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Abstract—In video-based 3D point cloud compression, the
quality of the reconstructed 3D point cloud depends on bothhe
geometry and color distortions. Finding an optimal allocaton
of the total bitrate between the geometry coder and the color
coder is a challenging task due to the large number of possiel
solutions. To solve this bit allocation problem, we first prpose
analytical distortion and rate models for the geometry and
color information. Using these models, we formulate the jait
bit allocation problem as a constrained convex optimizatia
problem and solve it with an interior point method. Experimental
results show that the rate-distortion performance of the poposed
solution is close to that obtained with exhaustive search Huat
only 0.66% of its time complexity.

Index Terms—Point cloud compression, bit allocation, rate-
quantization (R-Q) model, distortion-quantization (D-Q) model,
rate-distortion optimization (RDO).

. INTRODUCTION
ITH the rapid development of 3D scanning tech

niques [1], point clouds are now readily available
and popular [2]. There are already many 3D point clou
applications in the fields of 3D modeling [3] [4], automatic

driving [5], 3D printing [6], augmented reality [7], etc. @b
pared with traditional 2D images and videos, a 3D poi
cloud describes the 3D scene or object with the geome
information and the corresponding attributes (e.g., ¢aler
flectance) [8]. To represent a 3D scene accurately, millio
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of points must be captured and processed. This huge data
volume poses a severe challenge for efficient storage and
transmission. In the past few years, major progress in both
static and dynamic point cloud compression has been made [9]
(see Section II).

To standardize 3D point cloud compression (PCC) technolo-
gies, the Moving Pictures Expert Group (MPEG) launched
a call for proposals in 2017. As a result, three point cloud
compression technologies were developed: surface painticl
compression (S-PCC) with software platform TMC1 [10] for
static point cloud data, video-based point cloud compoessi
(V-PCC) with software platform TMC2 [11] for dynamic
content, and LIDAR point cloud compression (L-PCC) with
software platform TMC3 [12] for dynamically acquired point
clouds. Recently, L-PCC and S-PCC were merged under the
name geometry-based point cloud compression (G-PCC) with
software platform TMC13 [13].

In this paper, we focus on the V-PCC platform (TMC2) due
its excellent performance for compressing both statid an
ynamic point clouds. The main philosophy behind V-PCC is

to leverage state-of-the-art video coders for PCC [11]sThi

ril? essentially achieved by decomposing each point cloud of

sequence of 3D point clouds into a set of patches, which
}le independently mapped to a 2D grid of uniform blocks.
ggis mapping is then used to store the geometry and color
Information as one geometry image and one color image. The
sequences of geometry images and color images corresgpndin
to the dynamic point cloud are then compressed separately
with a video coder, e.g., H.265/HEVC. Finally, the geometry
and color videos, together with metadata (occupancy map for
the 2D grid, auxiliary patch and block information) are used
to reconstruct the dynamic 3D point cloud (see [14] for more
details). Fig. 1 shows the main components of the V-PCC
encoder.

The bitstream of a compressed 3D point cloud consists of
two parts: geometry information and color information. For
a given platform, the size of each part is controlled by a
guantization parameter, which can take a large number of
values. At the same time, quantization introduces digtorti
which may affect the reconstruction quality. The aim of this
paper is to find the pair of quantization parameter values
(one for the geometry and one for color) that minimizes the
reconstruction error subject to a constraint on the totatimer
of bits. Since the number of candidates is very large, findimg
optimal solution with exhaustive search is too time consgni
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Fig. 1. General framework of the V-PCC encoder.

and infeasible in practice as it requires encoding and degodproblem with an interior point method. In Section V, we
the point cloud multiple times. In this paper, we address thpresent experimental results where we compare the accuracy
challenge by proposing analytical models for the rate arahd the time complexity of our approach to those of exhagistiv
distortion and using an interior point method [15] to effitlg search. Our results show that our approach has similar rate-
solve the rate-distortion optimization problem. distortion performance to exhaustive search with only .66
The contributions of this paper are as follows. of its time complexity. Section VI gives our conclusions and

1) We propose analytical models that characterize the r&t499ests future work.

and distortion of the geometry and color as functions
of the V-PCC quantization steps. We show in particular 1. RELATED WORK

that the color distortion can be expressed as the sum Ofg pandle the irregular data structure of 3D point clouds,
two independent terms, one that depends on the geomeltyer| effective transform techniques have been proposed
quantization step only and one that depends on the coigfese include shape-adaptive discrete cosine transfosin [1
quantization step only. _ graph transforms [17] [18] [19] [20], region-adaptive hi-
2) We exploit the proposed analytical models to formulagarchical transforms [21]-[24], Gaussian process trans-
the bit allcht|0r! problem for V-PCC as a constrainegh ms [25] [26], and sparse representation [27] [28] [29].
convex optimization problem where the variables are the,caq on the previously mentioned graph transforms, Shao

quantization _step_s of the V-PCC video C_Oders- et al. [30] further combined a slice partition scheme and an
3) We use an interior point method to efficiently solve thgyy . prediction technique to improve the performance ef at
optimization problem. _ o tribute compression. Instead of compressing the irreglasa
4) We integrate our bit allopatlon algorithm into the latesit directly, some researchers [31] [32] try to map the irregula
model of V-PCC (see Fig. 1). data to a regular representation (e.g., a 2D plane) to dynpli

To the best of our knowledge, our work is the first one tthe task. Similar ideas were previously proposed to conspres
study the rate and distortion characteristics of the V-P@@=c 3D human motion [33] and 3D facial expression [34]-[37].
in detail. The proposed rate and distortion models can be ugdl the described methods are mainly designed for statiatpoi
not only for the joint bit allocation of the geometry and aoloclouds.
information but also for other important tasks such as rateSince dynamic point clouds are becoming more and more
control and error protection for transmission over uni#éa important in practice, efficient compression methods for dy
channels. namic point clouds are also required. Because of the inter-

The remainder of this paper is organized as follows. liname redundancy of dynamic point clouds, motion estinmatio
Section I, related work is briefly introduced. In Sectioh, Il and motion compensation are the key technologies to effec-
we formulate the rate-distortion optimization problem fér tively compress dynamic point clouds. Based on the V-PCC
PCC and provide analytical models for the distortion anplatform that is provided by MPEG, Lét al. [38] proposed
rate as a function of the quantization steps. In Section IMsing the geometry or auxiliary information to derive a bett
we use these models to solve the rate-distortion optinmaatimotion vector predictor to deal with the patch inconsisgenc
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problem for both the geometry and attribute videos. Thanaugint cloud. Therefore, we do not consider the bitrate of the
Chou and Frossard [39] focused on motion estimation by usingcupancy map and auxiliary information in (1).
a spectral graph wavelet descriptor. De Queiroz and Chdu [40In the V-PCC codec, a geometry video is generated from
proposed a motion compensation approach to encode dynathi input point cloud and compressed with a state-of-the-ar
voxelized point clouds. Anis, Chou and Ortega [41] simpdifievideo coder (HEVC in the latest version of the reference
motion compensation by representing sets of frames insaftware). The reconstructed geometry video is then used to
consistently evolving high-resolution subdivisionahtrgular generate the color video. Next, the color video is compiksse
mesh. by the same video coder. As the color and geometry distartion

In our previous work [8], a bit allocation approach forare controlled by the quantization parameters (QPs) of the
the Point Cloud Library (PCL)-based codec [31] [42] wasideo coder, the distortion models of the color video and the
proposed. The PCL-based encoder recursively subdivides geometry video depend on the quantization characterisfics
point cloud into eight subsets. This results in an octrea dahe video coder. We considered several candidate models, an
structure, where the position of each voxel is represenyed bsed statistical analysis to select the model that beshbega
its center whose attribute (color) is set to the average gbodness of fit with simplicity, where simplicity was meaeslir
the attributes of the enclosed points. Then the octree dataterms of the number of parameters in the model. The
is encoded by an entropy coder. In order to encode thttistical results showed that the linear model is the best
color attributes, the octree attributes are mapped dyréotl candidate.
a structured image grid using depth first tree traversal andSince the geometry video is compressed before the color
then the image grid is encoded with the JPEG codec. video, the linear model was directly used for the geometry

There are two main differences between this paper and alistortion. Because color compression is based on the re-
previous work [8]. First, since the two codecs are differentonstructed geometry in the V-PCC encoder, the color dis-
both the rate-distortion analysis and the modeling of the raortion depends on the geometry distortion. We derived the
and distortion functions are different. In particular, imro dependency between the geometry and the color distortions
previous paper [8], the rate is modeled as an exponentigl decomposing the color distortion into two parts based on
function of the maximum octree level and JPEG quality factahe definition of distortion and the law of large numbers (see
while in this paper it is modeled as a polynomial functiodppendix A). Next, we parameterized each part using a linear
of the quantization steps of the two video coders. Secontlpdel based on the previous analysis.
the objective function for the rate-distortion optimizatj The derived rate models can be explained similarly. In
as well as the optimization variables are different. In thisarticular, we found that the influence of the geometry tstra
paper, the objective function is the overall distortion,iath on the color bitrate is very small. Therefore, we assumed
includes the distortion of both geometry and color inforioat  that the rate model for the color video depends only on the
and the optimization variables are the quantization steps tjuantization parameter of the color video coder.
the geometry and color information. In [8], only the color In the remainder of this section, we exploit the properties
distortion is minimized, and the optimization variables #te of V-PCC and use statistical analysis to propose distortion
octree level and the JPEG quality factor. and rate models, so that the bit allocation problem (1) can be

solved analytically.
1. RATE AND DISTORTION MODELS DERIVATION

To efficiently solve the bit allocation problem, we form@at A. Distortion Model
it as a constrained optimization problem by deriving ratd an
distortion models for the 3D point cloud. As the distortidrao
3D point cloud is determined by the coding distortion of bot

For the distortionD of the 3D point cloud, we used a linear
ombination of the geometry distortidn, and color distortion

eometry and color information, the bit allocation probleam ¢ That s,
g Y ! P D=wD, + (1 —w)D., @)
be expressed as
min D(Ry, R.) Whereu{ is a_weighting factor. For the ge_ometry (_Jlisto_rt_ion and
(Rg, Re) (1) color distortion, we used symmetric point-to-point disitams
st. Ry+R.<Rr, based on the mean squared error (MSE) [43].A@ndB de-

note the original point cloud and the reconstructed poimtd|
respectively. The original point cloud is encoded with VEPC
using a given geometry and color quantization parameter pai
and the default V-PCC encoder configuration [44], while the

respectlvely, andizy is the target total Ip|trat.e. It is yvorth reconstructed point cloud is obtained with V-PCC decoding.
noting that the occupancy map and auxiliary informatioro alsl’henD = max (eBA, ¢AB), where
g~ g !

consume bitrate resources. The occupancy map is a binary 9
array that indicates whether a pixel position is occupied or BA 1 9

iliary i ion i i egt = > bina(®)3, @)
not. The auxiliary information is used to store just a few g |B|
encoder parameters. In general, both the occupancy map and bieh
the auxiliary information are compressed without loss. IfB| denotes the number of points 1, n4(b;) is the nearest
addition, their bitrate cost is small and fixed for a given 3Deighbor ofb; in A, and||||2 is the Euclidean norm. Similarly,

where the distortionD of the reconstructed 3D point cloud
is determined by the color distortiorD() and the geometry
distortion (D,); R, andR. are the geometry and color bitrate



SUBMITTED TO IEEE TRANSACTIONS ON MULTIMEDIA 4

fa) fa) o fa)
1 1 1
% 5,50, * 0y g 05 * 5,50, * 5,50,
—oma8, 4, 008, 4, —oma8, 4, —oma8, 4,
0 0 0 0
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
< Q < <

@ (b) (© (d)

Fig. 2. lllustration of the relationship between the geamelistortion D, and the geometry quantization st€p,. (a) Loot, (b) Longdress(c) Queen (d)
Redandblack

—Q8 —Q32 —Q8 —Q32 100{—Q8 —Q;=32 —Q8 —Q32
50 Q=12.75 Q=51 150 Q =12.75 Qg=51 Q=12.75  Q =51 Q=12.75 Q=51
80 Q20 —Q.=80

Q720 —Q=80 .
o
0O 100 /
/*

50%/

Rt

20 40 60 80 20 40 60 80
QC QC
(b) ©
80 120 70
Q8 Q=32 200{[—Q8 Q32 —Q/8 Q=3 0 Q8 Q=32
60 Q1275 Q51 Q1275 Q=51 100 Q1275 Q=51 Q1275 Q51
Qg:ZU ng=80 150 Qg:ZO ng=BO 80 Qg=20 ng=80 50 Qg:ZU ng=80
© © DUEPENES © © 40 sttt %
O 40 bttt t——+——*. [a] o [a]
100 60 30
20 ottt F . M 40 “}‘// 20 W
50 M = W
oo —— %~ B 20 w’r”‘”/ 10
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Qg Qg Qg Qg
(e) ® (@ (h)
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D, = max (eZ4 eAB), where TABLE |
ACCURACY OF PROPOSEDGEOMETRY DISTORTIONMODEL (5)
1
BA_ 1+ N )2

“ T B D 10(b) = Clna(v) P ) Point Cloud | SCC | RMSE
b:eB Andrew 098 | 008
. . . . . David 0.99 | 0.07
Here C(x) is a color attribute of point:. For simplicity, Longdress 0.99 | 0.08
we consider only th&” (luminance) component [45] in this Redandblack | 0.99 | 0.07
paper. Because of the structure of the V-PCC encddgnnly (;Sgén 8'32 8'83
depends ony),, the quantization step size of the geometry Soldier 0.99 | 0.07
video coder. To obtain a relationship betwegy and Q,, Basketballplayer| 0.98 | 0.08
we conducted a statistical analysis on eight point clouds Average 099 ] 008

compressed according to the settings in Table VII. Fig. 2wsho

D, as a function of), for the Loot, Longdress, Queen, and

Redandblack point clouds. The results suggest that a linear Because color compression is based on the reconstructed

model geometry in the V-PCC encoder, the color distortion depends
Dy = a,Qy + B, (5) on the geometry distortion. In Appendix A, we show that for

the original point cloud? and the corresponding reconstructed

wherea, andj3, are model parameters is appropriate. Tablepoint cloudB, we have

gives the squared correlation coefficient (SCC) and the root

mean squared error (RMSE) between the actual data and et = fPAQy) + Q) (6)

the fitted data when the model parameters and 3, are

computed by the method of least squares. The SCCs are clobere Q. is the quantization step size of the color video

to 0.99, while the maximum RMSE is only 0.09, confirmingoder,fZ4(Q,) depends o, only and f/Z-4(Q.) depends

the accuracy of the model. on Q. only. Similarly, e can be decomposed ag-? =
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TABLE I TABLE Il
ACCURACY OFPROPOSEDCOLOR DISTORTIONMODEL (10) ACCURACY OF PROPOSEDDISTORTIONMODEL (11)
Point Cloud SCC | RMSE Point Cloud SCC | RMSE
Andrew 1.00 0.83 Andrew 1.00 0.41
David 1.00 0.08 David 1.00 0.05
Longdress 1.00 1.82 Longdress 1.00 0.90
Redandblack 1.00 0.36 Redandblack 1.00 0.18
Loot 1.00 0.28 Loot 1.00 0.14
Queen 1.00 0.75 Queen 1.00 0.40
Soldier 1.00 0.51 Soldier 1.00 0.25
Basketballplayer| 1.00 0.11 Basketballplayer| 1.00 0.05
Average 1.00 0.60 Average 1.00 0.26

fAB(Qq) + f2P(Qc). Thus, D, can be written as
g £
D, = max(eZ4, eP) g £
= max(ff’A(Qg) + ff"A(Qc), f?’B(QQ) + f?B(QC)) «” o”
= fg(Qg) + fe(Qc)-
)
To obtain an analytical expression f@if(Q,) and f.(Q.),
statistical experiments were conducted, as shown in Figo 3.
investigate the exact expressionfof@.), which characterizes ~ %°
the relationship betwee). and D, the influence o). onthe _ 4 -
distortion of the comparison color point cloud was statgsty § 30 §
analyzed by setting), to fixed values. As suggested in = z =
Fig. 3(a)-3(d), for a fixedy,, a linear model ® 1o «
0 0
fc(Qc) — acch + 500’ (8) 20 40Qg 60 80 20 40Qg 60 80
where a.. and (.. are model parameters is appropriate. © (d)

Simi!aHY: to derive an analytical eXpre_SS_ion fB5(Qg). the Fig. 4. nustration of the relationship betweeR, and Q,. (a) Loot, (b)
relationship betweety, and D, was statistically analyzed for Longdress (c) Queen (d) Redandblack

a fixed Q.. Fig. 3(e)-3(h) suggests that a linear model

F9(Qq) = ageQy + Bye, (9) B. Rate Model
The total bitrateR is the sum of the geometry bitrate and
wherea,. andg,. are model parameters is suitable. color bitrate, i.e.,
Consequently, based on (6), (8), and (9), the color distorti
can be finally written as R =R, + R, (12)

Do = geQo + Bow + eeQu + Buc where the geometry bitrat®, depends only orf),, whereas
B @geQg F fge + CecQe 113 (10) the color bitrateR. depends on botlp, andQ.. For R,, we
= 0gely + eeQe + Be, used the Cauchy-based rate model [46]

where 6. = B4 + Bee. The accuracy of (10) is verified in R, = %Qe_q’ (13)
Table I, which shows that all SCCs are about 1.00, and the ‘ o
average RMSE is only 0.60. Finally, (2) can be rewritten asvherey, andd, are model parameters. Because the bitrate of a
3D point cloud is relatively large, we used kilobits per it
D =wDy+(1-w)D. points kbpmp) as the bitrate unit. Fig. 4 shows the results of
= w(agQy + By) + (1 —w) (ageQq + Qe + Bc) (11) statistical experiments to verify the accuracy of (13).rfthis
= aQ, +bQ, +c, figure, we can observe that th®, model (13) is appropriate.
This is confirmed by Table IV, which shows that the R-squared
wherea = way + (1 —w)age, b = (1 —w) e, and e = (R?) value between the actu&l, and the fitted values is equal

wB,+(1 — w) .. Table 1l shows the SCC and RMSE betwee#? 1.00. Because the bitrate of a 3D point cloud is typically
the actualD and the one provided by our model. In thigery large, the RMSE seems to be large. Therefore, we also
table, the SCC and RMSE were calculated by setting tgalculated the normalized RMSE to illustrate the fittingoerr
weighting factorw to 0.5. We can see that the average Sceffectively. The normalized RMSENRM SE) is defined as
and RMSE are close to 1.00 and 0.26, respectively, which RMSE

indicates that (11) is an accurate model. NRMSE = o~ —, (14)
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TABLE IV TABLE V
VERIFICATION OF PROPOSEDGEOMETRY RATE MODEL (13) VERIFICATION OF PROPOSEDCOLOR RATE MODEL (15)
. RMSE Ratem: . RMSE Rate
2 max 2 max
Point Cloud R (kbpmp | (Kbpmp NRMSE Point Cloud R (kbpmp | (kKbpmp NRMSE
Andrew 1.00 | 1.16 81.70 0.01 Andrew 1.00 [ 10.95 803.89 0.01
David 1.00 | 1.14 69.68 0.02 David 1.00| 0.86 141.09 0.01
Longdress 1.00 0.84 81.82 0.01 Longdress 1.00 22.40 1402.56 0.02
Redandblack | 1.00 | 1.36 96.84 0.01 Redandblack | 1.00 | 8.37 572.79 0.01
Loot 1.00| 091 57.26 0.02 Loot 0.99 | 952 306.76 0.03
Queen 1.00| 0.79 43.45 0.02 Queen 1.00 | 7.45 392.99 0.02
Soldier 1.00| 1.19 64.27 0.02 Soldier 0.99 | 15.31 493.52 0.03
Basketballplayer| 1.00 0.68 44.74 0.02 Basketballplayer| 1.00 14.66 287.94 0.02
200 2500 TABLE VI
*;0”9'1'955 ) ——Longdress | ACCURACY OF PROPOSEDRATE MODEL (16)
edandblac] Redandblac]
T 150f |+ Loot £ 20007 oot
s ——Queen 5 1500 ——Queen
— . RMSE | Rate
£ 100 2 s 2 max
g,u ) o = oo Point Cloud R (kopmp) | (kbpmp NRMSE
x5 e Andrew 1.00 | 829 885.59 0.01
e S S S s —— David 1.00| 1.30 210.77 0.01
0 0 Longdress 1.00 20.15 1484.38 0.01
- S M-S Redandblack | 1.00 | 601 | 669.63 | 0.01
9 9 Loot 0.99 | 8.0 364.02 0.02
(a) (b) Queen 1.00| 321 436.44 0.01
Soldier 0.99 | 12.04 557.79 0.02
Fig. 5. Influence 0iQ, on Rc. (a) Q.=80, Q4 = 8,10,...,80; (b) Q.=8, Basketballplayer| 1.00 3.71 332.68 0.01
Qg = 8,10,...,80.
1500 - wherey, and 6. are model parameters is appropriate to de-
- scribe the relationship betweé&n. and R... This is confirmed
E 1000 in Table V, which shows that thek? of the relationship
Qo . .
= betweenR,. and . is larger than or equal to 0.99, while
o 500 . .
x the NRMSE is always smaller than 0.03. Accordingly, (12)
o can be rewritten as
R=R,+R
) eg c .. (16)
= ’y(qu + WCQC B
600 Table VI validates (16) by showing that? was close to
2 0 1.00, and the NRMSE was always smaller than or equal to
1S3 . . .
s 0.02. Finally, Fig. 7 illustrates the accuracy of models)(16
s . .
;U 200 and (11) by comparing the actual values to the values pestlict
by the models.

IV. M ODEL-BASED OPTIMAL BIT ALLOCATION
(d) ALGORITHM

! . _ o Based on the analysis in Section Ill, the optimal bit alloca-
Fig. 6. lllustration of the relationship betwed®. and Q. (Rc = 7.Qc°). . bl b d h bl f findi
() Loot, (b) Longdress (¢) Queen (d) Redandblack tion pro em (1) -Can e converte . to the pro e-m Oof Tinding

the optimal solution of the constrained optimization pewbl

min  aQq +bQ.+ ¢

where Ratenax IS the maximum bitrate. Table IV shows that (Qg,Qc) (17)
the NRMSE is as low as 0.01, which confirms that (13) is st 7,Q% +7.Q% < Ry
accurate. 9 ° T

To study the effect of), on R,., we compressed the color To solve (17), we first need to_dgtermine the mod(_al param-
information with a fixedQ. and multipleQ,s. The results, etersa, b, ¢, vy, 0y, v, andé.. This is done by encoding the
shown in Fig. 5, indicate that the effect ¢§, on R, is 3D point cloud with three different pairs of quantizatioess
negligible. This is also confirmed by Fig. 6, which shoRs (@g.1,Qc,1); (Qg,2.Qc.2), (Qg.3.Qc,3) and solving the systems
as a function ofQ, for variousQ,s. of equations (18) and (19):

Thus, for simplicity, we can assume thiat is only affected B
by Q.. Moreover, Fig. 6 suggests that the model Di = aQ1 +6Qc +¢

Dy =aQg2+bQc2+c (18)

Rc = ’70@207 (15) D3 = an,3 + ch,B +c
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eg
Rg71 _ ’ng!eLl -
Start
R!],Q :’YQQg,g2 (19) "

)
RC,l = ’YCQC,Cl

0c Optimi d Qc usi
Rc72 = 70@6,2 Input target bitrate R7 [ Q(i;)n Q- using
whereD, D,, D3 are the corresponding distortions aRg 1, l l
Rgy.2, Re1, R 2 are the corresponding geometry and color bi-
trates, respectively. Because both the objective funatiwhthe Pre-encode point cloud TSI B
" L7 . . with three different pairs corresponding QP
constraint function in (17) are convex, the optimal quaatton of Qg and Q.
steps,Qq,0pt aNAQ. op: CaN be obtained with an interior point l l
method called the barrier method [15]. The barrier method Encoding
is simple and allows us to solve the_ optimization problem T
to a guaranteed accuracy [15]. In this method, the convex and rate model
optimization problem is first converted to an unconstrained R e e -

optimization problem using a logarithmic barrier funct{ds]:

min (a@Qq + bQ. + ¢) — plog[— (’nggg +7.Q% — Rr)]  Fig. 8. Flow chart of the proposed bit allocation algorithan geometry and
Qg,Qc) ' color information.

(20)
where ., is the barrier parameter. The details of the barrier

method are given in Algorithm 1. The output of the interior
point method is subsequently rounded to obtain a solutiah th

Algorithm 1 Barrier method for the constrained optimizatioelongs to the finite set of discrete quantization steps bged

problem (17) the V-PCC coder. While rounding makes the solution praktica
Input: a barrier parametex > 0, a decline factor; < 1 and for coding, it may lead to a slight violation of the constitain
a desired level of accuraey> 0. on the target bitrate.
Output: (Qg,opt, Qc,opt), @an optimal solution to (17). Unlike exhaustive search, the proposed algorithm does not
Initialization: &k =0, (Qg,opt; Qe.opt) = (Q_(qk), gk)) = necessarily find an optimal solution to the original probl@m
(80,80), u® = p. This is not only due to rounding but also because our analytic

While 1(¥) > ¢ do rate and distortion models are only approximations. Howeve

1. compute(Q g opt; Qc,opt) @s solution to (20) using the experimental results (see Section V) show that the rate-

Newton's method initialized witiQ,, Q.) = ( gk), gk)); distortion performance of the proposed algorithm is veogel

2. updatek = k + 1, ( f]k)jQék)) = (Qg.opts Qe.opt)» to that of exhaustive search.

pk) = puth=b The flowchart of the proposed bit allocation algorithm is

end While shown in Fig. 8.
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Fig. 9. 3D point cloud sequences used in the experimentnémew (b)Longdress (c)Redandblack (d)David, (e)Loot , (f)Queen (g)Soldier,
(h)Basketballplayer
TABLE VII
DATASET
Point Cloud Dataset Type Number of Frames| Default Configuration
Andrew Microsoft Voxelized Upper Bodie§ static 1 ctc-all-intra.cfg
David Microsoft Voxelized Upper Bodie§ static 1 ctc-all-intra.cfg
Longdress Dynamic Objects dynamic 17 ctc-low-delay.cfg
Redandblack Dynamic Objects dynamic 17 ctc-low-delay.cfg
Loot Dynamic Objects dynamic 17 ctc-low-delay.cfg
Queen Dynamic Objects dynamic 17 ctc-low-delay.cfg
Soldier Dynamic Objects dynamic 17 ctc-low-delay.cfg
Basketballplayer Dynamic Objects dynamic 17 ctc-low-delay.cfg
40 2.8 120 30
—¥— ESA (,=0.25)| ~¥—ESA (=0.25)| —¥— ESA (,=0.25)| —¥— ESA (,=0.25)|
| —e— PBA (2=0.25)| 26 —e—PBA (v=0.25)| | —e— PBA (2=0.25)| | —e— PBA (2=0.25)|
ESA (v=0.5) ESA (2=0.5) 100 ESA (v=0.5) 25 ESA (v=0.5)
35 —e— PBA (w=0.5) —e—PBA (w=0.5) —e— PBA (w=0.5] —e— PBA (w=0.5)
c c 24 c =
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@ (b) (©) (d)
30 45 50 15
—¥— ESA (,=0.25)| —¥—ESA (=0.25)| —¥— ESA (,=0.25)| —¥— ESA (,=0.25)|
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Fig. 10. R-D performance of the proposed algorithRBA) and exhaustive searcle$A). (a)Andrew (b)Longdress, (c)Redandblack (d)David, (e)Loot,
(HQueen (g)Soldier, (h)Basketballplayer

V. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy, rate-distorti
performance, and time complexity of the proposed bit all
cation algorithm. We implemented the proposed algorithm

the test model category 2 version 9.0 (TMC2V9) [11], which

sises High Efficiency Video Coding Test Model Version 16.20
(gHMlG.ZO) [47] to compress the generated geometry and color
mdeo frames. The barrier parameter decline factorn, and
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TABLE ViIII
BIT ALLOCATION ACCURACY FORESA AND PBA (w=0.25)USING THE BITRATE ERROR(BE) AND THE QPERROR(QPE).

Point Cloud Ta(rggtfliltr)ate ESA PBA BE (%) ABE QPE
pmp. P P Bitrate P P Bitrate ESA  PBA
@ QP Gpmp) Qo QP Gpmy)
185 28 34 180.7 28 34 180.7 23 23 00 0
Andrew 220 26 33 216.1 26 33 216.1 1.8 1.8 00 0
280 25 31 279.3 25 31 279.3 03 03 00 0
335 23 30 327.7 23 30 327.7 22 22 00 0
85 38 42 83.5 38 42 83.5 17 17 00 0
Lonadress 280 26 34 272.0 26 34 272.0 29 29 00 0
9 385 24 32 369.5 24 32 369.5 40 40 00 0
675 22 28 669.3 22 28 669.3 08 08 00 0
85 36 40 83.4 40 38 87.3 19 27 08 6
Redandblack 280 30 28 275.9 28 28 281.4 15 05 1.0 2
385 26 26 377.9 26 26 377.9 18 18 00 0
675 22 22 669.6 22 22 669.6 08 08 00 0
128 30 25 126.0 32 24 131.8 16 30 14 3
David 150 31 23 149.1 31 23 149.1 06 06 00 0
180 27 2 178.3 27 2 178.3 09 09 00 0
212 22 22 210.8 22 22 210.8 06 06 00 0
46 36 38 45.4 40 36 49.3 14 73 59 6
Loot 56 36 36 53.8 38 36 51.3 40 83 43 2
72 32 34 69.9 36 34 65.2 30 95 65 4
120 28 30 114.9 30 30 112.7 42 60 18 2
46 30 42 458 32 40 515 03 119 116 4
Queen 56 30 40 54.4 30 40 54.4 29 29 00 0
72 28 38 67.9 28 38 67.9 57 57 00 0
120 22 34 117.7 22 34 117.7 19 19 00 0
46 38 40 45.2 40 40 427 17 71 54 2
Soldier 56 38 38 55.3 38 38 55.3 12 12 00 0
72 36 36 713 36 36 713 10 10 00 0
120 34 32 117.3 30 32 124.8 22 40 18 4
46 34 36 445 36 36 423 32 81 49 2
56 34 34 54.5 34 34 54.5 27 27 00 0
Basketballplayer 72 32 32 713 32 32 713 10 10 00 0
120 32 28 116.0 28 28 124.9 33 41 08 4
Average 2.0 3.4 1.4 1.3

level of accuracy were set to 0.110%, and10~ !, respec- was selected from this subset.

tively. The quality evaluation software P&rror [48] was used  In the proposed method, to derive the rate and distortion
to calculate the point-to-point distortion for both colanda models, the point clouds were empirically pre-encoded with
geometry. The performance of the proposed algorithm wHwee geometry-color QP pairs (30, 40), (36, 30), and (38, 28
evaluated on the eight 3D point cloud sequences [49] [5The distortion model parametets b and ¢ were computed
shown in Fig. 9. The test data consist of two static point@uby solving (18), and the rate model parametggs 6,4, v,

and six dynamic point clouds (Table VII). and 0. were obtained by solving (19). Then, given the target
itrate Ry, the optimalQg o, and Q. ., Were obtained by

Because the color of the point clouds in Figs. 9(a)-9( lving (17) using the interior point method.

is more diverse than that of the point clouds in Figs. 9(d)-

9(h), we divided the point clouds in Fig. 9 into four groups, a ) )

complex static groupAndrew), a simple static groupDavid), A. Bit Allocation Accuracy of Proposed Algorithm

a complex dynamic groug_pngdressand Redandblack and To evaluate the accuracy of the proposed bit allocation
a simple dynamic groupLfot, Queen Soldier, and Basket- algorithm for the tested point clouds, we set different éarg
ballplayer). The performance of exhaustive search was usbirates according to the geometry and color charactesisti
as the benchmark to rate accuracy and time complexity. ¢ each sequence to cover different compression levels. For
exhaustive search, a 3D point cloud was first encoded byall tthe complex static group, the common target bitrates were
possible geometry and color quantization step pairs (rengil85 kbpmp, 220 kbpmp, 280 kbpmp, and 335 kbpmp. For
from 8 to 80), which correspond tQ P values 22, 23, 24, the simple static group, the target bitrates were 128 kbpmp,
..., 42. Then the subset of admissible pairs (that is, tho$80 kbpmp, 180 kbpmp, and 212 kbpmp. For the complex
for which the bitrate is smaller than the target bitrate) wadynamic group, the target bitrates were 85 kbpmp, 280 kbpmp,
identified. Finally, the pair that gave the smallest distort 385 kbpmp, and 675 kbpmp. For the simple dynamic group,
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TABLE IX
BIT ALLOCATION ACCURACY FORESA AND PBA (w=0.5)USING THE BITRATE ERROR(BE) AND THE QPERROR(QPE).

Point Cloud Target Bitrate ESA PBA BE(%) ABE QPE
(kbpmp) oP OP Bitrate QP QP Bitrate ESA PBA
g ¢ (kbpmp) g ¢ (kbpmp)
185 28 34 180.7 28 34 180.7 23 23 00 0
Andrew 220 26 33 216.1 26 33 216.1 18 18 00 0
280 25 31 279.3 24 31 282.9 03 10 07 1
335 23 30 327.7 23 30 327.7 22 22 00 0
85 38 42 83.5 38 42 83.5 17 17 00 0
Lonadress 280 26 34 272.0 26 34 272.0 29 29 00 0
9 385 24 32 369.5 24 32 369.5 40 40 00 0
675 22 28 669.3 22 28 669.3 08 08 00 0
85 36 40 83.4 40 38 87.3 19 27 08 6
280 30 28 275.9 28 28 281.4 15 05 1.0 2
Redandblack 385 26 26 3779 24 26 3869 18 05 13 2
675 22 22 669.6 2 22 669.6 08 08 00 0
128 30 25 126.0 30 25 126.0 16 16 00 0
David 150 27 24 148.4 28 24 144.3 11 38 27 1
180 27 22 178.3 27 22 178.3 09 09 00 0
212 22 22 210.8 2 2 210.8 06 06 00 0
46 36 38 45.4 40 36 49.3 14 73 59 6
Loot 56 36 36 53.8 38 36 51.3 40 83 43 2
72 32 34 69.9 34 34 67.0 30 69 39 2
120 28 30 114.9 30 30 112.7 42 60 18 2
46 30 42 458 32 42 425 03 77 14 2
Queen 56 30 40 54.4 30 40 54.4 29 29 00 0
72 28 38 67.9 28 38 67.9 57 57 00 0
120 2 34 117.7 22 34 117.7 19 19 00 0
46 38 40 45.2 40 40 427 17 71 54 2
Soldier 56 38 38 55.3 38 38 55.3 12 12 00 0
72 36 36 713 36 36 71.3 10 10 00 0
120 34 32 117.3 30 32 124.8 22 40 1.8 4
46 34 36 445 36 36 423 32 81 49 2
56 34 34 54.5 34 34 54.5 27 27 00 0
Basketballplayer 72 32 32 713 30 32 76.0 10 56 46 2
120 24 30 110.4 26 28 131.9 80 99 1.9 4
Average 2.2 3.6 15 1.3

the target bitrates were 46 kbpmp, 56 kbpmp, 72 kbpm@,P. rs4 represent the geometry and color QPs obtained from
and 120 kbpmp. In practical applications, the target kstraéxhaustive search.

for geometry and color can be obtained by subtracting theTable VIII and Table IX show theBE and QPE of the
bitrate of the occupancy map and the auxiliary informatioproposed bit allocation algorithn®BA) and exhaustive search
which can be obtained by pre-encoding. To evaluate the (ESA) for different values ofw (0.25 and 0.5). Note that
allocation accuracy, we used the bitrate errBiE|), defined ESA produces an optimal solution but has a much higher

as computational cost. As shown in Table VIII and Table IX,
BE — |Bactual — Brarget| % 100% (21) the BE of ESA was as small as 0.3, while its average was
Biarget ’ 2.0% and 2.2% whew was set to 0.25 and 0.5, respectively.

where Byeruar is the actual bitrate and3y.,ge: represents For PBA, BE was also as low as 0.3 when was set to

the target bitrate. The lower the BE, the more accurate tRe?> While its average was about 3.4% and 3.6% when
algorithm. Because the proposed bit allocation algorithm a Was set to 0.25 and 0.5, respectively. The averagoe absolute
cates the bits for geometry and color components by setectffiference inBE betweenESA andPBA was only 1.4% and

the QPs, QP error(PE) was also used to measure the-2% forw = 0.25 and 0.5, respectively. On the other hand, the
performa'nce as follows: averageQ) PE was only 1.3 forw = 0.25 and 0.5. In 57.8%

of the cases, our algorithnPBA) found the same solution
QPE = |QP,; ppa — QPy psal +|QP.ppa — QP:. rsal, as exhaustive searckE$A), as illustrated by the data shown
(22) in magenta in the tables, so the BE of the two algorithms
whereQ P, ppa andQ P ppa denote the geometry and coloiwas the same. In the remaining cases, our algorithm found a
QPs obtained from the proposed algorithm, 818, zs4 and suboptimal solution (see the discussion at the end of Sectio
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TABLE X
RATE-PSNR FERFORMANCE OFESA AND PBA

BD-PSNR
Point Target ESA PBA (dB)
Cloud Bitrate - -
(kbpmp) Bitrate PSNR Bitrate PSNR
(kbpmp) (dB) (kbpmp) (dB) w=025 w=05
w=02 w=05 w=025 w=05 w=025 w=05 w=025 w=0.>5
185 181 181 32.2 34.0 181 181 32.2 34.0
220 216 216 325 34.3 216 216 325 34.3
Andrew 280 279 279 33.0 34.7 279 283 33.0 34.8 0.0 0.0
335 328 328 33.3 35.0 328 328 33.3 35.0
85 84 84 28.1 29.9 84 84 28.1 29.9
280 272 272 31.1 32.9 272 272 311 32.9
Longdress 385 370 370 31.7 334 370 370 31.7 334 0.0 0.0
675 669 669 32.6 34.3 669 669 32.6 34.3
85 83 83 34.1 35.8 87 87 34.5 36.2
280 276 276 37.9 39.6 281 281 37.9 39.7
Redandblack 385 378 378 38.5 40.3 378 387 38.5 40.3 0.1 0.1
675 670 670 39.4 41.2 670 670 39.4 41.2
128 126 126 44.2 45.9 132 126 44.3 45.9
150 149 148 44.6 46.3 149 144 44.6 46.3
David 180 178 178 45.0 46.8 178 178 45.0 46.8 0.0 0.0
212 211 211 451 46.9 211 211 451 46.9
46 45 45 34.9 36.7 49 49 35.4 37.2
56 54 54 35.7 375 51 51 35.6 37.3
Loot 72 70 70 36.6 38.3 65 67 36.4 38.2 0.1 0.1
120 115 115 38.1 39.9 113 113 38.0 39.8
46 46 46 31.9 33.7 51 42 32.3 33.6
56 54 54 324 34.2 54 54 324 34.2
Queen 72 68 68 33.0 34.8 68 68 33.0 34.8 0.0 0.0
120 118 118 34.2 36.0 118 118 34.2 36.0
46 45 45 31.5 33.2 43 43 31.4 33.1
56 55 55 32.2 34.0 55 55 32.2 34.0
Soldier 72 71 71 33.0 34.8 71 71 33.0 34.8 0.0 0.0
120 117 117 34.4 36.2 125 125 34.7 36.4
46 45 45 37.4 39.1 42 42 37.3 39.1
56 54 54 37.8 39.6 54 54 37.8 39.6
Basketballplayer 72 71 71 38.3 40.0 71 76 38.3 40.1 0.0 0.0
120 116 110 38.9 40.6 125 132 39.1 40.9
Average 0.0 0.0

1), which had a higher BE in 37.5% of the cases and a lowetoud, the geometry and color values were both normalized to
one in 4.7% of the cases. [0,1]. Hence, thePSN R of the reconstructed 3D point cloud
was calculated as:

B. Rate-Distortion Performance

In addition to bit allocation accuracy, the rate-distamtio PSNR = 10log;, 1
performance should also be taken into account. After de- NMSE(NMSE,, NMSE.) |’
termining the coding parameters withSA and PBA, we ) (23)
compressed the point clouds and computed their geometry §Hgre NMSE, and NMSE, are the normalized geometry

color distortions using the P@rror reference software [48]. @nd color (Y channel) distortion (i.el), and D.), respec-
Fig. 10 shows the distortio® = wD, + (1 — w)D, as tvely andNMSE(NMSE;, NMSE.) = oNMSEq+(1—

a function of the bitrate (inkbpmp) for ESA and PBA. We w)NMSE.,.

can see that the rate-distortion performance of the prapose Table X shows the PSNR of the two algorithms and

algorithm was very close to that of exhaustive search. the Bjgntegaard delta (BD)-PSNR [51] between their rate-
In addition to the distortions (which are based on the MSEPSNR curves. The results show that the performandeB#

we also computed the peak-signal-to-noise ratio (PSNR). i1 similar to thatESA. Interestingly, a 0.1 dB BD-PSNR

general, it is necessary to normalize with respect to th& pegain was achieved byBA for Redandblack and Loot.

value when converting MSE int® SN R. However, the peak The main reason is thdESA is optimal for the distortion

values of geometry and color are completely different. T® = wD, + (1 — w)D, but not necessarily optimal for the

calculate a meaningfuPSN R for the reconstructed 3D point PSNR (23).
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TABLE XI APPENDIXA

COMPLEXITY COMPARISON FORESA AND PBA - . .
Based on (4)¢Z4 of the original point cloudA and its
corresponding reconstructed point cloBaan be rewritten as

Encoding Time §)

Point Cloud —sA PBA CQ(%) ) B

Andrew 4230435 | 28525 | 0.67 BaA_ 1 Bt

David 45379.97 | 360.86 | 0.80 “ T Ip| > lc, —c. (25)
Longdress | 798817.86 | 5199.87 | 0.65 =1

Redandblack | 936829.38 | 6120.76 | 0.65 whereC,, denotes the color of a point in the original point

Loot 954849.12 | 6196.04 | 0.65 . X .
Queen 1152024.40| 7638.26 | 0.66 cloud A, vy is the nearest neighbor of in the reconstructed
Soldier 1405917.34| 9334.95 | 0.66 point cloud B, andC,- is the color ofv;. From the law of

Basketballplayer | 2533011.95| 14436.01| 0.57

large numbers [52], the average of the reconstruction ésror

A 0.66 . :
voroee close to its expected value. Thus, (25) can be written as
e = E{(C, — C-)%}, (26)
C. Complexity Comparison whereE{.} denotes the expectation operafey,is the random

We run the experiments on a PC with a 3.40 GHz Int&@riable corresponding to the color of pointn A4, andC,- is
Core i7 Processor and 8.00 GB RAM and used the encodiﬂ@ random variable corresponding to the color of its n¢ares
time to evaluate the time complexity. The ratio between tHgighborv™ in B. In the V-PCC encoder, the color information

encoding time ofPBA and that ofESA was used to define of the points in the original point cloud is first reassigned
the complexity quotient (CQ) as (recoloring procedure) based on the reconstructed gepmetr

information [11] due to the number of point changes after
_ Tppa reconstructing the distorted geometric information. Tlies
Q= Tesa x 100%, (24) reassigned color information is compressed to obtain tfa fin

) ) point cloud with compressed geometry and color information
where Tppa and Tpsa denote the encoding time 0tBA | ot ¢ . denote the reassigned color of the point in the

andESA, respectively. The time complexity &SA andPBA  oconstructed geometry point cloud, whose color inforamati
mainly depends on the pre-encoding timeSA needs 10 pre- i not compressed while the geometry information has been

encode the 3D point cloud for all possible combinations %fompressed. Then (26) can be rewritten as:
QPs for the geometry and color components. Because both

the geometry and color QP search range was [22, 42] with a  €¢"" ~ E{(C, — Cus + Cys — Cp+)*}

search step size of 1, a 3D point cloud needs to be encoded = E{(C, — Cys)*} + E{(Cyps — Cp)*} (27)

21 x 21 = 441 times to find the opti_malzg andQ@. wi_th ESA. +2E{(C, — Cys)(Cyps — Cp-)},

In contrast, only three pre-encodings were requiredPiBA

to compute the model parameters. As the time complexity WhereE{(C, —Cys)*} represents the color distortion induced
the interior point method is very small compared to the pr@nly by Q,, and E{(C,s — C,-)*} represents the color
encoding procedure (for example the time spent to obtain tfigtortion induced only by)...

optimal Q, and Q. by the interior point method was only From th(_a definition ofC,, C,s, andC,., we can conclude
1.42 s for theLongdress point cloud, while the pre-encodingthat the difference betwee@, and C,, depends only on
required 5199.87 s), on average, the time complexitPBA the geometry quantization, whereas the difference between

was only 0.66% of that oESA, as shown in Table XI. C,s and C,- depends only on the color quantization. Thus,
it is reasonable to assume that these two random variables

are independent (see [53] [54] for a similar assumption in
VI. CONCLUSION the context of 3D video coding). Consequenti{(C, —
. .. . . Cvﬂ)(cvg - Cv*)} = E{(Cv - Cvg)}E{(Cvg - Cv*)}- Since

This paper presented a model-based joint bit allocatioo-alg; is also reasonable to assume tha{C,} ~ E{C,s}
nthmfor_the V-PCC encoder. To reduce_the tlme_complexny %nd B{C,} ~ E{C,.}, we can conclude thaE{(C, —
exhaustive search as well as preserve its rate-distorédop Cus)(Cys — Cy-)} & 0. Hence, (27) can be written as
mance, we first derived rate and distortion models for point B B B
clouds through theoretical analysis and statistical wioh. e = [0 (Qg) + f7(Qe)s (28)
B_ased on the derived rate and distortion models, the Opt_'%ere qu,A(Qg) = B{(C, — Cw)?} and fP4(Q,) =
bit allocation problem was formulated as a convex COﬂSEﬁiII’IE{(C s —Cpe)?}.
optimization problem and solved by an interior point method Y Y
Model parameters were calculated by pre-encoding a 3D point REFERENCES
cloud only three times. Experimental results showed that th _ , .
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