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Statistical modelling of clickstream behaviour to inform real-time advertising
decisions

by Ryan JESSOP

Online user browsing generates vast quantities of typically unexploited data. In-
vestigating this data and uncovering the valuable information it contains can be of
substantial value to online businesses, and statistics plays a key role in this process.

The data takes the form of an anonymous digital footprint associated with each
unique visitor, resulting in 10° unique profiles across 107 individual page visits on a
daily basis. Exploring, cleaning and transforming data of this scale and high dimen-
sionality (2TB+ of memory) is particularly challenging, and requires cluster comput-
ing.

We outline a variable selection method to summarise clickstream behaviour with
a single value, and make comparisons to other dimension reduction techniques. We
illustrate how to apply generalised linear models and zero-inflated models to predict
sponsored search advert clicks based on keywords.

We consider the problem of predicting customer purchases (known as conver-
sions), from the customer’s journey or clickstream, which is the sequence of pages
seen during a single visit to a website. We consider each page as a discrete state
with probabilities of transitions between the pages, providing the basis for a simple
Markov model.

Further, Hidden Markov models (HMMs) are applied to relate the observed
clickstream to a sequence of hidden states, uncovering meta-states of user activity.
We can also apply conventional logistic regression to model conversions in terms
of summaries of the profile’s browsing behaviour and incorporate both into a set of
tools to solve a wide range of conversion types where we can directly compare the
predictive capability of each model.

In real-time, predicting profiles that are likely to follow similar behaviour pat-
terns to known conversions, will have a critical impact on targeted advertising. We
illustrate these analyses with results from real data collected by an Audience Man-
agement Platform (AMP) - Carbon.
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Chapter 1

Introduction

1.1 Sponsored keyword search

The majority of readers will have used a search engine, such as Google, when brows-
ing for a product, brand or company online. When you enter a search term, you
will generate a search engine results page (SERP) based on the word or phrase you
queried. A search engine will serve an advertisement in response to a search term on
the SERP, to promote relevant websites. An illustration of a SERP is provided in Fig-
ure 1.1, where the top of the page contains the search term the user entered, and the
highlighted area represents where the advertisements are placed. This content is also
known as a sponsored listing to differentiate it from the organic, or non-sponsored,
listings on the SERP. An advert will typically contain a set of advertiser hyperlinks
annotated with tags, titles, and a description.

A

G()Oglc AdWords

FIGURE 1.1: An illustration of a search engine results page (SERP).

Typically, the search terms are linked to keywords that provide an indication as
to what the user wants from their browsing session. Then a pre-determined advert,
from a specified advertising campaign, is displayed based on the search terms. Dig-
ital marketing specialists are involved in designing and building the advert content
and the wider advertising campaign structure. For example, “best running shoes” is
a search term that a user may enter into a search engine such as Google. Advertisers
then will have a set of predefined keywords that wish to bid for to display an advert
for their product. In this scenario, an advertiser such as Nike, may wish to pay a
high price to display an advert on the keyword ‘running shoes’, and direct the user
to their website.

To create a sponsored search advertising campaign a team of specialist content
providers select terms and search phrases (i.e. keywords) that they believe are likely
to be submitted by searchers. These keywords will be applicable to their web con-
tent, and will be related to the underlying intent of the searcher [1]. An advertising
campaign will have a pre-arranged budget and could run over several weeks. A
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campaign will have a collection of keywords, where a keyword can consist of multi-
ple words to make a phrase. These content providers can also tailor the presentation
of the search results to target specific search terms, by presenting several variations
linked to particular sets of queries within a campaign. Sponsored search can be
used by any person or organisation interested in generating user traffic to a particu-
lar website for some specific purpose. We could view sponsored search as a version
of providing relevant content to a searcher, and not solely as an advertising medium
[2].

Displaying an advert to a user is called an impression. If the advert appeals to
the user, then the advertiser hopes the user will click on the advert. In some cases,
there is an extra goal added after the user has clicked on the advert, which is named
a conversion. An example could be to complete a subscription form for a magazine.
In sponsored search advertising, the campaign will specify the price the advertiser
is willing to pay to show an impression on the SERP for all specified keywords.

The data in Section 2.2 that we will study is provided by Google Ads (formerly
known as Google Adwords), on a number of advertising campaigns that are cur-
rently operated by Clicksco. Clicksco is a marketing technology company that uses
sponsored search advertising to display adverts for a range of price comparison sites
that they own. The search engine will distribute the bidding on keywords over the
period of the campaign, and based on the bids will rank the adverts in order on
each SERP in real-time. There is a search engine review process to ensure that the
provider’s content is relevant to the targeted keyword and corresponding contex-
tual description, providing a set of quality metrics for the advert. It is important
to note that in sponsored search, advertisers only pay for a click rather than for an
impression.

1.2 Targeted intent advertising

When you search online, using a search engine such as Google, you have intent,
i.e. you have an intention of finding something. On social media websites, such
as Facebook, users provide their interests through interactions with other users, as
opposed to direct search intent. Advertising and marketing teams target groups
of individuals, called audiences, based on their interests and habits, what they’re
actively researching or how they have interacted with a product or brand [3].

One major difference in the industry is the assessment of online user interests
and user intent. Interest-based targeting is generally used for audiences where the
advertiser wants to introduce a product to people who haven’t heard of them be-
fore [4]. A user’s intent with respect to a particular category may be updated over
time, and is directly related to making a purchase of a product. As such, based on
subsequent user behaviour, a new intent-strength score may be assigned to the user.
This value can be used to rank and segment audiences based on the user’s classified
intent. One example could be that a user’s intent-strength score changes according
to a function. This function may vary according to one or more variables, includ-
ing time, product characteristics, user characteristics, and other variables affecting a
user’s intent with respect to a particular product or category [5]. This score exhibits
more than whether or not a user is in-market to make a purchase; it assesses where
on that journey the user currently is.

In this thesis, we will use data that is provided by Carbon, a cloud-based Au-
dience Management Platform (AMP). Carbon is a product for companies that own
web sites, and want to learn about the intent and interests of users on their sites.
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Carbon collects online click data on the partner sites, and we first explore this data
in Section 2.3. As a statistician at Carbon, our research aims to develop solutions
for online browsing data that can be incorporated into its toolset [6]. One solution
that Carbon offers is to build an audience of profiles that an advertising company
can decide to target with an advertising campaign. For example, a sports brand may
wish to advertise to an audience that are interested in sportswear: Carbon offers a
solution that ranks the profiles” intent-based on historical browsing behaviour.

Online behaviour is collected using third-party cookies. A third-party cookie is
placed on a user’s hard disk by a website from a domain other than the one a user is
visiting [7]. Third-party cookies are used to remember something about the user at a
later time, i.e. personalised preferences. Advertising companies, such as Carbon, use
the cookie to identify a user in targeted advertising. The data is fully anonymised
adhering to GDPR regulations; namely the data is unidentifiable and the process is
irreversible [8].

1.3 Technologies beyond R

When scoping the research project area, we swiftly became aware that the size of the
data would make accessing the problem challenging. To build successful applied
statistical models, we would need to expand our knowledge and expertise into new
technologies. As a data scientist working at Carbon, collaborating with developers
and utilising a range of the cutting-edge technologies for Big Data processing and
analysis is essential to finding and creating solutions.

When data is available to store on a hard drive, we can use R to analyse (<1GB).
When the data is terabytes we must use Spark for query and analysis work [9]. The
majority of the code used in the thesis is written in R, for data exploration, visual-
isation and building statistical models. To build the data sets for analysis in R, we
transform and sample data exploiting cluster-computing using Apache Spark. All
code relating to this thesis can be found on GitHub [10].

Apache Spark is a popular open source framework that ensures data processing
with lightning speed and supports various languages like Scala, Python, Java, and
R. Spark is capable of handling several petabytes of data at a time, distributed across
a cluster of possibly thousands of cooperating physical or virtual servers. It exhibits
very high performance but from the end user’s perspective, appears like working on
a standalone system. Resilient Distributed Datasets (RDDs) are the building blocks
of any Spark application, meaning they are fault tolerant and partitioned [11]. The
data can be stored in a format called Apache Parquet, which is efficient as well as
performant flat columnar storage compared to row based formats, e.g. CSV [12].

1.4 Other research on clickstream data

A clickstream (or click path) is an ordered sequence of page visits (hyperlinks) that
a visitor follows on a website - a browsing journey. Clickstream data records the
activity on the Internet, on every web page within a web site that is visited, the
length of each page visit and the order the pages were visited. Statistical analysis
of clickstream data is a good example of data science, which is particularly useful
for web activity analytics, advertising and marketing, and improving profit of e-
commerce sites. The relationship between the frequency of visits to a web site and
purchasing intent in e-commerce online browsing has been well examined [13].
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Applying Markov chain type models to clickstream data is well researched in
the literature, where clickstreams can be viewed as browsing page type transitions
[14]. Many visualisation tools have been created to display fitted Markov chains
graphically for users to interact with and understand [15], [16].

Further, the clickstream journeys may be categorised and modelled using a dy-
namic multinomial probit model of web browsing [17]. A type II tobit model has
been fitted to clickstream data to attempt to model the probability of continuing the
journey on the site and length of time of viewing each page [18].

More complex statistical modelling has been applied to clickstream data, specifi-
cally hidden Markov models (HMMs) [19]. Nested HMMs are used to model the be-
haviour of returning users within session behaviour and between session behaviour
separately [20]. Bayesian HMMs have also been investigated to predict the proba-
bility that a browsing session contains an online purchase [21].

1.5 Outline of thesis

In Chapter 1 we introduce the underlying concepts of online advertising and the
main types of data that we will be exploring in subsequent chapters.

Chapter 2 discusses the data sets in detail, assessing distributions, associations
and how we create the key covariates for modelling. Exploring, cleaning and trans-
forming data of the scale of 107 observations on a daily basis and high dimensional-
ity (2TB+ of memory) is particularly challenging. We study real data collected by an
Audience Management Platform (AMP) - Carbon.

Chapter 3 aims to solve a problem for intent-based targeted advertising, using
a variable selection method. We outline a variable selection method to summarise
clickstream behaviour with a single value, and make comparisons to other dimen-
sion reduction techniques.

Chapter 4 outlines GLM theory and applies both logistic and Poisson regression
to a data set relating to sponsored search from online search terms. This extends
to zero inflated models that may provide more accurate modelling of our data set,
where our data exhibits an excess number of zeros.

Chapter 5 describes a user’s journey or clickstream, as a discrete state with prob-
abilities of transitions between the page visits, providing the basis for a simple
Markov model. Further, Hidden Markov models (HMMSs) are applied to relate the
observed clickstream to a sequence of hidden states, uncovering meta-states of user
activity.

Chapter 6 considers the problem of predicting customer purchases (known also
as conversions). We discuss the robustness and sensitivity of training HMMs. We ap-
ply conventional logistic regression to model conversions in terms of summaries of
the profile’s browsing behaviour. We combine the modelling approaches of GLMs,
Markov chains and HMMs into a set of tools to solve a wide range of conversion
types and produce an informative plot to compare and evaluate the predictive ca-
pability of each model type. In real-time, predicting profiles that are likely to follow
similar behavioural patterns to known conversions, will have a critical impact on
targeted advertising. Chapter 7 summarises the findings of this thesis and critically
evaluates the real-time prediction models that inform advertising decisions.



Chapter 2

Introduction to Adwords and
Clickstream data

2.1 Chapter overview

In this chapter, we will introduce the two data sets that will form the application as-
pect of this thesis. The first section will analyse a data set relating to the performance
of an online advertising campaign. This is a static keyword performance report over
a period of time and consists of numerical and categorical variables. We will provide
results from the exploratory data analysis, cleaning and preprocessing steps that we
will use to prepare the data for modelling. We will look at some association tests
and correlation plots to help guide us in later chapters.

The second section discusses a data set relating to online browsing behaviour,
which in its original form is big data with many complex data types. Here, we
dive into a sample of the data at a specific point in time, which helps to provide
a representative overview. We display basic plots of the key variables, and further
assessments of any associations between them. We will create and explore addi-
tional numerical variables created through aggregations of the data. Further statisti-
cal modelling of these variables, after cleaning, enhances our knowledge of the data
set.

2.2 Adwords report

2.2.1 The data

The Adwords Report dataset is a daily keyword report, provided by Google Ads (for-
merly known as Google Adwords), on a number of advertising campaigns that are
currently operated by Clicksco. A keyword search advertising campaign will have
a pre-arranged budget and will run over a number of weeks; there will be market-
ing and data specialists involved in designing and building the campaign structure
and content. A campaign will have a collection of keywords and a pre-determined
advert to display following searches for those keywords. Each row in the data set
relates to a unique keyword and the performance of that keyword over a specified
hour, including the number of clicks the advert receives - the dependent variable.
A keyword can consist of multiple words to make a phrase. The content of the ad-
vertisements are provided by a company, who provide financial advice on pensions,
hence the campaign uses financial keywords. We would like to model the number
of clicks for a keyword, as a function of the key variables that we can influence. The
model we will develop will aim to influence the bidding mechanism to purchase the
opportunity to display an advert on a given keyword.
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The data set provided for analysis has 40 variables and approximately 1.8 million
rows, including some variables that are redundant which we remove immediately.
The input covariates are parameters to the bidding algorithm which affect how the
bidding process operates. The output variables provide the key performance indica-
tors for the keyword over the specified hour and cumulatively throughout the day.
Further, the quality score variables are provided by Google, which may be relevant
to learning about the keyword’s performance. We see a visual representation of the
main variable groups in Figure 2.1.

KeywordID
Time
Identifiers/Bidding parameters KeywordMatchType
MaxCpc
Dependent Quality |\scores Key features

Impressions KeywordQuality Cost
Outputs Clicks CreativeQuality AveragePosition
Conversions FirstPageCpc

FIGURE 2.1: Separation of the key variables based on their defini-
tions.

There are up to three identifier variables: KeywordID, Time and CampaignID. The
Time (t) provides the timestamp for the hour when the keyword was active. We
will concentrate this section on a single advertising CampaignID, such that each row
only requires the KeywordID (k) and t to determine a unique row. An example of
a bidding parameter covariate is KeywordMatchType. A broad match means a bid
will be placed for the keyword if a subset of the words in the keyword phrase are
matched in the user’s search term. An exact match keyword has to match all of the
words in the the search term precisely for a bid to be placed.

For the dependent variable group, we are provided with a set of numerical vari-
ables which are the performance metrics of the keyword over the specified hour
(indicated by the term Delta). An impression is a term that refers to the point in
which an advert is viewed once by a user, or displayed once on a web page. A
click is defined as a single click on an impression. A conversion is when a user has
clicked on the advert, and continues to complete a further goal, e.g. fill in contact
form, the sale of a product or subscription; in this instance a form is required to be
filled in on the website. We expect these variables to be positive integers and are the
underlying dependent variables. We will use notation to refer to the key variable’s
impressions, clicks and conversions as Xy, yx and zy; respectively. We can derive
the cumulative versions of each dependent variable by summing the values for the
current day, up to the current hour. For example, the number of cumulative impres-
sions for a keyword at time ¢ is th':l X;. The cumulative variables are then reset to
zero at midnight.

There are a range of other variables provided by Google’s internal algorithms,
the quality score variables, which aim to provide a deeper insight into both the per-
formance of the keyword and advert. CreativeQuality is a heuristic score of the sim-
ilarity between the advert text (the ‘creative’) and landing web page. A high score
for CreativeQuality indicates the advert content and the webpage are well matched.
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Variable name Type Definition Notation
AveragePosition Numerical | The average position of the ad in the previous | p

hour
Clicks Numerical | The daily cumulative number of clicks Y Yk
ClicksDelta Numerical | The number of clicks in the previous hour Ykt
Conversions Numerical | The daily cumulative number of conversions Y zk
ConversionsDelta Numerical | The number of conversions in the previous | zy
hour
Cost Numerical | The daily cumulative cost of all ad clicks from
the keyword
CreativeQuality Categorical | A score for the similarity between the advert
content and landing web page
FirstPageCpc Numerical | An estimate for the cost to win a bid for the ad
to be displayed on the first Google search page
Impressions Numerical | The daily cumulative count of the number of | Yi_; xy;
ads displayed
ImpressionsDelta Numerical | The count of the number of ads displayed in the | x;
previous hour
KeywordID Integer A unique identifier for the keyword search | k
term
KeywordMatchType | Categorical | The keyword search match type - Exact or
Broad (Non-exact)
KeywordQuality Categorical | A score for the similarity between the keyword
and landing web page
MaxCpc Numerical | The maximum cost per click we are willing to
pay to bid to win the ad impression
Time Timestamp | The end of the hour relating to the performance | ¢
measures for the previous hour

TABLE 2.1: A selection of variables and definitions from Adwords Re-
port.

The KeywordQuality is the assigned similarity score between the keyword and the
landing page. Similarly, a high score for KeywordQuality indicates the advert content
and keyword are well-suited.

An example of a key feature of the bidding process is the position ranking on
the search engine results page (SERP). A numerical variable AveragePosition (p) cal-
culates the average position of the advert for any impressions in the previous hour.
Predicted and actual costs for the ad clicks are also provided by Google in the key-
word reports. An estimate provides the cost if an advert was clicked on the first page
of search results - FirstPageCpc. The Cost of any clicks are provided - note that here
costs are only incurred if there is a click on the advert.

The variables we can control from a bidding perspective are the collection of
keywords and the variable MaxCpc. This is the maximum cost per click for the key-
word that we are willing to pay. The value for the MaxCpc for which the keyword is
deemed low volume and mature is 2.22, which accounts for around 80% of the orig-
inal rows in the data set. Further investigation showed that these keywords have
zero or very few impressions and almost zero clicks. The value of 2.22 is arbitrary
and prevents the keyword from costing money on redundant keywords, as the value
is too small to win in the auction. However, 10% of the keywords have their value
of MaxCpc boosted for approximately 10 days to see if their performance improves.
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Due to the low activity, we will remove the instances of these inactive keywords and
concentrate the analysis on active keywords.

We did not use all the variables in the original Adwords Report data set, as we
found it important to concentrate on the initial set of well defined variables in Table
2.1. The choice of variables to focus on was further driven by expert knowledge
of potentially effective predictors in modelling clicks [22],[23]. Even so, there are
some variables out of our control, for example, Google can update the quality scores
at any time. There are basic definitions that Google provide, such as a zero score
for KeywordQuality means a score is unassigned, so by removing these observations
we create a more reliable model using active keywords. A not applicable ('NA")
score for CreativeQuality translates that Google is yet to assign a score to the keyword
and advert text as it is new or is not recently active. For example, there could be a
keyword with no impressions and still a quality score if Google has provided an
assessment, and a keyword with impressions but no score if Google has deemed
there is not enough data available to make a judgement. Hence, this makes them
unreliable for use in modelling and the missing ('NA") scores exist in approximately
60% of rows in the original data set. This blog post sets the context and consequences
of a good Adwords quality score [24].

There are six campaigns within this dataset, hence we chose a single campaign
(using the CampaignID identifier) and randomly sampled 100, 000 observations (the
total size of the campaign was approximately 250, 000), where the variables contain
no missing entries. This allowed us to have a large representative sample for statis-
tical tests and plots.

2.2.2 Exploratory data analysis

The data sample is concentrated to two weeks in August 2017, where the date range
of the campaign can be seen in Figure 2.2a, which is a histogram of keyword frequen-
cies over time. The distribution is not uniform across the campaign, highlighting a
common problem that we must experiment with high volumes of active keywords
and then refine as we learn more about their performance. A variable we can control
in the bidding process is the binary variable KeywordMatchType, which can either be
exact or broad. We have almost a 50/50 split between the two types (see Figure 2.2b).
We can use this variable as a simple categorical predictor in the model. The symme-
try here is by design as all keywords are used for both exact and broad match types.
Figure 2.2c shows the distribution of impressions with a logarithmic y-axis scale.
We see a rapid decay shape, with a high volume of zeros and long tail to the right,
further highlighted in Table 2.2 with the maximum value of 626 for ImpressionsDelta.
These high values are concerning, as the potential incurred cost due to clicks would
be significant.

Next we discuss the key variables of clicks and conversions (yx; and z), noting
the high number of zeros in Figures 2.2d and 2.2e and Table 2.2. A "real’ or ‘genuine’
zero is generated if x;; > 0, hence we obtain a count distribution for y and z, where
the values could be zero. Whereas a 'structural” zero is generated when x;; = 0,
hence yx, zir = 0; as it is impossible to see clicks or conversions when there are zero
impressions. We plot only the individual distributions containing the "real” zeros.
The distribution does have a tail to the right, however the tail is less dramatic when
compared to the impressions distribution in Figure 2.2c. From Figure 2.2e and Table
2.2, we see that maxzy; = 2, and approximately only 1% of keywords with at least
one impression actually realised a conversion, which is a common problem in online
advertising. The average position variable, p, ranges continuously from1 < p <7,
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Variable Min LOQ Median uQ Max
Time 2017-08-16 | 2017-08-18 | 2017-08-20 | 2017-08-26 | 2017-10-01
HourOfDay 0 6 12 18 23
ImpressionsDelta 0 0 0 0 626
ClicksDelta 0 0 0 0 16
ConversionsDelta 0 0 0 0 2
AveragePosition 1.0 2.0 2.6 3.6 7.0
MaxCpc 0 0 1 1 13

TABLE 2.2: A table to display numerical summaries of the key vari-
ables in the Adwords Report data set.

where again we only include keywords that generated at least one impression in Fig-
ure 2.2f. A low value (1 < p < 2) relates to the advert shown at the top of the SERP,
whereas a high value (6 < p < 7) means the advert is displayed lower down the
SERP. We may wish to discretize this variable to the top and bottom of the SERP, as
that is where search adverts are placed. We can see from the numerical representa-
tion of the distribution in Table 2.2 that the majority of observations lie where p < 3.
We can see the distribution in Figure 2.2f which shows peaks surrounding integers,
as a result of computing an average from low or single impressions from keywords.
We expect this p to highly correlate with costs and yy, i.e. a "higher’, more visible
position on the SERP incurs a higher cost along with more visibility. Hence, we must
be aware of this when using it as a predictor for clicks.

The histograms in Figures 2.2g and 2.2h display the distribution of the variables
CreativeQuality and KeywordQuality. Both categorical variables contain a high pro-
portion of missing values, which have been removed for the plots. The distribution
is close to uniform across the creative quality variable, whereas the keyword qual-
ity scores have high proportions of low scores, with very few keywords obtaining
the highest scores possible. Figure 2.2i shows a logarithmic scale distribution of the
variable MaxCpc, where the majority of the observations lie at the highest cost.

2.2.3 Relationships between variables

It is crucial to understand which variables may impact on the key dependent vari-
ables of impressions and clicks, hence we will use them to identify patterns and
variable relationships. Continuing with the same sample data as in the previous
section, the plots in Figure 2.3 demonstrate that there is potentially a weak linear
relationship evident, with a high density of observations close to the origin, and a
positive correlation as the number of impressions increase. We know that a suc-
cessful keyword will achieve a high click-through-rate (CTR = Z—Z), as Xy increases
there are more opportunities the keyword has to achieve a higher value of y;;. To
further inspect this relationship, we use other explanatory variables to identify if
there are other interactions with KeywordMatchType, CreativeQuality, AveragePosition
and HourOfDay in Figure 2.3

Figure 2.3a displays the two options for the keyword match type binary variable:
broad or exact. From this we learn that the majority of high volume clicks are key-
words with a broad match type. We know that 4% of broad match observations have
at least one impression and 6% of exact matches have at least one impression. How-
ever, the broad match observations make up 81% of the total impressions shown.
The broad match type keywords have a higher number of impressions due to a
higher chance of matching the search term broadly rather than exactly. We see a
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FIGURE 2.2: Graphical displays of key variable distributions in the
Adwords Report data set.
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large separation in behaviour in this scatter plot, note that broad match type key-
words require a large number of impressions for a small increase in clicks. This is
because the viewer may be shown an advert that has no link to their intended search
and is ineffective in gaining their attention.

Figure 2.3b, coloured by the categorical creative quality variable, shows a sepa-
ration of the Above average score from the dense region of observations close to the
origin. This indicates a higher number of clicks and impressions are associated with
a higher score for the advert text. The quality score is the output of a proprietary
algorithm used by Google, and so its precise definition is unknown. However, it
would be sensible to assume that the number of clicks is taken into account for the
score. Keywords with a Not applicable or Below average score have a lower number of
impressions and clicks, i.e. the advert matches the search term poorly, leading to a
negative reaction towards the advert by the viewer.

Figure 2.3c overlays the average position variable using a continuous sliding
colour scale, separating high and low positions. As the number of impressions in-
crease, we can see that the observations have a higher average position on the SERP.
Low positions will have much less visibility, hence a lower chance to receive a click,
as the viewer must scroll past multiple options that have a higher position on the
SERP.

By splitting the observations based on the hour the data was collected, we ob-
tain another variable which we should explore as this can greatly affect where the
user is viewing the advert (i.e. at work or home) and the device type. We have dis-
cretized t into four intervals, each 6 hours in length, to look for any patterns with
this new variable. The first thing to note in Figure 2.3d is the lack of observations
from 12am — 6am, making up only 4% of the total impression count. As this is a UK
based advertising campaign, there are very few impressions for keywords through
the night. Keywords active between 6am — 6pm make up 80% of the total impres-
sion count, whilst observations from 6pm — 12am, tend to have fewer impressions
and are clustered with low volumes of clicks. The morning and afternoon intervals
make up 43% and 37% of the total impression count respectively. This makes for a
well balanced choice for the time intervals. Also, ¢ is split into equal intervals for
simplicity, however alternative discretisations could be explored such as morning,
working hours, evening and night.

After viewing the relationships between impressions, clicks, and other categor-
ical and numerical variables, we look for correlations and associations which will
inform us when deciding on potentially informative covariates for our model, while
avoiding multicollinearity. First, we look for associations and correlations between
numerical variables, a combination of positive integers and continuous values.

The pairs plot in Figure 2.4a, shows scatter plots of each combination of numer-
ical variables. The associated plot Figure 2.4b summarises the relationship with the
correlation coefficient for each scatter plot in Figure 2.4a. Clearly, the strongest pos-
itive correlation is between x; and yy;, denoted by the largest positive value in the
correlation plot. The average ad position is not strongly correlated with any numer-
ical variable, which seems to contradict our expectation. Note that these values are
looking for linearity, whereas there could be non-linear relationships apparent.

On the other hand, in Figure 2.4a we display the scatter plots of xy;, yx vs Max-
Cpc, both showing a weak negative correlation. An intriguing relationship is dis-
played here, with high values for impression and clicks corresponding to low values
for MaxCpc. This suggests that the lowest MaxCpc bid values may occur in unpopu-
lar keyword auctions. The scatter plot of p vs MaxCpc appears noisy with no imme-
diate structure, but this relationship has a weak negative correlation of —0.41. This



12 Chapter 2. Introduction to Adwords and Clickstream data

o Broad Above average
* Exact Average
15 15 Below average
Not applicable
© ° ©
E= E]
(] @ ()
A 10 ° o QA 10
)] @ ® w0
2 ° 4
= e : O
O 5 o® owm o oo O 5
prmee @
0 0 ——
0 100 200 300 400 500 600 0 200 400 600
ImpressionsDelta ImpressionsDelta
(a) KeywordMatchType (b) CreativeQuality
7 12am-6am
12pm-6pm
15 6 15 6am-12pm
6pm-12am
© 5 ©
E= =
A 10 A 1o
) - 4 )
Y2 4
o .- o
O Bl 3 05
.o - N 2
|
0— —
1 \
200 300 400 500 600 0 200 400 600
ImpressionsDelta ImpressionsDelta
(c) AveragePosition, p (d) Hour of day

FIGURE 2.3: Four scatter plots to explore Clicks and Impressions
against other key variables.

indicates that a high price for MaxCpc is associated with a low value for p, which is
expected by definition as you pay more for a better ad position.

Next we investigate the keyword quality variable, in particular the relationship
with other categorical variables. We build a heat map to represent the count dis-
tribution of categorical combinations, only providing information regarding values
that have an interpretation, which are displayed in Figure 2.5. If we assume that a
good keyword will be associated with the advert content and the landing page af-
ter a click, then we would expect a high score for keyword quality to correspond
to a high score for creative quality. The darker areas in Figure 2.5a represent a high
frequency of observations with the combination indicated in the plot. Overall, our
assumption remains true as Below average scores correspond to scores of 3 or less; but
a large number of observations have an Above average score and a score of 3, which is
contradictory, hence we should be cautious when using quality scores as covariates
in a model. Keyword quality has a high number of scores of 3, emphasised in Figure
2.5b, where both broad and exact match types display high volumes for a score of 3.
The exact match type has a wider range of values for keyword quality, compared to
broad match type.
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2.2.4 Discussion

Through exploration of the Adwords Report data set we have discovered a range of
different types of covariates and explored the performance indicators for keyword
bidding advertising. From this analysis, we concentrate on the key dependent vari-
ables of clicks and conversions, and model these through a combination of inde-
pendent variables to describe the advert content, keyword and other factors such as
time or position of the advert. We will refer to the variable distributions and numer-
ical summaries throughout other chapters to help determine how we wish to use
the predictors in a model. The match type of the keyword clearly has a significant
impact on the behaviour of the bidding system, with broad keyword matches pro-
viding a higher number of impressions than exact. Whereas, the categorical quality
measures may appear unreliable as there are many missing observations.

We have removed many observations due to expert knowledge in identifying
mature keywords that are redundant and inactive. We understand that impressions
have a crucial impact on clicks, highlighted by a strong positive correlation. How-
ever, the unbalanced numbers of observations with and without impressions could
give rise bias later when modelling. The impact of relatively few clicks in the sample
will lead us to negotiate the modelling process carefully. In recent blog posts, we see
click-through-rates in online advertising data are typically low, hence we will need a
model that can handle a low number of positive labels and a range of variable types
[25], [26].

2.3 Clickstream data

2.3.1 The data

A clickstream (or click path) is an ordered sequence of page visits (hyperlinks) that
a visitor follows on a website - a browsing journey. Clickstream data records the
activity on the Internet, on every web page within a web site that is visited, the
length of each page visit and the order the pages were visited. Figure 2.6 describes
an example of a clickstream. After a web browser has been chosen, the user faces
a choice - to directly visit a web site or use a search engine. This may depend on
whether the user has previously visited the web site, and hence they know the web
address; or are searching for a range of options, and we call this the Referrer. Internet
browsing begins when the user enters the website, an event known as the “click-on’.
Browsing will create a sequence of events corresponding to a path through the web
site, where the journey concludes with a “click-off” event when the user leaves the
web site. We will use clickstream data in Markov chain and hidden Markov models
in Chapter 5.

Page visit data consists of identifiers, timestamps and web page metadata. Figure
2.7 displays a collection of page visits that belong to the same continuous browsing
journey, which we will call the browsing session. Multiple browsing sessions are
collected over time to create a profile. The main variable types at a profile level are
identifiers, device information and behaviour labels.

The Clickstream data set takes the form of an anonymous digital footprint (a pro-
tile) associated with each unique visitor to any of the web pages within the Carbon
network. The anonymous page visit data is collected only from sites within the Car-
bon network, and when a profile visits one of these sites a browser cookie is sent
from a website and stored on the profile’s device by the web browser while the user
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FIGURE 2.6: A diagram to display an example of a clickstream brows-
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FIGURE 2.7: A diagram to show the distinction between profile, ses-
sion and page visit (i, j, k) level data.

is browsing. The browser cookie is then used to identify the profile for personalised
advertising.

The data set provided comprises 59 variables for each of 107 individual page
visits associated with 10° unique profiles on a daily basis. Given the scale of this
problem, the process of collecting, storing and managing this data is a non-trivial
process. Table 2.3 provides the page visit level features, while Table 2.4 displays the
variables at the profile level.

For profiles and sessions (notated by i and j respectively), as represented in Fig-
ure 2.7, we use unique identifiers to determine which sessions belong to a profile,
and the associated page visit data. These are randomly generated and anonymise
the data. We will use these later when predicting behaviour based on the covari-
ates for particular users, browsing sessions (j) and page visits (k). Furthermore, as
the data is all collected from the Carbon network, there is an identifier for the web
site, SiteID, that we can use to investigate if behaviour differs across sites within the
network. Time variables are important in clickstream data to determine the order of
the page visits in a browsing journey, hence we require the start and finish time of a
page visit - denoted by s;;x and e;j respectively. A binary variable PageVisitEndType
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describes the method that was used to collect the variable ¢;j, either a new page visit
occurred or an artificial mechanism determines when the page visit is complete. A
page visit may not have a finish time, if for example a browser tab remains open
without activity. We will explore the data cleaning steps to retrieve an accurate time
later in the chapter.

We obtain metadata that defines the page structure and provides information re-
garding the content of the web page. The data set provides both the current Uniform
Resource Locator (URL), known universally as the web address, and if available the
previously visited web address - the Referrer. In addition, an algorithm uses the
web page content to provide a real-time categorisation to assign a label based on
the page topic. The labels are provided by the Carbon taxonomy which contains
over 4000 nodes in a hierarchical structure, providing a breath of categories for the
web page to fall into. Some examples of the most popular Carbon taxonomy nodes
are: shopping.couponing, consumer electronics.mobile phones and accessories and
interest.news. The categories in the variable PageVisitCategorylD can be used to pro-
vide analysis on specific areas of interest, which we will exploit later in the modelling
stage.

Alongside the clickstream data, we have features that exist at the profile level,
for the collection of corresponding page visits. The time that the browser cookie
was first placed on the profile’s browser is collected in ProfileCreated, which helps us
know the length of history we have for the profile. For all sessions and page visits,
there are device features that stay constant and we will investigate these covariates in
detail. A high level overview of the device can be found in the DeviceType categories,
where devices are grouped by functionality, such as Smartphone, Tablet or Desktop.

We also have more granular device details, in particular the following categori-
cal features: hardware, operating system, screen size and IP address. We will focus
on DeviceHardware which provides the brand of the device, e.g. Apple, Samsung
or Google, and DeviceOS gives the operating system, e.g. Windows, macOS or An-
droid. These variables can be used in combination to provide a deeper insight into
the profile’s browsing behaviour. We expect the device to dictate certain types of
behaviour as we use different devices for different purposes depending on our in-
tentions of using the Internet. Further, we obtain an anonymised version of the
DevicelP address, which provides an approximate location from which we will in-
vestigate at the Country level only. An interesting problem known as ‘cross-device
tracking’, arises from the need to connect similar behavioural patterns on a range of
devices within the same IP address, but that is outside the scope of the thesis [27].
While it could be possible to connect device profiles to an individual using a statisti-
cal model, the most common method would be though directly via shared personal
login details. The details would be shared across different devices, such as an indi-
vidual accessing Facebook on their mobile and desktop. However, this personalised
data is not available in this data set and so will not be considered further. However,
a possible option for future research could be to build ‘household’ level data sets
which combine all browsing data based on a common IP address.

An algorithm assesses the profile’s behaviour over time to check for suspicious
activity on the Carbon network. This extreme behaviour will be exhibited in the form
of a high number of page visits in a short space of time, which cannot be replicated
by a human. This behaviour is attributed to web scraping which is an automated
process, usually gathering and copying targeted data into a a database, for later re-
trieval or analysis, and we represent this using the binary variable Bot. The DevicelP
can also help as known scrapers can be removed from further analysis. The variable
ProfileDemographics provides any demographic labels that have been estimated from
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Variable name Type Definition Notation
PageVisitEndTime Timestamp | The time representing the end of | ¢;j
a page visit
PageVisitEndtimeType | Binary A label attached to the PageVis-
itEndTime indicating a Real or
Artificial page visit end type
PageVisitID Numerical | Anidentification number for the | k
associated page visit
PageVisitCategoryID Integer A real-time categorisation of the
webpage into the Carbon taxon-
omy
PageVisitStartTime Timestamp | The time representing the start | s;i
of a page visit
ProfileID Mixture An anonymised unique identi- | i
fier for the profile
Referrer String The last web address prior to
loading the current page visit
SessionID Mixture A unique identifier for the | j
browsing session - a collection
of page visits
SiteID Categorical | A unique identifier for the web-
site
URL String The full web address associated
with the page visit
TABLE 2.3: A selection of variables and definitions at the page visit
level.
Variable name Type Definition
Bot Binary A behavioural assessment of whether
the profile is a bot
Country Categorical The country level location of the IP ad-
dress
ProfileDemographics | Categorical Third party information relating to a
demographic label attached to the pro-
file
DeviceType Categorical The type of device, e.g. Smartphone,
Desktop
DeviceHardware Categorical The provider of the hardware/make
of the device, e.g. Apple, Samsung
DevicelP String An anonymised Internet Protocol (IP)
address of the device
ProfileID Mixture An anonymised unique identifier for
the profile
ProfileCreated Timestamp The time to represent when the Pro-
fileID was first created

TABLE 2.4: A selection of variables and definitions from profile level

data.
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Carbon’s algorithms based on browsing behaviour. Examples of the information this
variable may provide are predictions of the profile’s gender, age or profession.

2.3.2 Exploratory data analysis

Due to the vast amount of Clickstream data we have available, we sample to bring
the population to a more manageable size. We choose at random, approximately
3% of the total number of profiles that visit the Carbon network on the 31st January
2019. The resulting data set contains 287736 unique profiles, 392532 browsing ses-
sions, and 2064446 individual page visits ranging across 6856 different web sites.
Approximately 2% of the profiles are labelled as bots due to the known nature of
their IP address, which we will exclude from any further analysis as their data does
not resemble human behaviour.

Firstly, we will inspect individual variable distributions. In Figure 2.8a we dis-
play start time, s;j, across the entire day; note that we collect the timestamps in
Coordinated Universal Time (UTC). As the data set ranges across a number of coun-
tries, as shown in Figure 2.8b, we must convert the timestamps before drawing con-
clusions from the distribution in Figure 2.8a. In the data set, there are IP addresses
associated with over 200 different countries, as a result in Figure 2.8b we only dis-
play countries with over 2000 page visits. The United Kingdom and United States
are the most populated categories, as the web sites that create the data target audi-
ences in the UK and US.

Discussing covariates at the page visit level data, we explore the binary variable
for the page end time type, seen in Figure 2.8¢, this highlights that 70% of recorded
page visits have a Real end time, while the remaining page visits have an estimate
for the finish time - labelled as Artificial. This label is created by a "heartbeat’, which
checks for user activity of the web page. The heartbeat mechanism occurs when
we cannot record when a page visit has officially ended, hence we must make an
estimate. We can identify a known time when the user was still active on a web
page using checkpoints (heartbeats) and estimate a real or artificial end time. We
will explore the effect of the heartbeat in more detail later.

The distribution for the most populated page content category IDs is Figure 2.8d,
where each category has over 20000 visits. The highest volume categories in this
sample are varieties of clothing, shopping and interest. Only the main Referrer values
are shown in Figure 2.8e, with the Internet giants Facebook and Google accounting
for approximately 50% of the values, with other news sites” home pages attracting a
modest proportion of the variable.

Switching to data aggregated at the profile level, all possible categories for the
device types are shown in the plot in Figure 2.8f on a logarithmic scale. The largest
categories by a substantial amount are desktop and smart phone, which combined
make up almost 90% of the variable. Apple-based hardware leads the hardware
variable in Figure 2.8¢g, closely followed by Samsung and other top brands from
around the world, filtered with brands with more than 1000 unique profiles. We are
observing the data unfiltered and raw, but expert knowledge has informed us that
the number of profiles are inflated due the difficulty in tracking Apple and Mac de-
vices. Each profile can be associated with multiple predicted demographic labels.
The count for each individual demographic label is displayed in Figure 2.8h, which
shows that the highest volume of labels are related to gender, followed by age, social
grade and marital status. Not all profiles have a demographic label and this incon-
sistency in coverage must be taken into consideration if using this as a covariate in
any modelling.
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FIGURE 2.8: Graphical displays of key variable distributions in the
Clickstream data set.
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To further explore the Clickstream data set, we can create numerical variables
from differences between time-based covariates at the page visit level. The defini-
tions of each of the new variables can be seen in Table 2.5. They are a set of numerical
variables that summarise the behaviour of browsing journeys.

Missing and extreme values have been removed from the plots in Figure 2.9, and
these numerical variables add to the richness of the data and usability for modelling.
We expect to see decaying distribution curves for each count variable. We also expect
that the artificial value for page end time type may dictate a structure to the length
of page visits, as this may inflate specific time durations. Furthermore, there is an
upper limit of page visit length at 30 minutes (1800 seconds), so we expect this have
a large effect on long browsing sessions.

Prior to our research, we expected the length of time spent on web pages to be
a useful covariate to describe the behaviour of a browsing session. We calculate
PageVisitDuration, d;jx, by finding the difference between the start and end time of
the page visit in seconds, i.e. ejj — s;jx. In Figure 2.9a, we can see clear spikes at
regular intervals in the distribution. Before we can begin any analysis, we require
clean data, that is free from outliers and other anomalies. This improves the reli-
ability and value of our data and creates robustness of our statistical models. The
heartbeat mechanism checks for activity at intervals of 30, 60, 120 and 300 seconds
from the start of the page visit. If the heartbeat returns as active, then we can say
that the page visit length is at least this value. Noting the logarithmic scale, we can
see the rough outline of an underlying decaying distribution, but with spikes at the
heartbeat checkpoints. This is emphasised by the numerical summary of the distri-
bution in Table 2.6, where the upper quartile value is exactly 60 seconds. Splitting
the original distribution based on the page end time type label, the spikes in the orig-
inal distribution in Figure 2.9a, are entirely removed to leave a smooth decay curve
in Figure 2.9b. We have set the maximum page visit length to be 1800 seconds, and
we note the spike here as a result of this upper bound, seen in Figure 2.9c. Figure
2.9d displays small regions around each of the heartbeat intervals. The shapes that
surround each of the heartbeat values can be explained due to slight time delays in
the collection of the data.

Variable name Type Definition Notation
AveragePageVisit- | Numerical | The average value of PageVis- | d;;
Duration itDuration within a SessionID

InterVisitDuration | Numerical | The length of time between | g;; =
consecutive SessionlD’s for sijl\ where N
the same ProfileID 1

PageVisitDuration | Numerical | The length of time between | d;j = ejjx — sijk
the PageVisitStartTime and

PageVisitEndTime
PageVisitsInSession | Integer The number of page visits | n;;
with a SessionID
SessionDuration Numerical | The length of time between | t;; = ¢;jy — sij1

the first PageVisitStartTime
and final PageVisitEndTime
within a SessionID

€ij-1,N —

TABLE 2.5: A selection of created numerical variables and definitions
from Clickstream level data.
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Variable Min | LQ | Median | UQ Max
PageVisitDuration 0 4 18 60 1800
SessionDuration 30 94 301 934 7197
AveragePageVisitDuration | 0.35 | 30.00 | 65.54 | 172.00 | 1799.50
InterSessionDuration 0 922 5334 11249 | 85861
PageVisitsInSession 2 3 5 9 99

TABLE 2.6: A table to display numerical summaries of the key vari-
ables in the Clickstream data set.

We calculate the total of all values for dijk within the same session, j, and calculate
SessionDuration t;j by e;j, — s;j1 where n is the number of page visits k in the session
j- In Figure 2.9e, we recognise the the spikes at each of the same intervals for the
distribution of t;. We see a longer tail to the right of the distribution, as we are
finding the summation of values in 2.9a. The maximum page visit length is 1800
seconds, and the tall peak at this value suggests there a high number of sessions
with only a single page visit of the maximum length.

Another variable we can create is the number of page visits in a session denoted
by njjx. We count the number of distinct page visits k within the session j, } 4¢; 1.
We see a smooth decay curve in Figure 2.9f, with a limit for the maximum value of
nijx = 100, as emphasised in Table 2.6. After this point, we will remove observations
with a value for t;; < 30 seconds and n;; = 1. This is known in the industry as the
bounce filter. This benchmark attempts to remove browsing visits that appear to be
accidental or not worthy of counting as a genuine visit.

We calculate the time difference between browsing sessions as InterSessionDura-
tion, gjj, i.e the difference between the end of the (j — 1)*' session and start of the j*".
Small values for g;; are created by multiple sessions in quick succession. Whereas,
a device may be used before and after a working day, such that we see the brows-
ing sessions further apart and hence larger values for g;;. In Figure 2.9g and Table
2.6, we see a heavy tailed distribution on a much larger scale than Figure 2.9e, with
the peak under 60 seconds, and a maximum value of just under 24 hours. We will
explore this variable over multiple days in later chapters. We found observations
where g;; < 0, where two browsing sessions occur simultaneously, either by a data
recording error or multiple browser tabs, so the time elapsed between the sessions
should be zero.

We find the average of all values of d;j within a session j, which we call Av-
eragePageVisitDuration, dij. The distribution can be seen in Figure 2.9h, with more
regular peaks but with a much smoother overall shape, due to dividing the session
duration variable by the number of page visits.

2.3.3 Relationships between variables

We aim to investigate the relationship between the numerical summaries of brows-
ing sessions that we have created from the Clickstream data set. Figure 2.10 presents
a pairs scatter plot and correlation plot of the variables n;;, t;; and d;j. There is no
clearly visible pattern between n;; and t;;, indicating a need to consider both vari-

ables when building models. We note that d;; = % The strict linear patterns for

the plot in Figure 2.10a, are created by high volumes of small integer values for n;;,
which is reflected in the highest correlation of 0.55 in Figure 2.10c.
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By assessing browsing journeys from returning visitors, we can calculate g;;, and
investigate variable relationships for these returning visitors. In Figures 2.10b and
2.10d, the results are similar for the three variables nij, tij and d_i]-, suggesting that
the relationships for these variables for returning visitors still hold. The addition
of the inter session times presents no strong correlations to other "'within” session
variables, which suggests we can consider this variable to indicate a new aspect
of the browsing behaviour of the visitor. We would expect an engaged profile to
display a short time between browsing sessions, i.e. a low value of g;;, whereas a
longer time suggests a lack of interest in the web site.

Exploring the relationship between types of devices and browsing session level
numerical variables could lead to further insights. Figure 2.11a presents a boxplot of
device type against t;;, which suggests there might be a difference between devices
for this numerical summary. Figure 2.11a shows all device types have skewed dis-
tributions with long right tails, emphasised for the most popular devices: desktop,
smart phone and tablet. The median and upper quartile values suggest that desk-
top devices have longer values for t;; out of the most popular device types. This
is emphasised by the scatter plot in Figure 2.11b where observations from desktop
lie in the upper regions of both ¢;; and n;;, with smart phone observations similarly
scattered but with overall lower values, whereas the tablet observation are located
much closer to the origin. This shows a clear difference in behaviour for the largest
device types for browsing sessions, which corresponds to an intuitive view of using
each of these devices, shorter visits of hand-held devices and longer visits on larger
home-based devices.

7000 Console 100 | Console
S 6000 Desktop . Desktop
'S EReader o EReader
© 5000 MediaHub D 80 MediaHub
A 4000 Mobile O Mobile
€ 3000 SmallScreen (g 60 : SmallScreen
o SmartPhone = | SmartPhone
@ 2000 Tablet 2 | Tablet
[0} Tv n 40 T
1000 = I v
] >
0 Q |
=T
o 9 3 2 2 20 2 2 ©
2 2 38 83 3 ¢ o
©c g a & F 5 3 &
3 2 Z g 3 0
< § % 0 2000 4000 6000

SessionDuration

(a) Boxplot of DeviceType vs SessionDuration (b) Scatter plot of SessionDuration vs PageVis-
itDuration. Colour by DeviceType

FIGURE 2.11: Relationship between DeviceType and numerical sum-
maries of browsing sessions.

The number of page visits in a session, n;;, is a covariate that provided a smooth
distribution that matched our expectations, with a shape that can be described in the
form of a Weibull distribution. The choice of distribution was influenced by work
in [21]. We remove browsing sessions with only a single page visit and display the
distribution in Figure 2.12a. We can find the probability density distribution and
estimate the parameters that would provide a Weibull curve to fit the variable distri-
bution. A Weibull distribution is defined with two parameters, the scale parameter
A and the shape parameter «. The probability density function of a Weibull random
variable x is:
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We model the distribution for 7;; finding the maximum likelihood estimate for
the parameters as Weibull(1.0, 8.6), which is visualised in Figure 2.12a. We can use
this to find the probability of each value for each observation 7;;, which can be used
to indicate long or short browsing sessions based on high or low probabilities. We
can see the heavy tail reflected in the quantile-quantile plot in Figure 2.12b, for which
we used the R package fitdistplus [28]. The Weibull distribution curve does not fit the
data well and the quantile plot is curved indicating a departure from this distribu-
tion. We experimented with other distributions, such as Exponential and Gamma,
but failed to find a better fit — likely due to the strong skewness in the count data.
Note that we have removed single page visits sessions from this analysis.
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FIGURE 2.12: A comparison of the variable PageVisitsinSession and a
fitted Weibull distribution.

2.3.4 Discussion

This introduction to the Clickstream data set and browsing journeys has provided a
platform to model this special type of sequential data in a variety of ways. We have
learnt that we are dealing with a significant amount of data and we must adopt
methods for the Big Data environment. Ultimately, our goal will be to build a set of
numerical and categorical variables which will be important components in a model
to predict a general event based on historical browsing behaviour. Examples of such
events include clicking on an advert, purchasing a product, or meeting some other
success criteria.

In this chapter, we have introduced potential covariates that describe the brows-
ing behaviour data. There are a number of variables that relate to page visit level
and at the profile level (i.e. device information). The raw variables in the original
Clickstream data set are mainly categorical or time based, hence we create numerical
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summaries to develop extra covariates for exploration and modelling. These numer-
ical variables provided intriguing results and did not fully meet our expectations.

We found a heartbeat mechanism that has a significant impact on the distribution
of the page visit lengths, which could have an effect when using the time duration
variables in a statistical model. Scatter plots of the session level variables help us
understand that the correlations may not be strong enough to have a significant
impact of multicollinearity on our models. Finally, we described the distribution of
the number of page visits in a session using a Weibull distribution.
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Chapter 3

Statistical dimension reduction of
browsing behaviour

3.1 Chapter overview

In this chapter, we will focus on dimension reduction to provide a single score to as-
sess browsing behaviour. In section 3.2, we explore appropriate features, and outline
our variable selection process to determine how to create an effective score. We will
use statistical techniques to highlight where we can improve on existing methods
that assess behaviour. In section 3.5.2, we aim to produce a statistically informed
way to reduce the number of dimensions, and explain the benefits of our method
over the current solution. We compare our novel method to principal component
analysis (PCA) and other dimension reduction techniques. In section 3.6.2, we ex-
plore an application of the algorithm to label a variety of types of behaviour, and
compare to an existing rule-based classifier. We aim to determine more accurate
behavioural traits and increase the number of labels.

The one-dimensional summary used in the industry for these purposes is called
intent score, which is designed to provide a level of intent to purchase based on
a set of behaviours. One example of the application of intent score is in targeted
advertising, where a numerical representation of the level of activity can be used
to rank profiles” behaviour and decide which profile to display an advert to. With
a naive approach, the profile with the highest intent is the most likely to engage
with the advert and click, driving the success of an advertising campaign. A further
application of intent score, and other statistical summaries of historical data, is to
drive a labelling system that describes and interprets a profile’s browsing behaviour.

3.2 The aim

In this section, we will present the process to combine the key attributes of browsing
behaviour, and create a one-dimensional summary while maintaining the variance
within the data.

We are motivated by an existing algorithm, developed by Carbon, that creates
summary variables of browsing behaviour attributes and a rule-based classifier for
activity labels. Upon closer inspection, we believe that the algorithm could be en-
hanced with further statistical rigour and additional variables to describe different
attributes of user behaviour. The algorithm contains variables with too few levels
with arbitrary thresholds to discretise the continuous variables. The structure of the
existing algorithm is outlined in Figure 3.2a and the aim is to determine a score for
each of the three attributes. The rules and interpretations of the scores are provided
in Figure 3.1.
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Recency
e Ascoreof5if: r> (t—7).
e Ascore of 4if: r > (t — 30).
e A score of 3if: r >
e A scoreof 2if: v >
e A scoreof 1if: r > (t — 365).

where f is the current date, r is the last date the interest has been visited.
Variability
e A score of 5 is given if the interest is visited daily.

e A score of 4 is given if the interest has been visited in all 7 day partitions.

A score of 3 is given if the interest has been visited in all 30 day partitions.

A score of 2 is given if the interest has been visited in the last year.

A score of 1 is given to all.

Frequency

=l

where f is the total number of days the interest is visited in the last 60 days.

FIGURE 3.1: The rules for the existing algorithm

A limitation of the existing approach is that many aspects are arbitrary and it is
not driven by the data as the discretisation rules are fixed, hence it cannot adapt to
changes in the data. Furthermore, it is difficult to interpret what the resulting levels
of the attribute represent and the proportion of data classified into each level.

Our goal is to develop a similar procedure that is instead informed by the statis-
tical behaviour of the data rather than prescribed arbitrary values, and we can add
subjective and expert insights. Techniques such as PCA, and summaries of the em-
pirical distribution (quantiles) will be particularly helpful in the analysis. We will
use Figure 3.2b to help explain the concept of the variable exploration and the over-
arching framework of the dimension reduction algorithm. We focus on reducing
multiple continuous statistical variables, grouped into attributes, for example Fre-
quency, to a single representation of each attribute ranging between zero and one.
We can begin with simple models with 1 or 2 contributing variables per attribute,
stretching to a complex process of a linear combination of statistical variables. This
structure allows the underlying variables to change based on new information or a
change in approach, without redesigning the entire algorithm. We will then create
the intent score value by combining all our chosen behavioural attributes. Further,
we aim to include the attribute of Intensity to add a new aspect of browsing be-
haviour.
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(b) The structure of the new algorithm we propose.

FIGURE 3.2: Visual representations of the algorithms we discuss in
Section 3.2.

3.3 Building statistical variables

The current algorithm aggregates the Clickstream data to a daily level, i.e. we aggre-
gate the page visit data into 24-hour periods and create numerical summaries of the
behaviour for each day. Each row in this transformed data set contains the profile,
page Vvisit category, date (d) and the number of pages visited - Hits (h). An example
of the data format is presented in Table 3.1a. A profile will exist over multiple rows
if it has a rich history of behaviour, with multiple values for the page visit category
over a multitude of dates. To restrict the date range, we only consider the most re-
cent 60 days of browsing behaviour. From this dataset, we can create appropriate
numerical features to describe the activity of a profile on a number of different cat-
egories. The data is of the order of approximately 10 observations, hence we use
Spark to enable us to transform and query the data set.

This section sets out a large number of numerical variables from the aggregated
data set in Table 3.1a. Before exploring the data set, we must form an idea of the
types of variables that may be useful in describing the activity level in a varied and
insightful way. There are a number of key areas that statistical variables can define,
which relate to specific attributes of behaviour. For each attribute, we will explore
how we can transform the data into statistical summaries, and use them to inform us
about levels of engagement for each unique pair of profile and page visit category.
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ProfileID | PageVisitCategoryID | Date (d) | Hits (h)
abc 100 2018-01-20 6
abc 100 2018-01-25 4
abc 100 2018-01-26 12
abc 100 2018-01-29 6
abc 100 2018-02-08 2
abc 100 2018-02-10 20
(A) Page visit data aggregated to the daily level.
Attribute Variable Notation Value
DayCount f=%d 6
Frequency WeekdayCount fa = Ya—wWeekday 4 4
WeekendCount fe =Y d—wWeekend 4 2
AverageHits h 8.33
MaximumHits max(h) 20
Intensity MedianHits h 6
MinimumHits min(h) 2
RangeHits max(h) — min(h) 18
AverageDate d 2018-01-30
MaxHitCountDate | d:h = max(h) | 2018-02-10
Recency MedianDate d 2018-01-27
OldestDate min(d) 2018-01-20
RecentDate max(d) 2018-02-10
AveragelnterVisit g 4.16
DateRange max(d) — min(d) 25
Variability | MaximumInterVisit max(g) 10
MedianInter Visit g 3.5
MinimumlInterVisit min(g) 1
RangelnterVisit max(g) — min(g) 9

(B) Transformed data in Table 3.1a to statistical variables.

TABLE 3.1: An example to display how to create the statistical vari-
ables.

Frequency - summaries of f. How often did the profile return to the category? We
can use information across days to build the frequency attribute. We count the total
number of days that activity has occurred in the last 60 days to create f where:

&0 1 if visited on day i
f:EViwhereVi:{ if visited on day i
=1

; 0 otherwise

Further, we can find the total number of days of activity on weekdays and week-
ends. We can establish if the date lies on a weekday (Monday to Friday) or weekend

(Saturday or Sunday), to calculate the variables, f; and f,, respectively. This could be

used to create a ratio, for example J;—’j
The current algorithm uses f to calculate the frequency attribute, which clearly tells
us useful information about the level of intent that a profile has for a particular page
visit category. For our toy example in Table 3.1a, we can see the frequency variables

in Table 3.1b, where we have 6 days of visits and we have double the number of

, which may be useful for more complex models.
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weekday visits f; compared to weekend visits f..

Intensity - summaries of h. What was the depth of the browsing behaviour? By
depth, we mean a measure of the frequency of within-day browsing behaviour. Us-
ing the Hits count variable would be an addition to the current algorithm, providing
information about the depth of the visits. Numerical summaries of & (for each profile
and page visit category) can be used to build data for the intensity attribute. Exam-
ples of the summaries are the mean, median, maximum, minimum and range, with
the calculations displayed in Table 3.1b. This level of detail should provide an extra
layer that does not exist in the existing algorithm. In our example in Table 3.1a and
3.1b, we have a variation in the values for /1, where max(h) = 20 and min(h) = 2.
Also the mean is larger than the median, h=833>6= median(h) = h, indicating
a right skew due to larger extreme values.

Recency - summaries of d. Was the browsing behaviour observed recently? An-
other measure of engagement can be derived from the recency of the browsing activ-
ity, the most recent date, max(d), will be useful and is used in the existing algorithm.
However, we can describe recency, through a range of date-based variables to pro-
vide more granularity and describe the location of the activity in the past 60 days.
We can find the mean, median, maximum and minimum of the values for d. We
will explore to see if any of these variables gain us a deeper insight into the recency
attribute. We can also find the value for d corresponding to max(h), i.e. the peak
of interest from the user, which could indicate a more substantial meaning of re-
cency. From Table 3.1b, we can see that the mean, d, is larger than the median, d,
emphasising the skew in the behaviour towards the most recent date.

Variability - summaries of g. Is there a regularity to the browsing behaviour?
The date provides us with key information about the regularity or irregularity of
page visits, and statistical variables are calculated using the intervals between visits.
Thus, we obtain variables measured in days, relating to the spread of activity. We
measure the number of days between each date of activity for a profile and page visit
category, generating a list of the ‘inter-visits’ g, i.e. §; = d;1 —d; fori € [1,f). We
find the average, median, maximum, minimum and range of the values in this new
list g;. Further, we find the overall date range, using the formula max(g) — min(g).
The example in Table 3.1b shows a lot of variation in the values obtained from the
list g;, specifically the mean(g) = § > ¢ = median(g), indicating the distribution of
¢ is skewed by larger values, namely max(g) = 10.

3.4 Exploratory data analysis

We explore a real data sample of approximately 30,000 rows, and 19 statistical vari-
ables across 4 attributes, outlined in Table 3.1b, to investigate the distributions and
relationships between key variables. Note that, the sample contains only repeat vis-
itors because we want multiple visits to create values for the inter-visits. We explore
the individual distributions with histograms in Figure 3.3, and using the quantiles
in Table 3.2. The correlation plot in Figure 3.4 and pairs plots in Figure 3.5 will help
us to visually analyse the relationships between the variables, and look for any ob-
vious patterns and correlations, aiding the process of variable selection. We expect
these plots will reinforce that each variable only represents it’s respective attribute.
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We would see this by only having strong correlations between the variables within
each attribute and weaker correlations for variables relating to different attributes.

The count variables for the frequency attribute f, f; and f. display long right tails
and steep decay curve distribution shapes. In Figure 3.3a and Table 3.2, f is domi-
nated by the value 2, hence we need to consider how to treat this when we discretize.
Figure 3.4 shows strong positive correlations between the frequency statistical vari-
ables, and only weak correlations with some variability variables, which are driven
by the majority observations where f = 2 and there is a single value in the list g.
This supports our decision to group these variables in the frequency attribute, and
represent that aspect of behaviour using a combination of these variables.

The individual distribution plots chosen for the intensity attribute are the aver-
age, maximum and range of values for h. The distributions show right-skew towards
low values of hits with extreme values in long right tails in Figures 3.3d-3.3f, which
are likely to correspond directly to bot activity. Figure 3.5b displays a sparse inten-
sity pairs plot due to the existence of extreme values, with positive linear patterns
visible.

Variable Symbols Min LQ Median| UQ Max
DayCount f 2 2 2 2 33
WeekdayCount fa 0 1 1 2 23
WeekendCount fe 0 0 1 1 13
AverageHits h 1 1 1 2 190
MaximumHits max(h) 1 1 1 2 199
MedianHits h 1 1 1 2 190
MinimumHits min(h) 1 1 1 1 181
RangeHits max(h) —min(h) | 0 0 0 1 159
AverageDate d 06/01 | 26/01 | 04/02 | 14/02 | 04/03

12:00 | 00:00 | 16:00 12:00 | 12:00
MaxHitCountDate | d:h = max(h) | 06/01 | 23/01 | 04/02 | 17/02 | 05/03

MedianDate d 06/01 | 26/01 | 05/02 | 14/02 | 04/03
12:00 | 00:00 | 00:00 12:00 | 12:00

OldestDate min(d) 06/01 | 17/01 | 28/01 | 08/02 | 04/03

RecentDate max(d) 07/01 | 02/01 | 13/02 | 24/02 | 05/03
AveragelnterVisit g 1 3 8 16 58
DateRange max(d) —min(d) | 1 4 10 21 58
MaximumlInterVisit max(g) 1 3 9 18 58
MedianInter Visit g 1 3 8 16 58
MinimumlInterVisit min(g) 1 2 7 15 58
RangelnterVisit | max(g) —min(g) | O 0 0 0 52

TABLE 3.2: A table to display numerical summaries of the statistical
variables.

There are strong correlations between the intensity variables and no interactions
with other attributes in Figure 3.4. Hence, we can represent the intensity attribute
exclusively with a combination of these variables.

For the recency attribute variables, we display the distributions for d, min(d) and
max(d) in Figures 3.3g-3.3i. The variables are skewed in the directions we would
naturally expect them to be, i.e. the min(d) to the left (dates further in the past) and
max(d) to the right (more recent dates). Figure 3.5¢, the recency pairs plot shows
clear structural patterns, which can be explained as we are using summary statistics
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FIGURE 3.3: Graphical displays of key statistical variable’s distributions.

that bound each other, i.e. the maximum value will always be higher or equal to than
the minimum value. This is reflected in strong correlations between the variables, in
Figure 3.4. This suggests we may choose a selection of these variables to describe the
recency of visits, and there are no obvious linear correlations with other attributes.
Using the values g;, we display the distributions of § in Figure 3.3j, which is a
smooth decay curve and similar to max(g) in Figure 3.3k. The quantiles values for
max(g) are greater or equal to the § values in Figure 3.2. The range of the inter-visit
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distribution in Figure 3.31 is dominated by zeros, where there is only a single value
in g, due to the high count of rows where f = 2, and max(g) = min(g). Figure 3.4
shows strong correlations between most of the variables in the variability attribute,
except the range which is mainly zeros. The variability pairs plot in Figure 3.5d
shows a linear diagonal that corresponds to the observations where there is a single
inter visit. A combination of variables could lead to the best way to describe the
variability of the browsing activity.

There are strong correlations between variables within each attribute and this
strengthens our motivation to split the statistical variables by attribute. We have
shown this through analysis of the correlation matrix structure, which has showed
that we can keep the attributes separate and focus on describing each of them using
the statistical variables as we set out in Figure 3.2b. There is a clear group struc-
ture within each attribute, and low correlation between the four attributes. We have
discovered a new attribute, intensity, that provides new information about brows-
ing behaviour attributes that wasn’t included in the existing algorithm. We will use
this to create a more interpretable and informative intent score, reduce the multi-
collinearity in later modelling, and enhance the quality of the activity labels.

N\
O
oot N
o
WeekdayCount ee‘*éa
N oo o
o
WeekendCount -0.04 \Nea*e“

AverageHits -0.05 -0.04 -0.03
MaximumHits  -0.04 -0.04 -0.02
MedianHits  -0.06 -0.05 -0.04
MinimumHits  -0.04 -0.03 -0.03
RangeHits -0.03 -0.03 -0.01
AverageDate -0.04 -0.03 -0.03 0.03 0.03
MaxHitCountDate -0.04 -0.02 -0.03 0.02 0.02 0.02 0.02 0.01
MedianDate -0.05 -0.03 -0.03 0.03 0.03 0.03 0.03 0.02
OldestDate  -0.2 -0.14 -0.13 0.04 0.04 0.04 0.04 0.03
RecentDate  0.13 0.1 0.09 001 002 001 001 0.1
AveragelnterVisit -0.13 -0.11 -0.06 0 0 0 -001 0 0.02 0.02 002
DateRange  0.38 0.27 0.25 -0.03 -0.02 -0.04 -0.03 -0.02 -0.01 0 -0.01-0.44 0.43
MaximuminterVisit -0.02 -0.02 0 -0.01 0 -001-001 0 0.2 0.02 0.01 -0.37 0.41
MedianinterVisit -0.14 -0.12 -0.07 0 0 0 0 0 002 0.03 0.02 -0.33 0.37
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FIGURE 3.4: Correlation plot of all statistical variables.
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FIGURE 3.5: A collection of pairs plots split by the attributes.

3.5 Dimension reduction

In this section, we will refer back to the aim set out in Section 3.2, and discuss how
we will perform dimension reduction, building an algorithm to transform the sta-
tistical variables within each attribute to an intent score. We will provide the steps
and reasoning behind decisions; we aim to select variables in a way that we can
explain each attribute in a succinct and interpretable way, whilst keeping the vari-
ability within the data.

Based on the data exploration in Section 3.4, we decide to make a manual selec-
tion of variables, from each of the attributes, to provide an intent score with inter-
pretability, as opposed to a dimension reduction procedure.

3.5.1 Informed variable selection by hand

We chose the variables highlighted in Figure 3.6a, and we will explain the reasoning
behind each selection.

The frequency attribute has 3 candidate variables and we can select a subset to re-
duce the number of dimensions, as in Figure 3.2b. The variable f counts the number
of days a profile hits a page visit category on a daily level over 60 days of historical
data. In future work, we could look at using f; or f. in this attribute, but we conclude
that it does not provide extra information to the interpretation of level of intent as
we decide that the day of the week currently does not affect the overall frequency
attribute. Further, both are strongly positively correlated with f, as seen in Figure
3.4, and by selecting multiple correlated variables we would introduce redundancy.
This selection provides a strongly interpretable variable that we can directly link to
a level of browsing interest.
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After inspecting the pairs plot in Figure 3.5b and the separation from other vari-
ables in the correlation plot, Figure 3.4, we can choose the variables for the intensity
attribute. We propose to only take a single variable, due to the strong correlations
within the attribute, and we choose the average value . There are extreme values
within the hit count, as displayed in Figures 3.3d and 3.3e, which are likely to be
bot activity. Thus, taking an average rather than taking the maximum will be more
robust to the extremes. However, the average will still be more sensitive to outliers
compared to the median, but the median is too computationally intensive in practice
using Spark. To calculate the median value we require the position of every value,
which is unfeasible in a distributed data structure at this volume. One option is to
use an approximation function, but as the average can be calculated in parallel we
prefer this statistic. Further, using the average will combine and assess the entire
history of the profile, rather than a single day of behaviour (i.e. the maximum or
minimum), which we expect to build a better representation of the profile’s intent.

We impose a similar approach for the recency attribute of choosing a single vari-
able, as the correlation matrix in Figure 3.4 displays that the recency variables have
weak correlations with other attributes and strong correlations within the attribute.
Table 3.2 informs us that the quantile values are well spread which will help to keep
variability in the attribute. However, the key motivation is to assess the intent of
the behaviour and for this we require an assessment the last seen visit, i.e. max(d).
This best describes the recency of the browsing behaviour and is the most natural
interpretation of the recency attribute.

For the variability attribute, we propose to use a combination of the average and
maximum summary statistics - § and max(g). The average and maximum values
help us identify a measure of regularity between the visits, which we see as a ma-
jor aspect of browsing intent. The motivation for this lies in the interpretability we
desire for this attribute, as we can see from Figure 3.4 that the correlation is high
between § and max(g). This correlation is driven by the high number of single val-
ues for g, for which clearly the average and maximum are equal. Using the average
and maximum together can help identify a regular visitor, i.e. the values for both
variables are similar. Additionally for a regular visitor we would set a threshold for
frequency; for example more than four visits. Whereas with irregular visiting, we
expect the maximum to be much larger than the average. We want large gaps be-
tween returning visits to be assigned a low score for variability as the profile intent is
low and irregular. We aim to see lots of variation in this attribute when we combine
these values, and we have a more complex approach to variability than the existing
algorithm. We will describe later how to reduce the dimensions of the variability
attribute. In future work, we may wish to combine these into a single variable to
represent the difference between the largest value and the average, i.e. max(g) — g,
however keeping the interpretation of each variable simple is crucial.

Figure 3.6b shows the correlation matrix for the selected variables we have dis-
cussed. There are weak correlations across the attributes, emphasising our reasoning
to select from each of them, and a strong correlation between the inter-visit variables.

3.5.2 Comparison to PCA and other methods

We created 19 statistical variables across 4 attributes, and we have provided a vari-
able selection process to reduce each attribute to a single summary variable. We
aimed to capture variation within the data, while keeping the interpretation of the
score to describe intent. We can compare our approach with principal component
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FIGURE 3.6: Our variables we have selected.

analysis (PCA), and other methods to determine if the variables we selected are ap-
propriate and valid.

Our variable selection

Firstly, we will assess our choice of variables from our data, X = (x1,X_1). We
present an expression to quantify the proportion of variability left over in our data,
X_1, after accounting for a linear dependency on our chosen variable x;:

tr(Var[X_1] — Cov[X_1, x1]Var[x;] ' Cov[x1, X _1])

V(X_llxl) = tr(Var[Xq])

(3.1)

As a result, we can calculate how much variation can be attributed to our chosen
variable or set of variables.

In Table 3.3, we provide the proportion of variance explained using our variable
selection method. Most of the figures in the table highlight that our manual selection
is effective as the proportions are high. For each attribute of frequency, intensity and
variability we have selected variables that explain over 50% of the variation within
each attribute. The weakest selection appears to be for the frequency attribute, but
we note that our variable selection has led to an interpretable score which assesses
browsing intent and engagement which also separates the data well. Also, we have
only accounted for a linear dependency in Eq 3.1; non-linear dependencies have
not been investigated. An alternative for measuring associations is the maximal
information coefficient, which we do not consider in this thesis [29].
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Our method | Highestloading PC1 | Random Forest
Attribute | Variable | % Variable % | Variable | %
Frequency f 52 f 52 f 52
Intensity h 85 max (h) 88 h 85
Recency | max(d) | 61| d:h=max(h) |62 d 81
Variability | ¢, max(g) | 94 | max(d) — min(d) | 63 g 83

TABLE 3.3: A table to show the proportion of variance that is retained
within each attribute in the variable selection process in Section 3.5
compared to other methods.

PCA

Principal component analysis (PCA) is a popular dimension reduction technique
that seeks a linear combination of variables such that the maximum variance is ex-
tracted from the variables [30]. Using PCA we will compare our variable selection
against the principal components from the transformation. The principal compo-
nents are linear combinations of the original variables weighted by their contribu-
tion to explaining the variance in a particular orthogonal dimension. If we have p
predictors: X3, ..., X, then the first principal component can be written as:

71 = P X1+ X + ..+ 9 X

where Z; is a linear combination of original predictor variables which captures the
maximum variance in the data set and ¢! is the vector comprised of the weighting
for each predictor. The coefficients of ¢! are the loadings, and correspond to the
coefficients of the first eigenvector of Var[X]. We remove this variance and seek a
second linear combination which explains the maximum proportion of the remain-
ing variance, and so on. The result is orthogonal (uncorrelated) factors.

First, we apply PCA to all statistical variables and display the component load-
ings in Figure 3.7a and a scree plot in Figure 3.7b. The heatmap displays the first 12
principal components and shows the structure for each component loading, where
the darker regions highlight higher contributing values to the component. The first
component represents variability, the second is recency, the third is intensity and
the fourth is mainly frequency. The attributes are approximately orthogonal com-
ponents of variation. This outcome reflects our choice of attributes and emphasises
the weak correlations between attributes. The scree plot shows that each of the first
components explain over 20% of the variance, and the fourth contributes over 10%,
which together describe over 80% of the variation.

We want to compare PCA to our manual variable section and to do this we per-
form PCA separately on each attribute. We can inspect the first two principal com-
ponents for each individual attributes in Table 3.4 and use them to determine the
combination of variables to compare to our selection. We also show the cumulative
proportion of variance that is explained by each principal component, which we will
compare to other dimension reduction methods. Firstly, for the frequency attribute
the first principal component chooses f as the largest contributor and accounts for
76% of the variation. This is higher than the variance explained (52%) for the single
variable choice of f from our variable selection. Next, the first principal compo-
nents for both intensity and recency attributes approximately find an ‘average’ of
all variables and both explain over 85% of the variation in the data. Lastly, the first
component (87% of variance explained) for the variability attribute is an "average” of



3.5. Dimension reduction 39

RangelnterVisit - _ Loadings
MinimumInterVisit -
MedianInterVisit - . 0.8
MaximumInterVisit -
DateRange - _ 0.6

AveragelnterVisit -

RecentDate -
OldestDate - 0.4
MedianDate -
MaxHitCountDate - | 0.2
AverageDate -
RangeHits - 0
MinimumHits -
MedianHits - S 0.2
MaximumHits -
AverageHits

) -0.4

WeekendCount -

WeekdayCount - 0.6
DayCount - - :

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PCi1 PCi2

(a) A heatmap to visualise the component loadings from PCA.

N
Q@

,_\
Q

Percentage of explained variances

O.
i 2 3 4 5 6 7 8 9 10
Dimensions
(b) A scree plot from PCA.

FIGURE 3.7: The results from PCA on all statistical variables.

all variables except for max(g) — min(g), which is contained in the second compo-
nent. This seems sensible as we know that the range of the inter visits is not a useful
summary of the variability behaviour from our exploration analysis.

We will use an extension of PCA to select a single variable, by choosing the max-
imum contribution to the first principal component loading [31]. We will apply this
to the within attribute PCA results in Figure 3.4, and display the results in Figure 3.3.
The frequency attribute is the only component that agrees and chooses f, whereas
the other attributes are not in agreement with our variable selection. The variance
proportions that are explained by these variables are not dissimilar to our selection
method. Specifically, the intensity attribute highest loading from PC1 is max(h),
which from Table 3.3 explains 88%, compared to h (86%) from our selection. In fact,
the correlation is high between these variables at 0.97, from Figure 3.4. The largest
component loading for the recency attribute is the date with the maximum number
of hits. This variable will be sensitive to extreme values of hits, and might not give
an indication of true recency of browsing behaviour. Similarly, comparing the two
selections from each method shows another high correlation of 0.75. Although, this
PCA extension provided different selections, the variables are highly correlated and
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Attribute Variable PC1 PC2
f 0.7934 | -0.1929
Frequency fa 0.5637 | 0.5906
fe 0.2296 | -0.7835
Cumulative % of variance explained | 0.7629 | 1.0000
h -0.3612 | -0.3477
max(h) -0.6511 | -0.0136
Intensity h -0.3472 | -0.4145
min(h) -0.0878 | -0.6014
max(h) — min(h) -0.5633 | 0.5878
Cumulative % of variance explained | 0.9262 | 0.9953
d -0.4395 | 0.0059
d: h = max(h) -0.4776 | -0.0232
Recency d -0.4427 | 0.0151
min(d) -0.4385 | 0.7073
max(d) -0.4365 | -0.7064
Cumulative % of variance explained | 0.8585 | 0.9372
g -0.4415 | 0.1911
max(d) — min(d) -0.4680 | -0.6493
max(g) -0.4542 | -0.1095
Variability g -0.4409 | 0.2179
min(g) -0.4299 | 0.4334
max(g) — min(g) -0.0243 | -0.5428
Cumulative % of variance explained | 0.8785 | 0.9825

TABLE 3.4: A table to display the first two principal components for
each attribute.

our variables have stronger interpretability.

Random forests

Random forests are a popular machine learning algorithm for classification which
consists of a number of decision trees [32]. Every node in the decision trees is a
condition on a single feature, designed to split the data set into two so that similar
response values end up in the same set. The measure on which the (locally) optimal
condition is chosen is called impurity. The tree-based approach used by random
forests ranks possible splits by how well they improve the purity of the node, using
the mean decrease in impurity over all trees (called Gini impurity). The Gini im-
purity of a node is the probability that a randomly chosen sample in a node would
be incorrectly labelled if it was labelled by the distribution of samples in the node.
Nodes with the greatest decrease in impurity happen at the start of the trees, while
nodes with the least decrease in impurity occur at the end of trees. Thus, by pruning
trees below a particular node, we can create a subset of the most important features.

We can inspect each feature importance plot in Figure 3.8 and use them to deter-
mine the single most important variable according to the random forest algorithm,
which we compare in Table 3.3. Based on the figures, we can hand pick the top-most
features to reduce the dimensionality of our data set. For both the frequency and
intensity attribute, this method agrees with our variable selection as the most im-
portant with the maximum values in Figures 3.8a and 3.8b. The recency attribute
finds that d is the most important feature, which we do not consider in our selection
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process and explains more variance in the data 82% versus 61% from Table 3.3. We
made a manual choice that the intent of a profile is directly attributed the most re-
cent visit, therefore explaining the maximum variance was not a priority. Finally, the
variability attribute finds the top 2 variables are the ones we chose in our method,
which is satisfying.
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FIGURE 3.8: Importance plot from Random forest algorithm applied
to each attribute variable subset.
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3.6 Discretisation and labelling

3.6.1 Discretisation

Discretisation is the process of transferring continuous numerical variables into dis-
crete valued variables. For the consistency of implementation and compatibility
with existing software systems, we require discrete attributes and activity labels that
can be interpreted by a non-statistican and provide interpretability to the existing al-
gorithm. In statistical terms, this requires us to sacrifice some of the richness of the
information in these continuous quantities, however it is a requirement of the pro-
cedure. Producing a one-dimensional intent score is a research objective, a feature
of the Carbon platform as an essential component to describing website behaviour.
The score would be used to segment the website audience, such that differing be-
haviour can be targeted via bespoke methods. The current algorithm is poor in the
assignment of discrete levels for continuous variables; there are too few discrete lev-
els with arbitrary thresholds and uninterpretable attribute values. This will lead
to an ineffective one-dimensional summary, which lacks interpretability due to the
lack of a statistical approach. We propose to use a quantile-based approach, finding
discrete regions and proportions of the population they aim to represent. The large
volume of data allows us to assume the quantiles are representative. The quantiles
are driven by the data, hence the discretisation will be sensitive to the input values,
but it should be transferable and easy to manage.

A key feature of quantiles is that we can use them to describe continuous vari-
ables on a common scale (0 — 1), using the empirical probabilities.

g=F'(x)st.F(x)=P(X<x)=p

The inverse distribution function for continuous variables F~!(x) is the inverse of
the cumulative distribution function (CDF). The CDF gives you probabilities of a
random variable X being less than or equal to some value x. The inverse CDF, gives
a value for x such that F(x) = P(X < x) = p. Where p is where random draws
would fall p x 100 percent of the time. The inverse of the CDF tells you what value
x would make F(x) return a particular probability p.

All attributes, i.e. the Y nodes in Figure 3.2b, will be discretised such that we can
create interpretable levels and are comparable on a common scale. For Y nodes that
have multiple X covariates, we will combine the values in some way to assign the
attribute level. We want to keep the consistency of implementation as the existing
algorithm, but consider more attributes. Further, we this method will equally weight
each of the attributes in the final score.

We will map the continuous variables of f and & to discrete levels using the
equivalent quantile probability. We display the discrete levels and quantile probabil-
ity values we assign in Figures 3.9a and 3.9b. The actual discrete scores in Figure 3.9
are the midpoints between the two empirical probabilities at each level, providing
scores that are not arbitrary, can be compared relatively against each other and re-
tain interpretability. Further, this approach allows us to vary the number of discrete
levels within each attribute, while obtaining scores that are still comparable between
attributes on the scale between 0 and 1. Adding the intensity attribute should add a
deeper level of granularity into the activity labels. For both intensity and frequency,
we have right-skew distributions for the variables we have chosen, hence we use
high quantile probabilities to expose the variation in the data when mapping to the
common scale.
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FIGURE 3.9: The quantile mapping rules for our variable selection
process.

The most recent date variable, max(d), is well spread across the range of dates,
as shown in Figure 3.3i, and the quantile mapping method is displayed in Figure
3.9e. For variability, we selected two variables that we discretise independently, as
shown in Figures 3.9c and 3.9d, then average the two scores to find a single value
based on both variables § and max(g), using the equation below.

_ Gscore + max(g)score
Gscore >

Using the methods explained above, we reduce the number of dimensions to the
four attributes. To provide a one-dimension intent score, we could decide on a prior
set of weightings to determine which attributes should contribute with more or less
significance to the final score. In practice, we can experiment with the weighting to
obtain a variety of intent scores for a variety of problems. The final values can be
normalised to any range that is needed for analysis.

3.6.2 Application of activity labels

In this section, we will look to improve the existing rule-based classifier using the
attribute scores discussed in Section 3.5. Particular combinations of discretised at-
tribute variables are associated with labels to describe similar types of behaviour
patterns and increase the knowledge about each profile. For example, we can choose
a set of levels: a high level of recency, intensity and frequency and a low level of vari-
ability. This label would define a subset of profiles with high engagement relative
to the population, containing potentially more profitable profiles we can target with
advertising, all based on a selection of levels for each attribute.

We will map the existing version of the activity labels onto key statistical vari-
ables we describe in previous sections and visualise the label structure. The existing
classifier uses the variables f, r and v, as described in Figure 3.1. We focus on three
activity labels:
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e Active: A frequent pattern of behaviour
e Hyperlntent: A significant amount of recent activity
o Regular: A pattern of repetitive periodic behaviour

The values that correspond to each label are outlined in Table 3.5. The proportions
of profiles assigned existing labels are displayed in Table 3.6, and we immediately
see that they are low in volume, due to strict rules, i.e. 0.01% for HyperIntent is not
useful. We know from inspecting the algorithm, that the thresholds are arbitrary and
there is little structure to allow us a clear interpretation of the labels. Also, there is a
large number of other variables that we will use to describe activity levels, hence a
novel approach will only add to the information we can gather from a profile.

Labels Active HyperIntent Regular
>3 >4 >3
Existing f= f= f=
r>3 r=>5 v>3
> 0.875 > 0.875
fscore Z 0875 __fSCOYE - fSCOi‘E il
New hscore > 0.875 | max(d)score > 0.475
max(d)score > 0.75
max(d)score > 0.9125 Qscore < 0.4
TABLE 3.5: The activity labelling rules for the existing and new algo-
rithm.
Label Existing Count | New Count
None 30956 (98.3%) | 28022 (89%)
Active 161 (0.5%) 2305 (7.3%)
HyperIntent 4 (0.01%) 128 (0.4%)
Regular 525 (1.7%) 2618 (8.3%)

TABLE 3.6: A table to display the proportions of existing vs new labels
in the data set.

First, in Figure 3.10 we label the Active users, which describe profiles that are
actively engaged in browsing a category. The existing method uses the total number
of days visited, f > 3, which leads to a high number of visits required as seen in
Figure 3.10a. The volume of this label is approximately 0.5%, from Table 3.6, and
we can use quantiles to help boost the volume using a more sensible approach to
defining the number of visits required for an Active label.

We will use a less strict threshold, of fscore > 0.875, to increase the number of
labels to approximately 7%, while introducing a stronger emphasis on the recency
attribute as seen in Figure 3.10b.

In Table 3.6, we see that only 4 observations the sample (0.01%) have been la-
belled as HyperIntent. The identified behaviour is both highly recent (r = 5) and
highly frequent (f > 4), as seen in the existing rules in Figure 3.5. Figure 3.11a
shows this combination of behavioural traits, with the red observations in the top
right corner. The motivation for this label is to find the most engaged behaviour,
such that targeted advertising in theory would be the most effective. We can at-
tempt to extend the reach of this label to other profiles, while softening the rules on
frequency and recency. Further, we will add the intensity attribute to this label to
assess the frequency of browsing behaviour within each day, where /5o, > 0.875. It
is clear from Figure 3.11b, there is a dense cluster of observations with the new label
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in red, and we have increased the proportion of labels from 0.01% to 0.4%. Interest-
ingly, there is no overlap between the two versions of this Hyperintent label, and we
believe the intensity attribute brings important additional information, causing the
definition to change and overlap is not necessary.

The most common existing label is Regular, with the highest proportion in Table
3.6 of 1.7%, which describes behaviour that has occurred throughout the whole date
range with regularity. We define regularity as visiting in at least each distinct set
of 20 days over the last 60 days, hence the activity must have regularity across the
entire 60 days of data. Alternatively, we may want to determine regularity over
just the range of data available for that profile. This is where variability that is not
currently used in the existing labels can help refine the Regular label. This created
a better defined structure for the new label using the rules in Figure 3.5, and can
be seen with a dense cluster by the origin in Figure 3.12b. The main difference is
the regularity of visits does not have to be consistent throughout the entire 60 day
history, but only over the the period of browsing behaviour we have observed. This
is informed through the variability attribute, and creates a more rigid label structure
with a higher count of over 8%.

3.7 Discussion

This chapter has set out a methodology to transform, explore and assess a large
amount of online browsing data in an informed and structured process. We dis-
covered a wide variety of statistical variables that describe a number of behavioural
attributes, which we condensed to provide a one-dimensional summary. The appli-
cation of this score will impact in targeted online advertising, as well as forming a
new covariate to describe recent behaviour in a formal modelling process we will set
out in the next chapter.

We introduced more statistical rigour to the existing algorithm, while softening
some of the strict rules in place for labelling. We aggregated the original data to cre-
ate new data sources, from which we added a new behavioural trait for the depth of
visit to get a new perspective on the browsing behaviour intent. This will help with
the interpretability of the dimension reduction algorithm, as it add further insight
into the user’s journey.

The next step with the intent score algorithm is to broaden the frequency at-
tribute to look at behaviour within each category, which differs to the approach of
comparison with the entire population in this chapter. We believe this add true vari-
ation within each page visit category, where the behaviour may vary significantly.
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Chapter 4

Generalised Linear Models

4.1 Chapter overview

In this chapter, we will discuss formal modelling techniques which we will apply
to the data we described in Section 2.2. Namely, we introduce the generalised lin-
ear model (GLM), review key elements of GLM theory and introduce zero-inflated
models, motivated by the response variable in our application. This type of model
is used to split the data based on structural and real zeros.

In the Adword data set, a keyword can only obtain clicks if it has impressions for
the specified hour, i.e. the advert is actively shown to a user. We have discovered
from earlier exploratory analysis that a number of observations have zero impres-
sions, and hence zero clicks. A structural zero is an observation that has the combi-
nation of zero impressions and necessarily zero clicks, whereas a real zero has one
or more impressions and zero clicks. This led us to consider zero-inflated models,
variants of GLMs, that may provide more accurate modelling of our data set, where
our data exhibits an excess number of zeros.

We will compare the standard GLM and zero-inflated modelling approaches, and
provide results when applied to our data set. We will use a range of types of covari-
ates, and interpret the results from the models we create. We will explore how to
assess each model type, and provide model diagnostics as well as statistical evalua-
tion measures. We explore the Poisson distribution for the response count variable.

It is important to note why we need a model with a “good’ fit. The structure of the
model describes the patterns of association and interaction. The size of the model
parameters determine the strength and importance of the effects. Inferences about
the parameters evaluate which explanatory variables affect the response variable y,
while controlling effects of possible confounding variables.

4.2 Generalised Linear Models

The main components of a GLM are [33]:

1. A response data vector,

y = (]/1/ sty yﬂ)/
assumes a probability distribution that belongs to the exponential dispersion
family (EDF),
6 —b(6
Plyie, ) =exp | L ety

2. A set of fixed explanatory variables, X, and estimated coefficients, B, form a
linear predictor,

N = XB. (4.1)
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3. A link function, g, specifies a function of the expected value of Y, that is used
to model the data, by relating the explanatory variables to the response distri-
bution,

Ely|B,x] = u = h(y) = h(Xp) where g = h™".

Let’s motivate each component of a GLM.

4.2.1 Exponential dispersion families

We wish to model a functional relationship between two variables, where the value
of one variable, y, depends on another, x, through the value of a function f(x). In
general, knowing x will not make us certain about the value of the response variable
y. To model the uncertainty, we take a general probability distribution on y,

P(ylf, xk),

where the function f(x) is a ‘parameter’ for the distribution. One way of expressing
this relationship is via the expectation of y,

Elylf, x k] = f(x),

which can be a suitable constraint for the model.

We need to restrict the model space for tractability, so we let the output space
(response) be Y C R and let the probability density function (pdf) be an EDE. We will
explain the key properties of an EDF and how we use them to define a component
of a GLM. Advances in statistical theory and computer software allow us to use
methods that can handle EDF distributions.

We will assume that the observations, y, have probability distribution with pa-
rameter 6. The distribution belongs to the exponential dispersion family if it can be
written in the form:

y6 —b(6)
¢

where 6 € R is the natural parameter, ¢ € R>¢ is the dispersion parameter, b : R —
R and c : R X R>p — R are both functions to be determined.

Many well-known distributions belong to the exponential dispersion family in-
cluding the normal, binomial, Poisson, exponential, gamma and inverse Gaussian.
We will concentrate on the Bernoulli and Poisson distributions. Table 4.1 displays the
specific components to verify that they belong to the EDF. To progress with forming
the basis of GLMs, we derive the key results for EDFs - the expectation and variance.

P(y[0,¢) = exp +c(y, ¢) (4.2)

Lemma 4.2.1. If Y has a probability distribution function in the form of Eq 4.2, then for all

0,9,
E[Y] = () (4.3)

Var[Y] = ¢b" (6) (4.4)
Proof. We know that,
/yP(J/!f%cP) dy =1,
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Component Bernoulli Poisson
P(y) P(ylm) = m¥(1—-m)'¥ | P(y|r) = YD
0 log (%) Tog (1)
¢ 1 1
b(6) —log(1—m) A
(v, 9) 0 — log(y!)
E[Y] = A
Var[Y] (1 — ) A
Natural response W= 112?(;'7()7]) 1 =-exp(n)
Natural link n = log (%) = logit(m) n = log(u)

TABLE 4.1: Bernoulli and Poisson distributions as members of the
exponential dispersion family.

so we begin by integrating Eq 4.2 over all possible values for y,

1= /yeXp [y@ _¢b(9) +C(yr¢)} dy

eo 5] fen[ o]

hence,

oo 9] - o [ o]

taking the natural logarithm gives us,

b(6 0

b(6) _ log {/exp []/ + C(y,(p)} dy} . (4.5)
¢ y ¢

Eq 4.5 determines b in terms of ¢, 8, c. By differentiating Eq 4.5 w.r.t. 8, and using the

Leibniz integral rule to pull the derivative into the integral (as the space of y is not a

function of 6) below we see that

o] ey el ool

b'(0) 1 y Y6
¢ J,exp [yg + c(y,cp)} /y‘l’ P LP " c(y,cp)] dy
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Rearranging gives us,

O [ ep [0y, )] ay

9 9 9
= ;/ny(yIGAP) dy
= Elvio,g)
hence,
E[yl6,¢] = b'(6). (4.6)

Differentiating Eq 4.6 w.r.t. 6 and again using the Leibniz rule below gives us,
d ., _d y6 —b(0)
75 0] =25 {/yyexp [ +e(y,9) | dy

¢

b'(0) = ;9 {eXP [_Z@} } x /;yeXp [y; +C(yr¢)} dy
d
a0

oo 218 fon 2 cua]
_ ‘b;f") X exp [_bw)] x /yyeXp Hf +C(y,<l>)] dy
2

- _b;)(g | yexp [yg (Pb(G) +C(y,¢)} dy
+;) [V exp [y _(Pb(e) +C(y,4>)] dy
_ _b;)(g) x [b'(0)] +;)/yy2 exp [y _(Pb(e) +C(y,4>)] dy
- ;) {— [6'(0)] +/yyze><p {y _(Pb(g) +C(y,¢)} dy}
= & {—E[¥Io.gP + E[¥?l0, 9]}
_ ;)Var[Yw,(p]

O]

These are useful properties as knowing the general form of the expectation and
variance of any exponential dispersion family can be used to determine features
that you may be looking for in your data. In specific situations, we can use these
equations to find the asymptotic properties of the maximum likelihood estimate.

4.2.2 Linear predictor and the link function

Another restriction we make is that instead of modelling the expected value directly,
the relationship between the response and explanatory variables, i.e. Eq 4.1, need not
be of the simple linear form. We will introduce an injective differentiable response
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function h, relating § = E(y) = p to the linear component, 7 = X, such that

= E[ylp,x] = h(in) = h(XB).

We can also write that,

g(u) =XB,

where ¢ = h! is the link function. Some examples are the identity, log, logit, pro-
bit. When the link function makes the linear predictor 7 the same as the canonical
parameter 6, we say that we have a canonical (natural) link.

We will show how to find the natural link. We know from EDFs, Eq 4.6,

u = E[Y[6,¢] = 1/ (6) (47)

and we know by definition of the GLM,

— E[Y[B,x] = h(XP). 438)

By combining Eq 4.7 and 4.8,

h(XB) =1'(0),
and simplifying our choice for h, i.e. h = v,

h(XB) = h(0)

0 = XB,
hence,
g= ()"

We display the natural link functions for the two distributions, Bernoulli and Pois-
son, in Table 4.1. In practice, we require a considerable amount of computation
involving numerical optimisation of non-linear functions. Procedures to do these
calculations are now included in many statistical programs.

4.2.3 Maximum likelihood estimation

To fit a GLM to a data set, we need a method to estimate the parameters f. We
will outline the approach to finding the maximum likelihood estimate for both the
logistic and Poisson regression models.

We begin by finding the log-likelihood function for a logistic regression model,
by stating the Bernoulli distribution from Table 4.1 for a single observation y;:

P(yilm) = (1 - 7)Y

We can write the likelihood function, /, given our data, y = (y1, ..., ¥») as [34]
I(rt]y, x) H /(1 — ;)Y (4.9)

Yi
_H<1—7r> 1— ). (4.10)
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From Table 4.1, we have the natural link for the Bernoulli distribution, and we can
rearrange as:

log (1 Tﬂi) =1 =xP (4.11)
1
1—m= TFexp (5f)° (4.12)

Substituting Eq 4.11 and 4.12 into 4.10,
18) =1 Tlew (B [ 1ot
=1 1+ exp (xiB)

hence the log-likelihood, L = log(!), for the logistic regression model is

1) = Lotos { e ()" [+ ) |
= éyixiﬁ - élog [1+exp (x:B)]. (4.13)

To find the likelihood function for Poisson regression, we begin by stating the
Poisson distribution from Table 4.1 for a single observation y; [35],

A exp(—A;)
P(yilA) = —p :

yi!
Thus, we can write the likelihood, , given our data as,
n A exp(—A;)
IAly,x) =T] [lylz
;!

i=1

n_\Yi n
() £9)
i—1 Yi i=1

Using the natural link for the Poisson distribution from Table 4.1, A; = p; = exp (x;B),
the log-likelihood, L, is

i=1 i=1 i=1
L(B) = Y yixip—)_exp (xiB) — )_log(vi!). (4.14)
i=1 i=1 i=1

To maximise the log-likelihood functions, Eq 4.13 and 4.14, we set the partial
derivative with respect to p equal to zero, i.e. g—/% = 0. We call this the score equation.
For p components of j, there will be p such equations to solve. There is no analytic
solution, hence we must rely on numerical methods. There is an algorithm to help us
solve this set of equations called “iteratively re-weighted least squares’ (IRLS), which

is based on the Newton-Raphson algorithm [36]. The key steps are listed below:
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1. Guess the estimates for (%)

2. For the log-likelihood function, L, evaluate the vector of partial derivatives

L (B(O)), equate the result to zero and solve.

3. Update the values of B using the information from the partial derivatives to
find BV

4. Tterate steps 2-3 until the difference between consecutive estimates, i.e. |3() —
ﬁ(l_l) | < €, where € is some threshold close to zero.

Further, we can use the second partial derivatives, with respect to 3, to obtain Fisher’s
information and properties such as the expectation and asymptotic distributions. In
our analysis, we will not implement these methods directly and we will use standard
methods from R [37].

4.2.4 Coefficient estimates and prediction

Given a fitted GLM, such that we have the estimated coefficients f, then for a new
predictor variable xp, we can compute the predicted value of the corresponding re-
sponse 1o using the model as:

Elyo] = h(fo) = h(xg ). (4.15)

The coefficient estimates, B, inform us about the relationship between the indepen-
dent variables and the dependent variable.

For a logistic regression model, the dependent variable is on the logit scale, i.e.
we predict the log odds using Eq 4.15. Because these coefficients are in log-odds
units, they are often difficult to interpret, so one way to interpret the estimated co-
efficients is to find the odds ratio, by the transform, ePi. These estimates quantify
the amount of increase in the predicted odds ratio that would be predicted by a 1
unit increase in the covariate, when maintaining all other covariates constant. Given
the different scales and types of our covariates, these estimates are not comparable
across variables. We use the the estimates to gain insight into how the model would
behave for a change to each covariate independently. Note, for the independent vari-
ables which are not significant, the coefficients are not significantly different from 0,
which should be taken into account when interpreting the coefficients. For this we
inspect the p-values testing whether the coefficients are statistically significant.

4.2.5 Model diagnostics

In GLMs, we can assess the ’fit" of the model using residuals, by examining the
adequacy of the model and investigating potential outliers. Residuals are a mea-
sure of the distance of the observations from the fitted regression line. We interpret
the residuals as the quantity of the response predictions that are not explained by
the model. An ideal residual in linear regression, would look like an i.i.d. sample
that exhibits homogeneity, normality, and independence. For GLMs, we will look
at two types of residuals: raw and Pearson. The Pearson residuals account for het-
eroscedasticity by standardising the residuals.

1. Raw residual, for an observation y; and model prediction fi;:

ri =Y — f
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2. Pearson residual, for an observation y; and model variance function V (fi;):

Vi — f

p_
1y = e

VV ()
4.3 Zero-inflated models

We can assume that the number of clicks a keyword receives every hour could be
modelled with a Poisson distribution. We know from Section 2.2.2 that there are
a high number of observations in the Adwords data set that have zero clicks - over
99.3%. We will explore traditional Poisson regression models, however we may ex-
pect them to perform poorly in this application due to the considerable number of
Zeros.

We will explore the zero-inflated Poisson model (ZIP), which can be used in ap-
plications where the count data exhibits over-dispersion and excess zeros. ZIP the-
ory is provided and applied to the context of manufacturing defect data [38]. This
example assumes that the zero-inflated distribution is appropriate, where the pop-
ulation considered consists of two sub-populations based on two states: one state
where the possibility of a defect is extremely rare and another where defects are
possible but unlikely. Other areas of application for ZIPs include road safety, species
abundance and sexual behaviour [39], [40], [41].

As discussed previously, if we wish to predict clicks, our data exhibits structural
zeros. We display a summary of the joint distribution for impressions and clicks
in Table 4.2, where 94.9% of our observations are structural zeros. A structural zero
occurs when it is inevitable there will be zero clicks as are there are zero impressions,
whereas real zeros occur by chance. The counts for clicks lie in the set, yi; € Z>o.

We have a high number of structural zeros in our data set, and one modelling ap-
proach would be to regress on the set of observations where x;; > 1. However, the
aim of our study was to attribute a prediction to every keyword. The subjective gen-
eration of keywords means that measuring the potential performance of keywords
even with very few impressions, could be paramount to a successful advertising
campaign.

Similarly to GLMs, ZIP regression can be performed on both numeric and cate-
gorical variables. Let’s introduce the mixture distribution and regression models for
ZIP.

Clicks
Y =0 Y > 1 Total
Impressions Xp = 0 | 230555 (94.9%) 0 230555
X > 1 10610 (4.4%) 1857 (0.7%) | 12467
Total 241165 1857 243022

TABLE 4.2: A table displaying the joint distribution of impressions
and clicks.

4.3.1 Zero-inflated Poisson model

Suppose that for each observation y;, there are two possible cases. In the first case,
the count is zero with probability p;, i.e. a binary distribution that generates the
structural zeros. However, in the second case, the counts (including zeros), are gen-
erated by a Poisson model with mean A; which occurs with probability 1 — p;. We
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want a non-constant probability p; and the mean A; to differ for each response y; in
the zero-inflation and Poisson count model. We have an independent response vari-
able, Y = (y1,Y2,...,Yxn), where A; and p; change with the value of 7, so formally:

yi=20 with probability p;,
y; ~ Poisson(A;) with probability 1 — p;.

The assumed distribution combines the Poisson distribution and the logit link func-
tion. The probability distribution function of the ZIP model for a random variable,
Y, can be written as:

pi+(1—pi)exp(=A;) yi=0

P(Y = yilxi, pi) = {(1 B p‘)eXp(—/\i)/\?i yi> 1
! vi! =

where the outcome variable y; has any non-negative integer value, A; is the expected
Poisson count and p; is the probability of a structural zero for the iy, observation. We
can express both the mean and variance of the ZIP model as:

E[Yi] = (1 —pi)A;
Var[Y] )\1(1 — Pz)(l + pi)\i)-

The ZIP model has two components, one that models the count distribution when
impressions are larger than zero as a function of covariates x;. The other component
models the behaviour of p as a function of covariates, z;. The two link functions for
a ZIP are [42]:

log(0) = <7 19
logit(p;) = log (1 ﬁ}) =z (4.17)

1

where  and 1y represent two coefficient vectors of covariates x; and z;, where z; C x;.
We use the log link of the mean A; for the Poisson model, and the logit link function
of p; to model the structural zeros. We will investigate if p; varies with i, however
in our application we may see that p is constant because of the impression and click
relationship. The ZIP model should enable us to better understand the effect of
covariates by distinguishing the effects of each specific covariate on structural zeros
and on the count response.

4.3.2 Maximum likelihood estimation

The standard technique to estimates the parameter for a ZIP model is based on the
likelihood, similar to Section 4.2.3. We can express the joint likelihood, /, as [42],

I(p,Aly,x) = Hp(yi!xifpi)

ex A A
_H pi+ (1= pi)exp (- A)]XH (1_pl)p(y.l)l
yi>1 B
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We can rearrange Eq 4.16 and 4.17 to the form of:

Ai = exp <xlTﬁ) (4.18)

1fp = exp (/7). (419)

Further rearrangement of Eq 4.19 gives us,

© ltexp(zf) '
1
. — 421
Pi=1 + exp (z]'y) (421)
Hence the log-likelihood function, denoted by L = log(I), is
A
L(p,Aly,x) Z log [pi + (1 — pi)exp (—=A)] + ) log (1= pi) exp (—Ay) yf,
yi>1 e
- Z log [pi + (1 — pi) exp (—A)] + ) log(1 - p:)
=0 yi>1
+ Z log [exp (—A:)] + Z log (/\Zyi) — Z log (yi!)
yiz1 yi=1 yi>1
Z log [pi + (1 — pi) exp (=A:)] + ) log(1 — pi)
yiz1
—Z/\—I—Zyllog — ) log (v!)
yi>1 yi>1 yi>1

Substituting in Eq 4.18,

L(p,Aly,x) Z log {Pz (1—pi)exp [— exp (X-Tﬁ)]} ) log(1—pi)

o1
_ y;l exp (xi ) + ygl yilog [exp ( )} y;l log (v;!)

= Zlog{pi+(1—pi)exp [—exp( )]} 21108 1—pi)
=0 Yiz
—Zexp( )+Zyﬁc,3 Zlogyz

yi>1 y;i>1 y;i>1
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Substituting in Eq 4.20 and 4.21,

:Zk,g{ P<ZT7>]+

1+exp (z]7)
+ Z og

- yé li)g {exp (27) +exp [~ exp (x]B) ]} - y;o tog [1+ exp (]7)]
_ y; log |1+exp (2/7) | + yg [yixTp —exp (x7B)] - yg log (y)
. y;) log {exp (=) +exp [—exp (/)] } - ygo log [1-+ exp (1)

+ ¥ [yaTB—exp (:7B)| = L log (vi1).

yi>1 yi>1

1(%20):{1 i =

0 otherwise

1+ ex; (lefy)] P [_ P (xlT’Bﬂ }
+ ¥ |vixlB—exp (x[B)| = ¥ log (i)

yiz1 yi>1

1 +exp (zI)

Let

be an indicator function to determine observations that take the value 0. Then we
can write the joint log-likelihood function for the ZIP regression model as:

= L1 = 0)tog {exp (+77) +oxp [~exp (78)]}
- Zlog [1 +exp (27)]

+:1_1 0) [yixT8 —exp (78]

Since the term involving y;! does not affect parameter estimation, we remove it from
the equation above. We can find the derivatives of L, but the solutions are not ex-
plicit, hence we must use a numerical method to solve them. In practice, this will be
the EM algorithm which is well known, and we will not discuss in this thesis [43].

4.3.3 Prediction

Given we have parameter estimates, ( B, %), we can use the ZIP model to predict the
response variable. The expectation of y; given x; is [42],

Elyilxi] = (1— p)e™

where p; is the predicted probability of observation i being a structural zero, and p;
is estimated by the following,

R ezi’?

Pi= 1
The coefficients are interpreted in a similar way to standard GLM theory, as in the
case of a ZIP model, the two components are a simple logistic regression and Poisson

count model.
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4.4 Application to Adwords data set

The application of the GLM theory we will use is the data set that we explored in
Section 2.2.1, which consists of the performance of keywords in online advertising.
We have a number of suitable covariates, and finding a model with a ‘good fit’,
would influence new keywords and bidding strategies to improve the results of the
campaign. First, we randomly split the full data set into a training and test set,
using the ratio 60 : 40. We do this so that we can train our models, and then use
unobserved test data to check for model overfitting.

We will model the dependent variable that counts the number of clicks for a key-
word, based on a number of key covariates. We select the variables in Table 4.3,
where the target variable yy;, ClicksDelta (a count outcome), or i, Clicks (a binary
outcome), depending on the model type. The explanatory variables that we consider
are driven from the data exploration, from which we know that to obtain a click for a
keyword, impressions of the advert must be served to users, xi;. We also know that
there are two main types of keyword, my;, an exact or broad match. We manually set
the maximum price we will pay for a click, ¢k, so we will determine if this affects
the performance. The performance metrics for a keyword are obtained over time, t,
and we will use the hour to look for time-based effects on clicks. We have discretised
the time variable into 6-hour intervals, /i, to represent different parts of the day as
shown in Table 4.3. While finer discretisations would preserve more information
from the original variable, a model that updates every hour would not be practical
to implement. As a compromise, discretising into 6 or 12 hours windows could pro-
vide insights into the morning, afternoon, evening and night time behaviours. For
the majority of observations, we do not have a value for the creative quality score,
gxt, however we know from the data exploration that a high score correlates with
high keyword performance. A covariate that we could explore in future research is
a transformation of the count of impressions, x¢, to a binary variable of zero impres-
sions or at least one impression. However, in this application the advertiser pays per
click, emphasising the importance of the impression count, hence predicting a count
over a binary outcome would be more useful in practice.

We use the GLM theory we set out in this chapter, and we want to understand
which variables are strong predictors for the outcome we wish to model. Specifically,
we will fit a logistic and a Poisson regression model, followed by a zero-inflated
Poisson model. We use the same covariates for each of the standard GLM models,
and for the ZIP model we must add the extra zero-inflated covariates.

Variable Type Notation
ClicksDelta Numerical | yi € Z>o
) ) . 0 yi=
Clicks Binar =
y Yt 1 yi>1
= {Above average, Average,
CreativeQuality Categorical it = {Above average, Av .g
Below average, Not Applicable }
ImpressionsDelta Numerical | x € Z>g
KeywordMatchType | Binary my: = {Exact, Broad }
MaxCpc Continuous | ¢k = [0,15]

hy = {12am-6am, bam-12pm,
HourOfDay Categorical i = {12am ? P

12pm-6pm, 6pm-12am }

TABLE 4.3: The variables we selected for modelling in this section.
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4.4.1 Logistic regression

We present the formulas to indicate which covariates we use to fit the logistic regres-
sion model to our training data set [37]. Eq4.22 and 4.23 display the covariate names
and equivalent notation. We wish to model the dependent variable of at least one
click or no clicks for a keyword, ;. We assume all variables are independent for
this simple model, and do not fit any interactions between covariates. We will keep
the covariate structure consistent for all types of models we explore in later sections.

logit(Clicks) = a + B1ImpressionDelta + prKeywordMatchType
+ BsMaxCpc + Bs4CreativeQuality 4+ BsHourOfDay
logit(Jk) = a + P + Pormus + Packt + Paqie + Pshie

(4.22)
(4.23)

The baseline level for each factor variable is shown in Table 4.4. We present a
summary of the fitted model in Table 4.5, the coefficient estimates and standard er-
rors, along with the p-values to assess whether the covariates are significant. Hence,
we can see that all variables, except when hy, is either "12pm-6pm” or "6pm-12am’,
are significant at the 5% level in this model. In future models, we could split /i,
into a binary variable representing “12pm-12am” and “12am-12pm’, such that all co-
variates may be significant in the model. The final row provides the log-likelihood,
—4056.13, for the fitted logistic regression model, which we will use to compare in
Section 4.4.4.

Symbol Covariate
My KeywordMatchType - Broad
Gt CreativeQuality - Average
iyt HourOfDay - 6am-12pm

TABLE 4.4: The baseline levels for each factor covariate.

Symbol Covariate B estimate | SE p-value Odds ratio
« Intercept 21941 | 01149 | 2x 1016 0.1115
Xt ImpressionDelta 0.0681 0.0025 | 2x10°1 1.0704
My KeywordMatchType - Exact -0.2498 | 0.0765 0.00109 0.7789
Ct MaxCpc -0.1677 ] 0.0079 | 2x 1071 0.8456
CreativeQuality - Above average 0.1918 0.0826 0.0202 1.2114
Grt CreativeQuality - Below average -0.7337 0.1129 | 8.13 x 10~ 10 0.4801
CreativeQuality - No score 24667 [0.1377 | 2x10°1° 0.0849
HourOfDay - 12am-6am -1.4095 | 0.1402 | 2x 107 0.2443
By HourOfDay - 12pm-6pm 0.0723 0.0868 0.4048 1.0750
HourOfDay - 6pm-12am 0.0332 0.0863 0.7006 1.0337

Log-likelihood -4056.13

TABLE 4.5: The parameter estimates for the fitted logistic regression

model.

The odds ratio column in Table 4.5 provides the exponential of the coefficient
estimates, and we use this to interpret each covariate. For every unit count of an
impression for a keyword, there is an increase of 1.07, on the likelihood of a click,
which is sensible as there is then more chance to obtain at least one click. The exact
match type reduces the chance of click by 0.78, as opposed to the reference category
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of broad match type. One reason for this could be that a broad match type may cause
more impressions (as it doesn’t have to be an exact match to the search term), in
turn more chance for a click. Alternatively, the keywords are generated subjectively,
hence they might not match the viewer’s opinion on the advert, i.e. the exactness of
the match might not be accurate based on subjectivity.

For a unit increase of ¢k, the odds of a click decrease by 0.85, leading us to con-
sider reducing the maximum cost we set. This may at first appear counter-intuitive,
however we know from the distribution in Figure 2.2i that ¢y has a high count of
values at the maximum. The response to cy; does not appear to be linear, as below a
threshold we would not win any bids to show an impression at all, hence we should
be careful with the interpretation. Further analysis would be required to assess the
impact of cost. The covariate CreativeQuality, qx;, shows an odds increase of 1.21
for above average scores, a decrease of 0.48 for below average scores, and a large de-
crease for a no score of 0.08. The creative quality score appears to be a good indicator
of keyword performance, as better scores intuitively generate more clicks. There is a
large decrease of odds of 0.23 for a click in the hours of 12am-6am, this is most likely
due to a lack of online traffic through the night.

Starting with model diagnostics, Figure 4.1a shows a scatter plot of binned resid-
uals from the training observations versus the fitted values from the model. The
residuals have been grouped and aggregated to find the average residual over an
interval of similar predicted values from the model. The grey lines represent +2
standard error (SE) bands, which we would expect to contain about 95% of the ob-
servations [44]. This model does appear reasonable (though it is tricky to tell with
the bunching on the left hand side of the plot), the majority of the values fall within
SE bands. The bunching occurs due to the majority of observations with low prob-
abilities of obtaining a click. There is an extreme value in the bottom right of the
plot, suggesting predictions are unstable at the higher probabilities. We applied the
titted model to the test data set and Figure 4.1b shows a histogram of the predicted
probabilities. The probabilities are heavily skewed towards zero, which is intrinsic
in the data set as the labels are unbalanced and skewed towards no clicks, so we
must proceed carefully when using these predictions.

We discretise the predictions such that we can obtain a confusion matrix, with
key statistical metrics which provide an interpretable summary of the predictive
capability of the model. Using Figure 4.1b, we choose a fixed threshold of 0.1 to de-
termine the binary outcome, i.e. click or no click. Further tuning could be done in
future work to find an optimal threshold if a binary outcome was required in prac-
tice. As the proportion of click versus no click in our data is 0.7%, a 10% chance of
a click seems reasonable and note that cost is only incurred upon a click, so we can
relax this threshold. Table 4.6 displays the confusion matrix for the click predictions.
Note that the performance here is determined by the arbitrary threshold of 0.1 cho-
sen above, and we see that our model under predicts but with a high number of true
negatives. In future work we could explore calibrating this threshold to mitigate this
under-prediction. If we require a binary outcome, however we have chosen a value
for illustrative purposes and to make direct comparisons between different types of
models. From these values, we can easily find the accuracy (99.2%), recall (44.9%)
and precision (54.6%). We prioritise obtaining a high value for precision, whereas
we are not concerned about recall until budget constraints are introduced.
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FIGURE 4.1: Plots relating to the fitted logistic regression model.

Reference yy;

0 1 Total
. T0 59996 | 200 | 60196
Predicted Ji 206 | 241 | 537

Total 60292 441 60733

TABLE 4.6: The confusion matrix for the click predictions from the
logistic regression model on the test set.

4.4.2 Poisson regression

The Poisson regression model fitted to our training data set is given below in Eq 4.24
and 4.25, which display the covariate names and equivalent notation. We have mod-
elled the dependent variable of the number of clicks for a keyword, yy;. We fit the
same covariates as the logistic regression model, where we assume all variables are
independent in a simple model, and do not fit any interactions between covariates
[37].

log(ClicksDelta) = a + B1ImpressionDelta + f,KeywordMatchType
+ BsMaxCpc + B4CreativeQuality + fsHourOfDay  (4.24)
log(ykt) = & + Prxue + Pammye + Packe + Padie + Pshie (4.25)

The Poisson regression coefficients for each of the variables are given along with the
standard errors, and p-values for the coefficients in Table 4.7. We interpret the factor
on the expected count outcome, like in a standard linear regression model. Similar to
the logistic model, we see that all variables except hy; = "12pm-6pm’” are significant
at the 5% level in this model. Similarly, this covariate value was not significant in the
logistic regression model, where both models had the same baseline of ‘6am-12pm’.
In future work, this is a further suggestion that combining these values might lead
to a better model fit. The final row provides the log-likelihood, —6441.489, for the
fitted Poisson regression model.

For every unit count of an impression for a keyword, there is a smaller increase
of 1.01 on the click count compared to the logistic model. The exact match type,
similarly reduces the click count by a factor of 0.27, as opposed to the reference
category of broad match type. For a unit increase of cg;, the click count decreases by
a factor of 0.77, leading us to consider reducing the maximum cost we set. Similarly
to the logistic regression model, below a threshold we would not win any bids to
show an impression at all, hence we should be careful with the interpretation and
further work is required to assess maximum ad cost. The variable CreativeQuality,
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gxt, shows an high increase of 1.56 for above average scores, a decrease of 0.41 for
below average scores, and a large decrease for a no score of 0.11. In agreement
with the logistic model, the creative quality score is a good indicator of keyword
performance. The categorical variable HourOfDay, hy;, shows a negative impact on
the expected click count for early morning and late evening, whereas the afternoon
times are not significant compared to the reference of morning time. This suggests
that outside of working hours, keyword adverts are performing worse, which could

be due to less online traffic.

Symbol Covariate B estimate SE p-value | Count factor
o Intercept -0.2353 | 0.0635 0.0002 0.7903
Xt ImpressionDelta 0.0058 0.0001 | 2x 1071 1.0058
My KeywordMatchType - Exact -1.3000 0.0480 | 2x10°1° 0.2725
Ct MaxCpc -0.2612 | 0.0070 | 2x10°1® 0.7701
CreativeQuality - Above average | 04474 | 0.0546 | 2 x 101 1.5643
Ikt CreativeQuality - Below average | -0.8914 | 0.0811 | 2x 10 ® 0.4101
CreativeQuality - No score 22953 [ 0.0990 | 2x10°1® 0.1007
HourOfDay - 12am-6am 21878 [ 0.1141 | 2x10°1'° 0.1122
By HourOfDay - 12pm-6pm -0.0286 0.0458 0.5322 0.9718
HourOfDay - 6pm-12am -0.40490 | 0.0556 | 3.2 x 10~ 13 0.6670

Log-likelihood -6441.489

TABLE 4.7: The parameter estimates for the fitted Poisson regression
model.

The Poisson model response predictions are calculated using the predict function
in R, then rounded the nearest integer [45]. Figure 4.2a shows a scatter plot of the
response (raw) residuals from the training observations versus the fitted values from
the model. A good fitted model should have a spread that increases with fitted val-
ues, which on the whole we do observe, however the plot is skewed with extreme
values in the bottom right. A histogram of the predicted counts from the fitted Pois-
son model on the test data set is shown in Figure 4.2b. There are very few counts
above zero, as we expect from earlier modelling, but we do have a wide range of
predicted counts up to 27 clicks for an observation.

Tables 4.8 and 4.9 display two versions of the same confusion matrix for the click
count predictions on the test observations. Our Poisson model, similarly to the lo-
gistic model, under-predicts the click counts. As seen in the confusion matrix where
the top right of the matrix contains larger values than the bottom left. Here, the
over-prediction of zeros could be due to an excess of zeros in the data set, leading us
to consider and explore the zero-inflated model structure.

Reference v

0 >1 | Total
0 60162 | 330 | 60492
>1 130 111 241
Total 60292 441 60733

Predicted 7

TABLE 4.8: The confusion matrix for the click predictions from the
Poisson regression on the test set.
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FIGURE 4.2: Plots relating to the fitted Poisson regression model.

Reference yy;
=0 | =1|=2| >3 | Total
=0 | 60162 | 277 | 40 | 13 | 60492
=1 129 38 | 15 | 19 201
=2 1 1 1 15 18
>3 0 0 1 21 22
Total 60292 316 57 68 60733

Predicted 1

TABLE 4.9: The confusion matrix for the click predictions from the
Poisson regression on the test set.

4.4.3 Zero-inflated Poisson model

The fitted zero-inflated Poisson regression model to our training data set is given
in Eq 4.26 and 4.27; note the separation of the logistic (zero-inflated) and Poisson
(count) components of the ZIP model [46]. We use only a single covariate of im-
pressions, x; for a keyword to determine the structural (inflated) zeros. The odds
of zero clicks is a function of the number of impressions. For the count model, we
wish to model the dependent variable of the number of clicks for a keyword, yy;.
We fit the same covariates as in previous sections for the count model component,
where we assume all variables are independent in a simple model, and do not fit
any interactions between covariates.

logit(pi) = a + P1xys (4.26)
log(Ai) = a + B1xke + Porige + Back + Baqre + Pshit (4.27)

For both components of the ZIP model, the coefficients for each of the covariates are
provided along with the standard errors, and p-values for the coefficients in Table
4.10. We see that the majority of the covariates, except some categories of g;; and
hyt, are significant at the 5% level in this model. The final row provides the log-
likelihood, —4705, for the fitted ZIP model.

The zero-inflated aspect of the model shows that the intercept and impression
covariate are not significant in predicting the structural zeros. The calculations in
Table 4.11 show that all the zero-impressions are treated as zero-inflated clicks, plus
69% of the single-impression data. That does seem relatively sensible in the context.
We propose that the model for p; is more complex than a purely linear relationship
on impressions. We found that p; is estimated to be large for small impressions, but
then decays rapidly. This agrees with the estimated coefficients of a big intercept
and big negative slope.

On the basis of the estimates for p;, the zero-inflation is primarily separating
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out the no-impression data as a structural zero. A potential reason for the insignifi-
cance of the coefficients in that part of the model is that the relationship is not well
expressed linearly in terms of impressions, and perhaps a logical factor like “Impres-
sions=0" might give a cleaner fit.

| Symbol Covariate Bestimate | SE | p-value
Zero-inflated model Odds ratio
o Intercept 17.59 51.36 0.732 4.3 x 107
Xkt ImpressionDelta -16.79 51.36 0.744 5x 1078
Count model Count factor
b Intercept -0.2578 [ 0.0653 | 7.9 x 107> 0.7727
Xit ImpressionDelta 0.0054 | 0.0001 | 2 x 10°1® 1.0054
i KeywordMatchType - Exact -0.7677 1 0.0491 | 2 x 1071 0.4641
Cit MaxCpc -0.0946 | 0.0073 | 2x 1071 0.9097
CreativeQuality - Above average 0.1679 0.0551 0.0023 1.1828
it CreativeQuality - Below average | -0.9372 | 0.0813 | 2 x 107 1° 0.3917
CreativeQuality - No score -0.0218 | 0.0946 0.8177 0.9784
HourOfDay - 12am-6am -1.3451 [ 0.1149 | 2 x10°1® 0.2605
it HourOfDay - 12pm-6pm 0.0012 0.0461 0.9789 1.0012
HourOfDay - 6pm-12am -0.0492 0.0561 0.3803 0.9520
Log-likelihood -4705

TABLE 4.10: The parameter estimates for the fitted zero-inflated Pois-

son model.
Xkt pi
0 1
1 0.69
2 | 1.1x1077
3 [58x10°P

TABLE 4.11: A table of output probabilities from the logistic compo-
nent of the ZIP model.

In the Poisson count model, for every unit count of an impression for a keyword,
there is an increase of 1.01, on the expected count rate, which is a small increase
but intuitively justified for the count model. The exact match type, reduces the click
count by a factor of 0.46, as opposed to the reference category of broad match type.
For a unit increase of cy;, the click count decreases by the factor of 0.91, leading us
to consider reducing the maximum cost we set. The variable CreativeQuality, qy;,
shows an increase of 1.18 for above average scores and a decrease of 0.39 for below
average scores, whereas the no score category is not significant in the model. The
categorical variable HourOfDay, hy;, shows a decrease by the factor of 0.26 on clicks
for early morning, whereas other times are not significant compared to the reference
of morning time.

Figure 4.3a shows a scatter plot of the response residuals from the training data
set observations versus the fitted values. A good fitting model should have a spread
that increases with fitted values, which on the whole we do observe, however the
plot is skewed with extreme values in the bottom right. Figure 4.3b shows a his-
togram of the predicted counts, rounded to the nearest integer, using the fitted Pois-
son model on the test data set observations. There are very few counts above zero, as
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we expect from earlier modelling, but we do have a wide range of predicted counts
up to 117 clicks for an observation. Table 4.12 displays a variation on a confusion
matrix for the click count predictions on the test observations. All 57721 structural
zeros were predicted a zero count by the ZIP model. Our ZIP model under predicts
the counts as reflected that the top right of the matrix contains larger values than
the bottom left. Here, we again observe an over-prediction of zeros, even with the
zero-inflated model. If we directly compare to Table 4.9, the ZIP appears to present
slightly better results with less over-prediction of zeros than the simple Poisson re-
gression model.
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(a) A residual plot of the response values. (b) Histogram of predicted counts.

FIGURE 4.3: Plots relating to the fitted zero-inflated Poisson model.

Reference vy
=0 |=1|=2| >3] Total
=0 | 6009 | 233 | 26 9 | 60363
=1 196 81 | 28 | 19 324
=2 1 2 2 17 22
>3 0 0 1 23 24
Total 60292 316 57 68 60733

Predicted 1

TABLE 4.12: The confusion matrix for the click predictions from the
zero-inflated Poisson model on the test set.
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4.4.4 Model comparison

To compare the fitted models we require measures to assess the fit of the model to
our data. The two criterion we will use are the Akaike Information Criterion (AIC)
and the Bayes Information Criterion (BIC), which are defined as:

o AIC =2p—2I
e BIC = plog(n) —2I

where p is the number of parameters in the model, I is the likelihood of the data
and 7 is the number of observations in the data. We want to minimise the AIC or
BIC values, i.e. we want to maximise the log-likelihood and minimise the number
of parameters used in the model. AIC has a mid sized penalty for large values of
p. Whereas, BIC has a severe penalty for larger models, when 7 is large. Table 4.13
displays the AIC and BIC values for our fitted models. While it is generally not
meaningful to compare likelihoods from such different and non-nested models, we
give the values to illustrate the general results. For both criterion, the logistic model
has the lowest AIC value of 8132, followed by the ZIP model with 9434, and the
Poisson model with the highest AIC value 12903.

We also provide the proportion of correctly identified zeros (true positives) and
non-zeros (true negatives) from our model predictions. All models score highly, with
over 99.5%, at identifying zeros correctly, whereas they differ greatly on identifying
correct non-zeros. The ZIP model performs stronger than the simple Poisson model,
39% versus 25%, but the logistic model has the best true-negative rate with 55%.
We must note that the predictions for the logistic model are determined by the arbi-
trary threshold that we set to determine a click or not click. Hence the proportions
would differ with different choices for the threshold and to note the Poisson model
predictions are rounded to the nearest integer.

Model AIC BIC Correct zeros | Correct non-zeros
Logistic | 8132.3 8233.39 99.51% 54.65%
Poisson | 12902.98 | 13004.11 99.78% 25.17%

Z1P 9433.82 | 9555.18 99.67% 39.23%

TABLE 4.13: A table of model comparison measures for logistic, Pois-
son and ZIP.

4.5 Discussion

We discussed the theory of GLMs, focusing on the family of distributions EDFs that
we can use to change the model based on our application. We explored properties
of EDFs, in particular the Bernoulli and Poisson distributions, as we use logistic
and Poisson regression for our data set. We set out how to inspect the output of
GLMs and looked at model diagnostics, i.e. the residuals, and we will explore model
selection methods in Chapter 6.

We discussed zero-inflated models and why they would be appropriate in our
specific application. We used the structural zeros in the data to aim for a better
fitting model. We outlined how to form a zero-inflated Poisson model and the key
differences from GLMs.

We applied the GLM theory to the Adwords data set by fitting the models to a
binary and count outcome variable of clicks. Overall, we fitted 3 models a logistic
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regression, Poisson regression and zero-inflated Poisson model. We use a consis-
tent set of covariates, interpret the coefficient estimates, assess the model fit through
residuals and prediction using a confusion matrix.

The models lead to similar conclusions in terms of coefficient interpretation and
under prediction of clicks, which is most likely due to the high number of zeros in
the model. There seems to be extreme values that provide skewed residual plots and
prediction distributions. To improve these models we hoped the zero-inflation com-
ponent could help, but the model still under predicts, so we feel that improvements
could be made in our variable selection.
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Chapter 5

Markov models for clickstream
analysis

5.1 Chapter overview

This chapter will discuss a set of tools we can use to analyse clickstream data. First,
in Section 5.2 we will motivate the discrete-time Markov chain and( describe the
key properties. Next, we extend this to a two-step Markov chain and then explore
hidden Markov models (HMMs). We pose a set of problems to be solved using
HMMSs, hence we explore the theory for the forward (5.3.1), Viterbi path (5.3.2) and
Viterbi training (5.3.3) algorithms for HMMs. In Section 5.4 we will evaluate the
models on a variant of the clickstream data described in Chapter 2.

A single visit to a website (or ‘session’) can be represented as a sequence of web
pages visited within that site. Statistical analysis of this data is a good example
of data science, which is particularly useful for web activity analytics, advertising
and marketing, and improving profit of e-commerce sites. Applying Markov chain
type models to clickstream data is well researched in the literature, where click-
streams can be viewed as browsing page type transitions and visualisation tools ex-
ist to display the results [15], [17]. Further, complex modelling of similar clickstream
data using hidden Markov models can be found in the literature, where nested and
Bayesian HMMs have been investigated to find the probability that a browsing ses-
sion contains an online purchase [20], [21].

5.2 Markov chains

We can consider the clickstream for a single session as a sequence of categorical vari-
ables (Xj, ..., X;), where X; is a random observation at time t. The simplest model
for a session could then be a Markov chain, where at any time t the user randomly
selects a new page, X;,1, and moves to that page according to a probability distribu-
tion over the available web pages which depends only on the current page, X;. We
can see an example of this state journey path in Figure 5.1. The Markov chain allows
us to summarise all of the movement through the website via the matrix of transition
probabilities P[X;;1, X¢|, which provides a simple mechanism for prediction as well
as an effective way to map the traffic through the site.

& OO @

FIGURE 5.1: A Markov chain.
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For a random variable X, we define a homogeneous Markov chain in discrete-
time, where the actual observations we denote as x, ..., x;, and the possible set of
observations as the set: X = {0, ...,op} [47]:

P(Xip1 = xe1|Xe = %6, Xpm1 = X421, ., X1 = x1) = P(Xpp1 = x041| Xt = x).

We specify this by the probability P(X;11 = 0j|X; = 0;) = p;; by the estimate p;;
where,

# 0’ following ojs

Pii = 7 all transitions

The values of p;; are the transition probabilities for the Markov chain and only de-
pend on the states 0;,0; and not on the time ¢ or the previous states 0;_1,...,01. The
key components for a Markov chain are summarised with the corresponding nota-
tion in Table 5.1. The initial distribution for the Markov chain is determined by

7'[(0]') = P(X1 = O]>
which we estimate by,

/
#0js atstep 1

o) = # all transitions at step 1°
Further properties of a Markov chain can be found in the literature [48]. We display
the dynamics of a Markov chain using a graph with nodes representing the categori-
cal states of the Markov chain and edges representing transitions. A simple example
can be seen in Figure 5.2a. There are two states X = { A, B} and the transition matrix
representing the Markov chain is displayed in Figure 5.2b.

0.4
A B
0.6 o e 03 4 <0.6 0.4>
0.7 B \07 03
(a) As a graph. (b) As a transition matrix.

FIGURE 5.2: Example of a Markov chain.

Name Symbol
Number of possible states M
Random observation at time ¢ X
Observed sequence X1, ooy Xt
The set of possible states X ={o1,...,om}
Transition probability from state i to j pij
Transition probability from states i, j to k Pijk

TABLE 5.1: Key concepts and notation to describe a Markov chain.

However, the main disadvantage and chief limitation of the Markov chain is
its lack of memory (the next page depends only on the current one), which makes it
computationally quick and easy but makes it impossible to use information previous
to the current page. As a result we introduce the two-step Markov chain, where we
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add an extra state into the memory of the model. Formally,
P(Xip1 = x| Xe = 20, Xpm1 = X4—1, 0, X1 = x1) = P(Xp1 = x| Xe = x4, Xp—1 = x41).
We estimate the probability P(X; 1 = o|X; = 0}, X;—1 = 0;) = pijx by,

# o;s following (0;, 0;) pairs

Pijk = # all transitions
The initial distribution for the two-step chain is the joint distribution,
7T(Ok,0j) = P(X2 = 0]', X1 = 01'),

which we estimate by,

#(0j, 0¢) pairs at steps 1,2

7t(0g, 0;) = — .
(o ] ) # all steps 1,2 transitions

5.3 Hidden Markov models

So far we have considered Markov models where each state corresponds to an ob-
servable event, i.e. a page type. The concept of Markov models can be extended to
unobserved states that are probabilistic. This forms the basis of a hidden Markov
model (HMM) where hidden states are observed through a set of stochastic pro-
cesses that produce the sequence of observations. This model can be applied to time
series data and is used in a wide range of applications including: speech recognition
systems, pattern recognition and molecular biology [49], [50], [51]. The motivation
for our application is to discover the hidden states in the clickstream data and hope
we can interpret them as meta-states or behavioural modes.

We will describe a discrete-space and discrete-time hidden Markov model, as
this framework fits the clickstream data, and we know that this application has been
studied before [52],[53]. We have a discrete random observed state X; at time ¢, and
we assume that the observation was generated by some process whose random state
Y; is hidden. A second assumption is that the hidden states follow a Markov process,
as in Section 5.2, where Y; 1 only depends on the current hidden state Y;. We will
define the main elements of an HMM, which are summarised in Table 5.2:

1. An actual hidden state sequence is denoted by Y = (y1, ..., y+). The set of pos-
sible hidden states are given by V = {73, ..., gn }, where the number of possible
hidden states in the model is denoted by N. Hence, the hidden state at time ¢

is Yt.

2. An actual observation sequence is denoted by X = (x1,...,xt). The possible
individual states are represented by X = {01, ...,0p}, where the number of
distinct observational states is denoted by M. The notation for possible obser-
vations follow directly from Markov chain theory in Section 5.2.

3. The hidden state transition probability distribution for Y; to Y; 1 is given by

a(Yes1lyt) = P(Veg1 = v [Ye = v1),
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which reduces to transition probabilities between the N hidden states in A =
(a;7) an N x N matrix,

a;j =P(Yi1=qjlYr=q;), 1<ij<N.

4. The observation probability (emission) distribution for X; in hidden state Y;
is given by
b(xtlyr) = P(Xe = xe| Ve = 1),

which reduces to emission probabilities to the observed states from a hidden
state in B = (bj) an N X M matrix,

bik:P(XtIOk‘Yt:qi), 1§l§N,l§k§M

5. The initial state distribution, 77 = (71;), is defined as

ﬂiIP(Y1:Qi>, 1§1§N

We can specify the joint distribution of the hidden state and observation se-

quence as:
T

P(Yr.r, Xi.r) = P(Y1)P(Xa Y1) [ [ P(Y4] Y1) P(X:]Y2) (6.1)
t=2
where 1 : T denotes the sequences of X, Y from time 1 to T. We have dropped the
dimensions of N, M and simplified the notation such that P(X; = x;|Y; = y;) is
replaced by P(X;|Y;). We can visualise this as a set of dependencies in a network in
Figure 5.3. To summarise, we can denote an HMM by A = (A, B, ), given the two
model parameters N and M.

Name Symbol
Number of possible hidden states N
Set of all possible hidden states | YV = {g1,...,qn }
Actual hidden state sequence Y1, Yt
Random hidden state at time ¢ Y;
State transition matrix A = (a;)
Observation emission matrix B = (by)
Initial state distribution T = (1)
HMM A= (A,B,n)

TABLE 5.2: A table to describe the elements of a HMM.

Toy example

We present a simple example of an HMM; suppose we wish to determine the daily
temperature based on weather patterns. Simplifying the problem, we consider only
2 possible temperatures "hot” or ‘cold” (H and C respectively) and define N = 2
and Y = {H,C}. We do not have direct knowledge or measurements of the daily
temperature, hence we will refer to them as 'hidden” (our } states), however we
can describe the relationship by quantifying the chance of transitioning between the
two states. By treating the transitions as a first order Markov chain, where the next
state only depends on the previous state we summarise the relationship with the
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®» ® ®

Y {x] [ P} -
FIGURE 5.3: A network specifying the conditional independence re-
lations for a HMM.
following matrix:
H C
H (07 03
A= C <0.4 0.6>

We know that the weather pattern correlates with the temperature, and we have
observable evidence (our X states) of 3 distinct types: R (rainy), W (windy) and S
(sunny). Hence, we have M = 3 and X = {R,W,S}. We provide the probabilistic
relationship between temperature and the weather:

R W 5
p_ H(01 04 05
~ Cc\07 02 01

Further, suppose there is a distribution for the first hidden state:

H C
m= (06 04)

We now have all the elements to define a HMM. We use this example to motivate
3 key problems, which must be solved to apply an HMM to real applications.

1. For the HMM defined above, can we "score” a sequence of observed weather
patterns? Given an HMM, A, and a sequence of observations X, what is the
likelihood of the data given the model P(X]|A).

2. What is the most likely temperature sequence, given a set of observed weather
patterns? Given an HMM, A, and a set of observations X, find the optimal
hidden state sequence Y.

3. If we have a history of weather pattern observations and know the number of
temperature possibilities, what is the best fitting HMM to describe the physical
process? Given a set of observations X, the dimensions N and M, find the
model A that maximises the probability of X.

We will investigate each problem in the following sections and refer back to this
simple HMM to exemplify the solutions.
5.3.1 Forward algorithm (Problem 1)

We start with an example. Given the simple weather-temperature HMM, what is
the probability of the weather sequence SSR? For a simple Markov chain, we would
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simply multiply each transition probability together. The difference for HMMs is
that we do not know what the hidden state sequence is. Let’s start by assuming we
know the hidden state sequence, i.e. HHC. We can now easily compute the likeli-
hood for the sequence, X = (x1,x2,x3) = (5, S, R), given the Markov assumptions,
as

P(SSR|HHC) = P(S|H) x P(S|H) x P(R|C).

However, we do not know the sequence of hidden temperature states, hence we will
need to sum over all possible hidden states. The joint probability will include the
weighting of the probability of the hidden state sequence. For our particular case
we obtain:

P(SSR,HHC) = P(SSR|HHC) x P(HHC)
= P(S|H) x P(S|H) x P(R|C)
x P(H) x P(H|H) x P(C|H).

To compute the full likelihood for an observation sequence, we would have to apply
the partition theorem over the possible hidden sequences:

P(SSR) = P(SSR|HHH)P(HHH)
+ P(SSR|CHH)P(CHH)
+ P(SSR|CCH)P(CCH) + ...

For this example, we would need to sum over eight possible hidden sequence states,
which is tractable here only because T, N, M are small. More formally, we have a
HMM, A, and an observation sequence X = (xy, ..., x7); we want to find P(X|A). Let
Y = (y1, .., yr) be a sequence of hidden states. Then by the definition of B and by
Eq. 5.1 we have

P(X|Y,A) = b(x1]y1)b(x2|y2) ... b(x7lyT)

using the definition of the initial state r and A we know that
P(Y[]A) = re(y1)a(y2ly)a(ysly2) - - - ayrlyr—1)-

With the example above, we have motivated that,
P(X|A) =) P(X]Y,A) x P(Y|A)
Y

=Y m(y)b(xlyr) + a(yaly)b(x2ly2) + - - -+ alyrlyr—1)b(xrlyr).

In generality, for an HMM with N possible hidden states and an observation se-
quence of length T, there are NT possible hidden sequences. This can be a large
number for even modest values of T and direct computation of this value rapidly
becomes infeasible.
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To find P(X|A), we use the forward algorithm, fort = 1,..,Tandi = 1,..,N
[52]. We define,

a(xy,y;) = P(X1 = x1,..., Xe = x4, Vi = yi|A). (5.2)

Then a(x;,y;) is the likelihood of the observation sequence up to x;, where the
hidden state is y; at time t. We can compute this value recursively using the follow-
ing algorithm:

1. Leta(xy,yj) = m(y;)b(x1]y;) for1 <j <N

2. For1 <t <Tand1 <j <N, compute iteratively

Z

a(x,yj) = | Y a(xen, yi)a(y;ly:) | blxly))

i=1
3. From 5.2 we know that N
P(X|A) = ) a(xr, i)
i=1

We set out the pseudocode for the forward algorithm in Algorithm 1. We store
the values for step (2) in a matrix form, such that we can then sum over the hidden
states. We will use this later to determine the likelihood of a sequence, given an
HMM model.

Algorithm 1 Forward algorithm

1: function FORWARD(N, T)
2: Set Forward matrix of size (N, T)
3: forne {1,...,N} do

: Forward[n,1] = m, X by

4

5 fort € {2,...,T} do

6: forn € {1,...,N} do

7 Forward[n,t] = YN_, Forward[n',t — 1] X @y X by
8 ForwardProb = YN, Forward[n, T]

9 return ForwardProb

In our example we introduced in Section 5.3, let’s use the forward algorithm
to find the likelihood for our observation sequence, i.e. what is the probability of
P(SSR|A)?

1. We first find the likelihood of observing the first state, S, over all possible hid-
den states, H and C:

a(x1,q1) = a(S,H) = n(H)b(S|H) = 0.6 x 0.5 = 0.3
(S,C) = n(C)b(S|C) = 0.4 x 0.1 = 0.04
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2. We now recursively calculate the likelihood for the sequence at steps 2 and 3,
over the possible hidden states:

a(x2,q1) = (S, H) = [a(S, H)a(H|H) + a(S, C)a(H|C)] b(S|H)
= (0.3 % 0.7+0.04 x 0.4) x 0.5 = 0.113
a(x2,q2) = a(S,C) = [a(S, H)a(C|H) + a(S, C)a(C|C)] b(S|C)
= (0.3 x 0.3+0.04 x 0.6) x 0.1 = 0.0114
(S, H)a(H|H) + «(S, C)a(H|C)] b(R|H)
= (0.113 x 0.7 + 0.0114 x 0.4) x 0.1 = 0.008366
a(S, H)a(C|H) + a(S,C)a(C|C)] b(R|C)
= (0.113 x 0.3+ 0.0114 x 0.6) x 0.7 = 0.028518

a(x3,q1) =a(R,H) =

a(x3,q2) = a(R,C) =

3. Finding the total likelihood of the sequence given the HMM, we sum the prob-
abilities at the final step of the forward algorithm over the possible hidden
states:

P(SSR|A) = Z(x X3,q;)

= a(xg, 71) + a(x3,q2)
=ua(R,H)+a(R,C)
= 0.008366 + 0.028518 = 0.036884

So the likelihood of the observation, X = (S, S, R), given the HMM is P(SSR|A) =
0.0369 (4 d.p.).

5.3.2 Viterbi path algorithm (Problem 2)

Returning to the temperature-weather HMM, we pose the question, given a se-
quence of weather observations SSR, what is the most likely hidden temperature
sequence? One thought process to solve this might be to compute the likelihood
for all possible hidden temperature state sequences, given the weather observations.
However, this would be too computationally expensive as the number of possibil-
ities increases exponentially. Alternatively, a dynamic programming (i.e. Viterbi)
approach attempts to find the highest overall scoring path. We explore the Viterbi
algorithm [54], [55].

To find the most likely hidden state sequence, Y = (v, ..., yr), for a given obser-
vation sequence X = (xq,..., x7), we define a probability value, 6, for t < T. The
value ¢ specifies the maximum probability of observing the state, x; over all possible
hidden state sequences at time ¢:

0(xt,y) = maxP(V1 = y1, ., Yo = yj, Xo = 21,0, Xi = x:|A)
= max 0 (xt—1, yi)a(yjlyi)b(xely;).

The Viterbi algorithm computes these values recursively such that 6(x;,y;) is the
most likely hidden state sequence for the observed sequence at time ¢, ending at
hidden state ;. We then find the most probable overall path, by taking the maximum
over all possible previous steps of the algorithm.
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There are different interpretations of ‘most likely’, one idea could be to max-
imise the expected number of correct hidden states. These two approaches will not
necessarily agree on the ‘'most likely” hidden state sequence, given an observation
sequence and HMM.

Formally, we define the Viterbi algorithm as follows:

1. For1 <j < N, find the starting emission probabilities over all possible hidden
states:

0(x1,y;) = m(y;)b(x1ly;)
¥(x1,y;) =0

2. For1 <j < N,2 <t < T, recursively calculate the maximum value of the
likelihood of observing the state, x;, over all hidden possible hidden states at
time f:

O(xt,yj) = maxd(xe—1,yi)a(y;ly:)b(xey;)
¥(x1,y5) = argmax 8(x¢-1, yi)a(y;jly:)b(xe|y;)

1
3. Find the final probabilities for the path,
pr= max 3(x1, i)

gt = argmaxd(xr,y;)

4. Backtracefort =T —-1,T —2,...,1, to find the most likely sequence of hidden
states, maximising the probability at each step:

i = Y(Xe1, Ygp,, )

to create the full hidden state sequence,
Q= (g1, 91)-

Algorithm 2 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is very similar to the forward algorithm, except that it takes the maxi-
mum over the previous path probabilities, whereas the forward algorithm takes the
summation. The extra component that the forward algorithm doesn’t include is the
"lookback’. The reason for this is, while the forward algorithm needs to produce
only the observation sequence likelihood, the Viterbi path algorithm must produce
a probability and also the most likely hidden state sequence. We compute this best
state sequence by keeping track of the path of hidden states that led to each state,
and then at the end backtracing the best path to the beginning.

For the toy example in Section 5.3, let’s use the Viterbi algorithm to find the "'most
likely” hidden state sequence for the observed sequence, i.e. what is the Viterbi path
of X = (S,S5,R)?

1. We calculate the probabilities that state S was emitted by states H and C,

(S,H) = n(H)b(S|H) = 0.6 x 0.5 =03
(S,C) = (C)b(S|C) = 0.4 x 0.1 = 0.04

3(x1,q1)

=0
(S(Xl,qz) = 5
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Algorithm 2 Viterbi algorithm

1: function VITERBI(N, T)

2: Set Viterbi matrix of size (N, T)
3: forne {1,...,N} do

4 Viterbi[n,1] = m, X by,
5 Lookback[n,1] = 0

6 forte{2,...,T}do
7.
8
9

forne {1,...,N} do
Viterbi[n, t| = max,y Viterbi[n',t — 1] X a7 X by
: Lookback[n, t] = argmax,, Viterbi[n',t — 1] X @,y X by
10: ViterbiPathProb = max,, Viterbi[n, T
11: ViterbiPathEnd = arg max, Viterbi[n, T|
12: ViterbiPath = Backtrace from ViterbiPathEnd using Lookback
13: return ViterbiPath, ViterbiPathProb

2. We iteratively compute the J probabilities as follows:

d(x2,q1) = (S, H) = max{d(S,H)a(H|H),4(S,C)a(H|C)} x b(S|H)
= max(0.3 x 0.7,0.04 x 0.4) x 0.5 =0.105
5(x2,92) = 8(S,C) = max {6(S,H)a(C|H),d(S,C)a(C|C)} x b(S|C)
= max(0.3 x 0.3,0.04 x 0.6) x 0.1 = 0.009
d(x3,q1) = 6(R,H) = max {6(S,H)a(H|H),(S,C)a(H|C)} x b(R|H)
= max(0.105 x 0.7,0.009 x 0.4) x 0.1 = 0.00735
5(x3,q2) = 6(R, C) = max {5(S, H)a(C|H), (S, C)a(C|C)} x b(R|C)
= max(0.105 x 0.3,0.009 x 0.6) x 0.7 = 0.02205

3. The Viterbi matrix can be constructed using the J values we have calculated at
each step of the observed sequence over all possible hidden states:

S S R
H | 03 | 0.105 | 0.00735
C | 0.04 | 0.009 | 0.02205

We find the path which corresponds to the highest probability, which ends in
hidden state C with the value 0.02205 > 0.00735, which is the probability of the
most likely path. We then backtrace, from right to left in the table above, finding the
highest probability in each column, which in this case is HHC.

5.3.3 Viterbi training (Problem 3)

Given a history of weather pattern observations and the number of possible tem-
perature states, how do we estimate the parameters of an HMM with the ‘best fit’
to our data. More formally, given a set of observations X, the dimensions N and
M, find the model A that maximises the probability of X. The training method does
not know the hidden state sequence that corresponds to the observations, and there
is no closed form expression to determine them. Therefore it is a tricky problem to
estimate the matrices A and B, unlike with a simple Markov chain.

The Baum-Welch algorithm is a special case of the EM algorithm [56]. It considers
paths for the training sequences using the current values of A and B. It can be shown
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that the log likelihood of the model will increase through iterations and converge to
a local maximum [57]. In practice, we note that the Baum-Welch algorithm failed on
the larger data sizes we used to train an HMM.

Alternatively the Viterbi training method is proposed as an approach to speed
up the learning process [54]. The basic principle is to replace the computationally
costly expectation E-step of the EM algorithm by an appropriate maximisation step
with fewer and simple computations. Hence, the maximum of the likelihood can
be approximated by maximising the probability of the best fitting hidden state se-
quence for the training observations, given the parameters of the HMM. The most
likely path for the training sequence is derived using the Viterbi path algorithm (Sec-
tion 5.3.2), which estimates the parameters for the HMM.

1. Initialisation: Randomly choose the initial parameters

71 AW B

2. Iteration: We derive the most likely path of hidden states using Viterbi algo-
rithm, given the model A and training observations X = (x1, ..., x7):

Q = (g1, 491)
Calculate a(q7 |q;) and b(x|q;), using proportions from the observations and
hidden state sequences. Update to find:

72 A2 B2

Repeat this step.

3. Termination: Stop when the model parameters converge, i.e. the values |A(*) —
A=Y < ¢, |BY — Bt-1)| < ¢, where € is a value close to zero.

5.4 Application to Clickstream data set

We will apply the techniques in this chapter to a subset of the clickstream data. We
focus on page visits on a single e-commerce site. The dataset we will use is from 20th
April 2019. There are 12492 clickstream sequences, where each clickstream is at least
length 3, up to a maximum 50 page visits. We transform the data into sequences
of clickstreams corresponding to each profile. We encode the clickstream path such
that each page visit is represented by a category. The 14 categories represent the
context of the page visit, i.e. the page type, and the definitions of the page types are
displayed in Table 5.3.

We can compactly represent paths using the first initial of our categories as an
abbreviation. For example, the string “HPDE” would denote a user who starts at
a home page, moves to a overview list for a type of product, and concludes their
session at a product page after considering an individual item.

To illustrate our data we list the browsing journeys of four selected users in in
Table 5.4. We introduce artificial states to represent time-based features in the data.
We add an artificial Exit state (E) which tells us there is no further page visit data
for the user. The Return state (R) represents when a user has returned to the site in a
later browsing session. The site has a popular range of products which are listed in
Product (P) and displayed individually in more detail in page type Product Detail (D).
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Page Type Symbol | Definition
Article List A A list of articles titles with short de-
scriptions and images
Shopping Basket B A list of the items that a visitor has
added to be purchased at a later
time
PrimaryTextContent (Article) C A piece of content writing
Product Detail (Single Product) D A detailed description of a product
available to purchase
Exit E An artificial state to identity when
a user has left without returning to
the site
Home H The main entry point to the site
Site Page I Pages to help guide the visitor to in-
formation about the company
Login L A page to enter credentials to access
the visitors profile
Product List P A list of names, images and brief
descriptions of products
Return R An artificial state to determine
when a visitor has left and returned
to the site
Search Results S The resulting page after a search
term has been queried
Profile U Any page that is specialised for the
individual visitor with personal in-
formation or settings for the site
Checkout X A page to complete the payment for
items in the basket
Conversion Success Y A page that confirms success after
completing the checkout success-
fully

TABLE 5.3: A table of page types and their definitions.

There is a small blog type section with articles on the products they offer, identifiable
with the page types: Article List (A) and PrimaryTextContent (C).

Notice the first three users do not make a purchase in Figure 5.4, while the final
user reaches the Checkout page (X). A focus of this application is the conversion or
purchase event on the e-commerce site. There are multiple steps in the purchasing
process, firstly the user is viewing the Shopping Basket (B). Then the user will check-
out and enter the checkout page (X), with areas such as the delivery and payment
details. Finally, a successful purchase or conversion success (Y) is the main target in
the conversion. This is so we can compare the browsing behaviour between success-
ful orders and checkout abandoners.

We expect that most of the time users will click on hypertext links on the web
page, however some pages may be selected through the browser’s interface, i.e. us-
ing back and forward buttons, bookmarks, or history. We first clean the data, re-
moving multiple instances of same url, i.e. when the page has been refreshed, as
there is no real change of state. It is also possible that two pages that are not linked
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ProfileID Clickstream
1 PDPDDE
2 DPPDDDDDDPDPPE
3 HPPDPDPDPDDPDBBE
4 HPDBXE

TABLE 5.4: A sample of the sequential clickstream data for the
Markov models.

together will appear as consecutive viewings in our data set because a user could
have multiple windows (web browsers) open in different areas of the web site. As
we see a continuous stream of page views, we cannot determine if there are multi-
ple windows open. This is important when analysing page type transitions, as it is
possible that the user could navigate to any page type through the browser interface
or multiple windows.

The occurrences of each state in the data set can be seen in the final column of
Table 5.5, and an added grouping for page types that are closely related. As the
site is focused on selling their products, we see that the product pages are the most
popular. The range of starting states can be seen in Table 5.5, and we would expect a
high number of journeys to begin on the Home page (H). However, this is not the case
as the data tell us that over 85% of clickstreams begin entering directly to product
type pages. A possible reason for this is direct links from advertisements, targeted
email campaigns or from other price comparison sites. We note that all the final
states are the Exit state (E) which is the absorbing state.

Grouping State | Starting End Probability | Number of
Probability occurrences
Artificial E 0 1 4749
R |0 0 998
Content A | 0.0010 0 127
C ]0.0135 0 557
Home H | 0.0913 0 862
D | 0.5233 0 9800
Products P 0.3317 0 6323
S 0 0 66
Profile L 0 0 65
U | 0.0120 0 572
B | 0.0045 0 830
Purchasing X 0.0015 0 634
Y | 0.0040 0 235
Site Information I 0.0171 0 620

TABLE 5.5: A table to display the clickstream sequence state proba-
bilities and occurrences in the data set.

5.4.1 First order Markov chain

We fit the clickstream sequence data to a first order Markov chain, where each state
in the network represents a page type from Table 5.3. We use the R package, click-
streams, to manipulate the sequence data and calculate the transition matrix with
probabilities p;; [58].
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Figure 5.4a is a heat map to display the transition matrix. Red regions of the heat
map indicate higher transition probabilities, whereas yellow areas represent regions
of low probabilities. The transition probabilities are the conditional probabilities,
i.e. P(To|From). Figure 5.4b is a network graph visualisation of the same transition
matrix in Figure 5.4a, which is generated using the package igraph [59]. The colours
in the network represent the groupings of the page types in the first column of Table
5.5. Using the transition matrix, the opacity of the lines are proportional to the value
of the transition probability between the two states in the direction associated with
the arrowhead. The node sizes are proportional to the number of occurrences of each
of the state in the data from Table 5.5.

In e-commerce, shopping online tends to follow a pattern where the customer
moves from a list of products to individual product views, P to D, and we see a high
transition probability of 0.51 as shown in Figure 5.4. Users who use the Login page
(L) are likely to enter the profile pages (U) once they have successfully logged in, and
we see a high probability for L to U of 0.44. Note that customers with a profile on
this website are also likely to stay around the profile pages (U to U has probability
0.5), which contains pages concerning past orders and delivery details.

From Figure 5.4, we can see that by focusing on the purchasing states X and Y,
we know from the website structure that you can access the Checkout (X) state from
any other page type, due to a basket that acts as a pop up. However, you can only
access the payment success from the checkout page, i.e. Y from X. The transition
from B to X is high at 0.44, which is the shopping basket to checkout page. Another
high transition probability of 0.56 is the successful conversion state, Y, to E, when a
payment is complete and the user has left the site.

Returning users appear to follow the same pattern as first time visitors, which we
can see by comparing the transitions from the Return state R to other states, against
the starting state probabilities. A transition probability of 0.03 shows that some re-
turning visitors move directly to the Y state, this could be explained by possibly
browsers left open from previous purchases.

The Search results pages, S, appear to be an infrequently used part of the site, with
the most likely transition of 0.25 to remain on the search page, possibly identifying
an issue where users cannot find the item they are searching for using keyword
search terms. We see a high probability of A to C (0.41), from a list of blogs and
articles to a single article page. A further observation is transition from article page
C to single product page D is 0.47, where a user reading an article has led to viewing
a product. The website may want to know this transition probability, and use it as a
measure of how successful the article is in promoting a specific product.

5.4.2 Two-step Markov chain

We aim to uncover some of unseen patterns with the extra memory state in the two-
step Markov chain, in particular around the purchasing states. We fit the clickstream
data to a two-step Markov chain, by finding all possible two-state memory values
and the proportion of transitions to other states. As we are adding more history to
the model, the dimensions of the transition matrix increase. We can see this clearly
in Figure 5.5a, which is a complex heat map in comparison to the first order, where
the number of rows has increased from the number of states S to S2.

We transform the matrix of the joint probabilities, P [A, B,C|, where A is the
next state; to conditional probabilities, P[A|B, C|, on the two previously observed
states: B, C. This is now comparable to the first order Markov chain transition matrix
and row stochastic. The darker red areas in Figure 5.5a indicate high probabilities,
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(b) A network visualisation of the first order Markov model.

FIGURE 5.4: Visualisations corresponding to the first order Markov

model fitted to our sample data.
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whereas lighter yellow areas represent low transition probabilities. These plots are
useful for an overview of data set, but are hard to navigate, hence we will focus on
a subset of this matrix and condition on the target purchasing states of X and Y.

From Figure 5.5b, it is clear that transitions from a range of page types to the
checkout state (X) are seen in the data. This is most likely to be a result of the basket
pop up on the site. The natural purchasing journey begins at a product, which the
user then decides to buy, adds the item to the shopping basket, and then reaches the
checkout to make the purchase. This is highlighted with the most common two-state
transition is DB to X with joint probability of 0.02. The checkout state, followed by
another page type and returning to the checkout can be seen in Figure 5.5b. This
could be explained by possibly going back a page and then forward again for a last
minute check on the product or another page.

Switching the focus to conditioning on the target state Y, a successful conversion,
in Figure 5.5¢ we see a much clearer structure. We note that B to X to Y is the most
likely transition at (0.006), and the most sensible steps determined by the web site
structure and user experience. Other transitions are likely to be a result of unclean
data, where the browsing sessions have overlapped due to multiple tabs or the data
has missing values.
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FIGURE 5.5: Heat map visualisations of the two-step Markov models.
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5.4.3 Hidden Markov model

In the previous section we have analysed the observed clickstream sequence states
using a simple Markov chain approach, now we will extend this to hidden Markov
models (HMMs). The motivation to do this is to find a more sophisticated approach
where we now have an additional "hidden" variable, which we wish to try and inter-
pret as the background mode (or meta-state) of the user’s activity (e.g. "browsing",
"updating preferences", "shopping", "just here to pay my bills"). While we can use
the simple Markov model to find likely paths through a website, when browsing to
buy a product online a purely random behaviour does not seem appropriate. Cer-
tain paths could be attributed to a “purchasing’ behaviour, and other characteristic
behaviours could be identified. We continue to assess multiple sessions for the same
profile and if returning visitors” behaviour is modelled differently using the hidden
states. In an HMM, it is this background "hidden state" which evolves like a Markov
chain, and now the types of pages visited depend only on the value of this back-
ground state (e.g. visiting the Basket will be more likely under a "shopping" state
than a "browsing" state).

Our data consists of approximately 25000 page type observations across approx-
imately 5000 profile browsing sequences. We will use the HMM package in R for the
initialisation of the HMMs, and we generate random uniformly distributed values,
U(0,1), transformed to be row stochastic for the initial distribution, transition and
emission matrices [60]. Specifically, from the package we use the viterbiTraining al-
gorithm to train the model, as explained in Section 5.3.3. Further, we must explicitly
set the highly influential number of hidden states before we train the HMM.

We do not know the exact number of hidden states that we are searching to find
in the data. We have 13 distinct observable states, thus a sensible maximum would
be 13, as more would give rise to degenerate solutions. Our desire is to obtain a
range of hidden states that could be interpreted as the meta-state of the browsing
journey. Some real examples of these states could be: purchasing, product browsing,
updating profile preferences, and a general online browsing behaviour that contains
all observed states that could not be defined well in a more specific hidden state. In
this section, we will focus on an HMM with 5 hidden states. In the next chapter we
will explore models using a range of numbers of hidden states.

We display the initial, transition and emission matrices in Tables 5.6 for the 5-
state HMM. We will explore these numerical values, to see if the HMM exhibits any
interesting features, in particular relating to the purchasing observable states.

The prior distribution of the hidden states in Table 5.6a is set in the training and
we make it uniform, as we don’t have have any prior information to do otherwise.
The hidden states transition matrix in Table 5.6b describes the Markov chain pro-
cess between the hidden states. The largest transition probabilities lie on the diag-
onal, meaning most likely transition is to remain in that state. Table 5.6c shows the
emission probability matrix which is visualised as a heat map in Figure 5.6. If the
observed states for a given hidden state have a non-zero probability, then they can
occur in that state. We can use these to infer an interpretation of the hidden states.

Focusing on the purchasing state, state D contains non-zero probabilities for both
the purchasing X and Y observed states, and state E contains the checkout state (X).
As a result, we could interpret that state D could be the "purchasing’ state, and state
E as the "pre-purchasing’ or ‘abandoners’ meta-state, where the majority of the pur-
chasing journey (up to X) can be observed except the conversion confirmation ().
The hidden state with the fewest observable states is C, where the profile states L
and U are prominent, leading us to interpret this as the "profile preferences’ viewing
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Hidden States | Priors
A 0.2
B 0.2
C 0.2
D 0.2
E 0.2
(A) The prior probabilities of the hidden states for the 5-state
HMM.
To
From A B C D E
A 0.7412 | 0.1765 | 0.0824 0 0
B 0 0.9685 0 0.0274 | 0.0040
C 0.2692 0 0.7308 0 0
D 0.0057 | 0.3541 0 0.6402 0
E 0.1300 0 0 0.0500 | 0.8200

(B) The transition matrix for the hidden states in the 5 state HMM.

Hidden states

Observed states A B C D E
A 0.0941 | 0.0034 0 0 0
B 0 0.0040 | 0.0385 | 0.2861 | 0.27
C 0 0.0214 0 0 0.04
D 0 0.4286 0 0 0.19
E 0.1176 | 0.2103 0 0.0142 0
H 0.1294 | 0.0274 | 0.0385 | 0.0028 | 0.23
I 0.5412 | 0.0112 0 0.0057 | 0
L 0 0 0.1154 | 0.0170 | 0
P 0.04714 | 0.2512 0 0.0085 | 0.15
R 0.0706 | 0.0389 0 00793 | 0
S 0 0.0036 0 0 0
U 0 0 0.8077 | 0.1926 | 0
X 0 0 0 0.2946 | 0.12
Y 0 0 0 0.0992 | 0

(C) The emission matrix for the 5 state HMM.

TABLE 5.6: The numerical values for the 5 state HMM.
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state. The most general state is B, which absorbs the most amount of page types
without the conversion target states, so we could say this is the general "brows-
ing/shopping’ behaviour state. It is worth noting that from Table 5.6b only B and E
states can transition into the purchasing state D, however the probabilities are small
with 0.0274 and 0.004 respectively.
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-
|

D E H L P R S U X Y
Observed States

FIGURE 5.6: A heat map to visualise the emission matrix for a 5-state
HMM.

We can use the Viterbi algorithm, outlined in Section 5.3.2, to predict the most
likely hidden state at each time in the observed sequence. This will help us under-
stand the proportion of time that our observed sequence exists in each state, and
we display the results in Table 5.7 for the 5-state model. The majority of the click-
streams (87.4%) are spent in hidden state B, which we labelled a general "browsing’
state. State D is our next immediate state of interest, where over 7% of the data
is predicted to be in this hidden state. Hidden states A and E are less frequently
visited, and we note that A includes a high emission to observed state I, which we
know from Figure 5.5 is not a frequently observed state, so we wouldn’t expect this
hidden state to be seen often. Hidden state E appears to be a pre-purchase state,
and could be abandoners or focused visits without a final decision on the purchase.
Hidden state C is only seen in less that 1% of the clickstream, which is labelled as
the "profile” browsing state.

Hidden States %

1.96
87.4
0.783
7.64
2.19

mo N w >

TABLE 5.7: The most likely hidden state prediction for all click-
streams for the 5-state model.
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5.5 Markov model comparison

Analysing clickstream sequences as states in a first order Markov chain is a good
place to start. It provides a simple structure such that we can quickly learn about the
data. In practice, we have used this model to learn about the movements of users
around the entire structure of the website. Further, we use the transition matrix, to
find potential inaccuracies in the data and poor website design. This research led
to the wider team searching for new methods to collect this data, namely a new
‘custom’ event type was created, which is able to more accurately detect purchase
and other specified browsing events. The sales team used the Markov visualisation
in Figure 5.4b to provide feedback to the website designers on weaker (less sticky)
areas of the website. In this example, the search box layout was updated and the
results page simplified.

The second order Markov chain does not provide a nice visual summary, see
Figure 5.4b versus 5.5a, however it does provide an extra layer of memory. We mo-
tivated why this could help us in our application with the 3 purchasing states. We
aim to compare the predictive capability from both models for purchases made on
the site. More data cleaning steps were added as a direct result of the second order
Markov chain, bringing clarity on the multiple browser windows or the lag effect
when collecting the data.

Markov chains provide simple tools to analyse our data, but the large number of
observable states and messy data causes difficulty in interpreting the fitted models.
We could add more states of memory to the Markov chain, however we do not see
any need for this in our application, and interpreting the results would be even more
challenging. The hidden Markov model uncovers a layer beyond the observed data
and web page transitions, through learning about similar journeys, over more than
two steps in a sequence. We learn more about the user than before, as a result of in-
terpreting the latent variable. The complexity of HMMs adds difficulty in stabilising
the model fit. The estimated parameters of an HMM alone do not inform us about
how ‘good” the model fit is, labelling the meta-states (if they even have an interpre-
tation) can be masked without careful inspection. The HMM doesn’t respect the web
page structure, as the simple Markov chain does, but we hope that the underlying
type of behaviour will provide extra information we can use. In practice, for pre-
dicting a purchase, we will explore possible ways to do this in Chapter 6. Further,
we will later discuss some model comparison techniques, as there are a number of
areas of sensitivity when training HMMs, unlike first or second order Markov chain
models.

5.6 Discussion

This chapter has described a range of Markov models that can help us to analyse
clickstream data. We began with a first order Markov model, which allows us to
see a transition matrix of how users are moving around the website. We inspected
the three main purchasing states in greater detail, and we required an extra state of
memory to discover more about them so a two-step Markov chain model was fitted.

We outlined the motivation for fitting clickstream data to a hidden Markov model,
to find meta-states in the user behaviour. We outlined the forward and Viterbi path
algorithms, which we used to find the likelihood of an observable sequence and op-
timum hidden state sequence respectively. We described the Viterbi training algo-
rithm and fitted a 5-state HMM, and possibly found some of the behavioural modes
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we were searching for. The next steps with these Markov tools is to make compar-
isons between them and the GLMs we encountered in the previous chapter.
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Chapter 6

Exploration and comparison of
models for clickstream data

6.1 Chapter overview

This chapter will discuss a range of models that we have explored throughout pre-
vious chapters to analyse clickstream data. First, we will outline GLM variable se-
lection criterion based techniques, applied to a set of summary variables of click-
stream data. Next, we discuss the robustness and sensitivity of training HMMSs on
the same clickstream data set. In Section 6.4, we present a simulation study of the
trained HMM, to justify the validity of the model. We combine the two modelling
approaches, GLMs versus Markov, and produce an informative plot to compare and
evaluate the predictive capability of each model type.

Using a criterion-based model selection for GLMs and subjective interpretation-
based comparison for HMMs to find the best models, we build a prediction visu-
alisation inspired from the literature, where we wish to predict a conversion based
on the customer journey [17]. The ability to accurately predict a successful conver-
sion in the customer click journey provides a useful insight for online advertisers.
An action could be taken to attract the customer’s attention, by showing an advert
or voucher with discount, if we can identify that engagement with the product is
falling and more persuasion is needed for the customer to purchase.

6.2 Predicting a conversion using GLMs

In Chapter 4, we described GLM theory and in Section 4.4.1 we fitted a logistic re-
gression model to the Adwords data set. We examined the output probabilities and
some model diagnostic and evaluation techniques. Likewise, we can use a logistic
regression model to predict the probability of a conversion based on web browsing
data. First, let’s describe the covariates we can create from clickstream data.

6.2.1 Clickstream data as sessions

To build a logistic regression model from the clickstream data we described in Sec-
tion 5.4, we must aggregate data to create numerical and categorical covariates,
which provide statistical summaries of clickstream journeys. Our first step is similar
to Section 2.3.2 where we aggregated single page visits into session-level statistical
summaries. This type of data is lost when we condense the observations to cate-
gorical page type sequences. The aim of the logistic regression model is to predict,
based on a set of covariates, the probability of a conversion occurring in the current
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session. We use the page type Y to identify a successful conversion, which in turn
produces a binary label of a conversion within a session or not.

Table 6.1 shows a summary of the covariates that we will use to fit the logistic
regression model. Each row will represent a session, j, for a profile, i. The indepen-
dent variable is a binary outcome, i.e. does a conversion occur in the current session,
denoted by y;;.

Some of the dependent numerical summary variables for the current session are
the same as in Section 2.3.2, namely g;;, t;;, n;;. Furthermore, we previously encoun-
tered the device type, m;j, and the time of the session, which is provided through a
combination of the variables - 1;; and w;;. We have included intent score, g;;, created
using the algorithm described in Chapter 3, which assesses the profile’s browsing
behaviour over the previous 60 days. We include the duration of the previous ses-
sion, t; ;1 for a more accurate measure of the most recent browsing activity.

We choose a subset of the numerical covariates above, and calculate the the cu-
mulative values of recent behaviour over the previous 7 days, as a summary of ac-
tivity over this period. We wish to see if recent historical information is useful in
predicting the outcome of a conversion. In particular, we find the totals for the num-
ber of previous page visits (Nj;), sessions (J;;), length of time (T}j), and conversions
(Yij). Intuitively, if we can summarise recent behaviour through these features, then
we would expect that browsing a product over a longer period of time shows more
intent. This is a similar approach to the frequency and intensity attributes of be-
haviour in Chapter 3.

Now we have a set of covariates we can use to fit our model, and these features
are not involved in any of the Markov models that we will discuss later, hence they
should provide a different account of the data. We show the correlation matrix be-
tween the numerical variables we have calculated in Figure 6.1. As expected, the
variables based on historical behaviour have strong correlations, the largest 0.81, be-
tween the total sessions and total page visits. It is also worth noting that intent score
(a one-dimensional summary of behaviour) has medium sized correlations, between
0.34 and 0.53, with other historical summaries which is encouraging. However, we
need a methodology to decide which covariates we should include in our model,
and for this we will explore a criterion based approach. We randomly split the full
data set into a training and test set, using the ratio 75 : 25. We do this so that we can
train our models, and then use unobserved test data to check for model overfitting.

6.2.2 Criteria-based model selection

In Section 4.4.4, we introduced a criterion, AIC, which can be expressed as follows:
AIC =2p —2I

where p is the number of parameters in the model, [ is the likelihood of the data
and 7 is the number of observations in the data. We can use these model assessment
criteria to outline a methodology that can perform variable selection for our logistic
regression model. If there are p potential predictors, then there are 27 possible mod-
els. We could choose to fit all these models, using the training data, and choose the
best one according to a criterion, i.e. AIC. A reminder that we prefer models with
lower values of AIC, i.e. we want to maximise the log-likelihood and minimise the
number of parameters used in the model.
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Variable name Type Definition Notation
Conversion Binary Has a conversion/purchase oc- | y;;

curred in the current session?
DayOfWeek Categorical | Is the current session on a week- | w;;
day or weekend?
Device Categorical | The type of device of the profile, | m;;
e.g. Smartphone, Desktop
HourOfDay Categorical | The hour of the visit split as in | ;;
Table 4.3
IntentScore Numerical | The score provided by the algo- | g;;
rithm in Chapter 3
InterSessionDuration | Numerical | The length of time since the pre- | g;;
vious session for the same pro-
file
PageVisitsInSession | Integer The number of page visits in a | 1;;
session
PreviousSession- Numerical | The length of the previous ses- | t;; 1
Duration sion
SessionDuration Numerical | The length of time of the current | t;
session
TotalConversions Numerical | The total number of previous | Y;; = Z{;ll Yik
conversions prior to the current
session
TotalDuration Numerical | The sum of all previous page | T;; = Z;;ll tix
visits from sessions before the
current session
TotalPageVisits Numerical | The total number previous page | N;; = Z{::ll ik
visits in all session before the
current session
TotalSessions Numerical | The total number of previous | J;j = Z;{;ll 1

sessions before the current ses-
sion

TABLE 6.1: A table of the statistical variables we can generate from

the clickstream data, aggregated to the session level.
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FIGURE 6.1: Correlation matrix between continuous numerical vari-
ables.

Stepwise variable selection does not evaluate the AIC for all possible models,
but instead uses a search method that compares models sequentially. We describe
the main steps for the forward stepwise model selection [61]:

1. Start with a model with no covariates, the intercept model.

2. Test the addition of each covariate to the model from a pre-defined set. Add
the covariate to the model which provides the minimum AIC value.

3. Repeat the step (2) until all remaining covariates increase the AIC value for the
model.

The algorithm can be reversed such that it begins with the full (saturated) model,
containing all possible covariates, and attempts to remove a variable at each step un-
til the termination step is reached. This method is called backward stepwise model
selection. Further, combining the two approaches and allowing the stepwise method
to move ‘forwards’ and ‘backwards’, we have a method for the inclusion and exclu-
sion of variables.

The full logistic regression model, Eq 6.1, contains all the covariates in our data
set. Note, we have removed the variable, TotalDuration T;;, due to the high cor-
relation shown in Figure 6.1 to avoid possible issues arising from multicollinearity.
On the other hand the intercept model, Eq 6.2, contains with no covariates from our
data. We decided not to include any higher order terms or interactions in our logistic
regression models to maintain the interpretabilty of covariates, and in future work
we may wish to introduce these concepts.
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logit(y;j) ~ & + Brw;; + Bami; + Bshij + Baqij + Psgij + Benij
+ Brtij-1 + Bstij + PoYij + BroTij + B11Nij + P12]ij (6.1)
logit(yi]-) ~ (62)

The forward selection method begins with the intercept model, Eq 6.2, and the
results of the stepwise procedure are displayed in Table 6.2 [62]. The intercept model
has an AIC value of 1955, and the first variable to add is the TotalConversions, Yj;,
reducing the AIC to 1746, which suggests this is a useful predictor which is intuitive.
If the customer has purchased recently, they might be more likely to have a loyalty
to the product and brand, and so will return. The next covariate to be added is
the number of page visits in the current session, 1;j, and the AIC reduces to 1573.
These two covariates provide the largest decreases in AIC, whereas the consequent
variable additions do not cause the same proportion of reduction in AIC.

Step Model AIC
0 Intercept model (6.2) | 1955.4
1 Add Yj; 1746.91
2 Add n; 1572.99
3 Add g;; 1535.86
4 Add g 1534.45
5 Add N;; 1533.12
6 Add J;; 1518.88
7 Add t;; 1517.39
8 Add m;; (6.4) 1516.69

TABLE 6.2: A summary of the forward stepwise AIC model selection.

Step Model AIC
0 Full model (6.1) | 1521.69
1 Remove h;; 1519.69
2 Remove f; ;1 1517.77
3 Remove wj; (6.4) | 1516.69

TABLE 6.3: A summary of the backward stepwise AIC model selec-
tion.

Similarly, the backward direction algorithm in Table 6.3, provides the same re-
sult. This method removes three covariates, which reduces the AIC from 1521, the
full model, to 1517. The best set of covariates that both selection methods reach is
presented in Eq 6.3 and 6.4. It is satisfying that the result is the same for both for-
ward and backward selection, and we will continue to check the validity of this set
of covariates in the next section.

logit(Conversion) ~ « + B TotalConversions + ,PageVisitsInSession
+ BzIntentScore + B4InterSessionDuration + fsTotalPageVisits
+ BeTotalSessions + B7SessionDuration + BgDevice (6.3)
logit(y;;) ~ a + B1Yi; + Banij + Baqij + Bagij + BsNij + Bes]ij
+ Brtij + Bsmij (6.4)
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Variable selection algorithms aim to construct a model that predicts well or ex-
plains the relationships in the data. Automatic variable selections are not guaranteed
to be consistent with these goals. Criterion-based stepwise methods involve a wide
search and compare models, but we should only use these methods as a guide [63].
For example, our final model includes both the total page visits and sessions, N;; and
Jij, with the highest correlation value of 0.81 in the correlation matrix of all variables.
Hence, we should consider the final parameter estimates of the model to see if they
seem sensible, check residuals and model diagnostics, as well as exploratory data
analysis to check for multicollinearity.

6.2.3 Model evaluation and diagnostics

We explore the covariate selection that both directions of the stepwise method pro-
duced, and we have presented the formulas in Eq 6.3 and 6.4. A summary of the
model fit is given in Table 6.4, where we display the coefficient estimates and stan-
dard errors, along with the p-values to assess whether the covariate is significant
in the fitted model. Hence, we can see that all variables, except g;; and when m;; =
SmartPhone (where the baseline category is Desktop), are significant in this model at a
p-value of 0.1. The final row provides the log-likelihood, —747, for the fitted logistic
regression model.

The odds ratio column provides the exponential of the coefficient estimates, and
we use this to interpret each covariate. For every unit count of the total number of
conversions, Yj;, there is the large increase of 1.37, on the likelihood of a conversion,
which shows historical purchasing behaviour is a good predictor in the model. The
intent score, g;;, covariate has the largest value of the odds ratio, at 1.76, suggesting
that it is a good indicator of conversions. The score meets the expectation that higher
scores should represent more intent to purchase.

The reference category for m;; is desktop, and the tablet category reduces the
odds of a conversion slightly by 0.93. This agrees with the expectation that higher
valued items are purchased on a desktop as opposed to a handheld device. Other
covariates have very small effects on the odds of a conversion, possibly suggesting
they don’t have a major effect.

Symbols Coefficients Estimates SE p-value Odds ratio
o Intercept -0.2036 0.0587 0.0005 0.8158
Y TotalConversions 0.3176 0.0323 2x10°1 1.3738
njj PageVisitsInSession 0.0164 0.0014 2x10°1° 1.0165
qij IntentScore 0.5639 0.1281 1.13x107° 1.7576
Sij InterSessionDuration | 2.989 x 1077 | 1.941 x 10~ |  0.1236 1.0001
N;; TotalPageVisits —4.823 x 1073 [ 1.163 x 1073 | 3.49 x 10~° 0.9952
Jij TotalSessions 0.0323 8180 x 1073 | 8.15x —5 1.0328
Jij SessionDuration —2.202 %107 | 1.118 x 10~° 0.0491 0.9999
- Device - SmartPhone | —7.750 x 10> 0.0162 0.6320 0.9923

" Device - Tablet -0.0705 0.0327 0.0312 0.9320
Log-likelihood -747.3426

TABLE 6.4: The parameter estimates for the fitted logistic regression

model.

Inspecting model diagnostics, Figure 6.2a shows a plot of binned residuals from
the training data set observations versus the fitted values from the model. The resid-
uals have been grouped and aggregated to find the average residual over an interval




6.2. Predicting a conversion using GLMs 97

of similar predicted values from the model. The grey lines represent +2 standard er-
ror (SE) bands, which we would expect to contain about 95% of the observations
[44]. This model looks reasonable, in that the majority of the fitted values seem to
fall within the standard error bands.
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FIGURE 6.2: Plots relating to the fitted logistic regression model.

A further method for checking the residuals is to plot them against explanatory
variables, where we want to observe no pattern, because the residuals and covari-
ates should not be correlated. Overall, the plots in Figure 6.3 suggest there are two
distinct groupings of the residual values. These two groupings correspond to ob-
servations that did convert and those that did not, as displayed by the colouring in
Figure 6.3. This could be interpreted that we under-predict conversions, due to the
majority resulting in a negative residual and over-predict for non-conversions high-
lighted by the positive residuals. Figure 6.3a shows a consistent spread of residuals
as intent score changes, which is encouraging. Figure 6.3b and Figure 6.3c show pat-
terns that may suggest the residuals are heteroscedastic, so we may need to revisit
these covariates. The spread of residuals decreases as Yj; increases in Figure 6.3d,
however this could be due to very few observations with a non-zero value for Y;;
(2.8%).

Using the predicted probability distribution in Figure 6.2b, we choose a fixed
threshold of 0.3 to determine a binary outcome, i.e. a conversion or not. We discre-
tise the predictions such that we can obtain a confusion matrix, with key statistical
metrics which provide an interpretable summary of the predictive capability of the
model. We decided on the threshold of 0.3 as we found this value led to the best
balance of evaluation metrics; further tuning of this parameter would be done in
future work. Table 6.5 displays the confusion matrix for the resulting conversion
predictions. From these values, we obtain the accuracy (84.7%), recall (59.8%) and
precision (42.3%). Our model under-predicts with this threshold, so we may want to
revisit this choice when we directly compare to Markov models later in this chapter.
This result is similar to other GLMs we studied in Chapter 4, which may be a feature
of our data sets with low volumes of positive samples.
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FIGURE 6.3: Plots of the residuals from the fitted model against key
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Reference Y;;

0 1 Total
prediced 7, [O_| L] 74| €23

Total 586 126 712

TABLE 6.5: The confusion matrix for the conversion predictions from
the logistic regression model on the test set.

6.3 HMM robustness of model fitting

We aim to outline an approach to explore and assess the training of HMMs through
a range of areas of comparison. This is a particularly challenging task, with no selec-
tion method or algorithmic approach to finding the optimal model, as in the context
of GLMs. One approach that we could investigate in the future, is to apply a prob-
abilistic distance metric for measuring the dissimilarity between pairs of HMMs,
though this is beyond the scope of this thesis [64]. A mixture of numerical sum-
maries and subjective opinions on HMM parameters, could help us summarise the
robustness of training HMM s on clickstream data. Thus, to evaluate HMMs we con-
sider the behaviour of estimated model outputs, A and B, alongside the predictive
performance on unseen data.

In the following sections, we explore areas of sensitivity in the training of HMMs,
namely:

1. In advance, we must specify the number of hidden states. There is no phys-
ical representation of the system we are attempting to model, hence we do
not know the correct number of hidden states to search for. Does changing
the number of states input affect the model fit, can we find a maximum and
minimum? How many states until the interpretability of the model vanishes?
How many states do we need to create enough separation, such that we can
interpret distinct states as behavioural meta-states?
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2. We are not limited by the size of training data, so we ask the question: does
the size of data have an impact on the fitted model? We assume a larger data
set will increase the training time of the model, but how much can we improve
the model fit? Is there a limit to the input data size for the algorithm imple-
mentation we are applying?

3. We must specify the initial values of the HMM parameters before training.
Do probabilities of 0 or 1, in any of the initial matrices affect the model fit? Do
larger values on the diagonal of the transition matrix affect the model fit?

6.3.1 Choosing the number of hidden states

Our goal is to infer possible behavioural characteristics from the meta-states, and
some possible examples of hidden behavioural meta-states could be:

1. Purchasing

2. Product browsing

3. Updating profile preferences
4. General online browsing

Thus, from an interpretation perspective we could motivate that there are at least
3 or possibly 4 distinct behaviours that we would hope to detect. For various dif-
ferent numbers of hidden states, we will explore the fitted transition and emission
matrices, and additionally the numerical measure of the proportion of occurrences
of each hidden state and log-likelihood of a sample of training data using the For-
ward algorithm from Section 5.3.1. The hidden state transition matrices in Figure 6.5
describe the Markov chain process between the hidden states. Figure 6.4 shows the
emission probability matrices visualised as a heat map. If the observed states for a
given hidden state have a non-zero probability, then they can occur in that state. We
can use these to infer an interpretation of the hidden states, and we delve deeper
into the particular states of interest using the Viterbi path predictions in Table 6.6.

As previously mentioned in Section 5.4.3, a sensible maximum for the number of
hidden states would be 13, the number of distinct observable states, as more could
give rise to degenerate solutions. A sensible minimum would be 2 states, and cur-
rently we have nothing to suggest we should increase this lower bound.

Starting with the 3 hidden state model in the emission matrix in Figure 6.4a, we
expect this to be too few hidden states to separate types of clickstream behaviour.
We would observe this by finding 'noisy’ hidden states, which contain emissions
to many observable states and there is little distinction between the hidden state
structures. For example, we can see this in hidden state B in the emission matrix,
which contains the majority of observable states, and Table 6.6 predicts almost 95%
of the data exists in state B. Further, from Figure 6.5a the most likely transition from
hidden state B, is to state C with a very low probability of 0.014. Hence, the hidden
states lack interpretation and we should investigate a larger number of hidden states
to attempt to find a clearer structure in the emission matrix. We conclude that the
3-state model has insufficient flexibility for the hidden states to specialise, we have
fewer ‘average’ and general behaviour states instead.

In Figure 6.4b, the 4-state model shows a little more sparsity in the emission ma-
trix indicating less generic behaviour. Further, the Viterbi path predictions in Table
6.6 show a better separation in the data, compared to the 3-state HMM. Despite this,
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in the emission matrix we observe that 3 out of 4 hidden states contain the Y conver-
sion state, and combined these hidden states provide 90% of the Viterbi predictions.
Hence, we suggest that this HMM does not distinguish the ‘purchase’” meta-state
that we might like to discover from our HMM. The likelihood of the clickstream
sequence has decreased from —45596 to —66139, possibly due to the increased com-
plexity of the model by adding the extra meta-state.

The 5-state HMM in Figure 6.4c displays the matrix we described in Section 5.4.3.
We found this HMM provided an interpretable set of meta-state behaviours. Fo-
cusing on the purchasing state, state D contains non-zero probabilities for both the
purchasing X and Y observed states, and state E contains only the X checkout state
without Y. As a result, we could interpret that state D could be the "purchasing’ state,
and state E as the 'pre-purchasing’ or ‘abandoners’ meta-state, where the majority
of the purchasing journey (up to X) can be observed except the conversion confir-
mation (Y). Although, this doesn’t preclude the transition from hidden state D to E,
to access the observed state Y. The hidden state with the fewest observable states is
C, where the profile states L and U are prominent, leading us to interpret this as the
‘profile preferences’ viewing state. The most general state is B, which includes the
most amount of page types without the conversion target states, so we could say
this is the general "browsing /shopping’ behaviour state. It is worth noting that from
Figure 6.5c only B and E states can transition into the purchasing state D, however
the probabilities are small: 0.0274 and 0.004 respectively.
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FIGURE 6.4: Heat maps to represent the emission probabilities for a
variety of trained HMMs.

The majority of the clickstreams (87.4%) are spent in hidden state B, from Table
6.6 which we labelled a general ‘browsing” state. State D is our next immediate
state of interest, where over 7% of the data is predicted to be in this hidden state.
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FIGURE 6.5: Heat maps to represent the hidden state transition prob-
abilities for a variety of trained HMMs.

Hidden states A and E are less frequently visited, and we note that A includes a
high emission to observed state I, which we know from Table 5.5 is not a frequently
observed state, so we wouldn’t expect this hidden state to be seen often. Hidden
state E appears to be a pre-purchase state, and could be abandoners or focused visits
without a final decision on the purchase. Hidden state C is only seen in less that
1% of the clickstream, which is labelled as the ‘profile” browsing state. Compared
to the 4-state HMM, the 5-state HMM has an increased log-likelihood for the given
sequence to —65964, which is encouraging as our model is it a better fit even with
an extra latent variable.

Adding an extra meta-state, the 6-state HMM emission matrix in Figure 6.4d, is
dense with some distinction between the hidden states. There are 3 states; B, E and F
that include the conversion states containing slightly different compositions of other
observed states. The majority of the states in the clickstream sequences (over 85%)
appear in hidden state D, and the transition probabilities to escape this state are
small. Overall, this many hidden states makes interpretability challenging as a lot
of the states are overlap. The 6-state HMM has the lowest likelihood given the same
clickstream sequence, most likely due to the extra hidden state.
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% of hidden state occurrences

Hidden States | 3 states 4 states 5 states 6 states

A 0.378 84.2 1.96 2.52

B 94.9 5.23 87.4 0.639

C 4.76 8.36 0.783 1.16

D 2.18 7.64 86.5

E 2.19 2.98

F 6.16
Log-likelihood | -45596.45 | -66139.56 | -65964.36 | -86612.17

TABLE 6.6: The most likely hidden state prediction for clickstreams
for a variety of trained HMMs.

6.3.2 Size of training data

We will experiment with the sample size of the clickstream data we use to train
the HMM. We expect that the trade-off will be an increase in computation time, as
there is more data to estimate the parameters. Note that we are using the Viterbi
training algorithm set out in Section 5.3.3, and we found that when we increased
the size close to the maximum of our data set, we encountered errors caused by the
computation time.

We would expect the likelihood of a given clickstream sequence to change with
sample size, where we use the Forward algorithm from Section 5.3.1. By increasing
the size of the training data, we would expect the HMM to be a better fit to our data.
Thus given a constant sequence across two models, we expect the likelihood of the
sequence to be higher for the model with more training data. However, with more
training data we may observe more intricacies in the data, causing a more complex
model which includes rarer observed states and transitions, which may alternatively
decrease the likelihood of a given sequence.

Firstly, we explore how the computation time differs by varying the data input
size, our full data set consists of 25000 page types across 5000 browsing sequences.
Figure 6.6a shows the proportion of the data set used for training against computa-
tion times. We repeated the training to obtain a distribution of computation timings,
and in general it increases approximately linearly across our results, as the propor-
tion increases the computation time also increases. The model training failed on
some attempts due to the data size, and the number of samples here is a maximum
of 5. This is a small sample due to the computational complexity involved and the
high frequency of failed training attempts. In practice, we will focus on the predic-
tive capability of the model as opposed to the training time, as this is not a priority.

Figure 6.6b displays the proportion of the data set used for training against the
likelihood of the same observed sequence. There is no clear pattern in the plot,
suggesting that other factors may be influencing the values. We did not expect to see
anything clear here, as more data could mean a more complex model that includes
more rare observed states and transitions, hence we can conclude that we should
use close to the maximum input data size as possible.
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FIGURE 6.6: Plots to compare HMM training with different input data
sizes.

6.3.3 Initial parameter estimates

Before training an HMM, the elements we must specify are the initial state distri-
bution, the hidden state transition matrix and the emission matrix. We want to test
the sensitivity of the training of HMMs, by changing the initial parameter estimates
for the transition and emission matrices. The variations we will briefly consider in
this section are: what happens when we use fitted HMM parameters as input values
(recursive) and is the result sensitive to extreme starting probabilities of 0 or 1?

The initial estimates we use throughout training HMMSs are random uniform
values between 0 and 1 (exclusive), with larger values along the diagonal of the
transition matrix. These matrices are scaled such that they define a matrix of the
appropriate form. We decided to set these values so as to not induce bias in the
training of the HMMSs. The larger values on the diagonal of the transition represent
a higher transition probability to remain in the current state, this is a typical feature
of Markov chains. Assessing the performance of a variety of input values on a large
scale is challenging and time consuming, so we present a few examples to illustrate
the key takeaways.

We explore the recursion idea first and begin by training a 5-state HMM using
the standard method we described above for the initial parameter estimates. We will
use half of our data set to train the HMM, resulting in the transition and emission
matrices in Figures 6.7a and 6.7c. The recursion idea is to use this information to
inform the initial values to recursively train an HMM on the other half of our training
data. The 'second’ training of the 5-state HMM arrives at the matrices in Figures 6.7b
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and 6.7d, which generally show a lot of similarity to the matrices in Figures 6.7a and
6.7c. We also used the full dataset to train a 5-state HMM, and the results can be
seen in Figure 6.8. This HMM contrasts from the recursively trained HMM, where
the combination of observed states in each hidden state is different and therefore
interpretation of each label changes. Hence, from this example we suggest that the
recursive method can stabilise the training of an HMM, but with the caveat that it is
still dependent on the first training.

Another option we consider are extreme values in the initial parameter estimates,
i.e. 0’sand 1’s. We added 0’s to the starting probabilities and the initial estimates are
shown in Figures 6.9a and 6.9c. In total, we set zero’s for approximately 35% and 40%
of the initial transition (non-diagonal) matrix and the emission matrix respectively.
We trained an HMM using these inputs, which resulted in the updated parameters
in Figures 6.9b and 6.9d. We found that including 1’s caused the Viterbi training
algorithm to fail, which is sensible as training data that opposes this in the transition
or emission matrix will cause an error. On the whole, we can conclude that the initial
parameters do not dictate the form of the trained parameters.

In conclusion, the initial estimates can affect the model, and we assume a likely
scenario is that the position of the ‘conversion” hidden states may shuffle. The meta-
states may need to be re-interpreted as they may not be in the same position with
different training. Recursive training could help to stabilise and provide a more
accurate model, and we should avoid adding 0’s and 1’s in the initialisation for good
practice.
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6.4 Simulation study of generated sequences

Finally, we hope to explore simulated data from a fitted HMM to make comparisons
with real data to assess the plausibility of the type of data it can generate. Our
expectation of a good model is that for a large data size that it will be reasonably
similar when compared against what we actually observed. We will calculate the
transition matrix for the simulated clickstream data and compare against the real
data, which we expect may not display some of the intricacies of real user journeys.

Our method to simulate the data, begins by using the fitted HMM state transition
matrix to generate a sequence of 10,000 hidden states. Consequently, we use this to
generate a sequence of observed states that are simulated from the emission matrix
of the fitted HMM [65].

First, we directly compare the proportions of all possible observable states in our
real data set against the simulated data, where the HMMs looks plausible in terms
of these summaries. The results are displayed in Table 6.7, which on the surface
shows a lot of similarity between the observed and simulated data, overall the sim-
ulated figures are almost indistinguishable from the real data. However, this only
means the proportions of the states are similar, it does not provide any information
regarding the transition patterns between the states.

Simulation %
State | Actual % | 4 states | 5 states | 6 states

A 0.48 0.44 0.44 0.45
B 3.14 3.27 2.61 3.71
C 211 2.24 1.86 243
D 37.07 37.15 38.56 37.04
E 17.96 18.35 18.91 18.01
H 3.26 3.26 3.11 2.66
I 2.35 1.97 2.16 1.99
L 0.25 0.20 0.14 0.22
P 23.92 23.96 23.27 23.56
R 3.77 3.58 4.05 3.78
S 0.25 0.32 0.25 0.28
U 2.16 1.94 1.70 2.21
X 2.40 2.46 2.33 2.73
Y 0.89 0.86 0.61 0.93

TABLE 6.7: A comparison of the proportions of observed state occur-
rences between the real and simulated data.

We can calculate the transition matrix, by fitting a first order Markov chain, from
the simulated clickstreams, such that we explore a different aspect of the data. We
re-show the first order Markov chain output from Section 5.4.1 in Figures 6.11a and
6.11b. We compare the simulated data transition matrix for the 5-state HMM simu-
lation in Figure 6.11c, and the network visualisation is shown in Figure 6.11d. The
occurrences of each state are proportional to the node sizes and the arrow widths are
proportional to the transition probabilities in the network visualisations.

The simulated data contains a column of high probabilities that is not fully repli-
cated in the real data set, this is the page type D column in Figure 6.11c. These tran-
sitions have been over represented in the simulation, which could be because they
are the highest occurring states in the data. This column represents transitions from
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all states to the product detail page, D. There are fewer large transition probabilities
in the simulation, with a reduction in some of the rarer transitions. For example, the
transition probability from pages A to C in the real clickstream data is 0.41, and this
transition does not exist in the 5-state HMM simulation. This highlights a concern
that the model does not have data regarding this transition, from a list of articles to
a single article, hence it does not appear to be good model.

Further, the purchasing states of the basket and checkout pages (B,X,Y) do not
show the same intuitive structure that we see in the real data. The transition from
basket B to checkout X, is much smaller (0.44 reduced to 0.16) and similarly state
X to the checkout success Y (0.31 reduced to 0.06). Also, the conclusion of a pur-
chasing journey Y to E, has the largest reduction of 0.56 to 0.06. The occurrences of
these states are small proportions of the whole data set, and this coupled with the
low chance of completing a full purchase in this order, causes the simulation to re-
sort back to the more popular states. The HMM doesn’t accurately capture detailed
structure, as a disadvantage of the model is that it only creates dependencies be-
tween observed pages dictated by the hidden state structure of the emission matrix.
From this simulation, we see the constraints placed by the model choice, where we
lose some of the page visit transitions that occur in real sequences.

We explore a selection of the simulated clickstreams from the 5-state HMM sim-
ulation, to see if they match our expectation of real sequences, and look for unlikely
transitions. We display a sample of clickstreams in Figure 6.10. Overall, the lengths
of the clickstreams seem reasonable and the dominance of states P and D are also
seen in the real clickstreams. In the final clickstream example, the journey begins
with the checkout state X which is not sensible and would seem erroneous if identi-
fied in the original data. We conclude that the 5-state HMM simulated clickstreams
are on the whole reasonable, however there are a lot of intricacies that are missed by
the model.

e PPDDE

o PDPIDDPPDDDPDDE

e DDDDDDPPE

e BUBE

e PDIDDDDDRDE

e DDPDDPDDIIHIE

e DDHDPPDHE

o DDDDDDPPDPDDDDPE
e DPE

e XPHDIHPDDPPPDE

FIGURE 6.10: A list of clickstreams from the 5-state HMM simulation.



108 Chapter 6. Exploration and comparison of models for clickstream data

Y- - Transition
X- - Probability
Ul
S- 0.4 =
B = 02 .
3 o om L
o I-
[T H- -
£
: B o
B L Proccts
A- - - s N . 8Proﬁle _
ABCDEHTILPRSUXY O e on
To
(a) Actual observations in a transition ma- (b) Actual observations in a transition net-
trix. work.
Y- Transition
X- Probability
U,
S- 0.4
R 2
E P- 0.
o L- - 0
T
H,
E,
D,
C- |
B,
A- H
A B CDEMHTIULPRSUIXY
To
(c) Simulated observations in a transition matrix.
@ Artificial
© Content
Home
() Products
) Profile

© Purchasing
Q Site Information

(d) Simulated observations in a transition network.

FIGURE 6.11: A comparison between actual observations we ex-
plored in Section 5.4.1 and the simulated data.
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6.5 Model comparison by prediction

After exploring the training sensitivity of HMMSs and comparing simulated sequences
to real observations, we will compare the predictive capability of HMMs regarding
conversions. If the HMM'’s hidden states are assigned specific behaviours, this could
provide clearer and simple information that could be actioned in real-time. For ex-
ample, a high probability of checkout could display a discount or offer to incentivise
the purchase a product, or personalise the page content based on the behavioural
state. We want these models to be influential in real-time decision processes, thus
we place a high importance on predictions in our model selection. The models that
we will compare in the section are:

e First order Markov chain model (5.4.1)

Two step Markov chain model (5.4.2)

Logistic regression (6.2.3)

4-state HMM (6.3.1)

5-state HMM (5.4.3)

6-state HMM (6.3.1)

We will include the first order and two-step Markov chain models that we explored
in Section 5.4.1 and 5.4.2. Further, we will use the logistic regression model from Sec-
tion 6.2.3 for predictions using numerical and categorical summaries of clickstream
data.

We will explore the probability that the next move the user will make is to an
observed state of interest and also the probability of transitioning to a hidden state
of interest. In particular, we will focus on the successful conversion observed state,
Y. We will identify which hidden states can be labelled as purchasing, and make
comparisons across the HMMs we trained in Section 6.3.1. We expect that HMMs
with a distinct, non-overlapping hidden state structure, which includes a version of
the purchasing state will perform well in this comparison method.

We assess the potential for practical use and implementation of HMM in terms of
what the next page visit will be. Exploring all future paths of all possible lengths is
a computationally demanding calculation. As, ultimately, any practical use of these
ideas will be required in the first 30ms of the page visit, we restricted our focus to a
short term calculation.
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6.5.1 Transition to observed state

In this section, we will use each model to predict the probability that the next page
visit is precisely a successful conversion, i.e. the next state we observe is page type
Y which we denote as Py. We use a sequence from the training data, and also a
devised sequence to compare the performance of the models. Note the different uses
of clickstream data in the logistic regression model and Markov models, however
they are still predicting the same outcome and can be compared directly on the same
scale.

We aim to build a prediction graphic that in a single plot can summarise the
model predictions, an example of this plot is Figure 6.12. The basic features of the
plot are the x-axis provides the clickstream sequence, the page types (or states):
X = (x1,...,x7). The y-axis displays the predicted probability of transitioning to
the conversion state, Py, and each line on the plot corresponds to a different model.
Each page type can produce a prediction of the likelihood of a next transition to the
observable state Y. The first order and two-step Markov chains provide transition
probabilities for Py as:

P(Xip1 =YXy =x¢) and P(Xy1 = Y| X = x4, Xpo1 = X4-1)

respectively, and these are the values that we plot. The logistic regression model also
provides a prediction from Eq 6.4, using historical numerical summaries and current
session information. For all hidden state possibilities, Y = {1, ..., yn}, we predict
the likelihood of observing the page type Y using the emission matrix,

N
Py = ZP(Xt-‘rl = Y,Xt = Xt,...,Xl = xl,Yt = yl|)\)
i=1

The HMMs use the Viterbi path algorithm, Section 5.3.2, to find the optimal hidden
state sequence of current journey. We can quantify the differences and similarities
between the model predictions, as well as uncovering qualitatively the hidden state
interpretations and discuss how we could use the predictions in a ‘real-time” envi-
ronment. We would expect to see an increased probability for Py mainly around the
other purchasing states of B and X.

First, let’s inspect Figure 6.12, which uses a short devised sequence to display
how the plot can provide an insight into how we can assess and compare model
performance. The clickstream sequence, HPDCDBXY, is created in such a way that it
begins with generic browsing behaviour of products and articles, and subsequently
enters in the purchasing phase of the journey. We focus on the predictions at the pre-
conversion states (B and X) in the clickstream sequence, as these are the preceding
states to the successful purchase, Y.

The simplest model, the first order Markov chain, which only takes into account
the current state, has a peak in Py at the B and X states. The corresponding values
for Py are 0.03 and 0.06 which are small transition probabilities, despite this the
model highlights the power of this graphic. The two-step Markov chain displays
the highest peak where Py = 0.27, corresponding to observing the pattern of B then
X. The two-step model gives a better prediction in this scenario, as the final page
visit is a conversion, most likely as a result of the extra state in memory. We created
data for the logistic regression model, with observations at the beginning and end
of the sequence. This is more of an illustration of how it could be used, however
with real data we can directly compare the predictions of this model alongside the
Markov models.
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We display the predictions from 3 variations of HMMs, including the most likely
hidden state labels at each observed state in Figure 6.12. The "best” model prediction
is the highest probability for Py at the page (X) before a conversion page (Y), where
our models are asked the question: will the user convert from the basket/checkout?
The 4-state HMM has the earliest peak at the fifth page visit, it transitions to the "‘con-
version’ state (D), displaying the earliest indication of movement towards a purchase
for this sequence. The 5-state HMM provides a shallow increase of likelihood in the
purchasing phase of the sequence, and at the checkout page predicts that Py = 0.03.
This is not a strong prediction, and is lower than either of the Markov chain mod-
els, but it outperforms the 4-state HMM. Our interpretation of this plot is that the
best HMM is the 6-state HMM, where the hidden state transitions from browsing to
‘conversion’ (D to F) at the basket page and Py is the highest at 0.13.

We now use a real clickstream sequence from the training data, DBXPPDPDRD,
and the plot is shown in Figure 6.13. This sequence begins with a visit to products,
then moves to the basket and checkout states, and subsequently we observe con-
tinued site engagement with a returning visit to a product. We would expect the
models to provide an increase in Py around the B and X pages.

We first observe that Py for the 4-state HMM is never larger than 0.006, indicating
this model expects a very small chance that this clickstream will convert. A slight
improvement in terms of displaying some interesting activity is the 5-state HMM,
which peaks at P; = 0.03. The 6-state HMM and first order Markov model provide
almost identical predictions throughout the clickstream sequence. The 6-state HMM
moves into the ‘conversion” state (F), as in the previous example, when entering
the basket and checkout pages. The two-step Markov chain similarly observes the
pair of B, X, and provides the highest likelihood Py and converting into a purchase.
The logistic regression model displays a wider trend of intent to purchase, using the
numerical summaries.

6.5.2 Transition to hidden state

Now we consider a variation on the plot in Section 6.5.1, where we aim to focus
solely on the comparison between the HMMs. The key difference is that rather than
predicting the transition to an observed state, we consider the transition probabilities
to hidden states as the goal. We first label a ‘conversion” hidden state based on
the existence of the observed conversion page Y in the emission matrix. Note here
that there may be multiple hidden states with the 'conversion” definition, which we
define as Z = {z1,...,z1.} where Y € z;. We aim to predict transitions into the meta-
states of interest, where the exact observed state may not be relevant, but the overall
behavioural meta-state journey is more useful. We define the probability of the next
transition is to a ‘conversion’ labelled hidden state as Py.

The x-axis provides the clickstream sequence and the page types (or states):
X = (x1,..,x7). The y-axis displays the predicted probability of transitioning to
any ‘conversion” hidden state,

N L
PZ = Z ZP(Yt-H =z, Xt = Xty eeny X1 = X1, Yt = yl‘)t)

i=11=1

Each line on the plot corresponds to a different HMM with a variety of numbers of
hidden states for comparison. An example using the devised clickstream sequence,
from Section 6.5.1, is displayed in Figure 6.14. To support Figure 6.14, for the same
set of HMMs and sequence, we display the full probability matrix from the forward
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= First order MC
= Two-step MC
—Aa— 4-state HMM
—Aa— 5-state HMM
—Aa— 6-state HMM
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—— Logistic Regression

0.2

0.15

0.1
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Transition probability from current to conversion state

H P D C D B X Y
Page visits

FIGURE 6.12: A graphic to display the models predictions applied to
a devised clickstream sequence.

= First order MC
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—Aa— 6-state HMM
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Transition probability from current to conversion state

Page visits

FIGURE 6.13: A graphic to display the models predictions applied to
a clickstream sequence from the training data.
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algorithm (Section 5.3.1), in the form of a heat map. An example in Figure 6.15a
provides the probability distribution for the likelihood of each hidden state at each
step in the sequence. Large forward probabilities provide high confidence that the
user is in a given hidden state. We expect to see an increase in Pz when the sequence
is in the purchasing states of B and X, and a high probability of remaining in an
appropriate hidden state when we observe those states. Note that a probability of
Pz = 1 denotes that all possible transitions from the current hidden state are to a
‘conversion” hidden state.

To learn how to interpret this type of plot we inspect Figure 6.14, and imme-
diately we note the change in scale of the y-axis compared to the similar plots in
Section 6.5.1. At the first observed state, we encounter an issue with the 4-state
HMM, where Py is very high with only one observed state which provides an unre-
alistic and misleading prediction. Further into the sequence, Pz for the 4-state HMM
jumps suddenly between a 0 to 1. These predictions do not seem sensible or use-
ful, as it does not produce a stable long term meta-state that we could use to inform
a real-time advertising strategy. This could be a result of the separation between
Basket/Checkout (B,X) and Conversion (Y) states in the emission matrix in Figure
6.4a. Figure 6.15a emphasises these unstable hidden states, only when the sequence
reaches the state Y, does a transition to hidden state E occur, and this HMM does not
identify a useful purchasing meta-state.

The predictions from the 5-state and 6-state HMM overall follow a similar pat-
tern. In particular, we focus on the basket page visit to determine if the visit will
transition into the purchase phase or whether the user leaves the site or continues
to browse. From Figure 6.15b, we see the 5-state HMM moves between 3 hidden
states, B to E then to D (the ‘conversion’ state) — here the basket and checkout pages
are not seen as part of the same hidden state. The 6-state HMM predicts Pz = 1,
which seems unrealistically high and could be a result of overfitting - too many hid-
den states and separation of page types. However in Figure 6.15¢c, we see the final 3
states are in the ‘conversion’ state (F), emphasising that this could be a valid inter-
pretation.

We plot the real sequence in Figure 6.16, which appears to separate the behaviour
of the three HMMs. The 4-state HMM, again provides many predictions where Pz =
1, it is counter-intuitive as in the purchasing observed states the probability reduces
close to 0. This is due to the emission matrix in Figure 6.4b separating the purchasing
pages across multiple hidden states. Figure 6.17a emphasises that the behaviour is
labelled as general browsing, and only when we observe state Y does the HMM
identify a change in this behaviour. This HMM does not provide the outcome that
we wanted and would provide false information to a real-time advertising system.

The predictions from the 5-state and 6-state HMM vary in Figure 6.16, overall
the 6-state HMM predicts the highest value for Pz during the basket and checkout
pages. At the early stages of the clickstream journey, the 6-state HMM predicts there
is a high chance of the user converting, however we don’t observe an actual con-
version, so the model could be misleading. In contrast, the 5-state HMM in Figure
6.17b, moves between 3 states, B to E then returning to B, nether are interpreted as
‘conversion’ states and the prediction probability of a conversion stays relatively low
throughout. In Figure 6.17c, there is some overlap in the forward probability predic-
tions of the most likely hidden states. On reflection, the 6-state HMM in general
displays an intuitive interpretation of the clickstream journey. The sequence begins
with high intent to purchase and then further browsing reduces the chance of being
in a ‘conversion” meta-state, and is more likely to be in a browsing meta-state.
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FIGURE 6.14: A graphic to display the model’s predictions applied to
a devised clickstream sequence.
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6.6 Discussion

This chapter has discussed a range of models that we have explored in this thesis,
and applies them to predicting online purchases on an e-commerce web site. We
described the numerical summaries of browsing journeys and key covariates that
we include in a logistic regression model. We outlined the forward and backward
stepwise model selection methods, and apply them. We found that they agreed on
the same set of covariates, and we evaluated this model using the residuals and
predictions. We found that the model under predicted conversions, but also that
the intent score (from Chapter 3) and the number of previous conversions positively
influenced the prediction of a conversion.

We described the problems we faced when fitting an HMM to our data, and ex-
plored how each of them affected our results. We concluded that the optimal num-
ber of hidden states is directly linked to the interpretation of the hidden states. We
aim to use as much training data as possible, because we are not time dependent in
our scenario, however too much data will break the algorithm implementation we
are using. Our brief exploration of the initial parameter estimates concluded that
they do not hugely affect the training of an HMM, but crucially they may affect the
interpretation of the hidden states. Shuffling the position of the states affects any
programmatic/automated exploitation of the state information, as without interpre-
tation providing the context then it’s impossible to find the purchasing meta-state.
We simulated sequences from an HMM to look for obscure examples of clickstreams,
and make quantitative comparisons to real data. Using the observed state frequen-
cies we found that the individual marginal probabilities seemed plausible, however
fitting a Markov chain showed that the simulation’s transition probabilities did not
capture realistic sequence structures. A natural evolution would be to use a mix-
ture of the Markov models, where we respect the page structure but are capable of
shifting the transition probabilities based on the background behaviour.

Finally, we created a graphical display to compare the predictive capabilities of
all of the models in this chapter. We discovered that the 6-state HMM provided the
most interpretable and realistic set of predictions, this was a useful insight into how
we could use the meta-states in a real-time prediction environment.

We examined and assessed the potential for practical use and implementation
of HMM in terms of what the next page visit will be. This is a deliberately greedy
calculation, and in general it would be better to have a longer term view by possibly
extending the prediction for the next 2 or 3 steps. Other models with better memory
would certainly help here, but fall outside the scope of our work.

Given further time, assessing the predictive capability over multiple sequences
could be a useful step to add to the model selection process. A form of accuracy
or precision metric for predicting a conversion would be more robust compared to
inspecting only single sequences - this is left for future exploration.
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Chapter 7

Conclusion

7.1 Thesis summary

Chapter 2 introduced the keyword performance data set, discovered a range of dif-
ferent types of covariates and explored the performance indicators for keyword bid-
ding advertising. We modelled the dependent variable of clicks through a combina-
tion of independent variables such as the advert content, keyword and other factors
such as time or position of the advert. The match type of the keyword has a sig-
nificant impact as broad keyword matches provide a higher number of impressions
than exact. The categorical quality measures proved unreliable as there are a high
number of missing values. We understand that impressions have a crucial impact
on clicks, highlighted by a strong positive correlation, however there are many ob-
servations with very few impressions leading to a strong bias in the data.

We introduced clickstream data and how browsing journeys can be modelled
as a special type of sequential data in a variety of ways. We have learnt that we
are dealing with a significant amount of data and we must adopt methods for the
Big Data environment. There are a number of variables that relate to the page visit
and the profile level (i.e. device information). We calculated numerical summaries
to create covariates for exploration. These numerical variables provided intriguing
results yet did not fully meet our expectations. We found a heartbeat mechanism
that has a significant impact on the distribution of the page visit lengths, which
could have an effect when using the time duration variables in a statistical model.
Finally, we described the distribution of the number of page visits in a session using
a Weibull distribution.

Chapter 3 described a variety of statistical variables that describe a number of be-
havioural attributes, which we condensed to provide a one-dimensional summary.
The application of this score is in targeted advertising and can also be used as a co-
variate when modelling conversions. We introduced more statistical rigour to the
existing algorithm, outlined in Figure 3.1, and we added a new behavioural trait for
the depth of visit to get a new perspective on the browsing behaviour intent. This
adds to the interpretability of the dimension reduction algorithm, as it adds further
insight into the user’s journey. We also created a greater number of behavioural
labels than the existing algorithm.

Chapter 4 discussed the theory of GLMs, focusing on logistic and Poisson regres-
sion. We discussed zero-inflated models and why they would be appropriate in our
specific application. We used the structural zeros in the data to aim for a better fit-
ting model. Overall, we fitted 3 models: logistic regression, Poisson regression and
zero-inflated Poisson model. We chose a consistent set of covariates, interpreted the
coefficient estimates, and assessed the model fit through residuals and a confusion
matrix. The models led to similar conclusions in terms of coefficient interpretation
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and an under prediction of clicks, which is most likely due to the high number of ze-
ros in the model. There are extreme values that provide skewed residual plots and
prediction distributions. To improve these models we hoped the zero-inflation com-
ponent could help, but the model still under predicts, so we feel that improvements
could be made in our variable selection.

Chapter 5 described a range of Markov models that can help us to analyse click-
stream data. We began with a first order Markov model, which provides a transition
matrix quantifying how users moving around a website. We inspected the three
main purchasing states in greater detail, and added an extra state of memory, so we
fitted a two-step Markov chain model. We outlined the motivation for fitting a hid-
den Markov model to clickstream data, to find meta-states of user behaviour. We
outlined the forward and Viterbi path algorithms, which we used to find the like-
lihood of an observable sequence and optimum hidden state sequence respectively.
We used the Viterbi training algorithm to fit a 5-state HMM, and possibly unearthed
some of the behavioural modes we were searching for.

Chapter 6 outlined the forward and backward stepwise model selection meth-
ods, and these methods agreed on a set of covariates for a logistic regression model
to predict conversions. The intent score (from Chapter 3) and the number of previous
conversions are highly influential covariates in our model. We concluded that the
optimal number of hidden states is directly linked to the interpretation of the hidden
states. We must be careful with the data size and initial parameter estimates when
titting HMMs, to make the output interpretable and useful. A graphical display of
predictions led us to discover that the 6-state HMM provided the most interpretable
and realistic set of predictions. This shows how we could use the meta-states in a
real-time prediction environment.

7.2 Discussion of the implementation of our models

The algorithm outlined in Chapter 3 has been implemented in Spark, such that
we can calculate intent scores for 10® profiles and a total of 10° rows. The intent
scores are updated daily, and determine the stage of the purchasing journey that
each user is on for a category of online intent. Marketing specialists are able to use
the scores to target the relevant audience for an advertising campaign, and do so
with greater accuracy than before. The behavioural attributes are easily explain-
able to non-specialists. A further extension to the algorithm is to experiment with
weightings for each attribute’s contribution to the final intent score.

The fitted zero inflated Poisson model in Chapter 4 is useful to indicate impor-
tant variables in this challenging data set. These key covariates are well known by
marketing experts, and don’t come as a surprise to them. There are further complex-
ities with bid prices, campaign budgets and time frames that we did not explore in
this study. The general concept of a zero inflated model fits the underlying nature
of the data accurately in theory, however there could be too many other factors we
don’t have available in our data set to form a full advertising strategy. Using these
models in future campaigns may not be sensible as the keywords for each campaign
are picked subjectively, hence the model may need to be updated regularly based on
new data. Multiple campaigns would be required to assess if this could be a general
model for sponsored search.

Influencing and informing real-time decisions is an exciting and interesting sta-
tistical problem, and the commercial impact can be huge. Building a complex sta-
tistical model is not enough to solve this problem alone; it must be explainable and
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interpretable. Categorising the page visits across a variety of e-commerce sites into
page types may pose a challenge, and this is a requirement to define the states in a
Markov chain. The Markov chain visualisations provide the sales team with a tool to
represent the conversion journey of users on a website. Note that we only explored
data relating to purchasing a product on an e-commerce web site. However the con-
cept extends to alternative ‘conversions’, such as subscriptions or any goal-based
metric that can be tracked.

The HMM s in production provide real-time predictions based on a pre-trained
model. A drawback is that there must be statistical expertise to interpret the hidden
states, and how the predictions of transitioning into these states should be used. For
a pre-trained model, this can be done in advance and labelled with clarity and con-
fidence. If the model requires updating, i.e. the HMM parameters are not providing
a good fit to new clickstream sequences, then an expert is required. All Markov
chain models are fitted to data from a single source web site; this means that the
model may encounter issues of out-of-sample predictions, for example on a differ-
ent e-commerce site. The labelling of the pages may be slightly different, and the
purchasing journey may be adjusted depending on the web site structure.

7.3 Future research

Our variable selection process focuses on interpretability, as opposed to reducing
the dimensions such that we find the maximal variance. If the use case arises, a
combination of a dimension reduction method, such as PCA, in combination with
an interpretable algorithm could provide scores with better separation. Also, the
score may appear skewed if the underlying type of e-commerce site requires more
visits or a longer period of time to make a decision. For example, when purchasing
a new item of clothing, the decision process may not take longer than say one week,
hence recency may be the most relevant attribute. On the other hand, to purchase
a car, the journey may take longer due to the larger amount of money involved.
This currently is not considered in our variable selection method, as no distinction
is made between the category of the visit. In future work, we could explore if the
period of activity is correlated with the category, and consequently the algorithm
can adapt to provide accurate scores for the purchasing journey on a wider basis.
Our model provided a baseline prediction for keyword performance; however
we recommend that an alternative approach may be necessary to achieve more ac-
curate outcomes. One approach could be to build a model that measures the similar-
ity between the keywords and advert description. For example, creating numerical
summaries of the keyword and advertising text using tf-idf would provide a metric
that we don’t have to rely on Google for [66]. Sponsored search modelling has been
explored using a Bayesian approach; in which a probit regression model and prior
beliefs on the input covariates predict click through rates [67]. This structure may
provide an ability to add expert information into the model, which our model lacks.
We found it challenging to find an appropriate method to compare hidden Markov
models; as previously mentioned there is a distance measure that we could explore
in future work [64]. We also want to impose an initial structure to aid the training of
an HMM, such that the hidden states are stable and to persuade some separation in
the behaviour of each state. Hence a Bayesian approach, by determining the struc-
ture of the HMM as a Bayesian network could offer a solution [53]. As previously
stated using Bayesian inference from a mixture of HMMs could also produce more
stable results, while maintaining interpretability [21]. A different approach would be
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to apply a hidden semi-Markov model (HSMM) where the underlying observed data
exhibits a semi-Markov structure [68]. This structure dictates that the probability of
a change in the hidden state is dependent on the amount of time that has elapsed
since entry into the current state. The data for the time spent in each observed state
is available, and the semi-Markov structure seems sensible in our application, where
the longer a user browses a product the more intent they show to buy it. However,
we note that statistical inference for HSMMs is more difficult than for HMMs, since
algorithms such as the Baum-Welch algorithm are not directly applicable, and must
be adapted.
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