
SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 1

Model-based Joint Bit Allocation between
Geometry and Color for Video-based 3D Point

Cloud Compression
Qi Liu, Hui Yuan, Senior Member, IEEE,Junhui Hou,Senior Member, IEEE,

Raouf Hamzaoui,Senior Member, IEEE,and Honglei Su

Abstract—In video-based 3D point cloud compression, the
quality of the reconstructed 3D point cloud depends on both the
geometry and color distortions. Finding an optimal allocation
of the total bitrate between the geometry coder and the color
coder is a challenging task due to the large number of possible
solutions. To solve this bit allocation problem, we first propose
analytical distortion and rate models for the geometry and
color information. Using these models, we formulate the joint
bit allocation problem as a constrained convex optimization
problem and solve it with an interior point method. Experimental
results show that the rate-distortion performance of the proposed
solution is close to that obtained with exhaustive search but at
only 0.66% of its time complexity.

Index Terms—Point cloud compression, bit allocation, rate-
quantization (R-Q) model, distortion-quantization (D-Q) model,
rate-distortion optimization (RDO).

I. I NTRODUCTION

W ITH the rapid development of 3D scanning tech-
niques [1], point clouds are now readily available

and popular [2]. There are already many 3D point cloud
applications in the fields of 3D modeling [3] [4], automatic
driving [5], 3D printing [6], augmented reality [7], etc. Com-
pared with traditional 2D images and videos, a 3D point
cloud describes the 3D scene or object with the geometry
information and the corresponding attributes (e.g., color, re-
flectance) [8]. To represent a 3D scene accurately, millions
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of points must be captured and processed. This huge data
volume poses a severe challenge for efficient storage and
transmission. In the past few years, major progress in both
static and dynamic point cloud compression has been made [9]
(see Section II).

To standardize 3D point cloud compression (PCC) technolo-
gies, the Moving Pictures Expert Group (MPEG) launched
a call for proposals in 2017. As a result, three point cloud
compression technologies were developed: surface point cloud
compression (S-PCC) with software platform TMC1 [10] for
static point cloud data, video-based point cloud compression
(V-PCC) with software platform TMC2 [11] for dynamic
content, and LIDAR point cloud compression (L-PCC) with
software platform TMC3 [12] for dynamically acquired point
clouds. Recently, L-PCC and S-PCC were merged under the
name geometry-based point cloud compression (G-PCC) with
software platform TMC13 [13].

In this paper, we focus on the V-PCC platform (TMC2) due
to its excellent performance for compressing both static and
dynamic point clouds. The main philosophy behind V-PCC is
to leverage state-of-the-art video coders for PCC [11]. This
is essentially achieved by decomposing each point cloud of
a sequence of 3D point clouds into a set of patches, which
are independently mapped to a 2D grid of uniform blocks.
This mapping is then used to store the geometry and color
information as one geometry image and one color image. The
sequences of geometry images and color images corresponding
to the dynamic point cloud are then compressed separately
with a video coder, e.g., H.265/HEVC. Finally, the geometry
and color videos, together with metadata (occupancy map for
the 2D grid, auxiliary patch and block information) are used
to reconstruct the dynamic 3D point cloud (see [14] for more
details). Fig. 1 shows the main components of the V-PCC
encoder.

The bitstream of a compressed 3D point cloud consists of
two parts: geometry information and color information. For
a given platform, the size of each part is controlled by a
quantization parameter, which can take a large number of
values. At the same time, quantization introduces distortion,
which may affect the reconstruction quality. The aim of this
paper is to find the pair of quantization parameter values
(one for the geometry and one for color) that minimizes the
reconstruction error subject to a constraint on the total number
of bits. Since the number of candidates is very large, findingan
optimal solution with exhaustive search is too time consuming
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Fig. 1. General framework of the V-PCC encoder.

and infeasible in practice as it requires encoding and decoding
the point cloud multiple times. In this paper, we address this
challenge by proposing analytical models for the rate and
distortion and using an interior point method [15] to efficiently
solve the rate-distortion optimization problem.

The contributions of this paper are as follows.

1) We propose analytical models that characterize the rate
and distortion of the geometry and color as functions
of the V-PCC quantization steps. We show in particular
that the color distortion can be expressed as the sum of
two independent terms, one that depends on the geometry
quantization step only and one that depends on the color
quantization step only.

2) We exploit the proposed analytical models to formulate
the bit allocation problem for V-PCC as a constrained
convex optimization problem where the variables are the
quantization steps of the V-PCC video coders.

3) We use an interior point method to efficiently solve the
optimization problem.

4) We integrate our bit allocation algorithm into the latesttest
model of V-PCC (see Fig. 1).

To the best of our knowledge, our work is the first one to
study the rate and distortion characteristics of the V-PCC coder
in detail. The proposed rate and distortion models can be used
not only for the joint bit allocation of the geometry and color
information but also for other important tasks such as rate
control and error protection for transmission over unreliable
channels.

The remainder of this paper is organized as follows. In
Section II, related work is briefly introduced. In Section III,
we formulate the rate-distortion optimization problem forV-
PCC and provide analytical models for the distortion and
rate as a function of the quantization steps. In Section IV,
we use these models to solve the rate-distortion optimization

problem with an interior point method. In Section V, we
present experimental results where we compare the accuracy
and the time complexity of our approach to those of exhaustive
search. Our results show that our approach has similar rate-
distortion performance to exhaustive search with only 0.66%
of its time complexity. Section VI gives our conclusions and
suggests future work.

II. RELATED WORK

To handle the irregular data structure of 3D point clouds,
several effective transform techniques have been proposed.
These include shape-adaptive discrete cosine transform [16],
graph transforms [17] [18] [19] [20], region-adaptive hi-
erarchical transforms [21]–[24], Gaussian process trans-
forms [25] [26], and sparse representation [27] [28] [29].
Based on the previously mentioned graph transforms, Shao
et al. [30] further combined a slice partition scheme and an
intra prediction technique to improve the performance of at-
tribute compression. Instead of compressing the irregulardata
directly, some researchers [31] [32] try to map the irregular
data to a regular representation (e.g., a 2D plane) to simplify
the task. Similar ideas were previously proposed to compress
3D human motion [33] and 3D facial expression [34]–[37].
All the described methods are mainly designed for static point
clouds.

Since dynamic point clouds are becoming more and more
important in practice, efficient compression methods for dy-
namic point clouds are also required. Because of the inter-
frame redundancy of dynamic point clouds, motion estimation
and motion compensation are the key technologies to effec-
tively compress dynamic point clouds. Based on the V-PCC
platform that is provided by MPEG, Liet al. [38] proposed
using the geometry or auxiliary information to derive a better
motion vector predictor to deal with the patch inconsistency
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problem for both the geometry and attribute videos. Thanou,
Chou and Frossard [39] focused on motion estimation by using
a spectral graph wavelet descriptor. De Queiroz and Chou [40]
proposed a motion compensation approach to encode dynamic
voxelized point clouds. Anis, Chou and Ortega [41] simplified
motion compensation by representing sets of frames in a
consistently evolving high-resolution subdivisional triangular
mesh.

In our previous work [8], a bit allocation approach for
the Point Cloud Library (PCL)-based codec [31] [42] was
proposed. The PCL-based encoder recursively subdivides the
point cloud into eight subsets. This results in an octree data
structure, where the position of each voxel is represented by
its center whose attribute (color) is set to the average of
the attributes of the enclosed points. Then the octree data
is encoded by an entropy coder. In order to encode the
color attributes, the octree attributes are mapped directly to
a structured image grid using depth first tree traversal and
then the image grid is encoded with the JPEG codec.

There are two main differences between this paper and our
previous work [8]. First, since the two codecs are different,
both the rate-distortion analysis and the modeling of the rate
and distortion functions are different. In particular, in our
previous paper [8], the rate is modeled as an exponential
function of the maximum octree level and JPEG quality factor
while in this paper it is modeled as a polynomial function
of the quantization steps of the two video coders. Second,
the objective function for the rate-distortion optimization,
as well as the optimization variables are different. In this
paper, the objective function is the overall distortion, which
includes the distortion of both geometry and color information,
and the optimization variables are the quantization steps for
the geometry and color information. In [8], only the color
distortion is minimized, and the optimization variables are the
octree level and the JPEG quality factor.

III. R ATE AND DISTORTION MODELS DERIVATION

To efficiently solve the bit allocation problem, we formulate
it as a constrained optimization problem by deriving rate and
distortion models for the 3D point cloud. As the distortion of a
3D point cloud is determined by the coding distortion of both
geometry and color information, the bit allocation problemcan
be expressed as

min
(Rg, Rc)

D(Rg, Rc)

s.t. Rg + Rc ≤ RT ,
(1)

where the distortionD of the reconstructed 3D point cloud
is determined by the color distortion (Dc) and the geometry
distortion (Dg); Rg andRc are the geometry and color bitrate,
respectively, andRT is the target total bitrate. It is worth
noting that the occupancy map and auxiliary information also
consume bitrate resources. The occupancy map is a binary
array that indicates whether a pixel position is occupied or
not. The auxiliary information is used to store just a few
encoder parameters. In general, both the occupancy map and
the auxiliary information are compressed without loss. In
addition, their bitrate cost is small and fixed for a given 3D

point cloud. Therefore, we do not consider the bitrate of the
occupancy map and auxiliary information in (1).

In the V-PCC codec, a geometry video is generated from
the input point cloud and compressed with a state-of-the-art
video coder (HEVC in the latest version of the reference
software). The reconstructed geometry video is then used to
generate the color video. Next, the color video is compressed
by the same video coder. As the color and geometry distortions
are controlled by the quantization parameters (QPs) of the
video coder, the distortion models of the color video and the
geometry video depend on the quantization characteristicsof
the video coder. We considered several candidate models, and
used statistical analysis to select the model that best balances
goodness of fit with simplicity, where simplicity was measured
in terms of the number of parameters in the model. The
statistical results showed that the linear model is the best
candidate.

Since the geometry video is compressed before the color
video, the linear model was directly used for the geometry
distortion. Because color compression is based on the re-
constructed geometry in the V-PCC encoder, the color dis-
tortion depends on the geometry distortion. We derived the
dependency between the geometry and the color distortions
by decomposing the color distortion into two parts based on
the definition of distortion and the law of large numbers (see
Appendix A). Next, we parameterized each part using a linear
model based on the previous analysis.

The derived rate models can be explained similarly. In
particular, we found that the influence of the geometry bitrate
on the color bitrate is very small. Therefore, we assumed
that the rate model for the color video depends only on the
quantization parameter of the color video coder.

In the remainder of this section, we exploit the properties
of V-PCC and use statistical analysis to propose distortion
and rate models, so that the bit allocation problem (1) can be
solved analytically.

A. Distortion Model

For the distortionD of the 3D point cloud, we used a linear
combination of the geometry distortionDg and color distortion
Dc. That is,

D = ωDg + (1 − ω)Dc, (2)

whereω is a weighting factor. For the geometry distortion and
color distortion, we used symmetric point-to-point distortions
based on the mean squared error (MSE) [43]. LetA andB de-
note the original point cloud and the reconstructed point cloud,
respectively. The original point cloud is encoded with V-PCC
using a given geometry and color quantization parameter pair
and the default V-PCC encoder configuration [44], while the
reconstructed point cloud is obtained with V-PCC decoding.
ThenDg= max (eB,A

g , eA,B
g ), where

eB,A
g =

1

|B|

∑

bi∈B

‖binA(bi)‖
2
2, (3)

|B| denotes the number of points inB, nA(bi) is the nearest
neighbor ofbi in A, and‖‖2 is the Euclidean norm. Similarly,
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Fig. 2. Illustration of the relationship between the geometry distortion Dg and the geometry quantization stepQg . (a) Loot, (b) Longdress, (c) Queen, (d)
Redandblack.
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Fig. 3. Statistical results forfg(Qg) = αgcQg + βgc andfc(Qc) = αccQc + βcc. (a)-(d): relationship betweenDc andQc for Loot, Longdress, Queen,
andRedandblack, (e)-(f): relationship betweenDc andQg for Loot, Longdress, Queen, andRedandblack.

Dc = max (eB,A
c , eA,B

c ), where

eB,A
c =

1

|B|

∑

bi∈B

|C(bi) − C(nA(bi))|
2. (4)

Here C(x) is a color attribute of pointx. For simplicity,
we consider only theY (luminance) component [45] in this
paper. Because of the structure of the V-PCC encoder,Dg only
depends onQg, the quantization step size of the geometry
video coder. To obtain a relationship betweenDg and Qg,
we conducted a statistical analysis on eight point clouds
compressed according to the settings in Table VII. Fig. 2 shows
Dg as a function ofQg for theLoot, Longdress, Queen, and
Redandblack point clouds. The results suggest that a linear
model

Dg = αgQg + βg, (5)

whereαg andβg are model parameters is appropriate. Table I
gives the squared correlation coefficient (SCC) and the root
mean squared error (RMSE) between the actual data and
the fitted data when the model parametersαg and βg are
computed by the method of least squares. The SCCs are close
to 0.99, while the maximum RMSE is only 0.09, confirming
the accuracy of the model.

TABLE I
ACCURACY OFPROPOSEDGEOMETRY DISTORTIONMODEL (5)

Point Cloud SCC RMSE
Andrew 0.98 0.08
David 0.99 0.07

Longdress 0.99 0.08
Redandblack 0.99 0.07

Loot 0.99 0.07
Queen 0.98 0.09
Soldier 0.99 0.07

Basketballplayer 0.98 0.08
Average 0.99 0.08

Because color compression is based on the reconstructed
geometry in the V-PCC encoder, the color distortion depends
on the geometry distortion. In Appendix A, we show that for
the original point cloudA and the corresponding reconstructed
point cloudB, we have

eB,A
c = fB,A

g (Qg) + fB,A
c (Qc), (6)

where Qc is the quantization step size of the color video
coder,fB,A

g (Qg) depends onQg only andfB,A
c (Qc) depends

on Qc only. Similarly, eA,B
c can be decomposed aseA,B

c =
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TABLE II
ACCURACY OFPROPOSEDCOLOR DISTORTIONMODEL (10)

Point Cloud SCC RMSE
Andrew 1.00 0.83
David 1.00 0.08

Longdress 1.00 1.82
Redandblack 1.00 0.36

Loot 1.00 0.28
Queen 1.00 0.75
Soldier 1.00 0.51

Basketballplayer 1.00 0.11
Average 1.00 0.60

fA,B
g (Qg) + fA,B

c (Qc). Thus,Dc can be written as

Dc = max(eB,A
c , eA,B

c )

= max(fB,A
g (Qg) + fB,A

c (Qc), f
A,B
g (Qg) + fA,B

c (Qc))

= fg(Qg) + fc(Qc).
(7)

To obtain an analytical expression forfg(Qg) andfc(Qc),
statistical experiments were conducted, as shown in Fig. 3.To
investigate the exact expression offc(Qc), which characterizes
the relationship betweenQc andDc, the influence ofQc on the
distortion of the comparison color point cloud was statistically
analyzed by settingQg to fixed values. As suggested in
Fig. 3(a)-3(d), for a fixedQg, a linear model

fc(Qc) = αccQc + βcc, (8)

where αcc and βcc are model parameters is appropriate.
Similarly, to derive an analytical expression forfg(Qg), the
relationship betweenQg andDc was statistically analyzed for
a fixedQc. Fig. 3(e)-3(h) suggests that a linear model

fg(Qg) = αgcQg + βgc, (9)

whereαgc andβgc are model parameters is suitable.
Consequently, based on (6), (8), and (9), the color distortion

can be finally written as

Dc = αgcQg + βgc + αccQc + βcc

= αgcQg + αccQc + βc,
(10)

where βc = βgc + βcc. The accuracy of (10) is verified in
Table II, which shows that all SCCs are about 1.00, and the
average RMSE is only 0.60. Finally, (2) can be rewritten as

D = ωDg + (1 − ω)Dc

= ω(αgQg + βg) + (1 − ω) (αgcQg + αccQc + βc)

= aQg + bQc + c,

(11)

where a = ωαg + (1 − ω)αgc, b = (1 − ω)αcc, and c =
ωβg+(1 − ω)βc. Table III shows the SCC and RMSE between
the actualD and the one provided by our model. In this
table, the SCC and RMSE were calculated by setting the
weighting factorω to 0.5. We can see that the average SCC
and RMSE are close to 1.00 and 0.26, respectively, which
indicates that (11) is an accurate model.

TABLE III
ACCURACY OFPROPOSEDDISTORTIONMODEL (11)

Point Cloud SCC RMSE
Andrew 1.00 0.41
David 1.00 0.05

Longdress 1.00 0.90
Redandblack 1.00 0.18

Loot 1.00 0.14
Queen 1.00 0.40
Soldier 1.00 0.25

Basketballplayer 1.00 0.05
Average 1.00 0.26
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Fig. 4. Illustration of the relationship betweenRg and Qg. (a) Loot, (b)
Longdress, (c) Queen, (d) Redandblack.

B. Rate Model

The total bitrateR is the sum of the geometry bitrate and
color bitrate, i.e.,

R = Rg + Rc, (12)

where the geometry bitrateRg depends only onQg, whereas
the color bitrateRc depends on bothQg andQc. For Rg, we
used the Cauchy-based rate model [46]

Rg = γgQ
θg

g , (13)

whereγg andθg are model parameters. Because the bitrate of a
3D point cloud is relatively large, we used kilobits per million
points (kbpmp) as the bitrate unit. Fig. 4 shows the results of
statistical experiments to verify the accuracy of (13). From this
figure, we can observe that theRg model (13) is appropriate.
This is confirmed by Table IV, which shows that the R-squared
(R2) value between the actualRg and the fitted values is equal
to 1.00. Because the bitrate of a 3D point cloud is typically
very large, the RMSE seems to be large. Therefore, we also
calculated the normalized RMSE to illustrate the fitting error
effectively. The normalized RMSE (NRMSE) is defined as

NRMSE =
RMSE

Ratemax
, (14)
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TABLE IV
VERIFICATION OF PROPOSEDGEOMETRY RATE MODEL (13)

Point Cloud R2 RMSE
(kbpmp)

Ratemax

(kbpmp) NRMSE

Andrew 1.00 1.16 81.70 0.01
David 1.00 1.14 69.68 0.02

Longdress 1.00 0.84 81.82 0.01
Redandblack 1.00 1.36 96.84 0.01

Loot 1.00 0.91 57.26 0.02
Queen 1.00 0.79 43.45 0.02
Soldier 1.00 1.19 64.27 0.02

Basketballplayer 1.00 0.68 44.74 0.02
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Fig. 5. Influence ofQg on Rc. (a) Qc=80, Qg = 8, 10, . . . , 80; (b) Qc=8,
Qg = 8, 10, . . . , 80.
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Fig. 6. Illustration of the relationship betweenRc and Qc (Rc = γcQ
θc
c ).

(a) Loot, (b) Longdress, (c) Queen, (d) Redandblack.

whereRatemax is the maximum bitrate. Table IV shows that
the NRMSE is as low as 0.01, which confirms that (13) is
accurate.

To study the effect ofQg on Rc, we compressed the color
information with a fixedQc and multipleQgs. The results,
shown in Fig. 5, indicate that the effect ofQg on Rc is
negligible. This is also confirmed by Fig. 6, which showsRc

as a function ofQc for variousQgs.
Thus, for simplicity, we can assume thatRc is only affected

by Qc. Moreover, Fig. 6 suggests that the model

Rc = γcQ
θc

c , (15)

TABLE V
VERIFICATION OF PROPOSEDCOLOR RATE MODEL (15)

Point Cloud R2 RMSE
(kbpmp)

Ratemax

(kbpmp) NRMSE

Andrew 1.00 10.95 803.89 0.01
David 1.00 0.86 141.09 0.01

Longdress 1.00 22.40 1402.56 0.02
Redandblack 1.00 8.37 572.79 0.01

Loot 0.99 9.52 306.76 0.03
Queen 1.00 7.45 392.99 0.02
Soldier 0.99 15.31 493.52 0.03

Basketballplayer 1.00 14.66 287.94 0.02

TABLE VI
ACCURACY OFPROPOSEDRATE MODEL (16)

Point Cloud R2 RMSE
(kbpmp)

Ratemax

(kbpmp) NRMSE

Andrew 1.00 8.29 885.59 0.01
David 1.00 1.30 210.77 0.01

Longdress 1.00 20.15 1484.38 0.01
Redandblack 1.00 6.01 669.63 0.01

Loot 0.99 8.10 364.02 0.02
Queen 1.00 3.21 436.44 0.01
Soldier 0.99 12.04 557.79 0.02

Basketballplayer 1.00 3.71 332.68 0.01

whereγc and θc are model parameters is appropriate to de-
scribe the relationship betweenQc andRc. This is confirmed
in Table V, which shows that theR2 of the relationship
betweenRc and Qc is larger than or equal to 0.99, while
the NRMSE is always smaller than 0.03. Accordingly, (12)
can be rewritten as

R = Rg + Rc

= γgQ
θg

g + γcQ
θc

c .
(16)

Table VI validates (16) by showing thatR2 was close to
1.00, and the NRMSE was always smaller than or equal to
0.02. Finally, Fig. 7 illustrates the accuracy of models (16)
and (11) by comparing the actual values to the values predicted
by the models.

IV. M ODEL-BASED OPTIMAL BIT ALLOCATION

ALGORITHM

Based on the analysis in Section III, the optimal bit alloca-
tion problem (1) can be converted to the problem of finding
the optimal solution of the constrained optimization problem

min
(Qg,Qc)

aQg + bQc + c

s.t. γgQ
θg

g + γcQ
θc

c ≤ RT .
(17)

To solve (17), we first need to determine the model param-
etersa, b, c, γg, θg, γc, andθc. This is done by encoding the
3D point cloud with three different pairs of quantization steps
(Qg,1,Qc,1), (Qg,2,Qc,2), (Qg,3,Qc,3) and solving the systems
of equations (18) and (19):











D1 = aQg,1 + bQc,1 + c

D2 = aQg,2 + bQc,2 + c

D3 = aQg,3 + bQc,3 + c

(18)
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Fig. 7. Illustration of the accuracy of the rate model (16) and distortion model (11). (a)-(d): accuracy of the distortion model (11) forLoot, Longdress, Queen,
andRedandblack, (e)-(f): accuracy of the rate model (16) forLoot, Longdress, Queen, andRedandblack.



















Rg,1 = γgQ
θg

g,1

Rg,2 = γgQ
θg

g,2

Rc,1 = γcQ
θc

c,1

Rc,2 = γcQ
θc

c,2

, (19)

whereD1, D2, D3 are the corresponding distortions andRg,1,
Rg,2, Rc,1, Rc,2 are the corresponding geometry and color bi-
trates, respectively. Because both the objective functionand the
constraint function in (17) are convex, the optimal quantization
steps,Qg,opt andQc,opt can be obtained with an interior point
method called the barrier method [15]. The barrier method
is simple and allows us to solve the optimization problem
to a guaranteed accuracy [15]. In this method, the convex
optimization problem is first converted to an unconstrained
optimization problem using a logarithmic barrier function[15]:

min
(Qg,Qc)

(aQg + bQc + c) − µ log[−(γgQ
θg

g + γcQ
θc

c − RT )],

(20)
where µ is the barrier parameter. The details of the barrier
method are given in Algorithm 1. The output of the interior

Algorithm 1 Barrier method for the constrained optimization
problem (17)
Input: a barrier parameterµ > 0, a decline factorη < 1 and

a desired level of accuracyǫ > 0.
Output: (Qg,opt, Qc,opt), an optimal solution to (17).
Initialization: k = 0, (Qg,opt, Qc,opt) = (Q

(k)
g , Q

(k)
c ) =

(80, 80), µ(k) = µ.
While µ(k) ≥ ǫ do

1. compute(Qg,opt, Qc,opt) as solution to (20) using
Newton’s method initialized with(Qg, Qc) = (Q

(k)
g , Q

(k)
c );

2. updatek = k + 1, (Q
(k)
g , Q

(k)
c ) = (Qg,opt, Qc,opt),

µ(k) = ηµ(k−1).
end While

Input target bitrate RT

Pre-encode point cloud 

with three different pairs 

of Qg and Qc

Calculate all the distortion 

and rate model 

parameters using (18) and 

(19) respectively

Optimize Qg and Qc using 

(17)

Convert Qg and Qc to their 

corresponding  QP

End

Start

Encoding

Fig. 8. Flow chart of the proposed bit allocation algorithm for geometry and
color information.

point method is subsequently rounded to obtain a solution that
belongs to the finite set of discrete quantization steps usedby
the V-PCC coder. While rounding makes the solution practical
for coding, it may lead to a slight violation of the constraint
on the target bitrate.

Unlike exhaustive search, the proposed algorithm does not
necessarily find an optimal solution to the original problem(1).
This is not only due to rounding but also because our analytical
rate and distortion models are only approximations. However,
the experimental results (see Section V) show that the rate-
distortion performance of the proposed algorithm is very close
to that of exhaustive search.

The flowchart of the proposed bit allocation algorithm is
shown in Fig. 8.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. 3D point cloud sequences used in the experiments. (a)Andrew, (b)Longdress, (c)Redandblack, (d)David, (e)Loot , (f)Queen, (g)Soldier,
(h)Basketballplayer.

TABLE VII
DATASET

Point Cloud Dataset Type Number of Frames Default Configuration
Andrew Microsoft Voxelized Upper Bodies static 1 ctc-all-intra.cfg
David Microsoft Voxelized Upper Bodies static 1 ctc-all-intra.cfg

Longdress Dynamic Objects dynamic 17 ctc-low-delay.cfg
Redandblack Dynamic Objects dynamic 17 ctc-low-delay.cfg

Loot Dynamic Objects dynamic 17 ctc-low-delay.cfg
Queen Dynamic Objects dynamic 17 ctc-low-delay.cfg
Soldier Dynamic Objects dynamic 17 ctc-low-delay.cfg

Basketballplayer Dynamic Objects dynamic 17 ctc-low-delay.cfg
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Fig. 10. R-D performance of the proposed algorithm (PBA) and exhaustive search (ESA). (a)Andrew, (b)Longdress, (c)Redandblack, (d)David, (e)Loot,
(f)Queen, (g)Soldier, (h)Basketballplayer.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy, rate-distortion
performance, and time complexity of the proposed bit allo-
cation algorithm. We implemented the proposed algorithm in

the test model category 2 version 9.0 (TMC2V9) [11], which
uses High Efficiency Video Coding Test Model Version 16.20
(HM16.20) [47] to compress the generated geometry and color
video frames. The barrier parameterµ, decline factorη, and
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TABLE VIII
BIT ALLOCATION ACCURACY FORESA AND PBA (ω=0.25)USING THE BITRATE ERROR(BE) AND THE QPERROR(QPE).

Point Cloud Target Bitrate
(kbpmp)

ESA PBA BE(%)
∆BE QPE

QPg QPc
Bitrate
(kbpmp) QPg QPc

Bitrate
(kbpmp) ESA PBA

Andrew

185 28 34 180.7 28 34 180.7 2.3 2.3 0.0 0
220 26 33 216.1 26 33 216.1 1.8 1.8 0.0 0
280 25 31 279.3 25 31 279.3 0.3 0.3 0.0 0
335 23 30 327.7 23 30 327.7 2.2 2.2 0.0 0

Longdress

85 38 42 83.5 38 42 83.5 1.7 1.7 0.0 0
280 26 34 272.0 26 34 272.0 2.9 2.9 0.0 0
385 24 32 369.5 24 32 369.5 4.0 4.0 0.0 0
675 22 28 669.3 22 28 669.3 0.8 0.8 0.0 0

Redandblack

85 36 40 83.4 40 38 87.3 1.9 2.7 0.8 6
280 30 28 275.9 28 28 281.4 1.5 0.5 1.0 2
385 26 26 377.9 26 26 377.9 1.8 1.8 0.0 0
675 22 22 669.6 22 22 669.6 0.8 0.8 0.0 0

David

128 30 25 126.0 32 24 131.8 1.6 3.0 1.4 3
150 31 23 149.1 31 23 149.1 0.6 0.6 0.0 0
180 27 22 178.3 27 22 178.3 0.9 0.9 0.0 0
212 22 22 210.8 22 22 210.8 0.6 0.6 0.0 0

Loot

46 36 38 45.4 40 36 49.3 1.4 7.3 5.9 6
56 36 36 53.8 38 36 51.3 4.0 8.3 4.3 2
72 32 34 69.9 36 34 65.2 3.0 9.5 6.5 4
120 28 30 114.9 30 30 112.7 4.2 6.0 1.8 2

Queen

46 30 42 45.8 32 40 51.5 0.3 11.9 11.6 4
56 30 40 54.4 30 40 54.4 2.9 2.9 0.0 0
72 28 38 67.9 28 38 67.9 5.7 5.7 0.0 0
120 22 34 117.7 22 34 117.7 1.9 1.9 0.0 0

Soldier

46 38 40 45.2 40 40 42.7 1.7 7.1 5.4 2
56 38 38 55.3 38 38 55.3 1.2 1.2 0.0 0
72 36 36 71.3 36 36 71.3 1.0 1.0 0.0 0
120 34 32 117.3 30 32 124.8 2.2 4.0 1.8 4

Basketballplayer

46 34 36 44.5 36 36 42.3 3.2 8.1 4.9 2
56 34 34 54.5 34 34 54.5 2.7 2.7 0.0 0
72 32 32 71.3 32 32 71.3 1.0 1.0 0.0 0
120 32 28 116.0 28 28 124.9 3.3 4.1 0.8 4

Average 2.0 3.4 1.4 1.3

level of accuracyǫ were set to 0.1,10−6, and10−10, respec-
tively. The quality evaluation software PCerror [48] was used
to calculate the point-to-point distortion for both color and
geometry. The performance of the proposed algorithm was
evaluated on the eight 3D point cloud sequences [49] [50]
shown in Fig. 9. The test data consist of two static point clouds
and six dynamic point clouds (Table VII).

Because the color of the point clouds in Figs. 9(a)-9(c)
is more diverse than that of the point clouds in Figs. 9(d)-
9(h), we divided the point clouds in Fig. 9 into four groups, a
complex static group (Andrew), a simple static group (David),
a complex dynamic group (LongdressandRedandblack), and
a simple dynamic group (Loot, Queen, Soldier, and Basket-
ballplayer). The performance of exhaustive search was used
as the benchmark to rate accuracy and time complexity. In
exhaustive search, a 3D point cloud was first encoded by all the
possible geometry and color quantization step pairs (ranging
from 8 to 80), which correspond toQP values 22, 23, 24,
. . . , 42. Then the subset of admissible pairs (that is, those
for which the bitrate is smaller than the target bitrate) was
identified. Finally, the pair that gave the smallest distortion

was selected from this subset.
In the proposed method, to derive the rate and distortion

models, the point clouds were empirically pre-encoded with
three geometry-color QP pairs (30, 40), (36, 30), and (38, 28).
The distortion model parametersa, b and c were computed
by solving (18), and the rate model parametersγg, θg, γc,
andθc were obtained by solving (19). Then, given the target
bitrate RT , the optimalQg,opt and Qc,opt were obtained by
solving (17) using the interior point method.

A. Bit Allocation Accuracy of Proposed Algorithm

To evaluate the accuracy of the proposed bit allocation
algorithm for the tested point clouds, we set different target
bitrates according to the geometry and color characteristics
of each sequence to cover different compression levels. For
the complex static group, the common target bitrates were
185 kbpmp, 220 kbpmp, 280 kbpmp, and 335 kbpmp. For
the simple static group, the target bitrates were 128 kbpmp,
150 kbpmp, 180 kbpmp, and 212 kbpmp. For the complex
dynamic group, the target bitrates were 85 kbpmp, 280 kbpmp,
385 kbpmp, and 675 kbpmp. For the simple dynamic group,
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TABLE IX
BIT ALLOCATION ACCURACY FORESA AND PBA (ω=0.5)USING THE BITRATE ERROR(BE) AND THE QPERROR(QPE).

Point Cloud Target Bitrate
(kbpmp)

ESA PBA BE(%)
∆BE QPE

QPg QPc
Bitrate
(kbpmp) QPg QPc

Bitrate
(kbpmp) ESA PBA

Andrew

185 28 34 180.7 28 34 180.7 2.3 2.3 0.0 0
220 26 33 216.1 26 33 216.1 1.8 1.8 0.0 0
280 25 31 279.3 24 31 282.9 0.3 1.0 0.7 1
335 23 30 327.7 23 30 327.7 2.2 2.2 0.0 0

Longdress

85 38 42 83.5 38 42 83.5 1.7 1.7 0.0 0
280 26 34 272.0 26 34 272.0 2.9 2.9 0.0 0
385 24 32 369.5 24 32 369.5 4.0 4.0 0.0 0
675 22 28 669.3 22 28 669.3 0.8 0.8 0.0 0

Redandblack

85 36 40 83.4 40 38 87.3 1.9 2.7 0.8 6
280 30 28 275.9 28 28 281.4 1.5 0.5 1.0 2
385 26 26 377.9 24 26 386.9 1.8 0.5 1.3 2
675 22 22 669.6 22 22 669.6 0.8 0.8 0.0 0

David

128 30 25 126.0 30 25 126.0 1.6 1.6 0.0 0
150 27 24 148.4 28 24 144.3 1.1 3.8 2.7 1
180 27 22 178.3 27 22 178.3 0.9 0.9 0.0 0
212 22 22 210.8 22 22 210.8 0.6 0.6 0.0 0

Loot

46 36 38 45.4 40 36 49.3 1.4 7.3 5.9 6
56 36 36 53.8 38 36 51.3 4.0 8.3 4.3 2
72 32 34 69.9 34 34 67.0 3.0 6.9 3.9 2
120 28 30 114.9 30 30 112.7 4.2 6.0 1.8 2

Queen

46 30 42 45.8 32 42 42.5 0.3 7.7 7.4 2
56 30 40 54.4 30 40 54.4 2.9 2.9 0.0 0
72 28 38 67.9 28 38 67.9 5.7 5.7 0.0 0
120 22 34 117.7 22 34 117.7 1.9 1.9 0.0 0

Soldier

46 38 40 45.2 40 40 42.7 1.7 7.1 5.4 2
56 38 38 55.3 38 38 55.3 1.2 1.2 0.0 0
72 36 36 71.3 36 36 71.3 1.0 1.0 0.0 0
120 34 32 117.3 30 32 124.8 2.2 4.0 1.8 4

Basketballplayer

46 34 36 44.5 36 36 42.3 3.2 8.1 4.9 2
56 34 34 54.5 34 34 54.5 2.7 2.7 0.0 0
72 32 32 71.3 30 32 76.0 1.0 5.6 4.6 2
120 24 30 110.4 26 28 131.9 8.0 9.9 1.9 4

Average 2.2 3.6 1.5 1.3

the target bitrates were 46 kbpmp, 56 kbpmp, 72 kbpmp,
and 120 kbpmp. In practical applications, the target bitrate
for geometry and color can be obtained by subtracting the
bitrate of the occupancy map and the auxiliary information,
which can be obtained by pre-encoding. To evaluate the bit
allocation accuracy, we used the bitrate error (BE), defined
as

BE =
|Bactual − Btarget|

Btarget

× 100%, (21)

where Bactual is the actual bitrate andBtarget represents
the target bitrate. The lower the BE, the more accurate the
algorithm. Because the proposed bit allocation algorithm allo-
cates the bits for geometry and color components by selecting
the QPs, QP error (QPE) was also used to measure the
performance as follows:

QPE = |QPg,PBA − QPg,ESA| + |QPc,PBA − QPc,ESA| ,
(22)

whereQPg,PBA andQPc,PBA denote the geometry and color
QPs obtained from the proposed algorithm, andQPg,ESA and

QPc,ESA represent the geometry and color QPs obtained from
exhaustive search.

Table VIII and Table IX show theBE and QPE of the
proposed bit allocation algorithm (PBA) and exhaustive search
(ESA) for different values ofω (0.25 and 0.5). Note that
ESA produces an optimal solution but has a much higher
computational cost. As shown in Table VIII and Table IX,
the BE of ESA was as small as 0.3, while its average was
2.0% and 2.2% whenω was set to 0.25 and 0.5, respectively.
For PBA, BE was also as low as 0.3 whenω was set to
0.25, while its average was about 3.4% and 3.6% whenω

was set to 0.25 and 0.5, respectively. The average absolute
difference inBE betweenESA andPBA was only 1.4% and
1.5% forω = 0.25 and 0.5, respectively. On the other hand, the
averageQPE was only 1.3 forω = 0.25 and 0.5. In 57.8%
of the cases, our algorithm (PBA) found the same solution
as exhaustive search (ESA), as illustrated by the data shown
in magenta in the tables, so the BE of the two algorithms
was the same. In the remaining cases, our algorithm found a
suboptimal solution (see the discussion at the end of Section
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TABLE X
RATE-PSNR PERFORMANCE OFESA AND PBA

Point
Cloud

Target
Bitrate
(kbpmp)

ESA PBA
BD-PSNR

(dB)

Bitrate
(kbpmp)

PSNR
(dB)

Bitrate
(kbpmp)

PSNR
(dB) ω = 0.25 ω = 0.5

ω = 0.25 ω = 0.5 ω = 0.25 ω = 0.5 ω = 0.25 ω = 0.5 ω = 0.25 ω = 0.5

Andrew

185 181 181 32.2 34.0 181 181 32.2 34.0
220 216 216 32.5 34.3 216 216 32.5 34.3
280 279 279 33.0 34.7 279 283 33.0 34.8 0.0 0.0
335 328 328 33.3 35.0 328 328 33.3 35.0

Longdress

85 84 84 28.1 29.9 84 84 28.1 29.9
280 272 272 31.1 32.9 272 272 31.1 32.9
385 370 370 31.7 33.4 370 370 31.7 33.4 0.0 0.0
675 669 669 32.6 34.3 669 669 32.6 34.3

Redandblack

85 83 83 34.1 35.8 87 87 34.5 36.2
280 276 276 37.9 39.6 281 281 37.9 39.7
385 378 378 38.5 40.3 378 387 38.5 40.3 0.1 0.1
675 670 670 39.4 41.2 670 670 39.4 41.2

David

128 126 126 44.2 45.9 132 126 44.3 45.9
150 149 148 44.6 46.3 149 144 44.6 46.3
180 178 178 45.0 46.8 178 178 45.0 46.8 0.0 0.0
212 211 211 45.1 46.9 211 211 45.1 46.9

Loot

46 45 45 34.9 36.7 49 49 35.4 37.2
56 54 54 35.7 37.5 51 51 35.6 37.3
72 70 70 36.6 38.3 65 67 36.4 38.2 0.1 0.1
120 115 115 38.1 39.9 113 113 38.0 39.8

Queen

46 46 46 31.9 33.7 51 42 32.3 33.6
56 54 54 32.4 34.2 54 54 32.4 34.2
72 68 68 33.0 34.8 68 68 33.0 34.8 0.0 0.0
120 118 118 34.2 36.0 118 118 34.2 36.0

Soldier

46 45 45 31.5 33.2 43 43 31.4 33.1
56 55 55 32.2 34.0 55 55 32.2 34.0
72 71 71 33.0 34.8 71 71 33.0 34.8 0.0 0.0
120 117 117 34.4 36.2 125 125 34.7 36.4

Basketballplayer

46 45 45 37.4 39.1 42 42 37.3 39.1
56 54 54 37.8 39.6 54 54 37.8 39.6
72 71 71 38.3 40.0 71 76 38.3 40.1 0.0 0.0
120 116 110 38.9 40.6 125 132 39.1 40.9

Average 0.0 0.0

III), which had a higher BE in 37.5% of the cases and a lower
one in 4.7% of the cases.

B. Rate-Distortion Performance

In addition to bit allocation accuracy, the rate-distortion
performance should also be taken into account. After de-
termining the coding parameters withESA and PBA, we
compressed the point clouds and computed their geometry and
color distortions using the PCerror reference software [48].

Fig. 10 shows the distortionD = ωDg + (1 − ω)Dc as
a function of the bitrate (inkbpmp) for ESA and PBA. We
can see that the rate-distortion performance of the proposed
algorithm was very close to that of exhaustive search.

In addition to the distortions (which are based on the MSE),
we also computed the peak-signal-to-noise ratio (PSNR). In
general, it is necessary to normalize with respect to the peak
value when converting MSE intoPSNR. However, the peak
values of geometry and color are completely different. To
calculate a meaningfulPSNR for the reconstructed 3D point

cloud, the geometry and color values were both normalized to
[0,1]. Hence, thePSNR of the reconstructed 3D point cloud
was calculated as:

PSNR = 10 log10

[

1

NMSE(NMSEg, NMSEc)

]

,

(23)
whereNMSEg and NMSEc are the normalized geometry
and color (Y channel) distortion (i.e.,Dg and Dc), respec-
tively andNMSE(NMSEg, NMSEc) = ωNMSEg +(1−
ω)NMSEc.

Table X shows the PSNR of the two algorithms and
the Bjøntegaard delta (BD)-PSNR [51] between their rate-
PSNR curves. The results show that the performance ofPBA
is similar to that ESA. Interestingly, a 0.1 dB BD-PSNR
gain was achieved byPBA for Redandblack and Loot.
The main reason is thatESA is optimal for the distortion
D = ωDg + (1 − ω)Dc but not necessarily optimal for the
PSNR (23).
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TABLE XI
COMPLEXITY COMPARISON FORESA AND PBA

Point Cloud
Encoding Time (s)

CQ(%)ESA PBA
Andrew 42304.35 285.25 0.67
David 45379.97 360.86 0.80

Longdress 798817.86 5199.87 0.65
Redandblack 936829.38 6120.76 0.65

Loot 954849.12 6196.04 0.65
Queen 1152024.40 7638.26 0.66
Soldier 1405917.34 9334.95 0.66

Basketballplayer 2533011.95 14436.01 0.57
Average 0.66

C. Complexity Comparison

We run the experiments on a PC with a 3.40 GHz Intel
Core i7 Processor and 8.00 GB RAM and used the encoding
time to evaluate the time complexity. The ratio between the
encoding time ofPBA and that ofESA was used to define
the complexity quotient (CQ) as

CQ =
TPBA

TESA

× 100%, (24)

where TPBA and TESA denote the encoding time ofPBA
andESA, respectively. The time complexity ofESA andPBA
mainly depends on the pre-encoding times.ESA needs to pre-
encode the 3D point cloud for all possible combinations of
QPs for the geometry and color components. Because both
the geometry and color QP search range was [22, 42] with a
search step size of 1, a 3D point cloud needs to be encoded
21×21 = 441 times to find the optimalQg andQc with ESA.
In contrast, only three pre-encodings were required byPBA
to compute the model parameters. As the time complexity of
the interior point method is very small compared to the pre-
encoding procedure (for example the time spent to obtain the
optimal Qg and Qc by the interior point method was only
1.42 s for theLongdress point cloud, while the pre-encoding
required 5199.87 s), on average, the time complexity ofPBA
was only 0.66% of that ofESA, as shown in Table XI.

VI. CONCLUSION

This paper presented a model-based joint bit allocation algo-
rithm for the V-PCC encoder. To reduce the time complexity of
exhaustive search as well as preserve its rate-distortion perfor-
mance, we first derived rate and distortion models for point
clouds through theoretical analysis and statistical validation.
Based on the derived rate and distortion models, the optimal
bit allocation problem was formulated as a convex constrained
optimization problem and solved by an interior point method.
Model parameters were calculated by pre-encoding a 3D point
cloud only three times. Experimental results showed that the
bit allocation accuracy and the rate-distortion performance of
the PBA were very close to those of exhaustive search at only
0.66% of its computational cost. As future work, we plan
to use our rate and distortion models to develop rate control
algorithm for 3D point clouds.

APPENDIX A

Based on (4),eB,A
c of the original point cloudA and its

corresponding reconstructed point cloudB can be rewritten as

eB,A
c =

1

|B|

|B|
∑

j=1

∣

∣Cvj
− Cv∗

j

∣

∣

2
, (25)

whereCvj
denotes the color of a pointvj in the original point

cloudA, v∗j is the nearest neighbor ofvj in the reconstructed
point cloudB, and Cv∗

j
is the color ofv∗j . From the law of

large numbers [52], the average of the reconstruction erroris
close to its expected value. Thus, (25) can be written as

eB,A
c ≈ E{(Cv − Cv∗)2}, (26)

whereE{.} denotes the expectation operator,Cv is the random
variable corresponding to the color of pointv in A, andCv∗ is
the random variable corresponding to the color of its nearest
neighborv∗ in B. In the V-PCC encoder, the color information
of the points in the original point cloud is first reassigned
(recoloring procedure) based on the reconstructed geometry
information [11] due to the number of point changes after
reconstructing the distorted geometric information. Thenthe
reassigned color information is compressed to obtain the final
point cloud with compressed geometry and color information.
Let Cvg denote the reassigned color of the point in the
reconstructed geometry point cloud, whose color information
is not compressed while the geometry information has been
compressed. Then (26) can be rewritten as:

eB,A
c ≈ E{(Cv − Cvg + Cvg − Cv∗)2}

= E{(Cv − Cvg )2} + E{(Cvg − Cv∗)2}

+ 2E{(Cv − Cvg )(Cvg − Cv∗)},

(27)

whereE{(Cv−Cvg )2} represents the color distortion induced
only by Qg, and E{(Cvg − Cv∗)2} represents the color
distortion induced only byQc.

From the definition ofCv, Cvg , andCv∗ , we can conclude
that the difference betweenCv and Cvg depends only on
the geometry quantization, whereas the difference between
Cvg and Cv∗ depends only on the color quantization. Thus,
it is reasonable to assume that these two random variables
are independent (see [53] [54] for a similar assumption in
the context of 3D video coding). Consequently,E{(Cv −
Cvg )(Cvg − Cv∗)} = E{(Cv − Cvg )}E{(Cvg − Cv∗)}. Since
it is also reasonable to assume thatE{Cv} ≈ E{Cvg}
and E{Cvg} ≈ E{Cv∗}, we can conclude thatE{(Cv −
Cvg )(Cvg − Cv∗)} ≈ 0. Hence, (27) can be written as

eB,A
c ≈ fB,A

g (Qg) + fB,A
c (Qc), (28)

where fB,A
g (Qg) = E{(Cv − Cvg )2} and fB,A

c (Qc) =
E{(Cvg − Cv∗)2}.
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