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Molecular Communication via Subdiffusion with a

Spherical Absorbing Receiver
Shuai Huang, Lin Lin, Juan Xu, Weisi Guo, Hao Yan

Abstract—In molecular communication (MC), the motion of
information molecules in the medium is usually described by the
Brownian motion and governed by the Fick’s laws. However,
there are some potential scenarios of MC where the kinetics
of information molecules is non-Fickian. In this letter, we
investigate one of this kind of MC. The manner of information
molecules in the channel is subdiffusion. A three-dimensional MC
system with a spherical absorbing receiver is considered. The
subdiffusion channel is analyzed. The closed-form expressions
of the first hitting probability and its peak time are given.
Furthermore, we investigate the performance of MC by timing
and amplitude modulation schemes in a subdiffusion channel.
The error probability for both modulation schemes is analyzed.

Index Terms—Molecular communication, anomalous diffu-
sion, error probability.

I. INTRODUCTION

MOLECULAR communication (MC) is a paradigm that

small particles are used for information carrier [1]. In

literature, diffusion-based MC has been investigated widely

where the propagation of information molecules in the channel

is diffusion. The diffusion scheme adopted in MC is usually

Fickian which obeys Fick’s laws. However, there are some

scenarios where the diffusion process of a molecule can not

be categorized as this kind of diffusion. For example, the

diffusion observed by experiments in crowded, heterogeneous,

or complex structure systems is non-Fickian [2], which is also

named anomalous diffusion.

In literature, MC via anomalous diffusion was investigated

in [3] firstly where 1-D communication channel is considered.

This work was developed to a connectivity problem with

a random time constraint in a 1-D nanonetwork [4]. Anal-

ogously, in [5], the authors focused on MC by anomalous

diffusion in a 2-D stochastic nanonetwork. The 3-D MC in

an anomalous diffusion channel was considered in [6]. The

authors analyzed the performance of a concentration-encoded

MC system where the manner of information molecules is

subdiffusion.
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In this letter, similar to [6], we investigate 3-D MC in a

subdiffusive channel. The propagation scheme of information

molecules is subdiffusion, one kind of anomalous diffusion.

This kind of diffusion process is common in some classical

applications of MC. For instance, in living cells, proteins

which are searching for specific DNA target sites undergo

subdiffusion due to the crowding and caging, geometrical

traps and energetic barriers [7]. As another example, for the

particles in the bulk, one can consider them to be governed by

the subdiffusion [8]. Unlike the work in [6] where the receiver

model is passive, in this letter, a spherical absorbing receiver

is adopted. Compared with the former, the extra boundary

condition is introduced by the absorbing receiver. To the best

of our knowledge, this is the first investigation of MC with an

absorbing receiver in a 3-D subdiffusive channel. The main

contributions of this letter are as follows:

1) Channel analysis: We derive the channel instantaneous

response, i.e, the first hitting probability. Furthermore,

the exact expression of the peak time is derived, which

has a great significance for the choice of symbol duration

for a MC system.

2) Error probability: We investigate the error performance

of MC in a subdiffusion channel with two different

modulation methods, i.e., timing and amplitude modu-

lation schemes. The closed-form expression of the error

probability for the timing modulation is derived.

II. SYSTEM MODEL

The complete 3-D MC system considered in this letter con-

sists of a transmitter-receiver pair, a subdiffusion molecular

channel, and information-carrying messenger molecules. The

transmitter is a point source which is located at distance r0
from the center of the receiver. The receiver is a 3-D sphere of

radius arx with fully absorbing boundaries [9]. That is, the re-

ceiver is covered with selective independent receptors, which

are only sensitive to a single type of information molecule.

Every information molecule colliding with the surface of the

sphere is absorbed by the receiver body and removed from

the communication environment. Fig. 1 depicts a diagram of

the system.

Unlike the Fickian diffusion channel, the propagation

scheme of information molecules is subdiffusion. This kind

of diffusion usually appears in crowded environment. Exper-

iments on particle motion in living cells and in biological

and artificial membranes have shown that the diffusion in

such environment is often subdiffusion [10], i.e., it does

not correspond to the particle’s mean squared displacement
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Fig. 1. System model. The propagation scheme of information molecule is
subdiffusion.

growing linearly in time, < r2(t) >∝ t, as predicted by

Fick’s theory of diffusion, but follows another fractional-

power pattern < r2(t) >∝ tγ , with an exponent γ between

0 and 1. The subdiffusion manner of information molecule

can be described by the following time-fractional partial

differential equation [6, Eq. (10)]:

∂

∂t
w(r, t; r0) = 0D

1−γ
t

[

D▽2
rw(r, t; r0)

]

. (1)

In (1), w(r, t; r0) is the probability distribution of a molecule

in time-space domain. D is the diffusion constant and ▽2
r is

the Laplacian operator on r. 0D
1−γ
t is the Riemann-Liouvile

operator defined as [6, Eq. (8)]

0D
1−γ
t [f(r, t)] =

1

Γ(γ)

∂

∂t

∫ t

0

f(r, τ)

(t− τ)1−γ
dτ, 0 < γ < 1.

(2)

Here Γ(·) denotes the gamma function. Note that (1) will

reduce to Fick’s second law when γ = 1 since

0D
0
t [f(r, t)] = f(r, t). (3)

In addition to the time-fractional subdiffusion equation, we

should define the initial and the boundary conditions obeying

the model in Fig. 1. These conditions have been given in [9].

III. CHANNEL CHARACTERISTICS

In this section, the subdiffusion MC channel is investigated.

First we focus on the absorption probability K(t; r0), which

is the probability that a molecule is absorbed by the receiver

in [0, t] after it is released by the transmitter at time t = 0.

Since w(r, t; r0) is the probability distribution of a molecule

in time-space domain, K(t; r0) can be calculated by

K(t; r0) = 1−
∫

∞

arx

4πr2w(r, t; r0) dr. (4)

One can understand (4) by regarding the integral in (4) as the

survival probability of a molecule after it is released, which

has been derived in [11, Eq. (55)] by the Laplacian transform.

Here we use the conclusion of [11] directly to obtain the

expression of K(t; r0):

K(t; r0) =
arx

r0
H10

11

[

r0 − arx√
Dtγ

∣

∣

∣

∣

(1, γ/2)
(0, 1)

]

, (5)

K∗(s; r0) =
1

s

arx

r0
exp

(

(arx − r0)
√

sγ/D
)

. (6)
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Fig. 2. The absorption probability K(t; r0).

In (5), Hm,n
p,q (·) is Fox’s H function [12]. K∗(s; r0) is the

Laplacian transform of K(t; r0) with respect to time t. Note

that when t → ∞, the absorption probability K(t; r0) has a

limit:

lim
t→∞

K(t; r0) = lim
s→0

sK∗(s; r0) =
arx

r0
. (7)

The result in (7) agrees with the common sense, i.e., the larger

receiver provides more possibilities for a molecule absorbed.

On the other hand, if γ = 1, (5) is given by

K(t; r0)
∣

∣

γ=1
=

arx

r0
H10

11

[

r0 − arx√
Dt

∣

∣

∣

∣

(1, 1/2)
(0, 1)

]

(a)
=

arx

r0

[

1 +

∞
∑

k=1

(−z)k

k!Γ(1− 1
2k)

]

. (8)

In (8), z = (r0−arx)/
√
Dt. The equality (a) holds due to the

power series expansion of the Fox’s H function [13]. Then,

(8) can be rewritten as

K(t; r0)
∣

∣

γ=1
=

arx

r0

[

1 +

∞
∑

k=1

2 sin
(

k
2π

)

Γ
(

1 + k
2

)

(−z)k

k · k!π

]

=
arx

r0

[

1−
∞
∑

n=0

(−1)nz2n+1Γ(n+ 1
2 )

(2n+ 1)!π

]

=
arx

r0

[

1− 2√
π

∞
∑

n=0

(−1)n
(

1
2z

)2n+1

n!(2n+ 1)

]

, (9)

where the series in (9) is the expansion of the error function.

Thus, the absorption probability for Fickian diffusion (γ = 1)

is given by

K(t; r0)
∣

∣

γ=1
=

arx

r0
erfc

z

2
=

arx

r0
erfc

[

r0 − arx√
4Dt

]

, (10)

which is same with the result in [9, Eq. (23)].

Fig. 2 shows the comparison between the simulated and

expected absorption probabilities K(t; r0), denoted by the

circle and the solid line, respectively. The simulations are

particle based. The number of molecules released is N = 103.
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The receiver counts the number of molecules absorbed during

the time slot [0, t], denoted by Nab. Then the ratio Nab/N is

the simulated absorption probability. For characterizing the

movement of each molecule in the channel, we use a Monte

Carlo method connected to the continuous-time random walks

(CTRW) with Gaussian and Lévy distributions. The relation

between the CTRW and the subdiffusion can be found in [13,

Section II]. The simulation parameters are set as r0 = 10−5 m,

σ2 = 2× 10−14 m2, τ = 10−5 s. σ, τ are scaling parameters

for the space and time variables, which are related to the

diffusion coefficient, defined as D = σ2/2Γ(1 − γ)τγ by

taking the limit σ2 → 0 and τ → 0. As shown in Fig.

2, the simulated results are in agreement with the theoretic

prediction. Furthermore, we observe that it is more easier for

information molecule to be absorbed when the size of receiver

and the value of γ are bigger.

The absorption probability K(t; r0) characterizes the sub-

diffuion channel over time. Generally, it is more intuitive to

use the instantaneous response to describe the channel. For a

subdiffusion channel with a spherical absorbing receiver, its

instantaneous response is the first hitting probability, defined

as [9, Eq. (23)]

fhit(t; r0) =
∂

∂t
K(t; r0). (11)

By setting x = (r0 − arx)/
√
Dtγ , (11) can be stated as

fhit(t; r0) =
arx

r0

∂x

∂t

∂

∂x
H10

11

[

x

∣

∣

∣

∣

(1, γ/2)
(0, 1)

]

. (12)

Using the Mellin-Barnes integral representation of Fox’s H

function [12], (12) is given by

fhit(t; r0) =
arx

r0

∂x

∂t

∂

∂x

[

1

2πi

∫

L

Γ(s)

Γ(1 + γ
2 s)

x−s ds

]

. (13)

The order of differentiation and integration can be changed,

see [14, Eq. (2.5)], then (13) can be calculated by

fhit(t; r0) = −arx

r0
x−1 ∂x

∂t

1

2πi

∫

L

Γ(s+ 1)

Γ(1 + γ
2 s)

x−s ds

= −arx

r0
x−1 ∂x

∂t
H10

11

[

x

∣

∣

∣

∣

(1, γ/2)
(1, 1)

]

. (14)

Finally, the first hitting probability function can be written as

fhit(t; r0) =
arxγ

2r0t
H10

11

[

r0 − arx√
Dtγ

∣

∣

∣

∣

(1, γ/2)
(1, 1)

]

. (15)

It can be proven that (15) will reduce to [9, Eq. (22)] when

γ = 1.

Similar to [9], the peak time of the first hitting probability

fhit(t; r0) is investigated in the remainder of this section.

However, it is difficult to obtain the maximum of fhit(t; r0)
by using the first derivative test. Inspired by [13], the pulse

peak time tpeak can be found by the asymptotic behavior of

fhit(t; r0) for small value of t. According to [13, Eq. (3.35)],

the Fox’s H function in (19) has the asymptotic expansion as

H10
11

[

r0 − arx√
Dtγ

∣

∣

∣

∣

(1, γ/2)
(1, 1)

]

∼
(

2

πγ(2− γ)

)1/2
(γ

2

)

γ

2(2−γ)

×z1/(2−γ) exp

(

−2− γ

2

(γ

2

)γ/(2−γ)

z2/(2−γ)

)

.

(16)

Simulated

Expected

13 210 m / s6.715D
 

12 210 m / s4.508D
 

11 210 m / s2.178D
 

Fig. 3. The pulse peak time in (19).

Substituting this in the expression for fhit(t; r0) in (15), we

can obtain for small t

fhit(t; r0) ∼
r

t(4−γ)/(4−2γ)
exp

(

− d

tγ/(2−γ)

)

, (17)

where

r =

(

2γ

π(2− γ)

)1/2
(γ

2

)

γ

2(2−γ)

(

r0 − arx√
D

)1/(2−γ)

,

d =
2− γ

2

(γ

2

)γ/(2−γ)
(

r0 − arx√
D

)2/(2−γ)

. (18)

We can determine the t value where fhit(t; r0) attains its

maximum value from the above expression (17):

tpeak =
γ

2

(

2− γ

4− γ

)

2−γ

γ
(

r0 − arx√
D

)
2
γ

. (19)

Fig. 3 presents the distance r0 versus the pulse peak time

tpeak for different γ values. Simulation results denoted by the

circle, are particle based. The number of molecule released

is 5 × 104. Similar to the simulations in Fig. 2, the CTRW

with same parameters, i.e., σ and τ , is used to characterize

the subdiffusion manner of each molecule. As shown in Fig.

3, simulation results validate the analytical expression of the

pulse peak time. Furthermore, note that the peak time is

smaller for larger values of γ, This is due to the fact that

the diffusion coefficient D = σ2/2Γ(1 − γ)τγ is larger as γ
increases.

IV. ERROR PERFORMANCE

In this section, we investigate the error performance of

MC in a subdiffusion channel. The transmitter sends a binary

message sequence to the receiver. The time interval for bit

transmission is Tb. Let bi ∈ {0, 1} denotes the bit transmitted

in the ith bit interval. Two modulation schemes–i.e., timing

and amplitude modulation, are presented in the remainder of

this section.



4

10
-5

10
-4

10
-3

10
-2

0.2

0.202

0.204

0.206

0.208

0.21

0.212

Fig. 4. Error probability in (21) for the timing modulation. The parameters
in (21) are defined as arx = 6× 10−6 m, r0 = 10−5 m, and ξth = 1/2Tb.

A. Timing Modulation

For timing modulation, information is encoded into the

molecule release time. The transmitter releases information

molecule at the start of a symbol slot if bi = 0 while the

emission time is the middle of a symbol slot if bi = 1. In other

words, X ∈ {0, Tb/2} where X denotes the release time. For

simplicity, it is assumed that the channel is memoryless so that

ISI is negligible. Let Y be the arrival time1, i.e., the instant

when the released molecule is absorbed by the receiver. Then,

decision is given by

Y
b̂i=1

≷
b̂i=0

ξth, (20)

where b̂i is the estimate of bi and ξth is the detection threshold.

Considering a symmetric bit input, the error probability Pb

for this timing modulation of MC in a subdiffusion channel

is given by

Pb =
1

2
P (Y > ξth|X = 0) +

1

2
P

(

Y < ξth|X =
Tb

2

)

=
1

2
(1−K(ξth; r0)) +

1

2
K

(

ξth −
Tb

2
; r0

)

. (21)

Fig. 4 depicts the error probability Pb in (21). The Fox’s H

function is calculated by its Mellin-Barnes integral represen-

tation, see [15] for the implementation of Fox’s H function by

MATLAB. As shown in the figure, the subdiffusion increases

the error probability compared with the Fickian diffusion,

i.e., γ = 1. The reason behind this phenomenon is the

anomalous diffusion has larger dispersion [3]. Note that the

error probability Pb will never approach to zero no matter

how small the data rate (1/Tb) is. That is due to the fact that

the absorption probability has a limit, see (7).

1According to (7), there is a positive probability that the transmitted
molecule never arrives. In this case, it is assumed that the arrive time Y
is equal to infinity.

B. Amplitude Modulation

For the amplitude modulation, information is modulated

by the number of molecules released by the transmitter at

the beginning of a symbol slot. For simplicity, the On-Off

Keying (OOK) is adopted where the number of molecules to

be released is Q for bi = 1, and 0 for bi = 0. The receiver

counts the number of molecules absorbed in the current

symbol slot as the received signal, and compares this value

with a detection threshold. Unlike the timing modulation,

ISI is considered here. Let bi denote the transmitted binary

sequence, i.e., bi = [b1, · · · , bi]. The received signal Yi at the

ith time slot is a Gaussian variable which is given by

Yi ∼ N
(

µi, σ
2
i

)

. (22)

In (22), µi, σ
2
i are the mean and variance of Yi, respectively.

Due to the effect of ISI and noise, µi, σ
2
i are given by

µi = Qbi · pT
i , σ

2
i = Qbi · vdiag

{

pT
i (1− pi)

}

+ σ2
c . (23)

In (23), vdiag{A} is a column vector which contains the

diagonal entries of matrix A. σ2
c is the variance of a zero-

mean white Gaussian noise. pi = [pi, pi−1, · · · , p1] is used to

characterize the effect of ISI, which is a vector including the

absorption probabilities pm,m = 1, · · · , i, defined as

pm =

{

K (mTb; r0)−K ((m− 1)Tb; r0) if m > 1,

K(Tb; r0) if m = 1.
(24)

The detection threshold in the ith bit interval is assumed as

ξi. Then, decision is given by

Yi

b̂i=0

≷
b̂i=1

ξi, (25)

The optimal threshold ξ∗i can be calculated by forming the

likelihood ratio test

ξ∗i = argmin
yi

∣

∣

∣

∣

1− fYi
(yi|bi−1, bi = 1)

fYi
(yi|bi−1, bi = 0)

∣

∣

∣

∣

, (26)

where fYi
(·) denotes the probability density function of the

Gaussian distributed Yi. Note that it is necessary for the

receiver to keep the sequence history bi−1 for the sake of

calculation of ξ∗i . In other words, the detector has memory.

The error probability at ith bit interval given bi−1 is given by

P i
b

∣

∣

bi−1
=

1

2
Q

(

ξ∗i − µi0

σi0

)

+
1

2
Q

(

µi1 − ξ∗i
σi1

)

, (27)

where {µi0, σi0}, {µi1, σi1} are the parameter sets of Yi given

bi = 0 and bi = 1, respectively. For the memoryless detector,

the optimal threshold ξ∗i can be calculated by [16, Algorithm

1].

Fig. 5(a) shows the error probability in (27) given the

most serious ISI effect, i.e., the sequence of ISI is bi−1 =
[1, 1, · · · , 1]. The parameters are set as arx = 5 × 10−6 m,

r0 = 10−5 m, Q = 200, σ2 = 10−12 m2, τ = 10−5 s,

and σ2
c = 2. Note that the error probability is smaller for

larger values of γ. The reason behind the phenomenon can be

found in Fig. 2. As shown in Fig. 2, the absorption probability

K(t; r0) grows faster for large value of γ in the beginning.
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Fig. 5. The error probability in (27) affected by the worst ISI based on amplitude modulation.

In other words, p1 = K(Tb; r0) is bigger for large value

of γ, which is beneficial to the information transmission.

Furthermore, ISI is more serious when γ = 0.6 from the

bar graph in Fig. 5(b).

V. CONCLUSION

In this letter, we investigate MC in a 3-D subdiffusion

channel with an absorbing receiver. The subdiffusion channel

is analyzed. The formulas of the first hitting probability and

its peak time are derived. Furthermore, the error performance

for the timing and amplitude modulation is considered, respec-

tively. The simulation results show that the larger value of γ
leads to the better performance. For the timing modulation dis-

cussed in Section IV, note that only an information molecule

is released by the transmitter and the ISI is not considered

in the demodulation process. It will be our future work to

improve the performance of this timing modulation scheme.
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