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Abstract

We study the formation, evolution and clustering of galaxies in standard and mod-

ified gravity universes and prepare synthetic catalogues for future galaxy surveys,

such as DESI. To do this, we have run and analysed N-body and hydrodynamical

simulations of different gravity models. In the first part, we focus our attention

on two of the most representative and popular families of modified gravity models:

the Hu & Sawicki f(R) gravity and the normal-branch Dvali-Gabadadze-Porrati

(nDGP) braneworld model. We use mock galaxy catalogues constructed from a

halo occupation distribution (HOD) prescription with the HOD parameters in the

modified gravity models tuned to match with the number density and the real-space

clustering of BOSS-CMASS galaxies to analyse the marked correlation function in

three variants of the f(R) gravity model and to measure galaxy clustering in redshift

space in both f(R) and nDGP models. In addition, we introduce the first set of full-

hydrodynamical simulations of galaxy formation in the nDGP model using a new

modified version of the Arepo code and the IllustrisTNG galaxy formation model.

In the second half, we explore if there is an optimal way to select a galaxy sample

in order to measure the baryon acoustic oscillation (BAO) scale, which is used as a

standard ruler to constrain the cosmic expansion. Also, we present a covariance and

clustering analysis of DESI-like luminous red galaxies (LRGs). For the latter, the

mock catalogues are built with a novel technique using the semi-analytical model of

galaxy formation Galform and a large number of halo catalogues generated using

the Parallel-PM N-body glam code.
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Chapter 1

Introduction

1.1 Standard cosmological model

The standard cosmological model is based on the cosmological principle which states

that the Universe is homogeneous and isotropic over sufficiently large scales (& 100

Mpc1). It also establishes that the matter content of the Universe is currently

dominated by two exotic components: dark energy in the form of a cosmological

constant (Λ) and cold dark matter (CDM). Both components contribute to the

∼ 95% of the energy density of the Universe at the present time (∼ 69% from dark

energy and ∼ 26% from dark matter), the remaining ∼ 5% is in the form of known

baryonic matter, such as stars and gas (Planck Collaboration, 2018). However,

the identities of the dark energy and dark matter remain unknown. Therefore,

one of the key aims of modern cosmology is to reveal the identities of these two

dark components by exploring the Universe with galaxy surveys. Additionally, the

standard cosmological paradigm assumes that the gravitational interactions in the

Universe are described by the theory of General Relativity (GR) on all scales.

The cosmological principle implies that the metric of the background homoge-

neous and isotropic Universe is given by the Friedmann-Lemâıtre-Robertson-Walker

1One parsec (1pc) is defined as the distance at which one astronomical unit (the distance from

the Earth to the Sun) subtends an angle of one arcsecond (1/3600 of a degree). In the SI metric

system: 1pc = 3.0857× 1016m and 1Mpc = 106pc.

1
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(FLRW) space-time,

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1.1)

where gµν is the metric tensor, t is the cosmic time, a(t) is the scale factor, K

characterises the geometry or curvature of the universe and r, θ, φ are spherical

comoving coordinates. To derive the above expression, we have used the convention

that the speed of light has a value of c = 1, Greek indices µ, ν, run over 0, 1, 2, 3 and

the metric convention (−,+,+,+). Throughout this thesis, we will continue using

this convention unless otherwise stated. From the FLRW metric we can see that K

may take units of length−2 if r has units of length and a(t) is unitless. Also, K can

take values of K < 0, K = 0, K > 0 to represent an open, flat or closed universe.

The dynamics of the ΛCDM model is given by the Friedmann equations (Fried-

mann, 1924) which are derived from Einsten’s field equations (Einstein, 1916),

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (1.1.2)

where Rµν is the Ricci curvature tensor, R is the Ricci curvature scalar and Tµν is

the energy-momentum tensor of matter components. We assume that Tµν takes the

form of the perfect fluid,

Tµν = (ρ+ p)uµuν + pgµν , (1.1.3)

where uµ is the 4-velocity of the fluid, ρ and p are the mean energy density and

pressure of the fluid as a function of time, respectively.

Finally, using Eqs. (1.1.1) and (1.1.3) into Eqs. 1.1.2 we obtain the Friedmann

equations,

H2 =
8πG

3
ρ+

Λ

3
− K

a2
, (1.1.4)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.1.5)

Where H(t) ≡ ȧ/a is the Hubble factor which describes the expansion rate of the

Univere, G is the gravitational constant. The overdot in above expressions denotes

a derivative with respect to the cosmic time, t.



1.1. Standard cosmological model 3

Equation 1.1.4 can be written as,

Ωm + ΩΛ + ΩK = 1 , (1.1.6)

where

Ωm ≡
8πGρ

3H2
, ΩΛ ≡

Λ

3H2
, ΩK ≡ −

K

(aH)2
, (1.1.7)

are the so-called density parameters for matter components, Ωm, cosmological con-

stant, ΩΛ, and curvature, ΩK , respectively. Current cosmological measurements set

the present-day value of Ω
(0)
K = 0.001± 0.002 (Planck Collaboration, 2018). There-

fore, we can conclude that we inhabit a flat universe.

We can also obtain the continuity equation of the fluid from ∇µT
µν = 0 (where

∇µ is the covariant derivative),

ρ̇+ 3H(ρ+ p) = 0 . (1.1.8)

and the relation between energy density and pressure is given by the equation of

state,

w(t) = p(t)/ρ(t) . (1.1.9)

If we assume w = const., and K = 0, the solutions of Eqs. (1.1.4), (1.1.5) and (1.1.8)

are,

ρ(t) = ρ0a(t)−3(1+w) , a(t) = a0t
2/[3(1+w)] , H(t) =

2

3(1 + w)t
, (1.1.10)

where ρ0 and a0 are constants. For relativistic species (electrons and photons),

non-relativistic matter (dark matter and baryons) and the cosmological constant,

the equation of state, Eq. (1.1.9), takes values of w = 1/3, 0,−1, respectively. For

example, the evolution of a radiation-dominated universe is given by ρ ∝ a−4 and

a ∝ t1/2. The evolution of the matter-dominated universe is given by ρ ∝ a−3 and

a ∝ t2/3. For the cosmological constant-dominated universe, the energy density is

constant and a ∝ eHt, where H = const.

As we mentioned above, the cosmological principle states homogeneity and isotropy

in the Universe. However, we do observe inhomogeneities and irregularities in the

local region of the Universe such as stars and galaxies. These inhomogeneities can be

related to small perturbations evolving on the background (homogeneous) Universe
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that have grown in time due to gravitational instabilities overcoming the expansion

of the Universe, until collapse to form a dark matter halo. It has been proposed

that galaxies form inside those dark matter haloes (White & Rees, 1978).

To explore the formation and growth of structures in the Universe we can consider

the evolution of the initial density field using linear perturbation theory. Hence, it

is useful to express the matter density in terms of the background density (ρ̄(t)) and

the density contrast or overdensity (δ(t,x)),

ρ(t,x) = ρ̄(t)[1 + δ(t,x)] . (1.1.11)

Then, the relevant equations of motion for the overdensity (δ) using the Newto-

nian approximation are the continuity equation, Euler’s equation and the Poisson

equation:

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0 , (1.1.12)

∂v

∂t
+
ȧ

a
v +

1

a
(v ·∇)v = −∇Φ

a
− ∇p
aρ̄(1 + δ)

, (1.1.13)

∇Φ = 4πGρ̄aδ , (1.1.14)

where ∇ is the differential operator over the comoving coordinates, Φ is the gravi-

tational potential and v is the peculiar velocity of the fluid.

For non-relativistic matter, e.g., dark matter, p = 0. Then, we can combine

Eqs. (1.1.12)−(1.1.14) into a single equation written as,

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
− 4πGρ̄δ = 0 , (1.1.15)

and therefore the solution for the growing mode is given by,

δ(t) ∝ D(t) , (1.1.16)

where D(t) is the linear growth factor, which determines the normalisation of the

linear matter power spectrum relative to the initial density perturbation power spec-

trum. For a matter-dominated universe, the linear growth factor is D(t) ∝ t2/3 ∝
a(t). When the overdensity reaches a value of δ ∼ 1, the linear perturbation (ana-

lytical) treatment is no longer valid, therefore the non-linear evolution of structures

is treated with numerical simulations.
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1.2 Modified gravity theory

Theoretically, the ΛCDM model is somewhat unappealing due to the presence of

the cosmological constant, the agent behind the accelerating cosmic expansion. The

magnitude of the cosmological constant is hard to motivate from a particle physics

perspective. There is also a “Why now?” problem: a strong coincidence seems to be

required for us to be at the right point in cosmic history to experience comparable

energy densities in matter and the cosmological constant, with the latter dominating

the current expansion. As a result, alternatives to the cosmological constant have

been studied extensively in recent years: one possibility is adding more matter

species to the energy-momentum tensor (the so-called dark energy models; see e.g.,

Copeland et al. 2006); on the other hand there are models that change the left-hand

side of Einstein’s equations (these models are called modified gravity (MG) models,

for reviews see Joyce et al. 2015; Koyama 2016). Here, we focus our attention in

MG models.

Moreover, modifications to Einstein’s general relativity can lead to interesting

effects on all scales. In order to satisfy Solar System constraints these modifications

should be hidden in the local environment, hence screening mechanisms have been

proposed to recover GR predictions in high-density regions (see Sec. 1.2.3).

As we will show in this thesis, future galaxy surveys such as the Dark Energy

Spectroscopic Instrument (DESI, DESI Collaboration et al., 2016) and the space

mission Euclid (Laureijs et al., 2011) will be offering the possibility to test the

nature of gravity on cosmological scales; allowing us to put tight constraints on the

parameter space of such MG models or potentially to rule out deviations from the

standard cosmological paradigm.

Here, we give a brief introduction to two of the most representative and popular

families of modified gravity models: the Hu & Sawicki f(R) gravity (Hu & Sawicki,

2007) and the normal-branch Dvali-Gabadadze-Porrati (nDGP) braneworld model

(Dvali et al., 2000) (see Sec. 1.2.1). Then we present the equations in these models

that govern non-linear structure formation (Sec. 1.2.2) and finally briefly explain

the screening mechanisms necessary to suppress the effects of modified gravity and

recover GR in regions such as the Solar System (Sec. 1.2.3).
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1.2.1 Models

f(R) gravity

The modified Einstein equations in f(R) gravity can be obtained by varying the

modified Einstein-Hilbert action

S =
1

16πG

∫
d4x
√−g(R + f(R)) + Sm(gµν , ψi) , (1.2.17)

with respect to the metric, gµν ,

Gµν + fRRµν − gµν
(

1

2
f(R)−2fR

)
−∇µ∇νfR = 8πGTm

µν , (1.2.18)

where Gµν is Einstein tensor, 2 = ∇µ∇µ the d’Alambertian, G is the gravitational

constant, g is the determinant of the metric, Sm is the action of the matter fields ψi.

Eq. (1.2.18) contains a new dynamical degree of freedom, known as the scalaron

field and defined by

fR ≡
df(R)

dR
. (1.2.19)

The amplitude of this scalaron field determines the deviations from GR, with larger

|fR| meaning stronger deviations.

The evolution of the scalaron field is obtained by taking the trace of the modified

Einstein equations, Eq. (1.2.18),

2fR =
1

3
(R− fRR + 2f(R) + 8πGρm) , (1.2.20)

where ρm is the non-relativistic matter density of the Universe.

Various functional forms of f(R) have been proposed in the literature to study

modifications to general relativity (for reviews see e.g. De Felice & Tsujikawa 2010;

Sotiriou & Faraoni 2010). Here we consider the Hu & Sawicki (2007) model

f(R) = −m2 c1

c2

(R/m2)n

(R/m2)n + 1
, (1.2.21)

fR = −c1

c2
2

n(R/m2)n−1

[(R/m2)n + 1]2
, (1.2.22)

where m is a new mass scale defined as m2 ≡ H2
0 Ωm, H0 is the current value of

the Hubble expansion rate, Ωm is the current density parameter of non-relativistic
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matter, n, c1 and c2 are free dimensionless parameters of the model. To obtain

Eqs. (1.2.21) and (1.2.22) we have used the metric signature convention (−,+,+,+)

as mentioned above. This specific f(R) model can approximately mimic the back-

ground expansion of the ΛCDM model if we fix c1/c2 = 6(ΩΛ/Ωm), where ΩΛ ≡
1− Ωm. Recall that we are assuming a flat universe, i.e., K = 0.

Eq. (1.2.22) can be approximated as

fR ≈ −n
c1

c2
2

(
m2

R

)n+1

, (1.2.23)

in the limit |R̄| ≈ 40m2 � m2, a condition that is satisfied throughout the cosmic

history with reasonable parameter values Ωm ≈ 0.3 and ΩΛ ≈ 0.7, with

R̄ ≈ 3m2

[
a−3 +

2

3

c1

c2

]
, (1.2.24)

where a is the scale factor, normalised to a = 1 at the present time.

From the functional form of the scalaron field, Eq. (1.2.22), we can see that this

model has two free parameters, n and c1/c
2
2. In the literature it is common to use

fR0, which has the physical meaning of being the value of fR today, instead of c1/c
2
2,

where
c1

c2
2

= − 1

n

[
3

(
1 + 4

ΩΛ

Ωm

)]n+1

fR0 . (1.2.25)

Therefore, a particular choice of n and fR0 fully specifies the Hu-Sawicki f(R) model.

In this thesis we focus on the cases of n = 1 and fR0 = −10−6,−10−5,−10−4, referred

as F6, F5 and F4, respectively.

Dvali-Gabadadze-Porrati model

In the Dvali, Gabadadze & Porrati (DGP) braneworld model, the Universe is a four-

dimensional brane that is embedded in a five-dimensional spacetime (the bulk). The

gravitational action of the model is given by

S =

∫
brane

d4x
√−g

(
R

16πG

)
+

∫
bulk

d5x
√
−g(5)

(
R(5)

16πG(5)

)
+Sm(gµν , ψi), (1.2.26)

where g, R, G and Sm(gµν , ψi) have the same meaning as before on the 4D brane,

while g(5), R(5) and G(5) are respectively their equivalents in the 5D bulk. A new
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parameter can be defined as the ratio of G(5) and G and is known as the crossover

scale, rc,

rc ≡
1

2

G(5)

G
. (1.2.27)

Here we focus on the normal branch DGP (nDGP) model (Sahni & Shtanov,

2003; Lombriser et al., 2009; Schmidt, 2009b), where the variation of the action,

Eq. (1.2.26), yields the modified Friedmann equation

H(a)

H0

=
√

Ωma−3 + ΩDE(a) + Ωrc −
√

Ωrc , (1.2.28)

in a homogeneous and isotropic Universe with Ωrc = 1/(4H2
0r

2
c ). In this model,

deviations from GR can be quantified by the parameter H0rc. As we can see from

Eq. (1.2.28) if H0rc → ∞ then the expansion of the Universe is closer to ΛCDM.

Therefore, we consider two nDGP models with H0rc = 5 and H0rc = 1 where

hereinafter referred as to N5 and N1 which represent a weak and medium deviation

from GR, respectively.

1.2.2 Structure formation in modified gravity models

Since we are interested in the growth of structure in different gravity models, we work

with the perturbed Friedmann-Robertson-Walker (FRW) metric in the Newtonian

gauge

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)γijd~x
2 , (1.2.29)

where Φ and Ψ are the gravitational potentials, and ~x represents comoving coordi-

nates.

In the case of f(R) gravity, non-linear structure formation is determined by

the following equations in the quasi-static and weak-field approximations which are

known to be good approximations for the regime we are interested in (Bose et al.,

2015)

∇2Φ =
16πG

3
a2δρm −

a2

6
δR . (1.2.30)

for Φ and

∇2fR =
a2

3
(δR− 8πGδρm) , (1.2.31)
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for fR. ∇2 is the three-dimensional Laplacian operator, δρm and δR are the per-

turbations of non-relativistic matter density and the scalar curvature, respectively.

The modified Poisson equation in f(R) gravity, Eq. (1.2.30), can be written as,

∇2Φ = 4πGa2δρm −
1

2
∇2fR . (1.2.32)

On the other hand, structure formation in the nDGP model is governed by the

following equations in the quasi-static and weak-field limits (Koyama & Silva, 2007),

∇2Φ = 4πGa2δρm +
1

2
∇2ϕ , (1.2.33)

∇2ϕ+
r2

c

3βnDGP a2

[
(∇2ϕ)2 − (∇i∇jϕ)2

]
=

8π Ga2

3βnDGP

δρm , (1.2.34)

where ϕ is the scalar degree of freedom in the nDGP model and

βnDGP = 1 + 2H rc

(
1 +

Ḣ

3H2

)
= 1 +

Ωma
−3 + 2ΩΛ

2
√

Ωrc(Ωma−3 + ΩΛ)
. (1.2.35)

In the last expression we have assumed a ΛCDM background.

If we linearise Eq. (1.2.34), the two nonlinear terms in the squared brackets

vanish and the modified Poisson equation in the nDGP model, Eq. (1.2.33), can be

re-expressed as

∇2Φ = 4πGa2

(
1 +

1

3βnDGP

)
δρm, (1.2.36)

which represents a time-dependent and scale-independent rescaling of Newton’s con-

stant. Since βnDGP is always positive, the formation of structure is enhanced in this

model with respect to ΛCDM.

The linear growth for the matter fluctuations in these gravity models can be

obtained by solving the equation of the linear growth factor, D,

D′′ +

(
2− 3

2
Ωm(a)

)
D′ − 3

2

Geff

G
Ωm(a)D = 0 , (1.2.37)

where ′ denotes a derivative with respect ln a and Geff takes values of

Geff

G
=


1 GR ,

1 + k2/[3(k2 + a2m2
fR

)] f(R) ,

1 + 1/[3βnDGP(a)] nDGP ,

(1.2.38)
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Figure 1.1: Relative difference of the linear growth factor (D Eq. (1.2.37), left panel)

and the linear growth rate (f Eq. (1.2.39), right panel) between different gravity

models (F6, F5, F4, N5 and N1) and GR at different redshifts as a function of the

wavenumber, k. The colour scheme and line styles are specified in the legend and

show different models and redshifts.

here k is the wavenumber, mfR is the mass of the scalaron field defined by m2
fR
'

[3fRR]−1. Note that G
f(R)
eff is a function of time and scale, which means that the

linear growth of structure for f(R) gravity is scale dependent. This arises because

the scalaron (fR) is a massive field, while for GR and nDGP is scale independent.

In galaxy surveys we can extract information about the growth of structure

through the linear growth rate, f , which is defined as

f ≡ d lnD

d ln a
. (1.2.39)

Fig. 1.1 shows the relative difference of the linear growth factor, D, and the

linear growth rate, f , at the three redshifts of interest, z = 0, 0.3, 0.5, between

different modified gravity models and GR (ΛCDM) as a function of scale, k. The

relative differences for the nDGP models remain constant because DnDGP and fnDGP

are scale-independent. In the case of f(R) gravity, the difference with respect to

GR becomes larger at smaller scales (k > 0.1hMpc−1) and lower redshifts, while at

k < 0.01hMpc−1 the growth of structure is almost indistinguishable from that in

GR.



1.2. Modified gravity theory 11

1.2.3 Screening mechanisms

Chameleon mechanism

In f(R) gravity, the chameleon mechanism (Khoury & Weltman, 2004) is introduced

to suppress the enhancement of gravity under certain environmental conditions.

Since the scalaron field is massive, with a mass given by

m2
fR
≡ d

dfR

(
dVeff

dfR

)
' 1

3fRR
, (1.2.40)

where the effective potential Veff is defined such that dVeff/dfR = 2fR; the second

equality comes from applying this definition to Eq. (1.2.20). Hence, for fRR > 0,

the effective potential Veff has a minimum at fR,min satisfying ∂Veff(fR,min)/∂fR = 0.

In high-density regions, where ρm is large, it can be shown, using the expressions of

f(R), fR given above, that mfR becomes heavy in such that the fifth force decays

exponentially as r−2 exp(−mfRr), leading to recovery of GR. In low-density regions,

the fifth force can propagate a further distance, modifying the force law between

matter particles. This environmental dependence of the fifth force behaviour earns

the screening mechanism the name ‘chameleon’.

Vainshtein mechanism

The nDGP model is a representative class of modified gravity models that feature the

Vainshtein screening mechanism (Vainshtein, 1972). To illustrate how the Vainshtein

mechanism works, let us for simplicity consider solutions in spherical symmetry,

where Eq. (1.2.34) can be written in the following form

2r2
c

3βnDGPc2a2

1

r2

d

dr

[
r

(
dϕ

dr

)2
]

+
1

r2

d

dr

[
r2 dϕ

dr

]
=

8πG

3βnDGP

δρma
2 . (1.2.41)

Defining the mass enclosed in radius r as

M(r) ≡ 4π

∫ r

0

δρm(r′)r′2dr′, (1.2.42)

we can rewrite Eq. (1.2.41) as

2r2
c

3βnDGPc2

1

r

(
dϕ

dr

)2

+
dϕ

dr
=

2

3βnDGP

GM(r)

r2
≡ 2

3βnDGP

gN(r), (1.2.43)
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in which for simplicity we have set a = 1, and gN is the Newtonian acceleration

caused by the mass M(r) at distance r from the centre, Eq. (1.2.42).

If we assume that δρm is a constant within radius R and zero outside, then

Eq. (1.2.43) has the physical solution

dϕ

dr
=

4

3βnDGP

r3

r3
V

[√
1 +

r3
V

r3
− 1

]
gN(r), (1.2.44)

for r ≥ R and

dϕ

dr
=

4

3βnDGP

R3

r3
V

[√
1 +

r3
V

R3
− 1

]
gN(r) (1.2.45)

for r ≤ R. In these expressions rV is the Vainshtein radius which can be written as

rV ≡
(

8r2
crS

9β2
nDGP

)1/3

=

(
4GM(R)

9β2
nDGPH

2
0 Ωrc

)1/3

, (1.2.46)

where rS ≡ 2GM(R)/c2 is the Schwarzschild radius andM(R) ≡ 4π
∫ R

0
δρm(r′)r′2dr′.

According to Eq. (1.2.33), the fifth force is given by 1
2
dϕ/dr. Thus when r � rV

we have
1

2

dϕ

dr
→ 1

3βnDGP

gN(r), (1.2.47)

meaning on scales larger than the Vainshtein radius gravity is enhanced (because

βnDGP > 0 for the normal branch of the DGP model). On the other hand, for

r, R� rV we have

1

2

dϕ

dr
→ 2

3βnDGP

R3/2

r
3/2
V

gN(r)� gN(r), (1.2.48)

indicating that the fifth force is suppressed (or screened) well within the Vainshtein

radius.

1.3 Cosmological simulations

Cosmological simulations are the standard tool to explore and understand the for-

mation and evolution of non-linear structures in the Universe.

Dark matter-only (DMO) simulations are the more widely used cosmological

simulations (see Springel et al., 2005; Angulo et al., 2012; Klypin et al., 2016).

Such simulations do not include baryons, therefore it is computationally possible to
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generate a large number of DMO simulations to study halo and galaxy clustering

(see e.g., Garrison et al., 2018; Klypin & Prada, 2018; Hernández-Aguayo et al.,

2020a). To populate these simulations with realistic galaxy populations we opt to

use empirical models such as the halo occupation distribution (HOD) (Berlind &

Weinberg, 2002; Kravtsov et al., 2004; Zheng et al., 2005) or the (sub)halo abundance

matching techniques (SHAM) (Vale & Ostriker, 2004; Conroy et al., 2006; Reddick

et al., 2013; Klypin et al., 2013).

Hydrodynamical simulations attempt to simulate the evolution and distribution

of both dark matter and baryonic structures together. These simulations aim to ex-

plore galaxy formation by incorporating astrophysical processes such as gas cooling,

stellar and active galactic nuclei (AGN) feedback, star formation, magnetic fields and

even cosmic rays in a cosmological context (see, e.g., Vogelsberger et al., 2014; Schaye

et al., 2015; Feng et al., 2016; McCarthy et al., 2017; Pillepich et al., 2018a, 2019;

Lee et al., 2020). Such simulations are possible thanks to the advances in numerical

codes and techniques (see e.g, Springel, 2010; Schaller et al., 2018). More recently,

Arnold et al. (2019) and Hernández-Aguayo et al. (2020b) have started to explore

the interplay between baryonic physics and modified gravity in full-hydrodynamical

simulations. Unfortunately, not all the astrophysical processes in galaxy formation

simulations can be simulated with such high precision, for this reason it is necessary

to include “subgrid physics” models (Crain et al., 2015) to alleviate the finite reso-

lution. Also, subgrid models need to be tuned using observations to reproduce the

observed galaxy population.

In addition, semi-analytical models of galaxy formation (SAM) offer the pos-

sibility to explore galaxy formation without the need to run computationally ex-

pensive full-hydrodynamical simulations (Somerville & Primack, 1999; Cole et al.,

2000; Baugh, 2006; Benson, 2010). Basically, SAMs populate DMO simulations

with galaxies by solving a set of coupled differential equations which describe the

cooling of gas in haloes, the formation of stars and black holes, feedback due to

supernovae and heating by AGN, metal enrichment, etc. Disadvantages of SAMs

include the need for relatively high-resolution DMO simulations with the storage of

a large number of particle snapshots to construct merger trees. Also SAMs make
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simplifying assumptions (e.g. spherical symmetry) to model the flow of gas in and

out of galaxies and do not provide detailed information about the distribution of

gas.

1.4 Galaxy surveys

Several large international survey projects are underway which aim to determine

what is behind the accelerating expansion of the Universe, such as the Dark Energy

Survey (DES; Dark Energy Survey Collaboration, 2016), the Dark Energy Spectro-

graphic Instrument survey (DESI; DESI Collaboration et al., 2016), the European

Space Agency’s Euclid mission (Laureijs et al., 2011), the 4-metre Multi-Object

Spectroscopic Telescope (4MOST; de Jong et al., 2016), the Subaru Prime Focus

Spectrograph (PFS; Tamura et al., 2016) and the Vera C. Rubin Observatory (for-

merly known as the Large Synoptic Survey Telescope; LSST Science Collaboration,

2009). These surveys aim to measure the position of millions of galaxies to map the

large-scale structure of the Universe, a key component to unveil the nature of the

dark matter and dark energy, and to test the theory of gravity at an unprecedented

level of precision. To fully exploit these data it is essential to provide accurate

theoretical predictions for as wide a range of cosmological models as possible.

Different targeting strategies are driven partly by observational and instrumen-

tal considerations, such as the visibility of a particular emission line over a given

redshift interval or the number of fibres available in the field of view. For exam-

ple, over several phases, the Sloan Digital Sky Survey (SDSS) measured redshifts

for an r−band selected main galaxy sample (Strauss et al., 2002) at low redshift

(z < 0.2), and colour and magnitude selected samples of luminous red galaxies

(LRGs) and emission line galaxies (ELGs) at intermediate redshifts and quasars at

high redshifts (Dawson et al., 2013, 2016) to make measurements of the BAO scale

from the correlation function and power spectrum (Eisenstein et al., 2005; Sánchez

et al., 2012; Ross et al., 2015; Ata et al., 2018). LRGs are the main targets of the

SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), in

the redshift range 0.2 < z < 0.75. This survey has provided the most precise mea-
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surements to date of cosmological distances using BAO and the growth rate using

RSDs at redshifts z = 0.38, 0.51, and 0.61 (see Alam et al., 2017, and references

therein). Recently, the SDSS-IV extended-BOSS survey (eBOSS; Dawson et al.,

2016; Prakash et al., 2016) has presented the first clustering measurements of LRGs

at z ∼ 0.7 (Zhai et al., 2017; Bautista et al., 2018; Icaza-Lizaola et al., 2020).

As another example, the DESI survey aims to target luminous red galaxies in

the redshift range from z = 0.4 to z = 1 (the DESI LRG target selection at z < 0.6

will be complementary to that performed in the SDSS-IV/eBOSS (Prakash et al.,

2016)), [OII] emission-line galaxies in the range 0.6 < z < 1.6, quasi-stellar objects

(QSOs; tracers) up to z = 2.1, and QSOs (Ly-α) at higher redshifts (2.1 < z < 3.5).

In addition to a bright galaxy sample at low redshifts z < 0.4, DESI will provide a

total of ∼ 35 million biased tracers of the large-scale structure of the Universe over

14 000 deg2 (see Kitanidis et al., 2020, for details), which is an order of magnitude

more than previous spectroscopic surveys, allowing even tighter constraints to be

placed on cosmological models.

1.5 Outline of the thesis

In this thesis, we aim to provide the cosmological tools needed to explore the im-

pact of modifications of gravity on the formation, evolution and clustering of galaxies

using large N-body cosmological simulations and small but high-resolution hydro-

dynamical simulations. The thesis is split into two parts as described below.

The first part of the thesis is organised as follows. In Chapter 2, we present

a new cosmological probe to test f(R) gravity models using marked correlation

functions, where the marks are defined as a function of environment. In Chapter 3,

we explore the large-scale redshift space distortions (RSD) in both f(R) and nDGP

models. We put constraints on the linear distortion parameter, which is related

to the linear growth rate, using a linear and a non-linear RSD model. Using a

new modified version of the Arepo code and the IllustrisTNG galaxy formation

model, In Chapter 4, we present the first full-hydrodynamical simulations of galaxy

formation in the nDGP model.
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In the second part, we study the large-scale clustering of galaxies in the ΛCDM

model. In Chapter 5, we assess whether or not there is an optimal way to select

galaxies to extract the baryon acoustic oscillations (BAO) scale. In Chapter 6, we

present a novel technique to build galaxy mock catalogues for the luminous red

galaxy sample of the DESI survey. The results of Chapters 5 and 6 will hopefully

help in the preparation and analysis of future galaxy surveys.

Finally, in Chapter 7, we present our general conclusions and give a brief de-

scription of future projects that will complement the results presented in this thesis.



Chapter 2

Marked clustering statistics in

f (R) gravity cosmologies

2.1 Introduction

The Λ cold dark matter (ΛCDM) model is currently the most widely accepted de-

scription of the Universe (e.g. see Ade et al. 2014). In this model small ripples

in the density of the Universe at early times, seeded during a period of rapid ex-

pansion called inflation, were boosted by gravity to form the cosmic web of voids,

galaxies and clusters of galaxies that we see today. The ΛCDM model works remark-

ably well on large scales, with the highlight being the prediction of the temperature

fluctuations in the cosmic microwave background (CMB) radiation (e.g. Planck Col-

laboration XIII 2016). However, the model arguably runs into difficulties on small

scales (scales smaller than a few Mpc), which could be related to the nature of the

dark matter particle or could be solved by appealing to the physics of galaxy forma-

tion (for reviews see Weinberg et al. 2014; Del Popolo & Le Delliou 2017; Bullock

& Boylan-Kolchin 2017). For example, the inner structure of dark matter haloes

has a cusp profile, whereas observations suggested a core one (Flores & Primack,

1994; Moore, 1994). A possible solution is that baryonic feedback alters the inner

structure of dark-matter haloes producing core-like density profiles in hydrodynam-

ical simulations (Read et al., 2016; Fitts et al., 2017). Also, numerical simulations

predict many more subhaloes than observed galaxies (Klypin et al., 1999; Moore

17
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et al., 1999), however it has been shown that such subhaloes are not able to form

luminous structures (see e.g., Sawala et al., 2016).

Here, given the challenges faced by ΛCDM as set out in Chapter 1, we focus our

attention on a particular class of modified gravity models – Hu & Sawicki (2007)

chameleon f(R) gravity as described in Sec. 1.2.1. This model is obtained by adding

a general function of the Ricci scalar, f(R), to the Einstein-Hilbert action. This

modification gives rise to a new scalar degree of freedom in gravity (Carroll et al.,

2004). In order to recover GR, the new scalar field becomes massive in high-density

regions (i.e., the Solar System) and its interactions are suppressed by the so-called

chameleon screening mechanism (Khoury & Weltman, 2004).

The standard tool to model the growth of large scale structure into the non-linear

regime is N-body simulation. In order to robustly test gravity on cosmological scales,

reliable N-body simulations of modified gravity models are essential. The non-linear

nature of the scalar field equation requires the implementation of novel numerical

techniques, which is what makes N-body simulations of modified gravity challenging

(Winther et al., 2015; Barreira et al., 2015; Bose et al., 2017b). Once such simulations

are ready, we can use measurements of clustering statistics from surveys to test and

constrain cosmological models (see e.g., Reid et al. 2010).

Several recent works have studied clustering in f(R) gravity. For example, Li

et al. (2013b) predicted the matter and velocity divergence power spectra and their

time evolution measured from several large-volume N-body simulations with varying

box sizes and resolution. Jennings et al. (2012) predicted the clustering of dark

matter in redshift space, finding significant deviations from the clustering signal

in standard gravity, with an enhanced boost in power on large scales and stronger

damping on small scales in the f(R) models compared to GR at redshifts z < 1.

More recently, Arnalte-Mur et al. (2017) compared the time evolution of the two-

point correlation function of dark matter haloes in real and redshift space in modified

gravity and GR.

An approach related to the two-point correlation function has been proposed to

test modified gravity models, called the marked correlation function (Sheth, Con-

nolly & Skibba, 2005). Marked statistics offer the possibility of testing how galaxy
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properties correlate with environment. Previous applications of the marked correla-

tion function range from the analysis of the environmental dependence of bars and

bulges in disc galaxies (see e.g., Skibba et al. 2012) to breaking degeneracies in halo

occupation distribution modelling (White & Padmanabhan, 2009).

White (2016) proposed that marked statistics might provide a means to distin-

guish between modified gravity models and GR, due to the environmental depen-

dence of the strength of gravity (for earlier work on environmental dependence in

modified gravity, see, e.g., Zhao et al., 2011; Winther et al., 2012; Lombriser et al.,

2015; Shi et al., 2017). The environment can be defined as regions in the Universe

(or simulations) that can be quantified by observations such as density fields or the

gravitational potential. For example, one can quantify how many galaxies are within

a spherical (cubic) region of a given size in the Universe (simulations). We will dis-

cuss our definitions of environment in Sec. 2.3.2. Marks can be designed which

down-weight high-density regions, for which modifications to gravity are screened,

and up-weight low-density, unscreened regions to maximise the differences in the

clustering signal. Valogiannis & Bean (2018) tested this idea by using the dark

matter particle distribution from N-body simulations of symmetron and f(R) mod-

ified gravity models. In the case of f(R) gravity with |fR0| = 10−4, they found a

maximum difference of 37% with respect to GR. Armijo et al. (2018) studied the

galaxy marked correlation function by up-weighting low and high-density regions

using marks in function of the galaxy density field and the host halo mass of galax-

ies, they found significant differences between the f(R) and GR models. Here, we

focus our attention on the clustering of dark matter haloes and HOD galaxies for

f(R) gravity models to make a more direct connection with observations.

This Chapter is organised as follows. Section 2.2 explains the numerical set-up of

the simulations and the generation of halo and galaxy catalogues. The main results

are presented in Section 2.3. Finally, in Section 2.4 we present a brief discussion of

our results.
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2.2 Simulations and halo/galaxy catalogues

Here we present a description of the simulations used, the construction of halo

catalogues, and the HOD prescription used to populate dark matter haloes with

galaxies.

2.2.1 Numerical simulations

As we are interested in the effects of f(R) gravity on large scales, we choose three

Hu-Sawicki models with n = 1 and |fR0| = 10−6, 10−5, 10−4 (which we hereafter refer

to as F6, F5 and F4, respectively) and the ΛCDM model which assumes GR. Despite

the observational tensions from optical and X-ray galaxy clusters observations and

weak lensing peak statistics faced by f(R) models with |fR0| > 10−5 (see e.g.,

Lombriser 2014; Cataneo et al. 2015; Liu et al. 2016) and the constraint imposed if

the Milky Way is screened (|fR0| < 10−6; Burrage & Sakstein, 2018; Koyama, 2018)

it is interesting to consider a wide range of f(R) models to study their impact on

the halo/galaxy clustering.

We use the elephant (Extended LEnsing PHysics using ANalaytic ray Tracing)

simulations executed using the code ecosmog (Li et al., 2012), which is based on

the adaptive mesh refinement (amr) N-body code ramses (Teyssier, 2002). Ta-

ble 2.1 lists the properties of the simulations used in our analysis. The cosmological

parameters were adopted from the best-fitting values to the WMAP 9 year CMB

measurements (Hinshaw et al., 2013). All simulations use Np = 10243 particles with

a mass of mp = 7.798×1010h−1M� to follow the evolution of the dark matter distri-

bution in a volume of Vbox = (1024 h−1Mpc)3. The initial conditions were generated

at zini = 49 using the MPgrafic code (Prunet et al., 2008). All simulations were

run using the same initial conditions up to the present time, zfi = 0, generating

37 + 1 snapshots. Here, we analyse the outputs at z = 0.5.

2.2.2 Halo catalogues and mass function

Dark matter haloes are the building blocks of large-scale structure and the hosts of

galaxies. Therefore, the study of their statistical properties, such as their abundance
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Table 2.1: Numerical parameters of the simulations used.

Labels GR, F6, F5, F4

Present value of the scalaron field |fR0| = 0, 10−6, 10−5, 10−4

Box size Lbox = 1024 h−1Mpc

Number of DM particles Np = 10243

Mass of DM particle mp = 7.798× 1010h−1M�

Initial redshift zini = 49

Final redshift zfi = 0

Realisations 5

Cosmological parameters:

Total matter density Ωm = 0.281

1− Ωm ΩΛ = 0.719

Baryonic matter density Ωb = 0.046

Cold dark matter density Ωcdm = 0.235

Dimensionless Hubble parameter h = 0.697

Primordial power spectral index ns = 0.971

rms linear density fluctuation σ8 = 0.840
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and clustering, is of great importance in understanding the nature of gravity. The

halo catalogues were produced using the rockstar halo finder code (Behroozi et al.,

2013a). rockstar calculates halo masses using the spherical overdensity (SO)

approach (Cole & Lacey, 1996), including all particles and substructures in the halo.

We keep only the ‘parent’ halo, omitting other substructures from our analysis.

We define the mass of a halo as M200c, the mass within a sphere of radius r200c,

which is the radius within which the mean overdensity is 200 times the critical

density of the universe ρc,

M200c =
4π

3
200ρcr

3
200c . (2.2.1)

The dark matter halo mass function (HMF) quantifies the number density of dark

matter haloes as a function of their mass. The HMF is sensitive to the cosmological

parameters, Ωm, ΩΛ, and σ8, and to modifications to gravity. The ΛCDM model

predicts an HMF in which the number of haloes increases with decreasing halo mass.

f(R) models predict more haloes than the ΛCDM model at almost all masses due to

the enhancement of gravity. Theoretically, the halo mass function is given by (Press

& Schechter, 1974)
dn

dM200c

= f(σ)
ρ̄m

M2
200c

∣∣∣∣ d lnσ−1

d lnM200c

∣∣∣∣ , (2.2.2)

where σ is the linear theory variance in the matter perturbation, ρ̄m is the mean

density of the Universe and f(σ) is an analytical fitting formula. The cumulative

number density of haloes above the mass M200c is:

n(> M200c) =

∫ ∞
M200c

dn

d log10M200c

d log10M200c . (2.2.3)

We compare the fitting formula of Tinker et al. (2010) (hereafter Tinker10) to the

simulation results. Tinker10 calibrated their fitting formula using a SO algorithm

to identify dark matter haloes in numerical simulations which is consistent with the

approach used in rockstar. The analytical predictions were computed by using

the online tool HMFcalc1 (Murray et al., 2013).

Fig. 2.1 shows the cumulative halo mass function (cHMF) measured from the

simulations and the relative difference between the f(R) models and GR at z = 0.5.

1http://hmf.icrar.org/

http://hmf.icrar.org/
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Figure 2.1: The cumulative halo mass function in the models at z = 0.5. Different

colours represent different models, as labelled. The values for each model correspond

to the average over the 5 realisations. The horizontal dashed line shows the number

density we use to define our halo sample (nh = 3.2 × 10−4 h3 Mpc−3). The grey

curve shows the Tinker10 cHMF for GR at z = 0.5. The lower panel shows the

relative difference with respect to the ΛCDM (GR) model.



2.2. Simulations and halo/galaxy catalogues 24

As expected, the largest deviation from GR is displayed by the F4 model (red line;

Schmidt et al. 2009; Lombriser et al. 2013; Cataneo et al. 2016). The lower panel

of Fig. 2.1 shows that the cumulative halo mass function in the F4 model reaches a

difference with respect to GR of>50 percent for haloes of massM200c > 1014.3h−1M�.

The maximum difference found between F5 (green line) and GR reaches 25 percent

for haloes with mass M200c ≈ 1013.2h−1M�. On the other hand, for the F6 model

(blue line) we see that for very massive haloes, the halo mass function is the same

as that in GR. This is because the chameleon mechanism works efficiently for such

haloes to suppress the effects of the enhancement to gravity. These differences are

purely the result of the modified gravitational force in f(R) models. The stronger

deviation of F4 from GR is due to the inefficient screening mechanism in this model

which allows the production of more massive haloes. For F5 the screening mechanism

is less efficient in haloes whit masses 1013 < M200c/[h
−1M�] < 1014 compared to the

screening in the F6 model which efficiently moderates the formation of haloes with

mass M200c > 1013h−1M�.

To make a direct comparison between the halo and galaxy clustering we select

a halo population from the simulations by fixing the halo number density (in this

case we take the number density of the BOSS-CMASS-DR9 sample at z = 0.5,

nh = ng = 3.2×10−4 h3Mpc−3; Anderson et al. 2012) and selecting haloes above the

mass threshold corresponding to that number density. The horizontal dashed line in

Fig. 2.1 corresponds to the halo number density used to define our halo sample. The

minimum mass that defines the halo sample for each model is: 7.643× 1012h−1M�

(GR), 7.798 × 1012h−1M� (F6), 9.124 × 1012h−1M� (F5) and 8.734 × 1012h−1M�

(F4). The fact that F5 has a higher minimum mass is because this model produces

more haloes with mass M200c ∼ 1013h−1M� (as we can see from the lower panel of

Fig. 2.1) than F6 and F4. For F4, many of the medium-mass haloes have merged to

form more massive haloes, hence this model predicts fewer smaller haloes than F5.

2.2.3 HOD prescription and galaxy catalogues

To compare the simulations with observations one has to populate dark matter

haloes with galaxies. This can be done using one of a number of empirical tech-



2.2. Simulations and halo/galaxy catalogues 25

niques depending on the physical application we are interested in, such as subhalo

abundance matching (Vale & Ostriker, 2004; Conroy et al., 2006; Reddick et al.,

2013; Klypin et al., 2013), the conditional luminosity function (Yang et al., 2003;

Cooray & Milosavljevic, 2005) or the halo occupation distribution (Berlind & Wein-

berg, 2002; Kravtsov et al., 2004; Zheng et al., 2005). These empirical descriptions of

the galaxy-halo connection have the flexibility to give accurate reproductions of ob-

servational estimates of galaxy clustering. A second, more expensive but physically

motivated method is hydrodynamical simulation (Schaye et al., 2015; Vogelsberger

et al., 2014). A third possibility, which retains the physical basis of hydrodynami-

cal simulation at a fraction of the computational cost is semi-analytical modelling

of galaxy formation (Somerville & Primack, 1999; Cole et al., 2000; Baugh, 2006;

Benson, 2010) in which an N-body dark matter-only simulation is populated with

galaxies after solving a set of coupled differential equations. To date, little work

has been done to study galaxy formation and clustering in modified gravity models

(see Fontanot et al. 2013 for an example), so here we will resort to the empirical

approach of HOD modelling.

We populate haloes using a functional form for the halo occupation distribution

(HOD; Peacock & Smith 2000; Berlind & Weinberg 2002) with five parameters, as

used by Zheng et al. (2007).

In this form, the mean number of galaxies in a halo of mass Mh (in our case

Mh = M200c) is the sum of the mean number of central galaxies plus the mean

number of satellite galaxies,

〈N(Mh)〉 = 〈Nc(Mh)〉+ 〈Ns(Mh)〉 , (2.2.4)

〈Nc(Mh)〉 =
1

2

[
1 + erf

(
log10Mh − log10Mmin

σlogM

)]
, (2.2.5)

〈Ns(Mh)〉 = 〈Nc(Mh)〉
(
Mh −M0

M1

)α
, (2.2.6)

and 〈Ns(Mh)〉 = 0 if Mh < M0.
〈
Nc/s(Mh)

〉
is the average number of central or

satellite galaxies, respectively, in a halo of mass Mh. The model depends on five

parameters: Mmin, M0, M1, σlogM and α. From Eqs. (2.2.5) and (2.2.6) we can

see that Mmin and M0 represent the halo mass threshold to host one central or

one satellite galaxy, respectively. Also, we assume that central galaxies are placed
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at the centre of their host haloes and satellite galaxies are orbiting inside haloes

with Mh ≥M0. The satellite galaxies are radially distributed, between r = [0, r200c],

following the Navarro-Frenk-White (NFW) profiles of their host halo (Navarro et al.,

1996, 1997).

We generate five galaxy catalogues (one for each independent realisation of the

density field) for every gravity model following the prescription described above.

The galaxy catalogues match the galaxy number density of the BOSS-CMASS-

DR9 sample at z = 0.5 (ng = 3.2 × 10−4 h3 Mpc−3 ; Anderson et al. 2012) and

the galaxy two-point correlation function across all gravity models (more details

are presented below). The BOSS-CMASS sample is dominated by LRGs which are

massive galaxies typically residing in haloes with Mh ∼ 1013h−1M� (Anderson et al.,

2012). Hence, given the mass resolution of the elephant simulations, these runs

are suitable to study the impact of f(R) gravity on galaxy clustering.

The values of the HOD parameters used to populate the GR simulations are those

inferred from the abundance and clustering measured for the BOSS-CMASS-DR9

galaxy sample (Manera et al., 2012):

log10(Mmin/[h
−1M�]) = 13.09 ,

log10(M1/[h
−1M�]) = 14.00 ,

log10(M0/[h
−1M�]) = 13.077 ,

σlogM = 0.596 ,

α = 1.0127. (2.2.7)

To find the f(R) HOD parameters, we use the simplex algorithm of Nelder &

Mead (1965) to search through the 5D parameter space. We start the algorithm with

an initial guess at the values of the HOD parameters, then the code walks through

the 5-dimensional HOD parameter space looking for the values that minimise the

root-mean-square difference (∆rms) of the real-space two-point correlation function

between f(R) and GR models given by,

∆rms =

√√√√ N∑
i=1

(
ξf(R),i/ξGR,i − 1

)2
. (2.2.8)
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Where we measured the correlation function using N = 40 logarithmically spaced

radial bins between 1 − 80 h−1Mpc. The relative difference of the galaxy number

density (∆n = nf(R)/nGR − 1) is added to ∆rms to ensure that all models have

similar number of tracers. We stop the search when ∆rms < 0.02 (this means that

the overall agreement is better than 2%). For the F4 model, the minimum value of

∆rms we could obtain in practice was ∆rms ∼ 0.03.

Here, we are interested in the marked correlation function (mCF), which was

proposed to highlight the environmental dependence in modified gravity models

(White, 2016). Hence, the most natural choice is to make the unmarked two-point

correlation functions (2PCFs) of the different models as close to each other as pos-

sible; otherwise when there is a difference in their mCFs we can not be sure how

much of this is due to the different 2PCFs.

The f(R) HOD parameters were tuned for each model and realisation to match

the clustering displayed in the counterpart simulation from the GR suite. The

best-fitting values of the HOD parameters for the different realisations are listed

in Table 2.2. The variation in the best-fitting parameter values is larger as the

modification to gravity increases. We note that, despite the differences between

the values of the best-fitting parameters between different models and realisations,

the resulting correlation functions and galaxy number densities agree with the GR

results to within our target accuracy.

Note that the HOD parameters are degenerate to some extent, so that a compar-

ison of the values of any single parameter across realisations or models should not be

over interpreted. For instance, consider the parameter α that governs the number of

satellite galaxies in haloes of a given mass: in the case of the most extreme model,

F4, the variation between realisations is ∼ 3%. This difference is small compared

with the 1σ scatter of HOD parameter fittings, e.g., White et al. (2011).

The left panel of Fig. 2.2 shows the HOD for CMASS galaxies at z = 0.5. The

gradual transition from zero to one galaxy per halo is determined by the values

adopted for logMmin and σlogM for central galaxies (dashed lines). The appearance

of satellites in haloes (dotted lines) is dictated by the values of M1 and M0, and the

rapid increase in the satellite content of haloes with increasing halo mass is governed
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Figure 2.2: Left panel: The mean number of central and satellite galaxies as a func-

tion of halo mass,
〈
Nc/s(M200c)

〉
. Dashed lines show the HOD for central galaxies

and dotted lines show satellite galaxies while solid lines represent the total averaged

number of galaxies, calculated from Eqs. (2.2.4) – (2.2.6) with parameters (2.2.7)

for GR and the result of Box 1 listed in Table 2.2 for the f(R) models, as labelled.

Right panel: the number of galaxies in the simulation as a function of the host halo

mass, the same distribution at z = 0.5 for different realisations: Box 1 (solid lines),

Box 2 (dashed lines), Box 3 (dotted lines), Box 4 (dashed-dotted lines) and Box 5

(thick-dashed lines).
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by α. The HOD parameters are adjusted in the f(R) models to approximately

reproduce the abundance and clustering of CMASS galaxies realised in GR. We

note that the resulting HODs are very similar between f(R) gravity and GR.

The right panel of Fig. 2.2 shows the distribution of the number of galaxies as

a function of the host halo mass (M200c). We see that most galaxies are found in

haloes with mass 1013 < M200c/[h
−1M�] < 1014. We also note that the F5 and F4

models produce more galaxies than GR and F6 in this mass range. This is because

the abundance of haloes in this mass range is boosted in F5 and F4, as we can see

from the relative differences of the cHMFs presented in the lower panel of Fig. 2.1.

Analysing the distribution of galaxies, we find good agreement between the five

realisations.

From the distribution of galaxies as a function of host halo mass plotted in

Fig. 2.2 we note that ≈ 0.1% galaxies reside in poorly resolved haloes (M200c <

1012h−1M�). The inclusion of these galaxies in the final catalogues does not affect

the clustering results.

2.3 Results

Upcoming galaxy surveys will allow us to measure the clustering of galaxies to an

unprecedented level of accuracy with the aim of developing a better understanding

of the nature of dark matter, dark energy and the evolution of galaxies through

cosmic time. In this section we present the statistical tools which can be used to

characterise the halo and galaxy distributions in different gravity models. This is

the first time that the halo and galaxy clustering has been studied to this level of

detail in f(R) gravity models.

2.3.1 2-point correlation function

To characterise the clustering of dark matter haloes and galaxies, we use the two-

point correlation function, ξ(r). This is defined as the excess probability, compared

with that expected for a random distribution, of finding two haloes (or galaxies)
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Figure 2.3: Two–point correlation function in real space measured for haloes (left

panel) with nh = 3.2 × 10−4h3Mpc−3 and HOD galaxies (right panel) in the four

gravity models at z = 0.5. The plotted values correspond to the average of the 5

realisations for each model. Different colour lines correspond to different gravity

models as labelled. The lower subpanels show the relative difference between the

results from the f(R) and ΛCDM (GR) models. Error bars and shaded regions

correspond to 1σ standard deviation over the 5 GR realisations.

contained in volume elements dV1 and dV2 at a separation r (Peebles, 1980):

dP12(r) ≡ n̄2[1 + ξ(r)]dV1dV2 , (2.3.9)

where n̄ is the mean halo (galaxy) number density. The 2-point correlation functions

and therefore the marked correlation functions are measured within the range 1 −
80h−1Mpc (for details see Sec. 2.2.3).

First we study the clustering of dark matter haloes, ξh, (left panel of Fig. 2.3),

for our halo samples with nh = 3.2 × 10−4h3Mpc−3. Although this statistic is not

directly observable, it is instructive to study the properties of ξh, since this is a first

step towards understanding differences in the clustering of galaxies.

The first thing we notice is that the deviation from GR does not show a mono-

tonic dependence on |fR0|. More explicitly, F6 and F4 models have weaker clustering

than GR, while F5 haloes are more clustered than GR.
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These perhaps counterintuitive results can be explained by considering the fol-

lowing two effects of the enhanced gravity.

Firstly, stronger gravity means a faster growth of initial density peaks, and there-

fore more massive structures at late times. This generally leads to a higher mean

halo number density above a fixed halo mass threshold. The enhancement of halo

formation is not uniform: when screening is efficient, it is stronger in low-density

regions than it is in high-density regions; when the screening is less efficient, then

the growth of haloes is boosted in all environments, and those in dense regions can

be boosted more because they have more matter around them to accrete.

Secondly, enhanced gravity generally leads to a stronger clustering of the struc-

tures that are formed from these initial density peaks. However, stronger gravity

also means that we can expect more mergers in dense regions, reducing the number

of haloes there. The latter effect can be seen by comparing the cHMFs of F5 and

F4 in Fig. 2.1.

As we choose the halo mass cut to ensure that we consider the same number

of haloes in each model any differences in ξh come from the different spatial distri-

butions of haloes in the models. For F6, the deviation from GR is weak and the

fifth force is suppressed in high-density regions. As a result small density peaks in

low-density regions grow faster than similar density peaks in high-density regions,

and more of them make it into the fixed number density halo catalogue than in GR.

This makes the haloes less clustered and ξh(r) smaller.

For F5, the enhancement of gravity is stronger and the screening is weaker, so

that haloes in all regions experience faster growth; those in high-density environ-

ments have a larger supply of raw materials for accretion and growth, so that they

are more likely ending up in the final halo catalogue, leading to a stronger clustering

and ξh. For F4, the even stronger enhancement of gravity causes more mergers of

haloes in dense regions to form even larger haloes, and to maintain the same n̄h more

haloes in low-density regions have to be included into the halo catalogue, leading to

less clustering and smaller ξh.

In the case of the galaxy correlation function (right panel of Fig. 2.3), as we

said before, the HOD catalogues for the f(R) models were created by tuning the
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parameters (2.2.7; see Table 2.2) to approximately match the two-point correlation

function in GR (to within 1− 3%).

2.3.2 Marked correlation function

In this subsection we consider the marked correlations, in which one weights galax-

ies2 by some property or ‘mark’ when estimating clustering statistics. Marked cor-

relations are particularly well-suited to quantifying how the properties of galaxies

correlate with environment (Sheth et al., 2005; Skibba et al., 2006; White & Padman-

abhan, 2009; Skibba et al., 2009, 2012). Here, we test the idea proposed by White

(2016) that marked correlation functions may show a clearer signature of modified

gravity in the large-scale clustering of galaxies, by up-weighting low density regions,

where screening is weak and deviations from GR are strong.

The marked correlation function is defined as (Sheth et al., 2005):

M(r) ≡ 1

n(r)m̄2

∑
ij

mimj =
1 +W (r)

1 + ξ(r)
, (2.3.10)

where the sum is over all pairs with a given separation, r, n(r) is the number of such

pairs and m̄ is the mean mark for the entire sample. In the second equality ξ(r)

is the two-point correlation function in which all galaxies (or haloes) are weighted

equally. W (r) is derived from a similar sum over galaxy (halo) pairs separated by r,

as used to estimate ξ(r), but now each member of the pair is weighted by the ratio

of its mark to the mean mark of the full sample. The marked correlation function

M(r) can be estimated approximately using the simple pair count ratio WW/DD

(where DD is the count of data–data pairs and WW represents the corresponding

weighted counts). Hence, no random catalogue is needed for its computation.

The choice of the mark is flexible and depends on the application. Since we are

interested in isolating the effects of the chameleon screening mechanism on structure

formation, we study the clustering of HOD galaxies using two different definitions

of environment: a) the number density field and b) the Newtonian gravitational

potential (Shi et al., 2017).

2For simplicity, we talk about galaxies here, but the same calculation can (and will) be applied

to haloes.
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Figure 2.4: Marked correlation functions of haloes and CMASS galaxies at z = 0.5;

mark in function of number density field. Left: functional form of the mark in

function of density field, middle: halo marked correlation functions and right: galaxy

marked correlation functions. Plots from upper to bottom: White mark (2.3.11),

log–mark (2.3.12) and Gaussian-ρR mark (2.3.13). All lower subpanels show the

relative difference between f(R) models and GR. The plotted values correspond to

the average over the 5 realisations. Errors correspond to 1σ standard deviation over

the 5 GR realisations.
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Density

For this environment definition we use three marks with an adjustable dependence

on density:

m =

(
ρ∗ + 1

ρ∗ + ρR

)p
, (2.3.11)

m = log10(ρR + ρ∗) , (2.3.12)

m =
1√

2πσρR
exp

(
−(ρR − ρ∗)2

2σ2
ρR

)
, (2.3.13)

where ρR is the galaxy number density in units of the mean galaxy number density,

ρ̄, and p, ρ∗ and σρR are adjustable parameters.

A crucial step in the estimation of the marked correlation function is the defi-

nition of the density. We measure the galaxy number density using counts-in-cells

(see, for example, Baugh et al. 1995). We divide the simulation box into cells (or

cubical boxes) of the same size, and then count the number of galaxies inside each

cell. Hence, we can compute the overdensity, δ, as:

1 + δ =
N

N̄
≡ ρR , (2.3.14)

where N is the number of galaxies in each cell and N̄ is the mean number of galaxies

in cells of a given size over the simulation volume. To compute the density we have

used 603 cells of size ∼ 17h−1 Mpc. Given the mean galaxy number density of

CMASS galaxies, ng = 3.2× 10−4 h3Mpc−3, we have a mean number of galaxies in

the cells of N̄ = 1.59. We checked that reducing the number of cells to 303 − 403

does not affect our results significantly, while further reducing the number of cells

makes the signal weaker; in the limit of 13 cell, W (r) becomes identical to ξ(r), as

expected.

The first mark, Eq. (2.3.11), was proposed by White (2016) (hereafter the White–

mark), with the motivation being that by up-weighting low density regions (i.e. by

choosing p > 0), one might be able to find a signature of modified gravity, since

previous studies have shown that the properties of voids are different in modified

gravity theories than in GR (Clampitt et al., 2013; Cai et al., 2015; Zivick et al.,

2015; Cautun et al., 2018). The log mark, Eq. (2.3.12), allows us to up-weight

regions with ρR > 1, i.e., intermediate and high-density regions. Finally, using the
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Gaussian-ρR mark, Eq. (2.3.13), we are able to control the regions we want to up-

weight. Previously, Llinares & McCullagh (2017) found that by using a Gaussian

transformation of the density field is it possible to up-weight intermediate density

regions and find bigger differences between the clustering of objects in modified

gravity and GR models. Keeping this in mind, we use the Gaussian-ρR mark to

up-weight only intermediate density regions.

It is evident that by using Eq. (2.3.11) one can control the up-weighting by

varying the power p and the parameter ρ∗. For simplicity we chose p = 1 and

ρ∗ = 10−6. With the log-mark, a natural choice of the parameter which controls

the enhancement is ρ∗ = 1, given m = 0 for voids (ρR = 0). The parameters we

chose for the Gaussian-ρR mark are: ρ∗ = 1.5 and σρR = 0.2, which ensures that

we up-weight intermediate-density regions of interest. The functional form of the

marks, Eqs. (2.3.11) – (2.3.13), is shown in the left-hand panels of Fig. 2.4. We have

tried using different values of p, ρR and ρ∗ but found that our results do not show

significant differences on varying these parameters. We refer to low-, intermediate-

and high-density regions as those for which the cells contain N = 1, 2− 3 and > 4

objects or, equivalently, to cells with ρR = 0.62, 1.25−1.88 and > 2.51, respectively

(see Eq. (2.3.14)).

Fig. 2.4 shows the marked correlation functions (mCFs) at z = 0.5 measured

from the halo (middle panels) and the HOD (left panels) catalogues in the f(R)

and GR models. In all cases the marked correlation function goes to unity on large

scales as expected (see right-hand expression of Eq. (2.3.10)). The first row of plots

in Fig. 2.4 shows the mCF using the mark defined by Eq. (2.3.11), the White-mark,

with p = 1 and ρ∗ = 10−6, the second row shows the log-mark, Eq. (2.3.12) with

ρ∗ = 1, and the third row shows the Gaussian-ρR mark with ρ∗ = 1.5 and σρR = 0.2.

We observe different behaviours: for the White-mark, Eq. (2.3.11), the marked

correlation function is M(r) ≤ 1 at small separations, for the log mark, Eq. (2.3.12),

we have M(r) ≥ 1, while for the Gaussian-ρR we notice a transition from M(r) ≤ 1

to M(r) > 1 at intermediate scales.

Analysing the behaviour of the halo marked correlation functions (see middle

panel of Fig. 2.4) we find the following features:
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• The clustering of F6 is almost indistinguishable from that of GR for all three

marks, because of the efficient screening.

• For F5, the stronger growth (see Sec. 2.3.1) means more clustering of haloes on

small scales, which is why W (r) and therefore the marked correlation function

is more affected at smaller r.

• In the case of F4, the higher production rate of massive haloes, driven by

the more frequent mergers of lower mass haloes (see Sec. 2.3.1), leads to the

incorporation of haloes into the fixed number density sample which correspond

to low density peaks and which are more likely to come from low-density

regions. Hence, the probability of finding a pair of tracers (haloes or galaxies)

increases at intermediate separation r due to presence of these low mass haloes.

The right columns of Fig. 2.4 show that galaxies qualitatively mimic the marked

clustering of haloes (at least for the White and log marks). Hence, the behaviour of

the galaxy marked correlation functions can be understood following the same ex-

planation as presented above for haloes. It is interesting to notice that even with the

added complexity of populating haloes with HOD galaxies, the qualitative behaviour

of the marked correlation functions preserves, suggesting that a true physical feature

is being observed here.

For the Gaussian−ρR mark, Eq. (2.3.13), which enhances intermediate-density

regions (cells with 2 or 3 haloes/galaxies), we found that the F4 galaxy marked

correlation function reaches a maximum of 20% for the lowest separation bin, while

F6 predicts a difference of 5% and F5 keeps closer to GR with a difference of ∼ 3%.

Gravitational potential

Our second definition of environment is based on the Newtonian gravitational po-

tential produced by dark matter haloes. The dark matter haloes in our simulations

are reasonably well described by a NFW density profile (Navarro et al., 1996, 1997):

ρNFW =
ρs

(r/rs)(1 + r/rs)2
, (2.3.15)



2.3. Results 38

6.5 6.0 5.5 5.0 4.5 4.0
log10(|ΦN|)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
(|Φ

N
|)

Φ ∗ = − 5.295
σΦ = 0.1

1.0

1.2

1.4

1.6

1.8

2.0
M

(r
)

Haloes z= 0.5

GR
F6
F5
F4

2 10 20 70
r (Mpc/h)

0.3
0.2
0.1
0.0
0.1

∆
M

(r
)/
M

G
R
(r

)

1.0

1.2

1.4

1.6

1.8

2.0

M
(r

)

Galaxies z= 0.5

GR
F6
F5
F4

2 10 20 70
r (Mpc/h)

0.3
0.2
0.1
0.0
0.1

∆
M

(r
)/
M

G
R
(r

)

Figure 2.5: Marked correlation functions of haloes and CMASS galaxies at z = 0.5;

mark in function of the Newtonian gravitational potential. Left-hand side panel

shows the functional form of the Gaussian-ΦN mark (2.3.17); the values of the pa-

rameters Φ∗ and σΦ are shown in the legend. Middle and right-hand side plots show

the marked correlation function using the mark given by Eq. (2.3.17) for haloes and

galaxies, respectively. All lower subpanels for middle and right-hand side plots show

the relative difference between f(R) models and GR. The plotted values correspond

to the average over the 5 realisations. Errors correspond to 1σ standard deviation

over the 5 GR realisations.
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where rs is the scale radius where the profile has a slope of −2 and ρs is the char-

acteristic density. The Newtonian gravitational potential is obtained by solving the

Poisson equation, ∇2ΦN = 4πGρNFW, for the NFW density profile Eq. (2.3.15) (Cole

& Lacey, 1996; Navarro, Frenk & White, 1997; Lokas & Mamon, 2001):

ΦN = −GM200c

r200c

ln(1 + c)

ln(1 + c)− c/(1 + c)
, (2.3.16)

where G is Newton’s gravitational constant, M200c was defined in Eq. (2.2.1) and

c is the concentration parameter defined as c ≡ r200c/rs. Previous studies have

used the Newtonian gravitational potential in modified gravity to characterise local

variations in the strength of gravity (see e.g., Cabre et al. 2012; Stark et al. 2016;

Shi et al. 2017).

For this environment definition we define a Gaussian mark which allows us to

up-weight galaxies in some regions of interest,

m =
1√

2πσΦ

exp

[
−(log10(|ΦN|)− Φ∗)2

2σ2
Φ

]
, (2.3.17)

where Φ∗ and σΦ are free parameters of the mark which control the amplitude and

width of the regions highlighted. As we can see from the distribution of galaxies as a

function of host halo mass (right panel of Fig. 2.2), most galaxies live in haloes with

masses between 1013 < M200c/[h
−1M�] < 1014 (which correspond to the mass range

of groups of galaxies). Hence, we use the Gaussian-ΦN mark to up-weight galaxies

contained in these haloes. In principle we should be able to find a bigger difference

in the clustering between the GR and f(R) models using this mark, as suggested by

the cumulative halo mass function (lower panel of Fig. 2.1).

The value of the centre of the Gaussian is Φ∗ = −5.295. This value was found

by computing the Newtonian gravitational potential for each galaxy in Box 1 for

GR, then we pick the maximum value found for haloes with M200c = 1014h−1M�

(Φmax) and the minimum value for haloes with M200c = 1013h−1M� (Φmin), finally

we take Φ∗ = (Φmax + Φmin)/2. We tried different values of the width, finding that

σΦ = 0.1 best ensures that we only up-weight galaxies in the haloes of interest. The

functional form of the Gaussian-ΦN mark, Eq. (2.3.17), is shown in the left-hand

panel of Fig. 2.5.
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The halo and galaxy marked correlation function is presented in the middle and

right panels of Fig. 2.5, respectively. The results can be summarised as follows:

• In the case of the halo/galaxy marked correlation function (middle and right

panels of Fig. 2.5, respectively), the two-point correlation function (used as the

denominator of Eq. (2.3.10)) is lower than the weighted correlation function,

leading to M(r) ≥ 1 for all gravity models, due to the stronger clustering of

the up-weighted haloes in the mass range M200c/[h
−1M�] = [1013, 1014].

• F6 predicts almost an identical halo/galaxy marked clustering to that in GR,

which is consistent to our understanding that the screening mechanism in this

model works efficiently in haloes of the mass range up-weighted.

• For F4 haloes, the mCF is higher than the 2PCF for the reason given in the

first bullet point above. However, in this model a larger fraction of haloes

in the mass range M200c/[h
−1M�] ∈ [1013, 1014] are formed from low initial

density peaks (due to stronger gravity) which are not very strongly clustered,

such that the up-weighting of them – while making M(r) ≥ 1 – does not lead

to a M(r) as large as in GR. This leads to ∆M(r)/MGR(r) < 0 for F4. For

F5 haloes, the fifth force is strong enough to enhance their clustering, but not

too strong to produce excessive merging, and so the up-weighting using the

Gaussian mark increases the mCF as significantly as in GR.

• For galaxies, a key difference from haloes is that a halo can host several galax-

ies while some haloes do not host galaxies at all. In F4 and F5, more rela-

tively low initial density peaks have been promoted to the halo mass range

M200c/[h
−1M�] ∈ [1013, 1014] due to the enhanced gravity, and at the same

time some high density peaks have grown out of this mass range. This means

that if we up-weight galaxies whose host haloes are in this mass range, we end

up with more central and fewer satellite galaxies, and more of them are hosted

by haloes from lower initial density peaks. By the same reasoning as above,

while we still have M(r) > 1 for these models, it is smaller than in GR and

F6. In particular, we have noticed that ∆M(r)/MGR(r) reaches 5 ∼ 10% for
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F5 and 20 ∼ 30% for F4 in r = 2 ∼ 5h−1Mpc. These results are very stable,

and change very little across the different simulation realisations.

Also we note that the differences between the f(R) and GR models are boosted

when we use additional information to the density field. This can be seen by com-

paring the right panels of Fig. 2.4 with the right panel of Fig. 2.5. The differences

get larger in such cases because the galaxy density field and galaxy distribution have

been tuned to match between the different models (see Sec. 2.2.3). In all cases we

observe that signals above 20 h−1 Mpc become identical between models. This is

because the marked correlation function is the ratio of two correlation functions (see

right hand expression of Eq. (2.3.10)) and we have ξ(r) ∼ W (r) for r > 20 h−1 Mpc.

From the observational point of view, we can measure the Newtonian gravita-

tional potential from the X-ray temperature of galaxy clusters (see e.g., Allen et al.

2004, 2008; Li et al. 2016), the gas mass fractions of clusters and the escape velocity

profile, vesc(r) (Stark et al., 2016). Hence, if we reconstruct the gravitational po-

tential from the observations mentioned above and use a mark that is a function of

the potential, similar to Eq. (2.3.17), then we can test this approach and potentially

find a measurable signature of modified gravity. One caveat is that the gravitational

potential constructed in this way is the dynamical potential, while in this study we

have used lensing potential of haloes (see, e.g., He & Li, 2016).

2.4 Summary

In this Chapter, we studied the clustering of haloes and galaxies in four different

cosmologies: a ΛCDM model which is based on general relativity and three Hu

& Sawicki f(R) chameleon models with fixed n = 1 and |fR0| = 10−6, 10−5, 10−4

(denoted F6, F5 and F4). We analyse the output of dark matter-only N-body

simulations related to these models at z = 0.5.

First, we studied the cumulative halo mass function, finding that the F4 model

predicts more haloes than GR at all masses probed by our simulations, with the

maximum difference reaching an excess of more than 50 percent for haloes with mass

M200c > 1014.3h−1M�. These differences occur due to the enhancement of gravity in
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f(R) gravity, which results in the production of more massive haloes in F4 than GR

through faster accretion and more frequent merging of small haloes. The differences

found in F5 reach 25% for haloes with masses 1013h−1M� < M200c < 1014h−1M�

where the screening mechanism at this mass scale is inefficient for this model. F6

shows the smallest difference from GR because in this model the chameleon screening

is strong in haloes with mass M200c > 1013h−1M�, thereby suppressing the effects of

the fifth force.

We populated dark matter haloes with galaxies using a halo occupation distribu-

tion, using a five-parameter model which treats separately central and satellite galax-

ies, with the values of the parameters as used in Manera et al. (2012) to reproduce

the clustering of CMASS galaxies with a density number, ng = 3.2× 10−4h3Mpc−3

(Anderson et al., 2012) for our GR simulations. We tuned the parameters to match

the galaxy number density and two-point correlation function of GR to within 1−3%

for the f(R) models. The galaxy two-point correlation functions for the f(R) and

GR models are presented in the right plot of Fig. 2.3.

Then we studied the two-point clustering of dark matter haloes. We chose sam-

ples of haloes with fixed halo number density, nh = ng, resulting to different mass

cutoffs in our halo catalogues for all gravity models: 7.643 × 1012h−1M� (GR),

7.798× 1012h−1M� (F6), 9.124× 1012h−1M� (F5) and 8.734× 1012h−1M� (F4). We

find significant differences in the clustering of dark matter haloes for f(R) models

with respect to the GR predictions. The maximum difference between F4 and GR

is ∼ 20%, while for F5 and F6 it is less than 5%. Also we note that haloes in F5 are

more clustered than those haloes in the ΛCDM model, whereas for F6 and F4 haloes

are less clustered than their GR counterparts. These results are the combination of

two effects, on one hand the enhancement of gravity which means a stronger growth

of density peaks and therefore more massive structures at late times which gives a

stronger clustering of the structures that are formed from these density peaks. On

the other hand, enhanced gravity leads to enhanced merger rates of low-mass haloes

formed from lower initial density peaks. The former effect tends to increase halo

clustering while the latter effect tends to do the opposite.

We found that the halo and galaxy marked correlation functions for F6 is indis-
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tinguishable from GR using all marks, except for the galaxy Gaussian (ρR and ΦN)

marked correlation functions which predict differences at most ∼ 5% from GR. For

the F5 (F4) model, we notice that galaxies mimic the marked clustering at least for

the White and log density-marks finding differences of 5% (2.5%) and 2.5% (2.5%),

respectively. On the other hand, we observe that with the Gaussian marks (density

field and gravitational potential) the difference in the galaxy marked correlation

function is boosted, especially for F4, producing a difference of 20% (using density

field) and 30% (using gravitational potential) with respect GR.

The galaxy marked correlation functions showed smaller differences between the

f(R) and GR models for the density marks, Eqs. (2.3.11)–(2.3.13), than in the

case when using the gravitational potential mark, Eq. (2.3.17), this is because the

galaxy density field has been tuned to match between the different models. One

caveat for our results is that there will be systematics when estimating the mark for

observational samples.

Another important feature we observed from marked correlation functions is that

the signal above 20h−1 Mpc does not distinguish between models (see corresponding

plots of Figs. 2.4 and 2.5). Instead, the measurable differences are on small scales.

To improve our predictions on sub-Mpc scales we need to perform higher resolution

simulations, but we leave this for future work.

Valogiannis & Bean (2018) recently found that using the dark matter distribution

and the White-mark, Eq. (2.3.11) with ρ∗ = 4 and p = 10, the difference between

F4 and GR marked correlation functions can reach a maximum of 37% at r =

1.81h−1 Mpc. These results can not readily be compared with ours, since we consider

dark matter haloes and galaxies rather than the dark matter itself. Furthermore,

we employ a different definition of density (counts-in-cells versus the cloud-in-cell

smoothing used by Valogiannis & Bean). Although their simulations are similar

resolution to the ones we use, the volume of our boxes is ∼ 60 times larger, which

allows more robust clustering measurements.



Chapter 3

Large-scale redshift space

distortions in modified gravity

theories

3.1 Introduction

One complication when using observational data provided by galaxy surveys is that

the distance to the galaxies is inferred from their redshifts by assuming a cosmolog-

ical model, to give positions in “redshift space”. The peculiar velocities of galaxies

along the line of sight (LOS), gravitationally induced motions in addition to the

Hubble flow, cause a displacement to the position of the galaxy in redshift space

compared to its true position, which is known as the redshift space distortion (RSD)

of galaxy clustering. This phenomenon is demonstrated in simulations with “emu-

lated” galaxies (see e.g. Tinker et al. 2006; Tinker 2007; Kwan et al. 2012; Marulli

et al. 2017). The RSD effect can be combined with other observables such as the

baryon acoustic oscillation (BAO) pattern to put constraints on the growth rate of

the large-scale structures as well as the cosmological parameters. A wide range of

tracers, including luminous red galaxies (Cabre & Gaztanaga, 2009a; Sánchez et al.,

2009), cosmic voids (Hamaus et al., 2015, 2017; Cai et al., 2016) and quasi-stellar-

objects (QSOs) (Hou et al., 2018; Gil-Maŕın et al., 2018; Zarrouk et al., 2018) have

been successfully used to extract cosmological information by assuming a standard

44
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cosmological model (ΛCDM) based on General Relativity (GR).

Alternative theories of gravity can have a similar cosmic expansion history to

that in ΛCDM but with different evolution of the growth rate, usually parametrised

as f(z) ' Ωγ
m(z), which depends on the mass density parameter Ωm(z) and a fitting

index γ (Linder & Cahn, 2007). A deviation of the index from γ = 0.55 would

indicate a different theory than GR with distinctive gravitational evolution, and

therefore has a direct impact on the anisotropic clustering caused by the RSD ef-

fect. Due to the degeneracy between the growth rate and the matter fluctuation

amplitude, instead of probing f(z) directly, we use the linear distortion parameter,

β(z) = f(z)/b(z), where b(z) is the linear tracer bias (Kaiser, 1987; Hamilton, 1992).

Two representative families of MG models are the Hu-Sawicki f(R) gravity model

(Hu & Sawicki, 2007) and the normal branch of the Dvali−Gabadadze−Porrati

model (nDGP; Dvali et al. 2000) which, as we shall see later, make distinct pre-

dictions for the linear growth rate f(z) (recall that the linear growth rate in f(R)

gravity models is scale dependent, f(k, z)).

The impact of modified gravity on RSD has been studied in a number of previous

works. For instance, Jennings et al. (2012) and Xu (2015) presented predictions for

the RSD in f(R) gravity in Fourier space and Arnalte-Mur et al. (2017) comple-

mented these results in configuration space by measuring the correlation function.

These studies are based either on the matter or halo density fields as predicted using

N-body simulations of modified gravity, or using analytical fitting formulae for mat-

ter clustering which are themselves derived from simulations. This demonstrates

the importance of using cosmological simulations to study the RSD effect on mildly

and strongly nonlinear scales. Recently, He et al. (2018) used high-resolution simula-

tions of ΛCDM and f(R) gravity to study the small-scale RSD effect. These authors

found that the predictions of f(R) gravity are strongly disfavoured by current mea-

surements of galaxy clustering in redshift-space on scales between 1 ∼ 10h−1Mpc,

while the data is in excellent agreement with ΛCDM. Song et al. (2015) used the

BOSS DR11 to measure the redshift space correlation function and put constraints

on f(R) gravity.

Recently, Barreira et al. (2016) used the same model for non-linearities, bias,
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and RSD to estimate the growth rate in nDGP models, also using mock galaxy

catalogues built from N-body simulations. There are several differences in the work

presented here compared with that of Barreira et al. (2016). Firstly, we consider

a wider variety of models by including also variants of f(R) gravity and different

parameter values for nDGP. Secondly, we conduct an explicit comparison of linear

Kaiser and nonlinear models, considering different estimators and ranges of scales

in the parameter fitting to test for systematic effects. Thirdly, the mock galaxy

catalogues used here are constructed in a different way from that used by Barreira

et al. (2016), using larger simulations.

Arguably, simulations are the only way to accurately predict RSD effects down

to such small scales, but the main disadvantage of this approach is the high cost of

running large suites of high-resolution simulations to explore the parameter space,

and the uncertainties in the connection between galaxies and simulated dark matter

haloes. Regarding the galaxy-dark matter halo connection, hydrodynamical simu-

lations and semi-analytical modelling, two approaches which add elements of the

physics of galaxy formation to the modelling of the growth of structure in the dark

matter, will inform empirical treatments of the galaxy-halo connection, such as the

one used in this Chapter (e.g. Contreras et al. 2013; Chaves-Montero et al. 2016;

Desmond et al. 2017). In the mean time, the importance of the theoretical modelling

of RSD in modified gravity is being realised and increasing effort is being devoted

to improving the description of the RSD effects in f(R) gravity and nDGP mod-

els on mildly nonlinear scales, based on higher-order perturbation theory (see, e.g.,

the pioneering works of Taruya et al., 2014; Bose & Koyama, 2016; Taruya, 2016;

Bose et al., 2017a; Bose & Koyama, 2017). In particular, the theoretical modelling

developed by Taruya et al. (2014) and Taruya (2016) was implemented by Bose

& Koyama (2016) and Bose & Koyama (2017) which has been carefully compared

against N-body simulations and found to show good agreement with the results for

the power spectrum and correlation function in real and redshift space. These au-

thors have gone to great lengths to include higher-order perturbation terms in the

description of the MG effects to ensure that the latter are modelled consistently and

accurately. These analytical or semi-numerical approaches are much more efficient
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than full N-body or hydrodynamical simulations, though their validity is usually

restricted to mildly nonlinear scales, such as k ≤ 0.1− 0.3hMpc−1.

Here, we explore the following questions: (1) Do galaxy catalogues from the cur-

rent and next generations of galaxy surveys offer the realistic possibility to constrain

or rule out some of the leading modified gravity models in the literature using RSD?

(2) Given reasonable estimates of theoretical and observational uncertainties, is a

simpler treatment of the RSD effect (which ideally does not involve new theoretical

templates – based on simulations or perturbation theory – to be developed each

time the gravity model or its parameter is changed) sufficient to measure β and dis-

tinguish between models? The simpler treatments we consider include (i) a linear

theory model (Kaiser, 1987; Hamilton, 1992) and (ii) a model that accounts for non-

linear matter evolution following the approach of Crocce, Blas & Scoccimarro (in

prep.), who extend renormalised perturbation theory (RPT, Crocce & Scoccimarro,

2006) by using Galilean invariance to find a resummation of the mode-coupling

power spectrum, galaxy bias as in Chan et al. (2012), and a detailed description of

RSD (Scoccimarro, 2004), which does not incorporate any MG effect. The approach

we take is to directly confront the RSD predicted by these simplified treatments

against RSD measurements from mock galaxy catalogues built on simulations of

different gravity models, and check if the input β values can be faithfully recovered.

The linear theory prediction is model-independent, and the nonlinear model used is

for GR only so that it is also effectively model-independent

The Chapter is organised as follows. Section 3.2 describes the N-body simula-

tions and the construction of mock galaxy catalogues in real and redshift space. In

Sect. 3.3 we outline the theoretical aspects of redshift space distortions. Results

from the linear and non-linear RSD models are presented in 3.4.1 and 3.4.2 of Sec-

tion 3.4, respectively, and we discuss the results in Section 3.4.3. Finally, Sect. 3.5

contains the summary of the Chapter.
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3.2 N-body simulations and galaxy catalogues

N-body cosmological simulations have played an important role in the analysis of

alternative gravity models to GR. Nowadays, these simulations are necessary for the

construction of synthetic galaxy catalogues and study the impact of modifications of

gravity on the distribution and clustering of galaxies. In this section we present the

technical details of the simulations we use and the prescription we follow to generate

mock catalogues.

3.2.1 N-body simulations of modified gravity

We use the Extended LEnsing PHysics using ANalaytic ray Tracing (elephant)

dark matter only N-body simulations which have been run using the ecosmog (Li

et al., 2012) and ecosmog-v (Li et al., 2013a) codes for f(R) gravity and nDGP

models respectively. ecosmog and ecosmog-v are modified versions of the publicly

available N-body and hydrodynamical simulation code ramses (Teyssier, 2002).

These codes are efficiently optimised and implemented with methods that speed

up the calculations of the non-linear partial differential equations that characterise

these models (Barreira et al., 2015; Bose et al., 2017b).

The cosmological parameters are the best-fit values from the WMAP9 collabo-

ration (Hinshaw et al., 2013)

{Ωb,ΩCDM, h, ns, σ8} = {0.046, 0.235, 0.697, 0.971, 0.84}.

The simulations follow the evolution of Np = 10243 particles with mass mp =

7.798 × 1010 h−1M� in a cubical box of comoving size Lbox = 1024h−1Mpc from

their initial conditions (generated with the MPgrafic code, Prunet et al. 2008) at

zini = 49 up to today (zfi = 0). In this work we used five independent realisations

of the matter field for each gravity model. For each realisation the simulations of

all gravity models start from the same initial condition, because at zini = 49 the

effects of modified gravity on large-scale structure formation were negligible for all

MG models considered here.

Halo catalogues for all gravity models were constructed using the rockstar

halo finder (Behroozi et al., 2013a) at z = 0, 0.3 and 0.5. We chose M200c as the
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halo mass definition, which is the mass enclosed within a sphere of radius r200c with

200 times the critical density of the Universe.

The elephant simulations have been used to study the properties of voids for

chameleon and Vainshtein mechanism models (Cautun et al., 2018; Paillas et al.,

2019) and the halo and galaxy marked correlation functions (Armijo et al., 2018;

Hernández-Aguayo et al., 2018) in f(R) gravity.

3.2.2 Mock galaxy catalogues

The next step to measure the impact of modified gravity on redshift space distortions

is the generation of mock galaxy catalogues. For this purpose, we built the catalogues

by implementing a five-parameter halo occupation distribution (HOD) (Zheng et al.,

2005, 2007) model. This HOD model determines the numbers of central (〈Nc〉) and

satellite (〈Ns〉) galaxies inside dark matter haloes as functions of the halo mass

(M = M200c) by following a distribution given by,

〈Nc(M)〉 =
1

2

[
1 + erf

(
log10M − log10Mmin

σlogM

)]
, (3.2.1)

〈Ns(M)〉 = 〈Nc(M)〉
(
M −M0

M1

)α
. (3.2.2)

The mean total number of galaxies in each halo is given by 〈Nt〉 = 〈Nc〉+ 〈Ns〉. As

we can see from Eq. (3.2.1), Mmin and σlogM determine the occupancy of central

galaxies while the whole set of parameters determine the mean number of satellite

galaxies in each halo (see Eq. (3.2.2)).

We follow the same prescription as Manera et al. (2012) and Hernández-Aguayo

et al. (2018) to construct mock catalogues in real space (see Sec. 2.2.3). In

summary, when a central galaxy is placed inside a halo we assume that this galaxy

is located at the centre of mass of its host halo and takes its coordinates and velocity

information. Satellite galaxies (which orbit around central galaxies in haloes with

M200c ≥ M0) are radially distributed following an Navarro-Frenk-White (NFW)

profile (Navarro et al., 1996, 1997), with a uniform angular distribution. The position

of satellite galaxies is randomly chosen within the halo radius (0 < r < r200c), and

their velocity is the halo velocity plus a perturbation along the x, y and z coordinates
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drawn from a Gaussian distribution with variance equal to the 1D velocity dispersion

of the host halo.

One of the key steps of the HOD approach is to set the HOD parameters in

Eqs. (3.2.1) and (3.2.2) to reproduce the galaxy clustering in real galaxy surveys.

In addition, given that we only observe one Universe, we need to demand that all

galaxy catalogues from all gravity models are consistent with observations. For

these reasons, in this work the MG HOD parameters have been calibrated to match

with the galaxy number density and the real-space two-point correlation function

(which is directly related to the projected correlation function) of the same galaxy

sample. In practice, in the case of GR, we take the values of the parameters from

the BOSS CMASS DR9 sample (Manera et al., 2012): log10(Mmin/[h
−1M�]) =

13.09, log10(M1/[h
−1M�]) = 14.00, log10(M0/[h

−1M�]) = 13.077, σlogM = 0.596

and α = 1.0127. Note that the CMASS sample has a redshift distribution between

0.4 < z < 0.7, which is compatible with one of the three redshifts considered in

this work (z = 0.5); however, we adopt the same HOD parameter values for GR

at the other two redshifts (z = 0.3 and z = 0) as well, as our objective is to

study the measurement of growth rate using RSD for galaxy catalogues with similar

real-space clustering, rather than to make precise mock galaxy catalogues for the

different gravity models (the latter will be left for future studies). To calibrate

the HOD parameters for the various MG models, we used the simplex algorithm

presented in Sec. 2.2.3.

Finally, we use the distant-observer approximation to shift the positions of galax-

ies from real to redshift space. We use the three coordinates, x̂, ŷ and ẑ, as the

line-of-sight (LOS) to generate three redshift-space catalogues for one real-space

catalogue where the new coordinates are,

s = r +
(1 + z)v‖
H(z)

ê‖ , (3.2.3)

where r is the coordinate vector in real space, z is the redshift of the snapshot used

to generate the catalogues, H(z) is the Hubble parameter as a function of z, v‖ is

the component of the velocity along the LOS and ê‖ is the unitary vector of the

LOS direction. So, in total we have fifteen redshift space catalogues for each gravity

model and each redshift.
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Figure 3.1: Linear galaxy bias measured from our galaxy mock catalogues at z = 0,

z = 0.3 and z = 0.5 (see Table 3.1) for the five gravity models: GR (black), F6

(blue), F5 (green), N5 (magenta) and N1 (orange). The solid lines represent an

extrapolation between points at z = 0, 0.3 and 0.5.

Linear galaxy bias

Galaxies are biased tracers of the dark matter density field, hence the relation be-

tween the distribution of galaxies and matter is given by the linear galaxy bias b

defined as

b ≡ δg/δ , (3.2.4)

where δg is the galaxy density contrast and δ is the density contrast of matter. In

terms of the correlation function, the linear galaxy bias can be estimated in different

ways,

b(r) =

√
ξgg(r)

ξmm(r)
=
ξgg(r)

ξgm(r)
=
ξgm(r)

ξmm(r)
, (3.2.5)

where ξgg(r) and ξmm(r) are respectively the galaxy-galaxy and matter-matter auto-

correlation functions, and ξgm(r) is the galaxy-matter cross-correlation function,

all in real space. Li & Shirasaki (2018) showed that the galaxy-matter cross-

correlation coefficient, Rgm(r) ≡ ξgm(r)/
√
ξgg(r)ξmm(r), approaches unity on scales
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Table 3.1: Linear galaxy bias, b, estimated by Eq. (6.5.6) for all gravity models at

z = 0, 0.3 and 0.5.

Linear galaxy bias b

z = 0 z = 0.3 z = 0.5

GR 1.6038 1.7798 1.9557

F6 1.5985 1.7743 1.9589

F5 1.6027 1.7807 1.9699

N5 1.5756 1.7615 1.9375

N1 1.5004 1.6917 1.8608

r ≥ 2h−1Mpc, hence the linear bias measured in different ways agree well with each

other. Therefore, we measure the linear galaxy bias from our mock catalogues as

b(r, z) ≡ ξgg(r, z)

ξgm(r, z)
, (3.2.6)

which is less expensive to compute than ξgm/ξmm. At sufficiently large scales we

expect b(r) ≈ const., hence to measure the linear galaxy bias from our mock cata-

logues we make a fit of Eq. (3.2.6) to a constant function using data in the range

rmin ≤ r ≤ rmax, with rmax = 150h−1Mpc and 10 < rmin/(h
−1Mpc) < 45, then we

take the mean over all best-fitting values. Fig. 3.1 shows the evolution of b(r, z) as

a function of z. We observe that, for the same number density, galaxies at higher

redshifts are more biased tracers of the underlying dark matter field, which is due

to faster growth of clustering of dark matter than of galaxies. Since the clustering

amplitude of galaxies in real space is tuned to be the same for different cosmological

models, by the construction of HOD, models with higher σ8 (such as N1) have a

lower linear bias as is shown in Fig. 3.1.

The linear bias values measured from the mock galaxy catalogues for the different

gravity models at the three different redshifts are listed in Table 3.1.



3.3. Galaxy clustering in redshift space 53

3.3 Galaxy clustering in redshift space

Peculiar velocities of galaxies induce anisotropies in redshift space and leave distinc-

tive imprints on the clustering pattern at different regimes. On large (linear) scales,

galaxies infall into high-density regions such as clusters producing a squashing effect

of these regions along the line-of-sight: this is the Kaiser effect (Kaiser, 1987). On

smaller (nonlinear) scales, the random motions of galaxies in virialised objects pro-

duce the Fingers-of-God (FoG) effect where the density field becomes stretched and

structures seem elongated along the line of sight (Jackson, 1972). The amplitude of

the RSD is related to the distortion parameter β, defined as

β(z) ≡ f(z)

b(z)
, (3.3.7)

where f is the linear growth rate (Eq.(1.2.39)) and b is the linear galaxy bias

(Eq.(3.2.6)) as a function of redshift.

The fiducial value of β for the five gravity models (GR, F6, F5, N5 and N1)

at z = 0, 0.3 and 0.5 are presented in Table 3.2. Given the fact the linear growth

rate, f , is scale-dependent in f(R) gravity we present the fiducial values at two

different wavenumbers (k = 0.1hMpc−1 and k = 0.01hMpc−1) corresponding to

quasilinear and linear scales. The estimation of the linear bias parameter is taken

from Table 3.1.

The effects of redshift space distortions can be measured using the redshift-

space correlation function of galaxies, ξ(rp, rπ), which is the excess probability of

finding a pair of galaxies at separations transverse (rp) and parallel (rπ) to the

LOS. Fig. 3.2 shows the redshift space correlation function ξ(rp, rπ) as a function

of separation (rp, rπ) at z = 0.5, for the different gravity models. The black dashed

curve corresponds to the two-dimensional correlation function in real-space (since

the clustering for different gravity models have been tuned to match each other,

for demonstration, we just show the GR result). We can clearly see that along

the LOS at rp . 2h−1Mpc the clustering is enhanced by the peculiar velocities of

galaxies producing the FoG effect, while at rp > 2h−1Mpc the clustering pattern

is squashed thanks to the Kaiser effect. We observe that for nDGP models the

contours become more flattened compared with GR because of the stronger linear
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Table 3.2: True theoretical values of the β parameter at z = 0, 0.3 and 0.5 for the

five gravity models. Since the growth rate is scale-dependent in f(R) gravity we

present the true values at 2 scales, k = 0.01hMpc−1 and k = 0.1hMpc−1.

βtrue

z = 0 z = 0.3 z = 0.5

GR 0.3081 0.3671 0.3749

N5 0.3193 0.3769 0.3842

N1 0.3507 0.4094 0.4164

(k = 0.01hMpc−1)

F6 0.3091 0.3682 0.3744

F5 0.3087 0.3672 0.3725

(k = 0.1hMpc−1)

F6 0.3124 0.3716 0.3773

F5 0.3292 0.3893 0.3925

growth rate (see Fig. 1.1). In the linear regime the overdensity grows proportional

to the linear growth factor δm(z) ∝ D(z), therefore, the matter power spectra for

the modified gravity models have higher amplitude and resulting in a higher matter

fluctuation, σ8, compared to GR. A higher matter fluctuation produces an increase

of galaxies that infall into high-density regions and makes the Kaiser effect stronger

(Tinker et al., 2006). At the same time, we note that the FoG effect is very similar

for the N1 and GR models, which is likely due to the effective Vainshtein screening

mechanism on small scales in real space (e.g., Paillas et al., 2019), which makes the

velocity dispersion comparable for these models.

In the case of f(R) gravity models the two-dimensional correlation functions are

indistinguishable from the one measured from the GR model. This is different from

the behaviour of the nDGP models. A likely reason for this difference is the fact that

in nDGP the fifth force is unscreened on large scales (i.e., beyond the Vainshtein

radius of massive objects) so that the infall on scales of order 10h−1Mpc is enhanced,

while for the f(R) models considered here the fifth force is short ranged and cannot

affect such scales.
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Figure 3.2: The two dimensional galaxy correlation function ξ(rp, rπ) measured from

our mock catalogues at z = 0.5 as a function of separation across (rp) and along (rπ)

the line-of-sight. Contours show lines of constant ξ(rp, rπ) at ξ(rp, rπ) = 5, 2, 1, 0.5,

0.25. The correlation functions correspond to the average of fifteen measurements

obtained by projecting five realisations over the three LOS directions. For clarity

we have projected ξ(rp, rπ) for GR for positive rp and rπ over four quadrants and

displayed the MG correlation function in different quadrants as follows: (rp, rπ) for

F6, (−rp, rπ) for F5, (−rp,−rπ) for N5 and (rp,−rπ) for N1. The black dashed

contours correspond to the real-space measurements of the correlation function at

the same values of its counterpart in redshift-space, since all galaxy catalogues pro-

duce the same real-space clustering we show the GR case only. Different colour line

correspond to different gravity model as specified in the legend.
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In order to increase the signal-to-noise ratio, it is helpful to further project the

two-dimensional correlation function ξ(rp, rπ) onto a one-dimensional object. Given

the symmetry along the line-of-sight, we first express the transverse and parallel

separation (rp, rπ) as separation in redshift space and the cosine of the angle between

s and the LOS direction,

s =
√
r2
π + r2

p , µ =
rπ
s
. (3.3.8)

We decompose ξ(s, µ) into multipole moments,

ξl(s) = (2l + 1)

∫ 1

0

ξ(s, µ)Pl(µ) dµ , (3.3.9)

where Pl(µ) are the Legendre polynomials. In the linear regime, the l = 0, 2 and 4

moments are non-zero with P0(µ) = 1, P2(µ) = (3µ2 +1)/2, P4(µ) = (35µ4−30µ2 +

3)/8, corresponding to the monopole, quadrupole and hexadecapole moments. We

measured ξ(s, µ) from our galaxy catalogues using linear bins centred at 2.5 to

147.5 h−1Mpc with separation ∆s = 5h−1Mpc. For µ, we use 30 linearly spaced

bins between 0 and 1.

The left panel of Fig. 3.3 shows the multipole moments (ξl(s)) of the correlation

functions measured from our galaxy catalogues at z = 0.5 for the different gravity

models. From the monopole, ξ0(s) (upper curves of left panel in Fig. 3.3), we observe

that the position of the baryon acoustic oscillation (BAO) peak is not affected by

modified gravity and can be found at a scale of sBAO ' 105h−1Mpc or 150 Mpc.

Higher order multipole moments such as the quadrupole (ξ2(s)) and the hexade-

capole (ξ4(s)) encode the degree of anisotropy produced by redshift distortions. In

the case of the quadrupole, ξ2(s), N1 shows the strongest deviation with respect to

GR especially on scales s > 20h−1Mpc, followed by N5. This is a direct consequence

of a more squashed contour for the nDGP models caused by higher growth rate and

stronger matter fluctuation. Our measurements of the hexadecapole are almost in-

distinguishable when compare the MG models with GR. This is due to the fact that

higher order multipoles (l ≥ 4) do not have a big impact on the estimation of the

correlation function and are noisier than the monopole and quadrupole (Hamilton,

1998).
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Figure 3.3: Left panel: Monopole, quadrupole and hexadecapole moments of the

correlation function, Eq. (6.5.8), for our five gravity models at z = 0.5. The moments

have been shifted by a factor of 100, 50 and −150 for better visualization. Right

panel: Clustering wedges, Eq. (3.3.10), measured at z = 0.5 for all gravity models

as labelled, the upper wedge (solid lines) correspond to angles with 0 < µ < 1/3,

the middle wedge (dashed lines) to 1/3 < µ < 2/3 and the lower wedge (dot-dashed

lines) to 2/3 < µ < 1. The error bars correspond to the standard deviation over

fifteen GR measurements.
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As an alternative to the multipoles, we also measured the clustering wedges which

correspond to angle-averaged measurements of the correlation function (Kazin et al.,

2012),

ξw(s) =
1

µ2 − µ1

∫ µ2

µ1

ξ(s, µ) dµ. (3.3.10)

In this work we choose the intervals (i− 1)/3 < µ < i/3 with i = 1, 2, 3, which are

commonly used in the literature (for instance, see Sánchez et al. 2017). The relation

between multipoles and wedges is given by the transformation,

ξw(s) =
∑
l

ξl(s)P̄l , (3.3.11)

where P̄l is the average of the Legendre polynomial over the µ-bin. When the higher

order statistics can be truly neglected, an explicit expression can be written down

as the transformation between the multipoles and wedges,

ξ`(s) =


1/3 1/3 1/3

−9/14 −15/28 33/28

54/35 −81/35 27/35

 ξw(s) . (3.3.12)

Where the mean of the three clustering wedges correspond to the monopole of the

correlation function,

ξ0(s) =
ξw,1(s) + ξw,2(s) + ξw,3(s)

3
. (3.3.13)

The measured clustering wedges (ξw(s)) at z = 0.5 are shown in the right panel of

Fig. 3.3. The behaviour of the 2D two-point correlation functions, ξ(rp, rπ), shown in

Fig. 3.2, can be quantified and described by the clustering wedges. The first wedge,

ξw,1, encodes information about the correlation function closer to the transverse (or

perpendicular) direction (rp). Here, the FoG effect is not significant and the Kaiser

effect governs the clustering of galaxies. For this reason (see the description of

ξ(rp, rπ) above) N1 has a larger positive amplitude compared to GR, followed by N5

but with a weaker deviation. The second or intermediate wedge, ξw,2, corresponds

to µ̄ = 0.5 and is the closest to the monopole in shape and amplitude. Finally, the

third wedge, ξw,3, which is closer (or parallel) to the LOS (rπ), is the most impacted

by the random motions of galaxies due to the FoG effect. The shape of the parallel
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wedge is slightly different to the transverse and intermediate wedges, and on smaller

scales it has a steeper slope. In this case, we found a negative difference between the

MG models with respect to GR (opposite to the difference found in the transverse

wedge).

In general, both the multipoles and the wedges of the correlation function for

f(R) gravity models show a weaker deviation from GR and this is expected to

impact on the estimation of β. In the following sections we discuss how to estimate

β from theoretical models based on perturbation theory.

3.4 Theoretical RSD models and parameter esti-

mation

In this section we give the main results of this Chapter, namely the validation of

the inference of β based on a number of estimators of RSD, using the redshift-space

mock galaxy catalogues mentioned above. For a given set of model parameters (e.g.,

β), the theoretical predictions of the estimators are obtained using two methods –

linear perturbation theory (Kaiser model) and the Galilean-invariant renormalized

perturbation theory (gRPT) based on higher-order perturbation theory. We shall

discuss these two methods and their results in two separate subsections, and discuss

the implications of the results in a third subsection.

3.4.1 Linear model

In linear perturbation theory, the relation between the redshift-space galaxy power

spectrum with its counterpart in real space is given by the Kaiser formula (Kaiser,

1987):

Ps(k, µ) = (1 + βµ2)2Pr(k) . (3.4.14)

As we are interested in the effects of RSD on the correlation function, we need to have

a similar relation in configuration space. Under the plane parallel approximation of

the distortion operator, the correlation function is expressed as follows (Hamilton,
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1992, 1998),

ξ(s, µ) = [1 + β(∂/∂z)2(∇2)−1]2ξ(r) , (3.4.15)

= ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) . (3.4.16)

In linear theory, the multipoles of the correlation function can be estimated as follows

(Hamilton, 1992),

ξ0(s) =

(
1 +

2β

3
+
β2

5

)
ξ(r) , (3.4.17)

ξ2(s) =

(
4β

3
+

4β2

7

)
[ξ(r)− ξ̄(r)] , (3.4.18)

ξ4(s) =
8β2

35

[
ξ(r) +

5

2
ξ̄(r)− 7

2
¯̄ξ(r)

]
, (3.4.19)

where ξ(r) is the galaxy correlation function in real-space and

ξ̄(r) =
3

r3

∫ r

0

ξ(r′)r′2 dr′ , (3.4.20)

¯̄ξ(r) =
5

r5

∫ r

0

ξ(r′)r′4 dr′ . (3.4.21)

From Eqs. (6.5.21) and (6.5.22) we can define two estimators to obtain the distortion

parameter, β (Hawkins et al., 2003),

R(s) ≡ ξ0(s)

ξ(r)
= 1 +

2β

3
+
β2

5
, (3.4.22)

and

Q(s) ≡ ξ2(s)

ξ0(s)− ξ̄0(s)
=

(4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2
, (3.4.23)

where

ξ̄0(s) =
3

s3

∫ s

0

ξ0(s′)s′2 ds′ , (3.4.24)

is the volume average of the monopole in redshift space. For the estimation of

clustering wedges in the linear theory model we simply substitute Eqs. (3.4.17)-

(3.4.19) into Eq. (3.3.11).

Figure 3.4 compares the theoretical and measured values of the two estimators

– R(s) on the left and Q(s) on the right. In both panels the dashed horizontal lines

represent the theoretical predictions for GR and nDGP models of R(s) and Q(s);

for f(R) gravity models the theoretical predictions are shown as horizontal shaded
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Figure 3.4: Left panel: Ratio of the monopole in redshift space to the real space

correlation function, R(s) Eq. (3.4.22), as a function of separation at z = 0.5. Right

panel: Q(s) estimator defined by Eq.(3.4.23) as a function of separation at z = 0.5.

In both panels we plot the estimators up to a scale of s = 70h−1Mpc for better

visualisation and to avoid the transition to negative values of ξ0(s). Horizontal

dashed lines represent the theoretical predictions of the linear model for GR, N5

and N1 models, for the case of f(R) gravity the theoretical predictions are shown as

horizontal shaded bands. The error bars correspond to the standard deviation over

fifteen GR measurements.
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bands for wavenumbers 0.01 < k/(hMpc−1) < 0.1. The theoretical estimations of

R(s) and Q(s) are calculated with the second equality of Eqs. (3.4.22) and (3.4.23),

respectively, where the values of β are taken from Table 3.2.

The symbols in the left panel of Fig. 3.4 show the measurements of R(s) (first

equality of Eq. (3.4.22)) from our galaxy catalogues at z = 0.5 for the different

gravity models. Let us recall that the real space correlation functions have been

tuned to be within 2-3% for all gravity models (see Section 3.2.2). Hence, the

difference in R(s) between models is mainly caused by the difference in the redshift

space monopole, ξ0(s). From the measurements from the simulations, we find that

all models reach an asymptotic value at s ≈ 10h−1Mpc as expected (Tinker et al.,

2006; Marulli et al., 2017). We also find that for all models the mean values of R(s)

are above the theoretical expectation. The reason for which is that the Kaiser model,

Eq. (3.4.14), does not contain a FoG term which models the power of galaxies on

small separations and hence underestimates the clustering on all scales when Fourier

transforming to get the correlation function. Nevertheless, given the size of the error

bars, all models show a good agreement with the fiducial values.

The Q(s) estimator at z = 0.5 is presented in the right panel of Fig. 3.4. The

measurements are obtained by taking the ratio in the first equality of Eq. (3.4.23).

In this case the mean values from all models reach an asymptotic value at sepa-

rations s = 40h−1Mpc but are still below the fiducial values (opposite to R(s)),

only matching with the theoretical expectation at s ∼ 70h−1Mpc. On scales below

s = 30h−1Mpc non-linearities produce smaller values of Q(s). Our results are con-

sistent with previous observational and theoretical findings (see e.g. Hawkins et al.

2003; Tinker et al. 2006; Tinker 2007).

Parameter estimation using the linear model

To estimate β(z) from R(s), Q(s) and ξw(s) using the linear theory model, we use

a χ2-test by minimising the χ2 defined as

χ2(β) =
∑
i

(
E(si)− Eth(si; β)

σEi

)2

, (3.4.25)
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where E(s) is the average measured linear estimator (i.e. R(s), Q(s) or ξw(s)), σEi
is

the measured error of the linear estimator and Eth(s; β) is the theoretical prediction

of each estimator. Since the linear model estimators only depend on one parameter

(β), we opt to use the standard deviation over 15 measurements in Eq. (3.4.25)

rather than construct a covariance matrix for estimating the error.

To obtain the best-fitting value of β, we searched in a grid of values in the

range β ∈ [0, 1], with a step size of ∆β = 0.0001, for the theoretical estimators and

identified the value of β that minimises the χ2, Eq. (3.4.25), as χ2
min = χ2(βfit). Since

we vary only one parameter, the 1σ error bar on β corresponds to ∆χ2 ≡ χ2−χ2
min =

1. We fit our measurements using two ranges of scales: s = 20 − 150h−1Mpc

(smin = 20h−1Mpc) and s = 40−150h−1Mpc (smin = 40h−1Mpc). These particular

values of smin are inside the range of values used to constrain the growth rate in

different studies of BOSS and eBOSS samples (White et al., 2015; Sánchez et al.,

2017; Hou et al., 2018).

In Fig. 3.5 we show the best-fitting β values for all gravity models at z = 0,

0.3 and 0.5 for the linear (Kaiser) model, with 1σ error bars, compared to with

their theoretical prediction. The left column corresponds to the fits using the range

s = 20 − 150h−1Mpc and the right column shows the fits for the range s = 40 −
150h−1Mpc. The first row corresponds to the monopole to real space correlation

function ratio, R(s), the second row shows the best-fit values from using the Q(s)

estimator and the third row presents our results from using three clustering wedges,

ξw(s).

We find that the best-fitting β values using R(s) are above the theoretical ex-

pectations, in particular for the nDGP models, which is not surprising if we look

at the left panel of Fig. 3.4 and note that our measurements for these models show

an offset compared to the theoretical predictions. However, the size of the 1σ error

bar is large enough to give a good agreement between the best-fitting and fiducial

values, especially for the range smin = 40h−1Mpc. From the Q(s) panels of Fig. 3.5,

we observe an underestimation of β for all gravity models at all measured redshifts,

especially for the range s = 20 − 150h−1Mpc. As we said above, non-linearities

produce smaller values of Q(s) at all redshifts and therefore we estimate a smaller
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Figure 3.5: Evolution of β as a function of redshift. Solid curves show the theoretical

predictions for the gravity models as shown in the legend, for f(R) gravity models

the theoretical predictions are shown as a shaded region for wavenumbers 0.01 ≤
k/[hMpc−1] ≤ 0.1. Each panel shows the best-fitting β values (filled symbols)

using the estimators: R(s) Eq. 3.4.22 (upper panels), Q(s) Eq. (3.4.23) (middle

panels) and ξw(s) Eq. (3.3.11) (lower panels) with smin = 20h−1Mpc (left panels) and

smin = 40h−1Mpc (right panels). The lower subpanels show the relative difference

between the modified gravity models and GR. Error bars correspond to the 1σ

confidence level.
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value of β even on scales with smin = 40h−1Mpc. When we use clustering wedges,

ξw(s), to estimate β (see the bottom panels of Fig. 3.5), we find a similar trend con-

sistent to that seen for Q(s). This is because there is a relation between clustering

wedges and multipole moments (see Eq. 3.3.11). When we measure Q(s), we only

use information about the monopole and the quadrupole moments of the correla-

tion function, while the linear prediction of the clustering wedges uses information

about the monopole, quadrupole and hexadecapole moments. The comparison be-

tween constraints using ξw(s) and Q(s) therefore indicates that the hexadecapole

moment does not have much impact on the estimation of β. In general, the linear

Kaiser model fails to model RSD in configuration space even in the linear regime

(smin = 40h−1Mpc).

The lower subpanels of each plot in Fig. 3.5 show the relative difference between

the MG models and GR. We notice that in all cases the difference between f(R)

models (F6 and F5) is . 1% with respect to GR, making these models statistically

indistinguishable from each other. On the other hand, N5 and N1 models hold a

difference of ∼ 2.5% and ∼ 12% with respect to GR. Also, while the R(s), Q(s)

and ξw(s) estimators all lead to biased constraints on β for all models and redshifts,

it appears that the bias is the same for the different gravity models such that the

relative model differences from GR can be more accurately recovered.

In Appendix A.2 we will show the estimation of β by using an alternative method

to estimate the error budget in the χ2-test.

3.4.2 The nonlinear model

A more rigorous and accurate modelling of the clustering signal of galaxies in redshift

space than the linear theory prediction can be achieved by accounting for three

important ingredients: the nonlinear evolution of the underlying matter field, the

redshift space distortion effects, and the biasing relation between the galaxy and dark

matter fields. Within the redshift range we are concerned with in this work, apart

from the linear theory prescription described above, one needs in principle to include

also the cross coupling between the matter field with the velocity field, the higher

order and nonlocal bias to account for the nonlinear and nonlocal formation process
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as well as a modelling of the virialized random motion of the objects (galaxies).

The anisotropic correlation function can be obtained as the Fourier transform of the

power spectrum, where the full expression of P (k, µ) is given by

P (k, µ) = FFoG(k, µ)Pnovir(k, µ) , (3.4.26)

where

FFoG(k, µ) =
1√

1 + f 2k2µ2a2
vir

exp

( −f 2k2µ2σ2
v

1 + f 2k2µ2a2
vir

)
, (3.4.27)

is a non-Gaussian term that contains small-scale information about the Fingers-

of-God effect due to virialised motions of galaxies, avir is a free parameter that

describes the kurtosis of the velocity distribution on small scales and σv is the

velocity dispersion (Scoccimarro, 2004). The derivation of the non-virial power

spectrum Pnonvir is based on Scoccimarro et al. (1999); Scoccimarro (2004), followed

by three components,

Pnovir(k, µ) = P
(1)
novir(k, µ) + (kµf)P

(2)
novir(k, µ) + (kµf)2P

(3)
novir(k, µ), (3.4.28)

where

P
(1)
novir(k, µ) = Pgg(k) + 2fµ2Pgθ(k) + f 2µ4Pθθ(k) , (3.4.29)

P
(2)
novir(k, µ) =

∫
d3p

(2π)3

pz
p

[Bσ(p,k− p,−k)−Bσ(p,k,−k− p)] ,

(3.4.30)

P
(3)
novir(k, µ) =

∫
d3p

(2π)3
F (p)F (k− p) . (3.4.31)

Here, P
(1)
novir is a non-linear version of the Kaiser formula, Eq. (6.5.16), Pgg ≡ 〈δgδg〉

is the galaxy auto power spectrum, Pgθ ≡ 〈δgθ〉 is the cross spectrum between

the galaxy density (δg) and velocity divergence (θ ≡ ∇ · v, and assuming there

is no velocity bias) fields, and Pθθ ≡ 〈θθ〉. The calculation of Pgg, Pgθ and Pθθ

are up to one loop and the exact expressions for the first two terms can be found

in Appendix A of Sánchez et al. (2017). The calculation of the nonlinear mat-

ter power spectrum is done using the Galilean-invariant renormalized perturbation

theory (gRPT; Crocce & Scoccimarro 2006; Crocce, Blas & Scoccimarro in prep.).
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When calculating the ensemble average of the product of the density field in red-

shift space (c.f. Eq. (15) of Taruya et al. (2010)), there is coupling between the

FoG and the Kaiser effect as P
(2)
novir and P

(3)
novir and add correction to the Kaiser

term. P
(2)
novir is given by the tree-level PT bispectrum between densities and veloci-

ties. P
(3)
novir is the quartic linear power spectrum at the order O (P 2) with the kernel

F (P) = (b1 + fµ2
p)
pz
p2

(
Pδθ(p) + f p

2
z

p2
Pθθ(p)

)
. Eq. (3.4.26) encodes effects of both the

RSD and nonlinear evolution.

The galaxy bias in this model is expanded as follows (Chan et al., 2012),

δg = b1δ +
b2

2
δ2 + γ2G2 + γ−3 ∆3G + ... (3.4.32)

with the Galileon operators for the gravitational potential Φ and the velocity po-

tential Φv defined as

G2 (Φv) ≡ ∇i∇jΦv∇i∇jΦv −
(
∇2Φv

)2
, (3.4.33)

and

∆3G ≡ G2 (Φ)− G2 (Φv) . (3.4.34)

The non-local bias coefficients γ2 and γ−3 are related to the linear bias parameter,

b1, as (Fry, 1996; Catelan et al., 1998; Chan et al., 2012)

γ2 = −2

7
(b1 − 1), (3.4.35)

and

γ−3 =
11

42
(b1 − 1). (3.4.36)

We have tried both fixing and varying γ−3 in our fitting. When fixing the parameter

using the local Lagrangian relation, Eq. (3.4.36), we found the linear bias is biased

low compared to the true value. There are two possible reasons for this behaviour.

Firstly, the linear bias, b1, is scale dependent with a contribution ∇δ, which is

ignored in our simplified treatment and making the linear bias degenerate with

γ−3 . Secondly, γ−3 is formulated in the Eulerian coordinate, while the local biasing

schemes are compatible with the Lagrangian bias only when matter evolution and

structure formation is well within the linear and local regime (Matsubara, 2011).

Therefore varying γ−3 should result in a more accurate value and this conclusion is
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consistent with the previous findings (Grieb et al., 2017). In the results below we

shall always vary γ−3 .

The Alcock-Paczynski effect

The baryon acoustic oscillation can be well approximated by a spherical shape with

fixed radius at given redshift. As one measures the clustering signal parallel and

perpendicular to the line of sight, a set of parameters known as the Alcock-Paczynski

(AP; Alcock & Paczynski 1979) parameters can be introduced to account for the

rescaling of the BAO feature in both the radial and angular directions:

q⊥ =
DA(zm)

D′A(zm)
, q‖ =

H ′(zm)

H(zm)
, (3.4.37)

where the ′ denotes quantities in the fiducial cosmology. In terms of s and µ, these

equations can be written as

s = s′q(µ′) , µ = µ′
q⊥
q(µ′)

, (3.4.38)

where

q(µ′) =
√
q2
‖(µ
′)2 + q2

⊥ (1− (µ′)2). (3.4.39)

With Eq. (3.4.39), the correlation function predicted by the model for a fidu-

cial cosmology can be transformed into the prediction for different cosmologies

ξ(s′, µ′) → ξ(s, µ). When measuring the two point correlation function, we have

used the true position of the objects. Since the expansion history is tuned to be the

same for each cosmological model, we effectively always know the ”true cosmology”,

and would therefore expect to find q⊥ = q‖ = 1 for all the cases.

As we will see in Appendix A.3, the constraints on AP parameters for different

cosmological models are very close to one, this is a good news when applying to

a real survey. Despite the shape of the distortion at all range of scales due to the

RSD, the AP test can faithfully pick up the correct information given by the BAO

position.
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Parameter inference with the nonlinear model

To obtain cosmological constraints, we use Bayesian statistics and maximise the

likelihood,

L(ξ|λ) ∝ exp

[
−1

2
(ξ − ξmodel(λ))T Ψ (ξ − ξmodel(λ))

]
, (3.4.40)

where the Ψ = C−1 is the inverse of the covariance matrix. We applied the Gaus-

sian recipe to estimate the covariance matrix (Grieb et al., 2016), which is then

rescaled by the number of simulations. The input power spectrum is calculated

by the nonlinear model based on the best fitting values obtained from the MCMC

chain. Such Gaussian recipe has been tested recently in both Fourier and configu-

ration space by comparing to covariance matrices generated by hundreds of N-body

simulations as well as thousands of different fast mock simulations and found them

to be in good agreement (Blot et al., 2019; Lippich et al., 2019). At the same time,

there are also studies on including the corrections from higher-order statistics and

super-sampling mode (Barreira et al., 2018). However, for the scales of interest in

this study, there is no sensitivity to these corrections and the Gaussian covariance

matrix should be a good approximation. We explore the parameter space using

Monte Carlo Markovian Chains (MCMC) with the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970). The parameters that enter the default

fitting are {fσ8, b1, b2, γ
−
3 , avir}, where fσ8 is the product of the growth rate and the

matter clustering amplitude. In the gRPT model, σ8 is fixed and therefore does not

enter in the MCMC fitting. When applying the AP test, two additional parameters

enter the fitting {α‖, α⊥}. Finally, we marginalise over the nuisance parameters to

find the probability distribution of the distortion parameter β = f/b1.

Fig. 3.6 shows the constraints on β using the nonlinear gPRT+RSD model by

running MCMC. The upper panels present the results for the three multipoles (ξl(s),

l = 0, 2, 4) of the correlation function for two ranges of scales: s = 20− 150h−1Mpc

(left) and s = 40 − 150h−1Mpc (right). For comparison, we display the results

of using three wedges (ξw(s)) in the bottom panels of Fig. 3.6. We observe an

overestimation of β for all models at all redshifts when the fit is done using smin =

20h−1Mpc, for both multipoles and wedges. We have checked the linear bias fitted
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Figure 3.6: Similar to figure 3.5 but for the fits using the nonlinear model. The upper

panel shows the multipole moments of the correlation functions, ξl(s). The lower

panel shows the clustering wedges ξwi
(s). In both of the plots the AP parameters

are treated as free.

from the nonlinear model and found it to be in good agreement with the values

measured from the mock galaxy catalogues using Eq. (6.5.6); for a detailed discussion

on the bias see Appendix A.1. This suggests that the higher estimation of β comes

from the fσ8; the same conclusion is in agreement with the one found by Barreira

et al. (2016). In our case we have rescaled the covariance matrix by the number of

simulations and the error bar is therefore smaller than the error bar presented in

Barreira et al. (2016). When we used the range scale with smin = 40h−1Mpc, the

constraints are in good agreement with the fiducial values.

We note a slight difference between the results obtained from the multipoles-
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based estimator and the wedges-based estimator. This is an indication for the

non-negligible higher order statistics in the two-dimensional correlation function

ξ(s, µ). To further explore this point, we have compared the difference between the

multipoles directly measured from the mock catalogues and the multipoles obtained

by transforming the measured wedges using Eq. (3.3.12), and found a difference

in the hexadecapole at scale ≈ 20h−1Mpc (we do not show the plot here). The

difference can lead to different constraints on the nuisance parameters and have

consequential impact on the parameter of interest, which is a source for the biased

constraints by setting smin = 20h−1Mpc. For the case of smin = 40h−1Mpc, the

minimum length scale used in the fitting is larger enough, and the impact of higher-

order statistics is smaller, which explains why the agreement is improved at all three

redshifts.

In the lower subpanels of Fig. 3.6 we plot the relative differences between the

modified gravity models and GR. Similar to the findings using linear theory, we find

that the two variants of f(R) gravity studied here are indistinguishable from GR

given the size of the statistical error. While N5 shows stronger deviation from GR,

it is also not clearly distinguishable from the latter. N1 is the only one of our four

MG models that could be distinct from GR at 1-σ given the statistical uncertainties,

and not including systematic errors. These results are similar to what we found by

using the linear Kaiser model above.

3.4.3 Discussion

The results can have a few implications:

First, RSD on linear and mildly-nonlinear scales does not seem to be a great

probe of modified gravity, in particular for f(R) gravity. This conclusion is expected

to hold true for other MG models depending on chameleon screening to recover GR

in high-density regions, for which the effect of the fifth force is generally restricted

to at most O(10) Mpc (Brax et al., 2012a,b). This conclusion, however, may not

apply to RSD on small and highly nonlinear scales, where the velocity field could

be significantly enhanced by the fifth force in chameleon models (see, e.g., He et al.,

2018). We suspect similar conclusions should hold for the symmetron (Hinterbichler
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& Khoury, 2010) and dilaton (Brax et al., 2010) models, for which the fifth force is

also of the Yukawa type, with an inverse Compton mass of . O(10) Mpc. Vainshtein

screening models, such as nDGP, on the other hand, has a fifth force that is non-

negligible on large scales, which is why the constraint is stronger.

Second, given the weak constraining power from large-scale RSD and the rela-

tively large scale (smin = 40h−1Mpc) needed to get unbiased constraints even for

GR, a theoretical model based on linear theory prediction or higher-order pertur-

bation calculation developed for GR does not seem to lead to noticeably biased

constraints on the β parameter. This suggests a faster way to explore the MG

model and parameter space, at least at the initial stage of delineating models and

parameters.

Third, we have explicitly checked that the real-space galaxy correlation functions

of the MG models deviate more significantly from GR prediction if the mock galaxy

catalogues were constructed using the same HOD parameters as GR, or if haloes were

used instead of HOD galaxies. As argued above, in this study the HOD parameters

for MG models are tuned so that the real-space ξgg match between the different

models, which is motivated by the fact that there is only one Universe from which

the observed ξgg are to be derived, and whatever the cosmological model, it should be

required to reproduce such an observation to start with. A more detailed theoretical

model of RSD on linear and mildly-nonlinear scales should take this into account.

In practice, there is no real-space ξgg from observations to match with, and the HOD

parameters are often tuned to match the observed projected two-point correlation

function w(θ) to get rid of RSD effects: doing this will leave more freedom for the

choices of HOD parameters, and we expect it to also lead to larger uncertainties in

the constraints on β.

3.5 Summary

The objective of this Chapter is threefold: first, we want to explore whether for

realistic mock galaxy catalogues the distortion parameter, β, is sufficiently different

between the different gravity models so that future galaxy surveys can be used to
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distinguish or constrain them; second, we study the extent to which simple theo-

retical models such as linear theory or GR-based perturbation theory recipes can

faithfully recover the correct β values for different MG models, given the current

statistical uncertainties; finally, we also compare different estimators of the RSD

effect and test various systematic effects in modelling RSD.

To do so, we use cosmological dark-matter-only N-body simulations and pop-

ulated dark matter haloes with galaxies following a halo occupation distribution

prescription. We did this analysis for three low redshifts, respectively at z = 0, 0.3

and 0.5, because the modified gravity models studied here are expected to deviate

from GR more significantly at late times. Since the nature of gravity is different in

every model, we tuned the HOD parameters such that essentially every catalogue

matches the number density and the real space correlation function measured for

the BOSS CMASS DR9 (Anderson et al., 2012; Manera et al., 2012). We used the

distant-observer approximation to map galaxies from real- to redshift-space coordi-

nates along three line-of-sight directions (chosen to be parallel to the three axes of

the simulation box) for each realisation of mock galaxy catalogue. For the theoreti-

cal predictions of the RSD effects, we applied a linear (Kaiser, 1987; Hamilton, 1992)

and a nonlinear (Scoccimarro 2004; Crocce & Scoccimarro 2006; Chan et al. 2012;

Crocce et al., in prep.) RSD model to our mocks to estimate the value of β. We

used different estimators to extract information about the distortion parameter in

each model. In linear theory we have the ratios R(s) and Q(s) besides the clustering

wedges ξw(s). For the nonlinear model we have used the multipole moments ξl(s)

and the clustering wedges of the correlation function. For both RSD models we per-

formed fits over two ranges of scales, s = 20−150h−1Mpc and s = 40−150h−1Mpc.

In general, we found that the linear model fails to recover the true value of the

distortion parameter even in the linear regime of scales (smin = 40h−1Mpc). This is

because, due to the lack of the FoG term in this model, it (over-)underestimates the

value of β on the quasi-linear regime (smin = 20h−1Mpc). This is not surprising since

previous work has demonstrated that the Kaiser model suffers from limitations (see

e.g., Kwan et al., 2012, and references therein). On the other hand, the nonlinear

model used here overpredicts the value of β when considering smin = 20h−1Mpc;
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this trend was also found by Barreira et al. (2016) using the same range scale. In

the large-scale regime (smin = 40h−1Mpc), the nonlinear model is able to recover

the true value of β, especially for clustering wedges. Another study reported by

White et al. (2015) found unbiased estimations of the growth rate for scales s >

30h−1Mpc. However, there are some differences between the work presented by

White et al. (2015) and ours. First, they fitted only the monopole and quadrupole

of the correlation function. Second, opposite to our findings they underpredicted

the linear growth rate when considered scales with smin = 20h−1Mpc.

Our results suggest that, with the upcoming galaxy surveys such as DESI,

4MOST and Euclid, there is a realistic possibility to put constraints on the growth

rate of matter and make distinctions between certain MG models and GR. Such

studies will potentially benefit from combining with cosmological data that probe

different regimes (e.g., environments), scales and special theoretical properties of

the models. For instance, the expected error bar of these future galaxy surveys

would help to put tighter constraints on the linear growth rate and help to make

a clearer distinction between different gravity models. Also, to be more realistic, it

will be useful to test the constraining power of RSD using different tracers and num-

ber densities, and include systematic effects such as survey geometric and masks,

galaxy redshift distribution and evolution, incompleteness due to fibre collisions and

observing conditions, and so on. It is also interesting to study if including higher-

order statistics, such as the 3-point correlation function or bispectrum in redshift

space, can improve the constraining power of the surveys. These possibilities are

beyond the scope of this Chapter and will be left for future work.



Chapter 4

Galaxy formation in the brane

world

4.1 Introduction

The standard cosmological model (Λ cold dark matter; ΛCDM) based on Einstein’s

general relativity (GR) has been widely studied using numerical simulations over the

past three decades (see Kuhlen et al., 2012; Vogelsberger et al., 2020, for reviews).

In the last five years in particular, hydrodynamical simulations of galaxy formation

have been able to model the galaxy population in cosmological volumes, achieving

encouraging matches to observations and providing a detailed description of the

properties and evolution of galaxies over cosmic time (see, e.g., Vogelsberger et al.,

2014; Schaye et al., 2015; Feng et al., 2016; McCarthy et al., 2017; Pillepich et al.,

2018a, 2019; Lee et al., 2020). For instance, the IllustrisTNG (TNG) project is one

of the most complete suites of cosmological simulations of galaxy formation to date

(see e.g., Pillepich et al., 2018b; Nelson et al., 2018; Springel et al., 2018; Naiman

et al., 2018; Marinacci et al., 2018; Pillepich et al., 2019; Nelson et al., 2019). The

TNG simulations cover cosmological volumes of ∼ 503Mpc3 (TNG50), ∼ 1003Mpc3

(TNG100) and ∼ 3003Mpc3 (TNG300). The TNG300 is one of the largest full-

physics simulations currently available which allows us to study baryonic effects on

the clustering of matter on relatively large-scales.

The past decade has seen an increasing interest in alternative theories of gravity

75
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that modify GR on large scales (Koyama, 2016; Ishak, 2019), leading to a large

body of literature on their cosmological behaviours and possible observational tests.

However, there has been little work on hydrodynamical simulations of non-standard

gravity models (e.g., Arnold et al., 2014, 2015; Hammami et al., 2015; He & Li,

2016; Arnold et al., 2016; Ellewsen et al., 2018; Arnold et al., 2019). Exploring the

effect of modified gravity on galactic scales in a cosmological context hence remains

an important open topic that requires more quantitative work. Hydrodynamical

cosmological simulations provide the missing link that connect the properties of

dark matter haloes with luminous galaxies.

The Dvali-Gabadadze-Porrati (DGP) braneworld model (Dvali et al., 2000) is

one of the most widely-studied modified gravity models that employs the Vainshtein

screening mechanism (Vainshtein, 1972). In this model, normal matter is confined

to a 4-dimensional brane embedded in a 5-dimensional spacetime, the bulk. The

model leads to two branches of cosmological solutions, dubbed as the self-accelerating

branch (sDGP) and the normal branch (nDGP). In the sDGP branch, gravity leaks

from the brane to the bulk leading to an accelerating expansion without the need to

invoke a cosmological constant or dark energy component. However, this model is

ruled out by cosmological observations (see e.g., Song et al., 2007; Fang et al., 2008)

and by the problem of ghost instabilities (negative kinetic energy) in the gravitational

sector. On the other hand, the nDGP model does not suffer from ghost instabilities,

but it is necessary to include a component of dark energy to match the observed

late-time accelerated expansion of the Universe (Schmidt, 2009b). The nDGP model

nevertheless offers the possibility to test the Vainshtein screening mechanism using

astrophysical and cosmological probes.

The first numerical simulations of the DGP model were performed by Schmidt

(2009a,b), followed by simulations for both the self-accelerated and the normal

branches of the DGP model carried out with the adaptive-mesh-refinement (AMR)

code ecosmog-V (Li et al., 2013a). The performance of both codes was tested

by Winther et al. (2015), who found excellent agreement for the prediction of the

dark-matter distribution and halo statistics over cosmic time.

To date, the nDGP model has been widely tested using a range of astrophys-
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ical and cosmological probes. For example, Falck et al. (2014, 2015) studied the

morphology and the local environmental density of dark matter haloes in the nDGP

model. Moreover, Falck et al. (2018) investigated the effect of the Vainshtein screen-

ing mechanism on cosmic voids. Using a halo occupation distribution (HOD) model,

Barreira et al. (2016) and Hernández-Aguayo et al. (2019) studied galaxy clustering

through redshift-space distortions for two different nDGP models. An additional

study of cosmic voids in nDGP models was carried out by Paillas et al. (2019).

More recently, Devi et al. (2019) investigated the galaxy-halo connection and the

environmental dependence of the galaxy luminosity function using a subhalo abun-

dance matching approach in modified gravity (including the nDGP model). All

the studies mentioned above are dark matter only N-body simulations carried out

using the ecosmog-V code. Hence, the realisation of full-physics hydrodynamical

simulations for galaxy formation is a natural step to continue testing the nDGP

model.

Here, we present an extension of the SHYBONE (Simulating HYdrodynamics

BeyONd Einstein) simulations (Arnold et al., 2019) by exploring galaxy formation in

the nDGP model with an identical expansion history to ΛCDM (Schmidt, 2009b). To

carry out these simulations, we extended the Arepo code (Springel, 2010) to include

the nDGP model and employed its AMR modified gravity solver together with the

IllustrisTNG galaxy formation model (Pillepich et al., 2018a). Our simulations

represent a further step in the understanding of modified gravity theories on galactic

scales.

The first series of the SHYBONE simulations were devoted to studying the in-

terplay between baryonic physics and modifications of gravity in the f(R) gravity

model of Hu & Sawicki (2007). Arnold et al. (2019) presented the first results on

galaxy properties in these models. Arnold & Li (2019) analysed the statistics of

matter, haloes and galaxies, making predictions for the matter and halo correlation

functions, the halo and galaxy host halo mass functions, the subhalo and satellite

galaxy counts, and the correlation function of stars. Using these simulations Leo

et al. (2019) studied the effects of modified gravity on the abundance of HI-selected

galaxies and their power spectra.
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This Chapter is structured as follows. Section 4.2 presents our simulation method-

ology and discusses technical aspects of the numerical implementation. In Section

4.3, we show some tests to ensure that our implementation works accurately. We

describe our SHYBONE-nDGP simulations in Section 4.4. The first analysis of the

new full-physics simulations is presented in Section 4.5. Finally, we summarise the

results in Section 4.6.

4.2 Numerical methodology

N-body cosmological simulations have played an important role in the study of

alternative gravity models, allowing to study the impact of modified gravity on

the clustering of galaxies. Such simulations are necessary for the construction of

synthetic galaxy catalogues. In this section we present the numerical methods used

to implement the nDGP model into Arepo. Combined with the IllustrisTNG galaxy

formation model, this allows us to run full hydrodynamical simulations in the nDGP

model.

4.2.1 N-body algorithm

The equation of motion of the scalar field, Eq. (1.2.34), can be written using the

code units (see Weinberger et al., 2020, for details) of Arepo as

∇2ϕ+
R2

c

3βnDGP a3

[
(∇2ϕ)2 − (∇i∇jϕ)2

]
=

8π Ga2

3βnDGP

δρ , (4.2.1)

where G the gravity constant in internal code units. In this equation we have

introduced a new dimensionless quantity,

Rc ≡
rc

c
=

1

2H0

√
Ωrc

, (4.2.2)

with rc the crossover scale and c the speed of light in code units. Eq. (4.2.1) can be

expressed, after applying the operator-splitting trick (Chan & Scoccimarro, 2009),

as follows

(1− w)
(
∇2ϕ

)2
+ α∇2ϕ− Σ = 0, (4.2.3)
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where

α =
3βnDGPa

3

R2
c

, (4.2.4)

Σ = (∇i∇jϕ)2 − w
(
∇2ϕ

)2
+

α

3βnDGP

8πGa2δρ , (4.2.5)

and w is a constant numerical factor which has to be chosen as 1/3 for the numerical

algorithm to converge. Eq. (4.2.3) can be solved once to yield

∇2ϕ =
1

2(1− w)

[
−α±

√
α2 + 4(1− w)Σ

]
=

1

2(1− w)

[
−α +

α

|α|
√
α2 + 4(1− w)Σ

]
, (4.2.6)

where in the second line we have specialised to the relevant branch of the solution

(Li et al., 2013a).

The discrete version of the field derivatives are

∇ϕ =
1

2h
(ϕi+1,j,k − ϕi−1,j,k) , (4.2.7)

∇2ϕ =
1

h2
(ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k) , (4.2.8)

∇x∇yϕ =
1

4h2

(
ϕi+1,j+1,k + ϕi−1,j−1,k − ϕi+1,j−1,k

− ϕi−1,j+1,k

)
, (4.2.9)

where h is the cell length and we have assumed one dimension for simplicity for ∇ϕ
and ∇2ϕ.

Instead of solving the full modified Poisson equation, (1.2.33), to obtain the total

gravitational potential Φ, we split the force calculation into two parts: (i) solving the

standard Poisson equation to get the Newtonian potential ΦN and hence calculate

the Newtonian force, and (ii) solving the scalar field ϕ to obtain the fifth force.

The Newtonian force is obtained from the standard gravity solver implemented in

Arepo (see Springel, 2010; Weinberger et al., 2020, for details).

The EOM for the scalar field, Eq. (4.2.6), can be written as an operator equation

Lh(ϕi,j,k) = 0, (4.2.10)
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with

Lh(ϕi,j,k) ≡
1

h2

(
ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k + ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k

)
− 1

2(1− w)

[
−α +

α

|α|
√
α2 + 4(1− w)Σi,j,k

]
, (4.2.11)

n which the superscript h is used to label the level of the mesh (or equivalently the

size of the cell of that level), and we have defined

Σi,j,k ≡
1− w
h4

[(
ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k

)2

+
(
ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k

)2

+
(
ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k

)2
]

− 2

h4
w (ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k) (ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k)

− 2

h4
w (ϕi+1,j,k + ϕi−1,j,k − 2ϕi,j,k) (ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k)

− 2

h4
w (ϕi,j+1,k + ϕi,j−1,k − 2ϕi,j,k) (ϕi,j,k+1 + ϕi,j,k−1 − 2ϕi,j,k)

+
1

8h4

(
ϕi+1,j+1,k + ϕi−1,j−1,k − ϕi+1,j−1,k − ϕi−1,j+1,k

)2

+
1

8h4

(
ϕi+1,j,k+1 + ϕi−1,j,k−1 − ϕi+1,j,k−1 − ϕi−1,j,k+1

)2

+
1

8h4

(
ϕi,j+1,k+1 + ϕi,j−1,k−1 − ϕi,j+1,k−1 − ϕi,j−1,k+1

)2

+
α

3βnDGP

8πGa2δρi,j,k.

(4.2.12)

and

δρi,j,k =
mi,j,k

h3
− ρ̄(a) , (4.2.13)

where mi,j,k is the mass assigned to cell (i, j, k) using a cloud-in-cell scheme, and

ρ̄(a) = ρ̄0/a
3 is the mean physical matter density as a function of the scale factor.

This equation can be solved by using the multigrid relaxation method, for which

the code iterates to update the value of ϕi,j,k in all cells, and at each iteration the

field values changes as

ϕh,new
i,j,k = ϕh,old

i,j,k −
Lh
(
ϕh,old
i,j,k

)
∂Lh(ϕh,old

i,j,k )
∂ϕh,old

i,j,k

, (4.2.14)

where

∂Lh
(
ϕh,old
i,j,k

)
∂ϕh,old

i,j,k

≡ − 6

h2
+

α

|α|
4(1− 3w)

h4
√
α2 + 4(1− w)Σi,j,k

(
ϕi+1,j,k + ϕi−1,j,k + ϕi,j+1,k

+ϕi,j−1,k + ϕi,j,k+1 + ϕi,j,k−1 − 6ϕi,j,k

)
. (4.2.15)
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Note that the choice w = 1/3 also greatly simplifies this expression by making the

second term on the right-hand side vanish.

Each time the modified gravity forces are to be updated (refer to Arnold et al.,

2019, for details of the MG solver and our local time-stepping scheme) we initialise

the field value in the Arepo AMR grid solver with the solution from the previous

timestep. We then perform a number of red-black sweeps to update the field values

in the cells according to Eq. (4.2.14). At the end of each iteration, an error is

calculated for ϕi,j,k as,

ei,j,k =
ri,j,k
α

(4.2.16)

where ri,j,k = Lh(ϕ̂i,j,k) (Eq. (4.2.11)) is the residual for the approximate solution

ϕ̂i,j,k. We stop the iterations when our convergence criterion

max(ei,j,k) < 10−2 , (4.2.17)

is fulfilled. This criterion is equivalent to requesting that the approximate solution

for the field in any cell is at least 1% accurate.

4.2.2 Multigrid acceleration

To solve the scalar field equation of motion, Eq. (4.2.1), we employ the multigrid

acceleration technique using V-cycles, following the same prescription as presented

by Arnold et al. (2019). To numerically solve Eq. (4.2.10), we start the relaxation

with some initial guess of the scalar field, ϕi,j,k = 0 in all cells. After a few iterations

we have

Lh(ϕ̂h) = rh , (4.2.18)

for an approximate solution ϕ̂h with residual rh. After coarsifying, we obtain the

equation on the coarse level,

LH(ϕ̂H) = L(Rϕ̂h)−Rrh , (4.2.19)

where R is the restriction operator which is given by the summation over the 8

daughter cells of the coarse cell. Eq. (4.2.19) is used to obtain an approximate

coarse-level solution of ϕ̂H . Finally, the fine-level solution can be corrected as,

ϕ̂h,new = ϕ̂h + P(ϕ̂H −Rϕh) , (4.2.20)



4.3. Code tests 82

where P is the prolongation operator. All the finer levels are solved by V-cycles

using corrections from the two respectively coarser grid levels.

4.2.3 Force calculation

From Eq. (1.2.33), it is straightforward to identify the modified gravity contribution

to the gravitational acceleration,

aMG = −1

2
∇ϕ. (4.2.21)

We apply a 5-point finite difference scheme to calculate ∇ϕ at the centres of cells,

and use the cloud-in-cell interpolation (which is the same as the mass assignment

scheme to calculate the density field m(x)) to interpolate the force field from the

grid to the particle positions. This method allows us to calculate the fifth force

directly from the particle distribution using Eq. (4.2.21). Recall that the GR force

is obtained from Arepo’s gravity solver, we only employ the AMR solver to calculate

the fifth force.

4.3 Code tests

Following Li et al. (2013a), we perform a series of tests to check that our new Arepo

MG field solver is working correctly. To do so, we run low-resolution simulations

with 2563 particles in a box with size L = 256h−1Mpc. All tests were performed

using the Arepo AMR mesh with 29 cells per side at the present time a = 1 (z = 0).

4.3.1 Uniform density field

For this test, we have set δρi,j,k = 0 and chosen a set of random values that follow a

uniform distribution in the range [−0.05, 0.05] as initial guesses of ϕi,j,k. Because the

density field is uniform and equal to the cosmological background value, we expect

to obtain a smooth and homogeneous ϕ. In this test, the residual value, Eq. (4.2.17),

is reached before the solution converges, for this reason the code stopped when the

residual gets a value of max(ei,j,k) < 10−6, when the solution is well converged.

Note that our error criteria is different from that used in ecosmog-V (Li et al.,
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2013a) (cf. Eq. (4.2.16)). The result of this test is shown in the upper left panel of

Fig. 4.1, where the green dots represent the initial guess and the green solid line is

the numerical solution.

4.3.2 One dimensional density field

For the first one-dimensional density field test we use a sine-type density field given

by,

δρ(x) =
3βnDGP

8π Ga2
sin

(
2πx

L

)
, (4.3.22)

where L is the box-size. The analytical solution of Eq. (4.2.1) for this density field

is

ϕ(x) = − L2

4π2
sin

(
2πx

L

)
. (4.3.23)

The solution of this test is presented as blue dots (numerical) and blue solid lines

(analytical) in the upper right panel of Fig. 4.1, where we see very good agreement

between the two estimates.

The second test uses a Gaussian-type density field, given by

δρ(x) =
3βnDGP

8π Ga2

2Jα

w2

[
1− 2

(x/L− 0.5)2

w2

]
× exp

[
−(x/L− 0.5)2

w2

]
, (4.3.24)

which corresponds to an exact analytic solution

ϕ(x) = L2J

[
1− α exp

(
−(x/L− 0.5)2

w2

)]
. (4.3.25)

Here J, α, w are constants which we take to be

J = 0.02, α = 0.9999, w = 0.15 . (4.3.26)

The solution is shown by the red dots (numerical) and red solid line (analytical) in

the upper right panel of Fig. 4.1. Again, the numerical solution agrees very well

with the analytic prediction.
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4.3.3 Spherical overdensity

The previous tests were done using a 1D density field. Now, we test the three

dimensional density field. The simplest case is considering the spherically symmetric

configuration with constant density.

For the spherical test, it is most convenient to express Eqs. (1.2.44), (1.2.45) in

code units. First of all, since we are assuming that δρ is constant inside the sphere

then we can find the expressions for gN(r) and rS,

gN(r) =
GM(r)

r2
=

4πG

3
δρ r (4.3.27)

rS =
2GM(R)

c2
=

8πG

3c2
δρR3. (4.3.28)

Hence, using code units and a = 1, Eqs. (1.2.44) and (1.2.45) can be written as

dϕ

dr
=

3βnDGP

4Rc

[√
1 +

16Rc

9β2
nDGP

4πG

3
δρ− 1

]
r, (4.3.29)

for r ≤ R and

dϕ

dr
=

3βnDGP

4Rc

[√
1 +

16Rc

9β2
nDGP

4πG

3

R3

r3
δρ− 1

]
r, (4.3.30)

for r ≥ R, where r is the comoving coordinate, while R is the radius of the spherical

overdensity and δρ is the overdensity.

We place the overdensity in the centre of the simulation box, hence r is given by

r =
√

(x− L/2)2 + (y − L/2)2 + (z − L/2)2 , (4.3.31)

where x, y and z are the Cartesian coordinates. We adopt the values δρ = 0.001, R =

0.075L, and the Arepo solution is shown as black dots in the lower-left panel of

Fig. 4.1. Meanwhile, given the value of ϕ(r = 0), Eqs. (4.3.29) and (4.3.30) can be

integrated to obtain ϕ(r > 0) numerically, and the result is shown as the black solid

curve in the lower-left panel of Fig. 4.1.

We can see that the two solutions agree very well, especially at small r, i.e.,

close to the centre of the simulation box, where the overdensity is placed. Far from

the centre, the agreement becomes less perfect because the analytical solution does
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not assume periodicity of the spherical overdensity, while the numerical code uses

periodic boundary conditions so that the field sees the overdensities in the replicated

boxes as well.

4.3.4 3D matter power spectrum of a cosmological run

Finally, we compare the dark matter power spectrum at the present time mea-

sured from our test simulations with those from a similar resolution run using the

Ecosmog-V code (Li et al., 2013a), the elephant simulations (Paillas et al.,

2019). The lower right panel of Fig. 4.1 shows this comparison. We can see that our

results display good agreement with previous measurements, and in particular our

modified version of Arepo reproduces well the amplitude of the power spectrum

enhancement in the nDGP model relative to GR on all scales.

Note that the amplitudes of the matter power spectrum from both codes are

slightly different. This is due to the differences in the background cosmology and

simulation set-up. The elephant simulations were run in a box of size L =

1024h−1Mpc and Np = 10243 particles using the WMAP-9 simulation parame-

ters (Hinshaw et al., 2013), while the Arepo test was run in a box of 256h−1Mpc

with 2563 dark matter particles using the Planck 15 best-fit parameters (Planck

Collaboration XIII, 2016).

4.4 The SHYBONE-nDGP simulations

The SHYBONE-nDGP runs consist of a suite of nine simulations covering three

gravity models (GR, N5 and N1) at two resolutions. The larger box has a size of

L = 62h−1Mpc (L62) and contains 5123 dark-matter particles and 5123 gas elements,

giving a mass resolution of mDM = 1.28× 108 h−1M� and mgas = 2.40× 107 h−1M�.

We have also run a smaller box with size L = 25h−1Mpc (L25) and 2 × 5123

resolution elements giving a baryon mass resolution of 1.57 × 106 h−1M� and dark

matter particle mass of 8.41 × 106 h−1M�. In addition, we ran DM-only versions

of the L62 runs (L62-DMO); in this case the mass of the dark matter particle is

1.52 × 108 h−1M�. The softening lengths for DM particles and stars are 1.25 and
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Figure 4.1: Results of code tests. Upper left panel: Uniform density test, where

the green dots represent the random initial values of the scalar field in the range

[−0.05, 0.05] and the solid green line shows the final solution. Upper right panel:

The 1D sine (blue dots) and Gaussian (red dots) density field tests. The solid lines

show the analytical solutions. Lower left panel: Spherical overdensity test using

δρ = 0.001 and R = 0.075L. The line represents the analytical solution while

the dots correspond to our simulation test result. Lower right panel: Measured

dark matter power spectrum from our test simulations (dashed lines) and from the

elephant simulations run with the ecosmog-V code (solid line). In this panel we

show the predictions of GR (black lines), N5 (magenta lines) and N1 (orange lines).

The lower subpanel displays the relative difference between the nDGP models and

GR for the two different codes.
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0.5h−1kpc for the L62 and L25 runs, respectively. Table 4.1 summarises the set-up

of our simulations.

For all simulations, we use the same linear perturbation theory power spectrum

to generate the initial conditions at zini = 127 with the N-GenIC code (Springel

et al., 2005), which allies the Zeldovich approximation. The cosmological parameters

are chosen from those reported by Planck Collaboration XIII (2016):

{Ωb,Ωm, h, ns, σ8} = {0.0486, 0.3089, 0.6774, 0.9667, 0.8159}.

For each set of GR, N5 and N1 simulations we use the same initial condition, since

at z = 127 the effect of modified gravity is expected to be negligible, and the initial

power spectrum depends only on the other cosmological parameters.

The modified gravity solver is combined with the IllustrisTNG galaxy formation

model (Pillepich et al., 2018a) to follow the formation and evolution of realistic

synthetic galaxies through cosmic time. The TNG model is an updated version

of the original Illustirs model (Vogelsberger et al., 2014) which allows the forma-

tion and evolution of galaxies in cosmological gravo-magnetohydrodynamical simu-

lations. The model incorporates prescriptions for star formation, stellar evolution,

chemical enrichment, primordial and metal-line cooling of the gas, stellar feedback

with galactic outflows, black hole formation and AGN feedback (Weinberger et al.,

2017; Pillepich et al., 2018a). The TNG model has been ‘tuned’ to reproduce the

observed galaxy stellar mass function and the stellar-to-halo mass relation, the total

gas mass content of massive groups (within r500c), the black hole to stellar mass and

the stellar mass to galaxy size relations at the present time, and the star formation

rate density at z . 10 (see Pillepich et al., 2018a, for details). The TNG simulations

were run with the moving-mesh Arepo code which solves the equations of ideal,

continuum magnetohydrodynamics coupled with self-gravity (Pakmor et al., 2011;

Pakmor & Springel, 2013). The self-gravity is solved with the Tree-PM approach,

while the fluid dynamics employs a Godunov (finite-volume) type method, with a

spatial discretisation based on an unstructured, moving, Voronoi tessellation of the

domain. We do not tune the TNG model for the nDGP simulations, and instead

use the same galaxy formation prescription for all gravity models. In theory, such

a tuning is needed for any new model. However, as we shall see later, the Illus-
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trisTNG model, which has been tuned for ΛCDM, also gives good predictions of the

galaxy and gas properties for the nDGP models studied in this Chapter, therefore

not necessitating a re-tuning.

The dark matter haloes (groups) and their substructures – subhaloes and galax-

ies – are identified with Subfind (Springel et al., 2001). The group catalogues

(including subhalo and galaxy information) and the particle data are stored in 100

snapshots from z ∼ 20 to z = 0. The large number of snapshots is ideal for gen-

erating halo merger trees which allows to run with semi-analytic models of galaxy

formation.

A visual representation of the nDGP-L25 simulations at the present time is dis-

played in Fig. 4.2. The top (bottom) six panels show the densities of dark matter,

gas and stars, gas temperature, the ratio between the amplitudes of the fifth and

standard Newtonian forces, and the scalar field ϕ in the N1 (N5) model. The colour

maps were generated with the SPHviewer package (Benitez-Llambay, 2015). The

distribution of matter in our nDGP simulations seems indistinguishable between

N1 and N5 (we have not shown the GR results as they are also indistinguishable

visually), but we will quantify the impact of modified gravity on the clustering of

matter components and on the galaxy properties in the following section. From the

force ratio panels of Fig. 4.2 we can observe that high-density (green) regions expe-

rience a negligible force enhancement while low-density (yellow) regions experience

an enhancement of F5th = (1/3βnDGP)FGR, where βnDGP = 2.69 and βnDGP = 9.45

[cf. Eq. (1.2.35)] for N1 and N5 at z = 0, respectively. In the scalar field panels of

Fig. 4.2 we have subtracted the mean scalar field value measured in the whole sim-

ulation box, ϕ̄. ϕ− ϕ̄ then has a zero mean and can be regarded as the potential of

the fifth force: as expected, this map is smoother and dominated by long-wavelength

modes. Notice that the colour bars for the force ratio and scalar field panels are

different between N5 and N1.

Fig. 4.3 shows the face-on images of a random selection of four disc galaxies from

the nDGP full-physics simulations at z = 0. The first two rows show, respectively,

one galaxy from each of the L25 and L62 runs for N1, while the last two rows

show two disc galaxies for N5 (again one per box). We follow the prescription of
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Figure 4.2: Visual inspection of the nDGP-L25 simulations showing the large-scale

structure at z = 0. The top six panels show the column density of DM, the gas den-

sity, the stellar mass distribution, the temperature of the gas, the fifth to Newtonian

force ratio, and the difference between the local and background mean values of the

scalar field, ϕ − ϕ̄ (in code unit), of the N1 model. The bottom six panels display

the same matter and modified gravity quantities but for the N5 model.
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Figure 4.3: Visualisation of a selection of disc galaxies from the two boxes (L25 and

L62), for both N1 (top two rows) and N5 (bottom two rows). Left column: the

gas column density with stars (white dots) overplotted. Central column: the ratio

between the magnitudes of the fifth force and standard gravity. Right column: the

difference between the local value of the scalar field, ϕ, and its value at the galactic

centre, ϕc. All galaxies are selected at z = 0 and all images are face-on. Numerical

values are colour-coded as indicated by the colour bars in each panel, and various

information, such as the disc radius and host halo mass, is also shown.
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Arnold et al. (2019) to identify disc galaxies in our simulations. Essentially, we select

galaxies that have κ > 0.57, with κ the rotational-to-total kinetic energy parameter

(Ferrero et al., 2017). The first column displays the gas column density (the colour

map) and star particles (white dots) of the galaxies. The second column presents

the map of modified gravity force enhancement. The amplitude of the scalar field is

shown in the third column. We see that the L25 box, owing to its higher resolution,

gives rounder and more detailed galaxy images. The fifth force is indeed much weaker

than Newtonian gravity inside and around the galactic disc: the ratio between their

magnitudes is smaller than 10−2 and 10−2.5, for N1 and N5 respectively, in this

region, showing that the Vainshtein mechanism effectively suppresses the fifth force.

In the scalar field maps, we subtract ϕc, the scalar field value at the centre of the

galaxy (note that this is different from Fig. 4.2), to eliminate the contribution from

long-wavelength modes. This is because we want to see the spatial variations of

the scalar field that are caused by the matter distribution in the galaxy itself. We

observe that the scalar field increases in value from inside out, as expected given its

role as the fifth force potential.

We have counted the number of disc galaxies from the simulations. The L25 runs

produce 124, 126 and 118 such objects at z = 0, for GR, N5 and N1 respectively.

The corresponding numbers from the L62 runs are much smaller (even with a larger

box size), and so we do not quote them here – this reflects the fact that the formation

of disc galaxies is sensitive to the simulation resolution. From these numbers we do

not observe any statistically significant trend of the impact of modified gravity. This

is different from the case of f(R) gravity (Arnold et al., 2019), which in the case of

|fR0| = 10−5 (F5) was found to produce significantly fewer disc galaxies than in GR.

A possible explanation is the effect of modified gravity to enhance galaxy mergers,

which makes it harder for disc galaxies to survive. In f(R) gravity, we note a strong

difference in halo abundance from GR (see, e.g., Shi et al., 2015), which indicates

that halo formation is strongly affected by the fifth force. This is, however, not the

case in the nDGP models studied here (Hernández-Aguayo et al., 2020a), implying

a weaker effect of the fifth force on the halo formation (by mergers and accretions).

We shall leave a more careful analysis of the halo merger history to a future work.
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4.5 Results

4.5.1 Clustering of matter components

The measured power spectra and correlation functions for all types of matter com-

ponents in our simulations are displayed in the upper panels of Figs. 4.4 and 4.5

at redshifts z = 0, 1 and 2. We show results for the clustering of all gas (including

both hot and cold components; red lines), stars (yellow), dark matter (blue), and

the combination of all components (grey). The middle and lower rows of Fig. 4.4

and Fig. 4.5 show the relative differences of the clustering measurements from the

nDGP simulations with respect to GR for the L62 and L25 boxes, respectively. For

the power spectrum (upper panels of Fig. 4.4) we additionally show the linear theory

dark matter power spectrum for comparison as the light grey solid line.

From the upper panels of Fig. 4.4 we note that the power spectra of different

matter components have different behaviour and amplitudes, with stars being more

clustered than the other types of matter irrespective of the gravity model. The

clustering of dark matter and the total matter distribution show almost the same

amplitude and follow the linear theory prediction on large scales through cosmic

time. The power spectrum of gas displays a decrease in amplitude at the present

time on small and intermediate scales; this behaviour is due to strong feedback

effects that suppress galaxy formation at late times (Springel et al., 2018).

We can also see the impact of the simulation particle resolution on the matter

power spectrum by comparing the thick and thin lines in Fig. 4.4. The main dif-

ferences are the lack of large-scale modes in the L25 box, while the results of the

L62 boxes are affected by the relatively low resolution on small scales. The most

affected component due to resolution effects is the stars, which display a consistently

higher amplitude at z = 2 for the L62 box compare to the L25 box; However, this

difference decreases at low redshifts. This is because stars in our low-resolution

box (L62) tend to occupy higher-mass haloes than in the higher-resolution case and

these haloes are more strongly biased. Also, as we will see later, the star formation

rate is different between the L62 and L25 runs, which can also have an impact on

the spatial distribution and clustering of stars. However, the GR results from both
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Figure 4.4: The measured power spectra of different matter components of our full-

physics simulations at z = 0 (left panel), z = 1 (middle panel) and z = 2 (right

panel). The upper panels show the absolute values of the power spectra of the gas

(red lines), stars (yellow lines), dark matter (blue lines) and total matter (grey lines)

components. Thick lines indicate the results from the L = 62h−1Mpc box, while

thin lines show the results from the L = 25h−1Mpc case. Dotted lines show results

for GR, dashed lines for N5 and solid lines for N1. The middle and lower rows display

the relative differences with respect to GR predictions for the L = 62h−1Mpc and

L = 25h−1Mpc boxes, respectively.
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simulation boxes (thick and thin dashed lines, respectively) are consistent with the

IllustrisTNG findings at different resolutions reported by Springel et al. (2018). The

same discussion on resolution effects on power spectrum applies to nDGP models as

well.

The interplay between baryons and modified gravity can be seen in the middle

and bottom panels of Fig. 4.4 for the L62 and L25 boxes, respectively. For dark

matter, we can observe an enhancement on large scales (k . 1hMpc−1) due to the

fifth force, leading to a maximum difference of ∼ 5% and ∼ 20% − 25% for the

N5 (dashed lines) and N1 (solid lines) models, respectively. This enhancement is

consistent with results found with DM-only simulations (see, e.g., Winther et al.,

2015). On small scales, we note a suppression due to the Vainshtein screening

mechanism. At z ≤ 1, there is a decrease of matter clustering in nDGP compared

to GR at k/(hMpc−1) & 10. This may be partly due to the gravitational effect of

gas and stars, but as we will see below, even in the DMO L62 simulations we see a

similar suppression of dark matter power spectrum on these scales, which is a new

feature only seen at high resolution.

The gas power spectrum (red lines) follows the same behaviour as dark matter

on large scales at all redshifts. At early times (z ≥ 1), we observe that the gas

power spectrum is less suppressed than dark matter on small scales; this is due

to haloes that were able to accrete more gas from their surroundings, leading to

a higher concentration of gas inside haloes, particularly for the N1 model. At the

present time, the gas power spectrum is suppressed by ∼ 20 − 25% for N1 in both

boxes, while for N5 this effect is only observed for the L25 box on intermediate

scales 5 < k/[hMpc−1] < 40. A possible reason for this is the combination of

stellar and AGN feedback processes that expel gas from inside massive haloes and

modified gravity effects that enhance the growth of structure. Also, the interaction

between MG and baryons could lead to a stronger baryonic feedback in the nDGP

models (especially for N1) changing the clustering signal on intermadiate scales at

the present time.

The clustering of stars (yellow lines) is less affected by modified gravity than gas

and dark matter, for which we find differences of . 5% for both N5 and N1 models
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Figure 4.5: The same as Fig. 4.4 but for the correlation functions of the different

matter components.

and all redshifts, except at z = 2 for the L62 box where the clustering of stars

shows an increased clustering of > 10% for both nDGP models (we caution about

the L62 results regarding stars, given that the star clustering is strongly resolution

dependent). The small difference between star clustering in the different models is

the result of the Vainshtein screening mechanism inside haloes. Note that this is

conceptually different to the behaviour of the stellar power spectrum in f(R) gravity,

where the clustering of stars is strongly influenced by the MG model even at z = 2

(Arnold et al., 2019).

In Fig. 4.5 we show the correlation functions results for the same matter com-

ponents and redshifts shown in Fig. 4.4. We find consistent trends with the power

spectrum results discussed above. We note that the gas correlation function starts

to deviate from the dark matter and total matter correlation functions on scales

r ∼ 0.2h−1Mpc at z = 2. This evolves with time, when at z = 0 the gas is much

less clustered than dark matter on small scales. Again, the overall behaviour of the

correlation functions and the resolution effects due to different box size is the same

as the found for power spectrum. The relative differences between the nDGP models

and GR are consistent with the power spectrum findings (see middle and bottom

panels of Fig. 4.5). In this case, we find that the correlation function of stars is
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noise dominated, making it difficult to observe a consistent difference between both

nDGP models and GR as seen from the power spectrum.

4.5.2 Impact of baryonic physics on the clustering of matter

In the first series of the SHYBONE simulations, Arnold et al. (2019) presented

results on the degeneracy between the baryonic processes and modified gravity using

the Hu-Sawicki f(R) model (Hu & Sawicki, 2007). Here, we are able to extend these

findings to the nDGP braneworld model. Recall that we only produced DM-only

runs for the L62 box (see Table 4.1 for details), hence the results shown in Figs. 4.6

and 4.7 correspond to the large box of the SHYBONE-nDGP simulations.

Fig. 4.6 shows the relative differences between the full-physics power spectra of

all matter in the three gravity models with respect to the dark (or equivalently all)

matter power spectrum of the DM-only GR simulation at z = 0, 1 and 2. We also

show the predictions from the DM-only nDGP simulations (dashed lines) at the

same redshifts. On large scales (k < 2hMpc−1) we find a consistent enhancement

of the DM-only power spectrum of the N5 and N1 models (dashed lines) with the

dark matter component of the full-physics runs (see blue lines in the middle panels

of Fig. 4.4)

At z = 0, we can see a suppression in the matter power spectrum of ∼ 20% for

GR and N5 models at scales k ∼ 20hMpc−1, while for N1 the power is suppressed

by ∼ 25%. This suppression becomes smaller with increasing redshift; as shown

in Springel et al. (2018) and Arnold et al. (2019), one should expect a negligible

baryonic effect on intermediate and large scales at z > 3. For comparison, we also

show the results from the IllustrisTNG (Springel et al., 2018) and Eagle (Hellwing

et al., 2016) simulations at z = 0, noting the good agreement with our GR results.

The significant enhancement of the matter power spectrum for k > 40hMpc−1 is

consistent with the IllustrisTNG result, but in our case in the highly resolution-

affected regime.

The dotted lines display the estimated effect of baryonic feedback from the GR

full-physics simulation added to the predictions from the DM-only nDGP simula-
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Figure 4.6: The relative differences of the total matter power spectra from the full-

physics (solid lines) and DM-only (dashed lines) L62 runs with respect to the matter

power spectrum of the DM-only GR runs at z = 0 (left panel), z = 1 (middle panel)

and z = 2 (right panel). The grey and red dash-dotted lines show the impacts of

baryons on the total matter power spectrum in the IllustrisTNG (Springel et al.,

2018) and Eagle (Hellwing et al., 2016) simulations at z = 0. Solid lines illustrate

results from full-physics runs, dashed lines their DM-only counterparts. Dotted lines

show an estimate for the combination of baryonic feedback and modified gravity

effects, obtained by adding the relative differences of the nDGP DMO results to the

GR full-physics run, cf. Eq. (4.5.32). The different colours represent different gravity

models as indicated in the left panel (black for GR, magenta for N5 and orange for

N1). The light grey shaded region indicates a relative difference of 2 per cent.
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Figure 4.7: The same as Fig. 4.6 but for the correlation function.

tions:
∆P (k)

PGR
DMO(k)

=

[
P nDGP

DMO (k)

PGR
DMO(k)

− 1

]
+

[
PGR

full−physics(k)

PGR
DMO(k)

− 1

]
. (4.5.32)

The idea is that the impacts of baryonic physics and modified gravity can be rela-

tively clearly separated and their back-reaction effects on each other are negligible

(Arnold et al., 2019). This figure shows this simple model is accurate enough to

reproduce the full-physics results in nDGP simulations: comparing the magenta

and orange dotted lines with their solid line counterparts, we can see the agree-

ment is generally at percent level at all scales up to k ' 100hMpc−1. On scales

k . 1hMpc−1, the effect of baryons is negligible in both DGP models and at

all redshifts, showing that the relative differences are dominated by the modified

gravity effect reaching a maximum value with the same amplitude as the DM-only

simulations.

In Fig. 4.7 we explore the impact of the baryonic feedback effects on the corre-

lation functions at the same redshifts (z = 0, 1 and 2). We find several differences

from the power spectrum results. First, the clustering in configuration space also

shows a suppression on small scales, but the difference is larger than that found for

the power spectrum. In this case, the relative change is ∼ 40 per cent at z = 0,

decreasing with redshift to 25 per cent at z = 2 (recall that we find a maximum

difference of 25 per cent at z = 0 and about 10 per cent at z = 2 in the power

spectrum). We observe the same enhancement on very small scales (r < 10h−1kpc)

as the power spectrum. But the clustering of matter shows an increase of 10 per

cent at r = 1h−1Mpc for the GR simulations at z = 0, which becomes even larger
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at earlier times.

In the nDGP models, the full-physics matter correlation functions follow the

same trend as in GR, but the enhancement on large scales is bigger for the N1 model

which reaches a maximum difference of 50 per cent at the present epoch, followed

by the N5 model which presents a similar value to the GR case. Nevertheless,

due to the relatively small box size of our simulations and the comparatively more

noisy measurement of the correlation function at large radii, we do not observe the

constant enhancement at large-scales as shown in the power spectrum.

From Fig. 4.7 we also note that estimating the feedback impact by adding the

GR full-physics effect to the DM-only difference in modified gravity models (dotted

lines), does lead to good agreement with the nDGP full-physics results as seen in the

power spectrum, especially on scales < 0.5h−1Mpc. This approximation works less

well on scales beyond 0.5h−1Mpc, where we find larger differences in the relative

values by comparing the solid and dotted lines in all panels of Fig. 4.7. We caution

again that the differences on large-scales between the full-physics and the estimated

impact of baryons in the nDGP models (solid and dotted lines in Fig. 4.7) could be

due to the limited size of our simulation box.

The dark matter clustering measured from the DM-only simulations (dashed

lines) of the nDGP models shows a similar trend to the dark matter component of

the full-physics run (see Fig. 4.5). We find that on very small scales, the clustering of

the dark matter is very close to GR, but the N1 model displays a slight suppression at

z ≤ 1, which is consistent to the small scale suppression of the matter power spectra

in Fig. 4.6 (see also the discussion of Fig. 4.4 above). On scales > 100h−1kpc the

effect of modified gravity increases the amplitude of the clustering at all redshifts.

This is also consistent with the power spectrum results presented in Fig. 4.6.

4.5.3 Fifth force profiles

We can also explore the interplay between modified gravity and baryonic effects by

looking at the fifth force profiles of dark matter haloes. The median of the fifth-

to-Newtonian force ratio profiles in our nDGP-L62 (full-physics and DM-only) runs

using four mass bins: M200c = (5 × 1011 − 1012)h−1M�, (1012 − 5 × 1012)h−1M�,



4.5. Results 101

(5× 1012 − 1013)h−1M� and (1013 − 1014)h−1M� at z = 0, 1 and 2 as a function of

r/r200c (with r the distance from the halo centre) is shown in Fig. 4.8.

We observe the suppression of the fifth force inside the haloes due to the Vain-

shtein screening mechanism. Far from the centre, the fifth force approaches the

value

F5th =
1

3βnDGP

FGR, (4.5.33)

as expected [cf. Eq. (1.2.47)]. This value is showed as the dotted lines in Fig. 4.8.

There is a strong suppression of the fifth force in the inner regions of the haloes

(r < 0.1 r200c) at all three redshifts, due to higher densities close to the centres of

the haloes. This can be seen from the following solution to dϕ/dr for a general

spherical density profile ρ(r), which can be obtained from Eq. (1.2.41) or (1.2.43):

dϕ

dr
=

√
1 + 64πGr2c

27β2
nDGPc

2 ρ̄(< r)− 1

16πGr2c
9βnDGPc2

ρ̄(< r)
gN(r), (4.5.34)

where ρ̄(< r) denotes the mean matter density within radius r from the halo centre,

and we have again set a = 1 for simplicity. In high-density regions, the second term

in the square root of the numerator dominates over the first term, so that the fifth-

to-Newtonian force ratio decays as ρ̄(< r)−1/2. For the same reason, in the inner

regions we see that the fifth force is more suppressed in the full-physics than in the

DM-only runs, since gas and stars condensate at halo/galactic centres, increasing

ρ̄(< r) there.

We also find that the force ratio profiles in Fig. 4.8 do not show a noticeable

dependence on the halo mass, consistent with previous findings of DMO simulations

(Winther et al., 2015). This behaviour can also be explained using Eq. (4.5.34),

which indicates that the force ratio only depends on ρ̄(< r). At r = r200c, we have

that ρ̄(< r) is equal to 200 times the critical density, independent of halo mass; a

weak dependence on halo mass is introduced due to the different density profiles

(concentrations), but the effect is small.

4.5.4 Galaxy properties in braneworld models

In Fig. 4.9 we show the results on galaxy demographics of the SHYBONE-nDGP sim-

ulations. Recall that we did not re-tune the IllustrisTNG galaxy formation model
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5 ⇥ 1011 < M200c/[h�1M�] < 1012

1012 < M200c/[h�1M�] < 5 ⇥ 1012

5 ⇥ 1012 < M200c/[h�1M�] < 1013

1013 < M200c/[h�1M�] < 1014

Figure 4.8: Radial profiles of the fifth-to-Newtonian force ratio of dark matter haloes

in the full-physics (solid lines) and DM-only (dashed lines) nDGP-L62 simulations

(magenta for N5 and orange for N1) at z = 0 (left panels), z = 1 (middle panels) and

z = 2 (right panels). We show the results for four mass bins: M200c = (5 × 1011 −
1012)h−1M�, (1012−5×1012)h−1M�, (5×1012−1013)h−1M� and (1013−1014)h−1M�

(from top to bottom). The horizontal dotted lines show the value, F5th/FGR =

1/3βnDGP(a), for each nDGP model and redshift.
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to match observations in modified gravity, hence we use the same hydrodynami-

cal model for all gravity models. In all panels of Fig. 4.9 we compare our results

with the TNG-L25 boxes reported by Pillepich et al. (2018a). These TNG-L25 test

simulations were run using a box with size of L = 25h−1Mpc and three mass res-

olutions: 2 × 5123 (high-resolution, TNG-L25N512), 2 × 2563 (medium-resolution,

TNG-L25N256) and 2× 1283 (low-resolution, TNG-L25N128) dark matter and gas

elements. Depending on the panel and galaxy property, we show observational data

of the stellar-to-halo mass ratio and star formation rate density from Behroozi et al.

(2013b), galaxy stellar mass from Baldry et al. (2012), Bernardi et al. (2013) and

D’Souza et al. (2015); and gas fractions from Giodini et al. (2009) and Lovisari et al.

(2015). We do not expect our L62 results to match the obervational data, since the

TNG model was tuned for the TNG-L25N512 test simulations using the galaxy

properties mentioned above (as well as the black hole mass - stellar mass relation

and the galaxy size at redshift z = 0; Pillepich et al., 2018a) and it has been demon-

strated that the stellar properties of galaxies depend on the simulation resolution in

the TNG model (see Appendix A of Pillepich et al., 2018a,b, for details).

The upper left panel of Fig. 4.9 shows the stellar-to-halo mass ratio multiplied by

the inverse of the baryon fraction (Ωb/Ωm), as a function of the total host halo mass

(M200c) for our six full-physics simulations at z = 0. The stellar mass was measured

within 30 kpc from the halo centre. First, we note that the L62 simulations (dashed

coloured lines) are in good agreement with the TNG-L25N128 (grey dotted line) run

at the high-mass end, but is lower than the TNG-L25N256 (grey dashed line) and

TNG-L25N512 (grey solid line) results, which is as expected given the resolutions of

these runs. Our L25 runs (solid coloured lines) predict higher stellar mass fractions

than the TNG-L25N512 (grey solid line), despite the fact that these simulations

have the same resolution. The differences are due to the combination of the different

initial condition realisations we used to run our simulations (i.e., cosmic variance)

and the small number of high mass objects in the small boxes. Note that the final

TNG100 run (blue solid line; Pillepich et al., 2018b) also has disagreements with the

TNG-L25N512 test run, for the same reason. Nevertheless, our L25 predictions are

in good agreement with observational estimates (light grey area) and with TNG100
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Figure 4.9: Stellar and gaseous galaxy properties at z = 0 (unless otherwise stated).

Upper left: Stellar-to-halo mass ratio as a function of halo mass. The stellar mass is

measured within 30 kpc from the halo centre. Upper right: Galaxy stellar mass function

measured within 30 kpc from the centre of the halo. Bottom left: The halo gas fraction

within r500c as a function of the total halo mass. Bottom right: Star-formation rate density

as a function of redshift. Different colours represent different gravity models as specified in

the legend. Solid colour lines show results from our L25 simulations while dashed coloured

lines are from our L62 boxes. All lower subpanels show the relative differences between

the galaxy properties of nDGP and GR models. In all panels we compare our results

with the IllustrisTNG results at three different resolutions (Pillepich et al., 2018a): TNG-

L25N512 (solid grey curves), TNG-L25N256 (dashed grey curves) and TNG-L25N128

(dotted grey curves). The blue solid line in the upper panels shows the results from the

TNG100 simulation (Pillepich et al., 2018b). Light-grey symbols represent observational

measurements from: Behroozi et al. (2013b) Baldry et al. (2012), Bernardi et al. (2013),

D’Souza et al. (2015), Giodini et al. (2009) and Lovisari et al. (2015).
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at M200c . 2 × 1012M�. We find that the modified gravity effects induce a ∼ 10%

change with respect to GR for small haloes in both nDGP models, and the relative

differences in the L62 and L25 boxes are consistent with each other over most of

the mass range. However, the nDGP-L25 runs produce a higher model difference

in the stellar mass fraction for haloes with mass M200c ∼ 1013M�, than their L62

counterparts. However, we again caution here that at this mass the simulations,

especially L25, may suffer from cosmic variance.

The galaxy stellar mass functions (GSMF) measured within 30 kpc from halo

centres are shown in the upper right panel of Fig. 4.9. Our L62 results are consistent

with the TNG-L25N256 simulations, while the L25 GSMFs are in excellent agree-

ment with the TNG-L25N512 and TNG100 simulations at M? . 2 × 1011M�. For

both nDGP models, both L25 and L62 display small differences, ∼ 5%, with respect

to the GR counterparts, at M? . 4 × 1010M�. At even higher stellar masses, the

relative difference curves are noisier and the agreement between L25 and TNG100

is poorer, due to the small box size and due to the low number of galaxies in the

high-mass end. Overall, we conclude that the GSMF is not significantly altered by

either of the nDGP models studied here.

The lower left panel of Fig. 4.9 displays the galaxy gas fractions within r500c as

a function of halo mass. We can see that, considering the scatters of observational

data (grey circles and triangles), both sets of SHYBONE-nDGP simulations are in

good overall agreement with the three TNG-L25 tests, except for the L62 run for

masses M200c . 4 × 1011M� due to the limited mass resolution. In addition, for

both L62 and L25, the relative differences between the nDGP models and GR are

consistent with each other in almost the entire halo mass range. The small difference

in the relative difference lines between L62 and L25 is again likely to be noise, and

this plot does not point to a strong effect of modified gravity.

We present the star-formation rate densities (SFRD) as a function of time in

the lower right panel of Fig. 4.9. We confirm the findings of Pillepich et al. (2018a)

and Arnold et al. (2019) that the SFRDs are resolution dependent, particularly

at low redshift. Our L62 simulations show a higher star formation rate than the

TNG-L25N256 and TNG-L25N128 at high redshift (z > 4), while at lower redshifts
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(z < 3) the curves fall between the low- and medium-resolution TNG-L25 boxes, as

expected from their resolution. The L25 boxes are in excellent agreement with the

TNG-L25N512 run, but display a higher SFRD at lower redshifts (z < 2), which

is nevertheless still in agreement with the observational data (light grey symbols).

Note that the nDGP-L62 relative differences are in good agreement with our high-

resolution runs (L25) displaying a maximum relative change of ∼ 15% with respect

to GR. However, at the present time, the SFRD in both nDGP models match the

GR predictions within a 3% margin.

Due to the small (compared to scatters in observational data) differences that the

nDGP models induce in the properties of galaxies, we arrive at the same conclusion

as for f(R) gravity in Arnold et al. (2019): a re-tuning of the TNG model for nDGP

gravity is not necessary and this allows us to study different gravity models using the

same prescription for galaxy formation. This also indicates that the global galaxy

properties shown in Fig. 4.9 cannot be used to distinguish between the different

gravity models, at least not with the current level of observational and simulation

uncertainties.

The small impact of modified gravity on the global galactic and gas properties

can be partly explained by the Vainshtein screening mechanism which, as we have

seen, effectively suppresses the fifth force inside haloes, cf. Fig. 4.8. However, we do

see nDGP effects at the level of about 5 − 15% in Fig. 4.9: this is because galaxy

formation is a complicated process that is not confined to the inner regions of haloes,

but the recycle of gas actually involves regions in the outer parts of, or even outside,

haloes, where Vainshtein screening is less effective.

4.6 Summary

In this Chapter, we introduced a new set of galaxy formation simulations in the DGP

braneworld model. In order to run these simulations, we extended the modified

version of the Arepo code for f(R) gravity presented by Arnold et al. (2019),

so that it can be used to simulate structure formation in the DGP model. We

performed a series of tests to verify that the new code gives reliable results. We also
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compared the matter power spectrum predicted by the new code with predictions

by the ecosmog-V code (Li et al., 2013a), finding excellent agreement on all scales.

This implementation, together with the IllustrisTNG galaxy formation model

desribed by Pillepich et al. (2018a), makes the new set of full-physics hydrodynamical

simulations in DGP gravity possible. The simulations we used in our analysis employ

2× 5123 dark matter particles and gas cells. We studied two cosmological volumes:

a large-volume simulation with box size L = 62h−1Mpc (L62 runs), and a small-

volume with box size L = 25h−1Mpc (L25 runs). For each set, the simulations

cover three gravity models – GR, N5 and N1. These are supplemented by DM-only

simulations for the same models and using the same specifications as the L62 full-

physics runs. We have saved 100 snapshots per run, which contain all the particle

data and group catalogues generated using subfind.

We studied the real-space clustering in Fourier and configuration space of stars,

gas, dark matter and the total matter distribution. The clustering of dark matter

in the full-physics nDGP simulations displays an enhancement compared to its GR

counterpart on large scales (k < 4hMpc−1 for the power spectrum), consistent with

previous findings from DM-only simulations (Winther et al., 2015). The clustering

of gas and the total matter distribution follows a similar trend to the dark matter on

almost all scales, and the clustering of the stellar content seems to be less affected

by changes in the gravity model in Fourier space.

We find that the interplay between baryonic feedback processes and modified

gravity is complex. However, the impact of baryons on the clustering of matter

has a similar impact in all gravity models, with a suppression of ∼ 25 per cent

in the power spectrum and up to ∼ 40 per cent in the correlation function at the

present time. In particular, the impacts of baryons and modified gravity on the

matter power spectrum – and to a similar extent on the correlation function – can

be modelled additively by summing up their changes to the GR dark matter power

spectrum, with a percent-level accuracy, cf. Figs. 4.6 and 4.7.

The fifth force to normal gravity ratio in dark matter haloes, F5th/FGR, is also

affected by baryons. We found a suppression of the ratio due to higher densities in

the inner regions (close to the centre) of the haloes in full-physics runs relative to
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DMO. Additionally, we showed that the force profiles have only a weak dependence

on halo mass, confirming the findings of DM-only simulations presented by Winther

et al. (2015), and note that this is a feature that is expected for Vainshtein screening.

The stellar and gaseous properties of galaxies are only mildly affected by the

modifications to gravity in the nDGP models, mirroring the results found by Arnold

et al. (2019) for the case of f(R) gravity. The differences induced by the nDGP

model are nevertheless even smaller than those caused by f(R) gravity. Therefore,

we conclude that given the current size of uncertainties in the relevant galactic

observables, there is no need to ru-tune the baryonic physics model for these modified

gravity models.



Chapter 5

Measuring the BAO peak position

with different galaxy selections

5.1 Introduction

The baryon acoustic oscillations (BAO) scale is a standard ruler that can be used to

measure the cosmological redshift - distance relation (Eisenstein & Hu, 1998; Blake

& Glazebrook, 2003; Linder, 2003; Xu et al., 2013; Ross et al., 2015). This charac-

teristic scale is approximately the horizon scale at recombination and corresponds

to the largest distance that a sound wave can travel in the photon – baryon fluid

up to this epoch. The sound horizon at recombination has been measured at the

sub-percent level using the cosmic microwave background (CMB) radiation (Planck

Collaboration XIII, 2016). It is possible to measure the BAO scale from the clus-

tering of galaxies using two-point statistics such as the correlation function or its

Fourier transform, the power spectrum (see e.g., Cole et al., 2005; Eisenstein et al.,

2005; Beutler et al., 2017; Ross et al., 2017). This allows us to probe the redshift

– distance relation, which depends on the cosmological model and hence, given the

existing constraints from the CMB, constrains the late-time behaviour of the dark

energy.

In this Chapter, we explore if there is an optimal way to target galaxies to extract

the BAO scale. We do this by ranking galaxies by either their luminosity, colour, or

environment within the same volume, and then assess how well we can extract the

109
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BAO scale for different subsamples of galaxies in each case. The initial idea behind

using subsamples of galaxies was to sparsely sample a flux limited catalogue to

efficiently map a large survey volume, without measuring a redshift for every galaxy

(Kaiser, 1986). This technique was successfully applied to early redshift surveys

to yield impressive constraints on cosmological parameters from modest numbers

of galaxy redshifts (Efstathiou et al., 1990; Loveday et al., 1992). A development

of this approach was to target a particular class of object rather than to randomly

sample a flux limited catalogue. LRGs were isolated from the photometric catalogue

of the Sloan Digital Sky Survey to probe a larger volume of the Universe than that

reached by the original flux limited survey (Eisenstein et al., 2001). The argument

here is that the LRGs should be strongly biased tracers of the underlying dark

matter, because they are bright galaxies, thereby boosting the signal-to-noise of the

clustering measurement for a fixed number density of targets (Feldman et al., 1994).

Similar strategies were devised to map the large-scale structure of the Universe out

to z ∼ 1 using galaxies with strong emission lines (ELGs) (Drinkwater et al., 2010).

Recently, Ruggeri & Blake (2019) re-analysed the data from the 6dFGS, WiggleZ,

BOSS and eBOSS galaxy surveys to study how assumptions about the errors and

sample variance affect the recovery of the BAO scale.

Characterising how the BAO signal varies between different galaxy populations

is also important for understanding systematic biases in the position of the BAO

peak. For example, overdense regions contract, pulling the BAO peak inwards,

while underdense regions expand, pushing the BAO peak to larger scales (Sherwin

& Zaldarriaga, 2012; Neyrinck et al., 2018). Different galaxy populations sample the

underlying density field differently and thus the size of this effect can vary between

galaxy populations (e.g. Angulo et al., 2008; McCullagh et al., 2013; Achitouv &

Blake, 2015). Such systematic effects are small, but nonetheless are important for

current and future precision measurements. To a first approximation, this effect,

as well as the smearing of the BAO peak, is captured by “BAO reconstruction”

techniques, such at those based on Lagrangian linear theory (e.g. Eisenstein et al.,

2007b; Padmanabhan et al., 2012) and the more recent non-linear reconstruction

techniques (e.g. Ata et al., 2015; Zhu et al., 2017; Hada & Eisenstein, 2018; Shi
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et al., 2018; Birkin et al., 2019; Jasche & Lavaux, 2019). However, these methods

are rather involved and it remains to be understood if they fully account for the

BAO systematics present in different galaxy samples. This is why here we study the

BAO signal in the galaxy distribution without applying a BAO reconstruction step.

To address the question of what is the best way to measure BAO, we use a mock

catalogue built by implementing a technique based on halo occupation distribution

modelling into one of the largest N-body simulations ever run, the Millennium-XXL

(Angulo et al., 2012; Smith et al., 2017). We test how well the BAO scale can be

constrained for galaxy samples selected in different ways using a power spectrum

analysis. Our goal is to establish how the strength of the BAO feature, and thus the

accuracy with which the BAO scale can be measured, depends on galaxy properties

such as brightness, colour and local density. In particular, we investigate what are

the best ways to select galaxies such that we optimise the BAO measurement for

future spectroscopic surveys. The results of our study can inform the survey strategy

of upcoming projects.

The Chapter is organised as follows: In Section 5.2, we describe the construction

of the galaxy catalogue and the theoretical BAO model. In Sec. 5.3, we show the

results of the power spectrum fitting and a description of the galaxy-halo connection

of the galaxy samples. Finally, the summary the Chapter is given in Sec. 5.4.

5.2 Galaxy samples and methodology

5.2.1 Galaxy catalogue

We build the galaxy mock catalogue using the Millennium-XXL (MXXL) dark mat-

ter only N-body simulation output at z = 0.11 (Angulo et al., 2012). The redshift

of the MXXL snapshot is consistent with the median redshift of the SDSS Main

Galaxy Sample (SDSS MGS; Strauss et al., 2002; Ross et al., 2015). The MXXL

simulation covers a comoving volume of (3000 h−1Mpc)3 and contains 67203 parti-

cles of mass 6.17 × 109 h−1M�. The cosmological parameter values adopted in the

MXXL simulation are the same as those used in the original Millennium simulation

(Springel et al., 2005) and are consistent with the WMAP-1 mission results (Spergel
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et al., 2003): Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9 , h = 0.73, and ns = 1. The large

volume of the simulation makes it ideal to study BAO.

The construction of the mock galaxy catalogue uses the halo occupation distri-

bution (HOD) method presented by Smith et al. (2017, which is based on Skibba

et al. 2006 and Skibba & Sheth 2009). This method uses a set of HODs constrained

using clustering measurements from the Sloan Digital Sky Survey (SDSS), for differ-

ent volume limited samples, defined using r-band absolute magnitude cuts (Zehavi

et al., 2011). These HODs are used to populate dark matter haloes in the simula-

tion, which are identified using the subfind algorithm (Springel et al., 2001). We

use M200m as the halo mass definition, which corresponds to the mass enclosed by a

sphere in which the average density is 200 times the mean density of the universe.

Interpolating between the HODs for different magnitude limits allows each object to

be assigned a magnitude, but a modification is made to the functional form of the

5-parameter HOD model to prevent the unphysical crossing of HODs for different

luminosity cuts. We denote absolute magnitudes as 0.1Mr − 5 log10 h, where the su-

perscript 0.1 indicates that this filter has been k-corrected to redshift 0.1, which is

close to the median redshift of the main SDSS sample. The HODs are also evolved

with redshift to reproduce the luminosity function measured from the SDSS at low

redshifts, and the luminosity function of the GAMA survey at higher redshifts (see

Smith et al. for references). Each object is also assigned a 0.1(g − r) colour, using

a parametrisation of the colour-magnitude diagram. Following Smith et al. (2017),

the red and blue sequences of the colour-magnitude diagram are parametrised as two

Gaussians with a mean and rms that are linear functions of magnitude. A galaxy

is randomly chosen to be red or blue, then a colour is drawn from the appropriate

Gaussian.

In Smith et al. (2017), the HOD methodology outlined above was used to

populate a halo lightcone. Here, instead of using a lightcone, we use the sim-

ulation output at z = 0.11. The parent galaxy catalogue has a number den-

sity of ng = 7.5 × 10−3 h3 Mpc−3, giving 201 million galaxies in the MXXL vol-

ume, which corresponds to retaining galaxies brighter than a magnitude cut of

0.1Mr − 5log10h = −20.
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Figure 5.1: Left panel: r-band cumulative luminosity function of the parent galaxy

catalogue at z = 0.11. The horizontal blue line indicates the number density of

the full sample, n = 10−3h3 Mpc−3, which corresponds to retaining galaxies brighter

than a magnitude cut of 0.1Mr − 5 log10 h = −21.08. Right panel: Halo occupation

distribution of the full sample. The occupation functions of all, central and satellite

galaxies are shown as solid, dashed and dotted lines, as specified in the legend.

The left panel of Fig. 5.1 shows the cumulative r-band luminosity function of the

parent galaxy catalogue. The horizontal blue line shows a cut in number density of

n = 1× 10−3 h3 Mpc−3. We will refer to this as the “full sample”. The HOD of the

full sample is shown in the right panel of Fig. 5.1. We can see that the shape of the

HOD, by construction, follows the standard functional form proposed by Zheng et al.

(2005), where the mean number of central galaxies per halo reaches unity above a

threshold halo mass (i.e. every halo above this mass contains a central galaxy) and

the occupation of satellite galaxies follows a power-law in massive haloes.

Here we study the clustering of galaxies ranked by environment (density), lu-

minosity and colour. We divide the full sample into four equal parts, i.e., each

subsample has the same number density nQ = 2.5× 10−4 h3 Mpc−3.

Selection of samples

We first select galaxies by luminosity, retaining those which satisfy cuts in magni-

tude. The vertical lines in the left panel of Fig. 5.2 show the magnitude bins used

to define the luminosity quartiles: the Q1 subsample corresponds to the brightest 25

per cent of galaxies while Q4 is the subsample with the 25 per cent faintest galaxies.
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Figure 5.2: Selection cuts applied to the full sample to get subsamples defined by

magnitude, colour or density. Left panel: Colour-magnitude diagram for the full

sample. Lines of different colour show the cuts in magnitude (vertical dashed lines)

and colour (horizontal solid lines) applied to divide the sample into either luminosity

or colour subsamples. Right panel: Cumulative distribution of the distance to the

10th nearest neighbour (d10th); vertical dashed lines show the cuts applied to the full

sample to define density quartiles.

We next apply the colour cuts listed in Table 5.1 to define the colour subsamples,

shown by the horizontal lines in the left panel of Fig. 5.2, where Q1 is the subsample

with the 25 per cent reddest galaxies and Q4 contains the 25 per cent bluest galax-

ies. Finally, to define samples by environment we apply a cut in local density. The

local density is estimated using the distance to the 10th nearest neighbour, d10th,

and the galaxies are ranked by this property. The right panel of Fig. 5.2 shows the

cumulative distribution function of d10th where the vertical dotted lines show the

quartiles. The first quartile of the sample (Q1) contains the 25 per cent of galaxies

in the densest environments (i.e. those with the smallest values of d10th) and Q4 is

the subsample with the 25 per cent of the galaxies in the least-dense environments.

Q2 and Q3 are the subsamples in intermediate density regions. The values of d10th

used to define the density samples are listed in Table 5.1.

The left panels of Fig. 5.3 display the real-space power spectrum measured from

galaxy samples ranked by magnitude (top), colour (middle) and density (bottom) as

listed in Table 5.1. The black points in each panel correspond to the power spectrum

of the full galaxy sample, in which we can clearly see the BAO wiggles in Fourier
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Table 5.1: The selection cuts applied to define galaxy subsamples in terms of lumi-

nosity (0.1Mr − 5log10h), colour (0.1(g − r)) or density (d10th/ h
−1Mpc).

0.1Mr − 5log10h

full Q1 Q2 Q3 Q4

bright limit -23.70 -23.70 -21.52 -21.32 -21.18

faint limit -21.08 -21.53 -21.33 -21.19 -21.08

0.1(g − r)
full Q1 Q2 Q3 Q4

blue limit 0.21 1.00 0.94 0.83 0.21

red limit 1.28 1.28 0.99 0.93 0.82

d10th/ h
−1Mpc

full Q1 Q2 Q3 Q4

most dense 0.26 0.26 8.26 10.54 13.04

least dense 33.95 8.25 10.53 13.03 33.95
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Figure 5.3: The measured power spectrum, P (k) (left column), and the galaxy bias,

b(k) =
√
Pg(k)/Pm(k) (right column), of the four subsamples for each galaxy selec-

tion: magnitude (upper panels), colour (middle panels) and density (lower panels).

Different colours represent different subsamples as labelled: red (Q1), green (Q2),

magenta (Q3) and blue (Q4). In each panel we show the measured power spectrum

(left) and galaxy bias (right) from the full sample (black solid points) for comparison.

Note that the y-axis range plotted is different in each panel.
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space.

It is evident when comparing measurements across different selections that the

Q1 subsamples (i.e. the brightest, reddest and densest galaxies) shown in Fig. 5.3 are

more clustered and therefore show a higher galaxy bias than the overall sample. It is

interesting to see that the magnitude subsample Q2 (green solid line in the top-left

panel) and the colour subsample Q3 (magenta solid line in the middle-left panel)

have almost the same clustering amplitude as the full sample. The BAO peaks

measured from the densest subsample are significantly stronger than those seen in

the measurements made from the other samples (note the y-axis range plotted is

different in each panel). The BAO peaks are barely visible for the least dense sample

(Q4, bottom-left panel).

The right column of Fig. 5.3 shows the galaxy bias for every subsample. The

bias is obtained as

b(k) =

√
Pg(k)

Pm(k)
, (5.2.1)

where Pg(k) is the measured galaxy power spectrum for each subsample (the same as

shown in the left panels of Fig. 5.3) and Pm(k) is the non-linear dark matter power

spectrum at z = 0.11. We can see that the galaxy bias inferred for each subsample is

constant on large scales (k . 0.1hMpc−1). The scale dependence becomes evident

at higher wavenumbers, with the bias increasing (e.g. for the reddest, densest and

brightest subsamples) and decreasing for the bluest and faintest subsamples. The

scale dependence of the bias is particularly strong for the subsamples defined by

local density.

In Fig. 5.4 we show the two-point correlation function on scales around r ∼
100h−1Mpc that correspond to the location of the BAO peak. The figure shows

the two-point correlation for the full sample of galaxies (black line) as well as for

the density-selected quartiles. Similar trends are observed for the magnitude- and

colour-selected subsamples, which, for brevity, we do not show. As expected from our

power spectrum results, the Q1 density-subsample displays the strongest clustering,

i.e. galaxies in the densest regions are more likely to reside in more massive haloes,

which are more biased, and hence we measure a higher clustering amplitude for this

subsample. The BAO wiggles are clearer for this sample in the power spectrum
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Figure 5.4: The correlation function of the galaxy samples defined by density, plotted

as r2ξ(r), on a linear-linear scale. The black line shows the correlation function

measured for the full galaxy sample and the coloured lines show the clustering for

the subsample quartiles ranked by density, as labelled.

and the BAO peak is stronger in the correlation function (see bottom-left panel

of Fig. 5.3 and Fig. 5.4). We also note that non-linear effects are more evident in

the densest sample on small-scales. There is an increase in the power for scales

k > 0.15hMpc−1, and a steeper slope in the correlation function at r < 70h−1Mpc

(Fig. 5.4). We note that the BAO feature is slightly shifted to smaller scales in the

highest density subsample, i.e. the position of the peak is moved to higher k values

in the power spectrum and to lower r values in the correlation function (as predicted

by Neyrinck et al., 2018).

5.2.2 BAO model

Here, we measure the BAO scale in the power spectrum of galaxies. To do this, we

follow a similar approach to that presented by Ross et al. (2015, see also Eisenstein

et al. 2007a). We start by modelling the power spectrum as the product of a smooth

component and the BAO signal. That is, we write the model power spectrum, Pfit(k),

as

Pfit(k) = Psm(k)Odamp(k/α) , (5.2.2)
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where Psm(k) is a smooth power spectrum, i.e., without any BAO feature, and

Odamp(k/α) represents the damped BAO signal. The damping factor is parametrised

in terms of the α dilation parameter that characterises any shift in the position of

the BAO peak in the measured power spectrum compared to the model; if α > 1

the peak is moved to smaller scales, while α < 1 moves the peak to larger scales

(Angulo et al., 2008; Anderson et al., 2014; Ross et al., 2015). This template can be

used to analyse the galaxy power spectrum in both real and redshift space.

We model the smooth power spectrum component as

Psm(k) = B2
pPnw(k) + A1k + A2 +

A3

k
, (5.2.3)

where Pnw(k) is a smooth “no-wiggle” template obtained using the fitting formula

of Eisenstein & Hu (1998), Bp is a large-scale bias parameter, and A1, A2 and A3

are further free parameters. This functional form is similar to that used by Ross

et al. (2015), however with fewer (4 instead of 6) free parameters. We find that this

function provides a very good description of the non-linear galaxy power spectrum

down to k = 0.3hMpc−1.

The oscillatory component of the power spectrum is given by,

Odamp(k) = 1 + (Olin(k)− 1) e−
1
2
k2Σ2

nl , (5.2.4)

where Σnl is a damping parameter and Olin(k) is the ratio between the linear power

spectrum and the smooth no-wiggle power spectrum, i.e. Plin(k)/Pnw(k).

We estimate the analytical power spectrum with the Nbodykit toolkit (Hand

et al., 2018), using the class transfer function for the linear power spectrum (Blas

et al., 2011; Lesgourgues, 2011) and the analytical approximation of Eisenstein &

Hu (1998) for the no-wiggle power spectrum in Eqs. (5.2.3) and (5.2.4). We also

use Nbodykit to measure the power spectrum from the simulation outputs for

wavenumbers between 0.0025 < k/[hMpc−1] < 0.3 using bins with width ∆k =

0.005hMpc−1.

To measure the position of the BAO peak, we fit the measured real-space power

spectrum of our subsamples to the model given by Eq. (5.2.2) and extract infor-

mation about the dilation parameter α. To obtain the best-fitting α value, we use



5.3. Galaxy clustering 120

Bayesian statistics and maximise the likelihood, L ∝ exp(−χ2/2) by fitting the mea-

surements from the galaxy samples on scales with k < 0.3hMpc−1. We estimate

errors on the measurements using 8 jackknife partitions along each coordinate of

the simulation box (Norberg et al., 2009). To find the best-fitting α value and its

confidence levels we use the Monte Carlo Markov Chain technique implemented in

the emcee python package (Foreman-Mackey et al., 2013).

For the density-selected samples, the measured power spectrum cannot be ade-

quately described by Eq. (5.2.3). We reduce the scale dependence of the measured

power spectrum by defining a k-space window flattening function, Bk−window(k),

which is the ratio between the power spectrum measured for one of the density

quartile samples, divided by the power spectrum of the full sample. A similar ap-

proach was employed in Angulo et al. (2008). In this exercise, the two power spectra

in question are first rebinned into broader k-bins (∆k = 0.1hMpc−1) before taking

the ratio. The measured power spectrum is then divided by the flattening function,

Bk−window(k), before being fitted. The window width is chosen to be larger than the

scale of the BAO oscillations, and thus should be largely insensitive to the presence

of the BAO signal. We have tested that this procedure does not introduce biases in

α or in its uncertainties by testing that the luminosity- and colour-selected quartiles

return the same α best fit values when fitting directly the sub-sample power spec-

trum or the one normalised using the flattening function we just discussed. Since,

Bk−window(k) is only used for the measured power spectrum of the density-selected

samples, the fitting template Eq. (5.2.3) remains unchanged.

5.3 Galaxy clustering

5.3.1 Measuring BAO positions

In the left panel of Fig. 5.5 we show the power spectrum measured from the full

galaxy sample compared to the best-fitting model. One can see that the model

described by Eqs. (5.2.2)-(5.2.4) provides a good match to the measurements from

the mock catalogue. The right panel of Fig. 5.5 displays the measured and best-

fitting power spectra divided by the smooth component, Pnw(k), of the best-fitting
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Figure 5.5: Left panel: The measured power spectrum, P (k), (points with error-

bars) and the best-fitting model (solid curve) for the full galaxy sample. Right

panel: The same as the left panel but now the power spectrum is plotted divided by

the smooth (no-wiggle) component of the best-fitting model. This panel highlights

the BAO signature, which corresponds to the oscillations of the curve. The upper

label in the right panel indicates how accurately we can measure the BAO scale, as

parametrised in terms of the α dilation parameters (see main text for details).

model. We recover an unbiased estimate of the BAO position, with α = 1.003±0.003

(these figures correspond to the maximum likelihood value and 68 per cent confidence

interval), that is consistent at the 1σ-level with the expected value of α = 1. Small

differences in the value of α from unity are not necessarily worrying since they could

indicate a small mismatch between the formulation of the power spectrum used to

imprint the BAO feature onto the initial conditions of the simulation and the BAO

templates used to extract this signature. Recall that all cosmological parameters

are fixed for Plin(k) and Pnw(k) in Eqs. (5.2.2)-(5.2.4). The best-fitting model is

characterised by a reduced chi-square value, χ2/dof = 1.15, which indicates that

our model gives a good description of the galaxy power spectrum. The quality of

the fit is most clearly illustrated in the right panel of Fig. 5.5, which also clearly

highlights the BAO wiggles. In particular, we can see up to four maxima located

at k/(hMpc−1) ≈ 0.065, 0.13, 0.185 and 0.24. For the rest of the Chapter, we will

compare the BAO position measured in the various galaxy subsamples against this

reference value.

In Fig. 5.6 we show the results of fitting the BAO template, Eq. (5.2.2), to
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Figure 5.6: The measured power spectrum, P (k), (points with error bars) and the

best-fitting model (solid curves) divided by the smooth (no-wiggle) power spectrum

for magnitude (left column), colour (middle column) and density (right column) cuts.

Each row shows a different subsample as specified in the bottom-left corner of each

panel. The strength of the BAO feature for each panel can be inferred from the

uncertainties associated with the determination of the α dilation parameter (the

maximum likelihood value and 68% confidence interval of α are given in the top-

right corner of each panel).
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the various luminosity-, colour- and density-selected galaxy subsamples described in

Section 5.2.1. To better highlight the quality of the fits and the changes in the BAO

signature between the various subsamples, we show the power spectrum divided by

the smooth component of the best-fitting model (see Eq. 5.2.3).

We find that all the magnitude- and colour-selected subsamples show the same

BAO features, with little variation between the different subsamples. Considering

the best-fitting α parameters, we find that most values are in good agreement, given

the quoted interval, with the value measured for the full sample of α = 1.003±0.003.

There is potentially a very weak trend, such that fainter or bluer galaxies have

slightly lower α values than their brighter or redder counterparts, but this trend is

very small and we would need much larger galaxy samples to be able to confirm

it. The only significant difference between the various quartiles is that the BAO

signature is weaker for the Q4 samples, i.e. the faintest or bluest galaxies. This can

be seen in the actual power spectrum (the fourth BAO wiggle is weaker for Q4 than

in the other subsamples) and is best quantified by the uncertainty associated with

the α measurement: the Q4 sample has an error on α of 0.6% versus the errors of

0.4% associated with the other quartiles. We also find that despite having four times

fewer objects than the full sample, the α uncertainty ranges estimated for the Q1

to Q3 quartiles are only slightly larger than for the full sample (0.4% versus 0.3%).

This means that the various quartiles are highly correlated and that increasing the

sample size by a factor of four does not reduce the errors by half, as expected in the

case of independently and Gaussianly distributed measurements.

The right column of Fig. 5.6 shows how the BAO signal varies for the four density-

selected galaxy subsamples. Compared to the other two selection methods just

discussed, we find that the density selection leads to much larger differences in the

BAO signature compared to the full galaxy sample as well as between the different

density quartiles. Firstly, we see that fewer BAO wiggles can be distinguished,

for example the lowest density sample (Q4) has one weak maximum, the Q1 and

Q3 samples have two maxima, and Q2 has three maxima. This is quite a striking

difference, since in the full sample we clearly find four maxima (see right-hand

panel in Fig. 5.5). The smaller number of BAO wiggles for the highest density
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Figure 5.7: The maximum likelihood value and 68% confidence interval associated

with the determination of the BAO dilation parameter, α. The horizontal solid line

and the associated shaded region show the result for the full galaxy sample. The

points with error bars show the results for the quartiles of the galaxy populations

ranked according to: luminosity (circles), colour (squares) and density (diamonds).

The Q1 subsamples corresponds to the brightest / reddest / densest galaxies, while

the Q4 subsamples correspond to the faintest / bluest / least dense galaxies.

quartile, Q1, could be due to these galaxies residing in higher density regions where

structure formation proceeds more rapidly and thus where non-linear effects, which

dampen the BAO feature, are more pronounced. The result that the lowest density

quartile, Q4, has only one BAO wiggle is more surprising, since, structure formation

is somewhat delayed in lower density regions and thus more of the initial BAO

signature should be preserved. However, we find that this is not the case. This

could be due to a combination of how galaxies are placed in haloes through the

HOD scheme and the density definition we are using. We will explore in more detail

the HOD of each subsample in the following subsection.

The degradation in the BAO signal for the density-selected galaxy subsamples is

best highlighted by comparing the uncertainties in determining α using the various

quartiles. We find that the error is lowest for Q2 (0.5%) and only slightly higher for

Q1 (0.7%), and increases dramatically for the lower density quartiles: 1.3% and 2.5%

respectively for Q3 and Q4. Thus galaxies in intermediate-density environments (i.e.
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the Q2 quartile) are a better target to measure the BAO feature than those in the

densest regions or least dense regions. Furthermore, the uncertainty in determining

α in the Q2 quartile is slightly larger than those associated with the luminosity-

and colour-selected samples, indicating that selecting a galaxy subsample based on

local density does not lead to a more precise BAO measurement than using colour

or luminosity. In particular, the Q1 and Q2 density-quartiles have larger bias than

the other luminosity- and colour-selected subsamples (see right column of Fig. 5.3),

implying that a sample with larger bias does not necessarily lead to a more precise

determination of the BAO scale.

Another important result for the density-selected quartiles is that the α param-

eter systematically decreases with density. This is best illustrated in Fig. 5.7, which

shows the maximum likelihood values and the 68% confidence intervals on the deter-

mination of α for the various galaxy subsamples studied here. For the luminosity-

and colour-selected quartiles the α value is approximately the same and in good

agreement with the measurement obtained using the full galaxy sample. In con-

trast, the density-selected quartiles show a statistically significant trend that is in

agreement with our expectations (see e.g. Sherwin & Zaldarriaga, 2012; Neyrinck

et al., 2018): the BAO peak is shifted to smaller scales (i.e. larger α) for the densest

quartile and to larger scales for the two least dense quartiles.

5.3.2 Halo occupation distribution

To further investigate and understand the differences between the clustering results

for different galaxy selections, we explore the halo occupation distribution in each

subsample in the left column of Fig. 5.8. In each case, we plot the contribution of

central galaxies (dashed lines), satellite galaxies (dotted lines) and the total mean

number of galaxies per halo (solid lines), which is the sum of centrals and satellites.

The HOD of the full sample is displayed by the black curves, while the contribution

of different subsamples is shown by the red (Q1), green (Q2), magenta (Q3) and blue

(Q4) curves in each panel.

The HOD of magnitude-selected galaxies is shown in the top left panel of Fig. 5.8.

We note that the HOD of the brightest galaxy quartile, Q1, is composed of galaxies
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Figure 5.8: Left column: Halo occupation distribution for the galaxy quartiles, Qi,

selected according to: magnitude (top panel), colour (middle panel) and density

(bottom panel). In each panel we show the HOD of the full sample (black lines)

for comparison. The occupation of total, central and satellite galaxies are shown as

solid, dashed and dotted lines, respectively, as specified in the legend. Right column:

The number density of central (dashed lines), satellite (dotted lines) and total (solid

lines) galaxies for each selection and subsample obtained by multiplying the HOD

by the differential halo mass function of the MXXL snapshot at z = 0.11, in the case

of the full sample we have divided the distribution by four for better visualisation.

Different colours represent different subsamples: red lines (Q1), green lines (Q2),

magenta lines (Q3) and blue lines (Q4).
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that predominantly populate the most massive haloes, i.e., Q1 contains all the central

galaxies of haloes with M200m > 1014 h−1M� and also the majority of the satellites

found in these haloes. The fainter samples are composed of central galaxies in lower

mass haloes and of satellite galaxies in high mass haloes. In particular, the mean

number of satellites as a function of halo mass is roughly the same in the Q2, Q3

and Q4 quartiles, showing only a weak dependence on galaxy luminosity.

In the case of the HOD of galaxies ranked by colour (middle-left panel of Fig. 5.8),

we find a non-standard form for the mean number of central galaxies. For low halo

masses, M200m < 1013.4 h−1M�, there is a plateau at 〈Nc〉 ∼ 0.25 for all quartiles.

Interestingly, 〈Nc〉 stays constant with increasing halo mass for the Q2 sample;

for the Q3 and Q4 samples, the mean fraction of haloes with centrals declines for

M200m > 1013.5 h−1M�, and increases with halo mass for Q1. For satellites, we

find similar 〈Ns〉 values for the Q1, Q2 and Q3 quartiles, with only a weak trend

with galaxy colour. In contrast, the bluest quartile contains a significantly lower

mean satellite number for a given host halo mass. We note that the HOD of the

Q2 quartile has the same shape as the full sample but with mean values that are

four times smaller; this might explain why this the BAO features measured for

this sample best resemble those of the full galaxy population. In contrast, the Q4

quartile preferentially contains galaxies in low mass haloes (see middle-right panel

of Fig. 5.8), and has the weakest BAO signature.

The bottom-left panel of Fig. 5.8 shows the HOD of density-selected galaxy

quartiles. We see that the densest subsample (Q1) contains almost all the satellite

galaxies, as well as all the central galaxies that live in haloes more massive than

log10(M200m/ h
−1M�) = 14.6. Thus, a large fraction of Q1 galaxies are in clusters

and other highly overdense regions, whose gravity pulls in the surrounding matter,

which explains why the BAO peak is shifted towards smaller scales for this sample.

We see that the Q2 sample contains no galaxies (centrals and satellites) which reside

in haloes of mass log10(M200m/ h
−1M�) > 14.9, and the distribution peaks at a total

mean occupation number of almost one at log10(M200m/ h
−1M�) = 14.4. In this

subsample, galaxies are selected from intermediate-density regions, explaining the

lack of galaxies in clusters. The Q3 and Q4 subsamples contain galaxies that populate
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low-mass haloes (log10(M200m/ h
−1M�) ≈ 12.5−13.5) and are dominated by central

galaxies. In these cases we can see that the fraction of satellite galaxies is small.

These low-mass haloes represent small density peaks in the dark matter distribution,

and typically live in regions like filaments and voids; these samples display a weak

BAO signal, and the position of the peak is shifted to larger scales (we can see from

the lower-left panel of Fig. 5.3 and Fig. 5.4 that the BAO signal in the Q4 subsample

is hard to discern).

The right panels of Fig. 5.8 show the number density of galaxies (in units of

10−5h3Mpc−3) as a function of their host halo mass for the three selections: magni-

tude (top panel), colour (middle panel) and density (bottom panel), in all panels we

show the distribution of galaxies for the full sample divided by four for comparison.

The results presented in these panels confirm our findings from the HOD of the

different selections. As an example, in magnitude-selected galaxies we can observe

a trend in their distribution (top panel of right column in Fig. 5.8), i.e., we can find

more of the faintest (brightest) galaxies in low-(high-)mass haloes. In the case of

colour-selected galaxies, the distribution of galaxies remains almost unchanged for

the Q1, Q2 and Q3 samples; the bluest sample (Q4) predominantly populate haloes

with mass log10(M200m/ h
−1M�) ≈ 12.7. The bottom-right panel of Fig. 5.8 shows

the distribution of galaxies ranked by environment, we can see that galaxies from

low-density to intermediate-density regions reside in low-mass haloes, while galaxies

in the densest environments are found in high-mass haloes.

5.4 Summary

In this Chapter, we have studied the clustering and the position of the BAO feature

for subsamples of mock galaxies ranked by density (defined by the distance to 10th

nearest neighbour), luminosity (r-band magnitude) and 0.1(g − r) colour.

We have used a magnitude-limited, 0.1Mr − 5log10h < −21.08, mock catalogue

at redshift z = 0.11, obtained from the Millennium-XXL N-body simulation (Smith

et al., 2017). This corresponds to a galaxy number density of n = 1×10−3 h3 Mpc−3

that, given the large volume of the simulation, includes a total of 27 million galaxies.
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We split the full sample into four subsamples (Q1, Q2, Q3 and Q4), defined in

different ways (see below) with a corresponding number density of one quarter of

the full sample (nQ = 2.5×10−4 h3 Mpc−3) by applying cuts according to the galaxy

property of interest (see Sec. 5.2.1). The subsamples are defined as follows, 1)

magnitude: from brightest to faintest galaxies, 2) colour: from reddest to bluest

galaxies and 3) density: from high- to low-density regions. We confirmed that the

galaxy bias of each subsample is constant on linear scales, k . 0.1hMpc−1. We have

measured the power spectrum of each subsample and fit it to an analytical BAO

template to extract the position of the BAO peak through the dilation parameter,

α (see Eq. 5.2.2).

We have found that the best-fitting value of α for the full sample is α = 1.003±
0.003 and in each subsample the best sample to extract the BAO peak position is,

1) magnitude: Q1 with α = 1.003 ± 0.004, 2) colour: Q2 with α = 1.003 ± 0.004

and 3) density: Q2 with α = 0.998 ± 0.005. In general, all measurements for the

luminosity- and colour-selected galaxy subsamples are in good agreement with the

reference value of the full sample. However, for density-selected galaxies, the Q1,

Q3 and Q4 quartiles recover poorly the position of the peak and are characterised

by large uncertainties in the recovered BAO scale.

We have studied the HOD of each subsample to understand what are the host

haloes corresponding to various galaxy selections and how this affects the BAO signal

measurement. The luminosity- and colour-selected samples have broadly similar

HODs, with the most important differences being: i) the brightest quartile consists

of mostly galaxies in the most massive haloes, and ii) the bluest quartile contains

few galaxies in high mass haloes, with most objects residing in lower mass hosts.

The density-selected quartiles show the largest difference in HOD distributions: the

densest quartile contains all the central and satellite galaxies of high-mass haloes,

while the lowest density quartile consists of galaxies which are predominantly in

low-mass haloes.

Our main results can be summarised as follows,

• The magnitude- and colour-selected samples have unbiased BAO signatures,

i.e. the α dilation parameter is consistent with that of the full galaxy popu-
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lation, and the uncertainties with which the BAO peak can be measured are

roughly the same for all the subsamples. The only exceptions are the faintest

or the bluest quartiles, which have a ∼ 50 per cent times larger error on α

than the other subsamples. Note that for an equal number density of tracers

there is a small increase in the precision of the BAO measurement if we were

to select only the reddest galaxies, but the effect is minor.

• The density selected samples show several interesting effects. Firstly, the re-

covery of α is biased between the different quartiles: densest galaxies have

α > 1, while the lowest density ones have α < 1. Secondly, the α uncertainties

are lowest for the Q1 and Q2 quartiles, while the Q3 and Q4 samples provide

much poorer BAO constraints.

• Selecting galaxies by density does not improve the BAO measurements com-

pared to a similar number density sample selected by either magnitude or

colour.

• However, selecting galaxies by density shows the systematic shift in the BAO

position expected for galaxies in overdense and underdense regions, as dis-

cussed in Neyrinck et al. (2018). High density peaks lead to a contraction

of the peak to smaller radii (i.e. larger α), while low density region show an

expansion of the BAO feature to larger radii (i.e. smaller α).

We have found that selecting galaxies by either luminosity or colour does not

introduce any systematic biases in the BAO signal. Such effects may have been

expected since galaxies show both a luminosity and colour segregation depending

on their host halo mass, with brighter or redder galaxies preferentially populating

the more massive haloes. The most massive haloes are mainly found in higher

density regions, and thus potentially could be characterised by a contraction of the

BAO peak at their position. If such a contraction exist, its size would be below the

current uncertainties of this study, in which we have determined the BAO dilation

parameter, α, with a precision . 0.4%.



Chapter 6

Building a digital twin of a

luminous red galaxy spectroscopic

survey: galaxy properties and

clustering covariance

6.1 Introduction

Luminous red galaxies (LRGs) have played an important role in the study of the

large-scale structure of the Universe. As expected from their bright intrinsic lumi-

nosity and large stellar masses, LRGs display a strong clustering signal that make

them an ideal tracer of the large-scale structure of the Universe (Zehavi et al., 2005).

LRGs were used to extract the scale of the baryon acoustic oscillations (BAO) in the

local large-scale structure from the Sloan Digital Sky Survey (SDSS) redshift-space

correlation function (Eisenstein et al., 2005). LRGs have also been used to study the

impact of redshift-space distortions (RSDs) on their small and large scale clustering

(see e.g. Zehavi et al., 2005; Cabre & Gaztanaga, 2009a,b; Wake et al., 2008; Crocce

et al., 2011; Samushia et al., 2012). Additionally, the large-scale clustering of LRGs

has also been used to constrain the cosmological parameters (Eisenstein et al., 2005;

Tegmark et al., 2006; Sánchez et al., 2009; Tröster et al., 2020), and to test modified

gravity models (see e.g., Barreira et al., 2016; Hernández-Aguayo et al., 2019).
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Our aim here is to provide a qualitative study of the properties and clustering

of LRGs which meet the selection requirements of a real survey such as DESI (see

Sec. 1.4 for a brief description of DESI). We select DESI-like LRGs from the output

of the semi-analytic model (SAM) of galaxy formation Galform (Cole et al., 2000)

run on the Planck-Millennium N-body simulation (Baugh et al., 2019), and provide

estimates of the large-scale galaxy clustering using the glam code, which allows

us to generate a substantial number of large galaxy mock catalogues (Klypin &

Prada, 2018). This hybrid approach takes the SAM calculations made using a high-

resolution, moderate volume N-body simulation and uses the results to populate a

large number (O(103)) of larger volume low-resolution simulations run with glam.

This allows us to make predictions for the large-scale clustering of LRGs on scales,

such as the BAO scale, that were inaccessible in the simulation used to run the SAM.

Furthermore, by being able to generate a large number of independent realisations of

the density field at relatively low computational cost, we can estimate the covariance

on two-point statistics of the large-scale structure.

The use of SAMs to study the properties and clustering of LRGs is not new.

Almeida et al. (2007, 2008) presented predictions for the abundance, structural and

photometric properties of LRGs using two earlier versions of Galform (Baugh

et al., 2005; Bower et al., 2006). The authors found that their predictions were in

good agreement with different observations from the SDSS (Bernardi et al., 2003,

2005; Wake et al., 2006). More recently, Stoppacher et al. (2019) used the Galacti-

cus SAM (Benson, 2012) run on the MultiDark Planck 2 simulation (Klypin et al.,

2016) to study the galaxy-halo connection and clustering of the BOSS-CMASS DR12

sample (Alam et al., 2015), finding good agreement between predictions and obser-

vations.

Recently, Zhou et al. (2020) presented small-scale (r . 20h−1Mpc) clustering

measurements of DESI-like LRGs selected from the DESI Legacy Imaging Surveys1

(Dey et al., 2019) and fitted their results using the halo occupation distribution

(HOD) framework. Since spectroscopic redshifts are not yet available for these tar-

1http://www.legacysurvey.org
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gets, these authors estimated photometric redshifts (photo-z) using the Dark Energy

Camera Legacy Survey (DECaLS) imaging. There are a number of differences be-

tween the work carried out by Zhou et al. (2020) and ours: first, we are interested in

providing a study of the impact of the DESI-LRG target selection on galaxy prop-

erties and the galaxy-halo connection using a physical model of galaxy formation,

Galform; and second, we focus on the large-scale galaxy clustering and in the

generation of a large number of mock catalogues to provide an accurate estimate of

the covariance of the clustering measurements. Both of these objectives are beyond

the reach of the original simulation used to run the SAM and mark a key advantage

of our hybrid approach.

In order to extract the cosmological information from our glam mock catalogues

for the DESI LRG tracers, it is necessary to meet the requirements of the expected

error budget for DESI. Hence, it is imperative to construct covariance matrices for

our clustering measurements (see e.g. Baumgarten & Chuang, 2018; Blot et al.,

2019; Colavincenzo et al., 2019; Lippich et al., 2019, and references therein). Here,

we make predictions of the linear-growth rate through a linear theory description of

RSDs (Kaiser, 1987; Hamilton, 1992), and an isotropic analysis of the BAO scale (see

e.g., Anderson et al., 2014) in configuration and Fourier space using the covariance

matrices constructed from our glam catalogues.

The outline of the Chapter is as follows. In Section 6.2 we present the simulations

used in our analysis. Section 6.3 describes the selection of DESI-like LRGs from

Galform. In Section 6.4 we provide a detailed study of the galaxy-halo connection

of DESI-like LRGs. Our results for the galaxy clustering and covariance errors are

presented in Section 6.5. Finally, in Section 6.6 we give the summary of our results.

6.2 Simulations and Galaxy formation in semi-

analytical models

Here we introduce the Planck Millennium N-body simulation and the galaxy forma-

tion model (Sec. 6.2.1). The glam simulations are described in Section 6.2.2. In

Section 6.2.3 we show the halo mass function and halo clustering of our simulations.
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6.2.1 Galaxy formation in the Planck Millennium simula-

tion

The Planck Millennium N-body simulation (hereafter the Pmill simulation; Baugh

et al., 2019) follows the evolution of 50403 dark matter particles in a cosmological

volume of 542.163 h−3Mpc3 (8003Mpc3). The simulation was run using a reduced

memory version of the Gadget-2 N-body code (Springel, 2005), employing the

cosmological parameters corresponding to the 2014 results from the Planck collab-

oration (Ade et al., 2014):

{Ωb,Ωm, h, ns, σ8} = {0.04825, 0.307, 0.6777, 0.9611, 0.8288}.

The large number of dark matter particles used in the Pmill simulation gives

a mass resolution of 1.06 × 108 h−1M� and a halo mass limit, corresponding to

20 particles, of 2.12 × 109 h−1M�. The simulation starts at z = 127, with initial

conditions generated using second-order Lagrangian perturbation theory (Jenkins,

2010) and the panphasia code (Jenkins, 2013). The halo properties and selected

particle information are saved in 271 snapshots. Haloes and sub-haloes were iden-

tified with subfind (Springel et al., 2001). subfind first identifies haloes using a

friend-of-friends (FoF) algorithm with a linking length of b = 0.2 times the mean

interparticle separation. Then, these FoF groups (main or distinct haloes) are split

into subhaloes of bound particles. subfind uses several definitions of halo mass; we

use M200m which is the mass enclosed within a radius where the average overdensity

is 200 times the mean density of the Universe. The subhalo mass is just the sum of

the mass of the particles that are gravitationally bound to that subhalo. The haloes

and subhaloes are used to build halo merger trees using the dhalo code (Jiang

et al., 2014).

Here, we use the Galform semi-analytical model of galaxy formation (Cole

et al., 2000; Baugh, 2006; Gonzalez-Perez et al., 2014; Lacey et al., 2016) to pop-

ulate the dark matter haloes in the Pmill simulation with galaxies. We use the

recalibration of the Gonzalez-Perez et al. (2014) model presented by Baugh et al.

(2019) to identify LRGs and study their clustering. In order to match local observa-

tions of galaxies, just two of the parameters describing the physical processes mod-
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elled in Galform were changed slightly by Baugh et al., from the values adopted

by Gonzalez-Perez et al., to take into account the change in cosmology and mass

resolution in the Pmill compared with the original N-body simulation used by

Gonzalez-Perez et al., and an improvement to the treatment of galaxy mergers (see

Baugh et al. 2019 for further details of these changes; we note that Gonzalez-Perez

et al. 2018 used an updated version of their model, which also included the new

galaxy merger scheme first implemented by Campbell et al. 2015 and explained in

full by Simha & Cole 2017).

6.2.2 Glam simulations

glam is a new N-body Parallel Particle-Mesh (PM) code developed for the massive

production of large volume mock galaxy catalogues (Klypin & Prada, 2018). glam

first generates the density field at an early epoch, including peculiar velocities, for

a particular cosmological model and initial conditions. The code uses a regularly

spaced three-dimensional mesh of size N3
g that covers the cubic domain L3 of a

simulation box using N3
p particles. The size of a cell, ∆x = L/Ng, and the mass of

each particle, mp, define the force and mass resolutions, respectively (see Appendix

A of Klypin & Prada, 2018, for details).

We generate 1000 glam simulations using the same cosmology and linear per-

turbation theory power spectrum as used in the Pmill simulation. Because our

goal is to study the clustering of LRGs, the glam simulations follow the evolution

of 20003 particles of mass 1.06 × 1010 h−1M� in a cubic box of size 1h−1Gpc with

Ns = 136 time-steps, and mesh of Ng = 4000. This numerical set-up yields a spatial

resolution of ∆x = 0.25h−1Mpc. The initial conditions were generated using the

Zeldovich approximation starting at zini = 100.

Haloes in glam are identified with the bound density maximum (BDM) halo

finder (Klypin & Holtzman, 1997). Only distinct haloes are saved in our catalogues.

In BDM the virial mass, Mvir, is adopted as the definition of halo mass. The virial

mass of a halo corresponds to the mass enclosed within a spherical overdensity of

radius Rvir, such that the mean overdensity within this radius is ∆vir ≈ 330 times

the mean matter density of the Universe at the present time. The virial overdensity,
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Figure 6.1: Top row: differential halo mass function in the Pmill (black solid lines)

and the mean of 1000 glam simulations (blue dots) as a function of Mvir. Bottom

row: Real-space halo two-point correlation function measured from the Pmill (black

solid lines) and the mean of 1000 glam simulations (blue dots) for haloes with

mass Mvir > 1012.5 h−1M�. We show measurements at z = 0.60 (left column),

z = 0.74 (middle column) and z = 0.93 (right column). Errobars correspond to the

1σ standard deviation over 1000 glam realisations. The lower subpanels show the

relative difference between the glam measurements and that from the Pmill. The

horizontal dashed indicates a 10 per cent difference.

∆vir(z), is computed using the approximation of Bryan & Norman (1998). Only

halo catalogues are saved in 21 snapshots between 0 < z < 1.2 for each realisation.

6.2.3 Halo mass function and halo clustering

To check the performance of our glam simulations we compare the halo mass func-

tion and the halo two-point correlation function measured from them with those

obtained from the Pmill simulation. Since we are interested in LRGs at z ≥ 0.6

we use halo catalogues corresponding to snapshots at z = 0.6, 0.74 and 0.93, where
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z = 0.74 corresponds to the median redshift of the expected n(z) distribution of

LRGs in DESI (DESI Collaboration et al., 2016; Zhou et al., 2020). In a future

work we plan to build proper light-cones using all the glam halo catalogues avail-

able in the relevant redshift range.

The upper panels in Fig. 6.1 show the differential halo mass function measured

at z = 0.6, 0.74 and 0.93 from the Pmill run (black solid lines) and the glam

simulations (blue dots with errobars) using Mvir as the halo mass definition. We

use the mass conversion algorithm of Hu & Kravtsov (2003) to convert M200m into

Mvir for the Pmill measurements. We find good agreement between the glam and

Pmill results, with a difference of less than 10% (see lower subpanels in the top row

of Fig. 6.1) for haloes with mass log10(Mvir/ h
−1M�) > 12.5 at all redshifts. This

mass value is well below the typical LRG host halo mass (see below). The differences

seen between the results from glam and Pmill for lower mass haloes are due to

the lower resolution in the glam simulations. The differences seen at the high-mass

end are due to the much smaller volume of the Pmill simulation compared with

that used in the glam simulations.

The real-space clustering of haloes of mass log10(Mvir/ h
−1M�) > 12.5 is shown

in the lower panels of Fig. 6.1 at different redshifts. We find good agreement in the

clustering measured on scales r > 2h−1Mpc between the two types of simulations.

There is a 10 per cent difference over the separation range 2 < r/h−1Mpc < 40, as

shown in the lower subpanels of the bottom row in Fig. 6.1. Nevertheless, glam

predicts a higher clustering amplitude for r ∼ 1h−1Mpc with respect to that mea-

sured in the Pmill simulation. This effect is due to the different algorithms used

to find dark matter haloes, i.e. BDM predicts more halo pairs at small separations,

hence resulting in a higher clustering amplitude on small scales. As we will see in

Section 6.5, the difference in the halo clustering does not affect the clustering of

LRGs when an appropriate HOD is applied to the glam catalogues.
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6.3 Selection of luminous red galaxies

The DESI team plan to use the 3.4µm band (W1) from the space-based Wide-Field

Infrared Survey Explorer (WISE), in combination with the r and z bands from the

DESI Legacy Imaging Surveys (Dey et al., 2019), to select LRGs efficiently in the

redshift range 0.6 < z < 1.0 (DESI Collaboration et al., 2016). Zhou et al. (2020)

described an updated version of the DESI LRG target selection, which we adopt

here:

z < 20.41 (6.3.1)

−0.6 < (z −W1)− 0.8(r − z) , (6.3.2)

r − z > 0.9 , (6.3.3)

r − z > (z − 17.18)/2 . (6.3.4)

Galform outputs observer frame absolute magnitudes with dust attenuation,

MAB, so we need to convert these into apparent magnitudes, mAB, in order to apply

the above cuts:

mAB = MAB + 5 log10(dL(z)/ h−1Mpc) + 25− 2.5 log10(1 + z) , (6.3.5)

where the magnitudes are on the AB-magnitude system, dL(z) is the cosmological

luminosity distance in units of h−1Mpc, and the factor −2.5 log10(1 + z) is from the

band shifting of the filter width.

The left panel of Fig. 6.2 shows Galform galaxies in the redshift range 0.6 <

z < 1 in the (r − z) − (z − W1) colour-colour plane. The black contours show

the locus of galaxies with stellar mass in excess of 109 h−1M� and the red contours

show the galaxies that meet the DESI LRG selection criteria set out in Eqs. (6.3.2)

and (6.3.3). The right panel of Fig. 6.2 shows the distribution of galaxies in the

z − (r − z) colour-magnitude plane, again showing all galaxies with stellar mass

above 109 h−1M� (black contours) along with those which satisfy the LRG selection

(red contours). The stellar mass cut of 109 h−1M� is much lower than we expect for

the stellar mass of LRGs (see below), but is applied for illustrative purposes, to allow

us to see the locus of the Galform galaxies in the colour-magnitude planes, before

the photometric LRG selection is applied. Note that in these panels we simply show
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Figure 6.2: Colour-colour (left) and colour-magnitude (right) diagrams predicted

using the Galform snapshots at z = 0.6 to z = 1 and using the r, z and W1

bands. Dashed black lines represent the distribution of all galaxies with stellar

mass M∗ > 109 h−1M� from the Galform output. Red solid lines show the locus

of Galform galaxies which remain after applying the DESI LRG selection cuts.

The solid black polygons indicate the DESI LRG photometric selection given by

Eqs. (6.3.1)-(6.3.4), the same used by Zhou et al. (2020).

all of the galaxies that pass the stellar mass cut or LRG selection from each of the

nine Pmill snapshots that fall within the redshift interval. As such, we are mainly

interested in the locus of the Galform galaxies in these colour-magnitude planes,

rather than the detailed changes in the density of points.

Reassuringly, the red contours in the (r − z)− (z −W1) colour-colour plane are

well within the black polygons denoting the selection boundaries; the blue colour

boundary of the r−z vs. z selection box is a key component in setting the space den-

sity of LRGs, as the red contours touch this cut. At z = 0.6 Galform predicts that

around 6.2 million galaxies in the Pmill volume have stellar mass M∗ > 109 h−1M�

but only a small fraction (0.84 per cent) of these galaxies are selected as LRGs.

Fig. 6.3 shows the space density, n(z), of DESI LRGs predicted using Galform.

We have applied the colour-magnitude cuts (Eq. (6.3.1) to Eq. (6.3.4)) to nine

Pmill snapshots in the redshift range 0.6 < z < 1 to obtain the abundance of

LRGs – the redshift of the snapshots is indicated by the points in Fig. 6.3. In
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Figure 6.3: The space density of LRGs meeting the DESI selection criteria, as

predicted using Galform, as a function of redshift. We show the nine Pmill

snapshots between 0.6 < z < 1 (red dots). The red solid line simply connects the

points. The dashed black line shows the space density of DESI-LRGs estimated

observationally using photometric redshifts by Zhou et al. (2020).

the same figure, we show the number density of DESI-like LRGs inferred from

observations using photometric redshifts from Zhou et al. (2020) (black dashed line).

We note that Galform underpredicts the abundance of LRGs at all redshifts,

with the discrepancy reaching a factor of ≈ 1.7 at z ∼ 0.66. The predicted space

densities could be reconciled with those inferred observationally using photometric

redshifts by perturbing, for example, the r−z selection to a bluer colour in Fig. 6.2.

Nevertheless, here we are interested in showing the theoretical predictions from the

Galform model and the applications on the large-scale clustering of our glam

catalogues.

To further investigate the impact of the LRG colour-magnitude selection on the

galaxy population predicted by Galform we present, in Fig. 6.4, the stellar mass

and luminosity functions for all galaxies and for those selected as DESI LRGs. The

top panels of Fig. 6.4 show the evolution with redshift of the stellar mass function
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Figure 6.4: Stellar mass (upper panels) and luminosity (lower panels) functions

predicted by Galform at z = 0.6 (left ), z = 0.74 (middle) and z = 0.93 (right) for

all galaxies from the Galform output and LRGs. Different colours and line styles

indicate different properties and selections as indicated in the legend.
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(sMF) for all galaxies and for LRGs, for z = 0.6, z = 0.74 and z = 0.93. Given the

halo mass resolution of the Pmill, robust predictions can be made using Galform

for galaxies with stellar masses M∗ > 107 h−1M� (Baugh et al., 2019). As expected,

the LRG sample is dominated by massive galaxies, although not all massive galaxies

are LRGs. These massive galaxies are predicted to be in massive dark matter haloes

above the mass at which heating by active galactic nuclei suppresses gas cooling

(Contreras et al., 2015; Mitchell et al., 2016). Some massive galaxies, however, have

recent star formation driven by the cold gas accreted in galaxy mergers, making their

r − z colour too blue to be selected as LRGs. The predicted stellar mass function

of LRGs drops sharply below log10(M∗/ h−1M�) = 11.1, but is similar to the overall

SMF for larger stellar masses. The amplitude of the LRG SMF is similar at z = 0.6

and z = 0.74, which reflects the lack of evolution seen in the overall SMF. As we

can see from Fig. 6.3, the number density of LRGs drops from 4.11× 10−4 h3 Mpc−3

at z = 0.6 to 3.02× 10−4 h3 Mpc−3 at z = 0.74, while at z = 0.93 the abundance of

LRGs is 0.99× 10−4 h3 Mpc−3.

Similar to the plots showing the galaxy stellar mass function, in the lower panels

of Fig. 6.4, we show, at the same redshifts as used in the top row, the luminosity

functions for the r, z and W1 bands for all galaxies and for LRGs. We find a

similar trend as that discussed for the stellar mass functions. The fraction of bright

galaxies that are selected as LRGs increases with the wavelength of the band: above a

threshold luminosity, all galaxies in the W1-band are LRGS, whereas only a fraction,

around a half, of galaxies that are bright in the r-band are LRGs. Below the

threshold luminosity, the fraction of galaxies that are LRGs plunges dramatically.

6.4 The galaxy−(sub)halo connection of DESI lu-

minous red galaxies

To explore the galaxy-(sub)halo connection of the DESI-like LRGs predicted by

Galform we first examine their halo occupation distribution (HOD). The HOD is

an useful tool to understand the galaxy-halo connection, clustering and evolution of

galaxies in general (see the review by Wechsler & Tinker 2018). The HOD specifies
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the average number of galaxies (centrals and satellites) hosted by a dark matter halo.

Previous observational studies have described the HOD of LRGs using a functional

form that distinguishes between central and satellite galaxies (see e.g., Blake et al.,

2008; Brown et al., 2008; Padmanabhan et al., 2009; Zheng et al., 2009). In a

traditional HOD there is a transition in the mean number of central galaxies from

〈Nc〉 = 0 to 〈Nc〉 = 1 with increasing halo mass and the occupation by satellites

(〈Ns〉) follows a power-law in halo mass (Zheng et al., 2005).

Fig. 6.5 shows the evolution of the HOD of DESI LRGs as predicted by Galform

in the redshift range z = 0.6− 1. We show the predicted HOD for the nine redshifts

we used to measure the evolution of the LRG number density distribution in Fig. 6.3.

At first glance we see that the occupancy of central galaxies (〈Nc〉) does not reach

the canonical value of unity at high halo masses, and even begins to decline after

a peak at intermediate halo masses. This behaviour is typically seen in the models

when galaxies are selected by their star-formation rate instead of a property that

correlates more closely with stellar mass (Contreras et al., 2013; Cowley et al., 2016;

Jiménez et al., 2019). More recently Gonzalez-Perez et al. (2018) found similar

behaviour for the HOD of emission-line galaxies selected by the colour-magnitude

cuts that will be used by the DESI emission-line galaxy survey (see also Merson

et al. 2019 and Gonzalez-Perez et al. 2020). The LRG population is dominated by

central galaxies and contains a satellite fraction of fsat ∼ 0.10 to fsat ∼ 0.04 in the

redshift range z = 0.6 − 1, where the mean number of satellites 〈Ns〉 is close to a

power-law. Since the HOD is predicted directly by Galform and does not have a

canonical shape (as discussed above), we do not attempt to extract HOD parameters

by fitting one of the functional forms typically adopted in the literature to model

observational samples. Instead we use a tabulated version of the Galform HOD

which captures the full shape more accurately than a simple parametric form could

ever do.

Fig. 6.5 shows that there is a clear turnover in the HOD predicted by Galform

for central galaxies at intermediate redshifts (z = 0.74, 0.80). At higher redshifts

than this the trend is less clear due to the evolution in the halo mass function and the

resulting lack of high mass haloes. One might have expected that the mean number
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Figure 6.5: Halo occupation distribution of DESI-like LRGs predicted by Galform

(symbols) as a function of their host halo masses. Each panel shows a different

redshift between z = 0.6 and z = 1 as labelled. The solid lines connect the symbols.

Outside the mass range for which model predictions are available, the solid lines

show a power-law extrapolation of the HOD for centrals and satellites, based on the

last measured points. The total, central and satellite galaxy occupancy is shown in

black, blue and green, as labelled.
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of centrals would reach unity in massive haloes, due to the suppression of gas cooling

through the heating of the hot gas halo by active galactic nuclei. However, some

central galaxies in massive haloes can become too blue to be selected as LRGs due

to star formation triggered by mergers, which use the cold gas brought in by the

merging galaxy.

To develop a deeper understanding of the galaxy-(sub)halo connection we now

explore which subhaloes are able to host an LRG. To do so, we consider the number

of subhaloes in haloes of different mass and the subhalo mass function, including a

version that shows only those subhaloes that host an LRG. We also define a new

galaxy sample for comparison purposes by ranking galaxies in order of decreasing

stellar mass, and choosing a stellar mass cut to match the number density of the

LRG sample. This comparison sample allows us to understand the impact of the

selection cuts on the haloes and subhaloes that host LRGs; we call this the stellar

mass selected sample.

The upper panels of Fig. 6.6 show the HOD for the LRG and stellar mass selected

galaxy samples, which we compare to the total number of subhaloes available to host

an LRG (see below for how this is defined). Focusing on the galaxy HODs first, the

black, blue and green lines in Fig. 6.6 show the number, respectively, of all galaxies,

central galaxies and satellites galaxies as a function of halo mass; solid lines show

the model predictions for the LRG sample and the dashed lines for the stellar mass

selected sample. The light blue dashed lines show the number of subhaloes more

massive than Msubhalo > 1012.5 h−1M� as a function of the mass of their main host

halo. This mass cut is arbitrary but was chosen because the HODs for the galaxy

samples are significant for halo masses above this value. In an illustrative sense, a

subhalo mass of Msubhalo ≈ 1012.5 h−1M�, based on the mass coverage of the galaxy

sample HODs, could be loosely thought of as the minimum subhalo mass needed to

host an LRG or a galaxy in the comparator stellar mass selected sample.

Fig. 6.6 shows us that only a small fraction of subhaloes with masses above

Msubhalo > 1012.5 h−1M� host an LRG: this fraction reduces from 22% to 8% as

the redshift increases from z = 0.6 to z = 0.93. The shape of the total (cen-

trals+satellites) and satellite-only HOD is similar for LRGs and the stellar mass
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Figure 6.6: Upper panels: Halo occupation distribution of subhaloes (dashed cyan

line), LRGs (solid lines) and galaxies ranked by stellar mass (dashed lines) at z = 0.6

(left panel), z = 0.74 (middle panel) and z = 0.93 (right panel). For galaxies, the

occupation of total, centrals and satellites are specified as black, blue and green

lines respectively. Lower panels: Subhalo mass functions measured using all galaxies

(black solid lines), LRGs (red solid lines) and galaxies ranked by stellar mass (orange

solid lines) at at z = 0.6 (left panel), z = 0.74 (middle panel) and z = 0.93 (right

panel).
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selected sample at z = 0.6 and 0.74. However, at z = 0.93 the DESI LRG selection

cuts modify the form of the LRG HOD away from that of the stellar mass selected

sample. The HODs of central galaxies in the two samples are markedly different

at all redshifts shown in Fig. 6.6. The HOD of stellar mass selected central rises

to unity with increasing halo mass, but for the LRGs it turns over after reaching

a maximum below unity. This behaviour is swamped by the satellite HOD so that

the overall HODs for the LRG and stellar mass samples differ less than the central

HODs. At the highest redshift shown in Fig. 6.6, the transition from zero to peak

occupancy fraction for centrals is slower for the LRGs than for the stellar mass sam-

ple. As centrals dominate the overall sample at lower halo masses, this produces a

significant difference in the HOD for LRGs and the stellar mass selected sample.

To gain further insight into the LRG subhalo population, we show the subhalo

mass function in the lower panels of Fig. 6.6. Two versions of the subhalo mass

function are shown: one is the ‘dark matter view’ in which we include all subhaloes

and the other is the ‘galaxy view’, in which case a subhalo is only included if it

contains a galaxy in the sample. If the ‘galaxy view’ version of the subhalo mass

function coincides with the ‘dark matter view’, then all subhaloes at that mass

that could host a galaxy do so. In the case of the stellar mass selected samples

shown in the bottom row of Fig. 6.6, we see that the most massive subhaloes all

host a galaxy. As we move to lower masses, the galaxy-view subhalo mass function

falls below the dark-matter view version; for these masses only a fraction of the

available subhaloes host a galaxy. Eventually, as we continue to mover towards

even lower subhalo masses, there is a dramatic downturn in the galaxy-view subhalo

mass function, with only a tiny fraction, less than one in a thousand subhaloes

hosting a galaxy. Qualitatively, the galaxy-view subhalo mass functions for the

LRGs are similar to those for the stellar mass selected sample, with one exception:

at the massive end, not all subhaloes host an LRG. This difference becomes more

pronounced with increasing redshift. The conclusion of this comparison is that it is

essential to perform the full colour-magnitude selection to define the LRG sample.

Applying a stellar mass cut to attain a target number density of objects is a fair

approximation to performing the full photometric selection at low redshifts, but
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results in a fundamentally different set of subhaloes being chosen with increasing

redshift.

6.5 Galaxy Clustering

In previous sections we explored the impact of the DESI LRG colour-magnitude

selection on galaxy statistics such as the stellar mass function and the luminosity

functions at different wavelengths. We also presented predictions for which haloes

and subhaloes contain LRGs. Here we take this a step further by investigating the

evolution of the clustering in configuration and Fourier space, in both real- and

redshift-space. We measure the clustering from the simulations with the Nbodykit

toolkit (Hand et al., 2018).

6.5.1 Galaxy clustering in the Pmill and Glam simulations

First, we present in Fig. 6.7 a comparison of the predicted real-space galaxy two-

point correlation function for pair separations in the range 0.7 < r/[h−1Mpc] < 50

at redshifts 0.6, 0.74 and 0.93 for LRGs and the stellar mass selected sample. Since

LRGs do not populate all of the most massive (sub)haloes, as seen in the lower

panels of Fig. 6.6, the LRG sample is less biased than the stellar mass selected one,

leading to a smaller clustering amplitude on all scales. We find a constant offset

in the clustering amplitude of around 10% between the samples at z = 0.6 and

z = 0.74 on all scales. At higher redshifts, where the DESI-LRG colour-magnitude

cuts have a bigger impact on which subhaloes host LRGs, we find that the difference

in clustering amplitude increases to 50% on large scales, rising to ∼ 150% on small

scales. The larger difference on small-scales at z = 0.93 is due to the abundance of

satellite galaxies in the different galaxy samples; as seen in the upper right panel

of Fig. 6.6, the stellar mass selected sample has a larger satellite fraction than the

DESI-LRG sample. This comparison shows that selecting LRGs using stellar mass

as a proxy for the full colour-magnitude selection leads to a significant change in the

predicted clustering signal.

As we mentioned before, one of our aims is to produce a large number of mock
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Figure 6.7: The real-space galaxy correlation functions predicted by Galform for

LRGs (red lines) and the stellar mass selected sample (orange line) at z = 0.6 (left

panel), z = 0.74 (middle panel) and z = 0.93 (right panel).

DESI LRG catalogues using the glam code to give an accurate estimate of the

galaxy clustering signal and its full covariance matrix of errors. For this reason, we

populate our 1000 glam simulations with LRGs using the tabulated HOD predicted

by Galform (see Fig. 6.5), as explained below.

Since Galform predicts an HOD for DESI-LRGs that does not appear to follow

any of the popular parametric forms in the literature (see Appendix A of Contreras

et al. 2013), we bypass carrying out a fit altogether and instead use the tabulated

model predictions for the HOD directly to populate glam haloes with LRGs. Hence,

in order to populate a given glam halo we interpolate between the HOD values

predicted by Galform to the glam halo mass (see below for further details). In

the case of the most massive haloes we extrapolate beyond the halo mass range of

the HOD values; we do not have robust predictions for these haloes from the Pmill

simulation due to its smaller volume compared to the glam boxes. This method

was used recently by Merson et al. (2019), where the authors extracted the HOD

of Hα galaxies from the Galacticus SAM catalogue (Benson, 2012; Merson et al.,

2018), and used this to populate the Millennium-MXXL halo light-cone from Smith

et al. (2017).

In detail our HOD method is as follows. We assign a central galaxy to a glam

halo if 〈Nc〉 > U(0, 1), where 〈Nc〉 is the mean number of central galaxies that

could be found in a glam halo obtained by interpolating the HOD tabulated from
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the Galform output shown in Fig. 6.5 and U(0, 1) is a uniform random number

between 0 and 1. Recall that the Galform predictions for the HOD of central

galaxy LRGs never reach unity. We place the central galaxy at the centre of mass

of the host halo, and give it the velocity of the centre of mass. The number of

satellite galaxies is drawn from a Poisson distribution with mean equal to 〈Ns〉, as

derived from the tabulated HOD predicted using Galform. Satellite galaxies are

radially distributed within the virial radius, (0 < r < Rvir), following a Navarro-

Frenk-White (NFW) density profile (Navarro et al., 1996, 1997), with a uniform

angular distribution. The satellite is assigned a velocity that is made up of the halo

velocity plus a perturbation along the x, y and z coordinates drawn from a Gaussian

distribution with variance equal to the 1D velocity dispersion of the host halo.

We measure the real- and redshift-space clustering in configuration and Fourier

space from the glam-HOD catalogues and compare these with their Pmill coun-

terparts to corroborate the precision of our method. In addition, the real-space

clustering measurements provide us a relation between the distribution of galaxies

and the underlying dark-matter density field via the galaxy bias (Peebles, 1980).

The galaxy bias is directly measured from our glam LRG mocks as

b(k, z) =

√
Pg(k, z)

Pm(k, z)
or b(r, z) =

√
ξg(r, z)

ξm(r, z)
, (6.5.6)

where Pg(k, z) (ξg(r, z)) and Pm(k, z) (ξg(r, z)) are the real-space galaxy and dark

matter power spectra (correlation functions) at a given redshift, respectively. We

tried both approaches to estimating the bias and found consistent answers, b(z) =

1.84, 1.96, 2.06 at z = 0.6, 0.74 and 0.93, respectively. The DESI-like LRG bias has

been estimated from the measured angular power spectrum and from the halo model

of the photo-z LRGs giving the following relations, b(z) = 1.6/D(z) (Kitanidis et al.,

2020) and b(z) = 1.5/D(z) (Zhou et al., 2020). Note these relations are slightly

different to the value of b(z) = 1.7/D(z) reported in DESI Collaboration et al.

(2016), where D(z) is the linear growth factor at redshift z, with D(z = 0) = 1. For

the cosmological parameters used in the Pmill simulation, the linear growth factor

is D(z = 0.6) = 0.73, D(z = 0.74) = 0.69 and D(z = 0.93) = 0.63, which means

that the values we recover for the bias are slightly lower than those inferred from
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the observations, more similar to b(z) = (1.3− 1.4)/D(z).

We use the distant-observer approximation to shift the positions of galaxies from

real- to redshift-space, treating the z-axis as the line of sight,

s = r +
(1 + z)vz
H(z)

êz , (6.5.7)

where r is the coordinate vector in real space, s is the equivalent of this in redshift-

space, and z is the redshift of the simulation snapshot used to generate the galaxy

catalogue. H(z) is the Hubble parameter, vz and êz are the components of the

velocity and the unit vector along the z-direction.

We measure the monopole and quadrupole moments of the redshift-space corre-

lation function, ξl(s), and power spectrum, Pl(k), using

ξl(s) = (2l + 1)

∫ 1

0

ξ(s, µ)Ll(µ) dµ , (6.5.8)

Pl(k) = (2l + 1)

∫ 1

0

P (k, µ)Ll(µ) dµ , (6.5.9)

where ξ(s, µ) and P (k, µ) are the full two-dimensional correlation function and power

spectrum, µ is the cosine of the angle between the separation vector, s or k, and

the line-of-sight in configuration or Fourier space, respectively. The Ll(µ) are the

Legendre polynomials where l = 0 is the monopole and l = 2 is the quadrupole. We

use 20 bins logarithmically spaced over the separation range 0.7 < s/[h−1Mpc] < 50

in which to measure the correlation function. The power spectrum is measured in

the range 0 < k/[hMpc−1] < kNyq using linear bins in k with separation ∆k =

0.006hMpc−1, where kNyq = πNmesh/Lbox is the 1D Nyquist frequency, Nmesh = 512

and Lbox is the box size of the Pmill or glam simulations. In all cases we adopt

30 linearly spaced bins between 0 and 1 for µ.

In the upper panels of Fig. 6.8 we display the real-space clustering measured

from the Galform output (black line) and the glam LRG mock catalogues (blue

symbols with errorbars). Additionally, we show the best-fitting power law fit to the

correlation function reported by Kitanidis et al. (2020) (r0 = 7.78h−1Mpc, γ = 1.98)

which agrees well with our measurements, especially on scales r ≥ r0. Note that

Kitanidis et al. fitted the angular correlation function in the range 0.001◦ < θ < 1◦

which translates to comoving separation θminDA(z) < r/[h−1Mpc] < θmaxDA(z),
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Figure 6.8: Upper panels: Real-space galaxy correlation function of the Galform-

Pmill LRGs (black lines) and the HOD-glam LRGs (blue symbols with error

bar). We also show the best fitting power-law form, ξ(r) = (r/r0)−γ, to the DESI-

LRG measurements reported by Kitanidis et al. (2020, red dashed lines) and to

our measurements (blue solid lines). Lower panels: Redshift-space monopole and

quadropole moments of the correlation function for Galform-Pmill LRGs (solid

lines) and glam-HOD LRGs (symbols with error bar). Note that the monopole has

been shifted upwards for clarity. In the case of the glam-HOD LRGs measurements,

we show the mean and standard deviation over 1000 realisations. The measurements

are made at z = 0.6, 0.74 and 0.93, as labelled at the top of each panel.
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Figure 6.9: Upper panels: Real-space galaxy power spectrum of the Galform-

Pmill LRGs (black lines) and the glam-HOD LRGs (blue lines, the shaded region

represents the 1σ error over 1000 realisations), we also show the dark-matter power

spectrum multiplied by the galaxy bias squared estimations of Kitanidis et al. (2020,

cyan solid lines), Zhou et al. (2020, magenta solid lines) and from Eq. (6.5.6) (red

solid line). Lower panels: Redshift-space monopole and quadropole moments of

the power spectrum for Galform LRGs (solid lines) and glam LRGs (symbols

with error bar). For the glam-HOD LRGs measurements, we show the mean and

standard deviation over 1000 realisations. The measurements are made at z = 0.6,

0.74 and 0.93, as labelled at the top of each panel.
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where DA is the angular-diametre distance. We also show results when fitting our

glam measurements with a power-law using the range mentioned above, ξ(r) =

(r/r0)−γ, finding r0/[h
−1Mpc] = (7.316 ± 0.022, 7.346 ± 0.024, 6.883 ± 0.04) and

γ = (1.623± 0.006, 1.592± 0.007, 1.589± 0.012) at z = 0.6, 0.74 and 0.93.

The lower panels of Fig. 6.8 shows the predicted multipoles of the redshift-

space correlation function of the glam-HOD LRGs (symbols with errorbars), plotted

in comparison with their Galform counterparts (black line). We find excellent

agreement between the clustering measured in both real- and redshift-space for the

glam and Galform LRGs at all scales and all redshifts.

In Fig. 6.9 we display the clustering measurements in Fourier space. First, we

note the good agreement between the Galform (black lines) and glam (blue

lines) measurements on all scales to better than 5 per cent. In the upper pan-

els of Fig. 6.9 we also show the measured dark-matter power spectrum scaled by

the galaxy bias squared relations of Kitanidis et al. (2020, cyan lines), Zhou et al.

(2020, magenta lines) and from our simulations, Eq. (6.5.6). We find that our mea-

surements slightly underpredict the bias value compare to the measured relations

estimated by Kitanidis et al. (2020) and Zhou et al. (2020). In the lower panels

of Fig. 6.9 we show the multipole moments of the redshift space power spectrum,

finding almost perfect agreement between the Galform and glam measurements

on scales k > 0.1hMpc−1. Nevertheless, there is a noisy signal for the Galform

quadrupole of the redshift-space power spectrum, due to the smaller box size of the

Pmill. Nevertheless, this signal is in good agreement with the predictions from

glam over the range 0.1 < k/[hMpc−1] < 0.3.

We conclude that populating glam haloes using our interpolated-HOD method

reproduces accurately the clustering of LRGs predicted directly by Galform on all

scales of interest.

6.5.2 Large-scale galaxy clustering and covariance matrices

In general it is not possible to measure the three dimensional clustering of galaxies

in real-space from observations. Some compromise involving projection is usually

required to obtained a real-space statistic, such as the angular correlation function
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or the projected correlation function. The most direct three dimensional clustering

measurements from surveys provide statistics in redshift-space, which are affected

by peculiar velocities. Moreover, future surveys like DESI aim to measure galaxy

clustering on scales up to ∼ 200h−1Mpc. Hence, taking advantage of our glam-

HOD machinery, here we present predictions for the large-scale galaxy clustering

and covariance matrices of DESI-like LRGs for the correlation function and power

spectrum. These quantities are fundamental for error estimates on the measurements

of BAO and RSD (see e.g., Alam et al., 2017).

In the following, we focus our attention on the large-scale clustering of DESI-like

LRGs for pair separations in the range 0 < s/[h−1Mpc] < 150 for the correlation

function. For the power spectrum we show results in the wavenumber range 0.01 <

k/[hMpc−1] < 0.3.

The upper panels of Figs. 6.10 and 6.12 display the mean and standard deviation

of the multipoles of the correlation function and the power spectrum calculated over

1000 glam DESI-like LRGs realisations at z = 0.6, 0.74 and 0.93. We also measure

the covariance matrix, C, of each estimator E, as follows,

Cij =
1

Ns − 1

Ns∑
k=1

(
Ek
i − Ēi

) (
Ek
j − Ēj

)
, (6.5.10)

where Ns = 1000 is the number of mocks, Ēi = 1/Ns

∑
k E

k
i is the mean value of the

estimator in the i-th separation bin, and Ek
i is the corresponding measurement from

the k-th mock. The standard deviation is estimated from the diagonal elements of

the covariance matrix,

σi =
√
Cii . (6.5.11)

We show the diagonal error contribution, σEi
/Ei, of the moments of the correlation

function and power spectrum in the lower subpanels of the upper row of Figs. 6.10

and 6.12. We observe an increase in the size of the error contribution at large-scales,

especially for the monopole and quadrupole in configuration space.

We display the correlation matrix,

rij =
Cij√
CiiCjj

, (6.5.12)



6.5. Galaxy Clustering 156

s [h−1Mpc]

100

75

50

25

0

25

50

75

s
2
ξ l

(s
) [
h
−

2
M

p
c2

]

z= 0.60

ξ0 ξ2

0 20 40 60 80 100 120 140
s [h−1 Mpc]

10-2

10-1

100

σ
ξ l
(s

)/
|ξ
l(
s)
|

s [h−1Mpc]

100

75

50

25

0

25

50

75

s
2
ξ l

(s
) [
h
−

2
M

p
c2

]

z= 0.74

ξ0 ξ2

0 20 40 60 80 100 120 140
s [h−1 Mpc]

10-2

10-1

100

σ
ξ l
(s

)/
|ξ
l(
s)
|

s [h−1Mpc]

100

75

50

25

0

25

50

75

s
2
ξ l

(s
) [
h
−

2
M

p
c2

]

z= 0.93

ξ0 ξ2

0 20 40 60 80 100 120 140
s [h−1 Mpc]

10-2

10-1

100

σ
ξ l
(s

)/
|ξ
l(
s)
|

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Monopole z= 0.60

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Monopole z= 0.74

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Monopole z= 0.93

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Quadrupole z= 0.60

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Quadrupole z= 0.74

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140
s [h−1Mpc]

20

40

60

80

100

120

140

s [
h
−

1
M

p
c]

Quadrupole z= 0.93

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.10: Upper panels: Measured monopole (blue lines) and quadrupole (green

lines) of the redshift-space two-point correlation function of DESI-like LRGs from

our glam-HOD catalogues, the lower subpanels show the diagonal error contribution

to the monopole and the quadrupole. The error is calculated using Eq. (6.5.11).

Middle panels: Correlation matrix, Eq. (6.5.12), of the monopole. Bottom panels:

Correlation matrix, Eq. (6.5.12), of the quadrupole. The colour bar in the correlation

matrices display values from −1 ≤ R(si, sj) ≤ 1. The measurements are made at

z = 0.6, 0.74 and 0.93, as labelled at the top of each panel.
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Figure 6.11: Cuts through the correlation matrix of the monopole (upper panels)

and the quadrupole (bottom panels) of the redshift-space correlation function at

four different values of si in units of [h−1Mpc] as indicated in the panels. The

measurements are made at z = 0.6, 0.74 and 0.93, as labelled at the top of each

panel.
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Figure 6.12: Same as Figure 6.10 but for the multipoles of the power spectrum.
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Figure 6.13: Same as Figure 6.11 but for the multipoles of the power spectrum. In

this case, we show the cuts through the correlation matrices at four different values

of ki in units of [hMpc−1].
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in the middle (monopole) and bottom (quadrupole) panels of Figs. 6.10 and 6.12 for

the correlation function and power spectrum, respectively. The diagonal and non-

diagonal components have different magnitudes and evolve differently with redshift.

Figs. 6.11 and 6.13 show cuts through the correlation matrices corresponding to

our measurements in configuration and Fourier space, respectively. These diagrams

help us to better display the level of correlation and the structure of the matrices.

In the case of the moments of the correlation function (Fig. 6.11), we show the

cuts at four different separation bins, si = (37.5, 72.5, 107.5, 142.5)h−1Mpc, while

in Fourier space (Fig. 6.13) we use ki = (0.081, 0.154, 0.222, 0.289)hMpc−1. We

see a strong correlation between the bins close to the diagonal elements in the

monopole and quadrupole of the correlation function at z = 0.60 and z = 0.74; this

correlation becomes weaker at z = 0.93 (Fig. 6.11). In the case of the multipoles

of the power spectrum, the off-diagonal elements are much less correlated than the

diagonal components, with values close to zero (Fig. 6.13). This trend is strongest

for the quadrupole of the power spectrum.

Klypin & Prada (2018) carried out an extensive study of the covariance and

correlation matrix associated with the dark-matter power spectrum of glam sim-

ulations. Our results for the estimation of errors from the glam-HOD catalogues

extends the work of Klypin & Prada to galaxies and to the correlation function.

In detail, Fig. 6.14 shows the covariance analysis of the real-space DM and LRG

power spectra. We summarise our findings as follows. First, in the upper panels we

display the measurements from our simulations, we observe that the size of the error

is similar for both DM and LRGs at large-scales (k < 0.05hMpc−1) but on smaller

scales the amplitude of the error of the galaxy power spectrum becomes larger with

increasing redshift. We also show the DM power spectrum and its errors scaled by

the LRG bias squared (see Sec. 6.5.1 for details) as a blue solid line (with a shaded

region showing the 1σ error) in the upper panel of the first row of Fig. 6.14. Sec-

ond, the correlation matrices are shown in the middle panels (upper middle panels

for DM and lower middle panels for LRGs), we find that the amplitude of the DM

correlation matrices are consistent with those reported by Klypin & Prada (2018).

On the other hand, the correlation amplitude of the LRG power spectrum is sim-
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Figure 6.14: Covariance analysis of the real-space dark matter and LRG power

spectra at z = 0.6, 0.74 and 0.93. Upper panels: Measured DM (black lines) and

LRG (red lines) power spectrum from our glam simulations together with the DM

power spectrum multiplied by the bias squared (blue lines; Eq. (6.5.6)), the lower

subpanels show the error contribution. Middle top and middle lower: Correlation

matrices of the real-space power spectrum for the DM density field and LRGs,

respectively. Bottom panels: Slices through the correlation matrices at different

values of ki in units of [hMpc−1].
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ilar to its analogue in redshift space (see middle panels of Fig. 6.12). Lastly, the

evolution of the non-diagonal terms of the correlation matrices are displayed in the

bottom panels of Fig. 6.14. We compare the level of correlation at four values of

the separation bin, ki = (0.081, 0.154, 0.222, 0.289)hMpc−1, finding a more com-

plex behaviour from the LRGs correlation matrices with an increase amplitude at

small scales, this behaviour is also consistent with our findings in redshift space (see

Fig. 6.12). Moreover, the amplitude of the non-diagonal elements are similar for

both DM and LRGs at z = 0.93 (bottom right panel of Fig. 6.14).

Finally, we can use the covariance matrix of each estimator to define a chi-squared

to find the best-fitting cosmological parameters as follows,

χ2 =
Ns∑
i,j=1

(
Eth
i − Eobs

i

)
C−1
ij

(
Eth
j − Eobs

j

)
, (6.5.13)

where C−1
ij is the inverse of the covariance matrix, Eq. (6.5.10), Eth is the theoretical

expectation of the estimator that depends on the cosmological parameters and Eobs

is the measured estimator from our glam-HOD catalogues. Note that the inverse of

the covariance matrix should be corrected using the Hartlap factor (Hartlap et al.,

2007),

C̃−1
ij =

Nmock −Nb − 2

Nmock − 1
C−1
ij , (6.5.14)

where Nmock is the number of mock catalogues and Nb is the number of separation

bins used in the fitting. This definition is used in Sec. 6.5.3 and Sec. 6.5.4.

It is instructive to compare the errors we obtain in the glam simulation boxes

with the errors expected in the DESI measurements. DESI will measure the cluster-

ing of LRGs in a series of redshift shells over a solid angle of 14 000 square degrees.

We anticipate that DESI will sample a comoving volume of V/[h−3Gpc3] = 2.63,

3.15 and 4.10 respectively on bins centred at redshifts of z = 0.65, 0.75 and 0.95

(DESI Collaboration et al., 2016). Hence, to get a rough impression of how our error

estimates (on the cosmological parameters) will scale to those expected for DESI,

we can scale the glam errors by the square root of the inverse volume ratio (e.g.

Feldman et al. 1994): σ′(z) = σ(z)
√
VGLAM/VDESI(z), where VGLAM = 1h−3Gpc3.

Note that we refrain from carrying out a more detailed comparison with the errors
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reported in DESI Collaboration et al. (2016), as these were obtained using a Fisher

matrix method, which assumes Gaussian errors and no off-diagonal terms.

6.5.3 Linear redshift-space distortions

In large volume galaxy surveys we can extract information about the growth of

structure through the linear growth rate, f , which is defined as the logarithmic

derivative of the linear growth function of density perturbations, D, with respect to

the scale factor, a,

f ≡ d lnD

d ln a
. (6.5.15)

In linear perturbation theory, the relation between the redshift-space galaxy

power spectrum, Ps, and its real-space counterpart, Pr, is given by (Kaiser, 1987):

Ps(k, µ) = (1 + βµ2)2Pr(k) . (6.5.16)

From Eq. (6.5.16) we can see that the amplitude of the RSD is related to the

distortion parameter β, defined as

β(z) ≡ f(z)

b(z)
, (6.5.17)

where f is the linear growth rate (Eq.(6.5.15)), and b is the linear galaxy bias both

of which vary with redshift, Eq. (6.5.6).

The monopole and quadrupole moments of the power spectrum can be estimated

from Eqs. (6.5.9) and (6.5.16),

P0(k) =

(
1 +

2β

3
+
β2

5

)
Pr(k) , (6.5.18)

P2(k) =

(
4β

3
+

4β2

7

)
Pr(k) , (6.5.19)

where Pr(k) is galaxy power spectrum in real-space.

On the other hand, the redshift-space correlation function can be expressed as

follows (Hamilton, 1992, 1998):

ξ(s, µ) = [1 + β(∂/∂z)2(∇2)−1]2ξ(r) , (6.5.20)
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In linear theory, the monopole and quadrupole of the correlation function can be

estimated using (Hamilton, 1992), i. e.,

ξ0(s) =

(
1 +

2β

3
+
β2

5

)
ξ(r) , (6.5.21)

ξ2(s) =

(
4β

3
+

4β2

7

)
[ξ(r)− ξ̄(r)] , (6.5.22)

where ξ(r) is the galaxy correlation function in real-space and ξ̄ is its volume integral

out to pair separation r:

ξ̄(r) =
3

r3

∫ r

0

ξ(r′)r′2 dr′ . (6.5.23)

From Eqs. (6.5.18)−(6.5.19) and Eqs. (6.5.21)−(6.5.22) we can define two esti-

mators to obtain the distortion parameter, β, or the linear growth rate, f , (Cole

et al., 1994; Hawkins et al., 2003),

R(k/s) =
P0(k)

Pr(k)
=
ξ0(s)

ξ(r)
= 1 +

2β

3
+
β2

5
, (6.5.24)

and

Q(k/s) =
P2(k)

P0(k)
=

ξ2(s)

ξ0(s)− ξ̄0(s)
=

(4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2
, (6.5.25)

where F(k/s) indicates that the quantity F can be a function of k or s and

ξ̄0(s) =
3

s3

∫ s

0

ξ0(s′)s′2 ds′ , (6.5.26)

is the volume average of the monopole in redshift space, the analogue of Eq. 6.5.23.

Fig. 6.15 shows our measurements of the R(k/s), and the Q(k/s) estimators

from our DESI-glam LRG mock catalogues at the median redshift z = 0.74. The

black dashed line in each panel corresponds to the linear theory predictions. From

the measurements in Fourier space (left panels of Fig. 6.15), we can see that both

estimators become closer to the linear theory predictions at scales k . 0.1hMpc−1,

this means that linear theory is only valid on sufficiently large-scales. On small

scales, where the non-linear motions of galaxies dominate, we observe a downturn

in the signal of each estimator. The trend is similar in configuration space (right

panel of Fig. 6.15), where we observe that the linear theory limit is reached on scales

s > 20h−1Mpc. All panels in Fig. 6.15 show the same range of values on the vertical
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Figure 6.15: Estimators R (upper subpanels) (Eq. (6.5.24)) and Q (lower subpanels),

(Eq. (6.5.25)) as function of separation in Fourier (left panels) and configuration

(right panels) space at z = 0.74. Symbols with errorbars show the mean and stan-

dard deviation of the estimator measured from our 1000 glam catalogues. The

black dashed line in each panel represents the fiducial linear theory value.

axis, allow us to see that the errors are slightly different in Fourier and configuration

space, especially in R.

To extract the linear growth rate, f , from our measurements, we perform a

likelihood analysis by minimising χ2 defined by Eq. (6.5.13) by fitting the measure-

ments of R(k/s), Eq. (6.5.24), and Q(k/s), Eq. (6.5.25) over the range of scales

k < 0.1hMpc−1 in Fourier space and s > 20h−1Mpc in configuration space. We

fix the galaxy bias and just allow the linear growth rate to vary. To do so, we em-

ploy the Monte Carlo Markov Chain (MCMC) technique implemented in the emcee

python package (Foreman-Mackey et al., 2013).

In Fig. 6.16, we compare the predictions for the linear growth rate f(z) obtained

from our DESI-glam LRG mocks at z = 0.6, 0.74 and 0.93 with the current obser-

vational measurements from large galaxy surveys, including 6dFGRS at z = 0.067

(Beutler et al., 2012), SDSS MGS at z = 0.15 (Howlett et al., 2015), 2dFGRS at

z = 0.17 (Percival et al., 2004), GAMA at z = 0.18 and 0.38 (Blake et al., 2013),

WiggleZ at z = 0.22, 0.41, 0.6 and 0.78 (Blake et al., 2011a), BOSS DR12 at

z = 0.32, 0.51 and z = 0.61 (Alam et al., 2017), FastSound at z = 1.4 (Okumura
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et al., 2016) and the eBOSS DR14 QSO sample at z = 1.52 (Zarrouk et al., 2018).

The black errorbars over the ΛCDM predictions indicate the estimated error from

the DESI forecast (see table 2.3 of DESI Collaboration et al., 2016). Note that in

this work we do not include the light-cone and survey geometry effects on our mocks.

These will be considered in a forthcoming project.

Table 6.1 summarises the best-fitting values of the linear growth rate, f , at

z = 0.60, 0.74 and 0.93 obtained from the estimators R (Eq. (6.5.24)) and Q

(Eq. (6.5.25)) in configuration and Fourier space. We also show the values from

the fidiciual cosmology. We find very good agreement between our estimations and

the theoretical predictions. The largest errors come from the R estimator in con-

figuration space and Q in Fourier space, this might be due to the size of the error

contribution of our measurements (see Sec. 6.5.2 for details). The best case is R in

Fourier case, which estimates the linear growth rate with a precision better than 4

per cent. As we mentioned above, we should expect that our errors differ up to a

factor of two when comparing to the DESI forecast.

It is expected that DESI will provide a means to distinguish between gravity

models. For this reason, in Fig. 6.16, we also show the theoretical expectations

from two representative modified gravity models: the f(R) Hu-Sawicki model (Hu &

Sawicki, 2007) and the normal branch of the DGP model (nDGP; Dvali et al., 2000).

Previously, Hernández-Aguayo et al. (2019) presented predictions for the linear and

non-linear RSDs in configuration space for these models but for the BOSS-CMASS

sample at z ≤ 0.5 (Manera et al., 2012).

In Fig. 6.16 we show the theoretical values of the linear growth rate, Eq. 1.2.39, of

these models for the cases: fR0 = −10−5 and the range of scales 0.01 ≤ k/[hMpc−1] ≤
0.1 for f(R) gravity and Ωrc = 0.25 for the nDGP model.

We see that the size of the errors from the DESI forecast is small enough to

distinguish between the ΛCDM and the nDGP model. However, it is still unclear if

we will be able to rule out f(R) gravity models using RSDs.
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Figure 6.16: Evolution of the linear growth rate, f , as a function of redshift. Our

estimations from R and Q are shown in the left and right panel in configuration (red

dots with errobars) and Fourier (blue dots with errorbars) space, respectively. The

coloured symbols display measurements from different surveys at different redshifts

as specified in the legend. Solid curves show the prediction for ΛCDM (black),

nDGP (orange) and f(R)-gravity (green shaded region that represent wavenumbers

0.01 ≤ k/[hMpc−1] ≤ 0.1) models. The black errorbars over the ΛCDM prediction

represent the DESI 14K forecast for kmax = 0.1hMpc−1 (see table 2.3 of DESI

Collaboration et al., 2016).
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6.5.4 Isotropic measurements of the baryon acoustic oscil-

lations scale

Another direct application of our glam-HOD catalogues is the prediction of the

BAO feature for DESI-like LRGs at different redshifts. This scale was not accessible

in the Pmill run due to its volume. We extract the BAO scale through the dilation

parameter, α, which is related to physical distances via (Eisenstein et al., 2005)

α ≡ DV(z)rfid
d

Dfid
V (z)rd

, (6.5.27)

where

DV(z) =
[
cz(1 + z)2D2

A(z)H−1(z)
]
, (6.5.28)

DA(z) is the angular-diametre distance, rd is the sound horizon at the baryon drag

epoch (zd ∼ 1020) and the superscript ‘fid’ indicates the value of the distances in

our fiducial cosmology, i.e., the Pmill cosmology (see Sec. 6.2.1). In our fiducial

cosmology, the values of DV(z) and rd are,

Dfid
V (z = 0.60) = 2141.07 Mpc (6.5.29)

Dfid
V (z = 0.74) = 2502.62 Mpc (6.5.30)

Dfid
V (z = 0.93) = 2926.11 Mpc (6.5.31)

rfid
d = 148.13 Mpc . (6.5.32)

The BAO scale can be extracted by fitting the monopole of the power spectrum

(or correlation function) to a template that includes the dilation parameter. There-

fore, the monopole of the power spectrum is modelled as the product of a smooth

component and the BAO signal as (e.g. Anderson et al. 2014; Ross et al. 2015),

P0,fit(k) = Psm(k)Odamp(k/α) , (6.5.33)

where Psm(k) is a smooth power spectrum, i.e., without any BAO feature, and

Odamp(k) represents the damped BAO signal (see below for the definitions of these

quantities).

The smooth power spectrum component is modelled as (Anderson et al., 2014;

Ross et al., 2015; Hernández-Aguayo et al., 2020b)

Psm(k) = B2
pPnw(k) + A1k + A2 +

A3

k
, (6.5.34)
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where Pnw(k) is a smooth “de-wiggled” template obtained using the fitting formula

of Eisenstein & Hu (1998), Bp is a large-scale bias parameter, and A1, A2 and A3

are further free parameters.

The oscillatory component of the power spectrum is given by,

Odamp(k) = 1 +

(
Plin(k)

Pnw(k)
− 1

)
e−

1
2
k2Σ2

nl , (6.5.35)

where Σnl is a damping parameter.

The monopole of the redshift-space correlation function is given by the model

(Anderson et al., 2014; Ross et al., 2015),

ξ0,fit(s) = B2
sξlin, damp(αs) +

a1

s2
+
a2

s
+ a3 , (6.5.36)

where ξlin,damp(s) is the Fourier transform of Pnw(k)Odamp(k), Bs is the equivalent

of Bp mentioned above, and a1, a2 and a3 are polynomial free parameters.

To obtain the best-fitting α value, we use Bayesian statistics and maximise the

likelihood, L ∝ exp(−χ2/2) (where χ2 is defined by Eq. (6.5.13)) by fitting the

measurements of the monopole of the power spectrum on scales with k < 0.3hMpc−1

and on scales with s > 40h−1Mpc for the monopole of the correlation function.

To find the best-fitting α value and its confidence levels we again use the MCMC

technique via the package emcee.

Fig. 6.17 displays the BAO feature in Fourier (left panel) and configuration space

(right panel) at z = 0.74 (similar trends were found at z = 0.60 and z = 0.93). The

BAO feature was isolated by dividing the best-fitting model and measurements of the

monopole of the power spectrum by the smooth component of the best-fitting model.

In the case of the monopole of the correlation function, we subtract the smooth

component of the best-fitting model to the best-fitting model and measurements.

We can see a clear BAO signal in both cases.

Our estimates of the dilation parameter are shown in Fig. 6.18 together with

isotropic BAO measurements from the 6dFGRS at z = 0.11 (Beutler et al., 2011),

the SDSS MGC at z = 0.15 (Ross et al., 2015), BOSS DR12 at z = [0.38, 0.61]

(Alam et al., 2017), WiggleZ at z = [0.44, 0.6, 0.73] (Blake et al., 2011b), eBOSS

DR14 LRGs at z = 0.72 (Bautista et al., 2018) and eBOSS DR14 QSO sample

at z = 1.52 (Ata et al., 2018). The black errorbars are from the DESI forecast
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Figure 6.17: BAO signals in the monopole of the power spectrum (left panel) and cor-

relation function (right panel) at z = 0.74. Blue dots with error bars come from the

measurements from our glam-LRG catalogues. The solid lines show the predictions

from the best-fitting BAO models. In order to highlight the BAO features, we have

divided the P (k) measurements and the best-fitting model by the no-wiggle power

spectrum of the best-fitting model. In configuration space we have also subtracted

the smooth component of the best-fitting model.
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of the correlation function. We show the measurements from different galaxy surveys

as labelled. The black errorbars show the DESI 14K forecast presented in DESI

Collaboration et al. (2016).
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(see table 2.3 of DESI Collaboration et al., 2016). At a first glance, our estimates

of the errorbar bars (red and blue symbols) have almost the same amplitude as

those predicted for DESI; the simple discussion above in terms of the comparison

of the glam simulation volume and the volume of the redshift shells to be probed

by DESI suggest that the errors could differ by a factor of around two, although

different assumptions are made in arriving at the two estimates.

Using the fiducial values of Dfid
V , Eqs. (6.5.29)−(6.5.31), we convert our best-

fitting α values into distance measurements via Eq. (6.5.27),

DV(z = 0.60) =

 2140± 28 (rd/r
fid
d ) Mpc P0(k) ,

2145± 27 (rd/r
fid
d ) Mpc ξ0(s) ,

(6.5.37)

DV(z = 0.74) =

 2505± 31 (rd/r
fid
d ) Mpc P0(k) ,

2508± 33 (rd/r
fid
d ) Mpc ξ0(s) ,

(6.5.38)

DV(z = 0.93) =

 2927± 38 (rd/r
fid
d ) Mpc P0(k) ,

2926± 40 (rd/r
fid
d ) Mpc ξ0(s) .

(6.5.39)

We find good agreement between our estimates and the fiducial values of DV(z).

The agreement is well within the 1σ level. In our case, the monopole of the correla-

tion function gives slightly better constraints than the power spectrum. In general,

we can estimate the isotropic BAO distance to better than 1.3 per cent in both

spaces.

6.6 Summary

In this Chapter, we have presented predictions for the properties and clustering of

LRGs selected using the colour-magnitude cuts in the r, z,W1 bands that will be

applied in the DESI LRG survey (DESI Collaboration et al., 2016). The predictions

were made using the Galform semi-analytic model of galaxy formation run on the

Pmill N-body simulation (Baugh et al., 2019) and a suite of low-resolution, larger

volume simulations run with the Parallel-PM N-body code glam (Klypin & Prada,

2018).
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We made predictions for the abundance of DESI-like LRGs and explore how the

target selection cuts affect which galaxies are selected and how these populate haloes

and subhaloes. We find that a small but important fraction of the most massive

galaxies (those with stellar mass log10(M∗/ h−1M�) > 11.15) are not selected as

LRGs (see Fig. 6.4). A similar trend is seen in the galaxy luminosity function, and

is most pronounced at shorter wavelengths: essentially all bright galaxies in the

W1-band luminosity function are LRGs, but only roughly half of the galaxies in the

bright end of the r-band luminosity function are LRGs. This shows that applying

the full photometric selection is essential to reproduce LRGs in a galaxy formation

model and that using a proxy, such as stellar mass, to select LRGs is at best an

approximation. We explored the galaxy-(sub)halo connection of LRGs through the

halo occupation distribution and the subhalo mass function. We find that the shape

of the HOD does not follow the canonical shape proposed by Zheng et al. (2005);

in particular, the occupation of central galaxies does not reach unity for the most

massive haloes (see Fig. 6.5), and drops with increasing mass.

We compared the HOD and the subhalo mass functions of galaxies selected by

their stellar mass with those measured for the LRGs (see Fig. 6.6). By doing this

exercise, we reaffirm that the DESI-LRG cuts affect the selection of subhaloes that

are populated by LRGs. Mass alone is not enough to determine if a subhalo hosts

an LRG. By comparing the clustering of these galaxy samples (Fig. 6.7) we found

a difference that ranges from 10% at z = 0.6 − 0.74 to up to 150% at z = 0.93.

Hence, we conclude that using galaxy stellar mass as a proxy for selecting LRGs

could change the expected clustering signal.

To prepare for the clustering measurements of DESI we ran 1000 glam simula-

tions. When comparing the halo statistics between the glam simulation ensemble

and the Pmill high-resolution run, we found good agreement between the halo mass

functions, but differences of ∼ 10% in the halo clustering (see Fig. 6.1). This dif-

ference can be attributed to the different halo finder used in the Pmill and glam

simulations. Despite the difference in halo clustering, the galaxy clustering statistics

measured from the glam-LRG catalogues are in good agreement with that in the

Pmill-Galform LRG sample in both configuration and Fourier space. To popu-
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late the glam halo catalogues with DESI-like LRGs we used the tabulated HODs

obtained from Galform. We also found a good agreement between our clustering

measurements in real-space with those reported by Kitanidis et al. (2020) and Zhou

et al. (2020) (see upper panels of Figs. 6.8 and 6.9).

We extended the analysis of covariance and correlation matrices of glam simu-

lations started by Klypin & Prada (2018) to galaxies and correlation functions (see

Figs. 6.10-6.14). We found that the galaxy correlation matrix shows a different and

more complex pattern than its dark-matter counterpart.

We presented predictions for the large-scale clustering of DESI-like LRGs in

configuration and Fourier space, by extracting the linear growth rate from the linear

Kaiser RSD model and the BAO scale from the isotropic dilation parameter. In a

follow-up project, we plan to extend this study to non-linear models of RSDs and an

anisotropic analysis of the BAO scale, including the impact of the light-cone survey

geometry and observational systematic.

Using our glam-LRG catalogues we estimated the growth of structure from the

ratio of the monopole in redshift space to the real-space power spectrum with a pre-

cision of ∼ 3−4%, and we can measure the BAO scale with a 1.3% precision in both

configuration and Fourier space. Nevertheless, if we want to compare the precision

of our measurements with those expected from DESI (table 2.3 of DESI Collabo-

ration et al., 2016), our error estimations should take into account the contribution

from the expected volume covered by DESI (see Sec. 6.5.2 for details). However,

the amplitude of the statistical errors estimated from our best-fitting search on the

linear growth rate and BAO scale are consistent with the forecast presented by DESI

Collaboration et al. (2016).



Chapter 7

Conclusions

7.1 Summary of the thesis

7.1.1 Marked correlation functions in f(R) gravity

In Chapter 2, we investigated if the differences of the unmarked correlation func-

tions between three Hu & Sawicki f(R) chameleon models with fixed n = 1 and

|fR0| = 10−6, 10−5, 10−4 (denoted F6, F5 and F4) and GR could be boosted by

using an alternative approach to measure galaxy clustering with the marked cor-

relation function (Sheth et al., 2005; White, 2016). For this purpose we use two

definitions for the environment of galaxies/haloes: a) the number density field and

b) the Newtonian gravitational potential of the host halo. For the former we anal-

yse three marks: i) an inverse power-law which enhances low-density regions (see

Eq. (2.3.11)), ii) a log-transform mark which up-weighs intermediate- and high-

density regions (see Eq. (2.3.12)) and iii) a Gaussian mark given by Eq. (2.3.17)

which allows us to up-weight only intermediate-density regions, ρR = 1.25 − 1.88.

For the latter we use a Gaussian mark which allows us to up-weight haloes (and

galaxies within those haloes) with mass 1013 < M200c/[h
−1M�] < 1014.

If we consider the statistical errors presented in this chapter, then the differ-

ences between the f(R) signals with respect to GR are significant. It should be

feasible to test the differentiating power of marked clustering statistics using real

data from current galaxy surveys. In future work we need to improve the resolution
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of the simulations and make more realistic mock galaxy catalogues to allow a fairer

comparison with upcoming observations.

In Chapter 2 we have demonstrated the potential of the marked correlation

function to differentiate between gravity models. The next step is to extend these

calculations, which were presented for massive galaxies, to the emission line galaxies

that will be selected by the DESI and Euclid redshift surveys.

7.1.2 Redshift spaced distortions in modified gravity theo-

ries

In Chapter 3, we have presented results on the estimation of the redshift space

distortion parameter, β, which is directly related to the linear growth rate of matter

in the Universe. In order to understand the potential of using this parameter to

constrain cosmological models, we have tested the estimation of this parameter for

five different gravity models: a flat ΛCDM model based on General Relativity (GR),

two variants of the Hu & Sawicki (2007) f(R) gravity model (F6 and F5) and two

variants of the normal branch of the DGP (Dvali et al., 2000) model (N5 and N1).

Our main conclusions from Chapter 3 are as follows:

1. Measurements of redshift space distortions on large scales can help us to dis-

tinguish between some gravity models, such as N1, but in general the model

differences from GR are small compared with statistical and theoretical un-

certainties (which depends on survey specifications), in particular for f(R) or

chameleon models in general.

2. Chameleon and Vainshtein models have distinct model predictions, which are

directly related to the different properties of the fifth forces in the models: in

chameleon-type models the fifth force is of Yukawa type and gets suppressed

on scales above the inverse Compton mass of the scalar field (typically ∼ 10

Mpc or smaller), while for Vainshtein-type models the fifth force is long ranged

and can alter the large-scale velocity field substantially.

3. The lack of a Fingers-of-God term in the linear Kaiser model produces an over
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and underestimation of the β parameter when using the statistics R(s) and

Q(s)/ξw(s), respectively.

4. The linear Kaiser prediction is independent of the model of gravity, while

the nonlinear model in its current form is based on GR only and we have

tested it in f(R) gravity models for the first time (the same nonlinear model

was used to validate the estimation of the growth rate for nDGP models in

Barreira et al. (2016)). The fact that the use of this ‘incorrect’ non-linear

model produces reasonable constraints for β for the modified gravity models

studied here offers a practical way to measure possible signatures of modified

gravity in the large-scale structure of the Universe.

5. We have tested the effect of using different ranges of scales in the fitting,

and found that for smin = 20h−1Mpc the nonlinear model cannot recover β

correctly at all redshifts for all models including GR. In spite of the theory

predicting a higher β at the scale range with smin = 20h−1Mpc, the relative

difference between the MG models and GR agrees well with the fiducial values

from the simulation. The higher, biased value recovered for β can be mitigated

by excluding data between 20 and 40h−1Mpc, at the expense of increased

measurement error.

6. Using different estimators such as multipoles and wedges can produce different

constraints because of the different information they encode, but the difference

is not statistically significant.

We note that our conclusions are different from other recent works, such as He

et al. (2018). This is due to the focus on different scales (He et al. concentrated on

small and highly nonlinear scales), and reflects the strong scale-dependence of the

behaviours in some MG models.

7.1.3 Galaxy formation in braneworld models

In Chapter 4, we introduced a new set of full-physics hydrodynamical simulations of

the nDGP braneworld model. We extended the SHYBONE (Simulating HYdrody-
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namics BeyONd Einstein) simulations (Arnold et al., 2019) by exploring galaxy for-

mation in the N5 and N1 nDGP models in boxes of sizes 62h−1Mpc and 25h−1Mpc

using 2×5123 dark matter particles and initial gas cells. This allowed us to explore,

for the first time, the impact of baryonic physics on galactic scales in braneworld

models of modified gravity and made predictions on the stellar content of dark

matter haloes and galaxy evolution through cosmic time in these models.

We found significant differences between the GR and nDGP models in the power

spectra and correlation functions of gas, stars and dark matter of up to ∼ 25 per cent

on large scales. Similar to their impact in the standard cosmological model (ΛCDM),

baryonic effects can have a significant influence over the clustering of the overall

matter distribution, with a sign that depends on scale. Studying the degeneracy

between modified gravity and galactic feedback in these models, we found that

these two physical effects on matter clustering can be cleanly disentangled, allowing

for a method to accurately predict the matter power spectrum with baryonic effects

included, without having to run hydrodynamical simulations.

Depending on the braneworld model, we found differences compared with GR of

up to∼ 15 per cent in galaxy properties such as the stellar-to-halo-mass ratio, galaxy

stellar mass function, gas fraction and star formation rate density. The amplitude of

the fifth force is reduced by the presence of baryons in the very inner part of haloes,

but this reduction quickly becomes negligible above ∼ 0.1 times the halo radius.

The SHYBONE-nDGP simulations aim to assist future galaxy surveys by making

predictions for the small-scale galaxy clustering and stellar properties in galaxies.

7.1.4 BAO peak position from different galaxy selections

In Chapter 5, we investigated if, for a fixed number density of targets and redshift,

there is an optimal way to select a galaxy sample in order to measure the baryon

acoustic oscillation (BAO) scale, which is used as a standard ruler to constrain the

cosmic expansion.

We used the mock galaxy catalogue built by Smith et al. (2017) in the Millennium-

XXL N-body simulation with a technique to assign galaxies to dark matter haloes

based on halo occupation distribution modelling, we considered the clustering of



7.1. Summary of the thesis 180

galaxies selected by luminosity, colour and local density. We assessed how well the

BAO scale can be extracted by fitting a template to the power spectrum measured

for each sample.

We found that the BAO peak position is recovered equally well for samples

defined by luminosity or colour, while there is a bias in the BAO scale recovered

for samples defined by density. The BAO position is contracted to smaller scales

for the densest galaxy quartile and expanded to large scales for the two least dense

galaxy quartiles. For fixed galaxy number density, density-selected samples have

higher uncertainties in the recovered BAO scale than luminosity- or colour-selected

samples.

Our results are derived in the context of a HOD mock catalogue (Smith et al.,

2017) in which galaxies are assigned magnitudes (r-band) and colours (0.1(g − r))
such that they provide a reasonable match to the projected two-point correlation

function as measured in the SDSS and GAMA surveys (Zehavi et al., 2011; Farrow

et al., 2015). It remains to be seen if the same conclusions are valid when using more

complex but more physically realistic methods to populate haloes with galaxies, such

as hydrodynamic simulations or semi-analytic models of galaxy formation. These

physical models do not assume a particular form for the halo occupation distribu-

tion, but instead predict the galactic content of haloes. This is directly relevant to

the case of applying different selections to construct galaxy samples. Furthermore,

hydrodynamical simulations can address the displacement of matter due to baryonic

physics, which may have an impact on the BAO signal. Due to computational cost

and the requirement for high resolution for robust implementation of the physics,

hydrodynamical simulations are not yet able to reach the gigaparsec volumes needed

for BAO studies can easily be simulated, however semi-analytic models (e.g. Hen-

riques et al., 2015; Lacey et al., 2016; Lagos et al., 2018; Baugh et al., 2019) look

more promising on short time scales. Such studies will be crucial to characterise

any systematic shift in the BAO position resulting from selecting galaxy subsamples

based on luminosity, colour, environment or emission lines.
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7.1.5 Covariance and clustering of DESI-like LRGs

In Chapter 6, we described a novel technique which uses the semi-analytical model

of galaxy formation Galform, embedded in the high-resolution N-body Planck-

Millennium simulation, to populate with DESI-like LRGs a thousand halo catalogues

generated using the Parallel-PM N-body glam code.

Our hybrid scheme allows us to make clustering predictions on scales that cannot

be modelled in the original Pmill N-body simulation. LRGs are selected in the

redshift range z = 0.6−1 from the Galform output using similar colour-magnitude

cuts in the r, z and W1 bands to those that will be applied in the Dark Energy

Spectroscopic Instrument (DESI) survey.

We found that the LRG-halo connection is non-trivial, leading to the predic-

tion of a non-standard halo occupation distribution; in particular, the occupation of

central galaxies does not reach unity for the most massive haloes, and drops with in-

creasing mass. The glam catalogues reproduce the abundance and clustering of the

LRGs predicted by Galform, and show good agreement with recent measurements

of the clustering of DESI-like LRGs using photometric redshifts. We use the glam

mocks to compute the covariance matrices for the two-point correlation function

and power spectrum of the LRGs and their background dark matter density field,

revealing important differences. We also make predictions for the linear-growth rate

and the baryon acoustic oscillations distances at z = 0.6, 0.74 and 0.93.

We conclude that the colour-magnitude cuts have a big impact on the properties

and clustering of LRGs, showing that LRGs are different than stellar mass selected

galaxies. But more importantly, the analysis presented in this Chapter provided

accurate estimates on the galaxy clustering expected by DESI-LRGs thanks to our

glam-HOD pipeline. Moreover, our pipeline can be easily adapted to the specifica-

tions of other next generation surveys such as Euclid, the Vera Rubin Observatory

(formerly the LSST), PFS and 4MOST.
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7.2 Future work

7.2.1 Unveiling the nature of gravity with future cosmolog-

ical simulations and galaxy surveys

As we discussed throughout this thesis, cosmological simulations play a central role

in the preparation for future surveys, so we need to adapt existing N-body codes

to study the clustering of galaxies at an unprecedented level of accuracy. Future

surveys will only be able to meet their goal of understanding the cosmic acceleration

if we have predictions for galaxy formation that match such accuracy in models

beyond Einstein’s General Relativity (GR). However, simulating an MG universe

is not an easy task (as we showed in Chapters 2-4). Given the non-linear nature

of the differential equations to be solved, an MG simulation can be more than 10

times slower than a GR simulation. For this reason, the investigation of fast N-body

simulations techniques (e.g., glam Klypin & Prada (2018)) to generate synthetic

sky catalogues in MG models is crucial.

We are planning to adapt the glam code, presented in Chapter 6, to run large N-

body simulations of MG models. The performance of glam has been tested against

other approximate methods such as cola and FastPM showing a speed-up of 1.5×
and 3.9×, respectively (Klypin & Prada, 2018), making it ideal to adapt for MG

and insert into our pipeline to analyse galaxy clustering for future surveys. We are

going to implement the chameleon f(R) gravity model (Hu & Sawicki, 2007) and

the nDGP braneworld model (Dvali et al., 2000) into glam. As an example of

possible applications of this new code, we will generate mock catalogues of luminous

red and emission-line galaxies (LRGs and ELGs) for the desi following the method

developed in Chapter 6. As we mentioned before, this method can easily be extended

to other surveys, e.g., Euclid, the lsst, ska and the Subaru-pfs.

The galaxy catalogues we will build will be used for a wide range of research

topics. We are interested in constraining chameleon f(R) gravity and Vainshtein

type (e.g., nDGP) models by combining galaxy clustering measurements, from two-

point statistics (correlation functions and power spectrum) to higher-order estima-

tors (e.g., bispectrum) including redshift space distortions analysis and gravitational
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lensing statistics. Also, we will be able to constrain chameleon f(R) gravity using

the clustering of emission-line galaxies. ELGs tend to populate low-mass haloes

where the chameleon screening mechanism is inefficient, so their clustering pattern

will be modified by the faster growth of small haloes in modified gravity. This study

will complement the results of Chapters 2 and 3.

A rigorous analysis of the estimators and their ability to constrain MG models

requires us to generate a substantial number of realisations of simulations to explore

the statistical properties of the estimators and characterise the significance of the

differences observed (as shown in Chapter 6). Furthermore, for comparing models

one also needs the covariance matrices to accurate estimate the errors in the mea-

surements and to reach the level of statistical precision needed for future surveys,

this require the generation of thousands mock catalogues and will be possible with

our MG version of glam.

7.2.2 Exploring the galaxy-halo connection in modified grav-

ity models

Besides the study of the large-scale distribution of galaxies in the Universe, it is

important to understand the evolution of individual galaxies in different gravity

models by exploring the distribution of gas and stars on galactic scales and to

confront theoretical expectations with observations of the Milky-Way obtained by

e.g. the gaia mission (Gaia Collaboration et al., 2016).

An important aspect which will be enabled our shybone-nDGP simulations

(presented in Chapter 4) is a deeper understanding of the galaxy-halo connection,

especially in non-standard cosmological models. This connection is essential to

constrain cosmological models using galaxy surveys and to explain the properties

and distribution of dark matter with galaxies.

In addition, the high-resolution and the large number of snapshots of the DM-

only version of the shybone simulations offer the possibility to explore galaxy for-

mation using semi-analytical models such as Galform. These results will com-

plement our predictions of the galaxy content of dark matter haloes from the full-

hydrodynamical simulations.
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Also, we will study the small-scale galaxy clustering using different galaxy prop-

erties, such as galaxy stellar mass, luminosity in different bands, star formation

rate and others. We will use these properties to study the redshift-space clustering

at scales s ≤ 10h−1Mpc in different gravity models to find signatures of modified

gravity on the smallest scales.

Finally, we plan to continue improving our MG numerical simulations, for exam-

ple, to simulate Milky-Way and Local-Group like systems through zoom techniques.

These simulations will help us to understand the impact of modified gravity on small

cosmological scales and the more complex of the astrophysical processes.

7.3 Concluding remarks

Cosmology is entering into a golden era of high precision measurements and more

detailed numerical simulations. The data that will be provided by DESI, Euclid,

4MOST, PFS, etc., will be used to reveal the nature of the accelerated expansion of

the Universe. In this thesis, we have highlighted the importance of making accurate

predictions of the galaxy formation and clustering in the standard and non-standard

cosmological scenarios. We hope that the results presented in this thesis will help

in the analysis and preparation of future galaxy surveys to put tight constraints in

modified gravity models and to test the nature of gravity on cosmological scales.



Appendix A

Tests of systematic effects

In this Appendix we include some tests of the systematic effects in the constraints

presented in Chapter 3, and materials that contain additional information to the

results shown in the main text.

A.1 Systemtics validation: linear bias

Figure A.1 shows the linear bias parameter derived from the fitting using the non-

linear model compared to the actual values measured from the mock galaxy cata-

logues. The left panel shows the bias values obtained by using a minimum fitting

scale smin = 20h−1Mpc and the right panel corresponds to using smin = 40h−1Mpc.

In the MCMC fitting, the matter power spectrum was calculated by calling the

camb code with an input of fiducial σ8. The amplitude of the matter power spec-

trum is therefore degenerate with the linear bias the b1. In Figure A.1, the linear

bias is obtained by a rescaling, b1 = b1MCMC
σinput

8 /σtrue
8 . The initial conditions of

our simulations were generate using Zel’dovich approximation at zini, which has a

worse-than-percent-level accuracy (Crocce et al., 2006); therefore the σtrue
8 value we

used in this rescaling is 0.844, which was obtained by requiring that the resulting

camb power spectrum to best agree with the one measured directly from the N-body

initial condition.

The filled and open symbols in Figure A.1 are respectively the linear bias b1 for

the different models and redshifts rescaled using the corresponding the constraints

185



A.2. The impact of covariance matrix 186

0.0 0.1 0.2 0.3 0.4 0.5
z

1.5

1.6

1.7

1.8

1.9

2.0

b(
z)

smin = 20 h−1Mpc

GR
F6
F5
N5
N1

Fix AP
Free AP

0.0 0.1 0.2 0.3 0.4 0.5
z

1.5

1.6

1.7

1.8

1.9

2.0

b(
z)

smin = 40 h−1Mpc

Figure A.1: A comparison of the linear bias parameter b1 obtained by appropriately

rescaling the best-fit value b1MCMC
using the nonlinear model (symbols) and from

direct measurements using the mock galaxy catalogues (lines), for the three redshifts

(as shown by the horizontal axis) and all models (see legend). The filled and open

symbols are respectively from MCMC fittings where the AP parameters q⊥, q‖ are

fixed and are left free to vary; the left and right panels are respectively from MCMC

fittings with smin = 20 and 40h−1Mpc.

on b1MCMC
values where the AP parameters are fixed and left free to vary during the

MCMC fitting. We can see that in both cases they agree well with the true results

measured from the mock galaxy catalogues (the coloured curves) for GR, F6, F5

and N5. For N1 the constraint on the bias values are significantly higher compared

with the true values, which is because the σtrue
8 used in the rescaling is the GR value,

and the corresponding N1 value is larger (for the other MG models the difference

of σtrue
8 from GR is smaller). We also find that the b1 values are well recovered for

both smin = 20 and 40h−1Mpc.

A.2 The impact of covariance matrix

In the constraints based on linear perturbation theory in Section 3.4.1, the error

bars in the χ2 minimisation were obtained as the standard deviations from the 5

realisations with 3 different LOS of redshift-space galaxy catalogues for each model,



A.2. The impact of covariance matrix 187

which neglects the correlation between the different s bins. Here we would like to

check the impact of including such correlations on the parameter inference for β.

To this end we have redone the fitting of β by using the covariance matrix

from the Gaussian approximation instead of the standard deviations from the 15

realisations in Eq. (6.5.13). We consider two estimators predicted using the linear

Kaiser model, clustering wedges and Q(s) (see Sec. 3.4.1 for details), for this test.

Since we are taken the covariance matrix, we minimise a χ2 given by

χ2(β) = [E(si)− Eth(si; β)]TC
−1(E)
ij [E(sj)− Eth(sj; β)] , (A.2.1)

where E(s) is the measured estimator, Eth(s; β) is the theoretical prediction from

the linear model and C
(E)
ij is the covariance matrix for each estimator.

For linear clustering wedges, we use the covariance matrix from their non-linear

analogue. In the left panel of Fig. A.2 we can find the results of this exercise for

scales smin = 40h−1Mpc. The result shows substantial difference from that displayed

in the lower right panel of Fig. 3.5. This suggests that the exact way to estimate

the error budget can have a non-negligible impact on the calculation of χ2, and

consequently on the estimation of β. As we found in Sec. 3.4.1, the best-fitting

β values when smin = 40h−1Mpc are closer to the true values than the results at

smin = 20h−1Mpc. However, these estimations are once again well below to the true

values of β as measured from the mock galaxy catalogues. One of the explanation

for this behaviour could be due to the correlation between the error and the data

itself. As pointed out by (Dodelson & Schneider, 2013) when the error is estimated

from data and especially when it is positively correlated with the data, the inferred

parameters are likely to be biased high. Also we have to consider the fact that the

15 realizations have certain overlap among each other. Further tests should be done

in the future. Again, the relative differences between MG and GR are consistent

with the previous findings in linear and nonlinear models.

We tried the same test for Q(s), by using the Kaiser formula to predict its

theoretical value and the same covariance matrix used for the nonlinear model to

estimate the corresponding Q(s)−covariance matrix. Starting from the Gaussian

covariance matrix for the correlation multipoles, we applied a basis transformation
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Figure A.2: Left panel: Similar to the third row of Figure 3.5 but now we have used

the full covariance matrix from the nonlinear Markov chains to estimate the best-fit

values and error bars for β by minimising the χ2 described in the text. Middle panel:

the same as the left panel, but the estimator used in the constraint is Q(s). Right

panel: the same as the previous panels, but using the R(s) estimator.

and obtained a covariance for the Q(s) estimator,

CQ
ij ≡

∑
l,m

∂Qi

∂Vl

∂Qj

∂Vm
Clm, (A.2.2)

where Clm is the covariance matrix for [ξ0, ξ2] and V = [ξ0, ξ2] is the data vector.

These tests showed similar qualitative behaviour to the case of using correlation

function wedges discussed above, with more biased constraints on β, and the results

are shown in the middle panel of Figure A.2.

Following a similar procedure to the Q(s) estimator, we generated a covariance

matrix for R(s). The covariance matrix for the R(s) estimator requires the knowl-

edge of the covariance between the real space correlation function and the redshift

space monopole. To achieve that, first, we modified the Eq. (15) in Grieb et al.

(2016) by inserting the product of power spectrum both in real and redshift space.

Second, a basis transformation similar to Eq. (A.2.2) is applied,

CR
ij ≡

∑
p,q

∂Ri

∂Up

∂Rj

∂Uq
Cpq , (A.2.3)

where Cpq is the covariance matrix for [ξ0, ξr] with data vector U = [ξ0, ξr]. The

biggest impact of the covariance matrix is the reduction of the error bar for all

models at all redshifts (see right panel of Fig. A.2). The best-fitting β values are



A.3. Posterior distributions of parameters 189

higher than the fiducial values because there is an offset between the simulation

measurements and the theoretical expectations (see left panel of Fig. 3.4).

On the other hand, we have checked explicitly (not shown here) including cor-

relations between different s bins, i.e., the non-diagonal elements of the covariance

matrix, leads to small changes in the best-fitting β values.

A.3 Posterior distributions of parameters

In the discussions in the main text, we have mainly focused on the constraints

and posterior distribution of the parameter β. However, constraints on the other,

nuisance, parameters could also be of interest, not only because they can help us

to understand/interpret the results, but also because some of these parameters are

physically meaningful quantities which may be affected by modified gravity.

Figure A.3 shows the posterior distribution of the parameters in the MCMC

fit. The different colours correspond to different cosmological models (following

the same colour scheme as used in all the other plots). In these MCMC runs, all

parameters including the AP parameters q⊥, q‖ were allowed to vary freely. The

estimators used are the three multipole moments ξl, with smin = 40h−1Mpc. All

results are at z = 0.5. We can see that fσ8 shows by far the largest difference

between the different gravity models, while most other parameters are fairly similar

in all models. We have also checked the same figure from using the three wedges (ξw)

as the estimators, and found the resulting posterior distributions of all parameters

to be nearly identical (not shown here).

For the case of smin = 20h−1Mpc, we found that using correlation function

wedges (ξw(s)) and multipole moments (ξl(s)) can lead to quite distinct posterior

distributions for some parameters, in particular b2 and avir (see Fig. A.4). This is

not surprising given that the two estimators differ by the small-scale information

they contain, which are most relevant to these two parameters. The constraints

on the other parameters are more or less consistent between the two estimators.

Comparing Figs. A.3 and A.4, we can see that (i) the constraint fσ8 is stronger

in the case of smin = 20h−1Mpc, similar to what was found in Figure 3.6 and by
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Barreira et al. (2016), and (ii) the uncertainties in the parameter constraints are

smaller in the case of smin = 40h−1Mpc, reflecting the fact that more information

(on smaller scales) is used. These indicate the importance of using a more accurate

model for the theoretical predictions for parameter constraints and inferences.

We have also tested the effects of fixing the AP parameters in the MCMC fit-

ting, and found its effect on the nuisance parameters is much smaller than that of

using different estimators (multipoles vs. wedges). Regarding the β parameters the

difference of free/fixing AP parameter is within one σ for different models over the

redshifts. The results are not shown here for simplicity.
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Figure A.3: Posterior distribution of the parameters using three multipoles ξ`=0,2,4

with a minimum fitting range smin = 40h−1Mpc for different cosmological models.

The distribution is evaluated at redshift z = 0.5. The contours represent the 68%

(darker region) and 95% (lighter region) confidence level.
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(ξl(s), purple colour) and three correlation function wedges (ξw(s), blue colour).

The dark and light shaded regions are respectively the 1σ and 2σ contours, and the

1D marginalised distributions for the different parameters are shown as curves. The

results are from the MCMC chains for GR at z = 0.5, where the AP parameters were

left free to vary, and the minimum scale used for the fitting was smin = 20h−1Mpc.
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