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ABSTRACT 

Networks of low-power, in-suit, wired and wireless health sensors offer the potential to 

track and predict the health of astronauts engaged in extra-vehicular and in-station 

activities in zero- or reduced- gravity environments. Fundamental research questions 

exist regarding (a) types and form factors of biomedical sensors best suited for these 

applications, (b) optimal ways to render wired/wireless on-body networks with the 

objective to draw little-to-no power, and (c) means to address the wireless transmission 

challenges offered by a spacesuit constructed from layers of aluminized mylar. 

 

This thesis addresses elements of these research questions through the implementation of 

a collection of ZigBee-based wireless health monitoring devices that can potentially be 

integrated into a spacesuit, thereby providing continuous information regarding astronaut 

fatigue and state of health. Wearable biomedical devices investigated for this effort 

include electrocardiographs, electromyographs, pulse oximeters, inductive 

plethysmographs, and accelerometers/gyrometers. These ZigBee-enabled sensors will 

form the nodes of an in-suit ZigBee Pro network that will be used to (1) establish 

throughput requirements for a functional in-suit network and (2) serve as a performance 

baseline for future devices that employ ultra-low-power field-programmable gate arrays 

and micro-transceivers. Sensor devices will upload data to a ZigBee network coordinator 

that has the form of a pluggable USB connector. Data are currently visualized using 

MATLAB and LabVIEW. 
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CHAPTER 1:  INTRODUCTION 

1.1 Project Overview 

The primary goal of the parent project for this work (supported under NASA/EPSCoR 

Grant/Cooperative Agreement NNX11AM05A) is to evaluate the feasibility of low-

power wireless sensor networks for in-suit health monitoring in reduced or zero-gravity 

environments.  The project is divided into five tasks. Task 1 seeks to identify a sensible 

biomedical sensor set to monitor physiological parameters of interest inside a spacesuit. 

Task 2 focuses on radio propagation inside the suit, and Task 3 targets the design of a 

custom, ultra-low-power wireless network that can support biomedical sensors. Task 4 

addresses radio hardware for short- and long-range links, and Task 5 focuses on outreach 

and diversity enhancement. This thesis work primarily relates to Task 1 [Hodges2013, 

KSU-NASA1, Song2013a]. 

 

The objective of the work described here was to design and implement a collection of 

biomedical sensors whose data can be uploaded to a computer for display. The designs 

emphasize high-quality data, small size, low power consumption, and enhanced subject 

mobility. More specifically, this work addresses the creation of a ZigBee wireless 

network of medical sensors that can be used to test new sensor prototypes and can serve 

as a comparison baseline for low-power custom networks that will be built into spacesuits 

[Dong2013].  

 

In prior KSU work, three-axis accelerometers were used to assess acceleration at various 

body locations/joints during activities intended to emulate tasks on the moon or Mars. 

These types of accelerometers can potentially be placed in locations such as the chest, leg, 

or wrist to track or predict activity intensity and fatigue [Song2013,]. A similar ZigBee-

enabled unit was designed at KSU for a project that sought to track gait instability that 

might then indicate the potential for slips and falls  [Krenzel2012]  In other work, a 

wireless reflectance pulse oximeter was designed that could potentially function 

effectively in a helmet (e.g., for forehead measurements) or a glove (e.g., for wrist and 
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finger measurements) [ Li2012a]. Efforts for this thesis focused on the design of 

additional low-power biomedical devices that employed a ZigBee platform consistent 

with previous work. These devices include an inductive plethysmograph to determine 

respiration rate, one/two-channel electrocardiographs (ECGs), an electromyograph, and a 

modified board layout for an accelerometer/gyrometer.  The inductance plethysmograph 

obtains respiration rate by using a belt (typically worn around the chest) which may be 

sewn into the upper portion of a cooling garment worn under a spacesuit [Dong2013]. 

The two-channel electrocardiograph (ECG) was intentionally designed as a filter-free unit 

whose data can potentially provide parameters other than heart rate, such as respiration 

rate and a metric related to ambient environmental noise. 

1.2 Background – Biomedical Sensing in Reduced Gravity 

Environments 

One inevitable risk associated with space missions is threats posed to the physical and 

mental health of astronauts because of these harsh, isolated environments. Exposure to 

such environments for long periods of time negatively impacts all physiological 

subsystems. ECGs can provide crucial information about an astronaut’s cardiopulmonary 

system, thereby lowering the possibility of mission failure. Respiration rate is another 

indicator of physiological viability during long-term extravehicular activities (EVAs). 

Studies have shown that respiratory rate is one of the earliest indicators of health 

instability [Akbulut2011]. Accelerometers and gyrometers can be used to quantify 

activity and identify activity type. In addition, they may offer the potential to track or 

predict fatigue during EVAs as an alternative to electromyograms, which are the current 

standard for fatigue assessment [Ade2011]. 

 

To evaluate the sensibility of using wearable sensor data to monitor an astronaut’s state 

of health, the KSU Kinesiology Department worked with the KSU ECE Department to 

develop and utilize a collection of field tests in the form of an obstacle course in which 

individual tests mimic typical EVAs. Tasks include lifting weighted boxes, climbing 

ladders and stairs, and transporting weighted objects in a wheelbarrow (lifting weighted 

boxes and transporting weighted objects are shown in Figure 1). Commercial sensors 
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provided physiological monitoring for these tasks [Ade2011, Ade2012,Broxterman2012, 

Broxterman2013]. 

 

   

Figure 1. Representative field tests performed by subjects wearing inspiration/ 

expiration masks, electromyographs, and chest-worn electrocardiographs/ 

accelerometers 

For this work, a portable commercial gas exchange system measured whole body 

metabolic rate with sufficient breath-by-breath temporal resolution to track metabolism 

changes during various tasks. Electromyograph (EMG) and three-axis accelerometer data 

(Delsys Trigno [Delsys]) were acquired by placing wireless sensors over 16 muscles/sites 

(Figure 2, upper). A Zephyr BioHarness (Figure 2, lower) provided heart rate and 

acceleration data from the chest. 

 

This collective information from off-the-shelf sensors allowed the ability to track or 

predict muscle fatigue and task failure. To date, 87 subjects have completed the obstacle 

course under fatiguing and non-fatiguing conditions while wearing sensors. The team is 

currently analyzing these acquired data. Early results from these fatigue assessments were 

presented at recent NASA Human Research Program Investigators Workshops [Ade2011, 

Ade2012, Broxterman2012, Broxterman2013, KSU-NASA1, Dong2014, Kuehl2014]. 

 



 

 4  

 

  

  

Figure 2. EMG sensors on various muscle groups (upper). Zephyr Bioharness for 

heart rate and activity monitoring (lower). 

Acceleration data acquired during the experiments were also analyzed for their ability to 

indicate activity type, with the hope that these data may also provide a surrogate indicator 

for fatigue that does not require skin-contact electrodes (EMG sensors require electrodes). 

A representative confusion matrix from this work is depicted in Figure 3, indicating that 

simple accelerometer data may be a sensible resource for automatic task identification 

functions [Song2013a].  

 

More focused assessments of changes in forearm EMG signals (and corresponding 

spectra) due to fatigue were performed with the assistance of a custom hand-forearm 

ergometer, depicted in Figure 4. Preliminary results suggest that changes in mean firing 

frequency assessed through short-time FFT analysis are well correlated with fatigue 

[Gude2013a, Gude2013b].  
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Figure 3. Confusion matrix: accelerometer-based activity identification [Song2013a]. 

 

 

Figure 4. Automated hand-forearm ergometer to assess forearm EMG data as a 

function of fatigue [Gude2013a, Gude2013b]. 
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Based on these field tests and ergometer studies, the team affirmed the importance of 

[Song2013, Ade2011]: 

• EMGs from targeted muscle groups to assess/predict fatigue,  

• inspiration/expiration masks to measure whole body oxygen uptake, carbon 

dioxide production, and ventilation, and 

• chest-worn accelerometers to quantify activity and identify activity type. 

 

Additional types of sensors (e.g., the respiration belt, accelerometer, and pulse oximeter 

noted earlier) could be integrated into a spacesuit to potentially provide a supplement 

and/or alternative to electrode-based sensors such as ECGs and EMGs that currently 

gather state-of-health information. Examples of such sensors are noted in the next section.  

1.3 Sensor Selection  

For customized sensors, existing ZigBee-enabled pulse oximeters and accelerometer/ 

gyrometer sensors were supplemented with a respiration rate sensor, ECGs, and EMGs. 

Illustrated in Figure 5, the filter-free ZigBee-based pulse oximeter can be used to measure 

heart rate and blood oxygen saturation, plus potentially estimate metabolic rate using the 

difference between SpO2 and SvO2 values. The design employs a JN5139 ZigBee-

integrated microprocessor module from Jennic. Jennic more recently released a new 

ultra-low-power ZigBee-Pro-based wireless microcontroller, the JN148. Unfortunately, 

the JN5148 is not backward compatible with the JN5139 since they utilize different 

integrated development environments (IDEs) and software development kit (SDK) 

libraries. However, they share identical pin configurations, so if the printed circuit board 

(PCB) layout design could be maintained and the JN5139 on the board could be replaced 

with a JN5148 module, firmware could then be modified to update the system.  

 

As illustrated in Figures 6 through 8, circuitry that provides EMGs and ECGs was 

previously implemented in ECE 772/773 –Biomedical Instrumentation [Warren2011]. 

Board-level upgrades to these designs utilized the same ZigBee Pro template present in 

Devon Krenzel’s accelerometer board [Krenzel2012] and the respiration rate belt 

[Dong2013, Dong2014]. Figure 6 depicts the basic data acquisition system that employs 
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an AD620 instrumentation amplifier to acquire ECG or EMG signals due to the 

amplifier’s high common mode rejection ratio. The combination of filters and amplifiers 

was achieved by cascading operational-amplifier-based stages with appropriate 

components and feedback (refer to Figure 7). ECG signals acquired in ECE 772/773 were 

sampled by myDAQ units from National Instruments and displayed in LabVIEW virtual 

instruments (VIs) (see Figure 8).  

 

Figure 5. Pulse oximeter designed by Kejia Li [Li2012a,Li2012b]. 

 

Figure 6. AD620-based electrocardiogram sensing circuit [Analog1999]. 
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Figure 7. ECG filter cascade. 

 

Figure 8.  ECG acquisition and analysis VI [Warren2011]. 

1.4 Wireless Transmission Protocol Selection 

ZigBee is a wireless communication standard based on the IEEE 802.15.4 specification, 

natively designed for sensor networks. Each ZigBee node offers a transmission range of 

tens of meters, and adding routing nodes increases coverage. Data traffic is not 

substantial for most biomedical sensing networks, since sample rates are typically only a 

few hundred Hz per signal at most, so ZigBee’s transfer rate of 250 kbps is able to meet 

physiological parameter transmission requirements [Liu2009]. In addition, ZigBee power 
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consumption is low when compared to common wireless protocols such as Bluetooth and 

Wi-Fi, potentially allowing for continuous long-term health monitoring powered only by 

a battery. Table 1 compares the core ZigBee specifications with the corresponding Wi-Fi 

and Bluetooth specifications.  

Table 1. Comparison of various wireless technology specifications. 

 
ZigBee Wi-Fi Bluetooth 

Bluetooth 

LE 
Frequency 

Band 

868/915 MHz, 

2.4 GHz 
2.4/5.8 GHz 2.4 GHz 2.4 GHz 

Data Rate 250 kbits/s  
11 to 105 

Mbits/s 
1-3 Mbits/s 1 Mbits/s 

Battery Life Years Hours Hours to Days Years 

RF Range 10 to 300 m 10 to 100 m 10 m 5-10 m 

Topology 
Mesh, Star, 

Tree 
Star Star Star 

Max Nodes 

Per Receiver 
65524 32 7 8 

 

Wi-Fi is typically used for high-throughput data communication such as local cell phone 

use because it offers a wide bandwidth (300 MHz) and operates in the license-free 2.4 

GHz band. Wi-Fi's primary drawbacks for use with biomedical sensor networks are its 

relative expense and power consumption when used in continuous or frequent medical 

health monitoring [Kim2013, Trasvina2014].  

 

Like ZigBee and Wi-Fi, Bluetooth also operates in the 2.4 GHz frequency band. The data 

rates that Bluetooth supports are also more than sufficient for biomedical sensor networks. 

Bluetooth's transmission range is up to 10 m. “Classic” Bluetooth has been utilized in 

medical products such as wireless blood glucose meters. Although a Bluetooth 

transceiver board can be powered by one single coin cell battery, Bluetooth's high power 

consumption relative to ZigBee limits its battery life to only a few hours of continuous 

transmission, thereby limiting the biomedical sensor network applications that may 

benefit from the standard. A new version of the protocol, known as Bluetooth Low 

Energy (BLE), was developed for short range, low-power control and application 

monitoring. The primary difference between classic Bluetooth and BLE is that BLE is 
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designed for transmission of occasional data parameters instead of data streaming. Like 

Bluetooth, BLE employs a frequency-hopping spread spectrum method which prevents 

interference from other radio sources. [Liu2013 ,Zhou2013].  

 

Note that BLE could also be a good match for a suit-based biomedical sensor network 

due to its low power consumption, high data rate, and interference immunity 

[Liu2013,Zhou2013]. ZigBee was employed for this effort primarily as a means to take 

advantage of legacy designs that were created at a time when BLE was not yet available. 

1.5 System Features 

One objective of this overall NASA project (and a primary objective of Tasks 1 and 3) is 

to create an in-suit sensor network that provides high-quality physiological data while 

requiring little power input. The sensor designs and supporting ZigBee wireless network 

presented in this thesis are intended to act as a comparison baseline for field 

programmable gate array (FPGA) based low-power sensors, textile-based 

devices/antennas, custom low-power wireless links, and network protocols. The sensors 

and sensing network in this study were pursued with the following features in mind: 

• small-size, low-power sensors powered by a coin cell battery or with energy 

harvesting to support continuous health monitoring, 

• ZigBee-based low-power wireless body sensor network, 

• sensors operated in filter-free mode (e.g., ECG, pulse oximeter, or respiration belt) so 

that data streams incorporate all signal elements, and 

• a small-sized, pluggable USB-connector network coordinator for data recording. 

As illustrated in Figure 9, the target biomedical sensor network incorporates a one/two 

channel ECG, a respiratory belt, a pulse oximeter, one or more accelerometer/gyrometer 

sensors, one or more EMG sensors, and a USB pluggabe wireless receiver. The ZigBee 

wireless network will support both JN5139 and JN5148 modules from Jennic.  
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Figure 9. Target ZigBee-based wireless biosensor network. 
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CHAPTER 2:  WIRELESS SENSOR AND NETWORK DESIGN 

2.1 Sensor Design and Implementation 

2.1.1 Inductive Plethysmograph 

Respiration rate is an important parameter for establishing state of health in environments 

with potential oxygen constraints. Respiratory information can be (a) extracted from 

signals such as ECGs or pulse plethysmograms or (b) measured directly with capacitive 

respiration sensors [Merritt2009], impedance plethysmography [Ansa2011], piezosensors 

[Nan2007, Bu2007], thermistors, or other sensors that track movement, temperature, 

acoustic noise ,etc.  

 

Impedance plethysmography senses impedance changes as a cross section of the human 

body expands and contracts, allowing qualitative measurement of chest movement during 

breathing. This technique requires two electrodes attached to the skin and a weak 

alternating current that passes through these electrodes, allowing impedance to be 

measured directly as a function of time [Ansa2011]. However, impedance 

plethysmography yields a non-linear signal, and electrical current must be passed through 

the subject, generating both safety and battery power issues, especially inside an 

oxygenated, pressurized spacesuit where electrical current should be avoided and battery 

power should be minimized.  

 

In some piezosensing techniques, a piezo-crystal-based respiration sensor is located on a 

short section of a belt. However, when the subject lies on top of the piezo crystal, 

breathing effort may not be detected, and incorrect readings or unexplained changes in 

polarity can be produced [Nan2007, Bu2007].  

 

For long-term EVAs, a technique such as respiratory inductive plethysmography (RIP) is 

appealing if it can be implemented in a manner that is comfortable for the wearer.  RIP 

relies on the principle that alternating electric current passed through a loop of wire 

generates a magnetic field perpendicular to the loop. In such a situation, the wire loop 
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(“belt”) exhibits self-inductance, L.  The act of breathing changes the cross area of the 

chest, thus changing the magnetic field and the self-inductance of the loop.  If the self-

inductance is made to be part of a resonant circuit (e.g., an LC oscillator), then changes in 

chest cross-sectional area will correlate to changes in resonant frequency, which can then 

be demodulated to create a respiration voltage waveform. No electrical current passes 

through the body with RIP, and the weak magnetic field does not affect the human 

subject. The resulting signal is a linear, accurate representation of the change in the cross-

sectional area [Lee2008, Dong2013].  

 

The process is illustrated in Figure 10, where the respiration rate sensor includes three 

electronic components: an LC Colpitts oscillator, a comparator, and a pulse counter with 

time windowing. When the coil is expanded or compressed (meaning a change in belt 

length and shape), a series inductance ∆L is added, thereby changing the frequency of the 

LC oscillator. A comparator follower then converts the sine waveform into a square wave 

which can be digitally sensed by a microcontroller. 

 

Figure 10. Block diagram of the respiration sensing system. 

 

Colpitts Oscillator 

A Colpitts circuit, similar to other LC oscillators, consists of a gain element (e.g.,  a BJT, 

MOSFET, or amplifier) and an output that is connected to its input in a positive feedback 

loop that contains a parallel LC-tuned circuit which functions as a bandpass filter to set 

the oscillating frequency.  This positive feedback configuration results in a 0o or 360o 

overall phase shift. A Colpitts oscillator is typically configured as a common emitter 

amplifier with an output signal 180o out of phase with respect to the input signal. The 

additional 180o phase shift required for oscillation is achieved because two capacitors are 
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connected together in series, and the pair is in parallel with an inductor, resulting in an 

overall circuit phase shift of 0o or 360o.  

 

As illustrated by the BJT Colpitts oscillator in Figure 11, the oscillator utilizes a capacitor 

voltage divider as its feedback element because resistors are not pure resistors at high 

frequencies – they would load the output. The amount of feedback is determined by the 

ratio of C1 and C2, and the oscillation frequency of a Colpitts oscillator is determined by 

the resonant frequency of the LC tank circuit, given as 

                               � =
�

��√��
  Where 
 =  

��∗��

�����
 (1) 

 

Figure 11. BJT LC Colpitts oscillator. 

Rather than using a BJT, an op amp can be used as an active component with feedback – 

see Figure 12. The operation of an op-amp Colpitts oscillator is similar to the BJT version, 

and the resonant frequency is calculated in a similar manner.  

 

Changes in the magnetic field result in changes in self-inductance, which can be tracked 

by variations in the oscillator resonant frequency. A Colpitts oscillator produces a 

relatively pure sinusoidal waveform due to the low-impedance paths provided by the 
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capacitors at high frequencies. The oscillator experiences relatively small changes in 

frequency compared to its base resonant frequency. 

 

Figure 12. Op amp Colpitts oscillator. 

A circuit must be designed that converts changes in resonant frequency to a respiration 

signal. The conversion can be achieved in two ways: analog or digital. With an analog 

solution, a frequency-to-voltage converter is applied that converts frequency variations 

into voltage variations that can be transduced by the microprocessor analog-to-digital 

converter ADC. Table 2 lists existing frequency-to-voltage converters on the market and 

their corresponding specifications. 

Table 2. Specifications for existing frequency-to-voltage converters. 

 

 

These limited options specify (a) a minimum power supply of 5 V for the converter, 

which requires an extra voltage regulator to convert 3.3V to 5V, (b) additional power 
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dissipation during conversion, (c) a dual power supply (required by some), (d) extra 

space for extra components, and (e) non-linear frequency-to-voltage modules. These 

factors drove the decision to seek a digital solution, as noted in Figure 10, consequently 

saving space, reducing power consumption, and improving signal accuracy. Figures 13 

through 15 contain top, bottom, and overall views of the respiration sensor prototype.  

 

Figure 13. Top view of the respiration sensor board. 

 

Figure 14. Bottom view of the respiration sensor board. 
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Figure 15. View of the entire respiration sensor belt. 

The respiration sensor hardware is divided into five modules: a microprocessor module, 

an LC Colpitts oscillator, a signal sampling module, a power management module, and 

other auxiliary circuitry (including a USB bridge). The microprocessor module is a 

Jennic JN5148 module, designed specifically for robust and secure low-power wireless 

applications. This sensor unit and its receiver employ Jennic microcontrollers that support 

an integrated ZigBee wireless protocol.  

 

The main sensor module is the LC Colpitts oscillator depicted in Figure 16. An LC tank 

circuit is formed by components L1, C27, and C28, and the sampling frequency is 

configured to be about 400 kHz by Equation 1. An LM8261op amp was chosen for the 

active feedback component due to its rail-to-rail common mode voltage range, unlimited 

capacitive load drive capability, large slew rate, and high bandwidth. The LMV7219 is a 

low-power, high-speed comparator with internal hysteresis which ensures clean output 

transitions. The LMV7219 comparator was used to convert the sinusoidal output signal 

from the Colpitts oscillator into pulses which can be sensed by the microprocessor. Since 

the respiratory belt is powered by either a cell battery or USB, R17, R18, R22, and R23 

were used for a DC bias. R24 and R25 were applied for the loop gain. 
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Figure 16. LC Colpitts oscillator employed for respiration sensing. 

The remainder of the circuit-level functionality is illustrated in Figure 17.  As noted 

earlier, the respiration sensing circuit employs a digital solution. The respiration belt 

typically uses a wireless link to communicate with a receiver on a PC, and data storage 

on the PC is managed through a graphical MATLAB interface. A mini-USB connection 

can provide a wired interface to the PC while the battery recharges. If neither the wireless 

link nor the USB connection are available, sampled data are temporarily stored on flash 

memory. 

 

Extensive bench testing was conducted to verify the correct operation of the respiration 

sensor hardware. The ZigBee wireless link proved to be stable and reliable. Using a 

CR2032 Maxell lithium cell battery, the system can operate up to 3 hours with 

continuous wireless transmission. Table 3 contains specifications for the respiration 

sensor unit. 
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Figure 17. Respiration sensor circuit-level system layout. 

Table 3. Specifications for the respiration hardware module. 

 

 

Respiration tests were conducted on female and male subjects (see Figures 18 and 19). 

Figures 20 and 21 display respiratory signals for both subjects, respectively, with the y 

axis representing pulse counts in a 10 ms time window and the x axis representing time in 

seconds, The waveform in Figure 20 is biased at approximately 9100, and the waveform 

in Figure 21 is biased at approximately 4250 because the pulse counter was initially 
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configured to count only rising edges. The belt was wrapped tighter on the female 

subject’s chest and looser on the male subject’s chest. Tighter belt placement results in a 

larger variation in pulse counts (i.e., a larger signal amplitude), but a belt that is too tight 

also results in discomfort. 

 

 

Figure 18. Respiration rate measurement on a male subject. 

 

Figure 19. Respiration rate measurement on a female subject. 
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Figure 20. Typical respiration signal obtained with the belt (male subject). 

 

 

Figure 21. Respiration signal and spectrum (female subject).. 

Samples 

Time (s) 
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2.1.2 Electrocardiograph 

Long-term space missions affect all physiological systems, including the 

cardiopulmonary system. An ECG can provide crucial information for the rapid diagnosis 

of medical conditions in astronauts and prevent mission failure due to poor health. The 

ECG device designed in this study utilizes electrodes to convert ionic signals from the 

body into electrical signals [Gao 2012]. 

Circuit Design 

An ECG circuit needs to both amplify small signals measured from the heart and filter 

internal/external noise or interference. Amplification is primarily implemented through a 

differential amplifier, and a right leg drive circuit can be used to help cancel noise and 

other common mode signals.  

 

Due to the small amplitude of the signal (typically 1 mV or less), the circuit gain should 

be large. A gain of over 1000 is typically implemented in ECG circuits. In addition, 

amplifiers should have a high common mode rejection ratio to eliminate large offset 

signals or noise. These factors drive the need for an instrumentation amplifier with the 

characteristics of very low DC offset, low drift, low noise, very high open loop gain, very 

high common-mode rejection ratio, and very high input impedance.  Figure 22 illustrates 

the circuit schematic for the ECG sensor utilized in this effort. 

 

Figure 22. Circuit schematic for the ECG sensor. 

Right Arm 

Left Arm 

Left Leg 
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As noted in the schematic in Figure 22, an INA326 instrumentation amplifier is used due 

to its low voltage offset (100 µV), low offset drift (0.4 µV/°C max), and high common-

mode rejection (100 dB). The INA326 input gain is set to 5 since G1 = 2(R18/ (R5+R11)) 

= 2(200k/80k) = 5. To cancel resistor noise (i.e., reduce noise bandwidth), a 22 pF 

capacitor is placed parallel to R14 and R4. The output stage provides an adjustable gain 

ranging from 100 to 200 V/V, so the overall gain of the ECG sensing circuit ranges from 

500 to 1000 V/V. The input common-mode voltage was fed back via the amplifier U8A 

and U5B to the right leg to further reduce 50/60 Hz noise.  

 

Figures 23 and 24 contain top and side views of the ECG prototype and the ABS housing 

designed in Solidworks.  

 

Figure 23. ECG circuit prototype (top view). 
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Figure 24. Solidworks design for the ECG case. 

 

The three-lead ECG system can be easily modified to acquire an EMG signal. EMG 

spectral contents fall in the range of 0 to 500 Hz, and the amplitude of an EMG signal can 

range from 0 to 1.5 mV, similar to an ECG signal amplitude. Since the filter is optional 

on the ECG board, cutoff frequencies can be modified, or the analog filter can be 

bypassed and the digital filter can be applied.  

 

A 2-channel ECG system was also designed as a filter-free unit whose data can 

potentially provide respiration rate and a metric related to ambient environmental noise. 

This ECG board is depicted in Figure 25. The two-channel ECG system can either 

provide two lead arrangements or serve as a redundant system. ECG experiments were 

conducted on a male subject, as depicted in Figure 26. Figure 27 displays a representative 

set of ECG waveforms acquired with this unit. 

 

(a) 

(b) 

(c) 
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Figure 25. Two-channel ECG board. 

 

 

Figure 26. ECG measurement setup. 
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Figure 27. Typical ECG signals. 

2.1.3 Accelerometer/Gyrometer 

The accelerometer/gyrometer sensor design was initially created by Devon Krenzel, 

where the application related to a wireless, wearable system for slips and falls prediction 

[Krenzel2012]. The hardware design was replicated in this study for use with the NASA 

project, and the device firmware was altered so that the unit could be integrated into the 

ZigBee wireless network. The accelerometer/gyrometer sensor prototype employs a 

ZigBee wireless module for wireless communication and data logging, an 

accelerometer/gyrometer chip for dynamic movement detection, and a mini-USB 

connection for chargeability and processor programmability. Figure 28 contains a picture 

of the hardware board. 

 

The CMA3000 MEMS three-axis digital accelerometer and CMR 3000 three-axis digital 

gyrometer were chosen for their low-power consumption, high precision, and high 
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sampling rate. This chip can run on voltages from 1.7 V to 3.6 V, and power consumption 

varies according to sampling rate. For example, the chip consumes 50 µA of current at a 

sampling rate of 100 Hz. The acceleration range can be set from +2 g to +8 g with 8-bit 

resolution [Murata2004].  Since some activities yield accelerations exceeding +2 g, an 

acceleration range of +8 g was chosen to prevent signal saturation.  

 

The accelerometer communicates with the microcontroller through a serial peripheral 

interface (SPI) bus which requires four wires (SCLK, MISO, MOSI, SS) between the 

master (Jennic 5148) and the slave (sensor). The Jennic chip provides a clock for data 

transmission on SCLK, but actual data transmission occurred through the MOSI (Master 

Out Slave In) and MISO (Master In and Slave Out) wires. Slave Select (SS) was used for 

the master device (Jennic 5148 microcontroller) to switch communication from slave 

devices (accelerometer or gyrometer). The overall board size was 54 x 39 x 19 mm, ideal 

for placing the sensor in a pocket or a small holder.  

 

Figure 28. Accelerometer and gyrometer board. 

Because nearly all human movement occurs in the frequency range of 0.6 to 50 Hz, the 

output data rate of the accelerometer chip was configured to 400 Hz. However, the 

signals were down-sampled to 100 Hz per axis to match the sampling rate of the other 

wireless sensors so that an identical data package pattern could be adapted.  
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To test the accelerometer, it was placed in a pocket with the top side of the sensor unit 

facing various directions. Data were recorded and then transmitted wirelessly during a 

walking activity. Some of these data are depicted in Figure 29, where the acceleration 

variations in the y direction are larger than the variations in the x and z directions. To 

create the data in Figure 30, the sensor unit was placed in such a way that walking 

highlighted activity along the x axis. The x axis displayed positive accelerations, while 

the y and z axes offered negative accelerations.  

 

 

Figure 29. Accelerometer data when walking in the direction of the y axis. 

 

Figure 30. Accelerometer data when walking in the direction of the x axis. 

2.1.4 ZigBee Receiver 

Each sensor device uses a wireless link to communicate with a receiver on a PC, and data 

are stored on the PC through a MATLAB graphical user interface (GUI). The JN5148-

EK010 Evaluation Kit (see Figure 31) includes a ZigBee coordinator receiver which was 

initially used as a wireless receiver in this study. 
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Figure 31. JN5148-EK010 evaluation kit components [Jennic2010a]. 

 

Figure 32. Controller board [Jennic2010a]. 

As illustrated in Figure 32, the controller board used as a wireless receiver for each 

sensor unit has several useful features [Jennic2010c]: 

• a large 128 × 64 pixel LCD screen with a comprehensive set of driver routines, 

• four configurable LED indicators, 
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• four configurable push-button switches, 

• temperature, humidity, and light sensors, 

• a serial EEPROM, 

• a UART interface for communication and program downloads, and 

• an expansion port for additional sensors. 

Jennic also offers a pre-installed receiver module mounted on a uFI-to-SMA adaptor 

board with an SMA connector which can accept one of the supplied screw-on antennas. 

This module can be removed and replaced with a higher-power module. The three types 

of modules,are displayed in Figure 33: a standard-power module with a ceramic antenna 

embedded inside the PCB, a standard-power module with an SMA connector that can 

hook up to an antenna with a higher gain, and a higher-power module with an SMA 

connector. The higher-power module is longer than the standard-power modules 

[Jennic2010a, Jennic2010b].  

 

Figure 33. JN5148-based modules [Jennic2010b]. 

As can be seen in Figure 32, the controller board is oversized for this application, and it 

connects to a PC through a USB-to-serial cable. Further, while the controller board 

contains a few useful components for debugging and broad application use (LCD screen, 

extension port, serial EEPROM, and temperature, humidity, and light sensors), these 

components are not required for this wireless biomedical sensor system. The main role of 

the controller for this biomedical application is to receive data from sensor units and 
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transfer those data to a PC through a serial port. Additional useful features of the 

controller may include reset and start buttons as well as LEDs to indicate controller status.  

 

Therefore, the team decided to design a wireless, pluggable, USB-type receiver with an 

ABS plastic case that could serve the needs of this project.  The board, SolidWorks 

model, and case are depicted in Figure 34. This USB-peripheral receiver provides short-

range wireless connectivity to a low-power mesh or multipoint network in an easy-to-

carry form factor. It can be plugged directly into the USB port of a laptop or PC, or 

connected using an extension cable. This receiver is USB-powered, so it does not require 

batteries or a power adapter. 

 

As illustrated in Figure 35, one side of the receiver board contains power-on and data 

transmission LED indicators; log-on and permit-joining buttons for user control; a mini-

USB connector for debugging; and a type-A USB connector for data streaming. The other 

side of the receiver board (see Figure 36), comes in two ‘flavors.’ The configuration in 

the lower part of Figure 36 is a standard-power module with a ceramic antenna embedded 

inside the PCB. The configuration in the upper part of Figure 36 includes an SMA 

connector which connects to an external antenna with higher gain. Table 4 lists the 

receiver specifications. 
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Figure 34. ZigBee receiver and ABS plastic case: (a) top view, (b) bottom view, (c) 

Solidworks model for the plastic case and (d) complete ZigBee receiver unit. 



 

 33  

 

Figure 35. Components of the USB receiver – side 1. 

 

 

Figure 36. USB receiver (side 2) with two types of Jennic 5148 modules. 
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Table 4. Specifications of the ZigBee receiver. 

   

 

  

Indoor Range 30 m 

Outdoor Range 45 m 

Receiver Sensitivity -90 dBm 

Supported Network 

Topologies 

Point to Point, Point to Multipoint, Peer-to-

Peer, Mesh 

RF Data Rate 250 kbps 

Serial Interface Data 

Rate 

115200 bits/s 

Supply Voltage 5 V 

Operating Current 38 mA 

Interface Type USB 

Antenna Types Internal  

Connector USB type A 

Number of Channels 16 

Dimensions (L x W x H) 67.5mm x 27mm x 15mm 
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CHAPTER 3:  ZIGBEE WIRELESS SENSOR NETWORK FIRMWARE 

The Jennic operating system (JenOS) was designed for use in wireless network 

applications. JenOS was primarily intended for interaction with the NXP ZigBee Pro 

stack to develop wireless network applications based on the ZigBee standard. An API 

library built on IEEE 802.15.4, known as the ZBPro API, provides application layer 

programming for firmware development. One ZigBee Pro network topology includes a 

coordinator (topology hub), end device (leaf node in the topology), and router (connects 

coordinator and end devices) [Jennic2010d, Jennic2012, Jennic2013]. In this sensing 

network developed here, end devices were set up to communicate directly to the 

coordinator without a router in order to acquire data in real-time mode.  

3.1 ZigBee Pro Application Programming Interface 

Code programming was completed in the firmware development environment, Eclipse, 

which offers a user guide, reference manual, and example code. Eclipse contains the 

JN5148 ZigBee Pro SDK and tools used to configure JenOS. However, some static 

configuration was required before the application was built [Jennic2012, Jennic2013]. 

Configuration tools included the JenOS Configuration Editor, pre-configured JenOS 

resources, and a ZPS Configuration Editor that allowed ZigBee network parameters to be 

configured.  

 

The JenOS Configuration Editor, which links setup configurations to application code, 

can be utilized before, during, or after coding. The Configuration Editor is primarily used 

to manage JenOS tasks, ISR subroutines, and scheduling. Typical configuration settings 

include 

• priority of individual user-defined tasks and ISRs, 

• software timers derived from a particular hardware counter, 

• callback functions associated with a particular hardware counter, 

• user tasks activated when a software timer expires, 

• message types that can be sent and received by a user-defined task, and 

• the length of a user task’s message queue for message types. 
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Configuration is accomplished in graphical form. Figure 37 displays the editor’s 

graphical window [Jennic2012].  

 

Figure 37. Graphical configuration window. 

Colored boxes in the graphical configuration window represent various objects: 

• Task (blue) 

• ISR (light blue) 

• Callback (yellow) 

• Message Queue (green) 

• Mutex (red) 

• Interrupt Source (purple) 

• Hardware Counter (brown) 

• Software Counter (Orange) 

 

The ZPS Configuration Editor (see Figure 38) configured ZigBee network parameters 

through a Windows Explorer interface. Parameter values for the entire network were 

stored in a file with an extension .zpscfg.  
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Figure 38. ZPS configuration editor window. 

Configurable network parameters configured include the following: 

• Extended Pan ID 

• Security Enabled 

• Maximum Number of Nodes 

• Cluster ID 

• Profile ID 

• Permit Joining Time 

• Initial Security Key 

• Scan Duration Time 

• RF Channels 

After setting up the JenOS Configuration Editor and ZPS Configuration Editor for the 

coordinator and the end device, coding design was initiated, as described in the following 

sections [Jennic2012, Jennic2013]. 

 

Frames were assembled on the application layer of the wireless communication protocol. 

Wireless communication between biosensors and a receiver utilized a frame structure as 

illustrated in Figure 39. One data package contains 44 bytes. The first byte is the data 

length, the next two bytes are a 16-bit MAC address, the next 20 bytes are sensor data, 

and the last byte is the end byte for the data package. The Data Len byte is used to notify 
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the coordinator as to how many data will be transmitted. A sensor MAC address is used 

to identify the various sensor types. The following sections describe the firmware 

architectures for a sensor (end device) and coordinator. 

 

Frame Structure for Wireless Communication 

Position 0 1 3 23 43 

Content Data Len Sensor MAC 

Address 

First Channel 

Data 

Second 

Channel Data 

End byte 

Figure 39. Frame structure for wireless communication. 

3.2 Sensor Firmware Architecture 

All sensor data (respiration rate, ECG, accelerometer, etc.) were periodically sent to the 

receiver where they could be displayed in a MATLAB GUI. These transmissions adhered 

to the same wireless communication data frame structure. Figure 40 contains the flow 

chart for the sensor node software architecture, and the architecture itself is illustrated in 

Figure 41. The following sections describe the tasks which implemented this architecture. 

 

Figure 40. Software flow chart. 
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Figure 41. Software architecture of a sensor node. 

APP_taskSensorNode 

APP_taskSensorNode is the sensor node application’s primary task. It is activated by 

stack events generated by the ZPS after setup of the ZPS Configuration Editor, which 

posts a message containing details of the stack event to the SensorNode task. The 

SensorNode task contains the state machine which is necessary to discover and join an 

appropriate network. The code for the state machine follows: 

switch (s_sDevice.eState) 

    { 

case E_STARTUP: 

vHandleStartupEvent(sStackEvent); 

break; 

 

case E_NETWORK_DISCOVERY: 

vHandleNetworkDiscoveryEvent(sStackEvent); 

break; 

 

case E_NETWORK_JOIN: 

vHandleNetworkJoinEvent(sStackEvent); 

break; 

 

case E_MONITOR_SENSORS: 

vHandleMonitorSensorsEvent(sStackEvent); 

break; 

default: 

break; 

} 
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APP_taskSampleSensors 

APP_taskSampleSensors is the task that implements the primary hardware behavior. The 

Sample Sensors task acquires measurements from sensors, such as the pulse counter for 

respiration rate monitoring, the analog-to-digital converter for ECG monitoring, and the 

SPI communication interface for the accelerometer and gyrometer. Upon completion of a 

certain number of sensor readings, the task stores these sensor data in predefined buffers 

for future wireless transmission. This task is periodically activated by a 10 ms software 

timer, and this task also activates the ZBTransmit task which implements wireless data 

transmission. 

 

To avoid transmission data loss, a double buffer was employed for sensor data storage in 

this study. Buffer A is first used to hold sensor data waiting to be sent wirelessly. If 

Buffer A is full, sampled sensor data are stored in Buffer B, or vice versa. Meanwhile, the 

full buffer triggers the ZBTransmit task, which transmits sampled sensor data from the 

full buffer. Results indicated that 100% of the data are successfully transmitted to the 

controller within close wireless range. The double buffer is depicted in Figure 42. 

 

 

Figure 42. Double buffer for sensor data storage. 

 

The pseudo-code for this task follows: 

 
Enable Sensor Reading. 

SensorValue1 = u16AHI_Read1();  

SensorValue2 = u16AHI_Read2();  //Sensor data reading, assuming two sensors 

If(Filling1 == 0) //Buffer 1 is empty 

{ 

 U16Sensor_Buffer1[i] = SensorValue1; 

U16Sensor_Buffer1[i+DATA_LEN] = SensorValue2;  
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i++; 

If(i == DATA_LEN ) 

{ 

Filling1 = 1;  

BUFF1FULL = 1; 

 i = 0; 

OS_eActivateTask(APP_taskZBTransmit); //Activate taskZBTransmit 

 } 

} 

Elseif( Filling1 == 1) //Buffer 1 is full 

{ 

 U16Sensor_Buffer2[i] = SensorValue1; 

U16Sensor_Buffer2[i+DATA_LEN] = SensorValue2; //DATA_LEN is number of samples per  

i++; 

If(i == DATA_LEN ) 

{ 

Filling1 = 0;  

BUFF2FULL = 1; 

 i = 0; 

OS_eActivateTask(APP_taskZBTransmit); //Activate taskZBTransmit 

 } 

} 

 

APP_taskZBTransmit 

The APP_taskZBTransmit task implements wireless transmission for sensor data stored 

in the double buffer. The ZBTransmit task sends buffered data to the controller node 

using the frame format described above. A message travels through the ZigBee network 

as a packet that contains application data surrounded by header and footer information 

relating to the different levels of the protocol stack. A message to be sent is prepared at 

the application level (at the top of the protocol stack) by creating an Application Protocol 

Data Unit (APDU) that contains application data to be included in the message. This 

APDU is then passed down the layers of the stack, with each layer adding unique 

protocol information to the header and footer. When the ‘physical’ layer is reached at the 

bottom of the stack, the message is complete and ready to be transmitted. 

 

The pseudo-code for this task follows: 

// Allocate an APDU instance 
PRIVATE PDUM_thAPduInstances_hAPduInst = PDUM_INVALID_HANDLE; 

s_hAPduInst = PDUM_hAPduAllocateAPduInstance(apduSensorData); 

if (PDUM_INVALID_HANDLE != s_hAPduInst) 

{ 

 if(BUFF1FULL == 1) 

 { 

  PDUM_u16APduInstanceWriteNBO(s_hAPduInst, BufferA);  
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  BUFF1FULL = 0; 

 } 

 if(BUFF2FULL == 1) 

 { 

  PDUM_u16APduInstanceWriteNBO(s_hAPduInst, BufferB); 

  BUFF2FULL = 0; 

 } 

 

  

 vSendSensorData(PDUM_thAPduInstancehAPduInst); //Sending the data 

} 

APP_taskScanButtons  

The APP_taskScanButtons task is activated by a software timer which is activated by the 

System Controller ISR when a button interrupt is generated.  

APP_taskSensorEvent 

The APP_taskSensorEvent task implements the sensor data endpoint and therefore 

receives the APS confirm event generated by the ZPS after data in the pre-defined buffer 

have been sent. The ZPS posts a message containing a confirmation, and the message 

activates the task. The task then switches an LED on to indicate that the task is complete. 

3.3 Coordinator Firmware Architecture 

In this study, all signal data yielded by the various sensors are transmitted in real-time to 

the coordinator via a ZigBee wireless link. The coordinator then streams the sensor data 

to a serial port for backup, display, and signal processing. The coordinator is 

fundamentally a ZigBee wireless receiver on the PC side, which communicates with the 

PC through a serial port.  

 

The primary two tasks implemented in the coordinator software flow are (1) receiving 

data packages from sensors and extracting sensor data from these packages, and (2) 

streaming sensor data to a PC using a predefined data frame format for backup, display, 

and signal processing. The software flow chart is depicted in Figure 43. The two main 

tasks are divided into subtasks which are explained in the following sections. The 

software architecture and task relationships are illustrated in Figure 44. 
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Figure 43. Coordinator software flow chart. 

 

Figure 44. Coordinator firmware architecture. 
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APP_taskControllerNode 

APP_taskControllerNode is the controller node application’s primary task. It is activated 

by stack events generated by the ZigBee Pro Stack (ZPS), which posts messages 

containing details of the stack event to the ControllerNode task. It is also activated by 

messages posted from the buttons task. The ControllerNode task contains the state 

machine necessary to initiate a network and subsequently functions as the application 

controller.  

 

APP_taskScanButton 

The APP_taskScanButton task is activated by a software timer which is subsequently 

activated by the System Controller ISR when a button interrupt is generated. This task 

de-bounces the buttons. When a button press is successfully de-bounced, the task 

generates a BUTTON_UP or BUTTON DOWN event and posts a message to the main 

controller task to tell the coordinator to initiate the process.  

 

APP_taskLogData 

The APP_taskLogData task implements the sensor endpoint which receives data frames 

containing sensor measurement data from the sensor nodes. When a sensor node initially 

sends data to the controller, the node’s address is registered by the LogData task. The 

task is activated by the ZPS task, which posts messages containing details of the data 

frame. The task is also periodically activated by a software timer and also streams sensor 

data through a serial port to a PC for display and signal processing in the MATLAB user 

interface. 

 

The pseudo-code for this task follows: 

 

if(message from sensor node is collected) 

{ 

 //confirm the received message are from sensor node 

 if(sHSDEndPointEv.eType == ZPS_EVENT_APS_DATA_INDICATION) 

 {  
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  APP_bAppHealthy=  TRUE;  

  SensorData = PDUM_u16APduInstanceReadNBO(hAPduInst);  

  vWuart_RxData(sSensorData.u16ExtAddr); 

  vWuart_RxData(sSensorData.data); 

  PDM_vSaveRecord(&s_sLogPDDesc); 

  PDUM_eAPduFreeAPduInstance(sHSDEndPointEv.uEvent.sApsDataIndEvent.hAPduInst); 

 } 

} 

else 

 { //Continue the  timer for data logging task 

 OS_eContinueSWTimer(APP_tmrLogData, LOG_TIME, NULL); 

  } 

 

As soon as a message arrives in the ZPS data queue, the controller confirms if the 

message originates from the sensor node. If it does, the coordinator passes in the data 

package and decomposes it to extract the sensor data. After the process, the coordinator 

streams the sensor data to the PC serial port. This task also includes a basic check for 

correct application functionality. If the controller does not regularly receive sensor data 

frames, then something must be wrong (assuming active sensors are present). 

APP_bAppHealthy is a flag used in app_start to kick the watchdog so the program can be 

put back on track.  

 

Finally, the coordinator streams the data package, including the package header, MAC 

address, and payload data, to the serial port of a PC. The package pattern detail is 

discussed in the next chapter.  

 

APP_taskTogglePermitJoining 

The APP_taskTogglePermitJoining task is activated by a software timer which begins 

running when the user asks the controller to toggle its Permit-Joining state. Permit-

joining is toggled if a user-defined button is pressed for more than two seconds. The 

button press initiates the software timer. If the button is released before two seconds have 

passed, the main controller task stops the timer before it expires, preventing this task 

from being called. 
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CHAPTER 4:  USER INTERFACES AND DATA LOGGING SYSTEM 

4.1 MATLAB and LabVIEW Interfaces 

Wireless communication (between biomedical sensors and a USB receiver) and serial 

communication (between the receiver unit and MATLAB interface) both utilize a similar frame 

structure, as illustrated in Figure 45. The data frame length is N bytes: the first two bytes are 

headers (0xFF 0xFF) to ensure frame integrity, the next two bytes are assigned to the last two 

bytes of a unique MAC address, and the next N bytes are assigned to sensor payload data. 

 

Serial Communication Data Frame 

                   1 – 2           3-4          N 

Package Header Last 16 bit MAC Address Payload Data 

Figure 45. Data frame structure used for serial communication. 

MATLAB provides a serial port libraries link which tackles serial communication. Many 

configurable properties can be set up for serial reading and writing. Configurable properties are 

shown in Table 5. The flow diagram in Figure 46 illustrates the data package decomposition and 

data display processes. 

Table 5. Properties of the MATLAB serial interface 

� BaudRate    StopBits     

� ByteOrder    DataBits 

� ByteAvailable    ByteOrder 

� FlowControl    RecordName 

� Parity     RecordMode 

� Port     Tag 

� Terminator    DataTerminalReady 

� Timeout    PinStatusFcn 

� OutputBufferSize   …… 
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Figure 46. Data decomposition process inside of the MATLAB script. 

The MATLAB GUI streams in received data from biomedical sensors and stores these data in 

the serial port buffer. If no sensor data are coming from the serial port, the GUI plots a red thick 

line along the x axis with padding zeros. If sensor data are stored in the serial buffer, the GUI 

loops through the stored data to find the header and then decomposes the package to obtain these 

sampled data. In this study, a MAC address filter was used to sort various sensors and plot sensor 

data on the MATLAB figures in the user interface. 

 

MATLAB Code 

MATLAB code runs behind the graphical interface and includes functions that handle trigger 

events such as button clicks and text input. The highest priority event is serial communication 

processing. Once data are received and stored in the buffer, they are extracted into the MATLAB 

workspace to ensure real-time data acquisition. Meanwhile, the data are stored on the PC hard 

drive using a predefined file name. The pseudo-code for serial communication processing 

follows: 

 

Serial Port Initialization; 

Mac1 = textbox1.value; 

……     //Get the entered MAC information for sensor partition 

MacN = textboxN.value; 

While (data received in the buffer) 

{ 
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 Timei = Timei + 1; 

 If (BytesAvailable>= Specified data packages) 

 { 

  Timei = 0; 

  Ti = current real time clock; 

  Empty the buffer; 

} 

 Else 

 { 

  Pause 0.02 second to prevent program freeze; 

  If (timei< Timeout) 

   Continue; 

} 

fori=1:(length(x)/N) 

{ 

 if x((i-1)*N+1) == 255 

       {  

 if x((i-1)*N+2) == 255 

  { 

Extract Mac Address; 

  Extract Sensor Data; 

 } 

       } 

} 

 } 

 

The “specified data package” value is determined by how much delay is tolerable for an interface 

update. As stated, the length of one data package is N bytes long. For example, if the length of 

the frame structure is 24 bytes for each sensor and the specified data package is set to 48, then 

two frames of delay are induced. If the sampling frequency is set to100 Hz, a 20 ms time delay is 

induced. A small number for “specified data package” would trigger the serial communication 

event so quickly that MATLAB would be unable to catch up because it slows down the response 

to other interface functions. Results have shown that a big or small value causes data loss, and 
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experiments have indicated that a four-frame delay works best for this wireless protocol. No data 

loss occurs during wireless transmission with this four-frame delay. 

 

Since multiple sensors transmit data to a receiver simultaneously, the sensors need to be 

separately identified. Therefore, a sensor MAC address was used as a reference for sensor 

partitioning. The pseudo-code for sensor partitioning follows: 

 

for i=1:(length(x)/N)   //N is the length of frame structure 

{ 

if x((i-1)*N+1) == 255 

if x((i-1)*N+2) == 255 

sensor = 0; 

if x((i-1)*N+3) == Mac1_1 && x((i-1)*N+4) == Mac1_2  

sensor = 1;  

end 

if x((i-1)*N+3) == Mac2_1 && x((i-1)*44+4) == Mac2_2 

sensor = 2; 

end 

………. 

if x((i-1)*N+3) == Macn_1 && x((i-1)*N+4) == Macn_2 

sensor = n; 

} 

 

The user enters the MAC address for each sensor in the text box (see Figure 47), and then these 

addresses are used as references to separate the sensors in the manner described above.   
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Figure 47. MATLAB user interface with a MAC address filter. 

 

While plotting data on the screen, the user interface saves these data directly to the hard drive 

with a predefined file name format. The logging system automatically creates a log file every 

hour and writes real-time sensor data into the file every 10 seconds. The log file name format and 

log file format are specified below. 

A sensor is identified 

by the last two bytes 

of its Mac address. 
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Log File Name Format 

MAC 1 …… MAC N Year Month Day Hour 

MAC1: Last 16 bits of the ZigBee device’s 64-bit MAC address for the 1st sensor. …… 

MAC N: Last 16 bits of the ZigBee device’s 64-bit MAC address for the Nth sensor. 

  

The user interface first checks the number of sensors in the network and defines the file name 

according to that number. For example, if a serial port streams in received data from two sensors, 

the file name assigned would be “MAC1_MAC2_Year_Month_Day_Hour,” with MAC1 and 

MAC2 being the last 16 digits of the ZigBee transceivers’ IEEE 64-bit MAC addresses. Then the 

recording time, including year, month, day, and hour, are included. After a file with an 

associated name is created, the user interface begins writing sensor data into the file every 10 

seconds. Data are initially stored in memory before being saved onto the computer hard drive. If 

the logging time is too short, the responses to other events slow down and the user interface 

freezes. A long logging time takes up too much memory space, and data temporarily stored in 

memory are lost if the power shuts down for some reason. A logging time of 10 seconds was 

sufficient for this system.  

 

Figure 48 illustrates a log file obtained through the user interface. With the file name above as an 

example, 18 126 and 228 45 are the last 16 bits of two sensors’ MAC addresses, and the 

recording time is at, e.g., 7:00 a.m. on July 26, 2013. If one of the sensors is powered off or 

placed out of wireless range, the MAC address in the file name is switched to “NaN_NaN,”as 

shown in Figure 48. One log file contains one hour of sensor data. The size of a log file is 

approximately 3 MB. The log file frame structure is given in Figure 49. 
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Figure 48. Log data file storage example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mac addresses 

for two sensors  
Real time:             

Year_Month_Day_Hour 

NaN: Not a number, 

meaning no data were 

received. 
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The sequence number is an iterative 5-digit tag for each sensor. E.g., 11111 represents the first 

sensor and 44444 represents the fourth sensor. Sensor data are followed by the sequence number, 

and the pattern repeats every 10 seconds. Finally, data plotter software designed in MATLAB 

extracts and plots the data stored in the file. The pseudo-code for plotting the log data follows: 

 

FileName =’file_name’; 

fileID = fopen(FileName');  //Open the log file 

C =  fscanf(fileID, '%f'); 

 

fori = 1:length(C) 

if C(i) == 11111 

if period ~=0 

endp(period) = i-1; 

Sequence Number 

System Time 

1st Sensor Data  

………………(10 second sensor data) 

Sequence Number 

2nd Sensor Data 

………………(10 second sensor data) 

Sequence Number 

3rd Sensor Data 

………………(10 second sensor data ) 

 

 

Sequence Number 

nth Sensor Data 

………………(10 second sensor data ) 

        Repeats every 10 second with the same pattern 

 

 

Figure 49. Log file frame structure. 

…
…

. 
…

…
. 
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end 

period = period + 1; 

hour(period) = C(i + 4); 

minute(period) = C(i + 5); // Extract the recording time information 

second(period) = C(i + 6); 

            ADC1_1p(period) = i + 7;       

end 

 

if C(i)== 22222 

        ADC1_2p(period) = i+1; 

end 

 

if C(i)== 33333 

        ADC2_1p(period) = i+1;  // Find start index for data array 

end 

 

if C(i)== 44444 

        ADC2_2p(period) = i+1; 

end 

end 

fori = 1 : (period - 1) 

    ADC1_1  = [ADC1_1 C(ADC1_1p(i):(ADC1_2p(i)-2))'];   

    ADC1_2  = [ADC1_2 C(ADC1_2p(i):(ADC2_1p(i)-2))']; //Extract the data from the data  

    ADC2_1  = [ADC2_1 C(ADC2_1p(i):(ADC2_2p(i)-2))']; //stream 

    ADC2_2  = [ADC2_2 C(ADC2_2p(i):endp(i))']; 

end 

 

Plot(ADC1_1); 

Plot(ADC1_2); //Plot the data  

Plot(ADC2_1);  

Plot(ADC1_2); 
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CHAPTER 5:  APPLICATIONS AND OUTREACH 

The NASA-funded effort has been beneficial to other domains. The resulting technology has 

been utilized for other research while providing educational resources to teachers and students 

interested in science and technology. 

5.1 Two-Channel ECG for a Steer Application 

The two-channel ECG system, designed for human use, was also applied to a preliminary study 

to investigate the effect of food supplements on steer cardiac activity. A system that included a 

two-channel ECG unit, a National Instruments myDAQ unit, and a laptop were set up to measure 

the ECG of a steer, as shown in Figure 50. Four electrodes were utilized, with electrode A on the 

left side of the animal near the bottom of the ribs, electrode B at the apex of the heart, electrode 

C at the base of the heart, and electrode D on the upper back to serve as a reference. Channel 1 

was a differential comparison between the voltages at A and B, where each voltage was 

measured relative to the reference electrode D. Channel 2 was a differential comparison between 

the voltages at C and B, where each voltage was measured relative to the reference electrode D.  

 

Figure 50. Early setup to acquire a steer ECG along with a typical signal pair. 
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This study intended to continuously measure and record the cardiac activity of 30 steers 

before/after food supplements during three-day periods separated by four-day rest intervals. 

Wireless links were preferred because they would (a) eliminate cabling for the transfer of ECG 

data, (b) provided the ability to record data from 30 steers simultaneously, (c) relieve steer 

discomfort so that recorded data could be trusted, and (d) eliminated the on-board data loggers 

otherwise required for permanent data recording. The wireless two-channel ECG designed for 

human use was modified to fit this steer application. The overall gain of each system was 

increased by a factor of ten due to the steers’ thick hides, and the MATLAB-based user interface 

was modified to record real-time ECG data.   

 

These ECG units (see Figure 51) were battery-operated to increase their mobility and decrease 

their susceptibility to electrical interference (no return path to earth ground). ECG electrodes 

attached to the steers were pre-treated with conduction jelly that provided good contact and 

caused minimum irritation to the animals. Finally, a secure harness was used to attach an ECG 

device to each steer for long-term recording.  ECG data sent to a USB receiver connected to a 

computer via a ZigBee wireless link could be stored directly to the hard drive. Meanwhile, real-

time ECG waveforms could be viewed on the computer screen to monitor the health status of 

these steers and check whether lead attachments were still viable (see Figure 52). To view stored 

ECG data and analyze cardiac effects from food supplements, a data plotter script was designed 

for veterinarian use. Representative ECG data are illustrated in Figure 53.  
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Figure 51. Wireless two-channel ECG system including electronic hardware (upper), 

harness (lower left), and monitoring/recording computer (lower right). 
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Figure 52. User interface for the steer ECG recording system. 

 

Figure 53. Representative plot of stored data from the computer hard drive. 
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5.2 E3 Workshop 

This NASA project also offers opportunities for STEM education. Members of this NASA 

project team participated in the “Engineering Education Experience (E3) for Teachers” 

workshop, in which biomedical sensors and real-time sensor waveforms (respiration and ECG) 

developed for this project were demonstrated to approximately 40 high school science teachers. 

The hope is that a new generation of students will be inspired to pursue science, technology, 

engineering, and mathematics in their college educations and future careers. 

 

 

Figure 54. NASA team conducting sessions during the KSU-sponsored "Engineering 

Education Experience (E3) for Teachers" workshop, Summer 2013. 
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CHAPTER 6:  FUTURE WORK 

The following sections discuss future efforts that can follow the work described in this 

thesis. 

6.1 Textile Respiratory Inductive Plethysmography Sensor 

Comfort and signal quality are important for all body-worn sensors [Dong2013]. 

Although inductive plethysmography has existed for many years, the challenge in this 

context is to design a textile belt that can be sewn into a comfortable garment or be 

defined by part of that garment and still provide data fidelity required for accurate 

respiration-rate measurements. The respiration sensor developed for this effort 

demonstrated good accuracy and signal-to-noise ratios, but further work must be done to 

address belt comfort, which raises issues of (a) belt tension versus belt comfort, (b) the 

effect of motion on the respiration signal, and (c) options for sensor placement and 

configuration.  

 

At least three types of interference affect signal quality during respiration monitoring: 

motion artifact, RF interference, and hysteresis of the wearable sensor. Tests must be 

conducted to evaluate respiration signal quality in varied usage environments. These 

respiration sensors have only been tested on a handful of subjects to date, so additional 

experiments must be conducted to assess wearability and reliability. A commercial 

respiration belt should be used for performance comparisons. 

 

Improvements could also be made to the hardware design. As depicted in Figures 18 and 

19, the respiration belt was wrapped snugly around the chest so the sensor unit was in 

contact with a skin/clothing interface while acquiring respiration data. Rigid FR4 PCB 

material held against a wearer’s chest would become uncomfortable over time. In 

addition to integrating an inductive wire into a space suit, the sensing module (Colpitts 

oscillator) and processing module (microprocessor, transmitter, and other peripheral 

circuits) could also be mounted separately in less conspicuous places. Furthermore, 

flexible PCB material may help to reduce the board size, profile, and weight.  



 

 61  

 

6.2 Accelerometer and Gyrometer 

The motion module originally designed for slip and fall detection/prediction included a 

CMA3000 MEMS 3-axis digital accelerometer and a CMR 3000 3-axis digital gyrometer. 

A 3-axis accelerometer was also chosen to be the sensor for activity recognition. The 

accelerometer sensor measures acceleration in three directions: vertical, sagittal, and 

lateral.  

 

As stated in the introduction, accelerometer data may be, in the long term, a sensible 

supplement or alternative to electromyographic data when assessing and predicting 

fatigue, since an accelerometer does not require skin contact. While these data would be 

surrogate data for EMGs that are more closely tied to physiology, accelerometer data 

require a lower sampling rate (e.g., 100 Hz as opposed to 1 kHz for an EMG), making 

these data more appealing for resource-constrained wireless sensor networks.   

 

For fatigue prediction, body orientation or angular velocity information may help 

improve prediction accuracy. This type of information can be acquired from a 3-axis 

gyrometer, which is already bundled with the accelerometer on the prototype sensor 

board. Driver code for the on-board gyrometer would be straightforward to integrate into 

the current firmware design.  

6.3 Integration of a Pulse Oximeter into the Current Wireless 

Network 

The pulse oximeter is an optical, noninvasive medical device that monitors 

cardiopulmonary parameters. The device is typically placed on the fingertip to acquire 

and display heart rate and arterial blood oxygen saturation. A pulse oximeter reports heart 

rate and SpO2 while offering other potential clinical parameters, such as blood pressure 

(systolic BP, diastolic BP, mean BP, SV, and CO), respiratory rate, and metabolic rate. 

All of these clinical parameters are valuable for monitoring astronauts’ state of health 

[Li2012a].  
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An existing pulse oximeter, designed by Kejia Li, should be modified for integration into 

the current sensor network. The design employs a wireless-integrated JN5139 

microprocessor module based on the ZigBee wireless protocol. The JN5139 is an earlier 

version of the JN5148 which is currently marketed by Jennic. The JN5139 includes a 32-

bit RISC processor with a 2.4 GHz IEEE 802.15.4 transceiver, 192 kB of ROM, 96 kB of 

RAM, and a mixture of analog and digital peripherals which are similar to those provided 

by the JN5148 [Jennic2008,Jennic2010a ].  

 

The good news is that the JN5139 and JN5148 share the same pin-out configuration, as 

depicted in Figure 55, with only slight differences in function on some pins. I.e., some 

I/O pins are special-use pins, but those pins were not used in the pulse oximeter design. 

Therefore, the JN5139 can be replaced with the newer JN5148 microprocessor, imposing 

minimal disruption to the data acquisition hardware design. Unfortunately, the JN5148 

that employs a ZigBee Pro wireless protocol is not backward compatible with the JN5139 

ZigBee implementation because they have different SDKs and IDEs. Also, the JN5148 is 

developed under Eclipse, while the JN5139 is supported by CodeBlocks and, of course, 

different SDK libraries and development platforms. The JN5139 is designed on the AT-

Jennic platform, while the JN5148 is designed on a ZigBee Pro template which runs an 

operating system. As a result, solutions must be developed which merge the pulse 

oximeter with the current system [Jennic2008, Jennic2010d, Jennic2013]. 
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Figure 55. Pinout configuration for Jennic microprocessors: JN5148 (left) and 

JN5139(right) [Jennic2008, Jennic2010d]. 

 

Figure 56. JN5139 I/O connections for the pulse oximeter [Li2012a]. 
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One solution is to replace the JN5139 microprocessor with the JN5148, maintain the rest 

of the hardware, and translate the firmware code on the JN5139 to be compatible with the 

JN5148. Because development environments are completely different, and Kejia Li’s 

firmware code for the pulse oximeter must be fully understood in order to re-program it, 

this approach could be time-consuming. The hardware may be arguably easier to modify 

than the software, especially when sensors are developed by other designers. In addition, 

the ZigBee wireless biosensor network serves only as a baseline for the biomedical 

sensor network that should eventually incorporate low-power FPGA transceivers. The 

time and effort to redesign the entire pulse oximeter may not be justifiable. 

 

Another solution would be to add a JN5139 receiver and USB hub to the current USB 

receiver design, as depicted in Figure 57, in which case the receiver would be able to 

receive data from all sensors. Received sensor data would be streamed to downstream 

ports of the USB hub and transferred to the upstream port of the PC to be processed. If 

the serial communication data frame structure is known, data can be plotted on the user 

interface and stored to disk. This data pattern was obtained from Kejia Li’s Master’s 

thesis [Li2012b] and is shown in Figure 58. The data package was 18 bytes long, 

including 8 bytes of a unique 64-bit MAC address of a specific pulse oximeter and 8 

bytes of four channels of signal data: DC value of the red channel, AC value of the red 

channel, DC value of the near-infrared channel, and AC value of near-infrared channel. 

The last two bytes were end-indicators [Li2012a]. The firmware code for the pulse 

oximeter would not need to be modified, but the serial communication data acquisition 

code would need to be changed in MATLAB. 

 

Advantages of an additional hub include the idea that sensors which employ other 

wireless protocols (e.g., Bluetooth, Bluetooth LE, and Wi-Fi) could also be embedded 

into the sensor network and data acquisition system. USB2517-JZX is a USB 2.0 

compatible Hi-Speed USB hub controller that supports seven downstream ports. It would 

be a good fit for this application. 
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Figure 57. Add-ons to the current receiver design. 

 

Figure 58. Serial communication data frame structure for pulse oximeter [Li2012b]. 

Either route can be taken to integrate the pulse oximeter into the current wireless 

biomedical sensor network, and each route has pros and cons. Replacing the JN5139 with 

a JN5148 module and modifying the firmware code could require more time, but it may 

save space on the receiver board and maintain system development consistency. Adapting 

the USB hub decreases development time for the firmware design and potentially 

improves system compatibility with other wireless protocols.  
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CHAPTER 7: CONCLUSION 

 

Networks of low-power, in-suit, wired and wireless health sensors offer the potential to 

track and predict the health of astronauts engaged in extra-vehicular and in-station 

activities in zero- or reduced-gravity environments. The effort addressed in this report 

includes the design of compact, low-power biomedical sensors and the creation of a 

ZigBee Pro wireless network that can be used to test new sensor prototypes and serve as a 

comparison baseline for low-power custom networks that will be built into spacesuits.  

 

The six-axis accelerometer/gyrometer can assess acceleration, tilt angle, or angular 

velocity at various body locations/joints, and the accelerometer/gyrometer can be placed 

in meaningful spots, such as the chest, leg, or wrist, as an alternative means to potentially 

track or predict fatigue. The respiration inductance plethysmograph uses a belt to obtain 

respiration rate, where the belt (typically worn around the chest) may be sewn into the 

upper portion of the cooling garment worn under the spacesuit. The two-channel ECG 

was used to monitor cardiac activity. Finally, a previously designed reflectance pulse 

oximeter design could be integrated into this system and perhaps customized to function 

effectively in a helmet (e.g., for forehead measurements) or a glove (e.g., for wrist and 

finger measurements). All of these sensors are useful for monitoring an astronaut’s state 

of health during EVA missions.  

 

Sensor prototypes and the ZigBee wireless sensor network discussed in this report were 

developed and tested. MATLAB and LabVIEW GUIs were developed for real-time 

signal monitoring and recording. Data were saved on the hard drive while displaying the 

signal waveform for signal interpretation and processing. Sensor measurements need to 

be conducted on additional subjects to validate these sensors’ usability, durability, and 

capability. Future work should be considered for hardware improvement, signal 

interpretation, and processing, as detailed in Chapter 6.  
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APPENDIX A: INDUCTIVE PLETHYSMOGRAPH CIRCUIT 

SCHEMATICS AND PCB LAYOUT 
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Figure 59. Respiration belt circuit schematics. 
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Figure 60. Respiration sensor PCB top layer. 

 

 

Figure 61. Respiration sensor PCB bottom layer 
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Figure 62. Respiration sensor Inner1 solid GND plane. 

 

 

Figure 63. Respiration sensor Inner2 power plane. 
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APPENDIX B: TWO-CHANNEL ELECTROCARDIOGRAPH 

SCHEMATICS AND PCB LAYOUT 

 

 

 

Figure 64. Two-channel ECG : microprocessor and USB bridge.
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Figure 65. Two-channel ECG: flash and SD card memory storage. 
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Figure 66. Two-channel ECG : sensing circuit. 

 

 

Figure 67. Two-channel ECG : main power and decoupling network. 
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Figure 68. Two-channel ECG: PCB top layer. 

 

 

 

Figure 69. Two-channel ECG: PCB bottom layer. 
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Figure 70. Two-channel ECG : PCB Inner1 solid ground plane. 

 

 

 

Figure 71. Two-channel ECG : PCB Inner2 split power plane. 
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APPENDIX C:  ACCELEROMETER/GYROMETER SCHEMATICS AND 

PCB LAYOUT 

Figure 72. Accelerometer/gyrometer circuit schematics 
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Figure 73. Accelerometer/gyrometer: PCB top layer. 

 

 

 

Figure 74. Accelerometer/gyrometer: PCB bottom layer. 
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Figure 75. Accelerometer/gyrometer: Inner1 solid ground layer. 

 

 

 

Figure 76. Accelerometer/gyrometer: Inner2 split power layer. 
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APPENDIX D:  COORDINATOR/RECEIVER SCHEMATICS AND PCB 

LAYOUT 

Figure 77. Coordinator/receiver circuit schematics. 
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Figure 78. Coordinator/receiver: PCB top layer. 

 

 

Figure 79. Coordinator/receiver: PCB bottom layer. 

 

 



 

 86  

 

Figure 80. Coordinator/receiver: Inner1 solid power plane. 

 

 

Figure 81. Coordinator/receiver: Inner2 solid power plane. 
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APPENDIX E:  SENSOR NODE REAL-TIME SYSTEM 

CONFIGURATION 

 

 

 

Figure 82. Sensor node real-time system configuration. 
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Figure 83. Coordinator real-time system configuration. 

 

 


