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Abstract  

Arsenic (As) is toxic for humans, animals, and plants, whereas selenium (Se) is considered 

as an essential trace element and can cause toxicity during episodic elevated exposure. 

Interaction between As and Se is a critical factor for a detailed systematic understanding 

of the transportation, environmental fate, and associated toxicological effects of these 

metalloids in biological systems. Arsenic and Se induce cytotoxicity and genotoxicity 

through the generation of reactive oxidation species (ROS). Compared to arsenite (AsIII), 

the methylated arsenicals, including methylarsonous acid (MAsIII) and dimethylarsinous 

acids (DMAsIII) exhibit more cytotoxic and genotoxic potentials to inhibit more potent 

enzymes and activate AP˗1 protein, which is a critical marker for genetic stability. 

Methylated AsIII and associated metabolites are well-known potential carcinogens that 

induce toxicity by blocking Se metabolism pathway. Low concentrations of Se compounds 

under reducing conditions inhibit the DNA repairing process and constraint the binding of 

zinc finger protein to DNA and ultimately cause the release of zinc from the motif of the 

zinc finger. Imbalance of Se compounds can lead to the generation of ROS, which can 

inhibit or decrease genomic stability. Arsenic and Se nexus also affect cellular signaling 

through activation of the transcription factors such as NFҡB and AP-1. In a nutshell, this 

review highlights As and Se sources in the environment, their uptake in soil-plant system, 

interactions between these metals and associated toxicity in major biological compartments, 

which may assist in addressing the hazardous impacts associated with As and Se 

contamination. Last but not the lease, this review also summarizes the available remedial 

measures and future research directions to cope with this critical issue.    

Keywords: Arsenic-selenium; Complex interactions; Toxicity; Plants; Animals; Humans  
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1. Introduction 

Previous cutting-edge studies have suggested that the understanding of mechanistic 

interactions between As and Se is critical to unveil their environmental fate and health-

related consequences in animals and humans. Arsenic is the 20th most abundant element in 

the earth's crust and well known human carcinogen and exhibits only one isotope in nature 

(Ali, Aslam, Feng, Junaid, Ali, Li, Chen, Yu, Rasool and Zhang 2019). Two main species 

of As exist in the terrestrial environment, including arsenate (AsV) and arsenite (AsIII), 

which are mainly dominant under oxidizing and reducing environmental conditions, 

respectively (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). Different As species have 

different modes of toxicity in biological systems. For instance, the final product of As 

metabolites, monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) 

moderately less toxic than inorganic As, albeit the toxicity of intermediate metabolites, 

monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) considerably 

higher than inorganic AsV such as MMAV, DMAV, and AsIII. In major biological systems 

(plants, animals, and humans), the toxicity behavior of different As species increases in the 

order of AsV< MMAV< DMAV< AsIII < MMAIII  DMAIII (Sun, Rathinasabapathi, Wu, 

Luo, Pu and Ma 2014, Bastías and Beldarrain 2016). 

Selenium is a metalloid, first discovered in 1817 by Swedish chemist Jons Jacob 

Berzelius and exists in the earth's crust at the level of 50 to 90 µg/kg (Shahid, Niazi, Khalid, 

Murtaza, Bibi and Rashid 2018, Sneddon 2012). Selenium has various valance states, 

including selenide (SeII⁻), selenium (Seo), thioselenate (SSeO₃²⁻), selenite (SeIV), and 

selenate (SeVI) (Schiavon and Pilon-Smits 2017, Chauhan, Awasthi, Srivastava, Dwivedi, 

Pilon-Smits, Dhankher and Tripathi 2019). Alike As, where AsV is less toxic than AsIII, 

SeVI is less toxic than SeIV in both eukaryotes and prokaryotes (Sun, Rathinasabapathi, Wu, 

Luo, Pu and Ma 2014). However, different studies suggested SeIV and SeVI as the only and 

most abundant form of Se available for plant uptake (Shahid, Niazi, Khalid, Murtaza, Bibi 

and Rashid 2018). Abbreviations used in the current review are listed in (Table 1). 

Selenium also brought under the type of essential element for microbes, animals, and 

humans at a certain level. For example, Se recommended dietary allowance (RDA) limit is 

55 µg/day for adults (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014, Zwolak and 
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Zaporowska 2012, Zeng, Uthus and Combs 2005). Selenium acts as a critical component 

in different selenoproteins, including glutathione peroxidases (GPx), a family of 

antioxidant enzymes in animals and humans (Savitha 2014). Selenium occurs in numerous 

oxidation states that permit to produce organoselenium and selenoamino acid complexes 

(Tinggi 2003). In plant-system, Se is also considered as a beneficial element and acts as an 

antioxidant at low and acceptable doses and protects plants from various types of abiotic 

stresses. However, an excessive amount of Se in plant-system behaves like a pro-oxidant 

and causes toxicity (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018). 

Selenite commonly used as a feed additive in different commercial animal diets with a 

recognized Se dose of 0.5 mg/kg of the whole feed (Zwolak 2019). Whereas, in humans, 

Se intake varies across various countries. Overall, Se consumption for adults ranged from 

93 to 134 µg/day in North America; optimal Se consumption ranged from 52 to 64 µg/day 

in Western Europe and low levels of Se consumption ranged from 30 to 40 µg/day in 

Eastern Europe (Zwolak 2019). This metalloid is also known as cancer chemopreventive 

compound, which is indispensable for cells to function properly (Zeng, Uthus and Combs 

2005). Several mechanisms have been reported about the chemoprotective effects of Se 

such as antioxidant protection, reduction in carcinogen metabolism effects, enhance 

immune surveillance system, and inhibition of the angiogenesis process and cell cycle (Lu 

and Jiang 2001, Zeng 2009). 

Several mechanisms are proposed to elucidate the interaction between As and Se. 

However, the biological interactions between As and Se depend on specific biochemical 

forms for the reason that As and Se are metalloids with similar chemical properties have 

intensely alike and unlike biological effects (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 

2014). However, the antagonistic effects or natural detoxification between As and Se have 

been confirmed in several animal species, as well as in humans (Zwolak and Zaporowska 

2012). Due to chemical similarity, As and Se both, play dual roles concerning cancer. 

Arsenic is known for its carcinogenicity; so far, it is also used in treating certain cancers. 

Likewise, Se is known as an anticarcinogen and nonetheless, but it also causes cancer. So 

far, substantial research was done to elucidate insights into their carcinogenic mechanisms 

and interaction between their double roles, such as carcinogen and anticarcinogen (Sun, 

Rathinasabapathi, Wu, Luo, Pu and Ma 2014).  
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Historically, the Mexon first time in 1938 introduced and used As as a treatment to 

reduce the toxicity of Se in animals (Rosen and Liu 2009). Elevated concentrations of both 

As and Se in animals and humans cause a release, relocation, and removal of the essential 

or non-essential metals via biliary, urinary, and expiratory pathways (Gaxiola-Robles, 

Labrada-Martagón, Acosta-Vargas, Méndez-Rodríguez and Zenteno-Savín 2014). Several 

recent studies elucidated the insights protective competence of Se from SeIV contrast to 

AsIII, tempted renal toxicities, immunotoxicity, and or cardiovascular injuries in animals 

and humans (Zwolak 2019). Mechanistic interactions between As and Se, signifies the 

protective effects of Se on As methylation efficiency such as the elevated concentration of 

urinary Se mainly related with increased percentage of the DMAV and reduced percentage 

of inorganic As in the urine of As exposed pregnant women in Chile and Taiwan (Hsueh, 

Ko, Huang, Chen, Chiou, Huang, Yang and Chen 2003, Christian, Hopenhayn, Centeno 

and Todorov 2006). While, findings from another study on As exposed adults suggested 

that the plasma Se level inversely related with the percentage of total As concentration in 

blood and urine and the percentage of the MMAV utterly related with the percentage of 

DMAV in blood and at the same time, the plasma Se did not affect the As metabolites in 

the urine of studied population (Pilsner, Hall, Liu, Ahsan, Ilievski, Slavkovich, Levy, 

Factor-Litvak, Graziano and Gamble 2010). 

Recently, a study on unexposed preschool children in Taiwan confirmed the elevated 

concentration of Se in plasma was related to a decreased percentage of MMAV and an 

increased percentage of DMAV (Su, Hsieh, Chung, Huang, Lin, Ao, Shiue, Chen, Huang 

and Lin 2019). However, contrary results reported by Skröder Löveborn et al. who revealed 

a positive interaction between increasing erythrocyte levels of Se and increasing 

percentages of As and MMAV in urine samples (collected from children), implying that Se 

contributed in the methylation of As in children (Skröder Löveborn, Kippler, Lu, Ahmed, 

Kuehnelt, Raqib and Vahter 2016). Furthermore, Styblo and Thomas (2001) reported that 

the SeIV at 2 μM dose could inhibit the AsIII methylation process increased the cellular 

retention of As-induced toxicity mediated by MMAIII, DMAIII, and AsIII in rat hepatocytes 

(Styblo and Thomas 2001). So far, the contrary results have been stated in the reviewed 

literature as both antagonistic and synergistic interactions, and toxicity exists between As 

and Se (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). 
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   Considering all this background information on the significance of As and Se in 

biological systems and most importantly their interaction (which is currently scarce at 

large), this review aims at highlighting the following three main objectives: 1) to explain 

possible mechanisms of As and Se uptake in the soil-plant system and plant toxicity, 2) the 

As and Se interactions in animals and humans, and 3) physiological significance with 

metabolic process of Se to understand the toxicity and exposure routes of As. 

Table 1 

2. Arsenic and selenium fate in the environment and associated effects 

Anthropogenic sources of As and Se include mining, smelting, metal ores processing, 

coal combustion, municipal, industrial and domestic waste disposal, while natural sources 

comprise of volcanic eruption and rock weathering (Figure 1) (Wen and Carignan 2007, 

Ali, Aslam, Feng, Junaid, Ali, Li, Chen, Yu, Rasool and Zhang 2019, Zeng, Wu, Liang, 

Guo, Huang, Xu, Liu, Yuan, He and He 2015). In the past, As and arsenical compounds 

are widely used for the preparation of insecticides, pesticides, herbicides, and fungicides 

(Ali, Mushtaq, Javed, Zhang, Ali, Rasool and Farooqi 2019).  

Arsenic naturally occurs in over 200 numerous forms of minerals, of which about 60% 

are arsenates, 20% sulfides, sulfosalts, and 20% are oxides, arsenide, arsenite, silicates, and 

elemental As (Ali, Aslam, Feng, Junaid, Ali, Li, Chen, Yu, Rasool and Zhang 2019b). 

Naturally, there are four processes, i.e., reductive dissolution, sulfide oxidation, alkali 

desorption, and geothermal activities that usually are involved in releasing As in different 

environmental compartments such as air, soil, and groundwater (Bhattacharya, Mukherjee, 

Bundschuh, Zevenhoven and Loeppert 2007). Arsenic can also derive from natural, 

presumably detrital chlorite (Hering, Burris, Reisinger and O'Day 2008). The oxidation-

reduction potential (Eh) and pH are two primary significant factors that control As 

speciation and solubility, both in soil and groundwater (Frohne, Rinklebe, Diaz-Bone and 

Du Laing 2011). At neutral and slightly acidic pH, the AsIII compounds exist as non-

dissociated salts while at pH > 8, they exist as anionic species (Ali, Aslam, Feng, Junaid, 

Ali, Li, Chen, Yu, Rasool and Zhang 2019). 

Moreover, microbial activities influence As behavior in the soil environment and 

increase As availability in the soil-plant system (Liu, Yin, Zhang, Tsang, Wei, Zhou, Xiao, 

Wang, Dong and Sun 2019, Khalid, Shahid, Niazi, Rafiq, Bakhat, Imran, Abbas, Bibi and 
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Dumat 2017). Arsenic mainly adsorbed to iron oxyhydroxides in sediments from where it 

released in soil, air, and groundwater by microbial degradation (Brammer and Ravenscroft 

2009). Microbes primarily degraded the organic matter and reduced ferric-iron to soluble 

form ferrous-iron and consequently As released into the soil system (Huang 2014). Various 

microbes such as Bacillus arsenicoselenatis, Crysiogenes arsenates, Geospirillum 

arsenophilus, etc., play a significant role in redox transformation of AsV to AsIII through 

reduction by using AsV as a terminal electron acceptor (Khalid, Shahid, Niazi, Rafiq, 

Bakhat, Imran, Abbas, Bibi and Dumat 2017). However, As methylation also takes place 

under oxidizing or reducing environmental conditions by a variety of microbes. During the 

As microbial methylation process, AsV is converted to AsIII followed by several steps and 

form several organic As compounds, such as MMAV, DMAV, and trimethyl arsine (TMA) 

(Khalid, Shahid, Niazi, Rafiq, Bakhat, Imran, Abbas, Bibi and Dumat 2017, Rahman, 

Hogan, Duncan, Doyle, Krassoi, Rahman, Naidu, Lim, Maher and Hassler 2014).  

Arsenite is sixty times more poisonous and cancer-causing to humans compared with 

AsV (Hughes, Beck, Chen, Lewis and Thomas 2011). Arsenite can bind with tissues for an 

extended period through specific groups of proteins that distressed the ATP synthesis 

(Brown and Ross 2002, Chandrakar, Pandey and Keshavkant 2018). Long-lasting As 

exposure damages human cardiovascular, dermal, neurological, hepatic, respiratory, and 

reproductive systems (Ali, Mushtaq, Javed, Zhang, Ali, Rasool and Farooqi 2019). 

Selenium is also a well known toxic element, Se and Se-compounds widely used as 

feed additives (Navarro-Alarcon and Cabrera-Vique 2008), which exhibit adverse effects 

on the environment and food chain that has been discussed comprehensively during the 

recent past (Chauhan, Awasthi, Srivastava, Dwivedi, Pilon-Smits, Dhankher and Tripathi 

2019). Similar to As, Se can also biologically transformed through redox methylation 

reactions mediated by a variety of microbes. In soil-system, microbes can reduce SeVI and 

SeIV to the elemental Se directly or through changing the pH and Eh, which makes SeIV

comparatively more available to plants than Se. However, this transformation process also 

can occur in both oxidizing and reducing soil conditions (Saha, Fayiga and Sonon 2017). 

Microbes can make use of both SeVI and SeIV as terminal electron acceptors during 

respiration under reducing soil conditions (Saha, Fayiga and Sonon 2017). Whereas, both 

organic and inorganic forms of Se actively transformed into volatile methylated organic 
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complexes such as dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe) by fungi, 

bacteria and plants roots (Winkel, Vriens, Jones, Schneider, Pilon-Smits and Bañuelos 

2015a). Though DMSe is a critical compound, produced through respiration by plants and 

microbes (Stolz, Basu, Santini and Oremland 2006).  

Selenium plays a vital role in the foraging and regulation of free radicals (Hartikainen 

2005). At physiological pH, Se complexes (selenol) readily dissociate and participate in 

catalytic reactions (Tinggi 2003). In human body, excessive Se changed to selenocysteine 

(SeCys) which is known as the 21st proteogenic amino acid, an essential component of 25 

various selenoproteins (Chauhan, Awasthi, Srivastava, Dwivedi, Pilon-Smits, Dhankher 

and Tripathi 2019, Constantinescu-Aruxandei, Frîncu, Capră and Oancea 2018). 

Integration of SeCys instead of cysteine at the active sites of enzymes such as methionine-

R-sulfoxide reductase can change their catalytic activity and electron donor specificity, 

which is considered as Se toxicity in humans (Gromer, Eubel, Lee and Jacob 2005, 

Stadtman 2005). The occurrence of SeCys in the active sites of antioxidant enzymes 

produces maximum catalytic activity because of the stronger nucleophilic influence of 

SeCys in contrast to cysteine (Cys) (Snider, Ruggles, Khan and Hondal 2013). This caused 

an alteration in SeCys biosynthesis or precise integration into Se-requiring proteins, which 

can lead to cause neurological and several other disorders (Chauhan, Awasthi, Srivastava, 

Dwivedi, Pilon-Smits, Dhankher and Tripathi 2019).  

   Around 0.5 to 1 billion people worldwide suffering from Se deficiency (Jones, Droz, 

Greve, Gottschalk, Poffet, McGrath, Seneviratne, Smith and Winkel 2017), which makes 

them prone to several diseases such as white muscle and Keshan disease (Shahid, Niazi, 

Khalid, Murtaza, Bibi and Rashid 2018). Selenium deficiency occurs in humans when Se 

intake is < 40 µg/d (Navarro-Alarcon and Cabrera-Vique 2008, Winkel, Johnson, Lenz, 

Grundl, Leupin, Amini and Charlet 2011), which can cause reduced bone metabolism, 

growth obstruction, irregularities in thyroid function, reduced fertility, weaken immune 

system, and even induce cancer (Navarro-Alarcon and Cabrera-Vique 2008, Gupta and 

Gupta 2017, Chang, Yin, Wang, Shao, Chen and Zhang 2019). Inorganic Se is 40 times 

more toxic than organic Se (Vinceti, Maraldi, Bergomi and Malagoli 2009). However, a 

higher intake of Se > 400 µg/d (Winkel, Johnson, Lenz, Grundl, Leupin, Amini and Charlet 

2011) can lead to severe toxicological effects in humans such as skin lesions, nail, hair loss, 
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cancer, nervous disorders, amyotrophic lateral sclerosis diabetes, and paralytic symptoms 

(Chauhan, Awasthi, Srivastava, Dwivedi, Pilon-Smits, Dhankher and Tripathi 2019, 

Fordyce 2013).

Figure 1 

3. Arsenic and selenium uptake, translocation, accumulation, and toxicity in plants 

system   

3.1. Arsenic  

   Arsenic uptake, translocation, accumulation, and toxicity in plants and food crops 

depend on environmental conditions, plant species, and bioavailability of As species 

(Bhattacharya, Gupta, Debnath, Ghosh, Chattopadhyay and Mukhopadhyay 2012). 

Arsenate is a major As species in aerobic soil system because AsV has a strong affinity to 

bind with iron-oxide or hydrolysis; therefore, the AsV level ranged from < 2.3 to 53 µM in 

uncontaminated or moderately to highly contaminated soil solutions, respectively (Wilson, 

Lockwood, Ashley and Tighe 2010, Zhao, Ma, Meharg and McGrath 2009). Whereas AsIII 

observed dominantly in reducing environmental conditions such as in flooded paddy soil 

(Zhao, Ma, Meharg and McGrath 2009). Thermodynamically, the reduction of AsV to AsIII

takes place in-between redox potential leads to the mobilization of AsIII into the soil 

solution, which causes an increase As availability to plants (Chen, Han, Cao, Zhu, 

Rathinasabapathi and Ma 2017). In paddy flooded soil, the concentration of AsIII ranged 

from 0.01 to 3 µM, the concentration much higher as compare to AsV contaminated soils 

(Zhao, Ma, Meharg and McGrath 2009).   

  In plants, various protein transporters assist the uptake of As in its inorganic form, and 

this process usually depends on As concentration gradient between source and sink (Abbas, 

Murtaza, Bibi, Shahid, Niazi, Khan, Amjad and Hussain 2018). Arsenic uptake in plant 

cells depends on As species such as AsV, uses different phosphate (Pi) transporter that 

belongs to the PHT1 family for the reason that the phosphate is chemically similar to AsV

(Moreno-Jiménez, Esteban and Peñalosa 2012). Whereas, AsIII uses silicon (Si) 

transporters due to its resemblance to AsIII and Si (Bastías and Beldarrain 2016). Arsenite 

is fascinated by the aqua glycoprotein nodulin-like essential proteins (NIPs) (Bastías and 

Beldarrain 2016). Under Si deficiency, the expression of influx Si transporters (Lsi1& Lsi2) 

increases (Ma and Yamaji 2008). Accumulation of Si in plant cells controlled by the Lsi1 
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and Lsi2 transporters, which contained at proximal or distal flanks of epidermal and 

endodermal cells, which help in transportation of As across the plant's cells and tissues 

(Abbas, Murtaza, Bibi, Shahid, Niazi, Khan, Amjad and Hussain 2018). However, the 

traces of methylated As species well known as MMA and DMA are also found in some As 

contaminated soils (Zhao, Ma, Meharg and McGrath 2009).  

  Monomethylarsenic acid and DMA mainly originated from past use of arsenicals 

compounds such as herbicides or insecticides or also may be synthesized by algae or soil 

micro-organisms (Zhao, Ma, Meharg and McGrath 2009). Monomethylarsenic acid and 

DMA absorbed by the aquaporins using the same uptake mechanisms as glycerol in plant 

cells (Bastías and Beldarrain 2016). Once the As species mobilize from soil to plant roots 

cell (Fig. 2), the AsV mainly reduced by As-reductase (AR) to AsIII, which can cause the 

transformation of GSH to its oxidized form GSSG (Abbas, Murtaza, Bibi, Shahid, Niazi, 

Khan, Amjad and Hussain 2018b). Arsenite transformed into trimethyl arsenic oxide 

(TMAOV) or the trimethyl arsine oxide (TMAOIII), the end product of As methylation 

releases into the environment (Bastías and Beldarrain 2016). The alternative route of As 

detoxification happens by phytochelatins (PCs) synthesis due to condensation of amino 

acids such as glutamate (Glu), glycine (Gly), and cysteine (Gupta and Khan 2015). Within 

the vacuole, the appropriation of AsIII-PCs compounds occurs through the activation of 

different unknown transporters (Awasthi, Chauhan, Srivastava and Tripathi 2017). While 

AsIII causes more toxicity as compare to AsV and can bind with various proteins or peptides, 

which contain thiol groups known as metallothionein, glutathione, and phytochelatins, 

makes them inactive compounds which leads to protect cells components from As induced 

toxicity (Bastías and Beldarrain 2016, Ali, Isayenkov, Zhao and Maathuis 2009).  

  Previous studies suggested that the reduction of As occurs mainly in root cells before 

transport to xylem and remaining parts of the plants (Zhao, Ma, Meharg and McGrath 

2009). Arsenite and AsV are predominant As species primarily found in the xylem sap of 

plants (Finnegan and Chen 2012). A small concentration of total As absorbed through the 

plant root, only minute quantity is sequestered in the leaves, shoots, and grains vacuole due 

to As reduction and sequestration mechanisms are almost similar to those of the roots 

(Bastías and Beldarrain 2016). Hence, the occurrence of AsIII and AsV in the phloem is a 

requirement for its distribution in other parts of the plant (Chen, Han, Cao, Zhu, 
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Rathinasabapathi and Ma 2017). Elevated As concentration in the soil causes disruption of 

plant normal function and metabolism, leading to plant stunted growth as well as low 

productivity (Moreno-Jiménez, Esteban and Peñalosa 2012).  

  Arsenic disrupts plant biochemical and metabolic pathways such as delayed nutrient 

absorption, effects on plant photosynthetic system, interruption in plant water uptake status, 

interaction with different functional groups of plant enzymes, and exchanges essential ions 

from ATP in plant growing in As polluted soils (Abbas, Murtaza, Bibi, Shahid, Niazi, Khan, 

Amjad and Hussain 2018). Once As absorbed by plants, the plant light-harvesting system 

might be affected with decrease in chlorophyll level and photosynthetic activity-II (Sharma 

2012). A notable decrease in chlorophyll content and pigment synthesis was described due 

to deficiency in the adaptive adjustment of plants photosystem -I and -II due to elevated 

As (Garg and Singla 2011). Correspondingly, reduction in chlorophyll synthesis was 

observed in different plants such as Trifolium pratense L. Zea mays and Lactuca sativa,

respectively (Abbas, Murtaza, Bibi, Shahid, Niazi, Khan, Amjad and Hussain 2018a).  

  Arsenic causes severe damage to the chloroplast membrane, which leads to disturbing 

the function of essential plant photosynthetic processes such as rate of carbon dioxide (CO₂) 

fixation and significantly reduces the functionality of PS-II (Garg and Singla 2011, Asati, 

Pichhode and Nikhil 2016, Stoeva and Bineva 2003). Arsenic affects photochemical 

proficiency and plant heat dissipation competence, which is responsible for the exchange 

rate of gases as well as plant fluoresces releases (Chandrakar, Naithani and Keshavkant 

2016). Arsenic also causes a reduction in both leaves and roots growth, which leads to the 

wilting and bluish-purple coloring of leaves (Chandrakar, Pandey and Keshavkant 2018). 

The elevated concentration of As in plant growing soil may also inhibit plant metabolism 

system, effects on plants micro and macronutrient uptake, and compete with essential plant 

nutrients such as phosphate uptake (Finnegan and Chen 2012). Plants membranes are 

susceptible targets of As-stress induced toxicity cause cellular damage that leads to reduced 

plant stomatal conductance, unstable and reduced nutrient uptake and disrupt plant 

transpiration process (Kofroňová, Mašková and Lipavská 2018).  

  Whereas, As induces molecular and biochemical effects in plants system by two ways, 

1) the direct inactivation of essential enzymes through sulfhydryl groups interaction or 

replacement of compulsory ions from the enzyme active sites, and 2) the indirect spurt of 
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ROS consequently in a cascade of irretrievable damages in plants (Chandrakar, Naithani 

and Keshavkant 2016). Reactive oxygen species chemically reactive, highly unbalanced 

molecules, contains unpaired valence electrons with short survival time (Balakhnina and 

Nadezhkina 2017, Yang, Cao and Rui 2017). Different metabolic pathways are functioning 

in different cellular compartments, such as mitochondria, chloroplast, and peroxisome, 

through continuously generating ROS as a byproduct in the typical plant metabolism 

process (Das and Roychoudhury 2014). The imbalance generation of ROS are well known 

to cause oxidation of non-specific proteins, carbohydrates, lipids, cell membrane leakage, 

DNA damages, and essential enzymes’ inactivation in plants (Hasanuzzaman, Nahar and 

Fujita 2013). 

3.2. Selenium 

   Selenium uptake, translocation, accumulation, and toxicity depends on plant species, 

plant development phases, Se level, the activity of membrane transporters, translocation 

mechanisms of plant, and soil physiological conditions (pH & salinity) (Gupta and Gupta 

2017, Chang, Yin, Wang, Shao, Chen and Zhang 2019). Compared with SeIV, the SeVI is 

more frequently bioavailable and water-soluble in agriculture soils (Fernández-Martínez 

and Charlet 2009). Selenium translocation in plant shoots, leaves, and grains depends on 

the rate of transpiration and the rate of xylem loading (Gupta and Gupta 2017, Renkema, 

Koopmans, Kersbergen, Kikkert, Hale and Berkelaar 2012). In soil, the occurrence of 

contending ions, mainly sulfate and phosphate, might be affected by Se uptake in plants 

(Gupta and Gupta 2017, Golob, Gadžo, Stibilj, Djikić, Gavrić, Kreft and Germ 2016). Due 

to chemical similarities between Se and sulfate, both elements share common metabolic 

pathways in plants throughout the translocation process. Selenite and SeVI are available 

forms of Se, which vigorously compete with sulfur, sulfite, thiosulfate, and sulfate in plant 

systems (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018).  

  Selenium uptake in plant systems is facilitated by transporters, whereas SeIV and SeVI 

transported through sulfate and phosphate channels, respectively (Shahid, Niazi, Khalid, 

Murtaza, Bibi and Rashid 2018). Selenate enters the plasma membrane of plant root cells 

by sulfate transporters (Lin, Zhou, Dai, Cao, Zhang and Wu 2012). It is well examined that 

the addition of sulfate into acidic soil can decrease Se uptake by plants (De Temmerman, 

Waegeneers, Thiry, Du Laing, Tack and Ruttens 2014); however, the effects are reversed 
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in alkaline soil (Huang, Hu and Liu 2007). Selenate and phosphate compete and enter into 

the plasma membrane of plant root cells through phosphate-transporters (Winkel, Vriens, 

Jones, Schneider, Pilon-Smits and Bañuelos 2015a). The presence of phosphate raises the 

Se bioavailability most possibly through the exchange of Se in sorption sites, therefore 

increasing Se mobility and uptake in the plants (Shahid, Niazi, Khalid, Murtaza, Bibi and 

Rashid 2018). Usually, younger plant leaves contain higher Se concentration compared 

with older ones through the seeding growth phase (Cappa, Cappa, El Mehdawi, McAleer, 

Simmons and Pilon‐Smits 2014).  

  Selenium naturally accumulates in plant cell vacuoles and effluxes through sulfate 

transporters existing in tonoplast (Mazej, Osvald and Stibilj 2008, Hawkesford and De Kok 

2006). Based on Se accumulation inside plant cells, plants classified as non-accumulator, 

secondary accumulators, and hyperaccumulators (Schiavon, Pilon, Malagoli and Pilon-

Smits 2015). Hyper-accumulator plants can accumulate a higher amount of Se > 1000 

mg/kg DW in plant cells. The methylated form of Se, such as SeMet and SeCys, which 

deliberate Se tolerance in hyper-accumulator plants and further vaporized to DMDSe. 

Whereas, the secondary and non-accumulator plant can accumulate Se 100 to 1000 and < 

100 mg/kg DW, respectively shows there is no sign of toxic effects on plants (Gupta and 

Gupta 2017). Selenium after entrance into the plant cell with help of sulfate transporter, 

translocated in other parts of the plant, i.e., shoots, leaves, and grain cells (Bitterli, 

Bañuelos and Schulin 2010) and metabolized in plastids through sulfate integration 

pathway to SeMet or SeCys, while the sulfur chemically analog with Se could be more 

methylated and evaporated into atmosphere in non-toxic form (Pilon-Smits and Quinn 

2010).  

  The first step of Se metabolism inside the plant leaves or shoot cell, initiated with sulfate 

integrating enzymes through the conversion of Se to SeIV via two enzymes, i.e., ATP 

sulfurylase (APS) and APS reductase (APR) (Shahid, Niazi, Khalid, Murtaza, Bibi and 

Rashid 2018, Gupta and Gupta 2017). Sulfurylase catalyzes hydrolysis of ATP to couples 

ATP and SeVI and form adenosine phosphoselenate (APSe), which is further reduced to 

SeIV by APR enzyme (Fig.2) (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018, Pilon-

Smits and Quinn 2010). In a nutshell, SeIV is changed to SeII ̄ by sulfite reductase enzyme, 

and this metabolic step may also reduce through glutaredoxins (Grxs) or GSH (Wallenberg, 
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Olm, Hebert, Björnstedt and Fernandes 2010). The reduction of SeVI to APSe can increase 

plant tolerance to SeIV induced stress (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 

2018). In the next metabolic step, SeII ̄ transformed to SeCys through coupling with O-

acetyl serine (OAS) in the presence of cysteine synthase (CS) enzyme. The CS enzyme has 

more attraction for SeII ̄ as compared to sulfide (SII⁻), which depends on environmental 

conditions and plant species (Pilon-Smits and Quinn 2010).  

  The SeCys transformed to Se in the presence of SeCys-lyase enzyme or might be 

methylated to Me-SeCys through selenocysteine methyltransferase (SMT), or can be 

changed to selenomethionine (SeMet) through a sequence of enzymes (Shahid, Niazi, 

Khalid, Murtaza, Bibi and Rashid 2018, Gupta and Gupta 2017). The imbalanced 

incorporation of SeMet/SeCys in plant proteins can cause damage to the structure and 

function of the protein, which leads to Se toxicity in plant (Gupta and Gupta 2017, Pilon-

Smits and Quinn 2010). Whereas, SeMet can further methylate to methyl-SeMet. The Me-

SeCys or Me-SeMet volatilized to the atmosphere as non-toxic dimethyl selenide (DMSe) 

or dimethyl diselenide (DMDSe) in non-accumulator and hyper-accumulator plants, 

respectively (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018, Pilon-Smits and 

Quinn 2010).  

  Selenium toxicity or selenosis ensues in plants by two mechanisms; 1) malformed 

selenoprotein induced toxicity, and 2) oxidative stress-induced Se toxicity. Malformed 

selenoprotein toxicity in plants occurs in the protein chain by replacement of SeCys or 

SeMet with Cys or Met (Gupta and Gupta 2017). In-plant protein chain, the Cys residues 

perform an essential role in the synthesis of protein structure and function, as well as aids 

in the synthesis of metal-binding sites, metal catalysis, and disulfide linkage. Hence, Cy's 

replacement with SeCys causes damage to protein structure and function because of SeCys 

have the more exceptional reactive ability that can be quickly deprotonated compared with 

Cys (Gupta and Gupta 2017, Hondal, Marino and Gladyshev 2013). The replacement of 

Cys with SeCys dysfunctions methionine sulfoxide reductase because of more considerable 

diselenide linkage and altered redox potential which disrupts the plant enzyme kinetics 

(Hondal, Marino and Gladyshev 2013, Châtelain, Satour, Laugier, Vu, Payet, Rey and 

Montrichard 2013). Selenium induced toxicity is caused due to disturbance and disparity 

between production scavenging of ROS (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 
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2018). At elevated dose, the Se stress cause to decrease the level of glutathione and Se 

behave as pro-oxidant and produced ROS, which may cause oxidative stress in plants (Feng, 

Wei and Tu 2013, Hugouvieux, Dutilleul, Jourdain, Reynaud, Lopez and Bourguignon 

2009). 

  Additionally, several nanoparticles (NPs) released into environmental compartments 

from different manufacturing and commercial sectors that can induce toxicity to plants 

(Yang, Cao and Rui 2017, Rai, Kumar, Lee, Raza, Kim, Ok and Tsang 2018). Arsenic and 

Se based NPs also caused the imbalance generation of ROS, induced oxidative stress, and 

posed severe toxic effects on photosynthesis and growth in plants, which even can lead to 

plant death (Yang, Cao and Rui 2017, Sarkar, Bhattacharjee, Daware, Tribedi, Krishnani 

and Minhas 2015). However, several studies have made some consensus on the 

environmental behavior, interactions, ecological effects, and toxicity of As and Se based 

NPs in plant systems, but still a lot of controversies and problems that need to be further 

studied.  

Figure 2 

4. Arsenic and selenium metabolic processes in human and animals   

4.1. Arsenic metabolic processes  

  Arsenite has an analogous structure to glycerol and transported in cells through 

aquaglycerolporins, minute proteins moving minimal organic compounds similar to urea 

and glycerol (Liu, Shen, Carbrey, Mukhopadhyay, Agre and Rosen 2002). Nevertheless, 

AsV uses diverse pathways both in animals and human cells with the physiological 

phosphate similarity with the following analogous detachment constants (pKa of As-acid: 

2.26, 6.76 and 11.3 and pKa of phosphoric acid: 2.16, 7.21, and 12.3) (Villa-Bellosta and 

Sorribas 2008). Arsenite (LD50 of the NaAsO₂:41mg/Kg) is considered more toxic, 

carcinogenic than that of Asⱽ, more toxic than organic As species dimethylarsinic acid 

(DMA) and monomethylarsonic acid (MMA) (Harper, Antony and Bayse 2014, Jain and 

Ali 2000). Total As analogous to phosphate, AsV oxyanion present in solution such as 

H2AsO4 and HAsO4²ˉ at pH ranging from 5 to 7 due to the chemical similarity, to compete 

and entry by phosphate transporters (Plant, Kinniburgh, Smedley, Fordyce and Klinck 

2004). In humans, inorganic As once entering the body, then it is heavily methylated before 

execration in the urine. Consumed inorganic As methylated into MMA and DMA. The 
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MMA has more significant toxicity, compared to inorganic As, and MMA can increase the 

risk of the carcinogenic potential of As (Burgess, Kurzius-Spencer, Poplin, Littau, Kopplin, 

Stürup, Boitano and Lantz 2014).  

  After entering humans or animal cells, Asⱽ rapidly reduced to AsIII. After that, AsIII

undergoes to multi-steps based methylation through AsIII methyltransferase (AsIIIMT) by 

using S-adenosylmethionine (SAM) methyl donor and produces several As-methylated 

compounds MMAIII, DMAIII, MMAⱽ, and DMAⱽ (Kojima, Ramirez, Tokar, Himeno, 

Drobná, Stýblo, Mason and Waalkes 2009). Challenger in 1945 was first to introduce 

Arsenic-methylation in Scopulariopsis brevicauli, the classical pathway of methylation 

(Fig. 3a), and suggested that the As-methylation process included a series of oxidation and 

reduction processes (Challenger 1945). Another process suggested that the AsIII can also 

undergo a non-enzymatic methylation process in rat liver (Fig. 3b) in the presence of 

methylcobalamin and GSH (Zakharyan and Aposhian 1999). After that, Hayakawa et al. 

(2005) found that enzymes played a crucial role in As-methylation and proposed a new 

enzymatic metabolic pathway (Fig. 3c). In As-methylation enzymatic metabolic pathway 

and the -OH group of As(OH)₃ are substituted by glutathionyl moieties and forming GSH 

conjugates As(GS)₂-OH and As-triglutathione As(GS)₃ (Hayakawa, Kobayashi, Cui and 

Hirano 2005). After a critical substrate, AsIIIMT and arsenite-glutathione (AsIIIGSH) 

further methylated to monomethylarsonic-diglutathione (MMA(GS)₂) and then to 

dimethylarsinic-glutathione (DMA(GS)) (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 

2014).  

   Another metabolic pathway of As was investigated by (Naranmandura, Suzuki and 

Suzuki 2006) via intravenous injection of As in the rats that metabolized into metabolites 

of As in renal and hepatic regions (Fig.3d). Further, As metabolites such as the trivalent 

(inorganic) and pentavalent (organic) arsenicals were detected in the As spiked human 

urine samples, as well as in vitro cell lysate, and cell culture medium after chronic exposure 

to As (Devesa, Del Razo, Adair, Drobná, Waters, Hughes, Stýblo and Thomas 2004). 

Recently another insight on As metabolic pathway was reported in wild-type rat by (Wang, 

Thomas and Naranmandura 2015), and this study identified the novel As metabolites, the 

arsenicals (As-S bond) are structurally very similar of oxo-arsenicals (As-O bond), in 

which oxygen atoms bind with As atoms that substitute with sulfur atoms. However, 
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thioarsenate (OH)₃-As(=S), arsenate (OH)₃-As(=O), which are thioarsenicals-oxoarsenical, 

are analogs. The study further considered origin and process that convert inorganic As into 

the methylated oxoarsenicals species and further process converted oxoarsenicals into the 

thioarsenicals (Fig.3e). 

   Inorganic AsIII is absorbed from the intestinal lumen and then enzymatically changed 

into MMAIII after that compound further changed into diglutathione complex MMA(GS)₂ 

that secreted in bile. In intestinal lumen, MMA(GS)₂ further converted to monomethyl-

monothioarsenic (MMMTAⱽ) through microbiota, MMMTAⱽ further absorbed across the 

intestinal wall, then symmetrically dispersed and converted to another thiolate metabolite 

to the monomethyl-dithioarsenic (MMDTAⱽ) (Wang, Thomas and Naranmandura 2015). 

Figure 3 

4.2. Selenium metabolic processes 

The two-major species of inorganic Se, SeIV, and SeVI are significant in biological and 

biochemical cycles of Se; nevertheless, Se species exhibit different biochemical properties 

such as their energy consumption and differences in their toxicity during uptake and 

metabolism (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). The sodium-sulfate 

cotransporters are primarily responsible for transporting SeVI (Bergeron, Clémençon, 

Hediger and Markovich 2013). However, SeIV is primarily absorbed into cells through 

passive diffusion (Skalickova, Milosavljevic, Cihalova, Horky, Richtera and Adam 2017). 

Different studies verified that both organic and inorganic Se could exchange their roles in 

the intracellular environment through a series of reactions (Fig. 4a). Organic Se metabolism 

processes in animals and human cells through different pathways in the form of SeII⁻ (Shini, 

Sultan and Bryden 2015). The inorganic SeVI with high redox potential entering in human 

or animal cells first underwent the enzymatic reduction changed to SeIV and then rapidly 

reduced enzymatically to SeII⁻ through GSH (Ogra and Anan 2009).  

  Selenate intracellularly reduced to SeII⁻ through different pathways, and SeVI reacted 

with reduced GSH form selenodiglutathione (Se(GS)₂). Further, Se(GS)₂ converted to 

seleno persulfidefide (GSSeH), and then GSSeH decayed spontaneously or enzymatically 

under anaerobic conditions and converted into hydrogen selenide (H₂Se) (Weiller, Latta, 

Kresse, Lucas and Wendel 2004). More, a typical intermediate of SeII⁻ used either for the 

selenoprotein biosynthesis, biomethylation to methylselenol (CH₃SeH), or dimethyl 



16 

selenide (CH₃)₂Se, and or trimethyl selenonium cation (CH₃)₃Se⁺. Subsequently, they 

extruded from extracellular spaces with (CH₃)₂Se released through breath and (CH₃)₃Se⁺ 

urine (Gailer 2002, Gailer 2007). Thiol reduction of SeIV defined by Harper et al. (2014) 

and reported that SeIV reacted with four glutathione (thiol, RSH) or with another thiol (Fig. 

4b) produced selenotrisulfide (RSSeSR). The RSSeSR can further reduce SeII⁻ through 

thiols, such as thioredoxin or GSH reductase (Harper, Antony and Bayse 2014, Björnstedt, 

Kumar and Holmgren 1992, Jornstedt, Kumar and Holmgren 1995).  

  Several seleno compounds were metabolized into SeII⁻ by different metabolic pathways, 

such as the C-Se bond in the seleno amino acid, one of the leading organic Se compounds 

that cleaved and transformed into SeII⁻ over lyase reactions (Schrauzer 2000, Suzuki, 

Kurasaki and Suzuki 2007). Selenocysteine transformed and formed the SeII⁻ through β-

lyase reaction, and Se-Met transformed into SeII⁻ by β-lyase reaction after complete trans-

selenation reaction to SeCys or via γ-lyase reaction (Suzuki, Kurasaki and Suzuki 2007). 

The product of Se methyl metabolism is methyl selenide further demethylated and form 

SeII⁻ (Ohta and Suzuki 2008).  

Figure 4 

5. Arsenic and selenium epidemiological effects, cytotoxicity, and genotoxicity  

  Arsenic is a well-known carcinogen causing liver, bladder, lung, and skin cancers (Ali, 

Aslam, Feng, Junaid, Ali, Li, Chen, Yu, Rasool and Zhang 2019). Arsenic exposure 

produces excess ROS that can cause diverse types of malformations, including both lethal 

and non-lethal (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). The acute and chronic 

minimal lethal dose of As in adults has estimated ranges from 100 to 300 mg/kg/day and 

0.05 to 0.1 mg/kg/day, respectively (ATSDR 2007, Ratnaike 2003). Moreover, As 

exposure causes arsenicosis, Blackfoot disease, skin lesions, and peripheral vascular 

disease (Naujokas, Anderson, Ahsan, Aposhian, Graziano, Thompson and Suk 2013), 

while Se exposure is concerned, various studies reported that the low Se level is useful and 

act as an anticarcinogen. Whereas the high level of Se exposure induced carcinogenesis 

epidemical effects, cytotoxicity (Fig.5) and genotoxicity (Sun, Rathinasabapathi, Wu, Luo, 

Pu and Ma 2014, Valdiglesias, Pásaro, Méndez and Laffon 2010).  

  Several recent studies suggested that As and Se can induce similar toxicity in animals 

and humans through diverse pathways (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). 
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Therefore, for this review, we focus on common mechanisms of As and Se interactions and 

associated toxicity in animals and humans. 

5.1. Epidemiological effects 

Different studies demonstrated that As interferes with the series of genes associated 

with cellular proliferation process, DNA repair and damage, and cell cycle differentiation 

(Maiti 2015). Arsenic may also alter cell signals transduction pathways such as 53 protein 

signaling pathways, MAPK pathway, and Nrf2 cell signal pathway (Ghosh and Sil 2015). 

Reactive oxygen species activating cancer and methylated metabolites of As are known as 

potential carcinogens such as DMA carcinogen causing cancer in the urinary bladder of rat 

(Salnikow and Zhitkovich 2007, Shi, Hudson, Ding, Wang, Cooper, Liu, Chen, Shi and 

Liu 2004). Arsenic caused non-carcinogen diseases, including hypertension, diabetes 

mellitus, cardiovascular diseases, and dermal diseases (Shakir, Azizullah, Murad, Daud, 

Nabeela, Rahman, ur Rehman and Häder 2016). Trivalent arsenicals AsIII, MMAIII, and 

DMAIII induced diabetes through disrupting glucose metabolism as investigated on intact 

pancreatic islets from the mice (Douillet, Currier, Saunders, Bodnar, Matoušek and Stýblo 

2013). Arsenite induced inhibition of pyruvate and α–ketoglutarate dehydrogenases are 

among the leading causes of diabetes (Navas-Acien, Silbergeld, Streeter, Clark, Burke and 

Guallar 2006). Most cardiovascular diseases are closely related to hypertension, and so far, 

different pathways have been investigated for As induced hypertension that increased 

inflammation activity, endothelial dysfunction, and altering the vascular tone in blood 

vessels (Flora 2011, Abhyankar, Jones, Guallar and Navas-Acien 2011). Arsenic induces 

ROS species to inhibit cell signaling, takes part in pathogenesis, increases cytokine 

production and leads to inflammation that causes further enhanced ROS generation and 

mutagenesis (Jomova, Jenisova, Feszterova, Baros, Liska, Hudecova, Rhodes and Valko 

2011).  

Selenium is an essential nutrient that plays a vital role, such as an antioxidant in 

humans; however, Se deficiency in humans and animals can induce many diseases (Surai 

2006). Daily recommended dietary intake for a healthy adult is 30 to 50 µg/d in the USA, 

while the Chinese Nutrition Society (CNS) and Europe set recommended dietary intake for 

a healthy adult is 50 to 250 µg/d (Whanger 2004). Daily intake of Se ranged from 100 to 
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200 µg/d can induce genetic and cellular damage; however, excessive dosage Se ≥ 400 

µg/d can cause cancer in humans (Zeng and Combs Jr 2008, Brigelius‐Flohé 2008).  

Long-lasting Se exposure-induced disease such as amyotrophic lateral, cardiovascular 

disease, and sclerosis. However, in human the elevated level Se can cause diabetes because 

Se activate critical cellular metabolic enzymes which control the insulin signal transduction 

pathways, albeit regulating various metabolic processes and pathways (pentose pathways, 

fatty acid synthesis gluconeogenesis, and glycolysis pathways) (Vinceti, Maraldi, Bergomi 

and Malagoli 2009, Bleys, Navas-Acien, Laclaustra, Pastor-Barriuso, Menke, Ordovas, 

Stranges and Guallar 2009).  

In the 1980s, intensive research investigations failed to realize that there is any 

correlation between Se and cardiovascular diseases (Rayman 2000). However, recent 

scientific studies and observations verified that a possible U-shaped strong correlation 

exists between Se level and cardiovascular disease (Rees, Hartley, Day, Flowers, Clarke 

and Stranges 2013, Joseph and Loscalzo 2013). Selenium induced neurodegenerative 

effects by damaging motor neurons and activated protein 38 to 53 that induce amyotrophic 

lateral sclerosis (Chen, Wang, Xiong, Zou and Liu 2010, Vinceti, Solovyev, Mandrioli, 

Crespi, Bonvicini, Arcolin, Georgoulopoulou and Michalke 2013). Different studies 

suggested that oxidative stress-induced Se toxicity like impaired synthesis of thyroid 

hormones, growth hormones, and disruption of endocrine function (Valdiglesias, Pásaro, 

Méndez and Laffon 2010, Letavayova, Vlčková and Brozmanova 2006, Maritim, Sanders 

and Watkins 2003). Reactive oxygen species play a significant role in the epidemiological 

outcomes of both As and Se mediated toxicity in humans as well as in mammals (Sun, 

Rathinasabapathi, Wu, Luo, Pu and Ma 2014). Excessive Se produces excessive ROS, and 

this can affect similar pathways that induce cancer in As exposure cases (Klaunig and 

Kamendulis 2004, Valko, Rhodes, Moncol, Izakovic and Mazur 2006). Imbalanced 

generation of ROS act as an inner mechanism for As and Se associated adverse effects in 

mammals; however, associated adverse outcome pathways (AOPs) for cancer and 

cardiovascular defects are not explained yet. Therefore, more attention should be paid to 

conduct studies for a mechanistic understanding of As and Se associated cancer causes and 

epidemiological effects. 
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5.2. Cytotoxicity 

 The abnormality within the cell caused by toxic contaminants known as cytotoxicity. 

Several studies reported As and Se both induced ROS that can cause cytotoxicity within 

the cells by different pathways (Selvaraj, Tomblin, Armistead and Murray 2013, Park, Kim, 

Chi, Kim, Chang, Moon, Nam, Kim, Yoo and Choi 2012). Cells exposed against high doses 

of As and Se led to elevated levels of ROS. While As produced, ROS through inducing 

NADPH oxidase and Se produced when SeII²⁻ reacted with thiols (Chou, Jie, Kenedy, Jones, 

Trush and Dang 2004). Reactive oxygen species not only destruct proteins and lipids 

functions but also activated mitochondrial damage through inducing oxidative stress on 

mitochondrial-dependent apoptotic pathways (Kim, Sohn, Kwon, Kim, Kim, Lee and Choi 

2007, Kim, Jeong, Yun and Kim 2002, Fleury, Mignotte and Vayssière 2002). Further, 

ROS produce cytotoxicity via activation of JNK protein, which is one of the relevant 

subgroups of the mitogen-activated protein kinases that mediated critical cellular functions 

such as cell apoptosis, differentiation, and proliferation (Shen and Liu 2006), and also 

stimulated JNK tumor necrosis factor (Ventura, Cogswell, Flavell, Baldwin and Davis 

2004).  

Arsenic and Se-induced cytotoxicity by different pathways, and As affecting tumor 

suppressor protein 53 causing cytotoxicity. While protein 53 plays an essential role during 

cellular functions through cell growth regulation, cell cycle control, repair, DNA synthesis 

differentiation, and apoptosis (Andrew, Burgess, Meza, Demidenko, Waugh, Hamilton and 

Karagas 2006). In human fibroblasts cells, As induced protein 53 accumulation, which may 

cause cell apoptosis through facilitating Bax translocation from cytosol towards 

mitochondria, and release cytochrome activating caspase-9 by Apaf-1 and apoptosome 

(Kircelli, Akay and Gazitt 2007, Shankar and Shanker 2014). Protein 53 induces cell cycle 

arrest at the G₂/M phase through transcriptional activation of protein 21 inhibit the cyclin-

dependent kinase and also induced autophagy in damage-regulated autophagy modulator 

(DRAM) dependent manner (Akay, Thomas III and Gazitt 2004, Vogelstein, Lane and 

Levine 2000, Crighton, Wilkinson, O'Prey, Syed, Smith, Harrison, Gasco, Garrone, Crook 

and Ryan 2006, Lozano and Elledge 2000). 

Selenium is a component of selenoprotein that exhibit close relationship with redox 

reaction. Nevertheless, thioredoxin reductase (TrxR) enzyme along with thioredoxin (Trx) 
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produced an active di-thiol-di-sulfide and oxidoreductase complex, which further increases 

cytotoxicity (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014, McKenzie, Arthur and 

Beckett 2002). System control cells growth through binding to cells signal molecules like 

thioredoxin-ininteractin protein and apoptosis signal-regulating kinase-1 are significantly 

essential compounds responsible for cell growth and cell survival (Wallenberg, Olm, 

Hebert, Björnstedt and Fernandes 2010, Yoshioka, Schreiter and Lee 2006). Selenium 

controls or modulates cell signaling pathways via thiol redox mechanism, and takes part in 

cytotoxicity via reducing intracellular Cys. Arsenic and Se not only generate cytotoxicity 

through ROS but also affect on corresponding genes and proteins (Whanger 2004, Hettick, 

Canas-Carrell, French and Klein 2015, Carlin, Naujokas, Bradham, Cowden, Heacock, 

Henry, Lee, Thomas, Thompson and Tokar 2015). 

5.3. Genotoxicity

The genotoxicity defines as change or damage in genetic information that can cause 

mutation in cellular information (Valdiglesias, Pásaro, Méndez and Laffon 2010). Arsenic 

and Se are inducing genotoxicity same as cytotoxicity, through generating ROS. Higher 

ROS concentrations inside cells affected the cellular components of DNA resulting from 

the base lesion and strand break that is inducing genotoxicity. The higher level of ROS is 

dangerous for gene stability, affecting DNA repairing, DNA oxidizes, and gene regulation 

(Deavall, Martin, Horner and Roberts 2012). However, As and Se both interact with the 

DNA repair proteins which contains functional zinc finger motifs and these involved 

essential functions reported as in DNA transcriptional factor, DNA-protein, protein-protein 

and DNA-repair proteins (Zeng, Uthus and Combs 2005, Hartwig 2001, Zhou, Sun, Cooper, 

Wang, Liu and Hudson 2011). Selenium reacts with metallothionein and releasing Zn that 

damages DNA-binding capacity and genomic stability (Zeng, Uthus and Combs 2005, 

Blessing, Kraus, Heindl, Bal and Hartwig 2004, Larabee, Hocker and Hanas 2009). 

Arsenic-induced genotoxicity by directly impacting the DNA repairing capacity resulted 

in a downregulated expression of ERCC1, which is an essential member of repair and 

nucleotide expression excision repair pathway (Andrew, Karagas and Hamilton 2003, 

Andrew, Burgess, Meza, Demidenko, Waugh, Hamilton and Karagas 2006). Long-term 

exposure of As to cell can induce genotoxicity by SAM depletion in the cell, DNA 

hypomethylation causing genomic instability, and the global loss of the DNA methylation 



21 

(Ren, McHale, Skibola, Smith, Smith and Zhang 2010, Bhattacharjee, Banerjee and Giri 

2013). Arsenic and trivalent methylated As compounds efficiently interact with synthesis 

pathways of enzyme SAM (Vahter 2007, Tseng 2009). 

Several researchers confirmed that AsIII and its metabolites also change the activity of 

DNA methyltransferase resulting in the inhibition or stimulation of SAM enzyme synthesis 

pathways (Reichard and Puga 2010, Hughes 2002, Zhong and Mass 2001). Interestingly, 

As induces genotoxicity through affecting the status of protein 53, while similar 

mechanisms have been reported for the cytotoxicity induction (Shankar and Shanker 2014, 

Chowdhury, Chowdhury, Roychoudhury, Mandal and Chaudhuri 2009). Nevertheless, Se 

induced genotoxicity through generating ROS and interacting with the thiol group 

(Letavayova, Vlčková and Brozmanova 2006, Valko, Rhodes, Moncol, Izakovic and 

Mazur 2006, Ramoutar and Brumaghim 2007). Selenium can also induce genotoxicity by 

inhibiting cellular DNA repairing ability, directly affecting protein 53 and ataxia-

telangiectasia mutation (ATM) (Abul-Hassan, Lehnert, Guant and Walmsley 2004, Wei, 

Cao, Ou, Lu, Xing and Zheng 2001, Zhou, Xiao, Li, Nur-E-Kamal and Liu 2003, Zeng and 

Combs 2008). Arsenic and Se genotoxicity induced mechanisms yet not been clarified; 

however, most studies attributed to their capability to induce oxidative stress (Sun, 

Rathinasabapathi, Wu, Luo, Pu and Ma 2014). 

Figure 5 

6.  Antagonistic and synergetic interactions between As and Se, and associated 

toxicity in animals and humans  

Researchers had started taking a keen interest in the interaction between As and Se 

after the findings reported that chronic and acute toxicities of Se might be minimized 

through the administration of AsIII and some arsenicals compounds (Zeng, Uthus and 

Combs Jr 2005). Arsenic increased the elimination of Se via the gastrointestinal tract when 

AsIII and SeIV were mutually injected at the subacute amount (Zeng, Uthus and Combs Jr 

2005). Besides, in various experiments, it was observed that As also promoted the removal 

of Se from the gut (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014). Likewise, As can 

decrease Se level in the carcass, blood, and exhaled breath, however, the administration of 

massive dose of organic arsenical sodium arsanilate can further decrease the removal of Se 

from the gastrointestinal contents and increased the Se level into the exhaled breath, and 
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the combined effect caused a small decrease in Se level that retained in the carcass (Sun, 

Rathinasabapathi, Wu, Luo, Pu and Ma 2014). As stimulated the excretion of Se into the 

gastrointestinal tract, while SeIV can stimulate the execration of As. Previous studies 

demonstrated that As increases, the level of Se excreted into the rat bile and interacted in 

the liver to form conjugates and then excreted into the bile (Gailer 2007).  

6.1. Antagonistic  

    Several in vivo studies are existing that suggested the antagonistic relation between 

As and Se, associated toxicity effects on animals and humans. Once As and Se enter the 

human body, then they transport to the liver (principal detoxification organ) and rapidly 

reduced there (Rosen and Liu 2009). Under elevated concentration of GSH in the 

intracellular hepatocyte, the -OH group of As(OH)₃ sometimes replaced via glutathionyl 

moieties to form (GS)₂AsOH and SeIV underwent a spontaneous reaction with GSH to 

make HSe⁻ (Rosen and Liu 2009, La Porte 2011). In rats and mice, concentrations of As 

and Se decreased during antagonistic toxicity of As and Se (Weiller, Latta, Kresse, Lucas 

and Wendel 2004, Messarah, Klibet, Boumendjel, Abdennour, Bouzerna, Boulakoud and 

El Feki 2012).  

Antagonistic interaction between AsIII and SeIV resulted in inhibition of gastrointestinal 

absorption of SeIV through AsIII (Zwolak and Zaporowska 2012, Rosen and Liu 2009). 

Immediate administration of AsIII, along with the SeIV, inhibited the excretion of pulmonary 

(CH₃)₂Se in rats and hamsters (Rosen and Liu 2009). Arsenite also affects the distribution 

of Se in internal body organs and transport Se as Se¹ⱽ towards the liver through the 

bloodstream (Gailer 2007). Acute AsIII exposure (3-24 hours) decreased the retention of Se 

in rat’s liver (Naranmandura, Suzuki and Suzuki 2006). However, chronic AsIII exposure 

(2-18months) did not decrease the Se level in rat’s liver (Zwolak and Zaporowska 2012). 

In vivo antagonistic interaction between AsIII and SeIV at the molecular level, that resulted 

in the generation of As and Se novel compounds, such as seleno-bis (S-glutathionyl) and 

arsinium ions (Gs)₂AsSe, which then excreted in the bile (Gailer, George, Pickering, Prince, 

Younis and Winzerling 2002, Gailer, Ruprecht, Reitmeir, Benker and Schramel 2004). 

This study further found that As and Se first enter the cell and then simultaneously react 

with hydrogen SeII⁻ to form (GS)₂AsSe (Gailer, George, Pickering, Prince, Younis and 

Winzerling 2002) (Eq.1).  
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(GS)₂ AsOH + HSe� → (GS)₂ AsSe⁻ + H₂O (Eq.1 ) 

(CH₃) AsOH + HSe⁻ → (CH₃)₂As(Se⁻)₂+ H₂O (Eq.2 ) 

(GS)₂AsSe⁻ + SAM → (CH₃)₂As(Se⁻)₂ + H₂O (Eq.3 ) 

     In the above pathway, the nucleophilic HSe⁻ attacked As atom and transferred its -

OH group, finally (Gs)₂AsSe⁻ and water excreted out of the cell. A similar type of pathway 

was defined by (Manley, George, Pickering, Glass, Prenner, Yamdagni, Wu and Gailer 

2006) and specified (Gs)₂AsSe⁻ formation in erythrocytes and excreted through the blood. 

Moreover, SeIV mediated inhibition and reduction of the methemoglobin by AsIII in the 

presence of GSH, which indicated the erythrocytes involved in facilitating this antagonism 

interaction between AsIII and Se (Zeng, Uthus and Combs Jr 2005).  

   Arsenite suppressed the formation of H₂Se from SeIV in a biological system that 

contained glutathione reductase in bovine serum albumin (Shibata, Morita and Fuwa 1992). 

Biochemical interactions between AsIII and SeIV mostly occurred in blood and liver cells 

(Gailer 2007, Buchet and Lauwerys 1985). Moreover, As and Se interaction pathways have 

been demonstrated by Gailer et al. (Gailer, George, Harris, Pickering, Prince, Somogyi, 

Buttigieg, Glass and Denton 2002). Arsenic and Se compounds detected as (CH₃)₂As(Se)₂, 

and it was speculated that DMAV first reduced by GSH and then converted to DMAIII. 

After that, the Hse⁻ attacked As atom and relocated the -OH group and yielding compound 

as (CH₃)₂As(Se)₂ (Eq. 2). Another pathway (Eq. 3), the SAM provided a methyl group, to 

transform (GS)₂AsSe⁻ into the (CH₃)₂AsSe⁻ and methyltransferase used as a substrate (Fig. 

6a).  

6.2. Synergetic 

  Synergetic interaction between As and Se generated Se metabolites such as trimethyl Se 

ion and dimethyl SeII⁻ which increased As toxicity (Zeng, Uthus and Combs 2005, 

Levander 1977). Methylated AsIII caused adverse effects on Se metabolism, increased 

toxicity through blocking its metabolism pathways mainly in rats (Sun, Rathinasabapathi, 

Wu, Luo, Pu and Ma 2014). Furthermore, the synergetic effects and toxicity of As and Se 

nexus inhibited the formation of methylated metabolites and, therefore, retained inorganic, 

monomethyl As and Se in tissues (Fig. 6b) (Styblo and Thomas 2001, Walton, Waters, 
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Jolley, LeCluyse, Thomas and Styblo 2003). Arsenic and Se undergo a similar type of 

metabolic change, linked through supplies such as GSH and SAM. However, GSH is one 

of the essential reductants in organisms; during the metabolism of As and Se. The GSH 

provides the electron to the intended reduction reaction (Sun, Rathinasabapathi, Wu, Luo, 

Pu and Ma 2014, Hayakawa, Kobayashi, Cui and Hirano 2005, Yang, Kuo, Chen and Chen 

1999). The SAM is versatile molecules in several biological reactions, involves in the 

detoxification process of methyl As and Se. Once organisms exposed to high doses of As 

and Se that mutually inhibited the formation of methylated metabolites through competing 

with limited SAM (Sun, Rathinasabapathi, Wu, Luo, Pu and Ma 2014, Styblo and Thomas 

2001).  

Furthermore, a summary of studies elucidating insights on the antagonistic and 

synergetic supplementation interactions between As and Se and toxicity in animals/rat and 

humans cell culture models are described in Table 2. 

Figure 6 

Table 2 

7. Arsenic and selenium effects on zinc finger proteins/nucleases (ZFNs) and 

cellular functions  

     Selenium is chemically and qualitatively resembles with sulfur, albeit when Se 

combine with the zinc protein, it has more oxidoreductive potential (Zeng, Uthus and 

Combs 2005). Zinc, just like finger structure abundant in motifs of the eukaryotic genome, 

performed various biological functions not only the transcription but also presented in 

various kinds of proteins that take part in maintaining the genomic stability, DNA repairing, 

and control cell cycle (Klug 2010). It has been estimated that around 3% of the known 

genes that encrypt proteins in the various cellular process included Zn finger protein 

domains (Zeng, Uthus and Combs 2005, Laity, Lee and Wright 2001, Maret 2003). 

Selenium can replace the sulfur of the Cys and changed its stability of oxidation states in 

the course of the catalytic cycle and redox potential (Jacob, Giles, Giles and Sies 2003). 

Under reducing conditions, Se can oxidize the thiols, mainly found in the cytosol 

(Moriarty-Craige and Jones 2004).  

   Low concentration of Se compounds, under reducing condition, the selenocystamine 

(diselenide) can oxidize thiol groups and releases Zn ions from the metallothionein (Chen 
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and Maret 2001). Moreover, the low concentration of the Se compounds under reducing 

conditions inhibits the DNA regulation due to the inactivation of DNA repair proteins 

(Letavayova, Vlčková and Brozmanova 2006). The reducible Se compounds including 

phenylseleninic acid (C₆H₆O₂Se), phenyalselenyl chloride (C₆H₅ClSe), selenocysteine 

(C₆H₁₂N₂O₄Se₂), 2˗nitrophenyalselenocyanate (C₃H₇N₂O₂Se), and ebselen (C₁₃H₉NOSe) 

can also inhibit the activity of Fpg, Zn finger proteins that involved in DNA repairing 

(Blessing, Kraus, Heindl, Bal and Hartwig 2004, Zeng, Uthus and Combs Jr 2005, 

Witkiewicz-Kucharczyk and Bal 2006, Hartwig, Blessing, Schwerdtle and Walter 2003). 

However, no inhibition detected in completely selenomethionine methyl selenocysteine or 

some sulfur-containing analogs (Zeng, Uthus and Combs 2005, Blessing, Kraus, Heindl, 

Bal and Hartwig 2004).  

   Low concentrations of Se compounds can also inhibit the Zn finger protein that binds 

to DNA that leads to the release of Zn from the motif of Zn finger (Woo Youn, Fiala and 

Soon Sohn 2001). The cellular pathways mostly dependent on the Zn finger proteins, so 

the redox responses are essential for the regulation of Zn finger protein (Zeng, Uthus and 

Combs 2005, Blessing, Kraus, Heindl, Bal and Hartwig 2004). The inequality overdose or 

deficiency in Se compounds inhibit or decrease genomic stability (Zeng, Uthus and Combs 

2005, Blessing, Kraus, Heindl, Bal and Hartwig 2004). The Zn finger proteins are also 

susceptible to intracellular targets for AsIII at a preliminary low micromolar level of all AsIII

compounds triggered, and Zn released from the Zn finger protein domains and developed 

a disease which is known as xeroderma pigmentosum (XPA) (Zeng, Uthus and Combs 

2005). Base on the previous findings, the MMAV and DMAV are more reactive as 

compared with AsIII (Zeng, Uthus and Combs 2005, Blessing, Kraus, Heindl, Bal and 

Hartwig 2004, Hartwig, Blessing, Schwerdtle and Walter 2003). During uphold genomic 

stability process, the Zn finger proteins usually required in almost every intracellular 

reactions, therefore, the inactivation or inhibition of these proteins may enhance the 

genomic instability (Hamilton 2004).  

   While, several studies conducted to elucidate the effects of As and Se on cellular 

transduction signals (Zeng 2001, Yang and Frenkel 2002, Qian, Castranova and Shi 2003). 

Arsenic activated, different cellular signals pathways such as mitogen-activated protein 

kinase (MAPK), ROS, and nuclear factor-ҡB (NFҡB) signaling pathways (Blessing, Kraus, 
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Heindl, Bal and Hartwig 2004, Zeng 2001). Activation protein-1 (AP-1) and NFҡB are 

illustrative members of two diverse families of the heterodimeric transcriptional complexes, 

which induced changes in gene expression (Zeng, Uthus and Combs Jr 2005). Several 

studies demonstrated that AsIII and AsV induced protein expression and increased AP-1 and 

NFҡB DNA binding sites (Flora 2011, Arita and Costa 2009). However, various studies 

also demonstrated that the Se and Se containing compounds, reduced the oxidation related 

JNK AP-1 and NFҡB in cellular activation process (Chauke 2013, József and Filep 2003). 

Now it has been proved globally that the AsIII is more toxic and carcinogenic than AsV (Ali, 

Aslam, Feng, Junaid, Ali, Li, Chen, Yu, Rasool and Zhang 2019b). However, several 

studies reported that the methylated arsenicals such as MAsIII and DMAsIII have more 

potential than AsIII in the activation of the AP-1 (Wang, Thomas and Naranmandura 2015, 

Drobná, Jaspers, Thomas and STÝBLO 2003).  

   The cellular stress proteins are well known as a C-Jun N-terminal kinase (JNK) is a 

member of a stress-activated protein kinase family activated through cellular stress. 

Arsenic activated the AP-1 activity through inhibiting the JNK tyrosine phosphate protein 

(Fig.7), the result of the activation of JNK/AP-1, defected in the turning off activated JNK 

(Cowan and Storey 2003, Zarubin and Jiahuai 2005). That is why AsIII and AsV induced 

apoptosis via the JNK pathway (Eguchi, Fujimori, Takeda, Tabata, Ohta, Kuribayashi, 

Fukuoka and Nakano 2011). Potent antagonistic effects between As and Se at the cellular 

level can cause cell apoptosis as well as cell necrosis in human leukemia (HL-60) through 

incubation with Na₂SeO₃ and NaASO₂/Na₂-HASO₄ (Zeng, Uthus and Combs 2005, Zeng 

2001). Presence of mineral induced HL-60 cells apoptosis concentration SeIV (3µM) > AsIII 

(50µM) > Asⱽ (50µM) higher as compared with cell apoptosis causing cell necrosis 

(Drobná, Jaspers, Thomas and Stýblo 2003). However, the elevated concentration of SeIV, 

causing toxic necrotic effects and these effects, may have suppressed or neutralized by AsIII

or Asⱽ (Zeng 2001).  

   Selenium compounds such as methylene (1,4-phenylene bis), selenocyanate (p-XSC), 

selenocysteine, selenomethionine, and ebselen inhibiting or suppressed the DNA binding 

activities for the transcription factor of NFҡB and AP-1 (Woo Youn, Fiala and Soon Sohn 

2001, József and Filep 2003). Arsenic activated NFҡB and AP-1 inhibitor or suppressed 

by Se, while the As inhibited or suppressed Se toxic necrotic effect (Sun, Rathinasabapathi, 
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Wu, Luo, Pu and Ma 2014). These scientific insights were demonstrating that Se plays an 

essential function as endogenous “stop cellular signals” for As induced cancer-causing cell 

signaling (Zeng, Uthus and Combs 2005). 

Figure 7 

8. Arsenic and selenium remediation/phytoremediation and handling of harvested 

biomass 

Arsenic induced plants, animals, and humans toxicity, whereas Se exhibited dual role 

(essential & toxic) both its deficiency and toxicity are considered as a severe problem 

worldwide (Bastías and Beldarrain 2016, Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 

2018). In the case of Se deficient soils, the application of Se amended fertilizers is a 

common and best conceivable management strategy adopted in different Se in soil deficient 

countries (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018). Several studies reported 

the As and Se contaminated soils, especially in various regions of China, and the USA 

(Khanam, Kumar, Nayak, Shahid, Tripathi, Vijayakumar, Bhaduri, Kumar, Mohanty and 

Panneerselvam 2019). With the advancement of science, technology, and research, several 

techniques based on diverse mechanisms or processes have been developed to remediate 

these metals from environmental matrices (Shahid, Niazi, Khalid, Murtaza, Bibi and 

Rashid 2018, Tanmoy and Saha 2019).  

   Phytoremediation, a plant-based green technology widely adopted and received 

cumulative consideration worldwide. Afterward, the discovery of hyperaccumulating 

plants was significant progress, in which plants can uptake, accumulate, and translocate the 

elevated concentrations of various toxic metals in their harvestable biomass (Rahman and 

Hasegawa 2011). Hyperaccumulator plants are reported as a very efficient, economical, 

and eco-friendly technique to remediated metals from contaminated soils (Ali, Khan and 

Sajad 2013, Rizwan, Ali, ur Rehman, Rinklebe, Tsang, Bashir, Maqbool, Tack and Ok 

2018). Phytoremediation includes several consecutive steps such as Phytoextraction, 

Phytodegradation, Rhizofiltration, Phytostabilization, Phytovolatilization. Both aquatic 

and terrestrial plants have been confirmed to remediate metals contaminated waters and 

soils, respectively (Rahman and Hasegawa 2011).  

    In an As contamination case, the use of hyperaccumulator plants such as fern, Pteris 

vittata, has been suggested (Bastías and Beldarrain 2016). However, the significant 
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limitation of this method is that the plants absorbed As without using it, and transferred 

back to the food chain system (Singh, Singh, Parihar, Singh and Prasad 2015). Fungai can 

also offset As toxicity via transforming the organic form with reduced toxicity (Bastías and 

Beldarrain 2016). The basic behaviors of Glomus geosporum (Gg), G. versiforme (Gv), 

and G. mosseae (Gm) are considered to decreases As absorption mainly by rice plants; it 

was reported that species, taken distinctly or diverse, might be used because the 

concentration of As decreases in all conditions (Chan, Li, Wu, Wu and Wong 2013). 

   Similar to As, nearly 30 different kinds of plant species of Fabaceae, Brassicaceae, and 

Asteraceae families are reported that can hyperaccumulate and tolerate high concentrations 

of Se from soil-system (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018, Winkel, 

Vriens, Jones, Schneider, Pilon-Smits and Bañuelos 2015). Several studies reported that 

the use of genetically modified plants efficiently increases Se uptake, accumulation, 

tolerance, and volatilization (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018, Pilon-

Smits and LeDuc 2009). Different remediation technologies suggested the application of 

hybrid plants, which are genetically modified with remediation physiognomies, are 

efficiently used to remediate specific or miscellaneous metals from polluted soil (Shahid, 

Dumat, Khalid, Schreck, Xiong and Niazi 2017). Some studies, particularly in urban 

agricultural soil-system, purposed a wise use of plants through adopting various crop 

rotation systems (Shahid, Niazi, Khalid, Murtaza, Bibi and Rashid 2018, Xiong, Austruy, 

Pierart, Shahid, Schreck, Mombo and Dumat 2016). The genetically modified plants 

increase Se uptake and accumulation by plants significantly reviewed earlier in some 

studies (Pilon-Smits and LeDuc 2009, Terry, Zayed, De Souza and Tarun 2000).      

   Phytoremediation of metals, such as As and Se, from contaminated soil, is likely to 

decrease the concentrations of metals in the soil-system and reduces environmental risks 

(Ye, Khan, McGrath and Zhao 2011, Wu, Bañuelos, Lin, Liu, Yuan, Yin and Li 2015). 

Metals are secluded in plants aboveground biomass is classified as hazardous waste, 

leading to wide-ranging ecological risk (Rizwan, Ali, ur Rehman, Rinklebe, Tsang, Bashir, 

Maqbool, Tack and Ok 2018, Rizwan, Ali, Adrees, Ibrahim, Tsang, Zia-ur-Rehman, Zahir, 

Rinklebe, Tack and Ok 2017). Hence, appropriate handling of biomass either recycled or 

disposed of, is crucial to avoid secondary contamination and prevent potential risks 

(Rizwan, Ali, ur Rehman, Rinklebe, Tsang, Bashir, Maqbool, Tack and Ok 2018). 
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Depending on defined regulations and existing metal concentration in plants, the 

contaminated biomass needs to be landfill or metals reclaimed by smelting, pyrolysis of 

biomass, and extraction (da Conceição Gomes, Hauser-Davis, de Souza and Vitória 2016). 

If plants first incinerated (i.e., combustion & gasification), the subsequent ash must be 

disposed of in hazardous waste landfill, though the ash volume is approximately < 10% of 

the total volume that might be created if the polluted soil itself excavated for treatment, 

still being beneficial in this regard (da Conceição Gomes, Hauser-Davis, de Souza and 

Vitória 2016).  

   The combustion technology for biomass disposal generally used for energy production 

at both domestic and industrial levels, but the burning of metals polluted biomass in 

conventional firing systems is not appropriate because it may pose a severe environmental 

risk (Rizwan, Ali, ur Rehman, Rinklebe, Tsang, Bashir, Maqbool, Tack and Ok 2018). 

Pyrolyzed metal-contaminated biomass obtained the phytoremediation process afterward. 

Pyrolysis stabilized potentially toxic metals, and the pyrolyzed material could adsorb the 

dye, such as methylene blue. Several researchers suggested that biomass obtained from 

contaminated sites might be further utilized for the adsorption of dye afterward pyrolysis. 

Overall, the biomass of plants after harvesting obtained from As and Se polluted soil might 

be treated to avoid secondary pollution and the energy. Besides, the substance obtained 

from this process can be further utilized. 

9. Conclusion and future research perspectives  

  The current review highlighted the critical biogeochemical mechanisms of As and Se in 

the soil-plant system and focused on the insights of interaction between As and Se and their 

mechanisms of inducing toxicity in animals and humans.  

  The reduction of AsV to AsIII can occur in-between redox potential, which leads to the 

mobilization of AsIII into soil solution and increases its availability to plants. Arsenic 

uptake in plant cells depends on As species such as AsV uses phosphate as a transporter 

that is chemically similar to AsV, whereas AsIII uses Si as transporters. The molecular and 

biochemical effects of As in plants system occurred in two ways, 1) the direct inactivation 

of essential enzymes, either through sulfhydryl groups interaction or replacement of 

compulsory ions from the enzyme active sites, and 2) the indirect spurt of ROS 

consequently in a cascade of irretrievable damages. 



30 

  Though SeIV and SeVI transported through phosphate and sulfate channels, respectively. 

Selenosis took place in plants by two mechanisms 1) malformed selenoprotein induced 

plant toxicity, and 2) ROS induced Se toxicity. Malformed selenoprotein toxicity in plants 

occurs in the protein chain by replacement of SeCys or SeMet with that of Cys or Met. 

  Arsenic and Se induce cytotoxicity and genotoxicity in animals and humans through 

ROS generation, which ultimately affects DNA repairing and gene regulation. Under 

reducible conditions, the low Se concentration inhibits the DNA regulation process because 

it creates inactivation of DNA repair proteins. Arsenite and SeIV did not wholly transfer 

through aquaglyceroporins, albeit both are very toxic due to their metabolic process 

associated with GSH and SAM. Likewise, low levels of Se compounds can constrain the 

Zn finger protein that binds to and release of Zn from the motif of the zinc finger.  

  Inhibition of SeIV by AsIII during gastrointestinal absorption resulted from antagonistic 

interaction between AsIII and SeIV. Immediate AsIII contamination inhibited the excretion 

of pulmonary (CH₃)₂Se in animals/rats and hamsters. At low concentrations, Se formed 

complexes with As such as ((GS₃)₂AsSe), due to insufficient Se interaction with AsIIIMT 

content. While, the elevated concentration of As in the form of MMAV and DMAV can 

form incomplete complexes ((GS₃)₂AsSe) and retain more As and MMA in a biological 

system, which can cause severe toxicity to animals and humans. 

  Though a large number of efforts have been made to understand insights interaction 

mechanisms between As and Se and associated toxicity in plants, animals, and humans, 

further research should be carried out aiming to save crop production and reduced animals 

and human toxicity. This should include the following research perspectives: 

 Pilot studies are required to investigate As and Se detoxification mechanisms in the 

soil-plant system, animals, and humans.  

 Long-term stability of toxicity and insights on the interactions between As and Se 

in the soil-plant system, animals, and humans still need to be further studied.  

 Insights interaction mechanisms between As and Se in the aquatic ecosystem cause 

extended ecological risks and genotoxicity for aquatic life; therefore, warranted 

further investigations.  
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 The scientific community should pay more attention to insights mechanisms 

involved in As and Se interactions in various biological matrices and associated 

outcomes to further regularize the rational use and potential intake of these 

elements. 
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Figure 5 Arsenic and selenium epidemical effects, cytotoxicity, and genotoxicity in animals and 
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Figure 6 Antagonistic (a) and synergetic (b) interactions between As and Se, and toxicity in 

animals and humans 

Figure 7 Arsenic and selenium effects on zinc finger proteins/nucleases (ZFNs) cellular functions 
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Table 1 Abbreviations used in the current review.

Name  Abbreviations Name  Abbreviations 

Adenosine triphosphate ATP Activation protein  AP 
Arsenate AsV Adenosine phosphoselenate  APSe 
Arsenic  As Arsenite-glutathione complex As (GS)₂-OH, As(GS)₃ 
Arsenic reductase  AR Dimethyl selenide (CH₃)₂Se (DMSe)  
Arsenic triglutathione As (GS)₃ Dimethyl diselenide DMDSe 
Arsenite  AsIII Ebselen C₁₃H₉NOSe 
Arsenite methyltransferase AsIIIMT Glutaredoxins Grxs 
Dimethylarsenic acid DMA Hydrogen selenide H₂Se 
Dimethylarsinic DMAIII Methylselenol CH₃SeH  
Dimethylarsinic acid (CH₃)₂(OH)₂AsO⁻  Mitogen-Activated Protein Kinase  MAPK 
Dimethylarsinic glutathione DMAsIII (GS)  Phenyalselenyl chloride  C₆H₅ClSe 
Dimethylarsinous DMAV Phenylseleninic acid C₆H₆O₂Se 
Glutathione GSH Phosphate transporter  Pi 
Methyl group CH₃⁺  Phytochelatins transporter  PCs 
Monomethyl dithioarsenic  MMDTAV Reactive oxygen species  ROS 
Monomethyl monothioarsenic MMMTAV S-adenosylmethionine  SAM 
Monomethylarsenic acid MMA Selenate SeVI

Monomethylarsonic MMAIII Selenide SeII ̄ 
Monomethylarsonic diglutathione MAsIII (GS)₂  Selenite SeIV

Monomethylarsonous MMAV Selenium  Se 
Monomethylarsonous acid (CH₃) (OH)₂AsO⁻ Selenocysteine SeCys 
Oxidized glutathione  GSSG Selenomethionine SeMet 
Pentavalent dimethylarsinic acid DMAsV Seleno persulfide GSSeH 
Pentavalent monomethyl arsonic acid MMAV Selenotrisulfide RSSeSR 
S-Adenosylhomocysteine SAH Sulfate transporter  ST 
S-Adenosylmethionine SAM Sulfide SII ̄ 
Trimethylarsineoxide TMAOIII Thioselenate SSeO₃²⁻ 
Trimethyl arsenic oxide  TMAOV Phytochelatins  PCs 
Damage regulated autophagy modulator DRAM  Silicon transporter  Lsil 
Thioredoxin reductase  TrxR Thioredoxin Trx 
Trivalent monomethyl arsenous acid DMAsIII Trimethyl selenonium  (CH₃)₃Se⁺ 
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Table 2 Summary of studies elucidating insights antagonistic and synergetic supplementation interactions between arsenic and selenium, and associate toxicity in animals/rat 

and humans cell culture models.

Experimental 

duration   

Arsenic & selenium 

form & (dose) 

Biomarker & 

(target)  

Arsenic -selenium interactions, effects in animals  

& humans 
References  

 6 to 14 days  

Sodium selenite 

(Na2SeO3) = Na2SeO3= 

(0.025 mg/kg) BW oral 

drinking water  

Pregnant Syrian 

hamster and (fetus)  

 Increases As methylation index in urine, tissues of dams in the whole fetus, the 

activity of glutathione peroxidase (GPx), and a viable fetus 

 Reduced the As concentration in kidney, liver bladder, brain, the skin of 

pregnant animals, accumulation in the placenta, and fetus. 

(Zwolak 2020, Sampayo-

Reyes, Taméz-Guerra, de 

León, Vargas-Villarreal, 

Lozano-Garza, Rodríguez-

Padilla, Cortés, Marcos 

and Hernández 2017). 

3 weeks  
Na2SeO3 = (3 mg/kg) 

BW oral intubation   

Wistar rat  

(liver) 

 Increases glutathione (GSH) level and GPx activity 

 Reduces aspartate aminotransferase (AST), alanine aminotransferase (ALT), 

and alkaline phosphatase (ALP) activity in plasma compared with As-treated 

animals. 

 Reduces the lipid peroxidation, glutathione S-transferase activity, and 

cytoplasmic As-induced histological changes. 

(Messarah, Klibet, 

Boumendjel, Abdennour, 

Bouzerna, Boulakoud and 

El Feki 2012, Zwolak 

2020). 

3 weeks  
Na2SeO3 = (3 mg/kg) 

BW oral intubation   

Sprague Dawley 

(SD)  

Rat (liver) 

 Increases liver weight and partly protect against As- induced. 

 Increases mRNA gene expression of nuclear factor erythroid 2 related factors 

(Nrf2), thioredoxin reductase (TrxR), and total antioxidant capacity (TAC) 

activity, which decreased by As. 

 Decrease ALT, AST activity in blood serum, malondialdehyde (MDA), nitric 

oxide (NO) advanced oxidation protein products, and serum interleukin-6 (IL-

6) levels, which increased by As. 

(Zwolak 2020, Shafik and 

El Batsh 2016). 
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20 weeks  
Na2SeO3= (17.0 mg/L) 

Oral 

SD Rat  

(liver) 

 Increases mRNA expression of GPx, superoxide dismutase (SOD), Txnrdl, 

TrxR protein expressions, which reduced by As. 

 Reduced the ALT, AST activities in blood, As- induced heme oxygenase-1 

(OH-1) protein expression which increased by As. 

(Zwolak 2020, Xu, Wang, 

Li, Chen, Zhang, Dong, 

Chen, Chen, Zhang and 

Wang 2013). 

14 weeks  

Not specified Se rich 

lentils Se deficient = (< 

0.01 mg), and Se high 

oral = (0.3 mg)  

Wistar rat  

(Blood, kidney & 

liver) 

 Increases As concentration in urine and faces and GSH level in the blood, 

mitigated liver lipid peroxidation, and partly recovered antibody response, 

which reduced in Se-deficient animals. 

 Selenium high intake reduced As the level in kidney 

(Zwolak 2020, Sah, 

Vandenberg and Smits 

2013). 

24 hours  
Selenomethionine 

(SeMet) = (100 µm) 

Human embryonic 

kidney cell line 

(HEK-293)  

 Reduces As-induced cytotoxicity and reactive oxygen species (ROS) level. 

 Increases the phosphorylation of the protein, which is involved in ROS 

antitumor activity, cell growth, and detoxification. 

(Zwolak 2020, Chitta, 

Figueroa, Caruso and 

Merino 2013). 

1 hour  
Selenium nanoparticles 

(SeNPs) = (0.01 µg/L) 

Human 

lymphocytes  

 Nano selenium reduced As-induced toxicity and DNA damage.  (Zwolak 2020, Prasad and 

Selvaraj 2014). 

48 hours  

 Sodium arsenite 

(NaAsO2) = (2.5 µM) 

 Na2SeO3 = (10 µM) 

Human 

osteosarcoma 

(Cells-TE85) 

 Increases level of selenite (SeIV) and SeMet. 

 Partly decreases the arsenite (AsIII) cytotoxicity. 

 Selenium compound like organoselenium treatment block As species (AsIII-

dependent) accumulation of mutants in cultures for six weeks growth. 

(Zwolak and Zaporowska 

2012, Rossman and Uddin 

2004). 
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Not defined  
NaAsO2 = (6.25 µM) 

Na2SeO3 = (2.5 µM) 

Human 

hepatocellular 

 carcinoma  

(Cells-HepG2) 

 Selenium species SeIV reduces the lipid peroxidation (LPO) and 8-hydroxy-

2deoxyguanosine (8-OHdG) levels. 

 No effects on the inhibition of 8-oxoguanine DNA glucosylase-1 expressions 

in cells exposed to arsenous acid (H3AsO3) 

(Zwolak and Zaporowska 

2012, Lai, Wang, Li and 

Yu 2008). 

24 hours  
NaAsO2 (2 to 10 µM) 

75Se- SeIV= (10 nM) 

Human 

keratinocyte  

(Cells-HaCat) 

 The immunoblot AsIII treatment showed to increase in the TrxR1 proteins level 

and reduced the GPx proteins. 

 Reduces radiolabeled TrxR1, GPx, and overall selenoprotein levels. 

(Zwolak and Zaporowska 

2012, Ganyc, Talbot, 

Konate, Jackson, Schanen, 

Cullen and Self 2006). 

24 hours  
NaAsO2 = (2 to 10 µM) 

75Se- SeIV = (10 nM) 

Human lung  

adenocarcinoma 

(Cells-A549) 

 Treatment of cells with AsIII reduces radiolabeled TrxR1 and overall 

selenoprotein levels. 

(Zwolak and Zaporowska 

2012, Talbot, Nelson and 

Self 2008). 

3 weeks  

NaAsO2 = (5.5 mg/kg) 

Na2SeO3 = (3 mg/kg) 

oral 

Wistar rat  

 The SeIV increases the level of GSH and GPx activity. 

 Reduces LPO, glutathione S-transferee, transaminases activity, and alkaline 

phosphatase in plasma of AsIII-exposed rats. 

(Zwolak and Zaporowska 

2012, Messarah, Klibet, 

Boumendjel, Abdennour, 

Bouzerna, Boulakoud and 

El Feki 2012). 
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