug treatment (Figure 4-5B). As 

expected, transferred OT-II CD4+ T cells also displayed an activated phenotype, 

with nearly 100% of cells being CD44hi in both OVA323-339-challenged animal 

groups (Figure 4-5C). These observations confirmed that tofacitinib treatment 

does not affect CD4+ T cell proliferation or activation during priming in vivo, 

reiterating the results obtained in vitro.  
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Figure 4-4. Tofacitinib citrate treatment diminishes basal levels of phosphorylated STAT3 in 
the whole blood cells of adoptive transfer mouse model. 

 

1x106 of OVA 323-339-specific CD4+ T cells from transgenic OT-II mice were adoptively transferred 
into C57BL/6 recipients, which have simultaneously received a single dose of either a vehicle or 
tofacitinib citrate (25 mg/kg) by oral gavage. After 24 h mice were challenged with 8 ug of LPS and 
25 ug of  OVA323-339  peptide or LPS alone, injected into the footpad. On the day of the challenge 
and for the next two days mice were administered with either vehicle or tofacitinib citrate  (25 
mg/kg) twice daily by oral gavage. Three days after the footpad challenge, mice received a single 
dose of either vehicle or tofacitinib citrate (25 mg/kg) and were sacrificed 40 minutes later. Whole 
blood was obtained by cardiac puncture and incubated with a surface antibody cocktail for 15 min 
at 37oC 5% CO2. Cells were then immediately fixed, permeabilized and stained intracellularly for 
phosphorylated STAT3. Lymphocytes were gated based on FSC and SSC and analysed for their 
expression of CD4 and pSTAT3. (A) Flow cytometric analysis of whole blood cells, with scatter 
plots representing pSTAT3 levels in the whole blood from mice from each treatment group. The 
numbers indicate percentage on cells in each quadrant, with percentage of CD4+ and CD4- cells 
expressing pSTAT3 shown in the top right and bottom right quadrants, respectively. (B) Histograms 
show levels of pSTAT3 from scatter plots in (A) individually for CD4+ and CD4- cells. Results 
represent a single experiment with 3 mice in ‘Vehicle only’ group and 4 mice in the other two 
groups. Dashed lines represent the approximate threshold for STAT phosphorylation from the 
baseline. 
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Figure 4-5. Tofacitinib citrate treatment does not affect proliferation or activation of 
adoptively transferred OT-II CD4+ T cells in vivo.  

 
C57BL/6 mice received 1x106  OT-II CD4 + T cells and 24 h later were challenged with LPS or LPS 
with OVA323-339 peptide in the footpad. Mice received treatment by gavage of either vehicle or 
tofacitinib citrate (25 mg/kg) once on the day of cell transfer and then twice daily on the consecutive 
2 days. On day 3 post-challenge, mice received a single treatment dose and were sacrificed 40 min 
later (A). Popliteal lymph nodes were removed and mashed into a single cell suspension, with half 
of the cells from each lymph node stained by FACS for CD4, CD44, and CD45.1 surface markers. 
Lymphocytes were gated on live cells and analysed for proportions (designated as percentages) of 
CD4+CD45.1+  OT-II and CD4+CD45.1- endogenous cells in each treatment group by flow cytometry 
(B). Adoptively transferred CD4+CD45.1+ cells were then assessed for CD44 expression (B). 
Results represent a single experiment with 3 mice in ‘Vehicle only’ group and 4 mice in the other 
two groups. 
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 Tofacitinib treatment supresses Th1 differentiation in 
adoptively transferred OT-II CD4+ T cells in vivo 

 

Upon demonstrating the absence of tofacitinib impact on OT-II CD4+ T cell ability 

for clonal expansion and activation, I have next sought to assess whether the 

adoptively transferred cells could similarly undergo effective priming and 

differentiation. Flow cytometric intracellular staining of popliteal lymph nodes 

for T-bet showed between 50% and 80% of the OT-II cells to exhibit transcription 

factor expression when primed with their cognate peptide in the presence of 

vehicle, indicating polarization towards Th1 phenotype (Figure 4-6A,B). In the 

peptide-treated animals receiving tofacitinib treatment, however, there was a 

significantly lower percentage of T-bet-positive OT-II cells. (Figure 4-6A,B). The 

mean numbers of T-bet expressing OT-II CD4+ T cells followed the same trend as 

the mean cell percentages but were not statistically significant (Figure 4-6C). 

To assess if the effect of tofacitinib on the differentiation of OT-II CD4+ T cells 

has compromised their function, cells from popliteal lymph nodes were re-

stimulated ex vivo and stained for appropriate surface markers, followed by the 

intracellular IFNy and IL-2 cytokine staining for the assessment by flow 

cytometry. As expected, upon antigenic challenge a significantly higher 

percentage of primed OT-II CD4+ T cells exhibited IFNy production, compared to 

the OT-II cells in the LPS-only challenge group (Figure 4-7A,B). This correlated 

with the observation of the notable proportion of transferred CD4+ T cells 

differentiating into Th1 subset following cognate peptide challenge. However, 

despite the tofacitinib administration notably supressing T-bet expression, the 

associated reduction in IFNy-producing OT-II cells was not significant (in either 

percentage or cell number) (Figure 4-7A,B). OT-II cells also markedly 

upregulated IL-2 production in the OVA peptide-challenged mice treated with 

vehicle, while the cells from drug-treated mice exhibited further enhancement 

in IL-2 production (Figure 4-7D,E). This is consistent with the tofacitinib blocking 

IL-2 signalling and thereby interfering with the STAT5-dependent IL-2 autocrine 

and/or paracrine negative feedback loop which limits IL-2 production.499 

Nevertheless, the enhanced capacity for IL-2 production by OT-II cells primed in 



172 
 

172 
 

the presence of the drug was not statistically significant (in either percentage or 

cell number)(Figure 4-7D,E).  

Thereby, tofacitinib administration during priming of adoptively transferred OT-

II CD4+ T cells in vivo markedly suppressed their T-bet expression and subsequent 

differentiation towards Th1 subset. However, the capacity of these CD4+ T cells 

to produce Th1-specific pro-inflammatory cytokine IFNy was not significantly 

altered. Similarly, the extent of an increase in IL-2 production in the presence of 

the drug did not reach statistical significance. 

 

  



173 
 

173 
 

 

Figure 4-6. Tofacitinib citrate treatment supresses T-bet expression in adoptively 
transferred OT-II CD4+ T cells in vivo.  

C57BL/6 mice received 1x106  OT-II CD4 + T cells and 24 h later were challenged with LPS or LPS 
with OVA323-339 peptide in the footpad. Mice received treatment by gavage of either vehicle or 
tofacitinib citrate (25 mg/kg) once on the day of cell transfer and then twice daily on the consecutive 
2 days. On day 3 after challenge, mice received a single treatment dose, were sacrificed 40 min 
later and their popliteal lymph nodes were removed and mashed into a single cell suspension. Half 
of the cells from each lymph node were stained by FACS for CD4, CD44 and CD45.1 surface 
markers, followed by intracellular staining for transcription factor T-bet. Lymphocytes were gated on 
live cells and CD4+CD45.1+ cells were identified as the adoptively transferred OT-II lymphocytes. 
Histograms are representative of the percentage of T-bet positive cells in the OT-II cell population 
of each treatment group (A). Graphs depict mean ± SD  of percentage (B) and number (C) of T-bet-
positive CD4+CD45.1+ cells. Results represent a single experiment with 3 mice in ‘Vehicle only’ 
group and 4 mice in other the two groups. Statistical differences between groups were assessed by 
One-way ANOVA and Turkey’s multiple comparison test in GraphPad prism. ***designates a p-
value of ≤ 0.001 ; ns = not significant. 
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Figure 4-7. Tofacitinib citrate administration in vivo does not affect the capacity of 
adoptively transferred CD4+ T cells to produce IFNy or IL-2. 

 
C57BL/6 mice received 1x106  OT-II CD4 + T cells and 24 h later were challenged with LPS or LPS 
with OVA323-339 peptide in the footpad. Mice received treatment by gavage of either vehicle or 
tofacitinib citrate (25 mg/kg) as described before with the last dose administered 40 minutes before 
sacrifice. Popliteal lymph nodes were removed, mashed into single cell suspension and half of the 
cells from each lymph node were stimulated with PMA and Ionomycin with addition of Brefeldin A 
for 4 h at 37oC 5% CO2. . Cells were then stained by FACS for CD4 and CD45.1 surface markers, 
followed by intracellular staining for IFNy and IL-2, and analysed by flow cytometry. Lymphocytes 
were gated on live cells and CD45.1+ cells  identified as adoptively transferred (OT-II) cells. Scatter 
plots represent levels of IFNy (A) and IL-2 (D) expression in CD4+CD45.1+ T cells. Graphs depict 
the mean (± SD) percentage of IFNy (B) and IL-2 (E) positive CD4+CD45.1+ T cells, and the mean 
(± SD) numbers of cells expressing respective cytokines (C and F). Results represent a single 
experiment with 3 mice in ‘Vehicle only’ group and 4 mice in the other two groups. Statistical 
differences between groups were assessed by One-way ANOVA and Turkey’s multiple comparison 
test in GraphPad prism *designates a p-value of  ≤ 0.05; ns = not significant.    
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 Tofacitinib citrate treatment diminishes in vivo T-bet 
expression by endogenous CD4+ T cells but does not 
alter their capacity for IFNy and IL-2 production. 

 

Apart from assessing the drug impact on the transferred antigen-specific CD4+ T 

cells, it was equally important to examine the consequences of tofacitinib 

treatment on the endogenous CD4+ T cell function. Endogenous CD4+ T cell 

population was easily distinguishable and comprised a comparable percentage of 

total popliteal lymph node cells in each of the treatment groups (Figure 4-5A). In 

contrast to OT-II cells, the endogenous population comprised only a small 

proportion of CD4+ T cells expressing activation marker CD44hi (Figure 4-8A,B), 

and this fraction of activated CD4+ T cells likely consisted of mainly recirculating 

memory cells of the irrelevant specificities and a small number of OVA323-339-

specific T lymphocytes. However, no significant differences in the percentage of 

CD44hi cells were observed between treatment groups (Figure 4-8B) due to a 

relatively low frequency of  OVA323-339-specific endogenous CD4+ T cells and the 

associated difficulty in detecting their priming activation in response to cognate 

peptide.   

The endogenous CD4+ T cells, similarly to OT-II cells, upregulated their T-bet 

expression following antigenic challenge in the vehicle-treated mice, while in 

the animals receiving tofacitinib T-bet expression was notably lower, in both 

percentage and cell number, and remained at the level comparable to that in 

the control mouse (vehicle-only) group (Figure 4-8C,D). Mirroring the changes in 

T-bet expression and in line with functional changes observed in transferred 

CD4+ T cells, the percentage and number of their IFNy-producing endogenous 

counterparts slightly but significantly increased in the presence of OVAp in 

vehicle-treated mice, while in tofacitinib-treated group IFNy production was 

reduced, although not significantly (Figure 4-8E,F). Interestingly, endogenous 

CD4+ T cells notably upregulated IL-2 production upon antigenic challenge in 

vehicle-treated group but no alterations in IL-2 production were achieved by 

tofacitinib administration (Figure 4-8G,H).  
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Thereby, the endogenous CD4+ T cells of unknown specificities in the antigen-

specific inflammation model employed were presumably recruited to the 

draining lymph node as activated effector/memory cells. Tofacitinib treatment 

notably diminished the endogenous CD4+ T cell ability for T-bet expression 

during antigenic challenge, but the capacity for IFNy production was not 

significantly compromised. However, since the drug-induced differences in both 

transferred and endogenous CD4+ T cells are not statistically significant, and the 

activation status of the endogenous cells is not fully explored, no definitive 

conclusions can be made from the current comparison and further experiments 

would be required to assess the above possibilities.  
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Figure 4-8. Tofacitinib citrate treatment diminishes in vivo T-bet expression and preserves 
capacity for IFNy and IL-2 production of endogenous CD4+ T cells in the adoptive transfer 
experiment. 

 
C57BL/6 mice received 1x106  OT-II CD4 + T cells and 24 h later were challenged with LPS or LPS 
with OVA323-339 peptide in the footpad. Mice received treatment by gavage of either vehicle or 
tofacitinib citrate (25 mg/kg) once on the day of cell transfer and then twice daily on the consecutive 
2 days. On day 3 after challenge, mice received a single treatment dose, were sacrificed 40 min 
later and their popliteal lymph nodes were removed and mashed into a single cell suspension. Half 
of the cells from each lymph node were stimulated ex vivo with PMA/Ionomycin in presence of 
Brefeldin A for 4 h at 37oC 5% CO2. All the cells were then stained by FACS for CD4, CD44, and 
CD45.1 surface markers, with stimulated cells stained further for intracellular cytokines IFNy and 
IL-2, while unstimulated fraction of lymph node stained for T-bet. Cells were subsequently analysed 
by flow cytometry. Lymphocytes were gated on live cells and the CD4+CD45.1-  cell fraction was 
identified as an endogenous CD4+ T cell population. Endogenous CD4+ T cells were assessed for 
CD44 (A,B)  and T-bet (C-D) expression, and production of IFNy(E,F) and IL-2 (G,H) in each 
treatment group. Graphs depict mean ± SD  of  the percentage of CD44hi expressing CD4+CD45.1- 
cells (B), percentage (C) and number (D) of T-bet-positive CD4+CD45.1- cells, as well as the 
percentage (E and G) and number (F and H) of IFNy and IL-2-positive CD4+CD45.1- cells, 
respectively. Results represent a single experiment with 3 mice in ‘Vehicle only’ group and 4 mice 
in the other two groups. Statistical differences between groups were assessed by One-way ANOVA 
and Turkey’s multiple comparison test in GraphPad prism. **designates a p-value of ≤ 0.01; ns = 
not significant. 
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4.3 Discussion 

 Tofacitinib citrate successfully inhibits JAK/STAT 
pathway signalling in whole blood CD4+ T cells when 
administered in vivo 

 

Prior to investigating the effect of tofacitinib treatment in vivo, it was necessary 

to confirm that tofacitinib citrate, a drug form employed for the in vivo 

experiments, had the same mode of action as its alternative formulation, 

tofacitinib base. The addition of tofacitinib citrate to the in vitro co-cultures 

during  OVA323-339-specific OT-II CD4+ T cell priming with peptide-pulsed dendritic 

cells achieved effective inhibition of cytokine signalling in CD4+ T cells and 

reduced activation of downstream signal-transducing  STAT proteins (STAT3 and 

STAT5). The reduced responsiveness to cytokine stimulation had resulted in 

impaired CD4+ T cell differentiation into functional Th1 cells and manifested in 

diminished IFNy and enhanced IL-2 production. Since tofacitinib citrate 

demonstrated efficiency in vitro and its effect on the antigen-specific CD4+ T 

cell function was closely comparable to that of the alternative base form, the 

drug was further employed for in vivo administration. 

Tofacitinib citrate was first tested for its ability to inhibit the JAK/STAT pathway 

in whole blood leukocytes. Conventionally, STAT protein phosphorylation is 

measured at both basal state of the cells and following their stimulation with 

cytokines, and the difference in phosphorylation levels between the two states 

used to indicate the efficacy of the inhibitor. 1 hour following administration of 

a single tofacitinib citrate dose to C57BL/6 mice, whole blood cells, including 

CD4+ T cells, exhibited notably smaller shifts in pSTAT3 levels upon cytokine 

stimulation compared to the cells from vehicle-treated mice. Interestingly, the 

difference in STAT3 phosphorylation levels was apparent even at the baseline 

level in unstimulated cells. Thus, the drug efficacy based on STAT3 

phosphorylation inhibition was subsequently only assessed at the basal state of 

whole blood leukocytes. Importantly, a 25 mg/kg dose used in this experiment 

has achieved a detectable inhibition of IL-6 signalling in CD4+ T cells, possibly 

mediated through JAK1/JAK2/pSTAT3, within 1 hour, which was consistent with 
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IL-6 signalling inhibition, although more complete, in CD8+ T cells using 50 

mg/kg drug dose.344 Since a single oral 25 mg/kg dose achieved sufficient 

JAK/STAT signalling inhibition in vivo and sustained tofacitinib levels in plasma 

at half-maximal inhibitory concentration (IC50) of JAK1 heterodimer for 

approximately 12 hours, a twice-daily oral administration of the above dose was 

established as a therapeutic regimen for the adoptive transfer experiment. Of 

note, the RA patients also receive twice daily oral tofacitinib dose, and their 

average plasma concentration of 100 nM was comparable to that achieved in 

mouse models.344  

Tofacitinib base form, similarly to a number of newly emerging drugs, is poorly 

water-soluble, which does not appear to be the efficacy-limiting factor in the in 

vitro assays but is a major hindrance for achieving acceptable drug 

bioavailability in vivo. The poorly soluble compound is eliminated from the body 

before a therapeutically sufficient amount of it is able to dissolve and be 

absorbed in the gastrointestinal tract (and enter the circulation). While the dose 

increase could potentially overcome this issue, it would lead to other negative 

consequences including risk of drug toxicity, reduced patient compliance, and 

increased treatment costs.521 Thus, to ensure high compound solubility, 

tofacitinib was synthesized in a citrate salt Form A, the only existing crystalline 

form of the drug, which exhibited acceptable dissolution rates across 

physiological pH scale. In the intestine, the salt following compound dissolution 

acts as a buffer for the basic drug, decreasing the pH of the microenvironment 

and thereby enhancing dissolution and thus an absorption of the active 

pharmacological compound of the drug itself.520 The oral administration of the 

tofacitinib citrate salt allowed to achieve an oral bioavailability of 74%, with a 

peak plasma concentration reached within only 0.5-1 h post-dose. In addition to 

enhanced solubility and absorption, and subsequent improvement in the clinical 

efficacy of tofacitinib, crystallization enabled to achieve higher purity of the 

compound, while salt form also representing a more hydrolytically and thermally 

stable substance.    
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 Tofacitinib citrate treatment supresses T-bet but not 
cytokine expression  by adoptively transferred OT-II CD4+ 
T cells during priming in vivo. 

 

CD4+ T cell priming represents a key step in self-tolerance breakdown and 

initiation of the autoimmune response seen in the initial stages of RA, as well as 

continuing throughout disease as they respond to the newly released self-

epitopes from the damaged joint contributing to disease chronicity. Thus, 

therapeutic interference with CD4+ T cell priming could ultimately prove 

beneficial at different stages of the disease. In the previous chapter tofacitinib 

exposure during priming in vitro was shown to impair CD4+ T cell differentiation 

into Th1 helper subset, and to subsequently diminish cell capacity for subset-

specific pro-inflammatory cytokine production. I thus aimed to replicate this 

experiment in vivo in the setting of antigen-specific inflammation. The use of 

transgenic OT-II cells, previously employed in vitro, allowed to specifically 

assess the outcome of the antigen-specific CD4+ T cell priming by their cognate 

antigen in vivo in the presence of the drug, as well as separately assess the 

response of the endogenous CD4+ T cell population to the treatment. 

I have first confirmed that in vivo tofacitinib citrate administration in the 

context of antigen-specific inflammation achieved a notable reduction in 

circulating leukocyte pSTAT3 levels at their basal state when compared to the 

pSTAT3 in the antigen-challenged vehicle-treated mouse group. Thereby, since 

the drug was effective at inhibiting its target signalling pathway, in particular in 

CD4+ T cells, in this T cell priming experiment, any changes observed in the 

lymphocyte phenotype and function could be directly attributed to the effect of 

tofacitinib.  

The adoptively transferred OT-II CD4+ T cells were retrieved from the popliteal 

lymph nodes 3 days after recipient mice received antigenic challenged and 

twice-daily oral tofacitinib treatment. While these OVA peptide-specific cells 

demonstrated successful clonal expansion and activation regardless of drug 

exposure, the percentage and number of these cells expressing transcription 

factor T-bet was markedly lower in the drug-treated animal group. T-bet 
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expression is crucial for terminal CD4+ T cell commitment towards the Th1 

subset, and its transcription initially requires IFNy STAT1-dependent signalling 

during T cell priming. Upon T-bet expression, the transcription factor directly 

enhances IFNy production through Ifng locus remodelling and induces IL-12Rβ2 

expression, thereby further promoting its own expression and establishing an 

IFNy self-enhancing loop.515,522  Tofacitinib likely interferes with OT-II CD4+ cell 

polarization towards a mature Th1 subset by inhibiting signalling through their 

IFNy receptor. Exposure to drug throughout CD4+ cell priming in vitro resulted in 

the closely comparable outcome, with the drug mechanism preventing Th1 

differentiation likely being the same both in vitro and in vivo. 

Despite the diminished potential of antigen-specific CD4+ cells for Th1 

polarization following tofacitinib exposure, their capacity for subset-specific 

cytokine IFNy production was not significantly impaired. Further investigation is 

required, possibly by assessing the IFNy production of these cells at the later 

time point (day 5 after antigenic challenge), to determine if there might be a 

delay between the tofacitinib impact on T-bet expression and the associated 

notable negative effect on IFNy production.  

In line with changes seen in IFNy production, tofacitinib treatment promoted 

increased IL-2 production in transferred CD4+ cells in vivo which was not 

statistically significant but closely replicated the changes observed in the in 

vitro co-culture setting. In both cases, the drug might interfere with the STAT5-

dependent IL-2-mediated negative feedback loop,509 leading to the impaired 

inhibition of IL-2 production together with diminished IL-2Rα expression and 

reduced cytokine consumption. While the diminished responsiveness to IL-2 

stimulation did not appear to affect OT-II T cell proliferation, it could have 

contributed to the impaired cell capacity for Th1 differentiation, which is also 

partly regulated by IL-2.511  However, it is unclear why the in vivo drug 

administration did not achieve a substantial change in cell ability for IL-2 

production.  

While the variation in above cytokine data does not allow to determine with 

certainty if the production of IFNy is diminished and of IL-2 is enhanced in 

response to tofacitinib in vivo, the existing literature suggests this to hold true.  

A study investigating the impact of tofacitinib on a mouse model of acute graft-
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versus-host disease (GvHD) demonstrated that despite the preserved ability for 

proliferation, the number of donor CD4+ T cells producing IFNy had significantly 

decreased in all lymphoid organs516. As this effect was observed during the early 

phase of GvHD induction, and the naïve CD4+ T cells are known to be among the 

initial responders post-transplantation523, these results could be closely 

correlated with our findings, despite being obtained in a different inflammatory 

context. Another study demonstrated diminished IFNy production following 

tofacitinib treatment in the joints of SKG mice spontaneously developing chronic 

arthritis, which, along with other parameters, correlated with long-term clinical 

improvement.312 However, CD4+ T cells in the inflamed joint would represent a 

heterogenous population at different activation states, thus the effect could not 

be directly attributed to the drug impact on CD4+ T cell priming alone.   

There could be several possibilities explaining the discrepancy between the 

cytokine data in the adoptive transfer experiment and the in vitro setting. One 

potential explanation could be a more complex drug biodistribution in vivo, 

which might be different for specific tissues, as well as its availability for the 

target cells, which are numerous in both circulation and tissue sites of interest. 

Moreover, since the oral twice daily tofacitinib administration results in 

noticeable fluctuations of its average plasma concentrations over time, the drug 

bioavailability is also not continuously stable and thus a longer time period might 

be required to achieve sufficient cytokine signalling inhibition in the target cells. 

Therefore, since the OT-II cell potential for Th1 differentiation was notably 

reduced and strongly correlated with cytokine production capacity (as seen in 

vitro), continuing the drug treatment and assessing cell function at the later 

time point (day 5 after antigenic challenge) might produce more consistent and 

clearer results. The other possibility is insufficient animal numbers in the 

treatment groups and employing more mice (n=5-6) for each group might help to 

reduce the variability of obtained values and obtain more clear statistical 

trends. Finally, there could be a failure to maintain a sufficient average 

tofacitinib plasma concentration over the course of the experiment, which, 

given the rapid reversibility of JAK inhibition, might make the target cells more 

responsive to the cytokine stimulation. The possible solution might include 

increasing the total daily drug dose or employing the osmotic mini- pump for 

more consistent drug administration. 
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Although not explored experimentally in this chapter, tofacitinib could also 

influence the priming outcome by affecting dendritic cell function. An initial 

report by Rivas-Caicedo et al. described bone marrow-derived dendritic cells 

from Jak3-/- mice as having diminished CCR7-mediated homing to lymph nodes in 

vivo combined with failures in co-stimulatory molecule CD80/86 and MHC-II 

upregulation, collectively resulting in the reduced capacity of Jak3-deficient 

BMDCs to efficiently promote T lymphocyte proliferative responses.524 Another 

study conducted by Kubo and colleagues employed tofacitinib, as a potent JAK3 

inhibitor, to similarly assess its impact on human monocyte-derived dendritic 

cell (moDC) maturation and effector function. While MHC-II expression remained 

unaffected, in vitro exposure to tofacitinib during LPS stimulation significantly 

supressed CD80/86 expression alongside reduced pro-inflammatory TNFα, IL-1β 

and IL-6 production. In addition, the drug pre-treated moDCs showed decreased 

capacity for naïve CD4+ T cell stimulation, leading to diminished T lymphocyte 

proliferation and IFNy production.309 In a more recent in vivo study, mouse 

BMDCs exposed to tofacitinib prior to LPS stimulation, loaded with disease-

specific antigen and adoptively transferred into an EAE mouse model not only 

exhibited comparable phenotypic and functional alterations but also 

demonstrated reduced IL-12 and IL-23 production. Importantly, this resulted in 

impaired differentiation towards Th1/Th17 subsets in favor of the CD25+Foxp3+ 

Treg population expansion.514 Collectively, dendritic cell exposure to tofacitinib 

prior to or during their maturation appears to impair their functional capacity 

and thereby compromises their ability to provide sufficient ‘signal 2’(co-

stimulation) and ‘signal 3’ (polarizing cytokines) to naïve CD4+ T cells, crucial for 

effective T lymphocyte activation and polarization. Such a tolerogenic dendritic 

cell phenotype was currently only induced in vitro, thus it would be important to 

investigate if the in vivo administration of the drug would induce a similar 

functional profile in the endogenous dendritic cells. Since in my adoptive 

transfer experiment tofacitinib treatment is initiated the day before 

administration of LPS and hence dendritic cell maturation induction, it could be 

a suitable context to assess the functional changes in the endogenous dendritic 

cells, which could in turn substantially contribute to impaired adoptively 

transferred CD4+ T cell differentiation and function.  
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  Tofacitinib citrate administration in vivo diminished T-
bet expression by endogenous CD4+ T cells but did not 
impact cytokine production following non-specific 
activation. 

 

Due to the nature of the adoptive transfer system, I was also able to distinguish 

the endogenous polyclonal CD45.1- CD4+ T cell population in the popliteal lymph 

nodes and assess their capacity for differentiation and cytokine production. 

Since there was no increase observed in the percentage of CD44+ cells following 

antigenic challenge, but a significant increase in T-bet expression was detected 

in a small proportion of endogenous CD4+ T cells, I proposed that these cells did 

not undergo antigen-specific priming but rather represented previously activated 

cells recruited in response to inflammation. Interestingly, the in vivo tofacitinib 

administration significantly supressed T-bet expression in these bystander CD4+ T 

cells, while preserving their capacity for IFNy and IL-2 production. A comparable 

trend was observed in the adoptively transferred antigen-specific CD4+ T cells, 

and it is unclear whether the non-significant changes in cytokine production 

capacity in both cell populations are due to an early experiment termination or 

other possible experimental issues, or represent a true outcome of the drug 

treatment. An in vitro study investigating tofacitinib effect on bystander CD4+ T 

cells co-cultured differentially labelled PHA-stimulated and non-stimulated 

PBMCs from healthy donors and observed profound activation and proliferation 

of the non-stimulated cells activated in the mixed culture in a bystander 

fashion. Addition of tofacitinib to the co-culture notably impaired bystander T 

lymphocyte ability for IFNy production while enhancing IL-2 generation.485 

Thereby, at least in an in vitro setting tofacitinib appears to diminish the pro-

inflammatory function of cytokine-activated bystander T cells.  

Bystander activation does not require TCR engagement, thus the cells can be 

activated by cytokine stimulation (and possibly co-stimulation) when recruited 

to the cytokine-rich inflammatory site alongside antigen-specific auto-reactive T 

cells. Effector and memory T cells, in particular, were found to have a lowered 

threshold for such bystander activation. When activated, these cells can induce 

TNFα secretion by monocytes, either indirectly or through cell-cell contact, 



185 
 

185 
 

thereby sustaining and perpetuating the cycle of chronic inflammation.482 Thus, 

the ability to block cytokine signalling might enable tofacitinib to also inhibit 

bystander T cell activation and thereby possibly limit the disease progression 

through yet another immunomodulatory mechanism. Our experimental model 

could be utilized to further elucidate the bystander T cell fate following 

tofacitinib exposure in vivo, with a more detailed assessment to confirm 

bystander T cell phenotype and possibly their function in the co-culture with 

monocytes.   

Overall, in this chapter, by using the adoptive transfer of OVA323-339-specific OT-II 

CD4+ T cells to elicit antigen-specific inflammation in vivo, I have demonstrated 

that tofacitinib treatment throughout the priming of CD4+ T cells impairs their 

ability for differentiation into Th1 cells and reduces subset-specific IFNy 

production, with the latte r not reaching statistical significance. The antigen-

experienced endogenous CD4+ T cells similarly exhibited supressed T-bet 

expression but retained their ability for IFNy production. Upon demonstrating 

the immunomodulatory capacity of tofacitinib in an in vivo setting, the next step 

was to assess whether this drug impact on CD4+ T cells is achievable in a disease 

mouse model and whether tofacitinib exhibits any therapeutic efficacy in this 

setting.  
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5 Assessment of tofacitinib treatment effect on 
CD4+ T cell behaviour and joint pathology in the 
‘breach-of-tolerance’ mouse model of early RA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All animal experiments were done with help from Robert Benson. Samples for 

the histological assessment were prepared by Lynn Stevenson. Joint tissue 

sections were scored for the signs of pathology by Robert Benson.  
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5.1 Introduction 

 

My results have thus far demonstrated that the presence of tofacitinib during 

naïve CD4+ T cell priming resulted in the diminished cell ability for 

differentiation towards Th1 phenotype and the associated abrogation of IFNy 

production capacity, both in the in vitro setting and in the adoptive transfer 

model (in vivo). In contrast, the antigen-experienced cells appeared to retain 

their functional capacity when exposed to tofacitinib during their re-activation 

in vitro. I have therefore decided to proceed by assessing the effect of 

tofacitinib treatment in a murine model of RA to gain further understanding of 

immunomodulatory drug mechanisms.      

Multiple Phase III clinical trials ranging from 6 months (ORAL trials)525 up to 9.5 

years (ORAL Sequel long-term extension study)526 have previously evaluated 

tofacitinib for clinical efficacy, impact on structural disease progression and 

adverse effect profile. Across the trials, tofacitinib demonstrated therapeutic 

efficacy in both early and late active-phase disease and in both treatment-naïve 

and non-responder patients. Significant drug efficacy was observed equally with 

tofacitinib used as a monotherapy or in combination with methotrexate and 

other conventional synthetic DMARDS (csDMARDs), and, importantly, tofacitinib 

was effective in patients with active RA failing to respond to several biologic 

DMARDS with distinct modes of action. Clinically relevant end-points, including 

ACR20, ACR50 and ACR70, DAS28 score, physical function improvement (HAQ-DI) 

and pain were notably improved, with some of the improvements distinguishable 

as early as 2 weeks following treatment induction525. The structural joint 

damage also showed minimal progression in the majority of patients.527 

However, while these and other clinical parameters manifest rapid and 

persistent tofacitinib efficacy in the clinic, there is a lack of understanding of 

biological (immunological) mechanisms underlying the observed physiological 

responses to the drug.  

Multiple rodent models of arthritis were thus employed for in-depth 

investigation of tofacitinib treatment impact on systemic inflammation, immune 

cell behaviour and associated joint pathology. The disease models of both 
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induced (collagen-induced arthritis, CIA; adjuvant-induced arthritis, AIA) and 

spontaneous (SKG mice) chronic arthritis were used, which closely recapitulate 

clinical and histological features of the advanced human disease phase. Clinical 

scores indicating the disease severity were markedly reduced in arthritic mice 

receiving tofacitinib after initial 2-3 days of the treatment305,311, remained 

supressed throughout the duration of the study305,311,312 and, in the SKG mouse 

model, this effect persisted for another 3 weeks following drug withdrawal312. 

Such rapid disease amelioration could be associated with the drug-induced 

decrease of inflammatory mediator concentration in both plasma and paw 

tissue, with a significant reduction in IL-6, IL-17, CCL2 (MCP-1) and CXCL10 (IP-

10) observed as early as 4 hours post-dose.305,310 Histopathological analysis 

revealed tofacitinib administration to abolish synovial hypertrophy and notably 

limit inflammatory cell influx in both surrounding synovial tissue and joint 

cavity305,311,312. In line with that, in the SCID-HuRAg mice bearing human 

synovium and cartilage implant synovial invasion into cartilage was supressed in 

the tofacitinib-treated animals.306 Cartilage and bone erosions were also 

markedly limited by the drug, with the bone-degrading osteoclasts largely 

absent from the bone cavity of the tofacitinib-treated AIA rats.310,311 Finally, SKG 

mice exhibited reduced IFNy, IL-17 and increased IL-10 levels in the joint tissue 

following drug exposure, suggesting a possible correlation between pathology 

improvement and suppression of Th1 and Th17 cell pro-inflammatory function.312 

Interestingly, LaBranche et al. also demonstrated decrease T cell production of 

RANKL, which promotes osteoclast differentiation and activation310, thus 

highlighting an additional possible contribution of T cells to promoting disease 

pathogenesis, and further demonstrating the importance of their in-depth 

functional assessment in the context of experimental arthritis. 

The above animal studies confirm the tofacitinib treatment to promote the rapid 

and effective amelioration of the disease at its active state. This comes in line 

with the strategy of clinical RA management currently recommending the use of 

JAK inhibitors predominantly as the third-line treatment ,following the 

inadequate response or intolerance to one (or several) biologic DMARDs, thus 

introducing JAK inhibitors fairly late in the disease course.141 Considering the 

ongoing trend for therapeutic intervention at the onset of RA, allowing to 

prevent the joint damage and even achieve remission, it would be of interest to 
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determine if JAK inhibitors demonstrate similar efficacy early as the first-line 

therapeutic modality.   

I have therefore employed a mouse model of acute transient RA developed in 

our laboratory, which displays a number of features characteristic of pre-

articular/pre-clinical phase of RA. The model exhibits self-tolerance breakdown 

to joint-specific antigens, induced by the adoptive transfer of transgenic Th1-

polarized CD4+ T cells of joint-irrelevant antigen specificity.455 Unlike the CIA 

model, where the breach of self-tolerance is achieved by external administration 

of the self-antigen in a very strong adjuvant, in our model this event occurs  in 

endogenous T cells following the establishment of acute localised inflammation 

driven by a transferred Th1 cell population of joint-irrelevant specificity. Apart 

from developing measurable autoantibody response, the model, although being 

transient/self-limiting, also exhibits prominent histological changes 

(inflammatory cell influx, synovial hyperplasia, hypervascularization, cartilage  

and bone degradation) characteristic of human early stage/preclinical disease. 

In addition, the current model allows monitoring fates/functions of both inciting 

transgenic CD4+ T cells and their endogenous counterparts in the context of 

antigen-specific priming and/or re-activation in the environment of the 

developing pathology. 

The previous studies of the acute RA mouse model revealed that the 

inflammatory response to the non-specific inflammatory mediator (LPS) in the 

joint also resulted in the recruitment of (OT-II) T cells of joint-irrelevant 

specificity and the (associated) development of some aspects of joint pathology. 

However, while the comparable (histo)pathological features were observed in 

the HAO-challenged mice, the antigen-specific activation of these T cells of 

irrelevant specificity appeared to be a prerequisite for the breach of self-

tolerance and autoantibody response generation.528 A more recent study have 

also dissected the dynamics of CD4+ T cell recruitment to the joint, 

demonstrating that the recruitment of inciting antigen-specific (OT-II) T cells 

occurred alongside the accumulation of oligoclonal CD4+ T cell population 

exhibiting a pro-inflammatory phenotype, with a large proportion of these cells 

interacting with CD11c+ DCs in the manner indicative of cognate antigen 

recognition and thus likely representing an autoreactive cell population. 
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Importantly, the adoptively transferred Th1 CD4+ T cells of irrelevant specificity 

(Eα52-68 peptide-specific) were also found to be able to infiltrate the arthritic 

joint even in the absence of their cognate antigen.468 The acute RA model also 

allowed to establish a novel mode of action of abatacept, occurring through 

supression of follicular T cell phenotype acquisition in antigen-specific T cells 

and abrogation of their subsequent migration to the B cell follicles. Abatacept 

also inhibited antigen-specific (OT-II) T cell activation and proliferation, and its 

cumulative effects resulted in the prevention of self-tolerance breakdown, 

diminished autoantibody responses, and improvement in joint pathology529.  

 

Thus, in this chapter I employed the ‘breach-of-tolerance’ mouse model of pre-

clinical RA to address the following:     

 To assess the capacity of adoptively transferred Th1 cells for T-bet 

expression and IFNy production upon their re-activation in vivo in the 

presence of tofacitinib 

 To determine endogenous CD4+ T cell capacity for T-bet expression and 

IFNy production after the exposure to tofacitinib in vivo   

 To investigate whether tofacitinib treatment can interfere with the 

breakdown of self-tolerance by supressing autoantibody response 

 To address the ability of tofacitinib to ameliorate the inflammation and 

joint pathology when administered at the early stages of RA development 
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5.2 Results 

 

 Tofacitinib has no impact on T-bet expression or IFNy 
production by adoptively transferred OT-II CD4+ Th1 cells 
in early RA mouse model  

 

To generate the experimental RA mouse model, I have adopted the original 

protocol developed in our laboratory by Maffia et al.455 (Figure 5-1) First, CD4+ T 

cells were isolated from lymph nodes and spleens of transgenic OT-II mice, and 

their polarization towards Th1 subset was achieved by co-culturing them with 

splenocytes pulsed with OVA323-339 peptide in the presence of Th1 polarizing 

factor/cytokine IL-12 and anti-IL-4 antibody to limit skewing towards Th2 

phenotype. After 3 days in polarizing culture, the percentage of OT-II CD4+ T 

cells expressing Vα2Vβ5 TCR was determined by flow cytometry and a total of  

2x106 OT-II cells were adoptively transferred (via the tail vein) into all C57BL/6 

recipient mice. It has been previously confirmed the OVA323-339-specific Th1 cells 

polarized in this manner to produce high levels of signature cytokine IFNy along 

with negligible levels of IL-5.455 One day following the adoptive transfer, all 

recipient mice were immunized subcutaneously (scruff) with the whole OVA 

protein emulsified in complete Freund’s adjuvant (CFA) to promote OT-II CD4+ T 

cell activation and clonal expansion in the peripheral draining lymph nodes. 

Following 10 days after immunization, mice received heat-aggregated OVA (HAO) 

challenge into the hind limb footpads, proximal to the ankle joints, and the 

control animals were challenged with PBS instead. HAO injection was aimed to 

direct the migration of OT-II CD4+ T cells into the ankle (tarsal) joints and 

associated popliteal lymph nodes where they can exert an inflammatory 

response to their cognate antigen and promote the favourable conditions for the 

breakdown of self-tolerance to occur. Tofacitinib treatment was initiated 1 day 

before HAO challenge in order to saturate the system with the drug prior to the 

pathology induction and was thereafter administered twice daily by oral gavage 

at 25 mg/kg/dose, replicating the treatment regimen employed in the in vivo 

model (Chapter 4). PBS-treated and arthritic (HAO-challenged) control mouse 

group were treated with 0.5% DMSO in vehicle solution. On day 7 post-HAO 

challenge, mice received the last dose of either drug or DMSO and were 
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sacrificed within 1 hour. Day 7 post-HAO challenge appeared optimal for 

experiment termination, as the arthritic animals at this stage have a low but 

detectable number of adoptively transferred CD4+ T cells in the (peripheral) 

draining lymph nodes, exhibit notable anti-OVA antibody response and begin to 

develop auto-antibody response against collagen II, an abundant articular 

antigen455. In addition, signs of joint pathology are evident at day 7 post-HAO 

injection.455,530  

The first aim was to assess the capacity of Th1-polazired OVA323-339-specific CD4+ 

T cells for T-bet expression and pro-inflammatory cytokine production upon their 

re-activation in vivo. Prior to addressing the impact of tofacitinib on the 

(pathology-inciting) CD4+ T cell function, it was crucial to confirm the drug 

capacity for its target pathway inhibition in our disease model setting. I have 

demonstrated earlier (Chapter 4) that following 3 days of treatment there was a 

reduction in basal STAT3 phosphorylation levels in the circulating leukocytes in 

vivo. Thus, for this experiment, the whole blood samples were collected from all 

recipient mice three days after HAO challenge, pulled together for each 

treatment group and stained by Phospho-Flow cytometry for the levels of 

pSTAT3 protein. As expected, mice receiving HAO injection together with a 

vehicle had a significant increase in the proportion of pSTAT3-positive 

circulating CD4- cells (30.4%) compared to those in the PBS-injected mice 

(2.99%)( Figure 5-2A). However, tofacitinib exposure resulted in the pSTAT3 

levels in the CD4- cell population to be retained close to the baseline (3.10%). 

These changes were reflected in the histogram depicting pSTAT3 fluorescence 

intensity in the CD4- cell compartment (Figure 5-2B).  In the CD4+ cell 

compartment, the proportion of pSTAT3-positive cells in the arthritic vehicle-

treated animal group (1.46%) appears to be lower than that in the non-arthritic 

animals (2.06%), while the tofacitinib exposure appeared to increase the 

percentage of pSTAT3-expressing CD4+ cells (2.62%) compared to the other two 

animal groups. However, the evaluation of mean fluorescence intensity (MFI) for 

pSTAT3 in the whole CD4+ T cell population (i.e. both upper left and right 

quadrants of the plots in Figure 5-2A) demonstrated the pronounced increase in 

pSTAT3 MFI in arthritic vehicle-treated group (408) from its background levels in 

non-arthritic (control) group (253), while the tofacitinib treatment retained the 

pSTAT3 levels below the baseline (239)(Figure 5-2, table).In line with that, a 
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clear positive peak was evident in a pSTAT3 histogram for the CD4+ cell 

population from arthritic vehicle-treated mice, which was absent in the drug-

treated group (Figure 5-2B). Thus, I have confirmed the capacity of tofacitinib to 

inhibit the phosphorylation of STAT3 protein in both CD4+ and CD4- circulating 

cell populations and to ,thereby, efficiently interfere with signaling through its 

target pathway in the RA mouse model/in vivo.  
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Figure 5-1. Experimental protocol of ovalbumin (OVA)-mediated early RA mouse model 
induction and tofacitinib administration.  

 

 
CD4+ T cells were isolated from lymph nodes and spleens of OT-II mice using MACS magnetic 
isolation kit. The Th1 polarization was induced by co-culturing CD4+ T cells with splenocytes in the 
presence of OVA323-339 peptide( 1 ug/ml), IL-12 (10 ng/ml) and anti-IL-4 antibody (2 ug/ml) in 75 
cm2 culture flasks at 37oC 5% CO2 for 72 h. The proportion of CD4+ Vα2+Vβ5+ OT-II cells was 
determined by flow cytometry and a total of 2x106 Th1 OT-II cells were injected intravenously (tail 
vein) into all C56BL/6 recipient mice. One day following the adoptive transfer, all recipients were 
immunized subcutaneously (scruff) with 100 ug of OVA protein in complete Freund’s adjuvant 
(CFA), and 10 days later were challenged with subcutaneous injection with 100 ug of heat-
aggregated OVA (HAO) into both hind limbs, close to the ankle joints. Control animals received a 
PBS injection instead. Starting one day before the HAO challenge, HAO-treated mouse group 
received tofacitinib citrate treatment twice daily (25/mg/kg/dose) by oral gavage. Another HAO-
treated group and (PBS-treated) control groups received 0.5% DMSO in vehicle solution twice daily 
by gavage. On day 3 post-HAO challenge, blood samples were collected by the tail vein bleed for 
assessment of pSTAT levels by Phospho-Flow cytometry. On day 7 after the HAO challenge, mice 
received the last dose of either drug or DMSO and were sacrificed within 1 h. After the sacrifice, 
popliteal lymph nodes were collected for CD4+ T cell analysis by FACS, hind limbs were used for 
histological assessment and the whole blood was processed for antibody detection in the serum.    
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Figure 5-2. Tofacitinib treatment reduces basal levels of STAT3 phosphorylation in both 
CD4+ and CD4- circulating leukocytes of early RA mouse model.  

 

Experimental arthritis was induced as described (Fig.5-1). Starting one day before secondary 
challenge with HAO, mice received tofacitinib citrate treatment twice daily (25 mg/kg/) by oral 
gavage. Another HAO-challenged group and control (PBS) group received vehicle solution 
(containing 0.5% DMSO) twice daily by oral gavage. 3 days following HAO challenge, all mice were 
bled from the tail vein and the blood samples collected were pulled for each treatment group. The 
samples were incubated with a surface antibody cocktail for 15 min at 37oC 5% CO2. Cells were 
then immediately fixed, permeabilized and stained intracellularly for phosphorylated STAT3. 
Lymphocytes were gated based on FSC and SSC and analysed for their expression of CD4 and 
pSTAT3. (A) Flow cytometric analysis of whole blood cells, with scatter plots representing pSTAT3 
levels in the whole blood from mice from each treatment group. The numbers indicate percentage 
on cells in each quadrant, with the percentage of CD4+ and CD4- cells expressing pSTAT3 shown 
in the top right and bottom right quadrants, respectively. (B) Histograms show levels of pSTAT3 
from scatter plots in (A) individually for CD4+ and CD4- cells. The table shows the mean fluorescent 
intensity (MFI) for pSTAT3 in a total CD4+ cell population from each treatment group. Results 
represent a single experiment with 5 mice in each treatment group. Dashed lines represent the ‘ 
approximate threshold for STAT phosphorylation from the baseline. ‘Non-arthritic’ designates a 
control group receiving PBS injection as a secondary challenge. Mice from ‘arthritic+ vehicle’ and 
‘arthritic+ tofacitinib citrate’ groups were challenged with HAO and developed signs of early 
arthritis.     
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Upon confirming the effective JAK/STAT pathway inhibition in circulating 

leukocytes in the disease model, I next sought to determine the effect of the 

drug on the ability of Th1-polazired OVA323-339-specific CD4+ T cells for T-bet 

expression and pro-inflammatory cytokine production. All cell-recipient mice 

were immunized with OVA/CFA 24 h following adoptive transfer, and 10 days 

later received peri-articular challenge with HAO in both hind limb ankle joints, 

as described previously (Section 5.2.1 and Figure 5-1). Mice were treated with a 

single tofacitinib dose (25 mg/kg) a day before HAO challenge and then twice 

daily for 7 days, with the final dose administered 1 h before sacrifice. While at 

this stage of the experimental pathology detectable population of transferred 

OT-II CD4+ T cells are found to be recruited to the ankle joints, a substantial 

population of those cells could still be identified in the popliteal lymph node 

draining the joint468. Popliteal lymph nodes, draining the foot, were harvested, 

processed into a single cell suspension and half of the cells from each lymph 

node stained either for T-bet expression analysis or for the assessment of 

intracellular cytokine production by flow cytometry. Distinguishable populations 

of transferred OT-II (CD45.1+) and endogenous (CD45.1-) CD4+ T cells were 

observed in all three treatment groups (Figure 5-3A). The potential clonal 

expansion of OT-II CD4+ T cells (in response to HAO challenge) was assessed by 

establishing the percentage of CD4+CD44hi lymphocytes which were CD45.1+ 

(Figure 5-3B). No significant differences were observed in the percentage of 

adoptively transferred CD45.1+ T cells between non-arthritic and arthritic (HAO-

challenged) mice of either vehicle- or drug-treated groups (Figure 5-3B). 

However, considering the late time-point of the experiment (day 7 post-HAO 

challenge), it is likely that the activated and expanded OT-II CD4+ T cells would 

have already migrated into the joint, thus it might not be feasible to detect 

clonal expansion within the draining lymph nodes. 

Since I have previously demonstrated tofacitinib to diminish T-bet expression in 

the activated CD4+ T cell following secondary antigenic challenge in vitro 

(Chapter 3), I sought to determine if the drug could have a comparable effect on 

antigen-experienced OT-II Th1 cells in the disease setting (in vivo). Surprisingly, 

T-bet expression in Th1-polazired OT-II cell population was very low among all 

treatment groups and did not appear to be upregulated in response to HAO 

immunization (Figure 5-3C,D). This was an unexpected result, as I earlier 
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demonstrated T-bet to be upregulated in 50-80% of previously activated OT-II 

cells in vitro, and the CD4+CD45.1+ T cells primed in vivo showed T-bet 

upregulation in at least 60% of the cell population. One possible explanation 

could be the failure of the OT-II cells to respond to the HAO stimulus. 

Alternatively, the failure to detect the re-activated CD45.1+ T cell population 

might be due to a choice of a late time point (day 7 post-challenge). Hence, 

assessment of the CD45.1+ T cells 2-3 days post-HAO challenge, when the 

maximal T cell accumulation in the lymph nodes is known to occur, might allow 

to better investigate both cell activation (T-bet upregulation) and the potential 

impact of tofacitinib treatment. In addition, OT-II T cells in this model are 

known to also accumulate in the joint with their highest levels detected 

between days 4-7 post HAO-challenge, and a proportion of these T cells was 

shown to undergo interactions with dendritic cells suggesting CD45.1+ T cell 

antigen-specific activation directly in the joint tissue.468 Thus, assessment of the 

OT-II cells in the joint alongside the lymph node might enable to better assess 

cell response to the antigen (in the context of T-bet re-expression) and its 

possible alterations in response to tofacitinib.  

As the assessment of the drug impact on T-bet expression was inconclusive, I 

next investigated the capacity of  OT-II T cells for IFNy production after they had 

been repeatedly challenged with their cognate antigen in vivo. As demonstrated 

by the intracellular cytokine staining, the percentage of IFNy-positive cells in 

the arthritic vehicle-treated group was slightly elevated compared to other 

treatment groups but did not reach statistical significance (Figure 5-3E,F). 

Importantly, the exposure to tofacitinib did not appear to notably affect the 

proportion of CD45.1+ T cells capable of IFNy production. This result might 

replicate the earlier observations in the in vitro setting (Chapter 3), where 

previously activated CD4+ T cells re-challenged in the presence of tofacitinib 

retained their ability for IFNy production.   

Overall, the above data was inconclusive regarding the impact of tofacitinib on 

T-bet re-expression in antigen-experienced OT-II cells following cognate 

antigenic challenge. However, I have demonstrated the preserved capacity of 

these cells, re-activated in the presence of tofacitinib, for IFNy production in 

the setting of acute experimental RA. 
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Figure 5-3. Adoptively transferred OT-II CD4+ Th1 cells exhibit no changes in T-bet 
expression or capacity to produce IFNy upon repeated antigenic challenge in the presence 
of tofacitinib. 
Experimental arthritis was induced in mice as described before (Fig.5-1). Starting one day before a 
secondary challenge with HAO, mice received tofacitinib citrate treatment twice daily (25 mg/kg/) 
by oral gavage. Another HAO-challenged group and control (PBS) group received vehicle solution 
(containing 0.5% DMSO) twice daily by oral gavage. 7 days following HAO challenge mice were 
sacrificed and popliteal lymph nodes were collected for analysis by flow cytometry. Lymph nodes 
were mashed into a single cell suspension and half of the cells from each lymph node were 
stimulated with PMA and Ionomycin with the addition of Brefeldin A for 4 h at 37oC 5% CO2, 
followed by intracellular staining for IFNy. Another half of the cells were stained for transcription 
factor T-bet. Both panels included surface staining for CD4, CD44, and CD45.1 surface markers. 
Lymphocytes were gated on live cells and adoptively transferred and endogenous cells were 
identified as CD4+CD45.1+  and CD4+CD45.1- cell populations, respectively (A). To measure the 
clonal expansion of adoptively transferred OT-II cells, a CD4+CD44hi population was assessed for 
percentage of CD45.1+ lymphocytes (B). The total CD4+CD45.1+  cell population was assessed for 
percentage of T-bet expressing (D) and IFNy secreting (F) cells, with respective scatter plots for 
each marker depicter in (C) and (E). Graphs depict the mean percentage ± SD, with n=4 per group 
for T-bet (a sample from each group was dismissed from analysis due to contamination with T-bet 
expressing Th1 cells used as positive control) and n=5 per group for IFNy assessment. The data 
represents results from a single experiment. Statistical differences between groups were assessed 
by One-way ANOVA and Turkey’s multiple comparison test in GraphPad prism. **designates a p-
value of ≤ 0.01. ns=non-significant  
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 Endogenous CD4+ T cells exhibit no changes in T-bet 
expression or IFNy production in the presence of 
tofacitinib in early RA mouse model 

 

While the OT-II cells in our model act as the inflammation-inciting cells and 

potentiate the breakdown of self-tolerance, their specificity is irrelevant to the 

joint. On the other hand, the endogenous CD4+ T cells were previously shown to 

be recruited into the joint in parallel with OT-II T cells and interact with DCs in 

a manner resembling cognate/antigen-specific interactions, thus potentially 

representing the autoreactive cells responding to the joint-specific epitopes.468 

Therefore, it was crucial to investigate whether the (pro-inflammatory) function 

of these endogenous CD4+ T cells, directly contributing to/driving the 

autoimmune response (in our RA mouse model and potentially in the RA 

patients), could be affected by exposure to tofacitinib.        

 The endogenous CD4+ CD45.1- T cell population was easily distinguishable and 

represented a comparable percentage of total lymph node cells between the 

treatment groups, particularly in the arthritic vehicle and drug-treated groups 

(Figure 5-3A). Endogenous CD4+ T cells were further divided based on their CD44 

expression levels, and a smaller CD44hi population representing antigen-

experienced cells was further analysed for either T-bet expression or IFNy 

production capacity (Figure 5-4A). In contrast to OT-II cells, only a third of 

endogenous cells were of an activated CD44hi phenotype. The percentage of 

CD44hi T cells was significantly increased in the HAO-challenge mice compared to 

those receiving PBS injection, with the CD44hi populations comparable in 

arthritic mice treated with vehicle and tofacitinib (Figure 5-4B). Since the HAO-

immunized animals present with histological signs of arthritis, which in this 

model is initiated by collagen II-specific autoreactive CD4+ T cell activation 

following HAO challenge455, it is likely that a small number of those endogenous 

CD44hi cells are newly primed CII-specific CD4+ T cells. The rest of the CD44hi 

cells might be recirculating memory CD4+ T cells (likely) specific for other 

antigens originating from the joint tissues. Thus, if the newly primed CD4+ T 

cells specific for collagen II or other joint-specific antigens, re-activated upon 
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HAO stimulation, would exhibit T-bet expression, this change might not be 

detectable within a whole CD45.1- CD44hi population. Thereby, the data would 

likely represent the alterations within the whole memory/antigen-experienced 

population of endogenous CD4+ T cells of joint-related specificity.  

The endogenous CD44hi T cells did not upregulate their T-bet expression upon 

the HAO challenge in vehicle-treated mice, and the drug treatment had no 

impact on the percentage of endogenous T-bet-positive cells (Figure 5-4C). The 

absence of detectable changes in T-bet levels might be due to the frequency of 

remaining endogenous CD4+ T-bet+ cells in the lymph node being too low, with 

the (CD4+) T cells participating in the inflammatory response having migrated to 

the joint at this late time point (day 7) post-HAO challenge.   

Despite the absence of T-bet upregulation, the endogenous CD44hi T cells 

exhibited detectable IFNy production in all the treatment groups (Figure 5-4D), 

comparable to the lower levels of that in the transferred CD4+ T cells. However, 

similarly to the OT-II cells, endogenous CD44hi T cells appear to retain their 

ability for IFNy production following tofacitinib exposure. Since a sizeable 

population of endogenous T cells is recruited to the inflamed joint at day 7 post-

HAO challenge468, where they could be directly re-activated either in antigen-

specific or possibly bystander manner, it would be important to also assess joint 

endogenous CD4+ T cell function to complement and strengthen the current 

data. 

Overall, the above results might suggest that the endogenous CD45.1-CD4+CD44hi 

cells, recruited to the joint draining lymph node upon antigenic challenge and 

likely comprised of predominantly memory cells, appear non-responsive to 

tofacitinib treatment and maintain their IFNy production capacity upon re-

stimulation. 
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Figure 5-4. Endogenous CD4+ T cells exhibit no changes in T-bet expression or IFNy 
production in the presence of tofacitinib. 

 
Experimental arthritis was induced in mice as described before (Fig.5-1). Starting one day before 
secondary challenge with HAO, mice received tofacitinib citrate treatment twice daily (25 mg/kg/) 
by oral gavage. Another HAO-challenged group and control (PBS) group received vehicle solution 
(containing 0.5% DMSO) twice daily by oral gavage. 7 days following HAO challenge mice were 
sacrificed and popliteal lymph nodes were collected for analysis by flow cytometry. Lymph nodes 
were mashed into single cell suspension and half of the cells  from each lymph node were 
stimulated with PMA and Ionomycin with addition of Brefeldin A for 4 h at 37oC 5% CO2 , followed 
by intracellular staining for IFNy. Another half of the cells were stained for transcription factor T-bet. 
Both panels included surface staining for CD4, CD44 and CD45.1 surface markers. Lymphocytes 
were gated on live cells and adoptively transferred and endogenous cells were identified as 
CD4+CD45.1+  and CD4+CD45.1- cell populations. Endogenous CD4+ T cells were split into 
activated CD44hi and naïve CD44lo populations, and the CD44hi population was further gated on of 
T-bet positive or IFNy-producing cells (A). Percentage of endogenous CD44hi CD4+ T cells was 
also analysed for each treatment group (B). Graphs depict percentage of CD45.1- CD44hi  cells 
expressing T-bet (C) and capable of IFNy production (D). Graphs show mean ± SD, with n=5 per 
treatment group. The data represents results from a single experiment.  Statistical differences 
between groups were assessed by One-way ANOVA and Turkey’s multiple comparison test in 
GraphPad prism. **designates a p value of ≤ 0.01. ns=non-significant  
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  Tofacitinib fails to affect the naïve endogenous CD4+ T 
cell potential for T-bet expression and IFNy production.  

 

In parallel with assessing the changes in endogenous CD4+CD44hi T cell 

population, I was interested to determine whether the exposure to tofacitinib in 

vivo might affect naive endogenous CD4+ T cell subsequent activation and 

functional capacity. While limiting the autoreactive naïve T cell priming and 

effector/memory T cell re-activation are both highly desirable outcomes of the 

therapeutic intervention in RA, it would be equally important to preserve the 

naïve T cell population potential for activation and thus retain the ability to 

mount an efficient immune response towards infectious agents. 

Endogenous CD4+ T cells were identified as CD45.1- population in the popliteal 

lymph node, as previously, and further split based on their CD44 marker 

expression. Naïve cells were identified as having CD44lo phenotype and either 

assessed for their T-bet expression or stimulated ex vivo with PMA/Ionomycin to 

determine their IFNy production potential (Figure 5-5A). Since the naïve CD44lo 

cells were not stimulated prior to T-bet staining, the low proportion of T-bet-

expressing cells was to be expected (Figure 5-5B). Upon ex vivo stimulation, a 

negligible proportion of CD44lo T cells was found to be IFNy-positive in all 

treatment groups (Figure 5-5C), suggesting the failure of sufficient cell 

activation. 
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Figure 5-5. Tofacitinib fails to affect the capacity of naïve endogenous CD4+ T cells for T-bet 
expression and IFNy production. 

 

Experimental arthritis was induced in mice as described before (Fig.5-1). Starting one day before a 
secondary challenge with HAO, mice received tofacitinib citrate treatment twice daily (25 mg/kg/) 
by oral gavage. Another HAO-challenged group and control (PBS) group received vehicle solution 
(containing 0.5% DMSO) twice daily by oral gavage. 7 days following HAO challenge mice were 
sacrificed and popliteal lymph nodes were collected for analysis by flow cytometry. Lymph nodes 
were mashed into single cell suspension and half of the cells from each lymph node were 
stimulated with PMA and Ionomycin with addition of Brefeldin A for 4 h at 37oC 5% CO2 , followed 
by intracellular staining for IFNy. Another half of the cells were stained for transcription factor T-bet. 
Both panels included surface staining for CD4, CD44, and CD45.1 surface markers. Lymphocytes 
were gated on live cells and adoptively transferred and endogenous cells were identified as 
CD4+CD45.1+  and CD4+CD45.1- cell populations. Endogenous CD4+ T cells were split into 
activated CD44hi and naïve CD44lo populations, and the CD44lo population was further gated on of 
T-bet positive or IFNy-producing cells (A). Graphs depict the percentage of CD45.1- CD44lo  cells 
expressing T-bet (B) and capable of IFNy production (C). Graphs show mean ± SD, n=5 per 
treatment group. The data represents results from a single experiment. Statistical differences 
between groups were assessed by One-way ANOVA and Turkey’s multiple comparison test in 
GraphPad prism. *designates a p-value of  ≤ 0.05. ns=non-significant    
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 Tofacitinib treatment has no impact on anti-OVA antibody 
response in RA mouse model. 

 

Following the assessment of the tofacitinib treatment effect on the functional 

capacity of CD4+ T cells, I sought to further investigate if the drug, potentially 

through interfering with T cell-dependent B cell activation, might affect the 

anti-OVA antibody responses. Serum samples were collected after animal 

sacrifice on day 7 post-HAO challenge and analysed by ELISA to determine the 

levels of anti-ovalbumin (OVA) antibodies. Both IFNy-dependent IgG2c 

(equivalent of IgG2a in C57BL/6 mice) and IL-4 dependent IgG1 isotypes of anti-

OVA antibodies were tested to allow for the possibility of introducing bias from 

Th1 towards Th2 responses. 

As expected, animals in all treatment groups were able to produce high levels of 

anti-OVA antibodies (Figure 5-6). The highest levels of both IgG1 (Figure 5-6A) 

and IgG2c (Figure 5-6B) antibodies were detected in arthritic (HAO-challenged) 

mice treated with vehicle, with PBS-challenged group exhibiting notably lower 

levels of both immunoglobulin isotypes. Animals receiving tofacitinib appeared 

to have the lowest levels of both IgG1 and IgG2c antibodies, which were 

significantly different for IgG1 when compared to those in the arthritic vehicle-

treated group (Figure 5-6A). However, since the drug was introduced only 10 

days following the first OVA administration, it would presumably be too late for 

it to affect naïve B cell responses, and the OVA-specific memory B cells would 

not yet be present in the system. Thus, although the difference introduced by 

tofacitinib treatment appears statistically significant at several serum dilutions, 

it is likely to have no biological relevance. Since the levels of IgG2c antibody 

exhibited a high variability between samples, it does not appear possible to 

distinguish any drug-induced changes from current data. 
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Figure 5-6. Tofacitinib administration has no impact on anti-OVA antibody responses in RA 
mouse model. 

 
After animal sacrifice on day 7 post-HAO challenge, whole blood was collected by cardiac puncture 
and processed to obtain serum for assessment by ELISA. High-binding 96-well plates were coated 
overnight with chicken ovalbumin protein and serum from each sample was plated in duplicate at 
doubling dilutions. Serum from HAO-challenged (‘arthritic’) mice was used as a positive control. 
The negative control contained wild type (‘naïve’, green line) mouse serum. After 2 h incubation at 
RT, biotin - labelled IgG1 or IgG2c antibody were added for another 1 h incubation at RT. Following 
incubation, the Extravidin-Peroxidase substrate was added to each well and incubated for a further 
30 min. SIGMAFAST OPD was used as a detection reagent, and the reaction was terminated using 
10% sulphuric acid. Light absorbances were read using Sunrise Microplate reader at 492 nm. 
Graphs depict serum levels of anti-OVA IgG1 (A) and anti-OVA IgG2c (B) in each mouse group. 
Data shows mean ± SD (for each dilution) and represents 5 animals per group from a single 
experiment. Statistical differences between groups were assessed by performing two-way ANOVA 
and Turkey’s multiple comparison test in GraphPad prism. The asterisks on the graph represent 
statistically significant differences between ‘Arthritic’ and ‘Arthritic + Tofacitinib’ groups. *designates 
a p6value of  ≤ 0.05, ** ≤ 0.01. 
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 Serum anti-collagen II antibody response in the RA 
mouse model. 

 

Since the mouse model employed is known to develop arthritis following the loss 

of self-tolerance towards joint antigen collagen II, I sought the evidence of anti-

collagen II (CII) antibody response similarly occurring in the recipient mice in my 

experiment. Serum samples were collected after animal sacrifice on day 7 post-

HAO challenge and analysed by ELISA to determine the levels of total anti-CII IgG 

antibodies. The levels of total anti-CII IgG in all experimental groups appeared to 

be negligible in comparison to those in serum samples from collagen-induced 

arthritis (CIA) mice, used as positive controls (not shown), thus indicating the 

absence of anti-CII antibody response expected to develop in HAO-challenged 

mice at this specific time point (Figure 5-7). Since the IgG immunoglobulin levels 

are typically known to reach their peak between 2-3 weeks post-immunization 

during the primary antibody response, in the experiment repeat the model could 

be maintained for an additional week (post-challenge) to raise sufficient anti-CII 

antibody levels and to assess the potential effect of tofacitinib on the anti-CII 

humoral response. 
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Figure 5-7. Serum anti-CII antibody titration in the early RA mouse model. 

  
After animal sacrifice on day 7 post-HAO challenge, whole blood was collected by cardiac puncture 
and processed to obtain serum for assessment by ELISA. High-binding 96-well plates were coated 
overnight with chicken Type II Collagen (CII) and serum from each sample was plated in duplicate. 
Serum from the mouse with collagen-induced arthritis (CIA) was used as a positive control. The 
negative control contained wild type (‘naïve’, green line) mouse serum. After 2 h incubation at RT,  
HRP-labelled antibody for total IgG detection was added for subsequent 1 h incubation at RT. 
SIGMAFAST OPD was used for signal detection, and the reaction was terminated using 10% 
sulphuric acid. Light absorbances were read using Sunrise Microplate reader at 492 nm. The graph 
depicts serum levels of total anti-CII IgG for each treatment group. Each value is presented as a 
mean ± SD and represents 5 animals per group from a single experiment. The assay was repeated 
twice using the same serum samples with comparable results obtained between repeats. 
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 Tofacitinib has no effect on paw inflammation but 
reduced inflammatory cell infiltrate and synovial 
hyperplasia in affected joints of arthritic mice. 

 

Finally, I set out to investigate the effect of tofacitinib treatment on the 

development of acute experimental arthritis, characterized by paw 

inflammation and histological changes in the affected joints. Starting on day 1 

after the HAO challenge, the development of arthritis was monitored by daily 

measurements of both left and right hind paw thickness until the experiment 

termination. Both HAO-challenged groups (vehicle and tofacitinib-treated 

animals) exhibited notable paw swelling, which was significantly greater than in 

the PBS-challenged group or days 1-3 and day 5 post-challenge, thus indicating a 

successful induction of arthritis (Figure 5-8A). The paw thickness remained 

largely unaltered in HAO/vehicle-treated arthritic mouse group throughout the 

course of experiment/disease, and the drug administration had no effect on the 

degree of paw thickness at any timepoint. 

The hind limbs were removed and corresponding tissue sections from each limb, 

stained with H&E and toluidine blue, were histologically evaluated for the signs 

of pathology (inflammatory cell infiltration, synovial hyperplasia, articular 

cartilage degradation). As the HAO challenge was administered to the footpad, 

the joints of the tarsal bones proximal to the injection site and the surrounding 

tissue would be affected and thus were area of interest(Figure 5-8B). Joints of 

arthritic (HAO-challenged) mice receiving vehicle displayed extensive 

proinflammatory cell infiltration along the bottom side of the foot, paired with 

the development of hyperplastic synovium (2-3 cells thick)(Figure 5-8D). A mild 

but detectable loss of toluidine blue staining  (in the area proximal to the 

inflamed synovium) indicated articular cartilage degradation also associated 

with pathology development in our model (Figure 5-8G). On observation, 

tofacitinib administration markedly reduced the extent of inflammatory cell 

infiltration, with infiltrates being more moderate in size and appearing as focal 

aggregates. The majority of drug-treated mice also displayed a normal, single-

cell thick synovial membrane with characteristic lattice/honeycomb structure 

devoid of inflammatory cells (Figure 5-8E) and the articular cartilage integrity 
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was also preserved (Figure 5-8H). The loss of the above histological features in 

the tofacitinib-treated animals made their joints closely comparable to those of 

the healthy joints of the control (PBS-challenged) mice (Figure 5-8C,F). The 

blinded scoring of the sections for individual histological features confirmed both 

a significant increase in cell infiltration and the development of synovial 

hyperplasia in the arthritic vehicle-treated mice compared to control mouse 

(Figure 5-8J,K). The erosion of cartilage/bone score was also increased in the 

vehicle-treated group but was not substantial enough to reach statistical 

significance (Figure 5-8L). While the striking visual improvements in all three 

parameters were observed in tofacitinib-treated animals and the representative 

numerical scores appeared to be lower than in the vehicle-treated arthritic 

mouse group, these changes were not statistically significant (Figure 5-8J-K). 

Similarly, the average total histopathology score for all three parameters 

evaluated was significantly elevated in vehicle-treated arthritic mice relative to 

the control group, but the drug exposure did not result in statistically significant 

improvement of the score (Figure 5-8M). 

Thereby, these results indicate that tofacitinib treatment following HAO 

challenge has no impact on the extent of hind paw inflammation. The drug 

treatment appears to reduce histopathological signs of the diseases, including 

inflammatory cell infiltration, synovial hyperplasia, and cartilage/bone 

degradation, but based on the numerical scoring these improvements are lacking 

significance.  
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Figure 5-8. Tofacitinib treatment has no effect on hind paw swelling and not does ameliorate 
the inflammatory cell infiltrate and synovial hyperplasia in affected joints of arthritic mice. 

 
(A) Changes in hind paw thickness of recipient mice from day 1 post-HAO challenge until the 
experiment termination. Results are depicted for the right paw, with similar measurements obtained 
for the left limb. Data represents mean ± SD , with n=5 for each treatment group. Statistical 
differences between groups were assessed by performing two-way ANOVA and Turkey’s multiple 
comparison test in GraphPad prism. Hind limbs were collected after animal sacrifice on day 7 post-
HAO challenge and sections stained with H&E (B-E) and toluidine blue (F-H). (B) Tarsal ankle 
joints proximal to the HAO injection site (arrow) were assessed for histopathological changes. 
Sections are representative of the joints of control mice challenged with PBS (C,F), HAO-
challenged (arthritic) mice receiving vehicle treatment (D,G) and HAO-challenged (arthritic) mice 
treated with tofacitinib citrate. Arrows indicate synovial hyperplasia in H&E sections and cartilage 
erosion in toluidine blue-stained sections. An asterisk designates inflammatory cells infiltrates in 
H&E sections. All three histopathological features of early (acute) arthritis very most pronounced in 
arthritic vehicle-treated mice (D,G) with the control and tofacitinib-treated animals largely exhibiting 
no profound changes in the above parameters. Images were obtained using EVOS FL Auto 2 
imaging system at original magnification x10. Each section was scored on the scale 0-3 for  
inflammatory cell infiltration (J), synovial hyperplasia (K) and cartilage and bone erosion (L), and 
the total score for above three parameters was calculated for each section (M). Data shows mean 
± SD, with n=5 for each treatment group. The data represents a single experiment. Statistical 
differences between groups were assessed by performing one-way ANOVA and Turkey’s multiple 
comparison test in GraphPad prism. *designates a p-value of  ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001.  ns = 
not significant.  
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5.3 Discussion 

 

To investigate the impact of tofacitinib treatment on arthritis development, I 

have employed a mouse model of experimental early RA generated in our 

laboratory, which exhibited breakdown of self-tolerance following the transfer 

of Th1 CD4+ T cells of joint-irrelevant specificity and subsequently developed 

joint antigen-specific humoral response alongside the histopathological 

characteristics similar to human disease.455 The advantage of this model is the 

ability to therapeutically interfere at the pre-clinical disease stage/during self-

tolerance breakdown and thereby assess the drug potential for suppressing self-

tolerance breakdown through both effects on autoreactive (collagen-specific) 

CD4+ T cells and the development of an autoantibody response. Since the 

pathology is promoted by trackable transgenic OT-II Th1 cells, the function of 

these cells alongside their endogenous counterparts can also be examined 

following tofacitinib exposure. Finally, the model enables to assess the potential 

for, and extent of, modulation of joint pathology by the drug to be addressed.  

I have employed the drug in tofacitinib citrate formulation, which was designed 

for oral use in RA patients in the clinic and successfully employed earlier in the 

inflammation setting in vivo (Chapter 4). The drug dosage was also maintained 

at 25 mg/kg twice daily and for the purpose of this preliminary disease model 

experiment was administered by oral gavage. First, it was necessary to confirm 

the capacity of tofacitinib to inhibits its target signaling pathway in the acute RA 

mouse model setting. I was able to demonstrate that the drug administration 

dramatically suppressed circulating CD4+ and CD4- leukocyte pSTAT3 

phosphorylation levels at their basal state, thus confirming the effective 

inhibition by tofacitinib of its target JAK/STAT pathway in our animal model of 

early RA.  
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 Tofacitinib does not affect adoptively transferred CD4+ 
Th1 cell capacity for T-bet expression or IFNy production 
in the presence of tofacitinib in the early RA mouse 
model 

 

At the time of rheumatoid arthritis diagnosis, which may be preceded by a pre-

symptomatic/clinical disease development for up to a decade, both peripheral 

blood and synovium of patients are enriched with T cells of the antigen-

experienced/memory phenotype474,531 While these cells can be re-activated in an 

antigen-specific manner, they also are favourable candidates for antigen non-

specific, bystander activation, which can occur in the cytokine-rich environment 

of inflamed synovium.532 Thus, these activated T cells represent desirable 

therapeutic targets and should be investigated for their potential susceptibility 

to tofacitinib treatment. In Chapter 3 (Section 3.2.7) I demonstrated that 

antigen-specific CD4+ T cells, primed in the absence of treatment and then re-

challenged (with their cognate antigen) in the presence of tofacitinib in vitro, 

exhibited notably diminished T-bet expression but retained their IFNy production 

capacity. In the RA mouse model, the transgenic OVA323-339-specific CD4+ T cells, 

first polarized towards the Th1 subset in vitro and then receiving another 

cognate antigenic challenge in vivo prior to tofacitinib treatment initiation, 

represented the equivalent of antigen-experienced cells. Assessment of this 

adoptively transferred CD4+ T cell population 7 days after another antigen-

specific re-activation (with HAO) in the presence of the drug revealed low levels 

of T-bet expression but a normal capacity for IFNy production, which remained 

unaltered in the tofacitinib-treated animal group. A possible reason for a notably 

low T-bet expression in terminally differentiated Th1 cells could be the late 

time point (day 7) following antigenic challenge T-bet re-expression was 

previously shown to occur in the highest proportion of CD4+ memory T cells at 

72h following their re-activation, around the peak of the immune response.518 

Hence, the transcription factor expression is likely to be downregulated again by 

day 7, when the peak of the immune response has passed.  The detected low 

levels of T-bet may also associate with the kinetics of the T cell response, with 

OT-II CD4+ T cell recruitment to the inflamed joint occurring from day 1 post-

challenge and culminating at day 4. Thereby, the OT-II cells remaining in the 
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popliteal lymph node at day 7 post-challenge may not actively participate in the 

ongoing inflammatory response.468,455  Thereby, it would be of interest to 

examine the OT-II cells in the lymph nodes at earlier time points (days 2-3 post-

challenge) Moreover, the OT-II cells were previously reported to interact with 

CD11c+ dendritic cells in inflamed joints, implying antigen-specific reactivation 

directly in the affected tissue.468 In this regard, assessment of the OT-II T cells 

from the affected (tarsal) joint tissues would provide additional insight into the 

tofacitinib potential to modulate their response to antigen-specific reactivation. 

So far, in this preliminary experiment and in line with my in vitro observations, I 

showed the adoptively transferred OT-II CD4+ T cells to retain their ability for 

IFNy production following tofacitinib exposure in the context of experimental 

arthritis. My data to some extent is supported by the findings from the human 

study which subjected healthy volunteers to short-term (29 days) tofacitinib 

treatment and assessed their circulating CD8+ T cells for IFNy production 

capacity. A modest reduction in the number of IFNy-secreting cells was observed 

half-way through the treatment in CD8+ T cells, both activated in an antigen-

specific manner or by the means of the anti-CD3/CD28 stimulation. However, 

the IFNy production in the above cell groups either normalized or returned to 

the baseline while still on tofacitinib treatment.483 

 

 Tofacitinib does not affect endogenous CD4+ cell 
capacity for T-bet expression or IFNy production in the 
presence of tofacitinib in the early RA mouse model 

 

Employing the adoptive transfer approach in generating an early RA model has 

also enabled me to distinguish the endogenous CD45.1- CD4+ T cell population in 

the popliteal lymph nodes and attempt their functional potential assessment. 

The original study of the mouse model establishment demonstrated this 

endogenous population to contain some collagen II-specific (autoreactive) T 

cells, which are newly primed upon HAO challenge and presented with the self-

antigen in the immunogenic fashion in the context of OT-II Th1 driven 

inflammation.455 Also, a small fraction of the endogenous population might 
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represent previously activated OVA-specific CD4+ T cells, which were primed 

during the initial OVA/CFA immunization and might have been reactivated upon 

secondary challenge. Finally, the majority of the endogenous CD4+ T cells are 

likely to be memory cells of the joint and inciting antigen-irrelevant 

specificities, recruited to the draining lymph node in response to the ongoing 

inflammation. 

When assessing the possible changes in T-bet expression and IFNy production, no 

notable differences were detected between the control (PBS-treated) and HAO-

challenged groups, and the tofacitinib exposure in arthritic mice resulted in a 

very slight reduction in both marker levels which however was not statistically 

significant. One explanation for this observation could be drug-induced changes 

occurring only in a small fraction of cells (presumably collagen II-specific CD4+ T 

cells), which could be hard to detect within a relatively large population of total 

endogenous CD4+ T cells. Equally, it could also suggest that insufficient numbers 

of functional/activated endogenous CD4+ T cells remain in the draining lymph 

node at the time of assessment. Thus, similarly to the OT-II cells, endogenous 

cells might be better examined early post-HAO challenge (days 1-2) while 

undergoing activation in the lymph node,  prior to their maximal accumulation in 

the joint at day 4. Also, the examination of endogenous CD4+ T cells recruited to 

the joint would allow their functional capacity and susceptibility to tofacitinib to 

be assessed.  

While the endogenous CD4+ T cells might represent a mixed population, it could 

be possible to specifically analyse the newly primed collagen II-specific 

population in the context of their response to the drug treatment. This could be 

achieved by stimulating the cells from the popliteal lymph node (and possibly 

joint) of each treatment group ex vivo with the collagen II-pulsed APCs and 

assessing the collagen II-specific CD4+ T cell response by their levels of IFNy 

secretion, as done previously.455 As demonstrated in Chapter 4 (Section 4.2.5), 

antigen-specific CD4+ T cell priming in vivo is impaired in the presence of 

tofacitinib. Accordingly, one might predict that collagen II-specific CD4+ T cells 

from the drug-treated animals would similarly demonstrate a diminished 

capacity for IFNy production upon priming. 
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The endogenous effector/memory CD4+ T cells of irrelevant specificity represent 

another endogenous population of interest, particularly in the context of their 

non-specific re-activation in the inflamed joint microenvironment. Prendergast 

et al. demonstrated that adoptively transferred TEa TCR transgenic CD4+ T cells 

(recognising Eα52-68 peptide in the context of I-Ab) were recruited to the joints of 

arthritic mice even when their cognate antigen was not employed as the 

disease-inciting stimulus.468 Extending this observation, another study, although 

in a slightly different context, proposed that the pre-activated OVA-specific OT-

II cells, adoptively transferred into a tetanus toxin (TT) pre-immunised mouse 

containing TT-specific memory CD4+ T cells, can also be re-activated upon TT 

secondary boost non-specifically by IL-2 and IFNy released from re-activated TT-

specific CD4+ T cells memory cells.533 In line with this, Brennan et al. showed 

that the cytokine-activated T cells (Tck) can be generated by stimulating human 

peripheral blood cells with IL-2,IL-6, and TNFα, and confirmed that the 

CD3+CD4+CD45RO (resting) effector/memory cell subset closely phenotypically 

resembles RA synovial T cells and represent the most efficient functional 

effectors (cytokine-secreting) among Tck populations.482 Overall, these studies 

suggest that previously activated/memory CD4+ T cells may have a lower 

bystander activation threshold. Upon activation, bystander CD4+ T cells have 

been shown to stimulate monocyte production of TNFα but not IL-10  in vitro, 

either through soluble factor secretion or cell-cell contact, contributing towards 

the imbalance of pro-and anti-inflammatory cytokines that would further 

exacerbate pathology534. Finally, with the majority of CD4+  T cells in RA patient 

joint synovium exhibiting a memory phenotype535, some demonstrating signs of 

partial activation533, and thus representing likely candidates for bystander 

activation, the therapeutic intervention with JAK inhibitors might be beneficial 

for controlling this cell population. Due to the ability of tofacitinib to inhibit 

cytokine signaling, it might be of particular relevance for interfering with 

bystander cell activation. However, the drug efficiency in blocking human PBMC-

derived T lymphocyte bystander activation and IFNy production has so far only 

been demonstrated in vitro. Our model could potentially be employed to further 

delineate the bystander memory CD4+ T cell behaviour following tofacitinib 

treatment in vivo in the setting of the arthritic joint.    
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 Tofacitinib administration has no impact on anti-OVA 
antibody response in RA mouse model. 

 

While there is growing evidence that tofacitinib modulates CD4+ T cell responses 

in both murine and human studies, the understanding of its impact on B cell 

function is very limited. The first notion of a link between JAK3 inhibition and B 

cell defects came from observations in patients with severe combined 

immunodeficiency (SCID) harbouring mutations impairing γc/JAK3 pathway 

signaling. While this did not affect B cell levels, intrinsic defects in cell 

proliferation, class switch-recombination and antibody production were seen.536 

Therefore, to evaluate the potential tofacitinib impact on B cell function in our 

early RA model, anti-OVA antibody responses were examined. Both anti-OVA 

IgG1 and IgG2c antibody production was detected in serum from all experimental 

mice, with the levels of IgG1 appearing significantly reduced at several 

concentrations in the serum of the drug-treated mice. However, as tofacitinib 

treatment was commenced 10 days after the first OVA protein challenge and 

thus antigen-specific B cell activation, it therefore would be unlikely to interfere 

with an initial induction of the anti-OVA antibody response. While there are no 

murine studies to date investigating the drug impact on B cell function, the 

above interpretation is supported by an investigation of human B cell responses. 

A study by Wang et al. convincingly demonstrated that tofacitinib exposure of 

naïve human CD19+ B cells during their activation via the B cell receptor (BCR), 

CD40 ligand (CD40L) and cytokines (IL-4, IL-6 and IL-21) in vitro resulted in 

suppression of activation-induced cytidine deaminase (AICDA)and X-box binding 

protein 1(XBP-1), B cell development-regulating genes, and abolished IgG 

production.308 Similarly, when the drug was introduced 2 days following initial B 

cell activation, it was shown to not only abrogate fate-determining gene 

expression and thus impede cell differentiation and diminish immunoglobulin 

production, but also dramatically suppress pro-inflammatory IL-6 cytokine 

production while preserving regulatory IL-10 generation. In line with this, 

another study demonstrated impairment in naïve human B cell development into 

plasmablasts and associated immunoglobulin secretion upon activation in the 

presence of tofacitinib.537 However, B cells already activated upon drug 

treatment retained normal AICDA expression and were capable of AICDA-
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mediated class-switching.537 Interestingly, only a moderate effect on total 

peripheral blood B cell function was achieved, potentially suggesting the 

functional capacity of circulating memory cells to be preserved despite 

tofacitinib administration. In the context of this evidence, I hereby propose that 

as the drug was introduced 10 days after B cell response initiation when the cells 

have presumably developed into antibody-secreting plasmablasts/short-lived 

plasma cells, the treatment was unlikely to induce prominent changes in anti-

OVA B cell response. Thus, the statistically significant reduction in the anti-OVA 

IgG1 titres in drug-treated mice is likely to be of no biological relevance. 

In addition, I have assessed the effect of tofacitinib on the autoantibody 

response to the main component of cartilage, type II collagen (CII), which 

indicates self-tolerance breakdown and is initiated following the induction of 

articular inflammation. However, the arthritic mice failed to develop a 

detectable anti-CII response and thus the differences in antibody titres between 

treatment groups could not be discriminated. Following the first encounter with 

the antigen, there is a latent phase lasting approximately 4-7 days during which 

naïve B cells are activated in an antigen-specific manner and subsequently 

undergo proliferation, receive T cell help and differentiate into antibody-

secreting short-lived plasma cells538, with the peak antibody levels reached by 

approximately 14 days following the challenge. Thus, extending our mouse 

model for another week and evaluating anti-CII antibody titres at 2 weeks post-

HAO immunization might facilitate a better experimental read-out. As the drug 

treatment is initiated a day prior to HAO-challenge, I propose, based on the 

evidence from the previous human B cell in vitro studies308,537, that tofacitinib 

would interfere with naïve B cell activation in response to collagen II and 

thereby notably diminish antibody class switching and anti-collagen II 

immunoglobulin IgG production. While it would not be possible to interfere 

during the breakdown of self-tolerance in RA patients, tofacitinib treatment 

could potentially limit the development of antibody responses towards neo-

antigens generated or released during the course of the disease.  

Since both IL-4 and IL-21, secreted by T follicular helper (Tfh) cells, are non-

redundant in germinal centre B cell initiation and subsequent survival, 

maturation and effector response development539, one of the ways tofacitinib 
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can exert an effect on B cells could be through direct inhibition of JAK1/JAK3-

dependent IL-4 and IL-21 cytokine signaling. However, since differentiation of 

Tfh cells at early stages relies on IL-2 and IL-6 cytokines540, also employing 

JAK/STAT pathway downstream of their receptors, potential interference with 

Tfh subset development could present another mechanism of tofacitinib 

interference with efficient humoral response generation. In addition, as 

tofacitinib was previously demonstrated, both in this thesis and in several other 

studies305,516, to impair T cell polarization towards helper subtypes, this could 

also potentially limit Th cell help required for successful B cell activation by a 

low-valency antigen. Overall, a more in-depth understanding of the potential 

mechanisms through which tofacitinib modulates B cell responses and the 

subsequent outcomes is required, and our murine mouse model, exhibiting 

controlled and quantifiable autoantibody responses early in the disease might 

represent a useful tool for this purpose. Ultimately, the understanding of 

tofacitinib impact on B cell responses would inform on establishing the effective 

vaccination strategies in conjunction with tofacitinib treatment, so that the RA 

patients can successfully mount and preserve protective humoral immunity. 

 

 Tofacitinib treatment does not affect hind limb swelling, 
but reduced inflammatory cell infiltration and synovial 
hyperplasia in affected joints of arthritic mice 

 

The mouse model employed also allowed examination of the tofacitinib ability to 

modulate affected paw inflammation and joint pathology. The drug 

administration throughout the course of the pathology did not appear to induce 

notable changes in the hind paw thickness. While tofacitinib effectively 

diminished inflammatory cell influx which contributes to oedema formation, it 

might not be able to control other aspects, such as vascular permeability. In 

contrast, in adjuvant-induced arthritis (AIA) rat model of established disease, a 

once-daily oral administration of considerably smaller drug dose resulted in 

significant paw volume reduction as soon as at 4 days post-treatment.310 While 

this result cannot be directly correlated with my observations, it might 
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potentially suggest that tofacitinib is more effective at reducing inflammation in 

the established pathology but not during the acute disease phase. 

Importantly, arthritic mice receiving tofacitinib treatment showed distinct 

reductions in inflammatory cell infiltration, suppression of synovial hyperplasia 

and amelioration of the articular cartilage damage. While these changes were 

striking and the joints from drug-treated mice exhibited tissue morphology 

closely comparable to that in the healthy control animals, the scoring results did 

not confirm the statistical significance of the tofacitinib-driven improvement at 

either of the key histological parameters. Variability in the vehicle control group 

and poor induction of disease in some mice might be the most likely 

explanations. This is further compounded by the relatively arbitrary scoring 

system employed, which only uses whole integers from 0 to 3 to evaluate each 

parameter and with only three parameters used, thus limiting the scoring 

precision and evaluation of the subtle changes occurring. Moreover, our RA 

mouse model is acute and recapitulates the early stages of the disease, thus the 

joint pathology is more subtle than that in the models of established RA and the 

possible drug-induced changes are more difficult to distinguish. Hence, while the 

numerical significance was not achieved in our experiment, the existing studies 

from a number of rodent models of established RA consistently report dramatic 

improvements in histopathological changes following tofacitinib administration. 

By using a more thorough scoring approach, Milici et al. demonstrated a dose-

dependent reduction in the histological damage score in CIA mouse knee joints, 

with the maximal tofacitinib dose of 15 mg/kg/day achieving significant 

improvements when compared to vehicle-treated mice.311 The histological 

observations, consistent with our findings, showed a profound reduction of 

inflammatory cell influx, synovial hypertrophy and limited cartilage destruction 

following drug treatment. Similar tofacitinib-induced improvements in the above 

histological features were described in another study employing CIA mouse 

model305, as well as in rat AIA model310 and mouse SKG model of spontaneous 

arthritis, with the treatment effect in the latter lasting for 3 weeks following 

drug withdrawal312. In addition, tofacitinib efficiently reduced the synovial 

invasion and the associated cartilage destruction in the synovium/cartilage 

tissue from RA patients, which was co-implanted into SCID mice receiving the 

drug treatment.306 Thereby, although evaluating the tofacitinib impact in the 
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established disease context, the above studies convincingly demonstrate the 

drug ability to promote remarkable improvements in major histological features 

characteristic for arthritic joints, and thereby contextualise my findings as being 

biologically meaningful.  

While the above animal studies consistently describe the tofacitinib-induced 

decrease in inflammatory cell infiltration and synovial hyperplasia, limited 

advances were made to investigate the (potential) mechanisms underlying these 

changes. As the cell recruitment to the joint is directed by chemokines that do 

not rely on JAK/STAT signaling pathway, the next best candidate to consider 

could be a pleiotropic/multifunctional cytokine highly expressed in RA and 

affecting a number of different immune cells related to disease pathogenesis. I 

thereby proposed that inhibition of IL-6 signaling by tofacitinib, which was 

demonstrated in this thesis and in other studies305, might be one of the 

mechanisms limiting the inflammatory cell recruitment, development of 

hyperplastic synovium and the subsequent structural joint damage. IL-6 is 

produced mainly by resident synovial macrophages and fibroblast-like 

synoviocytes (FLSs) in the inflamed joints, and the infiltrating activated 

monocytes/macrophages also exhibit IL-6 production541,542,543. In FLSs, IL-6 can 

promote further activation and uncontrolled proliferation in the autocrine or 

paracrine fashion, thus contributing to the formation of the hyperplastic 

synovium542,544. IL-6 was also demonstrated to augment the production of 

monocyte chemotactic protein-1 (MCP-1, also known as CCL2) and IL-8, acting as 

chemokines, by both FLS and mononuclear cells, as well as induce the expression 

of adhesion molecule ICAM-1 on endothelial cell, thereby facilitating the 

recruitment of inflammatory cells to the joint.545 In addition, IL-6 synergises 

with TNFα and IL-1β in stimulating FLSs to secrete vascular growth endothelial 

factor (VEGF), which exhibits pro-angiogenic, pro-inflammatory and anti-

apoptotic functions, while also contributing to osteoclastogenesis in the 

rheumatoid synovium.546,547,548,549,550,551 Importantly, IL-6 can also promote 

cartilage degradation by directly inducing matrix metalloprotease (MMP) 

secretion by chondrocytes alongside with enhancing RANKL expression on 

osteoblasts and FLSs to promote osteoclastogenesis and subsequent bone 

resorption552,553,554,555. Thereby, through inhibiting IL-6 signaling in a number of 

inflammatory immune cells contributing to rheumatoid arthritis pathology 
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development, tofacitinib could potentially simultaneously modulate several 

inflammatory and destructive processes ongoing in the inflamed arthritic joint 

microenvironment. 
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6 General discussion 
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Despite the biological DMARDs successfully transforming the management of 

rheumatoid arthritis over the past two decades, there is a considerable unmet 

demand for the novel therapeutic modalities as the substantial proportion of 

patients fails to respond to the available treatments. As an alternative to large 

biological molecules targeting cytokines and their receptors extracellularly, the 

(orally available) small molecule compounds emerged which were designed to 

modulate intracellular signaling cascades through inhibiting associated protein 

kinases, and thereby regulate cell responses to the external stimuli. Among 

promising targets were Janus kinases (JAKs), tyrosine kinases employed by Type I 

and Type II cytokine receptors for transmitting the signals from a range of 

cytokines and hormone-like growth factors essential for immune and 

hematopoietic cell homeostasis, along with multiple pro-inflammatory cytokines 

implicated in the pathogenesis of several autoimmune conditions, including 

rheumatoid arthritis. The discovery of JAK3 genetic mutation resulting in the 

development of immunodeficient phenotype in humans provided the idea that 

the inhibitory effect of this JAK kinase targeting might be largely limited to the 

immune cell compartment, further emphasising the suitability of this molecular 

target for management of autoimmune disorders.218,219 This line of research 

culminated in the development of tofacitinib, a potent selective JAK3/JAK1 

inhibitor, which became the first-in-class compound approved for management 

of moderate-to-severe rheumatoid arthritis.220 Tofacitinib demonstrated clinical 

efficacy non-inferior to biologic DMARDs and, remarkably, achieved clinical 

response in patients failing treatment with one or several biologic 

agents.316,223,224 However, the immunomodulatory mechanisms underlying 

tofacitinib efficacy in the clinic only begin to be unravelled. To date, multiple 

studies have reported tofacitinib to notably diminish the ability of both murine 

and human CD4+ T cells to proliferate, undergo differentiation, and produce pro-

inflammatory cytokines,305,306,312,484,485 but the specific stage of CD4+ T cell 

activation (priming or re-challenge) at which the drug may exert its inhibitory 

effect was not yet established. This would allow to better understand the 

efficacy of the drug administration at different stages of RA in the context of its 

effect on CD4+ T cell effector function and have potential implications in 
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reviewing the order of tofacitinib therapy utilization in the current disease 

management strategy.    

 

6.1 Summary of the main findings 

 

Chapter 3 examined the tofacitinib impact on CD4+ T cell priming in vitro. The 

key findings are:  

 No impact on CD4+ T cell activation and modest effect on proliferation 

 Significant suppression of CD4+ T cell differentiation into Th1 subset in 

vitro 

 The persistence of above phenotype upon secondary challenge in the 

absence of tofacitinib  

 No impact on the antigen-experienced CD4+ T cell function in vitro 

Chapter 4 investigated the tofacitinib effect on priming in the in vivo setting. 

The main findings are:  

 Notable suppression of CD4+ T cell polarization towards Th1 subset in vivo 

 No impact on antigen-experienced (endogenous) CD4+ T cell functional 

capacity in vivo 

Chapter 5 explored the tofacitinib impact in the context of the early acute RA 

mouse model. The key results are: 

 No effect on function of adoptively transferred Th1 CD4+ T cells upon 

their re-activation  
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 No impact on endogenous antigen-experienced CD4+ T cells functional 

capacity  

 No conclusion available on drug impact on auto-antibody response 

generation 

 Detectable (but non-significant) improvement of signs/features of joint 

pathology 

 

My findings from Chapter 3 showed that the presence of tofacitinib during 

antigen-specific CD4+ T cell priming (by their cognate antigen-bearing DCs) in vitro 

did not affect CD4+ T cell acquisition of activated phenotype, as evidenced by 

negligible changes in both early (CD69) and late (CD44, CD62L) activation marker 

expression, and appeared to modestly reduce cell proliferative potential, which 

was in line with diminished CD4+ T cell ability to respond to proliferation-inducing 

IL-2 cytokine. However, tofacitinib profoundly reduced CD4+ T cell differentiation 

towards Th1 lineage, as demonstrated by significantly inhibited transcription 

factor T-bet expression and the reduction of associated IFNy production. This 

effect (on both T-bet expression and cytokine production) was observed to persist 

upon CD4+ T cell secondary re-activation in the absence of the drug. In contrast, 

CD4+ T cells primed in the absence of tofacitinib were shown to retain their 

capacity for IFNy production, despite diminished T-bet expression, when re-

activated in the presence of JAK inhibitor.   

The assessment of tofacitinib effects in vivo in Chapter 4 appeared to replicate 

the results observed in the in vitro setting. Thus, I demonstrated herein that the 

adoptively transferred transgenic naïve (OT-II) CD4+ T cells primed by their 

cognate peptide in vivo in the presence of tofacitinib failed to effectively polarize 

into Th1 subset, as evidenced by inhibited T-bet expression. However, the changes 

in subset-specific IFNy production were not significant, likely owing to delayed 

kinetics of the drug effect in the in vivo setting. On the other hand, tofacitinib 

treatment was found to suppress T-bet expression of endogenous antigen-

experienced CD4+ T cells but failed to affect their functional capacity, as 

demonstrated by sustained IFNy production upon ex vivo re-activation.  
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The results from Chapter 5 demonstrated that tofacitinib fails to impact on IFNy 

production of adoptively transferred Th1 CD4+ T cells upon their re-activation in 

the murine model of early RA. Similarly, the endogenous antigen-experienced 

CD4+ T cells in the same model preserved their T-bet expression and IFNy 

production capacity following drug exposure. Thus, the impact of tofacitinib 

treatment on antigen-experienced CD4+ T cells in this RA model is consistent with 

those observed both in vitro and in vivo settings (in Chapters 3 and 4, 

respectively). I was not able to  assess the tofacitinib effect on autoantibody 

response generation/self-tolerance breakdown, characteristic for our early RA 

mouse model, due to arthritic animals failing to raise sufficient levels of (anti-

collagen II) antibodies. Lastly, I have observed marked reduction in inflammatory 

infiltrates and synovial hyperplasia in the joints of tofacitinib-treated mice, 

however, these changes did not appear significant likely due to mild degree of 

pathology and scoring system limitations. 

 

6.2 Clinical implications 

 

The identification of tofacitinib ability to interfere with effective CD4+ T cell 

differentiation upon priming in the context of cognate CD4+ T cell-DC 

interaction, presented in this thesis, may potentially have valuable implication 

in the clinical setting. 

Thus, tofacitinib treatment could be effective during the initial event of 

autoreactive CD4+ T cell priming by self-epitope-bearing mature DC, which is 

thought to trigger self-tolerance breakdown and initiation of the autoimmune 

response in RA (Figure 6-1). However, while many genetic and environmental 

risk factors were identified that would predispose the individual for loss of self-

tolerance, currently there is no way to either predict this event to occur with 

certainty or to identify the specific time when it might ensue. Therefore, 

utilization of tofacitinib at this stage of RA pathology might not be as yet 

feasible clinically.  
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Upon the initial self-tolerance breakdown, the autoimmune response is further 

perpetuated by continuous priming of CD4+ T cells of new antigenic specificities 

by newly formed epitopes or epitopes released following inflammation-driven 

tissue damage, a process known as epitope spreading. Epitope spreading was 

reported to predominantly occur during the stage of pre-clinical inflammation 

and was suggested to play a critical role in the transition from pre-clinical to 

clinically manifested RA.556,557 Consequently, tofacitinib treatment at the pre-

clinical stage of the disease might interfere with the cycle of ‘new’ naive T cells 

continuously breaching self-tolerance, thereby preventing them feeding forward 

into ongoing inflammatory response and possibly ultimately impeding the disease 

progression towards clinical disease (Figure 6-1).  

Some evidence suggests that epitope spreading might also continue after clinical 

onset of disease. Thus, a study comparing dominance of T cell clones in recent 

onset and established RA patient synovium demonstrated that the number of 

highly expanded clones is significantly lower in established RA, proposing this 

might result from these clones losing their initial dominance due to additional 

autoreactive T cell clones being newly activated during the ongoing 

inflammatory response.558 In line with that, another study reported the T cells 

from shared epitope-bearing patients with recent onset RA to respond only to 

citrullinated aggrecan or no epitope, while patients with established disease 

showed response to more than one citrullinated self-epitope, with possible 

underlying mechanisms suggested to be epitope spreading continuing throughout 

development of symptomatic/clinically manifested RA.559 Following from the 

above, it could be proposed that therapeutic interference with tofacitinib would 

also be effective early in clinical onset RA, as it could potentially limit the 

evolution of CD4+ T cell response and thereby halt the progression towards 

established disease (Figure 6-1).  

However, the therapeutic efficacy of tofacitinib cannot be solely explained by 

modulation of CD4+ T cell responses upon antigen-specific priming. The visible 

improvement in joint pathology in the absence of tofacitinib effect on the 

function of either of CD4+ T cell populations in our early RA mouse model 

suggests that tofacitinib might also have an impact on other inflammatory cells 

contributing to the pathology development. The remarkably rapid mode of 
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clinically meaningful improvements in the established disease in CIA mouse 

model and in the patients with active RA refractory to methotrexate, reported 

previously, indicate that tofacitinib might exert its immediate therapeutic effect 

by directly interfering with the cytokine-dependent activity of innate immune 

and/or synovial resident cells.305,560 Substantiating this notion, the tofacitinib 

treatment of fibroblast-like synoviocytes(from RA patients was shown to supress 

the TNF-mediated production of chemokines promoting T lymphocyte and 

monocyte recruitment (IP-10 and MCP-1, respectively).561 Furthermore, 

tofacitinib was also reported to diminish the expression of T cell chemokines 

along with (pro-inflammatory) cytokine IL-6 in RA synovial macrophages. 

Importantly, the amelioration of arthritis in K/BxN mice by tofacitinib further 

supported the idea that the clinical drug efficacy partly relies on innate immune 

cell function modulation, as arthritis in this particular model is mediated 

exclusively by innate immune cells.562 Collectively, the current evidence 

suggests that tofacitinib might in part drive the improvement in RA pathology 

through directly suppressing pathogenic function of macrophages and synovial 

fibroblasts and in turn ameliorating recruitment of adaptive immune cells to the 

joint. Notably, tofacitinib was also proposed to indirectly inhibit macrophage 

and synovial fibroblast cytokine production as well as osteoclast differentiation 

and bone-resorption capacity by suppressing T cell differentiation and RANKL 

production, respectively.306,310 Thus, the clinical efficacy of tofacitinib could be 

attributed to its unique mode of action, which allows to concurrently modulate 

innate and adaptive immune cell function as well as potentially interfere with 

their cytokine-mediated cross-talk, thereby breaking the ‘vicious’ cycle of 

synovial inflammation.   
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Figure 6-1. The course of rheumatoid arthritis development and the stages during which 
tofacitinib might have an impact on DC-mediated CD4+ T cell priming. 
Based on my findings, tofacitinib might be able to interfere with DC-CD4+ T cell interactions at 
several stages of disease development. Tofacitinib treatment during the ‘breach of self-tolerance’ 
event would prevent the autoreactive CD4+ T cell priming by self-antigen bearing (mature) DC, and 
thereby would prevent the initiation of the autoimmune response, including activation of 
autoreactive B cells and subsequent autoantibody production. The JAK inhibitor might also be 
effective during pre-clinical and possibly early clinical/symptomatic RA, as it could interrupt the 
continuous priming of CD4+ T cells (in joint-draining lymph nodes) in response to neoepitopes 
released from the inflamed joint tissue. In turn, this would preclude the migration of newly 
activated/primed CD4+ T cells to the joint and them potentiating further damage and release of 
other neoepitopes, as well as interfere with ‘help’ from these CD4+ T cells to B cells in the 
generation of pathogenic autoantibodies of new specificities, thereby preventing autoantibody-
mediated inflammatory and joint resident cell activation and associated joint damage. Clinically, 
tofacitinib interference during epitope spreading might, therefore, attenuate the disease 
progression. Additionally, if the ‘new’ naïve T cells continue to be recruited to the joint and 
contribute to the pathology during the chronic inflammation, tofacitinib could also be effective in 
interfering with their activation, and might ,therefore, be utilized at the established phase of RA.  

 

6.3 Future experiments 

 

The murine models utilized for this project provide useful platforms for further 

assessment of tofacitinib impact on DC-CD4+ T cell interactions in vivo. One of 

the options would be to elucidate the effect of tofacitinib treatment on in vivo 

CD4+ T cell differentiation into other T helper subsets. Since in this project, in 

line with observations from another murine RA model study,312 tofacitinib 

administered during CD4+ T cell priming did not diminish the levels of IL-10 in 

the co-culture supernatant, it could be of interest to further investigate whether 

the drug impacts naïve T cell polarization into IL-10-secreting Tregs. By 

employing our adoptive transfer model system (Chapter 4), the effect of 

tofacitinib presence on naïve CD4+ T cell differentiation into Tregs could be 
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assessed in the in vivo setting. Given the drug has no impact on Treg polarization 

and functional capacity, this might provide an additional mechanism underlying 

tofacitinib efficacy in RA. 

While extensive research is focused on tofacitinib ability to modulate CD4+ T cell 

responses, less is known about the JAK inhibitor impact on dendritic cell 

function. Both human monocyte-derived and murine bone-marrow derived DCs 

treated with tofacitinib during their maturation in vitro were shown to develop a 

‘tolerogenic’ phenotype and exhibit impaired ability to provide co-stimulatory 

and cytokine signals crucial for efficient CD4+ T cell priming.309,514 Since in our 

adoptive transfer model tofacitinib treatment is initiated prior to administration 

of stimulus inducing endogenous DC maturation, it provides an excellent setting 

for assessment of alterations in DC functional potential in response to tofacitinib 

in vivo, which has not been done previously.  

It would be of particular interest to test the suggestion that tofacitinib might 

limit the diversity of CD4+ T cell repertoire by inhibiting the continuous priming 

of these cells throughout the disease development. A ‘breach of tolerance’ 

mouse model of RA employed in this project, was recently adapted in our lab to 

study the changes in TCR repertoire diversity of endogenous CD4+ T cells (in 

joints and popliteal lymph nodes) at specific timepoints following primary (HAO) 

footpad challenge (early timepoint) and secondary challenge (late timepoint). 

Interestingly, the clonal CD4+ T cell diversity in popliteal lymph nodes at late 

timepoint increased compared to that at early timepoint, suggesting a potential 

epitope spreading occurring in this model. Thus, administration of tofacitinib in 

this model prior to/beginning at the early time point and assessement of 

changes in the endogenous CD4+ T cell clonality at the late timepoint could be a 

feasible way to test the above proposal. In ideal scenario, the comparison of TCR 

repertoire diversity in patients who commenced tofacitinib treatment close to 

RA onset and those who initiated treatment later in the disease might 

potentially inform on the drug capacity to limit epitope spreading in clinical 

setting, and might subsequently have implications in reviewing the time in the 

disease course when the compound is administered.    
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