
DTAACS: Distributed Task Allocation for Adaptive
Computational Systems based on Organization Knowledge

by

Jorge L. Valenzuela

M.S., Kansas State University, 2000

B.S., ITESM, Monterrey, Mexico, 1990

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014

Abstract

The Organization-Based Multi-Agent Systems (OMAS) paradigm is an approach to ad-

dress the challenges posed by complex systems. The complexity of these systems, the chang-

ing environment where the systems are deployed, and satisfying higher user expectations are

some of current requirements when designing OMAS. For the agents in an OMAS to pursue

the achievement of a common goal or task, a certain level of coordination and collabora-

tion occurs among them. An objective in this coordination is to make the decision of who

does what. Several solutions have been proposed to answer this task allocation question.

The majority of the solutions proposed fall in the categories of marked-based approaches,

reactive systems, or game theory approaches. A common fact among these solutions is the

system information sharing among agents, which is used only to keep the participant agent

informed about other agents activities and mission status.

To further exploit and take advantage of this system information shared among agents,

a framework is proposed to use this information to answer the question who does what, and

reduce the communication among agents. DTAACS-OK is a distributed knowledge-based

framework that addresses the Single Agent Task Allocation Problem (SAT-AP) and the

Multiple Agent Task Allocation Problem (MAT-AP) in cooperative OMAS. The allocation of

tasks is based on an identical organization knowledge posses by all agents in the organization.

DTAACS-OK differs with current solutions in that (a) it is not a marked-based approach

where task are auctioned among agents, or (b) it is not based on agents behaviour, where the

action or lack of action of an agent cause the reaction of other agents in the organization.

DTAACS: Distributed Task Allocation for Adaptive
Computational Systems based on Organization Knowledge

by

Jorge L. Valenzuela

M.S., Kansas State University, 2000

B.S., ITESM, Monterrey, Mexico, 1990

A Dissertation

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014

Approved by:

Major Professor
Scott A. DeLoach

Copyright

Jorge L. Valenzuela

2014

Abstract

The Organization-Based Multi-Agent Systems (OMAS) paradigm is an approach to ad-

dress the challenges posed by complex systems. The complexity of these systems, the chang-

ing environment where the systems are deployed, and satisfying higher user expectations are

some of current requirements when designing OMAS. For the agents in an OMAS to pursue

the achievement of a common goal or task, a certain level of coordination and collabora-

tion occurs among them. An objective in this coordination is to make the decision of who

does what. Several solutions have been proposed to answer this task allocation question.

The majority of the solutions proposed fall in the categories of marked-based approaches,

reactive systems, or game theory approaches. A common fact among these solutions is the

system information sharing among agents, which is used only to keep the participant agent

informed about other agents activities and mission status.

To further exploit and take advantage of this system information shared among agents,

a framework is proposed to use this information to answer the question who does what, and

reduce the communication among agents. DTAACS-OK is a distributed knowledge-based

framework that addresses the Single Agent Task Allocation Problem (SAT-AP) and the

Multiple Agent Task Allocation Problem (MAT-AP) in cooperative OMAS. The allocation of

tasks is based on an identical organization knowledge posses by all agents in the organization.

DTAACS-OK differs with current solutions in that (a) it is not a marked-based approach

where task are auctioned among agents, or (b) it is not based on agents behaviour, where the

action or lack of action of an agent cause the reaction of other agents in the organization.

Table of Contents

Table of Contents vi

List of Figures x

List of Tables xi

Acknowledgements xii

Dedication xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 3
1.3 Contributions . 4
1.4 Overview of Research Approach . 4

1.4.1 Problem Description, Abstraction, and Models 4
1.4.2 Distributed Systems . 6
1.4.3 Framework Design . 7
1.4.4 Evaluation . 7

1.5 Assumptions . 8
1.6 Summary . 9

2 Problem Formulation 10
2.1 Task Allocation Problem . 10

2.1.1 Tasks . 11
2.1.2 Problem Description . 15
2.1.3 Single Agent Task Allocation Problem 15
2.1.4 Multiple Agent Task Allocation Problem 17

2.2 Mission, Tasks and Agent Representations 18
2.3 Problem Statement . 20
2.4 Summary . 22

3 Background 23
3.1 Mathematical Background . 23

3.1.1 Sets and Combinations . 24
3.1.2 Operations Research . 24

3.1.2.1 OR Models . 25
3.1.3 Combinatorial Optimization . 25

vi

3.1.3.1 The Fundamental Algorithm 26
3.1.4 Linear Programming . 27

3.1.4.1 Solution Techniques for Combinatorial Optimization Problems 28
3.1.5 Set Partition and Set Coverage . 29

3.2 Computer Science Background . 30
3.2.1 Distributed Systems . 30

3.2.1.1 Election Algorithms and Mutual Exclusion 31
3.2.1.2 Data Replication . 33
3.2.1.3 Concurrency Control . 33
3.2.1.4 Replica Management . 34

3.3 Agents, MultiAgent Systems, and OMAS . 36
3.3.1 Agents . 36
3.3.2 Multi-Agent Systems . 37
3.3.3 Organization MAS . 39

3.4 OMACS . 39
3.5 Conclusion . 40

4 DTAACS-OK 42
4.1 DTAACS-OK Components . 43

4.1.1 A General Overview of Mission Execution 43
4.2 Distributed Transaction Component . 45

4.2.1 Distributed Transaction Component 46
4.2.2 Transaction Generator . 47
4.2.3 Transaction Manager . 48

4.2.3.1 Distributed Knowledge Systems 50
4.2.3.2 Replica Control . 50
4.2.3.3 Transaction Atomicity . 51

4.3 Distributed Organization Knowledge Component 54
4.3.1 Task Set Selection Module . 54
4.3.2 Organization Information Module . 56

4.4 Distributed Task Allocation Component . 57
4.4.1 Allocation Algorithms . 58

4.4.1.1 WorkInMission Algorithm 58
4.4.1.2 AllocateTasks Algorithm . 60
4.4.1.3 GetBestAgent Algorithm . 62

4.4.2 Utility Function and Assignment Policies 64
4.4.3 Utility Criteria Entities . 64

4.5 Agent’s Local Information Component . 65
4.6 Summary . 65

vii

5 Coalitions in DTAACS-OK 67
5.1 Motivation and Problem Illustration . 68

5.1.1 The Site Clearing Problem . 68
5.1.2 Tasks Taxonomy . 70

5.2 Coalitions in DTAACS-OK . 72
5.3 Problem Statement . 74
5.4 Coalition Algorithms . 75

5.4.1 A General Overview of Candidate Coalitions Generation 75
5.4.2 GetBestCoalition Algorithm . 76
5.4.3 MainCoalitionFormation Algorithm 77
5.4.4 CoalitionsForTask Algorithm . 78
5.4.5 FilterCandidateAgents Algorithm . 79

5.5 Summary . 80

6 DTAACS-OK Empirical Evaluations 81
6.1 DTAACS-OK for HuRT-IED . 81

6.1.1 Motivation . 81
6.1.2 Mission and Task specification . 82
6.1.3 General Scenario Description . 83

6.1.3.1 Scenario Evaluation based on the SOs types 86
6.1.4 Particular Scenario Specification . 86

6.2 DTAACS-OK for Collaborative Assembling
Objects . 94
6.2.1 Motivation . 94
6.2.2 Mission and Task specification . 94
6.2.3 General Scenario Description . 97
6.2.4 Particular Scenario Specification . 99

6.3 DTAACS-OK versus DEMiRF-CF . 106
6.3.1 Motivation . 106
6.3.2 General Scenario Description . 106
6.3.3 Particular Scenario Specification . 107

6.4 Summary . 108

7 Related Work 109
7.1 Market-Based Approaches . 111

7.1.1 M+ . 111
7.1.2 TraderBots . 112
7.1.3 Incremental Multi-Robot Task Selection 113

7.2 Markov Decision Problem . 113
7.2.1 Decentralized Dynamic Task Allocation 114
7.2.2 Modeling Task Allocation Using a Decision Theoretical Model 115

7.3 Other Approaches . 116
7.3.1 Alliance . 116

viii

7.3.2 Distributed Task Allocation in MAS based on Decision Support Module117
7.4 Coalition Formation and Task Allocation . 119

7.4.1 Task Allocation via Coalition Formation 119
7.4.2 Multi-Robot Coalition Formation . 119
7.4.3 Bayesian Model-Based Coalition Formation Approach 120
7.4.4 Building Coalitions Through Automated Task Solution Synthesis . . 120

8 Discussion And Conclusion 122
8.1 Prevailing and Relevant Solutions . 122
8.2 DTAACS-OK: The Framework . 124

8.2.1 DTAACS-OK solution to the SAT-AP and MAT-AP 124
8.3 Future Work . 128

8.3.1 Identical Organization Knowledge . 128
8.3.2 Coalitions . 128

8.4 Conclusion . 129
8.5 Summary . 130

Bibliography 136

ix

List of Figures

2.1 Tight Coordination-Simple Task . 13
2.2 Tight Coordination-Complex Tasks . 14
2.3 HuRT IED Mission . 19

3.1 OMACS Metamodel . 41

4.1 DTAACS-OK Components . 44
4.2 Distributed Transaction Component Diagram 47
4.3 Transaction Generator . 48
4.4 Transaction Example . 48
4.5 Distributed Organization Knowledge Component 56
4.6 Distributed Task Allocation Component . 58

5.1 Site Clearing Task Diagram . 71

6.1 HuRT-IED Scenario . 84
6.2 HuRT-IED Tree Mission Representation . 85
6.3 HuRT-IED Average Message Sent all SOs are G 88
6.4 HuRT-IED Average Message Sent all SOs are IEDs identifiable only by Hu-

man Agent . 89
6.5 HuRT-IED Average Message Sent all SOs are Mix 90
6.6 HuRT-IED Average Message Sent with Task Reallocation all SOs are G . . . 92
6.7 HuRT-IED Average Message Sent with Task Reallocation all SOs are IEDs

identifiable only by Human Agent . 92
6.8 HuRT-IED Average Message Sent with Task Reallocation 15% all SOs are

IEDs identifiable only by Human Agent . 93
6.9 CAO Scenario . 95
6.10 CAO Tree Mission Representation . 98
6.11 CAO Average Messages Sent for 0%, 15%, 30%, and 60% Probability of

Message Drop . 101
6.12 CAO Average Assignments for 0%, 15%, 30%, and 60% Probability of Task

Failure . 102
6.13 CAO Average Messages Sent Under Task Failure 103
6.14 CAO Average Assignments Under Task and Communication Failure (15%) . 104
6.15 CAO Average Messages Sent Under Task and Communication Failure (30%) 105
6.16 DTAACS-OK versus DEMiRF-CF CAO No Message Drop 107
6.17 DTAACS-OK versus DEMiRF-CF 15% Probability Message Drop 108

x

List of Tables

4.1 Required Events From Agent Task Execution Component 49
4.2 DTAACS-OK Transaction Types . 55
4.3 Attributes representing an Agent in the Organization 57
4.4 Agent Status . 57
4.5 Capabilities in the Organization . 57
4.6 Agent’s Information Examples . 66

5.1 Clearing Site Objects . 70
5.2 Clearing Site Agents . 70
5.3 Group Criteria . 71
5.4 Task Taxonomy for Coalition Formation . 72

6.1 Agent Types . 85
6.2 Independent Variables . 87
6.3 Dependent Variables . 88
6.4 Object Types . 99
6.5 Robot Types . 99
6.6 CAO Independent Variables . 100
6.7 DTAACS-OK and DEMiRF-CF Similarities 106

xi

Acknowledgments

This has been a long journey, and not an easy one. I want to take this opportunity

to thank and acknowledge all the people that, in one way or other, helped and supported

me along the way. First, I would like to thank my Major advisor Dr. Scott DeLoach,

he has provided the guidance and freedom to pursue my degree, with the patients my

nontraditional grad student situation required. I respect and appreciate his patience in

reading my dissertation as many time as needed. Thanks a lot Dr. DeLoach. I also want to

thank my committee members, Dr. Singh and Dr. Neilsen for their comments, questions,

and feedback that helped me during my research. Also, thanks to Dr. Bala Natarajan and

Dr. Tim Bolton, for their comments and interest in my research.

xii

Dedication

This dissertation is dedicated to my children, Alejandro and Victor, they fulfill my life

and make this a life worth lived. Additionally, I dedicate this work to my family, they always

believed in me and never gave up on me, their expectations and desired for me to succeed

kept me trying. To my close and dear friends Jaime and Manuel, they were always there for

me when the frustrations arrived, and all those difficult moments I went thorough during

this journey. Furthermore, this work is dedicated to Tere Ortega, her love for science and

knowledge always inspired me, and I will always admire in her.

xiii

Chapter 1

Introduction

The rapid and continuous pace of technological advances, particularly for digital devices and

their operating software, contribute to increased user expectations in regards to adaptability,

autonomy, robustness, and security. This progress in technology development also prompts

system designers to develop efficient solutions for challenging problems in application do-

mains where time constraints, communication limitations, remote human interaction, and

adverse and dynamic environments are typical characteristics. Systems proposed to satisfy

these demands are rather complex and typically executed in a distributed way among diverse

computational systems, thus requiring these systems to decide which computational entity

should work on a particular task. Consequently, this dissertation focus on the allocation of

tasks in distributed heterogenous systems.

1.1 Motivation

In Multi-Agent Systems (MAS), particularly MAS with Organization Theory, techniques

are incorporated to address scalability, adaptability and systematic design. In addition,

Organization-Based Multi-Agent Systems (OMAS) paradigms are used to design complex

systems for deployment in challenging application domains and the simultaneous satisfaction

of increasing user expectations. MAS, and particularly OMAS, are specifically designed to

allow participant agents to cooperate and/or collaborate to achieve a common goal or task.

For agents in an OMAS to pursue achievement of a common goal, a certain level of

1

coordination must occur.. An objective of this coordination is to decide who does what.

In various challenging application domains such as Search and Rescue, Hazardous Material

Disposal, and Military Applications, an efficient distributed task allocation solution is critical

to system performance and solution outcome.

Search and Rescue. The Disaster Response application area has received special

attention over the years. Several solutions have been proposed and tested for communi-

cation, time response, and adaptability performance in scenarios with different adversity

levels (Yellow, Orange, and Red arenas as defined by the National Institute of Standards

and Technology). Adversity is defined as the obstacles a robot may encounter and the

level of communication challenges among the robots. Solutions proposed by Botelho and

Alami [15], Zlot and Stentz[57], and Sanem and Balch [40] are distributed marked-based

approaches. Even though these solutions claim to be distributed, the coordinating agent

of the bidding process can be considered a centralized decision point. The communication

cost for these solutions is determined by communication that occurs through the bidding

process. Besides communication among agents during the task allocation process, the agents

also share system information to track progress and status of the mission. This sharing of

information among agents is essential in exploring a new approach to the task allocation

problem captured in this research. The type of tasks Botelho and Alami’s [15] and Sanem

and Balch’s [40] solutions can handle are simple tasks that may be reassigned, thus increas-

ing communication costs. In Chapter 5, a more detailed discussion of these approaches is

offered.

Military Applications. The military domain presents a very challenging environment

due to ever-present uncertainty and drastic changes. The agents in a MAS deployed in

this domain need to adapt rapidly to sudden and sometimes catastrophic changes in the

environment, and overcome any drawbacks a team member may face. Beautement et. al.

[5] suggests that any system designed for the military domain needs to handle three key

issues :

2

• Availability and Reliability. Systems may run continually for long periods of time.

Updates, debug time, and restart activities are generally not possible.

• Avoid Single Point of Failure. Solutions need to be distributed and secure while

meeting efficiency objectives.

• Enable Robustness and Resilience from the Start of Execution. Systems need to be

ready for malicious interferences and attacks, as well as possible system failures.

These three characteristics require agents in the MAS to coordinate their actions in

such a way that resources such as battery power and communication bandwidth are used

efficiently and a secure, robust and distributed solution is provided. In the case of multi-

robot systems, two applications are of particular interest: Reconnaissance and Improvised

Explosive Device (IED) detection and defusing. In Chapter 6, an IED application is used

to test the proposed framework and the results are discussed in detail.

A majority of current solutions for the task allocation problem are market-based solutions

where, besides communication cost of the bidding process, there is also a communication

cost to share and maintain knowledge of the system state [15, 40, 57]. While studying these

market-based approaches I was intrigued to find out whether this shared system information

possessed the property of one copy serializability [55], would be enough to address the task

allocation problem. The question asked was: if agents in an OMAS share identical system

state information, are agents able to answer the question who does what?.

To answer the question, this research proposes Distributed Task Allocation in Adaptive

Computational Systems based on Organization Knowledge(DTAACS-OK) framework to

handle the task allocation problem in OMAS.

1.2 Thesis Statement

By maintaining identical organization knowledge in each agent, an OMAS is able to more

efficiently allocate tasks and reduce communication costs as compared to market-based ap-

3

proaches.

1.3 Contributions

The contributions of this research are:

• A distributed task-allocation framework for OMAS that provides reliability and adapt-

ability required by hazardous and dangerous application domains.

• A set of algorithms to form coalitions when a task requires more than one agent to be

executed. Communication cost due to coalition formation is reduced when compared

to current approaches.

• A set of algorithms for task allocation that reduce necessary communication when

compared to current marked-based approaches.

1.4 Overview of Research Approach

The main objective of this research is to offer a non-communication intensive yet efficient

distributed solution to the task allocation problem in an OMAS. In this section, an overview

of the approach in pursuing this solution is presented.

1.4.1 Problem Description, Abstraction, and Models

The Task Allocation Problem can be formulated in various ways (see Chapter 2) depending

on application domain, user requirements, and optimization objective. The first step in this

research is to define and specify the scope of the problem. Chapter 2 defines the inputs,

systems, tasks, and optimization objectives considered by this work. The next step in the

research is to utilize mathematical models to represent the task allocation problem.

In situations where more than one computational entity shares resources, tasks, or valu-

able artifacts, the question of what entity is allocated a resource or assigned a task can be

generalized as who gets what?. The answer to this question is not trivial and, in some cases,

4

the what can be decomposed, posing a slightly different question: who gets what part of the

what?. The answer to these questions significantly impacts performance and outcome of the

system, and a careful decision process must be followed. The task allocation problem has

been addressed in the pass in several areas besides computer science, as well as different

areas within computer science. A brief overview of these areas is given below.

Operational Research (OR). In OR, the objective is to improve the process of decision-

making. OR is multidisciplinary but relies heavily on mathematical sciences, such as math-

ematical modeling, statistical analysis, and optimization. Problems that require maximiza-

tion or minimization of an objective and are restricted by certain conditions are modeled in

OR by Linear Programming, which specifies structure of the problem and denotes the way

problems with such structure are solved. A typical problem analyzed in OR is the allocation

problem. Given the sets I and J , xij represents that i is assigned to j and cij the cost of the

assignment. If I and J have same cardinality, the problem can be modeled with the linear

programming formulation described below:

minimize M =
∑
i

∑
j

cij xij subject to : (1.1)∑
j

xij = 1 for all i∑
i

xij = 1 for all j

xij = 0 or 1 for all i and j

This model fits most of the interesting problems tackled by OMAS, thus it is considered

in the solution proposed in this Dissertation.

Markov Decision Problem (MDP). Consider a scenario where an agent that is situ-

ated in an environment is pursuing a goal. This scenario can be described as an entity with

capability to change states of the environment, where the goal is one of those environment

states. An MDP consists of a set of states S, (where s1 is the initial state), a transition

function T (s, a, s′), and a reward function r : S → R. If it is assumed the agent is the only

5

entity that can make changes in the environment, this model fits the scenario described

above. To model a MAS as a MDP, the fact that any agent can modify the environment

requires that the transition function incorporate possible changes other agents make to the

environment.

Distributed Systems. Some commonly shared resources in distributed systems include

I/O channels, buffers, data files, and computational power. The entities that comprise a

distributed system need to implement a mechanism to share resources and avoid deadlock

and starvation. The algorithms proposed by Rhee [38] attemt to minimize the time for

a participant to acquire all required resources. Rhee defines a possible model for system

P that consists of a finite or infinite set of processes (pi) and each process as a finite

state automaton. Communication among processes is modeled as a special process called

network. The finite state automaton is specified by a guarded command (Bi → Ai) with

two parts. The first part (Bi) represents a boolean expression or message reception and the

second part (Ai) represents a finite list of action statements that consist of multiple local

steps. Each process possesses a buffer that communicates with the rest of the processes by

adding/removing messages to its buffer. The network schedules delivery of messages sent

among the processes and delivers the messages by pulling a message from a particular buffer

and placing it into destination buffers. The system model also includes the definition of a

sequence, which is the vector C = {q1, q2, ..}; where qi is the local state of process pi The

system executes a sequence of configurations asynchronously.

The previous paragraphs give a brief overview of ways the task allocation problem has

been modeled. In Chapter 2, an extended discussion related to the specific model used in

the proposed framework is presented.

1.4.2 Distributed Systems

Once the task allocation problem statement is presented and a mathematical model for the

problem is specified, it is important to discuss some areas of distributed systems that will

6

be considered in the solution.

Information Consistency. The proposed solution is based on identical organization

knowledge in each agent (See Section 2.2.1); the methods and techniques used to provide

information consistency in a distributed system are key to this research. Several protocols

to support replicated data are available. Chapter 2 includes a more detailed discussion of

these protocols, describing the ways data can be replicated, strategies to update the replicas,

and how the network partitioning problem is handled by protocols.

Election Algorithms. To keep and maintain identical organization knowledge in each

agent, selection of the agent to execute the next update is a key part of the knowledge

update mechanism. Several protocols studied in distributed system can provide a solution

to this requirement.

1.4.3 Framework Design

The next step in this research approach is to consider an architectural design that can be

easily integrated into current and available MAS design methodologies/framewroks. The

goal is to keep this architecture as modular and decoupled as possible.

1.4.4 Evaluation

Since the goal of this dissertation is to provide a low communication yet efficient distributed

solution to the task allocation problem in OMAS, evaluation of the framework proposed in

this work was focused on how it behaves in regards to communication cost and how com-

munication degradation affects mission achievement. The framework was implemented in

two applications which are examples of collaborative systems in military and manufacturing

domains. In the first application, HuRT-IED, a team of robots and a human agent have the

objective of clearing a road intersection from possible IEDs seeded by the enemy. In the

Collaborative Object Assembling (COAApp) application, a team of robots has the mission

to build an object from parts that must be assemble in a predefined order. Both experi-

ments are controlled experiments, meaning that the framework was evaluated in regards to

7

communication cost for (1) task allocation, (2) coalition formation, and elapsed time for (3)

mission achievement. The tests used (a) error-free communication and (b) stressed com-

munication conditions, where communication capability of each agent in the organization

deteriorates, resulting in lost messages.

Implementation of these applications was conducted in a simulator developed at Kansas

State University’s Multi-Agent and Cooperative Reasoning Laboratory. The Cooperative

Robotics Organization Simulator (CROS) [31] supports the execution of OMAS applications

in a controlled environment.

1.5 Assumptions

MAS and multi-robot systems have a wide range of applicability. Evaluation of the frame-

work proposed in this work is done in application domains where direct human participation

in the mission is of high risk so that remote human interaction with the agents is of great

value. The following assumptions help stress aspects of the framework that are of interest

in evaluating in this research within a reasonable time frame.

1. Discrete Tasks. All tasks have specific start and finish states. The main reason for

this assumption is to help specify an application termination criteria.

2. Priority Tasks. All tasks in the mission have a predefined priority. This assumption

allows ordering of task execution. If no priority is given, a random selection of available

tasks is required.

3. Heterogeneous Robot Teams. One way to provide robustness to a multi-robot

system is to have the capabilities/resources distributed among different robots. If the

proposed framework is used in a homogeneous system, discrimination criteria, such as

work load, would be required to determine allocation of tasks.

4. Full communication. All agents can communicate directly or indirectly with each

other. This assumption does not eliminate the possibility that one or more agents fail

8

to receive messages.

5. Closed Systems. The number of agents in a team does not increase. An agent can

leave the organization but cannot reenter the organization.

1.6 Summary

In this chapter, the importance of a distributed, low cost communication solution to the

task allocation problem in OMAS is discussed. First, a possible solution to this problem

is presented. Next, steps followed to provide the solution is presented as a framework that

each agent in the organization implements and executes. Finally, a brief description of how

the proposed framework was evaluated is discussed.

The reminder of this dissertation is as follows: Because the task allocation problem can

be formulated in different ways based on factors such as application domain and optimization

objectives, Chapter 2 presents a formal definition of the problem addressed in this research.

Chapter 3 includes a discussion of related technologies that support development of the

framework proposed in this research. In Chapter 4, different components of the DTAACS-

OK framework and algorithms to handle the Single-Agent Task Allocation problem are

offered. In Chapter 5, a discussion of how the Multi-Agent Task Allocation problem is

handled in the framework proposed in this work is presented. In Chapter 6, a preliminary

empirical evaluation of the framework is presented, including descriptions and results of the

proposed evaluation. Chapter 7 discusses the most relevant solutions currently proposed to

similar problems. Finally, a discussion and a conclusion regarding topics addressed in this

Dissertation are presented in Chapter 8.

9

Chapter 2

Problem Formulation

The mathematical models used to formulate task allocation among individuals are diverse

and depend on the area of study. When studying social insect colonies, the models are

mostly based on interactions and behavior [29]. In Microeconomics, factors like consumer-

supplier, price, budget and demand shape the models for allocating resources to individuals

[22]. In Computer Sciences, the different mathematical models to address task allocation

refer to concepts from other disciplines, like the ones mentioned above. In this research,

the formulation of the task allocation problem incorporates techniques and concepts from

Operations Research and Economics. The problem is classified based on the categories

defined in [28]. A Task is a broad and general abstraction used in MAS and in Section 2.1,

the types of tasks considered in this research are specified. Mission and tasks representations

are described in Section 2.2, and the actual problem statement is posed in Section 2.3.

2.1 Task Allocation Problem

The task allocation problem in MAS can be categorized based on the number of tasks an

agent can perform simultaneously, the number of agents needed to execute a task, and

whether the application considers future states of the system when allocating tasks [28].

10

2.1.1 Tasks

As mentioned above a task is a general abstraction used in MAS. In the area of insect

societies, Oster and Wilson define a task as a set of behaviors that must be performed to

achieve some purpose of the colony. Wooldridge [54] talks about tasks as a way to tell an

agent what to do, but not how to do it. The task definition used in this research combines

both, the what which is something to be achieved or the desirable state of the system to

be reached, and the how which is the set of steps to achieve it. Depending on whether or

not the set of steps can be divided into subsets such that each subset achieves part of the

desirable system state, two task definitions are defined below:

Definition 2.1. Simple Task

A Simple Task (ST) is a task which set of steps cannot be grouped into subset such that,

each subset achieves part of the desirable state.

Zlot et al. [57] address the allocation problem for complex tasks. The authors define

complex tasks as follow:

Definition 2.2. Complex Task

Complex Tasks (CT) are tasks in which a set of steps can be grouped into subsets such that

each of the subsets achieve part of the desirable state in the environment.

Complex tasks are usually introduced into the system as a rooted task tree, where the

tasks are related by a parent-child relationship, and each child is a refinement of its more

abstract parent [15, 40, 57]. The subtasks in [57] are related to their parent by AND and

OR relationships and relate to each other by a precedence relationship. The AND and

OR relationships specifies what tasks need to be completed so the parent is achieved. The

precedence relationship restricts the order of task execution.

Tasks can also be classified as tightly or loosely coordinated tasks depending on the

coordination required among the agents executing them.

11

Definition 2.3. Loosely-Coordination Tasks

Loosely-Coordination Tasks (LC-T) are tasks in which the agents executing them do not

require or consider information about tasks being carried out by other agents in order to

make progress on their task execution.

In a similar way, tight-coordination tasks are defined below:

Definition 2.4. Tight-Coordination Tasks

Tight-Coordination Tasks (TC-T) are tasks in which the agents executing them require or

consider information about tasks carried out by other agents in order to make progress on

their task execution.

Examples of Tight-Coordination tasks are:

• DeliverObject and GenerateRoute tasks. When agent A, with only carrying capabil-

ity, executes DeliverObject that requires a route to be generated by agent B, which

possesses the means to generate a map from start to destination points.

• CarryHeavyObject task. Assuming the object is indivisible, when agents A and B

carry or push the object, the actions of agent-A directly affects the actions of agent-B

and viceversa, therefore, to succeed they need to coordinate their actions.

• MoveInFormation task. When agents A and B move as a team, they need to consider

the other agent’s position to adjust their own position if needed.

Tight-Coordination tasks can be divided in two sub-types as defined below:

Definition 2.5. Tight Coordination-Simple Task

Tight Coordination-Simple Task (TC-ST) are simple tasks that require the joint actions of

multiple agents.

Figure 2.1 depicts an example of a task tree for the Clear Site application. The mission

in this application is to clear an area by removing objects of two types: ObjectsA and

12

ObjectsB. In this example ObjectsB are indivisible. The task tree is represented as an

acyclic rooted tree with two specific relationships besides the parent-child relationship in a

tree: (1) the and relationship that specifies that all the children in this relationship need to

be achieved for the parent task to be achieved, and (2) the triggers relationship that specifies

a way for a task ta to create another task tb. If the object to be removed by executing task

RemoveObjectB is indivisible, but requires more than one agent to move it, then the agents

assigned to an instance of this task need to coordinate their actions to successfully achieve

RemoveObjectB, and for this reason RemoveObjectB is an example of a TC-ST.

<<Task>>

<<Task>>

<<Task>>

<<Task>>

Figure 2.1: Tight Coordination-Simple Task

Definition 2.6. Tight Coordination-Complex Task

A Tight Coordination-Complex Task (TC-CT) is a parent of a TC-T.

Figure 2.2 depicts a task tree for a team of n agents that need to relocate while moving

in a specific formation. The task tree is similar to the one in Figure 2.1, but this tree

introduces a precedes relationship to indicate that task ta needs to be achieved before task

tb can start being executed. TeamRelocation, GetInFormation and GetToLocation are TC-

CT tasks; the tasks can be decomposed into subtasks that require coordination among

the agents executing them. Each agent in the team executes GetInPosition-i, and if no

13

specific coordinates are given, the agents need to know current and changing position of

other agents. Agents executing MoveToLocation-i need to communicate with each other, or

know somehow where the teammates are while moving in formation to the destination.

<<Task>>

<<Task>>

<<Task>>

<<Task>>

<<Task>> <<Task>> <<Task>>

.
.

Figure 2.2: Tight Coordination-Complex Tasks

TC-ST (Definition 2.5) and TC-CT (Definition 2.6) specify two types of tasks addressed

in this research. TC-ST are task considered in most solution proposed in the literature. TC-

CT are task that are introduced in this research. This task abstraction allows the system

to provide feedback at a level of groups of tasks, which is important when the user requires

information about higher level tasks, such as cleaning the entire site, as in Figure 2.1, or as

in the case the user finish relocating, got already in formation, or the team finished moving

to a different location, like in Figure 2.1.

After presenting the types of tasks addressed in this research, Section 2.1.2 introduces

the type of MAS addressed in this research and Sections 2.1.3 and 2.1.4 present the problems

addressed in this research. The problems are described first as posed in other research areas

such as Operational Research (OR). Later, the problem descriptions used in this research

are specified by Definitions 2.10 and 2.11. The general problem statement is presented in

Section 2.3.

14

2.1.2 Problem Description

In this section, the type of MAS considered in this proposal are presented. In this research,

the Single-Task Robot, Single-Robot Task Instantaneous Assignment (ST-SR-IA), and the

Single-Task Robots Multiple-Robot Tasks, Instantaneous Assignment (ST-MR-IA) Multi-

Agent Systems, as defined in [28] are addressed. In other words, the Multi-Agent Systems

considered are systems where agents can work on a single task at any time, tasks can require

one or more agents to be executed, and the allocation algorithms do not consider future or

probabilistic system information. When a task requires more than one agent, the task is

specified as a complex task as defined in Definitions 2.5 and 2.6.

In the previous sections, the kind of systems and the type of tasks have been discussed.

Now, the introduction of some definitions used in the Single Agent Task and Multiple Agent

Task Allocation problems are presented. These definitions assume the existence of a set of

agents A, and a set of tasks T.

Definition 2.7. Set of agent teams

The set of all possible teams of agents from A is given by the powerset of A.

Let 2A be the set of agent teams.

Definition 2.8. Coalition

A coalition τ is a set of agents and τ ∈ 2A

Definition 2.9. Allocation

An allocation σ is a function that matches a task t ∈ T to a set of agents τ ∈ 2A .

σ : T → 2A

2.1.3 Single Agent Task Allocation Problem

The single agent task allocation problem in MAS, specifically in Multi-Robot Systems, has

been reduced to an instance of the Task Allocation Problem in OR [27]. An example of the

task allocation problem in OR is presented in [39] as follow:

15

Assume there is a set of I people and a set of J jobs, and the size of

the sets are the same. Each person is to be assigned exactly on job from J.

There is a cost, or some other performance measurement, cij for person

i assigned to job j. The problem is to find the total assignment such that

the sum of the costs cij in the assignment is minimized.

The problem has also been formulated based on the Resource Constrained Project

Scheduling Problem studied also in OR [40]. A brief formulation is presented here based on

the one presented in [8].

Given n activities ai i = 1,.., n, and given m renewable resources

rk, k = 1, ..,m. A constant amount Rk units of resource rk is available

at any time. Activity ai is executed for a period of pi units of time, and

during that period of time, a constant cik is occupied from resource rk.

Precedence constraints between activities may exist and represented by the

relationship i→ j, which means activity f i must be completed before j can

start. The challenge is to define start times S for the activities ai, .., an

such that three conditions hold:

• The total demand for each resource at time t is always less or equal to the amount

available for that resource.

• The precedence constraints for the activities to be executed are fulfilled.

• The makespan Cmax = maxi=1nCi is minimized, where Ci wierdSymb Si+pi is assumed

to be the completion time of activity i

As in [27], the single agent task allocation problem addressed in this research can be

reduced to an instance of the task allocation problem in OR; a formalization of this problem

is presented below. The problem defined in [27] is based on jobs and workers ; tasks and

agents are used here instead.

16

Definition 2.10. Single Agent Task Allocation Problem

The Single Agent Task Allocation Problem (SA-TAP) is:

- A prioritized set of n tasks T = {t1, ..., tn}, with costs k1...kn; where kn represents the

cost of executing tn

- A set of m agents A = {a1, ..., am} each agent with a set of capabilities Ci = {c1, ..., cj}

for 1 ≤ i ≤ m and j ≥ 1

- A cost function κ : T → R where κi(tk) represents the cost of agent ai to execute task tk

The problem is to generate the set Φ of assignment σ = < ai, tk >;

where 1 ≤ i ≤ min(m,n) and 1 ≤ k ≤ n subject to minimize the global cost k(T)

k(T) =
∑
σ∈Φ

κi(tk) (2.1)

In the task allocation problem addressed in OR, the set of tasks T is static. To complete

the problem reduction to an instance of the task allocation problem in OR when T changes

dynamically, iterating over the solution for the static problem is necessarily, or rewriting

the SAT-AP to include time and ∞ in the cost function is also possible.

Gerkey and Mataric [27] show that optimal solution for the static problem can be found

in polynomial time by casting the problem to an integer linear program.

2.1.4 Multiple Agent Task Allocation Problem

The definition of the multiple agent task allocation problem is similar to the SA-TAP, except

we need to replace the ai in the assignment tuple for a subset of agents from A. The cost

function needs to be defined based on the agent subset.

This problem can be divided into two subproblems: (1) generate the set of subset of

agents, and (2) allocate the tasks to the agent teams.

The mathematical implications for generating the set of agent teams is presented in

Section 2.1.5. What is important to mention here is that the problem of finding an optimal

17

allocation of tasks to agent teams is an NP-Complete problem, which generally have non-

practical optimal solutions. The best approach to this problem is an approximation to the

optimal solution.

Definition 2.11. Multiple Agent Task Allocation Problem The Multiple Agent Task

Allocation Problem (MA-TAP)

- A prioritized set of n task T = {t1, ..., tn}, with weights w1...wn

- A set of m agents A = {a1, ..., am} where each agent has a set of capabilities Ci =

{c1, ..., cj} for 1 ≤ i ≤ m and j ≥ 1

- An individual agent cost function κ : T → R where κi(tk) represents the cost of agent ai

to execute task tk

- A set of coalitions τ as described in Definition 2.8

- A multi-agent cost function k(t) =
∑

a∈τ κi(tk)

The problem again is to generate the set Φ of assignment σ = < τi, tk >; where τi ∈ 2A,

1 ≤ k ≤ n and 1 ≤ i ≤ min(n, |2A|) subject to minimize the global cost

k(T) =
∑
τ∈2A

ki(tk) (2.2)

Finally, before stating the specific problems addressed in this research, a discussion of

Mission, Task, and Agent representation is presented in Section 2.2.

2.2 Mission, Tasks and Agent Representations

The mission M in this research is represented by an acyclic rooted tree where t0 is the root

of the tree, and each node represents a task, see Figure 2.3. A task can be: (1)a complex

task, which can be decomposed in subtasks or (2) a simple task, which is a leaf in the task

tree. T represents the set of all tasks in the task tree excluding the root.

18

Besides the Parent and Child relationships between nodes in a tree, tasks in set T are

related and constrained by the following relationships: Conjunctive, Disjunctive, Precedes,

Triggers, and ¬ Trigger. For these relationships a similar definition as in [17] is used:

Conjunctive A task is conjunctive if it is achieved when all of its children are achieved.

Disjunctive A task is disjunctive if it is achieved when at least one of its children is

achieved

Precedes Precedence is a relation among tasks that ensures that no agents work on a

specific task until all task that precede that task have been achieved

Triggers/¬ Trigger The triggers relations allow one task to be created/removed by a

second task when a specific event occurs

Task

Task Task Task Task

Task Task Task Task

Figure 2.3: HuRT IED Mission

Figure 2.3 depicts the mission for the Human Robot Team IED application. The main

task for the agents is to monitor a specified area for the possible presence of IEDs. The

main task, MonitorIEDs, is divided into four subtasks: ControlSystem, MonitorArea, Iden-

tifyObject, and DefuseIED. The ControlSystem task loads the information about the area

where the agents are deployed, and triggers the task MonitorArea passing the specific are to

19

be monitored. MonitorArea is subdivided into two subtasks: DivideArea and PatrolArea.

DivideArea divides the area to patrol into subareas based on the number of agents available,

or a parameter specified by the human agent, and triggers as of a PatrolArea task for each

subarea. If an agent detects a suspicious object while executing a PatrolArea task, it trig-

gers the IdentifyObject task, which is is divided into two subtasks: MachineIdentification

and HumanIdentification. The agent tries to identify the suspicious object by executing

the MachineIdentification task, but if it fails, it requests human input by triggering the

HumanIdentification task. If the suspicious object is identified as an IED, the DefuseIED

task is triggered, otherwise the agent continues patrolling the area.

Not all the tasks in the mission are always ready to be allocated. The restrictive re-

lationships precedes and triggers determine what tasks can be allocated at a given time,

which are in the Ready Task set TR.

Definition 2.12. Ready Task Set

TR is a set of tasks such that TR ⊆ T and ∀t ∈ TR, all preconditions to start working on t

are satisfied

Each task ti ∈ TR requires a set of capabilities in order to be completed, and each agent

in the set A possesses a set of capabilities that allows the agent to execute a task. These

two sets are specified in Definitions 2.13 and 2.14.

Definition 2.13. Required Capabilities

Let Cti = {c1, ..., ck} be the set of the required capabilities for task ti to be a achieved.

Definition 2.14. Agent’s Capabilities

Caj is the set of capabilities of agent aj.

2.3 Problem Statement

The problem to address in this dissertation is as follow:

20

Given a mission (M) that is divided into a set of Tasks (T) with pre-

defined priorities and each task has an execution cost k, and having a set

of agents (A) that poses some capabilities (Ca); the problem is to generate

the set (Φ) of task-agent allocations in order to accomplish the mission

and minimize the communication cost incurred in the allocation process.

To solve the problem, it is assumed that each agent has access to the following organi-

zation information:

Definition 2.15. Organization Knowledge

The Organization Knowledge (OK) available to each agent is defined as a tuple OK =

{M,T,A,C}, where:

M is the mission represented by an acyclic rooted task tree, where t0 is the root task

composed by the sub tasks specified in the set T.

T = {t1, ..., tn} is the set of tasks in the mission, excluding the root task.

A = {a1, ..., am} is the set of agents in the organization.

C = {c1, ..., ci} is the collection of all capabilities in the organization. C =
⋃
aεACa.

When generating the output of the problem, agents consider their own cost function in

executing a task, and in the case of MA-TAP, agents also consider the cost function of the

coalition of agents τ .

Definition 2.16. Agent Cost Function

The Agent Cost Function is defined as: κ : T → R, where κi(tk) represents the cost of agent

ai to execute task tk

Definition 2.17. Coalition Cost Function

The Coalition Cost Function is defined as:

ki = f (κj) (2.3)

21

where ki is the cost function for the ith coalition of agents and 1 ≤ j ≤| τi |; . The f symbol

represents an operation over the individual cost functions. For example, if f is the sum Σ

of each cost, we have:

ki(t) =
∑
a∈τj

κj(t) (2.4)

The output of the problem is defined as the set Φ of assignments τ = < ri, tk >; where

ri ∈ <, tA ∈ TA, 1 ≤ i ≤ min(m,n) and 1 ≤ k ≤ n subject to minimize the global cost :

k(T) =
∑
τ∈<

ki (2.5)

2.4 Summary

In this section a mathematical formulation of the Task Allocation Problems in Multi-Agent

System is presented. A task is a general abstraction used in MAS and a brief discussion of

a general task is presented following by the definition for simple tasks and complex tasks.

Tasks are then classified as loosely or tightly coordinated tasks based on the coordination

required among the agents executing them. The definition for the two types of task al-

location problems are addressed in this research are introduced in this chapter: (1) the

Single Agent Task Allocation Problem (SAT-AP) and (2) the Multiple Agent Task Alloca-

tion Problem (MAT-AP). Also, the representation of mission, tasks, and agents are specified

once the problem addressed in this research is formally presented. In the next chapter, the

mathematical foundations and other technologies that support the solution proposed in this

research are discussed.

22

Chapter 3

Background

In this chapter, the mathematical foundations and other technologies that support the

DTAACS-OK framework are presented. The framework proposed in this dissertation (DTAACS-

OK) addresses the problem of allocating tasks to a team of robots in a cooperative Orga-

nizational Multi-Agent Systems (OMAS). This chapter is divided in two main areas: (1)

mathematics and (2) computer sciences. Other areas like game theory and constraint satis-

faction, used in other solutions proposed in the literature, are discussed in Chapter 7.

3.1 Mathematical Background

In this section I present the mathematical foundation for the Single-Robot and Multi-Robot

Task Allocation Problems defined in Chapter 3. Since these problems deal with groups of

agents and tasks, a brief review of Countable Sets is presented in Section 3.1.1. Because the

Multi-Robot Task Allocation Problem deals with tasks that can be assigned to a group of

agents, a brief discussion on Combinatorics is presented in Section 3.1.1. The task allocation

problem is about forming pairs, combining a task with an agent or agents. The goal is to

find the optimal combination pair, which in this research is addressed using Combinatorial

Optimization discussed in Section 3.1.3. Combinatorial optimization is used extensively

in Operational Research (OR) as discussed in Section 3.1.2. OR is an area of study that

models the task allocation problem and inspired the models used in this research. Due to

the computational complexity (NP-Complete) of combinatorial optimization problems, a

23

discussion of the Linear Programming technique is presented in Section 3.1.4. The Multi-

Agent Task Allocation problem requires generating groups of agents to work on a task, thus

the Set Partition and Set Coverage problems are presented in Section 3.1.5.

3.1.1 Sets and Combinations

Before the discussion of deeper areas of mathematics related to this research, it is important

to highlight that the allocation problems deal with Countable Sets, in particular Finite

Sets. Countable Sets are defined as collections of objects in which cardinality is the same

as some subset of the set of natural numbers. In this this research, a proper subset of the

natural numbers, a finite set is required. An important set in the approach presented in

this proposal is the set of feasible solutions to an instance of the task allocation problem.

This set is required to be finite for the technique used to solve the problem.

As mentioned above, the problem addressed in this research is to fine a set of pairs

formed by a task and a set of agents, which is the domain of two specific areas: Operations

Research (OR) and Combinatorics. OR is discussed in Section 3.1.2, and combinatorics in

Section 3.1.3.

3.1.2 Operations Research

Operations Research (OR) is the systematic effort to build and organize knowledge in pursuit

of improving decision making and efficiency [53]. OR can be applied to problems from a

variety of areas such as transportation, organization, and economics. A typical problem

addressed in OR is the assignment of n jobs to n workers in a factory, where each worker

has to be assigned to exactly one job. This is the standard Task Allocation Problem, which

in this research is called the Single Agent Task Allocation Problem (Section 2.1.3). OR

is multidisciplinary; some of the most important subject areas are mathematics, statistics,

economics, psychology, physical science and sociology [39]. In this section, the mathematic

aspect of OR is discussed. In particular, the quantitative models of the problem formulation

24

with optimization as the objective1, which fits the goals in this research.

3.1.2.1 OR Models

In the context of this proposal, models are mathematical statements of the relationship

between all the important factors of a problem. An OR ideal model includes all parts of

the organization or system, although in some cases, a model of a part of the organization

is beneficial (for example, when there are relatively few implications for other parts of the

system). In a normative model, a mutually consistent decision in all the sub-problems is

pursued and there is a specific parameter to be optimized. A simulation or positive model

incorporates only one area of the organization or system and is used to simulate situations

upon a particular decision. The models formulated in this research proposal fit the normative

classification, although the models do not consider all aspects of the agent organization, such

as agents’ scheduler. The aspects that these models do consider are agents’ availability,

agents’ capabilities, the tasks ready to be allocated, and tasks’ capabilities requirements.

When the OR approach is used to address the task allocation problem, six phases are

suggested [53]: (1) defining the problem, (2) constructing the model, (3) gathering data, (4)

solving the model, (5) validating the solution, and (6) implementation. Problem definition

and model construction are presented in Chapter 3 in this proposal. The rest of the proposed

steps are presented in the Chapter 7. It is common that a problem have many possible valid

solutions and OR aims to use combinatorial optimization to identify the best solution for the

specified objective function. Combinatorial Optimization is presented in Section 3.1.3. An

important and widely used technique when modeling an OR problem is Linear Programming,

which is discussed in Section 3.1.4.

3.1.3 Combinatorial Optimization

Optimization is about finding the best solution to a problem. When talking about optimiza-

tion, it is expected that the problems have more than one solution and that each solution

1Other possible objectives include prediction and control.

25

has a quantitative value that can be measured and compared to other solutions’ values. The

value can be in the form of a benefit, such as profit that can be maximized, or in terms

of a loss, such as cost that can be minimized. The class of problems for which there exist

a finite number of solutions is studied in combinatorial optimization from applied mathe-

matics. The problem relevant to this research, the Task Allocation Problem, is part of this

class of combinatorial optimization problems. The general problem of combinatorial opti-

mization can be posed as a maximization or minimization problem as follows. Let problem

p have a finite set of solutions S ; assume x ε S can be evaluated by a function f(x) that

assigns a value to solution x. The problem is to find the solution x with the maximum or

minimum value. Formally defining the optimization problem requires the definition of the

global maximum and global minimum of f.

Definition 3.1. Global Maximum

x∗ ε S is a global maximum of f if

f(x∗) ≥ f(x) for all x ε S

Definition 3.2. Global Minimum

x∗ ε S is a global minimum of f if

f(x∗) < f(x) for all x ε S

The general maximization problem of combinatorial optimization is to find x∗ such that

x∗ is a global maximum of f as defined in Definition 3.1. The general minimization problem

of combinatorial optimization is analogous.

Finding the solution x with maximum or minimum value from a finite set of solutions

might seem to be a straight-forward problem; however as discussed in Section 3.1.3.1, the

solution can be intractable from a computational point of view.

3.1.3.1 The Fundamental Algorithm

Given the definition of a particular finite set S of solutions for the problem p and a function

f : S → < that calculates a real number that indicates how good each solution x ε S is, the

26

problem to find the solution x with maximum or minimum value can be found by following

this approach:

Calculate the value v = f(x) for each x ε S, compare and pick the one

with the highest or lowest value, depending on being a maximization or

minimization problem.

This approach is called the Fundamental Algorithm in combinatorial optimization. In

theory, this algorithm can find the solution for a combinatorial optimization problem with

a finite set of solutions. Unfortunately, for problems with a large number of solutions, the

time required to find the optimal answer is not acceptable. For example, an instance of the

traveler salesman problem with 21 cities to visit, the algorithm would need to consider 21!

possible solutions that would take over 16,000 years of continuous computational calcula-

tions. For this reason, other techniques are used to find optimal and near optimal solutions

to combinatorial optimization problems. One of these techniques is Linear Programming

(LP). LP can find the optimal solution to some combinatorial problems, as discussed in

Section 3.1.4.

3.1.4 Linear Programming

Linear Programming (LP) is an area in mathematics that is extensively used in combinatorial

optimization. LP requires the objective function and all the constraints of the problem to

be linear; many real world problems can be formulated in this way. The general LP problem

is formulated as follows:

Maximize c1x1 + c2x2 + ... + cnxn

subject to

a11x1 + a12x2 + ... + a1nxn ≤ b1,

a21x1 + a22x2 + ... + a2nxn ≤ b2,

. . .

27

am1x1 + am2x2 + ... + amnxn ≤ bm, and

x1, x2, ..., xn ≥ 0

Problems in the general LP problem format can be converted into a LP Standard Form,

which can be solved as described in [7]. The interesting property of problems formulated

using LP Standard Form is that it is clear how the optimal solutions can be found in the

space of feasible solutions. The detailed explanation and proof for this claim is found in

[23]. The important point to highlight here is that, for optimization problems that can be

modeled by LP, an optimal solution can be be found in an acceptable computational time

using a technique called Integer Programming discussed in Section 3.1.4.1.

The Single-Task Allocation problem with a linear objective function can be formulated

using LP as shown in Chapter 3.

3.1.4.1 Solution Techniques for Combinatorial Optimization Problems

Some basic techniques for solving LP problems include Integer Programming (IP), Dynamic

Programming (DP), and Heuristic problem solving.

Integer Programming is an LP problem in which the variables are restricted to integers.

Some approaches to solve an IP include enumerative techniques and cutting planes. Branch-

and-Bound Enumeration is an enumerative technique that guarantees finding an optional

solution, if one exists, to any IP problem. Cutting-plane is an alternative enumeration

approach that is useful when variables are not integers. This method assumes that all the

variables are rational; to eliminate the non-integer portion, cuts are introduced progressively

until all the fractional parts of the feasible region are removed. After the non-integer portions

are removed, the enumerative techniques of the Simplex Method [7, 25, 43], which is a

pivoting algorithm for solving certain types of LP problems, is used to solve the problem. If

the solution is an integer, then it is also optimal. Otherwise, cutting-plane defines further

manipulation to solve the LP problem (See [24]).

Dynamic Programming (DP) is an alternative for solving LP problems in which decisions

can be made in progressive steps. The problem can be divided into stages, each with at

28

least one state in which a decision can be made. To transform a state in the current stage to

a state in the next stage, a decision needs to be made. The optimal decision for each of the

stages does not depend on any previously decisions made, only upon the current stage and

the transformation cost for that stage. This is called the principle of optimality of dynamic

programming.

Heuristic Problem Solving. Even though, in theory, an optimal solution can be found

for a problem with a finite set of feasible solutions, the computational cost can be too high

to be acceptable. Unfortunately, most of the interesting problems have a large number of

solutions, as illustrated both by the traveler salesman problem in Section 3.1.3.1 and the

Multi-Agent Task Allocation problem addressed in this research. Thus, for problems that

fall in the NP class, an algorithm that finds a near optimal solution is acceptable. These

approximation algorithms use a heuristic function to find a solution that is not guaranteed

to be optimal, but is ”close enough” and can be obtained in an acceptable time frame. A

good heuristic has some advantages over standard algorithms of combinatorial optimization.

In addition to being able to find a near optimal solution in a acceptable time, heuristics

can be flexible and easy to implement. In this research, the heuristics implemented in the

algorithms are application specific, and are discussed in Chapters 7 and 8.

3.1.5 Set Partition and Set Coverage

One of the problems addressed in this research is the problem of allocating tasks to teams of

agents. In an instance of this task allocation problem, more than one team of agents capable

of executing a task may exist. These teams, or coalitions, of agents are generated from the

set of agents in the organization. This section presents a brief discussion of set partition and

set covering, emphasizing task allocation and its computational complexity. The partition

of a set S is a collection of disjoint nonempty subsets of S, such that the union of the subsets

results in the set S. The definition of set coverage is obtained by relaxing the restriction

of the subsets to be disjoint. If each subset has a positive cost, finding the cover with the

29

minimum cost is known as the set covering problem and it is known to be NP-Complete

[14]. The set partition problem is defined similarly.

In the previous sections, the mathematical background that supports the framework

proposed in this work was presented. The task allocation problem can be tackled using other

approaches like game theory and constraint satisfaction, which are discussed in Chapter 7.

In the following sections, the areas of computer science related to this research proposal

are discussed. Distributed Systems are presented in Section 3.2.1. Agents, Multi-Agent

Systems (MAS), and Organization-based MAS are presented in Section 3.3. In this research,

OMACS [18] is the framework used by DTAACS-OK for evaluation purposes. A discussion

on OMACS [18] is presented in Section 3.4. Appendix A discusses how DTAACS-OK might

be integrated to other OMAS frameworks.

3.2 Computer Science Background

An important characteristic of DTAACS-OK is that its algorithms use distributed organi-

zational knowledge and aim to find a solution in a distributed way. The area of distributed

systems is discussed in Section 3.2.1, especially with regard to the topics of Election Proto-

cols, Data Replication, and Concurrency Control.

DTAACS-OK is a framework designed to be part of an Organization-based Multi-Agent

System. The applicable areas from Software Engineering to be discussed are Multi-Agent

Systems, in particular Organization-based Multi-Agent Systems and Multi-Robot Systems.

in this proposal, DTAACS-OK is integrated into the OMAS framework OMACS [18] however

there exist other OMAS frameworks that are discussed in more detail in Chapter 7.

3.2.1 Distributed Systems

As previously mentioned, DTAACS-OK approaches the Task Allocation problem in a dis-

tributed way and uses a Distributed Organization Knowledge (DOK). The DOK is repli-

cated information each agent posses about the mission, agents and their capabilities status,

30

(a more detailed discussion about DOK is presented in Chapter 4). An important require-

ment in DTAACS-OK is that the DOK must be identical in each agent at the time the

agents make a decision about the same system state; that is, if agents need to make deci-

sion d3, the DOK must be in state s3 in each agent by the time it reasons about making

decision d3. This requirement is achieved by ensuring that the DOK possesses the one-copy

serializability property. In the current version of DTAACS-OK, only one agent can update

the DOK at a given time. To determine what agent’s transaction to execute next, a simple

election protocol is followed. In distributed systems, the solutions proposed can be cate-

gorized as token-based solutions and non-token-based solutions. In token-based solutions

the notion of token is introduced, which represents a control point. This control is passed

around among the agents; the agent that possess the token is allowed to acess the shared

resource [55]. In Section 3.2.1.1, non-token-based solutions are discussed, as it is the type of

solution used in this proposal. Non-token-based solutions are truly distributed solutions in

which all processes communicate with one another to determine which is the one to access

the shared resource. Several algorithms have been proposed in the literature, and some of

them are discussed below.

3.2.1.1 Election Algorithms and Mutual Exclusion

Mutual exclusion is a key problem in distributed systems. Mutual exclusion guarantees

that only one process, among a set of processes, accesses a shared resource at a given time.

In this proposal the agents in DTAACS-OK can only handle one transaction at the time;

therefore, a mechanism to ensure this requirement is needed.

Lamport’s Algorithm. This algorithm guarantees three conditions: (1) the resource is

first released before granted, (2) requests are granted in the order they are received, (3)

if every resource granted is released, every request is eventually granted. The rules of the

protocol are as follows:

• A process interested in the shared resource sends a timestamped request to all the

31

other processes and adds the request to its own queue.

• Each receiving process adds the request to its queue and sends an ack back.

• A process holding a resource releases the shared resource by sending a release message

to all other processes.

• When a release message is received, the corresponding request is removed from the

queue.

• The process determines that it can access the shared resource if and only if:

– It has a request in the queue with timestamp t, and

– all other requests in the queue have t greater than t, and

– it has received a message from every other process with timestamp greater than

t.

Ricart and Agrawala’s Algorithm [26, 55]. This algorithm is an improvement to Lamport’s

algorithm. It combines the functionality of the ack and release messages. An informal

description of the protocol rules is as follows:

• A process, to request a shared resource, sends a time-stamp request message to all the

other processes.

• When any process receives a request to share a resource from another process, one of

two actions occur: (a) it sends an okay message if the process is not interested in the

resource or if its own request has a higher times-tamp value, (b) the request is stored

in a waiting queue

• To release a resource, the process sends an okay message to all processes in the waiting

queue.

32

• A process is granted the resource when it has received an okay message to its request

from every other process.

Maekawa’s Algorithm [55]. In this algorithm, a process Pi trying to acquire a shared resource

does not request permission from all the processes, but only from a subset Ri of them.

The subsets are required to be overlapping. The selection of the subsets can vary from a

centralized form where a designated process Pc is the only element in all subsets Ri, to a

fully distributed form where Ri includes all processes. Mutual exclusion is guaranteed by

having each process granting only one permission to a requesting process. A disadvantage

of Maekawa’s algorithm is that it can lead to deadlocks.

3.2.1.2 Data Replication

In DTAACS-OK the solution to the task allocation problem depends on the Organization

Knowledge (OK). The OK stores information about current task allocations, agents, and

their status. Any other application-specific information required by the optimization objec-

tives needs to be stored in the OK. In a centralized approach, the OK would be stored in

a single agent that would answer all requests from the rest of the agents. DTAACS-OK,

however, uses a distributed approach, in which each agent possesses a copy of the OK. That

is, the OK is replicated in every agent in the organization. Data replication provides ad-

vantages including robustness and fast access to data. At the same time, it introduces some

challenges, two of which are consistency and replica management. To achieve data consis-

tency in replicated data, one copy serializability is required. Replica management control

handles communication failures that can lead to network partition. Some of the techniques

for replica management control include Primary Site, Active Replica, and Voting which are

discussed in Section 3.2.1.4.

3.2.1.3 Concurrency Control

Before addressing concurrency control, a brief discussion on transactions is presented. In the

context of this research, a transaction is defined as a set of operations to be applied to the

33

physical data in a replicated OK. A transaction may be an update (write) or a query (read)

transaction. These transactions may consist of a set of operations that must be executed in

an atomic way. Atomic execution is the total execution of all the operations that compose a

transaction, the effects of which takes place in the replica as if there were a single operation.

The goal of concurrency control is to provide data consistency in distributed replicated

data. The concurrency control protocol ensures that the execution of transactions on a

replicated data system is serializable. There are two main approaches for concurrency

control, optimistic and pessimistic approaches. In DTAACS-OK a pessimistic approach is

implemented because there is a high chance of multiple agents trying to simultaneously

commit transactions in the OK. In an optimistic approach, it is expected that concurrent

access to the data happens infrequently. Two common pessimistic approaches are lock-based

and timestamp-based concurrency control. Lock-based mechanism are most popular [55],

and in the current version of DTAACS-OK is the one implemented; because this approach

does not require any clock synchronization among the agents. When using a lock-based

mechanism to achieve concurrency control, lock and unlock statements are inserted in each

transaction. Locking schemas can be either static or dynamic. In a static locking schema,

a transaction acquires locks on all the data objects it needs before executing any action on

them. In a dynamic locking schema, a transaction acquires locks on the objects it needs at

different execution stages. In the current version of DTAACS-OK, the locking approach is

achieved by implementing the two-phase commit protocol, which is discussed in detail in

Chapter 5.

3.2.1.4 Replica Management

The main goal of a replica management or replica control protocol is to ensure that the

concurrent transaction executed on the replicated data is equivalent to the execution of the

transaction on non-replicated data [55]; this is known as one copy-serializability. Replica

control is also data consistency control. The replica control algorithms ensure that different

copies of the data are mutually consistent, that is, a user has the same view of the data

34

regardless of which copy is accessed. A significant challenge that replica control algorithms

face is communication failure. Any type of communication failure of a node in the replica

system may lead to a network partition. This challenge can be tackled by replica control

algorithms using three different approaches: primary replica, active replica, or voting. A

brief discussion of these three approaches follows:

Primary replica approach. In this approach, it is usually assumed that only node failures

can occur and communication is reliable. One node is designed as primary and the rest as

backups. The read requests are sent to the primary node and no backup nodes are involved

unless the primary node fails. Write requests are sent to the primary node, which before

updating the data, forwards the request to k other nodes, after it receives k confirmations

from the backup nodes, it updates the data and returns the result to the requester. In case

the primary node fails, an election protocol is executed to determine the new primary node.

Active replica approach. In this approach, all replicas are active simultaneously. The

read and write requests are broadcast and an agrement and order properties must be sat-

isfied before replying and updating the replicated data. A mutual consistency algorithm is

integrated into this approach, such as Lamport’s time-stamped mutual exclusion algorithm.

Usually a weaker mutual consistency is required: after applying all the updates in a time

period, all replicas must show the same values.

Voting approach. This approach is derived from the data consistency approach single-

write/multiple-reads, which allows a single write but no reads, or multiple reads and no

writes. This approach aims to improve fault tolerance by defining a quorum-voting. Read

r and write w quorums are defined that must be met before the request is satisfied. A

different flavor of this approach can be found in [2].

In DTAACS-OK, the replica management is similar to an active replica approach. In

the current version of DTAACS-OK, every agent possesses an active replica; to execute a

write request all agents must agree, and for read operations, each agent accesses its own

copy of the data. The replica management protocol is presented in detail in Chapter 5.

35

In summary, DTAACS-OK relies on a replicated organization knowledge that keeps

key information used by the allocation algorithms. Each agent in the organization keeps

a copy of the replica, which manages concurrency by implementing an election protocol

and maintains data consistency by implementing a replica control that is composed by a

commitment protocol and an active replica approach that all together achieve one-copy

serializability, a necessary property for the organization knowledge in this research.

In the following sections Agents, MultiAgent Systems, and especially Organization MAS

are discussed in relation to task allocation and to how DTAACS-OK fits into OMACS, a

specific OMAS framework.

3.3 Agents, MultiAgent Systems, and OMAS

3.3.1 Agents

Wooldridge in [54] defines agents as follows:

An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its design

objectives.

Later in [54] Wooldridge extends this definition to include intelligence, and lists some ex-

pected capabilities of an intelligent agent:

• Reactivity

• Proactiveness

• Social ability

A similar definition is given by Ferber in [21], describing an agent as a virtual or physical

entity with its own capabilities, objective or satisfaction function, and partial environment

representation. These characteristics make the agents capable of:

36

• Interacting with the environment

• Communicating with other agents

• Partially perceiving the environment

• Potentially reproducing itself

Ferber’s agent definition also specify some agent’s behavioral characteristics like:

• Offering some services based on its capabilities

• Attempting to satisfy its individual objectives

In the context of this research, an agent is a mix of these two definitions. An agent is a

virtual or physical entity with the characteristics listed in Ferber’s definition, and with the

intelligence characteristics described in Wooldridge’s definition.

Ferber’s definition mentions the concept of agents’ interaction and Wooldridge’s defini-

tion lists social ability as a characteristic of an intelligent agent. This concept of agents

interacting with each other leads to the discussion of MultiAgent Systems in Section 3.3.2.

3.3.2 Multi-Agent Systems

MultiAgent Systems (MAS) is an approach proposed to address the increasing complexity

and higher expectations of computational systems. Some of these expectations include

easily integrating with existing systems, showing some kind of intelligence, adapting to

environmental changes, being reliable and being secure. Due to higher performance and

more affordable hardware, computational systems are designed and deployed in diverse areas

such as real-time systems [32] that increase the complexity of the requirements mentioned

above. The MAS approach aims to address all these needs and several frameworks have

been developed. This section presents a definition of a MAS and the areas of MAS that

have a large impact on the task allocation problem addressed in this research.

37

Wooldridge defines a typical Multi-Agent Systems structure in [54] as a structure con-

taining a number of agents that interact with each other through communication. The

agents are situated in an environment and can interact with it (sense and effect). There

may be relations among the agents, as in relations that establish hierarchy, and agents may

pursue a common goal.

Ferber in [21] defines a Multi-Agent System as a system that includes the following el-

ements: (a) a space called environment and (b) a set of passive and active objects (which

are agents that can modify passive objects) situated in the environment. Objects are re-

lated by defined relationships. Operations are possessed by agents in order to perceive and

modify objects in the environment and are specified by operators that determine how the

environment reacts to the agents’ actions.

Multi-Agent Interactions. In MAS, an interaction happens when two or more agents

are related through dynamic actions [21]. In order to classify interactions in MAS, Ferber

[21] identifies three components of interactions: (a) the intentions of the agents, (b) the

relationship of the agents and the resources available, and (c) the skills available to the

agents to pursue their objectives. The eight types of interactions identified by Ferber [21] are:

(1) independence, (2) simple collaboration, (3) obstruction, (4) coordinated collaboration,

(5) pure individual competition, (6) pure collective competition, (7) individual conflict over

resources, and (8) collective conflicts over resources. In this section a discussion of (4)

coordinated collaboration is presented because it is the type of interaction that takes place

in the systems in which DTAACS-OK is tested.

Cooperating, Collaborating, and Coordinating.

Coordinated collaboration is a type of interaction that occurs when agents have com-

patible goals, but individually lack access to sufficient resources and do not possess all

the needed skills to execute a particular task. This type of interaction happens in MAS

that tackle areas in which a distributed approach is needed, in particular in robot societies

[21]. Coordinated collaboration is a complex cooperation situation in which aspects of task

38

allocation and coordination are combined. Malone defines coordination as [33]:

The additional information processing performed when multiple, connected ac-

tors pursue goals that a single actor pursuing the same goals would not perform.

In MAS, actions need to be coordinated for several reasons including: (1) agents need

information and the results other agents provide, (2) resources are limited, and (3) resource

use must be optimized. The collaboration algorithms presented in this proposal consider

these three reasons. Two of the key types of information shared by agents in DTAACS-

OK are the events related to the task being executed and the status of the agents in the

organization. DTAACS-OK is a general framework that can be integrated into an OMAS

framework; it was designed considering application domains in which resources like com-

munication bandwidth and energy are limited and the use of these resources needs to be

optimized.

3.3.3 Organization MAS

DTAACS-OK is a framework designed to be easily integrated in any OMAS regardless

of how the system was designed. In this research, the applications where DTAACS-OK

was integrated were designed using the Organization Model for Adaptive Complex Systems

(OMACS) framework proposed by DeLoach et al. [18]. Two of the main benefits of using

OMACS are (1) OMACS uses a standard agent architecture into which DTAACS-OK fits

naturally, and (2) OMACS integrates GMoDS, a powerful model and set of algorithm for

managing a mission represented as a rooted tree. In the following section a brief description

of this model is presented.

3.4 OMACS

OMACS [18] is a metamodel for artificial organizations. It allows the design of MAS with

an extended concept of an artificial organization. OMACS extends the general concept of

an organization, which includes a set of agents, the roles agents play, and the relationships

39

among them, by adding the concepts of goals, capabilities, assignments, policies and a

domain model [18]. One of the core elements of OMACS is the organization metamodel

depicted in Figure 3.1. An organization is composed by Agents (A) that are capable of

playing a Role (R), and by doing so, they may achieve a Goal (G). Other entities in the

metamodel are the Capabilities (C) that are required to play a Role and that are possessed

by the Agents. The OMACS metamodel defines two more entities; these are the Domain

(D) and a set of Policies (P) that constraints the Organization. The model also defines

some functions that help in the organization’s performance analysis and in the assignment

of goals to the agents. These functions are as follows:

oaf function P (G×R×A)→ [0..∞] that defines the quality of a proposed set of assignments

achieves function (G×R)→ [0..1] that defines how well a role achieves a goal

capable function (A×R)→ [0..1] that defines how well an agent can play a role

requires function R→ P (C) that defines the set of capabilities required to play a role

possesses function (A× C)→ [0..1] that defines the quality of an agent’s capability

potential function (A×R×G)→ [0..1] that defines how well an agent can play a role to

achieve a goal

The applications implemented to test DTAACS-OK were designed using OMACS. To

integrate DTAACS-OK into these applications, a layer was developed. The main function-

ality of this layer was to generate a task as expected from DTAACS-OK from the goals and

roles defined by OMACS. The details of the integration is presented in Section A of this

proposal.

3.5 Conclusion

In this chapter, the mathematical foundations and other technologies that support the de-

sign of DTAACS-OK and the algorithms implemented was presented. Section 3.1 presents

40

Figure 3.1: OMACS Metamodel

a discussion on sets, combinations, combinatorial optimizations, some techniques utilized

in OR such as LP, and set partition and set covering problems. In Section 3.2 some areas

of computer science such as distributed systems, Multi-Agent Systems and OMAS are dis-

cussed. DTAACS-OK tackles the task allocation problem in a distributed way and a key

component that the algorithms use is the organization knowledge. Important areas from

distributed systems include election and mutual exclusion algorithms, concurrency control

and replica management, which are discussed in this section.

In the next two chapters, the DTAACS-OK framework is presented. In Chapter 4, the

components of DTAACS-OK are discussed and the algorithms to tackle the SA-TAP are

presented. In Chapter 5, the algorithms to tackle the MA-TAP are discussed.

41

Chapter 4

DTAACS-OK

In this chapter, a solution to the SA-TAP and MA-TAP in cooperative mission achieve-

ment in OMAS is presented. The solution is first described as a general framework giving

an overview of its components and their general functionality. Later each component is

discussed in detail and is illustrated with examples.

It is generally accepted in the literature that in some application domains a solution

using the MAS approach is more appropriate than a single agent system. Even application

domains that do not strictly require a MAS, can benefit from it [48]. MAS introduce other

challenges, besides the application specific requirements and constraints, that need special

attention and have been active research topics over the last few decades. MAS are usually

designed to tackle missions in which the agents need to cooperate and sometimes work on

the same task to achieve it. To address the complexity introduced by having a system

with multiple agents, the Organization-based MAS (OMAS) paradigm has been proposed.

OMAS is recommended for complex systems with multiple tasks or goals. Even for a single

task mission, we have to select the most suitable agent for that task. Usually, the problem we

are trying to solve can be decomposed into sub-problems or sub-tasks making the challenge

more interesting. Now the selection of the agent or agents for the available tasks is more

dynamic and the initial assignment can change over the life of the tasks. Several solutions

are proposed that use market based or gaming techniques [15, 19, 41, 56]. Unfortunately

besides the communication required to allocate tasks, these approaches also incur a heavy

42

communication load to keep the agents informed about the status of the mission and agents.

To take advantage of the information sharing among agents, I propose a solution called

Distributed Task Allocation in Adaptive Computational Systems based on Organization

Knowledge (DTAACS-OK) to address the task-agent(s) matching problem.

4.1 DTAACS-OK Components

DTAACS-OK is a framework designed to address the agent-task matching problem in com-

plex systems that adapt to dynamic changes within the system and in the environment.

DTAACS-OK integrates four main components: 1) Distributed Transaction Component, 2)

Distributed Organization Knowledge Component, 3) Distributed Task Allocation Component,

and 4) Local Agent’s Information Component. The four components, their relationships and

data flow among them is depicted in Figure 4.1. The Distributed Transaction Component’s

main purpose is to ensure the one-copy serializability property of the organization knowledge.

The Distributed Organization Knowledge Component stores and updates the organization

information, which is passed to the Distributed Task Allocation Component to generate the

assignments. The Local Agent’s Information Component stores the current agent’s infor-

mation that is used as part of the organization knowledge update. The components are

specified and designed to provide near optimal solutions to the task allocation problem in

a multi-agent systems in different application domains. An overview of typical process is

described in Section 4.1.1.

4.1.1 A General Overview of Mission Execution

We describe the general steps in DTAACS-OK using a mission M as example.

1. All agents in the organization are initialized with an identical organization knowledge.

It contains the tasks in the mission M, and the information of all agents that conform

the organization.

43

Distributed Transaction

Component

Communication Channel

Distributed Organization

Knowledge

Distributed Task

Allocation

Component

Agent Task

Execution

Component

Transaction

Message

Committed

Transaction
Assignment

Set

Event

Set

Instance of

DOK

Effectors

Perceptors

Task Selection

Module

Agents

Module

Capability

Module

Distributed Organization Knowledge

Local Agent’s

Information

Agent’s

Information

Figure 4.1: DTAACS-OK Components

2. The first action occurs in the Distributed Transaction Component when each agent

generates the initial-committed-transaction that is processed by the Distributed Or-

ganization Knowledge Component to generate the first task(s) to be assigned.

3. The Distributed Organization Knowledge Component receives and processes the com-

mitted transaction. When new tasks are created, the component passes the task(s)

ready to be allocated, the agents in the organization, and their capabilities to the

Distributed Task Allocation Component.

4. The Distributed Task Allocation Component identifies the most suitable agent(s) for

the unassigned task(s). If the most suitable agent is itself, it passes the assignment

to the agent’s execution component and goes to a waiting state. If there is not a new

assignment for the agent, it also goes to the waiting state for a new set of task to

allocate after a transaction is committed.

44

5. The agent’s task execution component schedules the execution of the task(s) according

with the application specific scheduler. At this point, any assignment set and coalition

set updates are executed.

6. The agent generates an event according with the task execution, like TASK ACHIEVED,

TASK TRIGGER, etc., passing the event(s) to the Transaction Generator module of

the Distributed Transaction Component.

7. The Distributed Transaction Component starts the protocol to commit the new trans-

action and once consensus is achieved, it commits the transaction to the Distributed

Organization Knowledge.

8. Execution continuous at step three until the mission is achieved.

4.2 Distributed Transaction Component

There are several distributed solutions for the task allocation problem that exploit the

benefits of a market economy approach [15, 42]. In these solutions, task allocation ooccurs

by having the agents calculate their own cost and bid for tasks against other interested

agents. The task is allocated to the winner agent by the bid coordinator. There are other

approaches that apply game theory to the task allocation problem [3, 12]. Chapman et.al.

[12] use a distributed stochastic algorithm to solve an approximation of Markov games to

define the utility function of each agent. The agents use this utility function to calculate

the cost of executing a task, but the allocation of the tasks still involves a bidding process.

In DTAACS-OK, the information sharing that happens in a cooperative or collaborative

multi-agent systems is exploited. In most cooperative multi-agent system, agents reason

about other agents’ task execution and internal state, while pursuing a common task. To

achieve a near optimal solution, it is essential to share information about the status of

tasks and agents, such as task achievement, task failure, task creation, and agent status

(specifically the agent capability status). In [40], to keep the system consistent, the robots

45

broadcast messages to notify other robots about the tasks achieved, new tasks discovered,

task execution status, task achievement, task cancelation, and task invalidation (which is

generated when more agents are required to execute a task).

DTAACS-OK takes advantage of this information sharing and provides synchronized

organization knowledge to all agents in the organization to enable them to make identi-

cal decisions using the same task allocation algorithms. Therefore, an important piece of

DTAACS-OK is the Distributed Transaction Component.

4.2.1 Distributed Transaction Component

The Distributed Transaction Component (DTC) provides the mechanisms to coordinate the

transaction generated while executing the mission. While coordinating the transaction, the

DTC aims to guarantee the one-copy serializability property (see Section SecDistDatabas-

eSys) of the Distributed Organization Knowledge . The DTC interacts with the system

communication layer and other three components: The Distributed Organization Knowledge

Component, the Agent Task Execution Component and the Agent’s Local Information Com-

ponent. The Distributed Transaction Component includes two modules, the Transaction

Generator and Transaction Manager as shown in Figure 4.2. The DTC requires the agent

to generate events to inform the Transaction Generator Module about task execution and

agent statuses. The Transaction Generator Module receives these events and proceeds to

generate a new transaction, which is passed to the Transaction Manager. When the Trans-

action Manager receives a transaction, it establishes communication with the agents in the

organization following a distributed transaction commitment protocol to ensure the one-

copy serializability property of the Distributed Organization Knowledge. In this research,

a simplified version of the Two Phase Commit protocol (2PC) is used. The 2PC protocol

is one of the mechanism that helps provides the one-copy serializability property to the or-

ganization knowledge. The following section presents more detailed information about the

two modules that make up the Distributed Transaction Component.

46

Distributed Organization Knowledge

Transaction

Manager

Transaction

Generator

New

Transaction

Protocol

Messages

Task/Agent

Related Events

Commited

Transaction

Agent’s

current

Information

Distributed Transaction Component

Figure 4.2: Distributed Transaction Component Diagram

4.2.2 Transaction Generator

The Transaction Generator is part of the DTC and acts as an interface between the Agent

Task Execution Component and the DTC. It also interacts with the Local Agent’s Infor-

mation Component and the Transaction Manager, which is also part of the DTC. Figure

4.3 depicts the states for the Transaction Generator. After initialization, it waits for input

events, (See Table 4.1) from the Agent Task Execution Component ; when it receives one

of these events, it proceeds to gather the latest agent information from the Local Agent’s

Information Component, (e.g. location, capability status, etc.), to include in the transaction

it will create. Once the new transaction is ready, the Transaction Generator passes it to the

Transaction Manager and goes back to the waiting state, (See Figure 4.4 for an example of

a transaction).

47

Wait for Event

Fetch Updated Agent's Information

/ Initialize TG

/ Event from ATEC

Create Transaction

/ Information Updated
/ Pass Transaction to TM

/ Terminate TG

Figure 4.3: Transaction Generator State Diagram

Transaction

Event

DOK

Snapshot
Task Set

Selection

Module

Organization

Information

Module

Distributed Organization Knowledge

Communication Channel

Distributed Task Allocation

Component

Committed

Transaction

Parameters

TASK ACHIEVED TASK_ID AGENT’S_CURRENT_INFO

Figure 4.4: Transaction Example

4.2.3 Transaction Manager

As mentioned in Section 4.2, all agents in the organization need to make identical decisions

when assigning tasks to agents. Therefore, the agents need to run the same task allocation

algorithm with identical input each time task allocation is required. That is, the organi-

zation knowledge, in every agent in the organization, needs to be identical at each task

allocation decision point. Therefore, the organization knowledge is replicated in all agents

in the organization. Replicated organization knowledge means that there are several phys-

ical copies of the same logical data in different places [2]. In our case, we maintain copies

of the organization knowledge in all agents in the organization. Some of the conditions

and requirements in replicated knowledge systems, including DTAACS-OK, are presented

in Sections 4.2.3.1 and 4.2.3.2.

48

No Event Type Description
1 TASK ACHIEVED After the agent executes and completes with

a successful status a task, it notifies the Task
Generator for a new transaction to be created

2 TASK FAILED An agent that cannot complete the execution
of a task for any reason, notifies the Task
Generator for a new transaction to be created

3 TASK TRIGGERED An agent, while executing a task, fulfills the
preconditions of a trigger relationship be-
tween two task, sends this event to the Task
Generator

4 TASK NEGATIVE TRIGGERED Similar to a TASK TRIGGERED transac-
tion. An agent, while executing a task, ful-
fills the preconditions of a negative-trigger re-
lationship between two task, sends this mes-
sage to the Transaction Generator

5 AGENT FAILURE The agent that detects its own or other
agent’s failure, notifies the Task Generator

Table 4.1: Required Events From Agent Task Execution Component

Before starting to describe the Transaction Manager, a definition is presented:

Definition 4.1. Decision Point.

A Decision Point is a state Sdp in the system that occurs while pursuing the mission and

an allocation or re-allocation of a task decision is made.

There are several events that lead to a decision point, basically there is a decision point

for each event described in Table 4.2 that the agent generates.

Claim 4.1. Enough Decision Points.

The decision points listed in Table 4.2 are sufficient to ensure progress and termination in

pursuing the mission.

This claim’s proof to be included in final version of dissertation.

49

4.2.3.1 Distributed Knowledge Systems

Distributed knowledge systems, and specifically systems using information replication, aim

to achieve a level of robustness so data is always accessible, even in the presence of problems

like network partitions and repository failures. Data replication can also provide faster

access to the information since the data resides closer to the client. Two basic operations

can be applied to the replicated knowledge, a write-operation to update the physical copy

of the logical data, and a read-operation to retrieve the latest updated copy of the physical

data. The challenge in any series of read and write operations to replicated knowledge is

that, the replicated knowledge behavior as observed from the outside, should be the same

as if the read/write operations were performed in a non-replicated knowledge system. This

is a property known as one-copy serializability [55], and is the main goal of any replica data

management protocol. Usually, a replica data management protocol is decomposed into two

parts, the Transaction Atomicity Protocol, and the Replica Control Protocol. The former

ensures the serializability of the update operation in the database, but it is not sufficient to

provide one-copy serializability, which is why a Replica Control Protocol is required. In the

following section a discussion of some of the proposed protocols in the literature for both

parts, and the ones used in DTAACS-OK Transaction Manager are presented.

4.2.3.2 Replica Control

The Replica Control Protocol defines how the logical data is replicated, what replicas are

updated when a write operation is executed, and what repository to access when a read

operation is executed. There are several solutions to this problem that can be categorized

based on the way data is replicated, how data is updated, and on the way the system

recovers from failure [10]. Two of DTAACS-OK objectives while allocating tasks are to

(1) minimize re-work or waste of effort, and (2) avoid task starvation. Both of these goals

require our approach to maintain as many replicas as agents in the organization, and for the

replicas to be synchronized when an new assignment is needed. According to the taxonomy

50

presented in [10], the Replica Control Protocol required for DTAACS-OK is Identical copies,

Synchronous-all/Synchronous-available. As defined by Ceri et al. [10] these terms are

defined as follow:

• Identical copies means that all the copies of the replicated data have the same rights,

properties, and are treated the same way.

• Synchronous-all means that all the copies of the replicated data are updated syn-

chronously (atomicity can be guaranteed by using the two-phase commit protocol).

• Synchronous-available is an invariant that the replicated data possesses, which in

this case means that all available replicas are up-to-date. By assuming no network

partition, there is only one possible subset of available copies at a time.

The organization in DTAACS-OK is a flat organization and all replicas represent a truly

distributed replicated knowledge. Depending on the application domain and the user re-

quirements, the Replica Control Protocol can be more flexible and allow some inconsistency

in the knowledge state in case of a network partition. This flexibility provides better system

performance at the cost of extra computation to synchronize and restore the organization

knowledge to a synchronized state. At the time of writing this research proposal, only total

replication is implemented. The experiments presented in this research proposal do not

support network partition or agent failure; these features will be specified, implemented,

and tested in the future.

4.2.3.3 Transaction Atomicity

Transaction Atomicity is provided by the Transaction Manager by running an atomic com-

mitment protocol. There are several protocols, such as Two Phase Commit (2PC) protocol,

Three Phase Commit (3PC) protocol, Dynamic Two Phase Commitment (D2PC) protocol,

and Emulated 2PC (E2PC) protocol, that provide atomicity in the transactions and de-

pending on the robustness, speed, and other system characteristic, one can pick the most

51

appropriate. These protocols define a coordinator and participants for each transaction. It

is also possible to design and implement systems where more than one transaction is handled

by having more than one coordinator running in parallel. In this research, an implemen-

tation of a simplified version of the 2PC protocol is used (Algorithm 1) - no transaction

logging is kept-. This 2PC simplified version allows to provide the required atomicity, the

limitation introduced is the ability to rollback transactions in case of network partitions.

Algorithm 1 DTAACS-OK 2PC Coordinator
input : Message m
output: Transaction status: succeeded/failed

1: Coordinator
2: State Q:
3: broadcast(VotingRequest)
4: GoTo W
5: State W:
6: if timeout then
7: resendMsgTo(AllPendingCohorts)
8: end if
9: if allACK then

10: broadcast(CommitTransaction)
11: GoTo COMMIT
12: end if
13: State COMMIT:
14: WaitForACK()
15: if timeout then
16: resendMsgTo(AllPendingCohorts)
17: end if
18: if AllACK then
19: commitTransaction(m)
20: GoTo DONE
21: end if
22: State DONE:
23: return status

DTAACS-OK 2PC Messgae Complexity Analysis

Message Complexity:

When no communication problems is 2 + 2(n− 1) which is O(n)

When communication fails with a probability p, see Formula 4.2, which is also in O(n)

52

Algorithm 2 DTAACS-OK 2PC Cohort
input : Message m
output: Transaction status: succeeded/failed

1: Cohort
2: State Q:
3: send(vote)
4: GoTo W
5: State W:
6: waitForCommitMsg
7: GoTo COMMIT
8: State COMMIT:
9: Commit(m)

10: send(ACK)
11: GoTo DONE
12: State DONE:
13: return status

Reasoning: The 2PC algorithm is analyzed for the cases when there is no communication

problems, and when the communication may fail depending in a certain probability. When

the communication conditions are ideal, the Coordinator broadcast a message (line 3) to

n-1 cohorts (n is the number of agents in the system), the coordinator then receives n− 1

ACK messages (line 6), broadcast the message to inform the cohorts to commit (line 10),

and receives n− 1 ACK messages. Therefore, there are 2 + 2(n− 1) messages. In the case

the communication may fail with a certain probability, the Coordinator will re-broadcast

the messages, and the cohorts will re-send the voting and Ack messages (n− 1).

Let m be the total messages sent when there is no adversity, then

m = 2 + 2(n− 1) (4.1)

In case the comunication will fail with a probability p, the total of messages will be given

by: m+ pm+ p2m+ ...+ ptm while ptm ≥ 1. Therefore, the total messages sent M will be

given by:

53

M =

log(m)/log(p)∑
t=0

ptm (4.2)

Equation 4.2 is a function on m, which is 2 + 2(n − 1), which still is a function on the

number of agents in the system, therefore is also in O(n).

In the current DTAACS-OK implementation, for simplicity, only one transaction is ne-

gotiated to be committed at at a time, that is, there is only one transaction coordinator

at any time and the rest are participants. This implementation required a mechanism to

ensure only one transaction a the time, which can be provided by a Election Protocol. In the

current state of DTAACS-OK implementation, a simple election protocol is used, similar to

the 2PC.

4.3 Distributed Organization Knowledge Component

The Distributed Organization Knowledge Component (DOK) contains the organization in-

formation that DTAACS-OK specifies as needed to make the task-agent matching. This

component interacts with the Distributed Transaction Manager and the Distributed Task

Allocation Component. The Distributed Organization Knowledge includes two modules, the

Task Set Selection Module and the Organization Information Module as depicted in Figure

4.5. When the Organization Knowledge Component receives a committed transaction from

the Distributed Transaction Manager, it proceeds to update the information and generate

a snapshot of the organization knowledge. This snapshot is the input to the task-agent

matching algorithms that the agents execute.

4.3.1 Task Set Selection Module

The main data structure in the Task Set Selection Module is the Task Tree that represents

the mission. The Task Tree is a directed rooted acyclic graph that integrates all the task

54

No Transaction Type Description
1 TASK ACHIEVED After the agent executes and completes with

a successful status a task, it notifies the rest
of the agents in the organization, and sends
any updated agent s information

2 TASK FAILED An agent that cannot complete the execution
of a task for any reason, notifies the rest of
the agents in the organization by sending a
failure message along with the updated task
and agent information

3 TASK DEASSIGMENT An agent, while executing a task, can get an
assignment with a task with higher priority
or that yields higher benefit to the organiza-
tion; it releases the current task being exe-
cuted to be re-allocated

4 TASK TRIGGERED An agent, while executing a task, fulfills the
preconditions of a trigger relationship be-
tween two task, sends this message to the
team for the update of their organization
knowledge

5 TASK NEGATIVE TRIGGERED Similar to a TASK TRIGGERED transac-
tion. An agent, while executing a task, ful-
fills the preconditions of a negative-trigger re-
lationship between two task, sends this mes-
sage to the team for the update of their or-
ganization knowledge

6 AGENT FAILURE The agent that detects its own or other
agent’s failure, notifies the rest of the agents
for them to update its Organization Knowl-
edge

Table 4.2: DTAACS-OK Transaction Types

(ST and CT) in the mission and their relationships. The other entities are sets that store

information about the tasks status. We define the following sets:

1. Active Task Set. The set of tasks for which all preconditions are satisfied. This is the

set of tasks the task allocation algorithms may assign to agents.

2. Achieved Task Set. The set of of all tasks that have been successfully achieved.

55

Distributed Transaction

Component

Communication Channel

Distributed Organization

Knowledge

Distributed Task

Allocation

Component

Agent Task

Execution

Component

Transaction

Message

Committed

Transaction
Assignment

Set

Event

Set

DOK

Snapshot

Effectors

Perceptors

Task Set

Selection

Module

Organization

Information

Module

Distributed Organization Knowledge

Local Agent’s

Information

Agent’s

Information

Distributed Transaction

Component

Distributed Task Allocation

Component

Committed

Transaction

Figure 4.5: Distributed Organization Knowledge Component

3. Removed Task Set. The set of tasks that have been removed from the mission and are

not required to be assigned.

4. Failed Task Set. The set of tasks that agents could not achieve and will not be assigned

again.

When the DOK receives a committed transaction, it processes the event in the transac-

tion and updates the above sets accordingly. For instance, if the event indicates that task

t3 has been achieved, t3 is placed in the Achieved Task Set, and if t3 triggers other tasks

or has a precedence relationship with other tasks, the appropriated tasks are placed in the

Active Task Set.

4.3.2 Organization Information Module

The Organization Information Module consists of two sets that represent the organization

information required to make the task-agent matching decision. The sets representing the

organization are the Agent Set and Capability Set. The Agent Set stores information about

all the agents in the organization and consist of the agent’s unique identifier, agent status,

agent capabilities, and agent capability status, as depicted in Table 4.3. The Capability Set

56

stores information about all the capabilities the agents contribute to the organization, which

consists of the capability unique identifier, capability name, and the agents that posses this

capability.

No Attribute Description
1 agentID Unique identifier in the organization that

refers to a single agent
2 agentStatus Status identifier that represents the current

state of the agent. (See Table 4.4 for status
information)

3 agentCapabilities The set of capabilities the agent
possesses and consist of a tuple
< capabilityID, capabilityStatus >

Table 4.3: Attributes representing an Agent in the Organization

Status Description
ACTIVE Indicates that the agent can be considered

for task allocation
FAILED No longer capable of executing a task

Table 4.4: Agent Status

No Field Description
1 capabilityID Unique identifier in the organization that

refers to a single capability
2 capabilityName A descriptive name
3 capabilityAgents The set of agents that possess this capability

Table 4.5: Capabilities in the Organization

4.4 Distributed Task Allocation Component

The main goal of the Distributed Task Allocation Component (DTAC) is to generate a new

assignment set using the latest organization knowledge. DTAC interacts with the Organi-

zation Knowledge Component and the Agent’s Task Execution Component as depicted in

57

Figure 4.6. The information that is passed from the Distributed Organization Knowledge

Component to the Task Allocation Component contains the latest snapshot of the organi-

zation knowledge that is used to update the utility criteria entities and generate the new

assignment set.

Distributed Organization

Knowledge

Agent Task

Execution

Component

Assignment

Set

DOK

Snapshot

Allocation

Algorithms

Distributed Task Allocation Component

Utility Function

Assignment

Policies

Utility Criteria

Entities

Figure 4.6: Distributed Task Allocation Component

This component integrates four main modules: 1) Allocation Algorithm, 2) Utility Func-

tion, 3) Utility Criteria Entity, and 4) Allocation Policies. The Utility Function is application

dependent, and the assignment policies can be defined based on the optimization objectives.

4.4.1 Allocation Algorithms

4.4.1.1 WorkInMission Algorithm

This section defines the WorkInMission algorithm as specified in Algorithm 1. The Work-

InMission algorithm is the main algorithm in the framework and monitors the execution of

the system in order to achieve the mission. This algorithm loops while there are tasks to

be assigned and the mission is still feasible. When the mission starts, each robot has the

same knowledge. The algorithm starts by setting the status of the mission as failed and

58

the exit loop variable done as false (lines 1 and 2). The algorithm loops while there are

tasks to be assigned and the mission is not completed (line 5). In line 6, a new assignment

set is obtained by calling the AllocateTask algorithm passing three parameters: (a) the

current task ready set, (b) the current organization agents, and (c) the agent’s capabilities

information. After generating a new assignment set, the algorithm determines if there is a

new assignment for the agent by searching the new generated assignment set (line 7). The

following scenarios are possible:

1. If there is assignments for the agent (line 8), then the tasks are sent to the Task

Execution Component (line 9).

2. There is no new assignment for the agent. The algorithm then checks if the mission

is achieved (line 13).

The task execution generates events (See Table 4.1) that are processed by sending them to

the DTC (line 10), and the event set is set to empty (line 11). After the mission is completed

(line 13), the status (success or failed) on how the mission was terminated is retrieved (line

15) and returns this information (line 16) to the caller algorithm.

Algorithm WorkInMission Complexity Analysis

Time Complexity: O(n4)

Reasoning: The algorithm begins by initializing the status of the mission and a flag to

determine if the mission is achieved (line 1 and 2), both run in O(1). Similarly, setting the

task set to empty (line 3) runs in O(1). The while loop in line 4 iterates while the mission

is not completed, which is dependent on the number of tasks that are active. Therefore, the

loop runs in O(n). Setting the active task set (line 5) runs in O(1), however generating the

assignment set (line 6) runs in O(n3) (See Algorithm 4. Getting the task set for a particular

agent (line 7) runs in O(n), and processing the outcome events (line 10) runs in O(n) as

well. Therefore, the WorkInMission algorithm runs in O(n4).

59

Algorithm 3 WorkInMission for agent ai
input : Organization Knowledge OK
output: Mission status: succeeded/failed

1: status← failed
2: done← false
3: myTasks← empty
4: while not done do
5: TA ← OK.activeTasksSet()
6: assignmentSet← AllocateTask(TA, OK.agentSet(), OK.capabilitySet())
7: myTasks← assignmentSet.myTasks(agentID)
8: if myTasks not empty then
9: events← workInTask(myTasks)

10: processEvents(events)
11: events← empty
12: end if
13: done← ok.missionAcomplished()
14: end while
15: status← ok.getStatus();
16: return status

4.4.1.2 AllocateTasks Algorithm

The AllocateTasks algorithm (Algorithm 4) generates the assignment set for the tasks that

are ready to be assigned and using the agents in the organization. First, the AllocateTasks

algorithm initializes the assignment set to empty, the number of agents required for a task

to one, and the current coalition to empty set (lines 1-3). After initialization, the algorithm

tries to find an agent for each task in TA and generates the assignment set (line 4). After

getting the first task (line 5), the required capabilities and the number of agents for that

task are obtained (line 6 and 7). If more than one agent is required by the task, the

GetBestCoalition algorithm is called (line 9) (the GetBestCoalition is discussed in Chapter

5). If one agent is required, then the algorithm applies any allocation policies (line 11) to the

set of agents. After filtering the agents, then the GetBestAgent algorithm is called (line 12)

to determine the most suitable agent based on the list of required capabilities. It is assumed

that for each task, there is at least one agent capable of executing it. In line 14, the new

assignment is added to the assignment set. Once all tasks are assigned, the assignment set

60

is returned (line 16).

Algorithm 4 AllocateTasks in TA
input : Active task set TA, agent set A, and capabilities set R
output: The allocation set Φ such that for each task ti ∈ TA the pair (ti, cj) is added to Φ
and cj is most suitable coalition for ti
cj contains at least one agent

1: Φ← ∅
2: reqNumAgents← 1
3: bestCoalition← nil
4: while TA 6= ∅ do
5: t← TA.removeF irst()
6: capList← t.getReqCapabilities()
7: reqNumAgents← t.getReqNumAgents()
8: if reqNumAgents > 1 then
9: bestCoalition← getBestCoalition(A, ti) {See Chapter 5}

10: else
11: A← applyAllocationPolicies(A)
12: bestCoalition← getBestAgent(A, capList)
13: end if
14: Φ.add(t, bestCoalition)
15: end while
16: return Φ

Algorithm AllocateTasks Complexity Analysis

Time Complexity: O(n3)

Reasoning: The algorithm begins by initializing the allocation set to nil, the required

number of agents to one, and the best coalition to nil (line 1, 2 and 3) which each run in

O(1). The while loop iterates over the task set (line 4), it removes the first task saving it

to a temporary variable (line 5) which runs in O(1). Setting the required capabilities of the

task list and the required number of agents (line 6 and 7) also runs in O(1). Determining

the best coalition to use (line 9) runs in O(n). Applying the allocation policies to the set

of agents and then determining the best agent to use for a given capability set (line 11 and

12) both run in O(n2). Adding the assignment (task, coalition) to the assignment set runs

in O(1). Therefore, the AllocateTasks algorithm runs in O(n3).

61

4.4.1.3 GetBestAgent Algorithm

The GetBestAgent algorithm (Algorithm 5) determines the agent most suitable for a given

task. The GetBestAgent algorithm has two parts. First, it determines who has the capabil-

ities in capList and second, after finding these candidate agents, it determines who gets the

assignment by choosing the agent with the best score based on the list of capabilities. The

algorithm starts by initializing the best agent as nil (line 1) and the set of candidate agents

to the set received as parameter (line 2). The algorithm then enters a loop (line 3) to check

each capability in the list (line 4) against the agents from the candidate agents set that

posses the capability, which is done in an embedded loop (line 7). In the embedded loop,

the first agent is extracted (line 8), and if the agent does not posses the capability (line 9),

it is removed from the list of candidate agents (line 10). After the first loop terminates, the

set of candidate agents stores the agents that posses all the list of capabilities. The second

part starts by initializing the score to minus one (line 15). The algorithm then enters a loop

(line 16) to calculate the score of each candidate agent based on the list of capabilities (lines

17 and 18). The previous calculated score and the current score are compared to keep the

highest one and to store the associated agent (Lines 19, 20 and 21). If the previous score

and the current score are the same, the algorithm breaks the tie using the agents’ id (lines

22 to 25). Once the loop checks all the agents, the agent identified with the highest score is

returned.

Algorithm GetBestAgent Complexity Analysis

Time Complexity: O(n2)

Reasoning: The algorithm begins by initializing the agent to be returned to nil and sets

the agents provided to a temporary set (line 1 and 2); both of which run in O(1). The while

loop in line 3 is the main loop in the algorithm and it has two inner while loops. In line 4,

the first capability of the set of capabilities provided is removed (line 4), and the number of

agents is stored in a variable (line 5), these two lines run in O(1). The first inner loop (line

7) gets the first agent from the list (line 8) and checks if the agent possesses a capability.

62

Algorithm 5 GetBestAgent from set of agents A for capabilities capList
input : Agent set A, list of capabilities capList
output: aid such that aid possess the capabilities in capList with higher scores

1: bestAgent← nil
2: Ac← A
3: while not capList.empty() do
4: r ← capList.removeF irst()
5: numCandidates← Ac.count()
6: i← 0
7: while i < numCandidates do
8: a← Ac.getF irst()
9: if not a.possesses(r) then

10: Ac.remove(a)
11: end if
12: i← i+ 1
13: end while
14: end while
15: score← −1
16: while not Ac.empty() do
17: a2← Ac.first()
18: score2← id2.getScore(capList)
19: if score < score2 then
20: bestAgent← a2
21: score← score2
22: else
23: if score = score2 and bestAgent.id() > a2.id() then
24: bestAgent← a2
25: end if
26: end if
27: end while
28: return bestAgent

The agent is removed from the set if it possesses the capability (line 9 and 10), this runs

in O(1). The code (lines 8 to 12) is part of the while loop in line 7 that iterates over the

set of candidate agents, therefore it runs in O(n). The while loop in line 16 also iterates

over the candidate agents in O(n). In this loop the score for the required capabilities is

calculated and the if-else statements determines the highest (line 17 - 26) which all runs in

O(1), making this loop run in O(n). Therefore, the main loop (line 3) runs in O(n2), thus

63

the algorithm runs in O(n2).

4.4.2 Utility Function and Assignment Policies

In DTAACS-OK, the allocation algorithm in the Distributed Task Allocation Component

requires other information besides the Organization Knowledge when it generates the as-

signment set. This extra information is determined by the Utility Function used to fulfill

the optimization objectives. For example, if the goal is to keep a balanced work load among

agents, it would include information about the number of tasks assigned to each agent. This

extra information is application dependant. A generic definition is borrowed from [28] where

the utility function definition consists of an arithmetic function involving two parameters:

expected quality of task execution, and expected resource cost. The expected quality can

be derived from the information about the agent’s capabilities stored in the organization

knowledge that the Distributed Task Allocation Component receives from the Distributed

Organization Knowledge. For the expected resource cost, two sets are defined in DTAACS-

OK: the Assignment Set, and Coalition Set. These two sets are not the only ones than

can be considered and a generalization of these entities is presented here as Utility Criteria

Entities

4.4.3 Utility Criteria Entities

Definition 4.2. Criteria Entity is data that needs to be stored to help evaluate a condition

or criterion that helps to determine a possible agent-task matching in order to fulfill the

optimization objectives.

The criteria entities depend on the optimization objectives like balance load among

agents, minimize distance traveled by robot agents, minimize communication cost, etc.,

which are directly related to the application domain and the user’s requirements. DTAACS-

OK addresses the single-task type of applications, therefore the allocation algorithm requires

the information about the current assignments and coalitions formed. We define these two

64

entities as follow:

Definition 4.3. The Assignment Set is a pair < agent, task > composed by the agent and

the task assigned to it.

Definition 4.4. The Coalition Set stores the information about the active coalitions in

the organization and the agents and task related to the coalition.

Assignment Policies. Assignment policies can be complex and a research topic by

itself. In this research assignment policies are simple criteria like (a) agents can be assigned

only one task at the time, (b) the closest agent to the destination point gets the assignment,

(c) the agent with more successes on executing a particular task type has priority in getting

the next task of the same kind, etc.

4.5 Agent’s Local Information Component

The Agent’s Local Information Component stores the current agent’s information. The

Agent’s Local Information Component interacts with the Distributed Transaction Compo-

nent. In the case of robot agents, the agent’s information is updated by the different sensors

the robot possesses. The robot’s local information may include physical characteristics of

the robot, and its geographical location. Table 4.6 list some agent’s information examples.

4.6 Summary

In this chapter, an integrated framework to solve the task allocation problem in cooperative

multi-gent systems was presented. The solution is novel in that exploits the information

sharing that happens in a cooperative system, specially when near optimal solutions are re-

quired. The framework is called DTAACS-OK for Distributed Task Allocation in Adaptive

Computational Systems based on Organization Knowledge. The three main components

are Distributed Transaction Component, Distributed Organization Knowledge, and Dis-

tributed Task Allocation Component. It also includes the Agent’s Current Information

65

Name Description
Task Load When an optimization goals includes work load balance,

keeping information of how many tasks the agents is
assigned to is requiered

Battery Life This parameter can be considered when assigning a
robot a task that requiters traveling

Camera Type In heterogeneous systems, robots may posses cameras
with different resolutions and zoom ranges

GPS The precision of the type of GPS possess by a robot can
determine who provide the location service (task) in a
multi-robot system

Location The physical location of a robot can determine who to
assign a task when minimizing the traveling cost is de-
sirable

Table 4.6: Agent’s Information Examples

Module that provides the algorithms the agent’s information to consider when finding the

most suitable agent for the task to be allocated. The distributed allocation of task is com-

puted in each agent by running the same allocation algorithms that require the same input,

that is, it required that the organization knowledge that receive as input, it must be in

the same state. Therefore, an important task in the framework is to keep the distributed

knowledge consistent and provide a mechanism to ensure one-copy serialiabilty property.

The Distributed Transaction Component is a key part of DTAACS-OK since it executes an

atomic commit protocol under a Replica Control Protocol to provide one-copy serialiabilty

property to the Distributed Organization Knowledge. It consist of a Transaction Generator

that fetches the latest agent information when an event like TASK ACHIEVED occurs and

creates a new transaction that is passed to the Transaction Manager.

66

Chapter 5

Coalitions in DTAACS-OK

Coalition formation in Multi-Agent Systems, particularly in OMAS, is a problem that should

not be overlooked. The primary reasons to address coalition formation in MAS include: (1)

a single agent may be unable to carry out a task independently, (2) the efficiency to execute

a task can be improved by assigning the task to multiple agents, and (3) robustness can

result from assigning a task to agents with similar resources. In DTAACS-OK, I tackle a

coalition formation problem that considers a grouping of multiple tasks (complex tasks) as a

single observable entity, which is required by the user in certain applications. For example,

in a reconnaissance application in which a human agent participates remotely as part of

the robot team, the human agent may require the tasks “AreaOne-Reconnaissance” and

“AreaOne-Guard” to be grouped as a single observable task. In general, a user may require

feedback from a group of tasks as a single entity, and not from each individual task in the

group.

In the following sections, reasons why coalition formation is addressed in this research

and a description of a scenario to illustrate the coalition formation problem are presenterd. A

taxonomy of the tasks types addressed in this research, the formal definition of the coalition

formation problem, and the algorithms to form the coalitions are also presented.

67

5.1 Motivation and Problem Illustration

The benefits of assigning a task to a coalition of agents are indicated in several papers, such

as those presented by Tang and Parker in [49] and Shehory and Kraus in [45]. Solutions

discussed in these publications address most challenges found in a multi-agent system in

which a task to be achieved requires more than one agent. Shehory and Kraus present [46]

an algorithm that can generate coalitions in which agents may belong to one or multiple

coalitions at the same time, but the cost of communication to form, keep, and terminate

the coalitions is high. Also, the assumption that agent resources can be shared among

coalition members is not applicable to some OMAS, such as systems in which the agents are

robots. Vig and Adams offer [52] an improvement to Shehory and Kraus’ algorithm that

eliminates this assumption, but the communication cost remains high and the calculation

of the number of agents in a coalition, a key input to the algorithms, is not clearly defined.

To the best of my knowledge, none of the solutions proposed in the literature address the

need to monitor the status of a group of tasks.

Three issues that motivate further research of coalition formation in OMAS are identified:

(1) high communication cost to form, maintain, and terminate a coalition, (2) lack of clarity

on how to determine the minimum number of agents in a coalition, which is a key algorithm

parameter, and (3) user requirements to get feedback specifically from complex tasks.

To illustrate the problem, a description of the Site Clearing Problem is given in Section

5.1.1. Various task categories that can be part of the input of the algorithms in this research

are introduced in Section 5.1.2. The categories are defined based on the location of required

resources specified by the task and whether the tasks are specified as a logical point of

observation.

5.1.1 The Site Clearing Problem

The Site Clearing Problem (SCP) is presented here to illustrate the need for forming coali-

tions in order to achieve a common goal. The problem of clearing a site in which different

68

objects have been seeded has been described by Tang and Parker in [49]. One reason for

borrowing the SCP is its similarity to the problem addressed in HuRT-IED, a research

project in the MACR Lab, and also, as mentioned by Tang and Parker in [49], this applica-

tion has been identified by NASA as an key prerequisite for human missions to Mars. The

HuRT-IED scenario is described in detail in Chapter 6 in this dissertation.

Site Clearing Problem Description (SCP). This problem addresses a scenario in

which there is a predefined area A, and objects of different sizes and weights are dispersed

in unknown locations within the area. The goal in this problem is to find the objects and

remove them from the area A. For generalization purposes, the optimization objective is not

specified, but it can be the minimization of (1) the execution time, (2) the distance traveled

by the robots, or (3) the communication among robots, or other optimization objectives.

The following constraints are set in order to make this problem more suitable to this research.

1. The area is divided into subareas for which the user requires updates on the status of

the clearing task.

2. The objects to be removed may require more than one robot. The objects are classified

as Obj-A, Obj-B, and Obj-C, as specified in Table 5.1.

3. The team is composed of heterogeneous robots (Table 5.2), but all robots possess a

scanner to detect objects.

4. The removal of objects that require more than one agent have precedence over tasks

that require only one robot as well as search area tasks. A task tree for the SCP is

depicted in Figure 5.1

Because the tasks specify what capabilities are required, agents that possess those capabili-

ties and the possible grouping of those agents must be identified. As suggested by Shehory

and Kraus in [45], in regards to communication and computational cost, it is better to find

the smaller coalition size possible. As mentioned, SCP is similar to the problem of localizing

69

and defusing Improvised Explosive Devises (IEDs) addressed in the military domain, where

minimizing the communication cost is important because it minimized exposure of sensitive

information, and possible localization of troops by the enemy.

In order to comply with constraint 1 in this example, feedback to the human agent is

required about the area A being totally clear, and not about an agent completing the task

of removing one object, or possible multiple objects located in a section of the area A.

From the task tree depicted in Figure 5.1, relevant task characteristics for this research

are identified, and discussed in Section 5.1.2 as a task taxonomy.

Table 5.1: Clearing Site Objects
Object Type Weight Volume

Obj-A 10 lb 0.5 cu ft

Obj-B 15 lb 0.75 cu ft

Obj-C 25 lb 1.25 cu ft

Table 5.2: Clearing Site Agents
Agent Push Capability Carry Capability Scanner

a01 10 lb -
√

a02 10 lb 0.5 cu ft
√

a03 15 lb 1.5 cu ft
√

5.1.2 Tasks Taxonomy

In this section, tasks are classified based on characteristics that are relevant to coalition

formation algorithms. Other task characteristics that were not considered include whether

a task has a specific begin and end states (discrete task), whether a task does not have a

finish state (continuous task), and whether a task has a start and end time (scheduling).

The taxonomy presented here is derived from the definitions of Tight Coordination-Simple

Task and Tight Coordination-Complex Task (Definitions 3.2 and 3.3, respectively), and

Definition 5.1, which defines an observable task.

70

Figure 5.1: Site Clearing Task Diagram

Definition 5.1. Observable Task

An observable tasks is a task that, regardless of its type, the user requires feedback on its

status.

The task taxonomy is presented in three groups (Table 5.4) determined by the criteria

in Table 5.3.

Table 5.3: Group Criteria
Criterion

Group 1 Tasks considered in previous published coalition formation algorithms

Group 2 Tasks not considered in previous coalition formation algorithms

Group 3 Tasks not relevant to the systems considered in this research (see Table 5.4)

The type of tasks in Groups 1 and 2 are addressed in this research. In addition to

considering the type of task in Group 2 in DTAACS-OK, significant differences exist between

the solution proposed in this research and those presented in market-based approaches.

These differences are derived from the fact that DTAACS-OK uses a distributed organization

knowledge when deciding about coalition formation. The differences are discussed in more

detail in Section 5.2.

71

Table 5.4: Task Taxonomy for Coalition Formation

Type of Task

Group 1 OLC-ST: Observable Lightly Coordinated Simple Task.
OTC-ST: Observable Tightly Coordinated Simple Task.

Group 2 OLC-CT: Observable Lightly Coordinated Complex Task.
OTC-CT: Observable Tightly Coordinated Complex Task.

Group 3 NOLC-ST: Not-Observable Lightly Coordinated Simple Task.
NOLC-CT: Not-Observable Lightly Coordinated Complex Task.
NOTC-ST: Not-Observable Tightly Coordinated Simple Task.
N-TC-CT: Not-Observable Tightly Coordinated Complex Task.

5.2 Coalitions in DTAACS-OK

In Chapter 3, a Tight Coordination-Simple Task (TC-ST) was defined as a task that can-

not be decomposed and requires resources that reside in more than one agent. Coalition

formation solutions proposed in the literature consider this type of task and, if a single

agent coalition is considered, include Light Coordination-Simple Task (LC-ST) tasks as

well. In this research Tight Coordination-Complex Task (TC-CT), described in Definition

3.3, are also included. The problem of forming coalitions stated in Section 5.3 is tackled in

DTAACS-OK by answering the following questions:

Question 1: When a coalition is needed?

Question 2: How is the size of a coalition computed?

Question 3: Which coalition to use?

Question 4: Who requests the coalition formation?

Question 5: Who terminates the coalition?

The candidate coalition formation algorithm in this research is inspired by algorithms

presented by Shehory and Kraus in [46] and improved on by Lovekesh and Adams in [52].

72

However, the way answers to the questions are generated is different because agents in

DTAACS-OK use identical distributed organization knowledge in order to make decisions.

When a coalition is needed? In DTAACS-OK a coalition formation is determined by:

(1) the capabilities required by the tasks or (2) a complex task specified as an observable

task. Information regarding the capabilities required by the tasks is considered in published

algorithms, and tasks specified as an observable task is added in DTAACS-OK in order to

address the user need to gain feedback from a specific task.

How is the size of a coalition computed? In the algorithms proposed in [52] and [45], the

suggestion is made that a minimum number of agents (k) should be used and that calculation

of the number k could be based on the requirement that all tasks must be executed by the

same number of agents. However, if such requirement is not specified in the problem, it is

suggested to use the minimum possible value for k. In algorithms presented in this research,

the requirement of the same number of agents for all tasks is not expected. Candidate

coalitions for a task are generated beginning with one agent and incrementing the number

of agents by one until a coalition that can execute the task is found.

Which coalition to use? In DTAACS-OK, this question is not answered when coalitions

are formed. The coalition that is allocated a task is determined by the allocation algorithm

(Chapter 4) and depends on scalar value calculated by the cost function and optimization

objective.

Who requests the coalition formation? and Who terminates the coalition? In DTAACS-

OK, no specific communication to request the formation or termination of a coalition is

needed. The agents in the organization learn about being part of a coalition by executing

the candidate coalition formation algorithms, usually after processing a TASK ACHIEVE,

TASK FAILED, TASK TRIGGERED, or TASK NEGATIVE TRIGGERED messages (Chap-

ter 4). The agents know they are not part of the coalition after achieving or failing the task

and they consequently send the appropriate message to the rest of the agents in the orga-

nization.

73

Before presenting algorithms to generate coalitions in DTAACS-OK, the problem for-

mulation in order to form the candidate coalitions is posed in Section 5.3.

5.3 Problem Statement

In this section, the problem to generate the candidate coalitions for each task is formulated.

Finding the best coalition from all possible coalitions for a task is a combinatorial problem

that is NP-Complete. As in [45], the goal is to obtain an algorithm that runs in polynomial

time by setting a maximum number of agents that can be in a coalition. The Candidate

Coalition Formation problem definition is as follows:

Given a set of Task (T) where each task ti ε T requires some capa-

bilities to be achieved (Cti), and having a set of Agents (A) where each

agent ai ε A possesses some capabilities (Cai), the problem is to generate,

for each task t , the set or sets of agents that can achieve t .

The candidate coalition is obtained by restricting the coalition definition presented in

Definition 3.5. The restriction is defined by the achieves function specified below. The

achieves function uses Definition 3.4 (required capability set) and Definition 5.2 (coalition

capability set).

Definition 5.2. Coalition Capability Set Cτ

Cτ is the set that includes all capabilities possessed by the agents in the coalition τ and is

given by: Cτ =
⋃
aετ Ca

Definition 5.3. Achieves Function

achieves(τ, t) =

{
false if Ct ⊃ Cτ
true if Ct ⊆ Cτ

where Ct is the required capability set for task t, and Cτ is the coalition capability set.

Definition 5.4. Candidate Coalition

A candidate coalition is defined as the tuple < τ, t >; where τ is the set of agents such that

achieve(τ, t) is true.

74

The algorithms presented in Section 5.4 solve the candidate coalition problem and gen-

erate as output the set of coalitions for each task that is ready for allocation.

5.4 Coalition Algorithms

Before introducing the algorithms specified in this proposal, the definition for task capability

matrix (TCM) and conforms function are presented. The task capability matrix definition

is borrowed from Vig and Adams [52] and presented here in a formal way. By creating the

TCM and verifying the capabilities each agent possesses against the matrix, the problem of

agents not being able to transfer capabilities, such as in multi-robot systems, is addressed.

Definition 5.5. Task Capability Matrix

The matrix Mt is a constraint representation for the capabilities required by task t . Each

entry in Mt represents a pair of capabilities required by t, and the constraint is:

M ij =

0 if ci and cj must reside in different agents
1 if ci and cj must reside in the same agent
−1 if ci and cj are not restricted by their location

The conforms function determines if an agent possesses a pair of capabilities required

by task t that satisfies the constraint in Mt.

Definition 5.6. Conforms Function

conforms(a,Mt) =

0 if a does not possess any capability pair that satisfies

some entry in Mt
1 if a does possess at least one capability pair that satisfies

some entry in Mt

5.4.1 A General Overview of Candidate Coalitions Generation

A brief description of the algorithms that generate the candidate coalitions is as follows.

1. Take the Agents A and Task T sets as input.

75

2. For each task t ε T, generate the matrix Mt that determines capabilities the task

requires in order to reside in the same agent.

3. Generate the set cAti of candidate agents for each task by filtering the agents A in

order to keep only the ones that conform to the TCM Mt.

4. Considereing t and cAti , generate the smallest coalition or coalitions for each task in

the set T.

5. Return the set of coalition sets.

In this research, multiple agent tasks have priority over single agent tasks and in the

case when an agent is assigned to a single agent task, the agent’s scheduler is responsible

for rescheduling the single agent task currently executed so that the agent begins execution

of the task allocated to the coalition it part of. Agents can belong to multiple candidate

coalitions, but can be actively part of just one coalition.

5.4.2 GetBestCoalition Algorithm

The GetBestCoalition algorithm (Algorithm 6) selects the most suitable coalition from the

set of candidate coalitions for the task ti. The algorithm first initializes the suitable coalition

to null (line 1), then calls algorithm MainCoalitionFormation (algorithm 7) to generate the

set of candidate coalitions (line 2). Once the candidate coalitions are generated, the algo-

rithm loops (line 3) and takes each candidate coalition (line 4) and calculates the suitability

value of each coalition (line 5). The value of the current best coalition and the next coalition

are compared (line 5) and if the candidate coalition is more suitable than the current best,

the best coalition is replaces by the candidate coalition (line 6). When all the candidate

coalitions are evaluated, the loop ends (line 8) and the most suitable coalition for the task

is returned (line 9).

GetBestCoalition Algorithm Complexity Analysis

Time Complexity: O(n2)

76

Algorithm 6 GetBestCoalition for A, ti
input : Organization Agents (A) and task ti
output: The coalition c for task ti
1: coalition← null
2: coalitions← MainCoalitionFormation(A, ti)
3: while coalitions is not ∅ do
4: coal← coalitions.removeF irst()
5: if value(coal) > value(coalition) then
6: coalition← coal
7: end if
8: end while
9: return coalition

Reasoning: The algorithm begins by initializing the coalition to the null set which runs

in O(1) , and the set of coalitions for a given task (line 1 and 2) runs in O(n2). Then, the

while loop iterates over the set of coalitions to determine which one is the best for the task

(line 3, 4, 5, 6 and 7) which runs in O(n) time. Thus, the algorithm GetBestCoalition runs

in O(n2).

5.4.3 MainCoalitionFormation Algorithm

The MainCoalitionFormation algorithm (Algorithm 7) generates candidate coalitions for the

task ready to be allocated. The algorithm generates the task capability matrix Mt (line 2)

in order to determine the resources task t requires to reside in the same agent. Agents in

A are filtered in order to retain only those that conform with matrix Mt (line 3). Line 4

and 5 set the initial minimum and maximum number of agents in a coalition. Next, the set

of candidate coalitions for task t is initialized (line 6). The while loop (line 7) controls the

search of a candidate coalition with the minimum number of agents possible (line8). The

loop iterates until a coalition is found or the maximum number of agents is reached. When

at least one coalition is found for a task, that coalition is added to the list of candidate

coalitions (line 11) in order to be returned (line 13). (The assumption is made in this

research that at least one coalition exists for each task.)

MainCoalitionFormation Algorithm Complexity Analysis

77

Algorithm 7 MainCoalitionFormation for ai
input : Organization Agents (A) and ready to assign task ti
output: Set of Coalitions for task ti
1: coalitions← ∅
2: taskAM ← createTaskAM(ti)
3: candidateAgents← filterCandidateAgents(A, ti, taskAM) -See Algorithm 6
4: numAgents← candidateAgents.numAgents()
5: k ← 1
6: newCoalitionsForTask ← ∅
7: while (newCoalitionsForTask is ∅) and (k ≤ numAgents) do
8: newCoalitionsForTask ← coalitionsForTask(ti, candidateAgents, k) -See Algorithm 6
9: k ← k + 1

10: end while
11: coalitions← coalitions

⋃
newCoalitionsForTask

12: return coalitions

Time Complexity: O(n2)

Reasoning: The algorithm initializes the coalition set to the empty set (line 1) which runs

in constant time, O(1). The task allocation matrix is generated (line 2) which runs in O(n2).

The candidate agents are filtered (line 3) which runs in O(nlgn). Assigning numAgents, k,

and newCoalitionsForTask to the number of candidate agents, 1 and the empty set, (line 4,

5 and 6) respectively, all run in O(1). Finding the coalitions for a given task (line 8) runs

in O(n), so looping until k > numAgents (line 7) runs in O(n2). Finally, creating the union

of two sets (line 11) runs in O(n). Therefore, the algorithm MainCoalitionFormation runs

in O(n2).

5.4.4 CoalitionsForTask Algorithm

The algorithm CoalitionsForTask (Algorithm 8) has as input the task t that requires a coali-

tion, the candidate agents that possess some of the capabilities required by task t, and the

number of agents in a coalition. This algorithm generates all candidate coalitions for task

t with up to k agents (line 1). Once possible coalitions are formed, the algorithm verifies

them (line 3 and 4) in order to select the ones which agents by contributing their capabil-

ities fulfill all capabilities required by task t (line 5) ; those coalitions are added (line 6)

78

to the set of candidate coalitions to be returned (line 9). Algorithm CoalitionsForTask

Algorithm 8 CoalitionsForTask t up to k agents
input : Task t, Candidate Agents (cAgents), max k
output: Set of coalitions for task t

1: possibleCoalitions← combinationsOf(candidateAgents, k)
2: cCoalitions← ∅
3: while possibleCoalitions not ∅ do
4: c← possibleCoalitions.getFirst()
5: if coalitionForTask(c, t) then
6: cCoalitions.add(c)
7: end if
8: end while
9: return cCoalitions

Complexity Analysis

Time Complexity: O(n)

Reasoning: The algorithm creates a set of possible coalitions (line 1) which runs in

O(nlogn). All other assignments (line 2 and 4) similarly run in O(1). Checking that all

capabilities contained within the agents of each coalition are sufficient for the task (line 5)

also run in O(1). Adding to the set of candidate coalitions run in O(1). Thus, looping

through the possible coalitions, removing the first element each run, runs in O(n); where n

is dependent on the number of possible coalitions. Thus, the CoalitionsForTask algorithm

runs in O(n).

5.4.5 FilterCandidateAgents Algorithm

The algorithm FilterCandidateAgents (Algorithm 9) determines the candidate agents for a

task based on capabilities required by the tasks; taking into consideration the restriction

that some capabilities must be in the same agent. As stated by Vig and Adams in [52],

the capabilities that a robot possesses cannot be easily transferred to another robot while

working on a mission. To address this problem, Vig and Adams proposed in [51] to form

a capability matrix that represents the constraints for a pair of capabilities to reside in the

same robot. Therefore, a matrix for each task is later represented as a Constraint Satisfaction

79

Problem (CSP) (line 1). The CSP can be solved using a backtracking, forward checking, or

maintaining arc consistency algorithm [6] (line 2). The CSP helps determine if an agent can

be part of a candidate coalition for task t. (line 3) Algorithm FilterCandidateAgents

Algorithm 9 FilterCandidateAgents(Set, Matrix, task)
input : candidateAgents, task t, and taskAM
output: candidateAgents filtered based on the taskAM

1: Formulate the taskAM as a CSP
2: Solve the CSP formulated to filter the candidateAgents
3: return candidateAgents

Complexity Analysis

Time Complexity: O(nlgn)

Reasoning: The algorithm creates a CSP out of the Task Allocation Matrix provided

(line 1) which runs in O(1). To solve the CSP in order to filter the candidate agents (line

2) runs in O(ndn) where n is the number of nodes and dn is their cost of computing. In

DTAACS-OK D is a binary set making |d| = 2, thus making the algorithm run in O(nlgn).

5.5 Summary

In this chapter, the Candidate Coalition Formation problem addressed in DTAACS-OK

was presented. In Section 5.1, the reason to form coalitions in an OMAS was highlighted

by describing the Clearing Site Problem. The type of task handled by coalition formation

algorithms in DTAACS-OK were grouped based on task characteristics of (1) where the

task required-resources reside in the robots, and (2) whether the user defined a task as an

observable point. The formulation of the problem was posed in Section 5.2, and three defini-

tions were introduced: (1) Coalition Capability Set (Definition 5.2), (2) Achieves Function

(Definition 5.3), and (3) Candidate Coalition (Definition 5.4). The pseudo code for the

algorithms, their description, proof of correctness, and complexity analysis were presented

in Section 5.4.

80

Chapter 6

DTAACS-OK Empirical Evaluations

In this chapter, preliminary results of evaluations of DTAACS-OK in a simulated application

are presented. As stated before, the framework proposed in this research aims to provide

a distributed, adaptive, an efficient solution to the task allocation problem in MAS. In

particular efficient in regards to communication.

6.1 DTAACS-OK for HuRT-IED

6.1.1 Motivation

A common situation in the military battle field is to explore and scan areas for detection and

removal of Improvised Explosive Devices (IEDs). This type of mission increases the security

and the safety of the convoy before it occupies the area. In this type of scenario, some of

the important factors to consider are communication, robustness and time to complete the

mission. Even though communication in this scenario may not be as limited as in other

domains like underwater mine recovery, it is highly desirable to reduce the communication

among the robots in order to reduce the information that may be exposed for interception.

Robustness in most domains is required, and this is no exception. If a malfunction or

robot loss occurs, the team needs to recover and adjust promptly. As in search and rescue

applications, completing the mission of scanning and defusing IEDs in the minimum time

is key to avoid possible exposure to the enemy.

81

The framework was tested in this scenario by integrating DTAACS-OK into the HuRT-

IED application. The HuRT-IED application was implemented as part of the Human Robot

Team (HuRT) research conducted at the Multi-Agent and Cooperative Reasoning Labora-

tory at Kansas State University [34]. The scenario is defined by an area to be explored, a

set of robots as field agents, a number of suspicious objects (SOs), and a human agent. The

field agents have the capabilities to scan, identify, and dispose of the IEDs. The SOs are

randomly placed in the area, and for some of them, the field agents require the help of the

human agent to determined if an SO is an IED or not.

6.1.2 Mission and Task specification

In this particular mission the area to be scanned is a cross road as shown in Figure 6.1. The

Task Tree for the mission is depicted in Figure 6.2. The main task is to clear the given area

from IEDs. We decomposed this main task into sub-tasks as follow:

Task- 0 Clear Area. This is the first task that exists when the system starts.

Task- 1: Load Scenario. This task is triggered by the Clear Area task. It loads the area to

be cleared and the expected number of robots. The number of SOs is unknown.

Task- 2: Search Area. This task is triggered by the Load Scenario task and it is divided

into the following subtasks:

Task-2.1: Divide Area. This task takes the initial area to be scanned and, depending

on the team’s configuration (number of agents, location of agents, etc), triggers

the Scan Area task passing a subarea to be scanned. This task helps test the

framework in regards to team collaboration.

Task-2.2: Scan Area. This task is one of the three main activities of the Clear Area

task. When pursuing this task, if a SO is found, the Identify Object task is

triggered with the SO location.

82

Task- 3: Identify Object. This task is triggered by the Scan Area task when an SO has

been found. To provide the flexibility for other agents to try to identify the SO as an

IED (rather than the one that found the object), the task is divided as follows:

Task-3.1: Robot Identification. This task is pursued first in the identification process.

If the agent trying to identify the SO cannot determine if it is an IED or not, it

triggers the Human Identification task, providing as much information as possible

(picture and sensor levels).

Task-3.2: Human Identification. This task is triggered by the agent executing the

Robot Identification task when it fails to determine if the SO is in fact an IED

or not. The Human Agent is prompted and makes a decision based on the

information provided by the field agent.

Task- 3: Defuse IED. This task is triggered by the Identify Object task when an SO has

been positively identified as an IED, either by the robot or the human agent.

The mission is achieved when the search area is scanned, all the SOs found have been

identified, and all IEDs have been defused.

6.1.3 General Scenario Description

The framework was evaluated against the following scenario. In this particular mission, the

area (A) to be scanned for IEDs was an intersection of two roads. Also, there were five

agents initially positioned at a predefined location at the entrance of one of the roads as

depicted in Figure 6.1. When the mission starts, and after the agents have registered with

each other, the area A is divided by the agent that possesses the DivideArea capability. That

agent divides the area into subareas of similar size based on the current number of agents in

the team. Once the subareas are defined, the tasks to scan the subareas are assigned to the

agents in a nondeterministic way since at the start all the agents are located basically in the

same position. Each agent starts scanning the assigned area following the greedy coverage

83

Figure 6.1: HuRT-IED Scenario

area algorithm that selects the closest unvisited location and generates a direct path to the

location, avoiding any obstacles it finds in its path. If there is more than one location with

the same distance, the agent randomly selects one. The SOs were randomly distributed all

over the roads. For each treatment, from one to thirty SOs were seeded in increments of one.

To achieve the tasks in the mission, the team of robots needed to be able to scan, identify,

and defuse the IEDs. The three types of agents used in this framework evaluation are shown

in Table 6.1. There were a total of five agents in each mission: Two Scanners agents (S-1

and S-2) were capable only of finding suspicious objects, and thus could only trigger Identify

Object tasks. One Identifier agent, (SI-1), was able only to detect, and possibly identify, but

not defuse IEDs; therefore, this agent could trigger Defuse IED and Identify Object tasks

and, depending on the object found, Human Identify tasks. The last two field agents were

Defusers (SID-1 and SID-2), which were capable of detecting, identifing and defusing IEDs.

84

<<Task>>

<<Task>>
<<Task>><<Task>>

<<Task>>

<<Task>> <<Task>> <<Task>><<Task>>

 Figure 6.2: HuRT-IED Tree Mission Representation

When agents collided, they saw each other as obstacle as well. Agents possessed a simple

obstacle avoidance algorithm. Agents could work on one task at the time and their internal

Name Scan Identify Defuse
Scanner (S)

√

Identifier (SI)
√ √

Defuser (SID)
√ √ √

Table 6.1: Agent Types

task scheduler handled the task priority defined next. Load Scenario and Divide Area tasks

were executed during the initialization phase with Load Scenario triggering Divide Area.

The other tasks with more than one instance during mission execution were as follows:

Defuse had the highest priority, Machine Identification was the second highest, and Scan

had the lowest priority. When a agent detected a new task with a higher priority then the

one currently executing, it saved the task progress information and swaped the task. The

released task was placed in a waiting queue. The waiting task priority was incremented by

one each time the agent postponed its execution because another task with higher priority

arrived. For the framework evaluation, the independent variables are listed in Table 6.2

while the dependent variables are listed in Table 6.3.

85

6.1.3.1 Scenario Evaluation based on the SOs types

As mentioned in Section 6.1.3, there are different types of SOs: (1) Garbage (G-1), which are

identified by robot agents, (2) Garbage (G-2), which are identified only by human agents,

(3) IED-1 identified by robot agents, and (4) IED-2 identifiable only by human agents.

Depending on these type of SOs, different types of task are generated in the mission, hence,

different number of messages are generated. Three examples are described below to illustrate

how the types of SOs affect the number of messages generated in a mission.

1. The case when the area A is clear of IEDs, that is, all SOs are garbage of the type G-1

and no HumanIdeification, or Defuse tasks are generated, therefore, less messages will

be generated.

2. The case when all IEDs in the area A are identifiable only by human agents. In this

case HumanIdeification, and Defuse tasks are generated, having the most messages

types generated in a mission.

3. The case when there is a mix of SOs types, some are G-1, some G-2, some IED-1, and

other IED-2. This case represents a most realistic scenario.

The different treatments are described in Section 6.1.4, where the three cases described

above are considered.

6.1.4 Particular Scenario Specification

Treatment E1. E1 was the control. The independent variables message-loss and capability-

degradation were set to zero. All agents had a full team broadcast communication capability.

Data was collected about the number of messages transmitted. This treatment is divided

in E1a, which is the one when all SOs are garbage and tasks to request the human iden-

tification or to defuse IED are not generated. Treatment E1b considers the case when all

86

ID Name Description
IVar-1 Messages Loss Since DTAACS-OK is a knowledge based solution

for distributed task allocation, it is important to
show how the framework behaves under less than
favorable communication conditions

IVar-2 Capability
Degradation

One of the main factors that determine if an agent
is the most suitable for a task is the state of the
set of capabilities it possesses. (Other factors may
include assignment policies, or optimization goals
such as load balance among agents). It is impor-
tant to show how the framework performs when
the agent’s capabilities changes to the point the
agent fails the task. Also, to verify that it is
not necessary to send a message when a capabil-
ity changes. The hypothesis here is that when a
capability changes, the change may not be severe
enough to change the suitability of the agent form
most suitable to a lower level, or vice versa. (The
last condition may occur when the distance from
the current agent’s position to a destination deter-
mines who gets the assignment).

IVar-3 Number of Sus-
picious Objects

To demonstrate how the framework performs in
relation to scalability, we seeded different numbers
of suspicious object to search, identify, and defuse.

Table 6.2: Independent Variables

the SOs require the human agent for further identification and all SOs are IEDs, therefore,

HumanIdeification, and Defuse tasks are generated. Treatment E1c considers the case when

all the SOs are a mix of G-1, G-1, IED-1, and IED-2 with 25% of each in each run. Results

over a hundred runs for scenarios seeded with one to thirty SOs are shown in Figure 6.3.

The dark blue line represents the average messages sent when there is no communication

problems (E1a). As expected, the number of messages is linear as discussed in Section

4.2.3.3, where it is shown that the message complexity is in O(n). The result for E1b are

shown in Figure 6.4, and Figure 6.5 for E1c. In both figures the dark blue line represents

the number of messages when no communication loss. Both of them are linear as expected.

87

ID Name Description
DVar-1 Communication

Cost
The number of messages sent to achieve the mis-
sion

DVar-2 Execution Time The time spent to achieve the mission in terms of
simulator turns

DVar-3 Task Re-
Allocations

Number of times a task is reallocated due to agent
unable to pursue a task because a capability degra-
dation

Table 6.3: Dependent Variables

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
All	 SOs	 are	 Garbage	

Control	

15.00	

30.00	

45.00	

60.00	

Message	 Drop	
Probability	

Figure 6.3: HuRT-IED Average Message Sent all SOs are G

Treatment E2. For E2 the assumption of perfect communication conditions was re-

laxed. DTAACS-OK was tested under 0%, 15%, 30%, 45%, and 60% probability of loosing

a message with no communication delay and full broadcast capability. There was no capa-

bility degradation for this treatment. Again, this treatment is divided to evaluate the cases

88

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
All	 SOs	 are	 IEDs	 iden8fiable	 only	 by	 Human	 Agents	

Control	

15.00	

30.00	

45.00	

60.00	

Message	 Drop	
Probability	

Figure 6.4: HuRT-IED Average Message Sent all SOs are IEDs identifiable only by Human
Agent

described in Section 6.1.3.1. E2a addresses the case when all SOs are garbage and tasks

to request the human identification or to defuse IED are not generated. Treatment E2b

considers the case when all the SOs require the human agent for further identification and

all SOs are IEDs,therefore, HumanIdeification, and Defuse tasks are generated. Treatment

E2c considers the case when all the SOs are a mix of G-1, G-1, IED-1, and IED-2 with 25%,

of each in each run. Figure 6.3 shows the results for average number of messages over a

hundred runs for the same condition regarding IEDs as in E1a . The red, green, purple and

light blue lines, show the number of messages sent for 15%, 30%, 45%, and 60% probability

of loosing a message. The results are linear as expected and the increase in the slope of

each treatment reflects the increase in the probability to lose a message, which was also

expected. Figure 6.4 shows the results for average number of messages over a hundred runs

for the same condition regarding IEDs as in E1b. Again, the red, green, purple and light

89

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
	 25%	 Garbage	 iden6fieble	 by	 robot	 Agent	 and	 25%	 Garbage	 iden6iable	 by	 Human	 Agents	

25%	 	 IEDs	 iden6fiable	 by	 robot	 Agents,	 and	 25%	 iden6fiable	 only	 by	 Human	 Agents	

Control	

15.00	

30.00	

45.00	

60.00	

Message	 Drop	
Probability	

Figure 6.5: HuRT-IED Average Message Sent all SOs are Mix

blue lines, show the number of messages sent for 15%, 30%, 45%, and 60% probability of

loosing a message. The results are linear as expected and the increase in the slope of each

treatment reflects the increase in the probability to lose a message, which was also expected.

Compared to the results in Figure 6.3 for E2a, the number of messages are higher and the

reason is there are tasks generated because of the seeded SOs that are not present in E2a,

this was also as expected. For E2c, Figure 6.5 shows the results for average number of

messages over a hundred runs when the SOs are mixed. The results for each treatment are

linear. The number of messages in this case fall between the results of E1aand E1b because

they reflect the different types of task generated in the system because of the different types

of SOs seeded.

Treatment E3. In the third treatment the framework was stressed by introducing agent

capability degradation to the point that agents were not able to execute and achieve their

tasks. The number of messages sent for task failure scenario were thus counted. The agents

had full broadcast communication, no delays and no message drops, and there was at least

90

one agent in the organization capable of executing all tasks that remained. For this treat-

ment, when the agent’s sensor, camera, and gripper capabilities de-gradated, they did not

recover. This treatment was also divided into E3a and E3b to address the conditions

where all SOs were G-1 and all SOs were IED-2 respectively. Results for the average num-

ber of messages sent due to agents’ capability degradation over a hundred runs are shown

in Figure 6.6 for case E3a when all SOs are garbage identifiable by the robot agents. The

dark blue line represents the average messages sent when there is no task failures. The

red, green, purple and light blue lines, show the average number of messages sent for 15%,

30%, 45%, and 60% probability of failing a tasks. Failing a task introduces more tasks in

the system that require extra messages to be sent, which can be seen as an increment of

the factor that multiplies the message function discussed in Section 4.2.3.3. The results are

linear as expected and the increase in the slope of each treatment reflects the increase in the

probability to fail a task, which was also expected. Similarly, Figure 6.7 depicts the results

for E3b when all SOs are IED identifiable only by the human agent.

Treatment E4. In treatment E4 a more realistic simulation was used to test DTAACS-

OK. E4 is combination of E2b and E3b where communication is not perfect and agents’

capabilities may fail in some degree and cause reallocation of tasks, and all SOs are IED

that require the human agent intervention. Figure 6.8 shows the results of a hundred runs

for communication conditions where there was 15% probability to drop a message and 15%

probability that an agent fail to achieve a task, and therefore a reallocation occurred. In

both, E2b and E3b result, it is shown that the average number of messages sent are linear

and bound by O(n), for these reasons, it was expected that also the results for E4 were

linear and Figure 6.8 shows it.

91

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
Re-‐Assignemnts/No	 Communica;on	 Lost	

All	 SOs	 are	 Garbage	
	

Control	

00.15	

00.30	

00.45	

00.60	

Assignment	 Fail
Probability

Figure 6.6: HuRT-IED Average Message Sent with Task Reallocation all SOs are G

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
Re-‐Assignemnts/No	 Communica;on	 Lost	

All	 SOs	 are	 IEDs	 iden;fiable	 only	 by	 Human	 Agents	

Control	

00.15	

00.30	

00.45	

00.60	

Assignment	 Fail
Probability

Figure 6.7: HuRT-IED Average Message Sent with Task Reallocation all SOs are IEDs
identifiable only by Human Agent

92

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	 5	 10	 15	 20	 25	 30	 35	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 HuRT-‐IED	 Average	 Messages	 Sent	
Adverse	 Communica7on	 and	 Capability	 	

All	 SOs	 are	 IEDs	 iden7fiable	 only	 by	 Human	 Agents	

Control	

00.15	

15.00	

15.15	

Probability of Adverse
Communication-Capability

Figure 6.8: HuRT-IED Average Message Sent with Task Reallocation 15% all SOs are
IEDs identifiable only by Human Agent

93

6.2 DTAACS-OK for Collaborative Assembling

Objects

6.2.1 Motivation

A domain that poses interesting challenges regarding collaboration, planning, and schedul-

ing is the domain of flexible manufacturing control. Jennings discusses in [30] the particular

instance of a manufacturing control; the case of producing a tailored good, which the manu-

facturing process requires different types of objects that need to be assembled in a particular

order. Jennings [30] states that the standard approach is to devise a global schedule, that

in case of a delay or any failure of the entities involved in the process, an expensive re-

scheduling of the process is needed. In order to show DTAACS-OK adaptability, reliability,

and support for agents reorganization in case of unexpected environment changes, DTAACS-

OK was integrated into a Collaborative Assembling Objects application (CAO). The CAO

application was implemented as part of a research project by a KSU CIS grad student. The

goal of the project was to explore a task allocation framework called DEMiRF-CF [40]. The

scenario is described as a set of blocks of different types, (blocks of type A, B and C). The

blocks need to be stacked one on top of the other in a predefined location in a particular

order, first all blocks A, then all blocks B, and last, all blocks C. The agents in the system

have the abilities to find, push, and lift the blocks. Some objects require the collaborative

actions of more than one agent to be transported to the destination location. The blocks

are randomly placed in the area and the destination location is randomly set.

6.2.2 Mission and Task specification

The particular mission used in this research is to stack a set of blocks that are randomly

placed in a squared room. The blocks need to be stacked up in a specific location that is

randomly selected, and the objects need to be stacked up in a particular order determined

by the type of block. An example of a scenario of the mission is depicted in Figure 6.9. The

Task Tree for the mission is depicted in Figure 6.10. The main task is to build an object

94

Figure 6.9: CAO Scenario

that is composed of different block types. We decomposed this main task into sub-tasks as

follow:

Task- 0 Build Object. This is the first task that exists when the system starts.

Task- 1: Load Scenario. This task is triggered by the Build Object task. It loads the area

where the blocks are placed, the location where the object is built by assembling the

different blocks, the number of blocks of each type, and the expected number of robots.

Task- 2: Build-A-Blocks. This task is triggered by the Load Scenario task and it is divided

into the following subtasks:

95

Task-2.1: Find-Blocks-A. This task takes the area to be scanned and the location

where the blocks A need to be transport to. This task triggers the Transport-

Blocks-A task passing the location where the block was found and the location

to be transported to.

Task-2.2: Transport-Blocks-A. This task is triggered by Find-Blocks-A task when an

agent finds a block of type A. The appropriate agent travels to the location where

the block was found and transports the block to the destination location.

Task-2.3: Assemble-Blocks-A. This task is preceded by the task Transport-Blocks-A.

Once the task Transport-Blocks-A is achieved, the appropriate agent puts the

block A in the place specified by the parameter objDestA.

Task- 4: Build-B-Blocks. This task is triggered by the Load Scenario task and it is divided

into the following subtasks:

Task-3.1: Find-Blocks-B. This task takes the area to be scanned and the location

where the blocks B need to be transport to. This task triggers the Transport-

Blocks-B task passing the location where the block was found and the location

to be transported to.

Task-3.2: Transport-Blocks-B. This task is triggered by Find-Blocks-B task when an

agent finds a block of type B. The appropriate agent travels to the location where

the block was found and transports the block to the destination location.

Task-3.3: Assemble-Blocks-B. This task is triggered by the task Transport-Blocks-B,

and it is preceded by the task Build-A-Blocks. Once the task Build-A-Blocks is

achieved, the appropriate agent puts the block B in the place specified by the

parameter objDestB.

Task- 4: Build-C-Blocks. This task is triggered by the Load Scenario task and it is divided

into the following subtasks:

96

Task-3.1: Find-Blocks-C. This task takes the area to be scanned and the location

where the blocks C need to be transport to. This task triggers the Transport-

Blocks-C task passing the location where the block was found and the location

to be transported to.

Task-3.2: Transport-Blocks-C. This task is triggered by Find-Blocks-C task when an

agent finds a block of type C. The appropriate agent travels to the location where

the block was found and transports the block to the destination location.

Task-3.3: Assemble-Blocks-C. This task is triggered by the task Transport-Blocks-C,

and it is preceded by the task Build-B-Blocks. Once the task Build-B-Blocks is

achieved, the appropriate agent puts the block C in the place specified by the

parameter objDestC.

The mission is achieved when the Object is built by assembling all blocks A, all blocks

B, and all blocks C in that order and in the predefined location.

6.2.3 General Scenario Description

The framework was evaluated in the following scenario. In this particular mission, the object

to be build (O) was composed by blocks of type A, B, and C. The specifics of these blocks

are shown in Table 6.4. Blocks of type A wight 15 lb and can not be pushed, only carried.

Objects of type B weight 20 lb and can be pushed or carried. Objects of type C weight

35 lb and can be pushed or carried. Also, there were six agents initially positioned at the

bottom center of the squared room as depicted in Figure 6.9. When the mission starts, and

after the agents have registered with each other, the agents are instructed to start scanning

the area looking for the different blocks. Each agent starts scanning the area following the

greedy coverage area algorithm that selects the closest unvisited location and generates a

direct path to the location, avoiding any obstacles it finds in its path. If there is more

than one location with the same distance, the agent randomly selects one. The blocks were

randomly distributed all over the room. For each treatment, from one to ten blocks were

97

Figure 6.10: CAO Tree Mission Representation

placed in increments of one. The type of each block was randomly selected. To achieve the

tasks in the mission, the team of agents needed to be able to scan, identify, transport, and

lift the blocks. The three types of agents used in this framework evaluation are shown in

Table 6.5. There were a total of six agents in each mission: Two TypeA agents (A1 and

A2) were capable of finding all type of objects and posses a pushing force of 10 lb. Two

TypeB agents (B1 and B2) were capable of finding all type of objects and a pushing force

of 20 lb. The last two field agents were TypeC agents (C1 and C2) were capable of finding

all type of objects and a pushing force of 30 lb. When agents collided, they saw each other

as obstacle as well. Agents possessed a simple obstacle avoidance algorithm.

As in HuRT-IED experiment, the agents could work on one task at the time and their

internal task scheduler handled the task priority defined next. Load Scenario task was exe-

98

Object Type Weight Push Carried
A 15 Lb

√

B 20 Lb
√ √

C 35 Lb
√ √

Table 6.4: Object Types

Agent Type Scan Push Carry
and Lift

TypeA
√

10 lb
√

TypeB
√

20 lb
√

TypeC
√

30 lb
√

Table 6.5: Robot Types

cuted during the initialization phase with Load Scenario triggering Build-A-Blocks, Build-

B-Blocks, and Build-C-Blocks. Build-A-Blocks had the highest priority, Build-B-Blocks was

the second highest, and Build-C-Blocks had the lowest priority; the children task inherited

the priority from their parents. When a agent detected a new task with a higher priority

then the one currently executing, it saved the task progress information and swaped the

task. The released task was placed in a waiting queue. The waiting task priority was incre-

mented by one each time the agent postponed its execution because another task with higher

priority arrived. In case of task failure, the released task was considered for reassignment.

As in HuRT-IED experiment, for the framework evaluation, the independent variables are

listed in Table 6.6 while the dependent variables are listed in Table 6.3.

6.2.4 Particular Scenario Specification

Treatment E1. E1 was the control. The independent variables message-loss and capability-

degradation were set to zero. All agents had a full team broadcast communication capability.

Data was collected about the number of messages transmitted, the number of task reallo-

cations to achieve the mission, and how many turns the simulation required for the team to

achieve the mission. Figures 6.11 and 6.12 show the average number of message and task

99

ID Name Description
IVar-1 Messages Loss Since DTAACS-OK is a knowledge based solution

for distributed task allocation, it is important to
show how the framework behaves under less than
favorable communication conditions

IVar-2 Capability
Degradation

One of the main factors that determine if an agent
is the most suitable for a task is the state of the
set of capabilities it possesses. (Other factors may
include assignment policies, or optimization goals
such as load balance among agents). It is impor-
tant to show how the framework performs when
the agent’s capabilities changes. Also, to verify
that it is not necessary to send a message when
a capability changes. The hypothesis here is that
when a capability changes, the change may not be
severe enough to change the suitability of the agent
form most suitable to a lower level, or vice versa.
(The last condition may occur when the distance
from the current agent’s position to a destination
determines who gets the assignment).

IVar-3 Number of
Blocks A, B,
and C

To demonstrate how the framework performs in
relation to scalability, different numbers of blocks
to search, transport, and assemble were placed.

Table 6.6: CAO Independent Variables

allocation results over a hundred runs for scenarios with three to ten blocks randomly set

to type A, B, or C.

Treatment E2. For E2 the assumption of perfect communication conditions was relaxed.

DTAACS-OK was tested under 0%, 15% and 30%, and 60% probability of message loss with

no communication delay and full broadcast capability. There was no capability degradation

for this treatment. Figure 6.11 shows the results for average number of messages over a

hundred runs for the same condition regarding blocks A, B, and C as in E1.

Treatment E3. In the third treatment, the framework was stressed by introducing agent

capability degradation to the point that agents were not able to execute and achieve their

tasks. The number of messages sent for task failure were thus counted. The agents had full

100

15

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

0	 2	 4	 6	 8	 10	 12	 14	 16	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 CAO	
Average	 Messages	 Sent	

0	 15	

30	 60	

Message Drop
Probability

Figure 6.11: CAO Average Messages Sent for 0%, 15%, 30%, and 60% Probability of
Message Drop

broadcast communication, no delays and no message drops, and there was at least one agent

in the organization capable of executing all tasks that remained. For this treatment, when

the agent’s sensor and gripper capabilities de-gradated, they did not recover. Results for

the average number of task allocation are shown in Figure 6.12, and for the average number

of messages sent due to agents’ failing a task over a hundred runs are shown in Figure 6.13.

Treatment E4. In treatment E4 a more realistic simulation was used to test DTAACS-OK.

E4 is combination of E2 and E3 where communication is not perfect and agents’ capabilities

may fail in some degree and cause reallocation of tasks. Figure 6.14 shows the results of

a hundred runs for communication conditions where there was 15% probability to drop a

message and 15% probability that an agent fail to achieve a task, and therefore a reallo-

cation occurred. Figure 6.15 shows result for 30% in both communication and capability

degradation probability.

101

0	

10	

20	

30	

40	

50	

60	

70	

0	 2	 4	 6	 8	 10	 12	 14	 16	

As
si
gn
m
en

ts
	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 CAO	
Average	 Assignments	

0	

15	

30	

60	

Assignment Fail
Probability

Figure 6.12: CAO Average Assignments for 0%, 15%, 30%, and 60% Probability of Task
Failure

102

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	 2	 4	 6	 8	 10	 12	 14	 16	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 CAO	
Average	 Messages	 Sent	 	

No	 Communica:on	 Lost	 -‐	 Task	 Failure	

0	 15	

30	 60	

Assignment Fail
Probability

Figure 6.13: CAO Average Messages Sent Under Task Failure

103

0	

500	

1000	

1500	

2000	

2500	

0	 2	 4	 6	 8	 10	 12	 14	 16	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 COE	 Average	 Messages	 Sent	
Adverse	 Communica7on	 and	 Capability	 	

00.00	

00.15	

15.00	

15.15	

Communication .
Capability

Figure 6.14: CAO Average Assignments Under Task and Communication Failure (15%)

104

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

0	 2	 4	 6	 8	 10	 12	 14	 16	

M
es
sa
ge
s	

Number	 of	 Suspicious	 Objects	 (SOs)	

DTAACS-‐OK	 COE	 Average	 Messages	 Sent	
Adverse	 Communica8on	 adn	 Capability	 	

00.00	

00.30	

30.00	

30.30	

Communication .
Capability

Communication .
Capability

Figure 6.15: CAO Average Messages Sent Under Task and Communication Failure (30%)

105

6.3 DTAACS-OK versus DEMiRF-CF

In this section, a comparison between DEMiRF-CF[41] and DETAACS-OK is presented.

These two solutions address the task allocation problem in MAS. The comparison is offered

as a relative assessment of the performance of the frameworks in relation to communication

cost in achieving the mission in the Cooperative Assembling Object (CAO) application.

The result compared are the ones obtained in the empirical evaluation of DTAACS-OK as

described in Section 6.2. The result for DEMiRF-CF for the COA application were obtained

by implementing the experiment described in Section 6.3.2.

6.3.1 Motivation

DEMiRF-CF[41] is a framework that implements the Incremental Multi-Robot Task Se-

lection (IMRTS) approach [42]. As discussed in Section 7.1.3, IMRTS is a marked based

solution for the task allocation problem which has similarities with the solution offered by

DTAACS-OK. Table 6.7 shows the similarities between these two approaches.

No. Similarity
1 Both address the task allocation problem in cooperative

MAS
2 Both address complex tasks
3 Both address tasks relations like AND, OR, and pre-

cedece
4 Both form coalitions for complex task if needed

Table 6.7: DTAACS-OK and DEMiRF-CF Similarities

6.3.2 General Scenario Description

The scenario for which DEMiRF-CF for the COA application was evaluated was the same

as the one described in Section 6.2.3.

106

6.3.3 Particular Scenario Specification

Treatment E1. E1 was the control. The independent variables message-loss and capability-

degradation were set to zero. All agents had a full team broadcast communication capability.

Data was collected about the number of messages transmitted to achieve the mission. Fig-

ures 6.16 shows the average number of messages sent over a hundred runs for scenarios with

three to fifteen blocks randomly set to type A, B, or C.

Treatment E2. For E2, the assumption of perfect communication conditions was relaxed.

DEMiRF-CF and DTAACS-OK were tested under 15% probability of message loss with no

communication delay and full broadcast capability. There was no capability degradation for

this treatment. Figure 6.17 shows the results for average number of messages sent over a

hundred runs for scenarios with three to fifteen blocks randomly set to type A, B, or C.

3	 4	 5	 6	 7	 8	 9	 10	 15	
DTAACS-‐OK	 320	 435	 546	 659	 773	 886	 992	 1108	 1678	

DEMiRF-‐CF0	 568	 782	 1187	 1610	 1991	 2674	 3241	 3659	 6732	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

M
es
sa
ge
s	

DTTACS-‐OK	 versus	 DEMiRF-‐CF	
Average	 Messages	 Sent	 	

No	 Message	 Drop	

Objects

Figure 6.16: DTAACS-OK versus DEMiRF-CF CAO No Message Drop

107

3	 4	 5	 6	 7	 8	 9	 10	 15	
DTAACS-‐OK	 413	 575	 718	 857	 1012	 1181	 1322	 1482	 2220	

DEMiRF-‐CF0	 553	 897	 1394	 1817	 2319	 3051	 3674	 4366	 8232	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	
M
es
sa
ge
s	

DTTACS-‐OK	 versus	 DEMiRF-‐CF	
Average	 Messages	 Sent	 	

15%	 Probability	 Message	 Drop	

Objects

Figure 6.17: DTAACS-OK versus DEMiRF-CF 15% Probability Message Drop

6.4 Summary

In this chapter, the empirical evaluations result for DTAACS-OK were presented. DTAACS-

OK was evaluated using two applications: (1) HuRT-IED is an application where a team

of robots have a common mission to clear an area of IEDs; the team is monitored and

supported by a human agent, and (2) CAO is an application where a team of robots have

a the mission to assemble an object compose of different types of smaller objects in a

collaborative way. The goal of these experiments were to evaluate DTAACS-OK mainly

regarding communication cost and how the framework reacted under agents failing to achieve

a task due to capability degradation.

DTAACS-OK was also compared to DEMiRF-CF, a framework that implements IMRTS.

DEMiRF-CF was implemented by a graduate student in CIS at Kansas State University.

The frameworks were compared regarding the number of messages sent under conditions

with no communication loss and 15% chances of dropping a message.

108

Chapter 7

Related Work

The Task allocation problem has been studied extensively in areas such as Operational

Research [53], Economics [22] and Computer Sciences [4, 9, 37, 44]. Solutions proposed

in computer sciences, particularly in MAS, can be categorized into two groups: centralized

and distributed approaches. In [50], van der Horst and Noble addressed when and where to

use a centralized or distributed approach. They concluded that answers to these questions

can be derived from system characteristics, such as parameters to optimize and the number

of agents in the system. However, both approaches have application domains for which

are more suitable to be used. Zhang et al. [56] presented five categories of existing task

allocation approaches:

• Fully centralized approaches. In these solutions, the central allocator possesses a model

of all members of the system and calculates the cost for each when allocating tasks.

These approaches require full communication with all team members and full knowl-

edge of the member state and task status; the allocator is a single point of failure.

• Centralized auctions. In these solutions, an auction coordinator determines the par-

ticipant with the lowest cost after receiving the cost of executing a task calculated by

each participant. Because the cost is calculated by each participant, the coordinator

does not have to keep a model of each participants. A bidding protocol must be exe-

cuted, which presents communication and computational disadvantages compared to

109

the fully centralized approaches.

• Distributed auctions. In general, a distributed auction approach is the result of ex-

ecuting local centralized auctions simultaneously. That is, several auctions can be

executed in parallel so that a participant can bid in more than one auction. These

solutions, as in centralized auctions, do not require the coordinator to keep a model of

the participants, but inherently yield suboptimal task allocations when a global cost

function is considered.

• Completely distributed approaches. These approaches do not require direct communi-

cation among system members; each determines actions based on observations of the

environment where they are situated on. These solutions are robust against commu-

nication failures but yield suboptimal task allocation results.

• Hybrid approaches of distributed actions and emergent coordination. This approach

aims to benefit from the advantages of implicit negotiation and explicit negotiation,

but can yield highly suboptimal task allocation solutions.

In this chapter, relevant work related to the task allocation problem in MAS is discussed.

One broadly used approach is the market-based approach discussed in Section 7.1. Another

approach is one that tackles the problem as a Markov Decision Problem (MDP); MDP

solutions proposed in the literature are discussed in Section 7.2. In Section 7.3, other

approaches that do not fall into the two previous sections are discussed. Another approach

addressing the task allocation problem is based on the coalition formation as proposed

by Sheory and Kraus in [46] and discussed in Section 7.4.1. Vig and Adams in [51] and

[52] present an improvement to the Sheory and Kraus’ solution [46], presented in Section

7.4.2. These two solutions inspired coalition formation algorithms proposed in DTAACS-

OK, additional coalition-based approaches are discussed in Sections 7.4.3 and 7.4.4. Work

related to the allocation of tasks to a team of agents is presented in Section 7.4.

110

7.1 Market-Based Approaches

In Market-Based Approaches, the allocation of tasks to agents is the result of a contract net

protocol [1]. A requirement for such approaches is that each agent must have the means to

calculate the cost of executing the anticipated task. The assumption is also that agents have

knowledge of all tasks to be allocated and, when an agent identifies a desired task, the agent

begins an auction protocol with the rest of the agents in order to discover other agents

interested in the task and the correlating cost of execution. After receiving all bids, the

auction manager determines and notifies the agent with minimal cost by sending an award

message. Some solutions proposed in the literature and their particular characteristics are

discussed in the following section.

7.1.1 M+

M+ [16] is a decentralized protocol for (a) planning, (b) online task-decomposition, and

(c) allocation of loosely coupled tasks in multi-robot environments. M+ is designed to be

implemented as a task layer on top of an action layer. The main functionality of M+ is

a negotiation mechanism, which receives a list of tasks from a higher level called, Mission

Layer. The M+ protocol is implemented by two entities, task planner and task supervisor,

and it utilizes GraphPlan as the standard planner. The M+ protocol performs three primary

activities:

1. Task allocation. This module is in charge of task refinement and task allocation. It

also embeds the negotiation mechanism that allows a robot to choose incrementally

the best task to be executed.

2. Cooperative reaction. This module is invoked when a failure occurs during task exe-

cution.

3. Execution. This module is in charge of task execution control as well as distributed

synchronization between robots’ tasks and actions.

111

M+ is suitable for systems in which tasks are loosely coupled, but it does not manage joint

tasks and does not generate cooperative plans during task execution. Online task decom-

position is based on predefined goals that compose a task and goals that consist of a set of

actions. However, allocation occurs at task level and does not take advantage of allocating

actions when the robot is not able to perform a particular action. A task example includes

transfering a container c from station sx to station cy. Action examples include pick-up-

from-station, put-down-on-station, go-to.

7.1.2 TraderBots

TraderBots [19] is an architecture for coordinating a multi-robots team to achieve a com-

mon goal in a dynamic environment. TraderBots is a market economy approach that allows

cooperation and competition in an opportunistically way. When a task is announced in an

auction, the participant self-interested robots compute bids based on expected profit on the

task. The robot with the lower/higher bid is selected and a contract is established. The

winner robot can take the role of auctioneer and reallocate the task or a portion of the

task. Traderbots is a market-based approach that requires a revenue (trev) function and a

cost (tcost) function; the (trev) function maps task outcomes into revenue, and the (tcost)

function maps possible schemas for executing the task into cost values. These functions

may be complex, and they are application specific. In Traderbots, cooperation occurs when

two robots complement each other (one robot provides a service to the other) and when

they execute a task together, thus producing a higher profit (tcost - trev) than would be at-

tained if executing the task individually. Competition occurs when the profit of one robot is

negatively affected by the presence of another robot. TraderBots is a general market-based

approach that does not consider whether the team is homogeneous or heterogeneous; how-

ever, TraderBots is designed to handle simple tasks, single robot tasks, and tasks in which

robots do not work in close coordination. Adversarial domains, cooperative recovery from

112

failure, and the use of partially damaged robots is not addressed [19]. An extended version

of Traderbots is presented in Section 7.1.3, address limitations and future work listed in [19].

7.1.3 Incremental Multi-Robot Task Selection

Incremental Multi-Robot Task Selection (IMRTS) [41, 42] is an extension of Traderbots

which introduces complex tasks to Traderbots. A complex task is defined as a hierarchical

tree of tasks in which the root of a tree is a higher abstraction of the subtasks [42] . These

tasks and subtasks are related by AND and OR relations, depending on the application and

degree to which the tasks are coupled. A precedence relation may be exist between tasks. In

IMRTS, the task allocation problem is approached as a scheduling problem and the problem

is formulated as a resource constrained project scheduling problem from Operational Re-

search (OR). The IMRTS approach and the framework of this dissertation (DTAACS-OK)

have similarities, such as addressing complex inter-related tasks and tight-coupled tasks.

However, IMRTS is a market-based approach, while DTAACS-OK is a distributed organi-

zation knowledge based approach. Another similarity is that coalitions formed in IMRTS

follow the algorithms proposed in [45], while DTAACS-OK coalition formation algorithms

are also inspired by [45] but are modified to consider replicated organization knowledge

in the decision-making process. Also, in the Incremental Multi-Robot Task Selection ap-

proach, a robot can compute its own task decomposition, but the decomposition steps are

not specified.

In the following section, other approaches in the literature that model the task allocation

problem, such as a Markov Decision Problem, are presented.

7.2 Markov Decision Problem

For systems in which the environment is uncertain and dynamic, Markov Decision Problem

(MDP) models offer a way to overcome those characteristics [47]. When an MDP model is

113

used for task allocation in a MAS, an agent chooses an action available in that state, receives

a reward, and probabilistically changes to a different state. In Section 7.2.1, an MDP-based

approach for the task allocation problem addressed as a scheduling problem is presented.

Another MDP approach with the ability to handle spontaneous tasks is discussed in Section

7.2.2.

7.2.1 Decentralized Dynamic Task Allocation

The approach proposed in [12] targets MAS where system tasks have a hard deadline and

specific execution time. The solution proposed by Chapman et al. [12] handles task alloca-

tion with a scheduling mechanism modeled as a Markov game with complete information.

The known facts are: (1) current system states, (2) uncertainty of future states, (3) finite

set of strategies possessed by the agents, and (4) specific number of time steps for which

the agents play. Markov stochastic games are intractable, and the authors use a sequence

of potential games to tackle intractability. Potential games are a subclass of noncooperative

games that possess two practical properties: (1) every finite potential game possesses at least

one strategy equilibrium, and (2) potential games possess the finite improvement property,

meaning that any sequence of unilateral improving moves converge to a Nash equilibrium

in finite time. The task allocation model comprises a set of states that define a set of tasks.

Each task has a deadline, a processing unit, and a task function. The task allocation model

also includes a set of agents, each agent possesses a strategy space, each strategy composed

of a sequence of tasks to attend and a utility function, a state transition function, and a

global utility function. The allocation of tasks in this approach is the result of the execution

of a distributed stochastic algorithm, which is a greedy local search algorithm. This approach

addresses two challenging task constraints: hard-time deadlines and specific execution-time.

However, not all application domains present these constraints, and the communication cost

and solution optimality are not discussed in this paper. Another MDP approach with the

ability to handle spontaneous tasks is discussed in Section 7.2.2.

114

7.2.2 Modeling Task Allocation Using a Decision Theoretical Model

Abdallah and Lesser tackle the task allocation problem in [3] as a decision problem that a

mediator faces when a task arrives for which the agent cannot independently execute. In

the task allocation decision problem, the set of tasks available to a mediator at time t is

the set of actions At. Abdallah and Lesser define a mediator as an agent that discovers a

task that it cannot execute. The mediator decomposes the task (if necessary), finds agents

with capabilities required by the task, and negotiates with the agents found the required

commitment in order to execute the task or subtask. This mediation process is modeled as

a decision problem. A main characteristic of a decision problem is that it can handle tasks

that appear randomly, called the randomly available actions property. The authors model

this decision problem as a Semi Markov Decision Problem (SMDP) in order to exploit the

randomly available actions property that an MDP fails to exploit. In [3], emphasis is place

on the higher-level decisions of whether to start the allocation of a task, and when to stop

the allocation process even if various subtasks have been allocated. Abdallah and Lesser

assume that a negotiation protocol is used, such as the Contract Net Protocol [1], and ignore

the implications of communication among agents and the computational cost of executing

protocols. The authors present an SMDP model with the capability of handling serialized

contracting of subtasks and then extends the model by incorporating a Concurrent Action

Model [reference] in order to allow the mediator to handle the concurrent mediation of

tasks.

Abdallah and Lesser’s solution [3] provides to the agents decision mechanism for when to

stop the execution of a task ti and swap it for a new task tj that arrives and how to reallocate

the task ti and subtasks (if it is decomposed) to other agents. However, the decision of which

agent is most suitable to the tasks still relies on the Contract Net Protocol.

115

7.3 Other Approaches

The approaches discussed in previous sections and DTAACS-OK can be categorized as

defined a priori by a designer [21]. However, an organization structure can also be set

through an emergent organizations approach in which the organization structure is set a

posteriori [21]. Emergent organizations are formed by reactive agents which, through their

interactions and behavior, define the relationships among them and form an organization,

as is the case of Alliance[35], discussed in Section 7.3.1. In all task distribution approaches,

knowledge concerning agents and tasks, regardless of how the knowledge is acquired and

maintained, is a key factor in making decisions as to who is assigned to what. In Section 7.3.2,

an approach that incorporates a decision making model based on organization knowledge is

presented.

7.3.1 Alliance

Alliance [35] is an architecture for fault tolerant MAS in which robots cooperate to achieve a

common mission. The mission is composed by loosely coupled tasks that may have ordering

dependencies. Alliance is a distributed behavioral-based architecture. Alliance aims to

provide robots in the system with a behavior mechanism that allows them to be robust,

reliable, flexible, and coherent under dynamic and unpredictable environments. Actions

taken by the robots are determined by a mechanism (motivational behaviors) based on a

mathematical model that considers the following information:

• Mission requirements

• Other robot activities

• Current environment conditions

• Robot’s own internal states

Motivational behaviors mechanism allows the robots to react and adapt to different

events and to work on a task as long as progress is made toward mission achievement.

116

Motivational behaviors receive input from sensory feedback, inter-robot communication,

inhibitory feedback from other active behaviors, and internal motivations. Internal motiva-

tions modeled in Alliance are robot impatience and robot acquiescence, discussed below.

Robot Impatience. This motivation triggers the robot to handle situations in which

other robots, besides itself, fail to perform a task. For each task, robot impatience increases

rapidly if that task is not being accomplished by other robots; robot impatience increases at

a slower rate if the robot is aware of another robot working on a task which is expected to

be accomplished in a predefined period of time. Alliance requires every robot to broadcast

its progress on pursuing a task.

Robot Acquiescence. This motivation indicates that the robot is failing to achieve a task.

Each robot maintains an indicator (w) for the current task which increases over time; w

reflects the willingness of the robot to stop working on the task. Two cases may occur: (1)

the robot realizes it is not capable of achieving the task (indicator crosses threshold) and

(2) a robot B informs the robot A that it has taken over the task so robot A decides to

release the task based on its w value.

This approach explicitly addresses the fault tolerance of situated MAS but, as mentioned

by Parker in [35], sacrifices efficiency for robustness and autonomy. Alliance requires that

agents broadcast the status of the task they are executing, otherwise task reallocation would

have a high rate. Alliance does not address coalition formation.

7.3.2 Distributed Task Allocation in MAS based on Decision Sup-
port Module

The Task Allocation Decision Maker (TADM) [20] is a module part of a framework called

Distributed MultiAgent Intelligent System. The main purpose of the TADM module is to

choose which agent is the most suitable for a selected task. in this approach, each agent

executes the algorithm independently and randomly selects a task to allocate. The module

contains four main components.

117

1. Decision Knowledge Management

2. Data Organizer

3. Decision Maker, which is subdivided into two modules:

• Task Allocation Decision Maker

• Coordination Mechanism Selection Decision Maker

4. Evaluator Module. This module (a) executes actions selected by the Decision Maker

module and (b) evaluates the results of the executed actions.

In the decision making process, Granular Computing and Rough Set Theory (RST) are

utilized. Granular Computing combines the advantages of using RST tools with the benefits

of granulation. Rough sets are used to address incompleteness, imprecision, and subjectivity

of the information that agents possess and are present in MAS. TADM incorporates a

Granular Rough Model with four main concepts:

1. Decision Table

2. Set Approximation

3. Data Reduction Phase

4. Rule Generation Phase

The TADM approach is similar to DTAACS-OK because both approaches use knowl-

edge about the system, but since the information is updated independently by each agent,

TADM is not distribute-consistent among the agents when allocation decisions are made.

Information update actions still must occur and, although flexibility is gained by doing

them independently, TADM may lead to work duplication and impact the efficiency and

optimality of the solution. In this approach, the agents randomly select the next task, but

TADM does not specify how tasks priorities are handled.

118

7.4 Coalition Formation and Task Allocation

7.4.1 Task Allocation via Coalition Formation

Shehory and Kraus present a task allocation solution via coalition formation [46]. The

authors acknowledge that the problem is NP-Complete and propose a heuristic approach

based on an algorithm presented by Chavat [13]. Shehory and Kraus tackle the problem

by finding the smallest group of agents for the tasks. The greedy algorithm consists of

two stages. In the first stage, the agents calculate all possible coalitions up to a value

k in which they can participate and calculate a coalition value. In the second stage, the

agents communicate in order to update the coalition value, agree as to what coalition they

will participate, and form the coalition. In the Shehory and Kraus paper, disjoint and

overlapping coalitions are addressed. Although the authors point out the generation of

small coalitions (small k) is more advantageous, Shehory and Kraus do not specify how this

key value is calculated. In the coalition formation algorithms presented in DTAACS-OK,

the key value k is incrementally calculated until a valid coalition is found (see Chapter

5). The DTAACS-OK coalition formation algorithms incorporate changes to Shehory and

Kraus’ algorithms [45] proposed by Vig and Adams [52] to address the fact that, in multi-

robot systems, resources cannot be transfer from one robot to another. The Vig and Adams

solution is discussed in Section 7.4.2.

7.4.2 Multi-Robot Coalition Formation

Vig and Adams present [51, 52] two modifications to the algorithms proposed by Shehory

and Kraus in [46]. The modifications goal is to make the algorithms proposed in [46] more

suitable to Multi-Robot Systems, in which resources cannot be easily transferred from one

robot to another. The first modification proposed by Vig and Adams in [51] is a Task

Allocation Matrix (TAM), which is a representation of the tasks as a capability matrix such

that each cell represents a resource pair required by each task. A cell is set to 1 if the pair

of resources must reside on the same robot. A cell is set to 0 if the resources must reside

119

on separate robots. If the location of the pair of resources is not relevant, the cell is set to

X. The matrix TAM determines weather or not a candidate coalition is valid. The second

proposed modification attempts to avoid the generation of unbalanced coalitions, defined as

coalitions in which a particular robot contributes a majority of the resources, making the

coalitions less fault tolerant.

In DTAACS-OK, the coalition formation algorithms consider resources locations as pro-

posed in [46]. In the current status of DTAACS-OK, coalition balance is not considered.

7.4.3 Bayesian Model-Based Coalition Formation Approach

A Bayesian model-based reinforcement learning framework for repeated coalition forma-

tion under uncertainty is presented by Chalkiadakis and Boutilier [11]. The authors claim

that most models proposed for coalition formation assume agents have knowledge of the

capabilities of other agents, which is not always true for real scenarios. Chalkiadakis and

Boutilier propose the utilization of repeated interaction between agents in order to acquire

information to improve decision making when forming coalitions. The Bayesian reinforce-

ment learning model (RL) allows the agents to improve their decision making process to

form teams with known agents (exploitation) or new agents (exploration). The Bayesian

RL model is formulated as a partially observable Markov decision process (POMDP). The

agents, based on the solution to this POMDP, generate policies that evaluate actions for

immediate gains and potential coalitions. Because POMDPs are computational intractable,

the authors propose approximations to allow the effective sequential generation of policies.

7.4.4 Building Coalitions Through Automated Task Solution Syn-
thesis

Parker and Tang [36] present a distributed version of the ASyMTRe algorithm, ASyMTRe-

D, in order to form coalitions. The primary differences in ASyMTRe compared to other

approaches are the change from typical abstraction of a task to a biologically inspired schema

and a mechanism in order to address multi-robot tasks. The basic block in ASyMTRe is

120

the computational model called a schema, which defines a list of input and output ports in

addition to a behavior, thus defining how the input is processed in order to generate the

output. Robot collaboration occurs when the output of one schema in one robot is connected

autonomously and dynamically to the input ports of another schema in another robot.

Connections are established based on knowledge requirements of each task. Coalitions in

ASyMTRe are formed by solving the configuration problem defined by a set of robots R,

a set of tasks T, and a utility function U. The set T is composed of a set of schemas

that define the group-level task to be achieved. The connections are regulated by a set

of connection constraints. ASyMTRe defines a potential solution as one way to connect

schemas in a particular robot in order to partially fulfill a task, to completely fulfill a task,

several potential solutions may be required. With multiple potential solutions, the utility

function helps determine the quality of each potential solution. When searching for a set

of potential solutions to completely fulfill a task, a potential configuration space (PCS) is

generated which can grow exponentially, to reduce the size of this PCS, a policy is introduced

specifying that only one entry for each equivalent class of schema is considered. The authors

also provide analysis of the soundness, completeness, and optimality of the algorithms.

121

Chapter 8

Discussion And Conclusion

The work presented in this dissertation solves the task allocation problem in OMAS. The

solution proposed, DTAACS-OK, is a distributed approach that takes advantage of the

system status information shared among agents. This system information is shared in most

of the solutions found in the literature, but it is not used as in DTAACS-OK. DTAACS-OK

aims to provide a low communication cost solution to the task allocation problem in OMAS.

The allocation of tasks is based on identical organizational knowledge being possessed by all

agents in the organization when of processing the same event. This solution is in contrast

to current solutions in that it does not use marked-based task auctions, or is not based on

motivational behaviour as in the Alliance [35] approach. A more elaborate description of

the proposed solution is presented in Section 8.2

The Task Allocation Problem is not new and has been addressed in different areas of

science and economics; yet, it is a problem that still attracts researchers as the rapid devel-

opment of technology challenges them to exploit the resources and to deploy computational

systems where it was difficult in the past. A brief summary of some approaches found in

the literature is described below.

8.1 Prevailing and Relevant Solutions

The solutions proposed for the task allocation problem in computer sciences, and particu-

larly in MAS, fall into two main categories: centralized and distributed approaches. Most of

122

the latest and popular approaches fall into Centralized auctions and Distributed auctions as

defined by Zhang et al. [56] (See Chapter 7). Other solutions take a different approach and

model the task allocation problem as Markov Decision Problem. Yet, other approaches are

behavioural-based and emergent organizations are formed by reactive agents. The solutions

relevant to this research are those that uae distributed auctions and are briefly reviewed

below.

M+. A popular marked-based approach in the late 1990s was M+ [16], which is designed

to be implemented as a task layer on top of an action layer. M+ performs three main

activities: (1) Task allocation, which includes a negotiation mechanism for incrementally

select the best task to be executed, (2) Cooperative reaction, which is invoked when a failure

occurs and (3) Execution that is in charge of the actual execution of the task. The two main

disadvantages of M+ are that: (a) M+ does not handle joint tasks and (b) M+ does not

generate cooperative plans during the execution of the tasks.

TraderBots [19] was proposed in 2004 to improve certain areas of M+. TraderBots contin-

ues using a marked-based approach, but also offers a mechanism to allow cooperation and

competition in an opportunistic way. However, it is designed to handle simple tasks, single

robot tasks, and tasks in which robots do not work in tight coordination.

IMRTS. In 2007 Sariel et al. [42] proposed IMRTS, an incremental multi-robot task se-

lection approach as an extension of TraderBots. IMRTS introduces complex tasks and

incorporates algorithms to form coalitions needed for complex tasks. The approach pro-

posed by Sariel et al. [42] and the framework produced in this dissertation (DTAACS-OK)

have similarities, such as addressing complex inter-related tasks and tight-coupled tasks.

However, the approach taken by Sariel et al. is market-based while DTAACS-OK takes a

distributed knowledge-based approach.

Decentralized Dynamic Task Allocation. This solution was proposed by Chapman et

al. [12] and addresses the task allocation problem with a scheduling mechanism modeled

as a Markov game. Unfortunately, the Decentralized Dynamic Task Allocation approach is

123

limited to certain domains where the tasks’ execution time, and tasks’ deadlines are known

in advance.

Alliance. Alliance provides the robots in the system with a behavior mechanism to achieve

a common mission in a dynamic and unpredictable environments. The motivational be-

haviour mechanism receives input from sensors, communication with other robots, and

internal motivation model. The internal motivation includes robot impatience which is a

measure of other robots failing to execute a task. The other internal motivation is robot

acquiescence which indicates that the robot is failing to achieve a task. Alliance is a solution

to the task allocation problem that sacrifices efficiency for robustness and autonomy, and

does not address coalition formation.

8.2 DTAACS-OK: The Framework

This section reviews the framework proposed in this dissertation to address the task allo-

cation problem in OMAS. This section covers the current status of the framework, while

limitations and future enhancements are discussed in Section 8.3.

8.2.1 DTAACS-OK solution to the SAT-AP and MAT-AP

DTAACS-OK is a framework designed to address the task allocation problem in cooperative

mission achievement in OMAS. In particular DTAACS-OK addresses the Single Agent Task

Allocation Problem (SAT-AP) and the Multiple Agent Task Allocation Problem (MAT-AP)

as defined in Chapter 2. The user expectations in regards to adaptability, autonomy, ro-

bustness, and security demand that the solution enable the agents in the organization to

make their own decisions, react to changes in the environment and optimize the communi-

cation among them. The allocation of tasks is based on identical organizational knowledge

being possessed by all agents in the organization when processing the same event. The or-

ganization knowledge is updated by exchanging messages among agents. This organization

knowledge update occurs, in one way or another, in all solutions proposed in the litera-

124

ture. DTAACS-OK takes advantage of this organization knowledge and allocates the task

avoiding the communication cost of auctioning tasks.

In DTAACS-OK, the agents in the system work cooperatively to achieve a mission. The

DTAACS-OK framework is designed to handle complex missions represented by interrelated

tasks. The mission is represented by an acyclic rooted tree where each node represents a

task. Besides the parent-child relationships among tree nodes, DTAACS-OK considers other

constraint relationships: conjunctive, disjunctive, precedes, triggers, and negative-triggers,

which are defined in detail in Chapter 2.

In a cooperative environment, agents usually share information to keep each other aware

of the status of the mission. One of the main features in DTAACS-OK is taking advantage of

the information shared among the agents in a system. The framework includes by four main

components: 1) Distributed Transaction Component, 2) Distributed Organization Knowledge

Component, 3) Distributed Task Allocation Component, and 4) Local Agent’s Information

Component. These four components interact and provide the reasoning to find an efficient

solution to the task allocation problem in agent organizations operating in dynamic and

challenging environments.

DTAACS-OK keeps the relevant information in the Distributed Organization Knowledge

Component (DOK), which is updated by the Distributed Transaction Component (DTC).

The main purpose of the DTC is to ensure the one-copy serializability property of the orga-

nization knowledge. The DOK passes the organization knowledge to the Distributed Task

Allocation Component (DTAC) to generate the assignments. DTAACS-OK also includes a

Local Agent’s Information Component, which stores the current agent’s information that is

used as part of the organization knowledge update.

Distributed Transaction Component. As previously mentioned, the main goal of

the DTC is to ensure the one-copy serializability of the organization knowledge. In order

to ensure this property, the DTC coordinates each transaction that occurs in the system

125

as explained below. The DTC is composed of two modules: the Transaction Generator

Module, which receives events (See Table 4.1) from the agent while executing a task. Once

it receives an event, the DTC proceeds to generate a new transaction, which is passed to

the Transaction Manager. When the Transaction Manager receives a transaction, it estab-

lishes communication with the agents in the organization following a distributed transaction

commitment protocol. If more than one agent wants to commit a transaction, a protocol to

determine which agent to proceed is executed. When the agents agree to commit a transac-

tion, each agent passes the committed transaction to the DOK. This guarantees the state

of the DOK to be the same in all agents, and thus, the decision made after the commitment

will be the same in each agent.

Distributed Organization Knowledge Component. The DOK stores the organi-

zation knowledge that is used when an assignment needs to be made. The DOK is consist

of two modules.The first module is the Task Set Selection Module, which stores the task

tree that represents the mission, the tasks ready to be assigned (Active Task Set), the tasks

already achieved (Achieved Tasks Set), the tasks that are no longer needed to be pursued

(Removed Task Set), and the tasks for which execution failed (Failed Task Set). These sets

are updated by the committed transactions listed in Table 4.2. The second module in the

DOK is the Organization Information Module that consists of two sets. The first set is the

Agent Set that stores information about all the agents in the organization as shown in Table

4.3. The second set is the Capability Set that stores information about all the capabilities

the agents contribute to the organization.

Distributed Task Allocation Component. The third component in DTAACS-OK

is the Distributed Task Allocation Component (DTAC), whose main goal is to generate a

new assignment set using the latest organization knowledge. This component integrates

four main modules: (1) Allocation Algorithm, (2) Utility Function, (3) Utility Criteria

Entity, and (4) Allocation Policies. The utility function is application dependent, and the

assignment policies can be defined based on the optimization objectives in the system. The

126

allocation algorithms attempt to allocate the task in the mission until it is achieved, or a

situation prevents the mission achievement.

Local Agent’s Information Component. The fourth component in DTAACS-OK

is the Agent’s Local Information Component. This component stores the current status

information of the agent, which may include physical characteristics of the robot, and its

geographical location. Table 4.6 list some agent’s information examples.

DTAACS-OK has been evaluated in different application domains in a simulation envi-

ronment. The experiments were designed to evaluate DTAACS-OK in relation to commu-

nication cost and how the framework performs when the number of tasks increases. The

experiments were run under scenarios where the communication among agents and agents’

capability to achieve a task were stressed. Also, the DEMiRF-CF framework, which also

addresses task allocation problem using a market based approach, was implemented in a

Collaborative Assembling Object (CAO) application in order to compare communication

costs.

The first application into which DTAACS-OK was integrated was HuRT-IED. This ap-

plication simulates the mission of clearing an area of IEDs. In this type of application, it is

beneficial to reduce the number of message agents exchange among themselves, an to react

to messages that are lost and to agents failing to achieve a task.

The second application into which DETAACS-OK was integrated was the COA. This

application simulates the mission of agents collaborating to assemble an object. The object

is composed of different types of parts that must be assemble in a specific order, with some

parts requiring more than one agent to be transported.

The results of these experiments are discussed in Section 8.4.

127

8.3 Future Work

In this section, some ways to improve DTAACS-OK are discussed. These potential improve-

ments were selected based on the focus of this research: The main goal of this research was

to offer a solution to the task allocation problem that supports system availability, reliabil-

ity, robustness, elimination of single points of failure, and optimization of communication

cost.

8.3.1 Identical Organization Knowledge

DTAACS-OK solves the problem of allocating tasks in OMAS in a distributed manner.

The framework relies on each agent in the organization possessing identical knowledge at

the time of making the same assignment. An important problem in distributed systems is

the network partition problem. Protocols that guarantees one copy serialibility can handle

network partition, but to reduce the inevitable effects on DTAACS-OK’s efficiency due to

the network partition problem, the concept of agent neighborhoods can be explored. Since

the mission and all possible type of tasks and their required capabilities are known, agents

in the organization can form neighborhoods based on the required and possessed capabili-

ties. This neighborhood concept may reduce the number of agents that each agent needs

to communicate with, thus lowering the risk of network partition. Also, a neighborhood

representative can be elected to interact with other neighborhoods when needed. Since each

agent possesses all needed information from the agents in the neighborhood, a triangulation

can be used to update the required information in case of a network partition.

8.3.2 Coalitions

Some algorithms that generate coalitions have a high computational complexity, and it is

information that is currently redundantly generated in DTAACS-OK. A possible way to

reduce the overall degree of the polynomial complexity of DTAACS-OK algorithms may be

to generate the possible coalitions in advance, and only update the information of these

128

coalitions at run time. Seeking for the most suitable coalition for a specific task using

pre-generated coalition sets should reduce the computational complexity of DTAACS-OK

algorithms.

8.4 Conclusion

In this research, DTAACS-OK has been designed and implemented to solve the task alloca-

tion problem in OMAS. Several performance test were conducted, integrating DTAACS-OK

into applications in the exploration and collaboration domains. The results of the differ-

ent experiments show that DTAACS-OK is an efficient, scalable and robust distributed

framework for OMAS that solves the task allocation problem, while maintaining a low com-

munication cost.

In the HuRT-IED is an application, DTAACS-OK was integrated to evaluate the frame-

work in regards of communication cost and agent task failures to achieve tasks. The results

of these test show that DTAACS-OK is a low communication cost solution to the task

allocation problem, that increases the communication security by lowering the number of

messages exposed. The results also illustrate that DTAACS-OK efficiently reallocate tasks

when an agent is not able to achieve it.

In the COA application, DTAACS-OK was integrated to evaluate the framework in re-

gards of communication cost and task reallocation when agents failed to achieve tasks. In

this particular application, a task could require more than one agent so a coalition needs to

be formed, and collaboration among the agents forming the coalition occurs. The result of

these experiments show that DTAACS-OK is a low communication cost for the task alloca-

tion problem. Part of the reduction in communication cost is due to the low communication

among the coalition’s agents regarding the coalition formation and termination.

DTAACS-OK versus DEMiRF-CF

129

When analyzing computational and communication complexity of DTAACS-OK and DEMiRF-

CF, both belong to the polynomial category. However when both frameworks were inte-

grated to the COA application, the results show that DTAACS-OK offers an important re-

duction on the number of messages exchanged among agents. DEMiRF-CF uses a marked-

based approach while DTAACS-OK uses an approach maintaining identical organization

knowledge in all agents. In DTAACS-OK, messages about mission execution status are

exchanged between agents in the organization, which is common in most solutions, includ-

ing DEMiRF-CF. In DTAACS-OK these mission execution update messages are used to

update the agent’s organization knowledge. The extra payload incurred in DTAACS-OK to

support maintaining identical organization knowledge is determined by the protocols used

to provide one-copy serializability property to the organization knowledge. These protocols

run in polynomial message complexity, which does not increase the complexity.

8.5 Summary

In this chapter, a brief summary of the research conducted in this dissertation was presented.

In Section 8 a brief definition of the task allocation problem is presented. Section 8.1 presents

a summary of some relevant approaches that also tackle the task allocation problem. Section

8.2 presents a summary of DTAACS-OK, the framework proposed in this research to address

the SAT-AP and MAT-AP in cooperative OMAS. Finally, in Section ?? the limitations of

the DTAAACS-OK as the research in this dissertation was concluded and the future work

is discussed.

130

Bibliography

[1] The contract net protocol. IEEE Transactions on Computers, page 1105, December

1980.

[2] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An efficient, fault-tolerant protocol

for replicated data management. PODBS, pages 215–229, 1985.

[3] Sherief Abdallah and Victor R. Lesser. Modeling task allocation using a decision the-

oretic model. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munin-

dar P. Singh, and Michael Wooldridge, editors, AAMAS, pages 719–726. ACM, 2005.

[4] Greg Gagne Abraham Silberschatz, Peter Baer Galvin. Operating System Concepts.

Jhon Wiley and Sons, Inc., New Jersy, USA, 2005.

[5] Patrick Beautement, David N. Allsopp, Mark Greaves, Steve Goldsmith, Shannon

Spires, Simon G. Thompson, and Helge Janicke. Autonomous agents and multi -agent

systems (aamas) for the military - issues and challenges. In Defence Applications of

Multi-Agent Systems, pages 1–13, 2005.

[6] Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction

problems: Algorithms and applications. European Journal of Operational Research,

119(3):557–581, December 1999.

[7] L. Brickman. Mathematical introduction to linear programming and game theory. Un-

dergraduate texts in mathematics. Springer-Verlag, 1989.

[8] Peter Brucker. Scheduling and constraint propagation. Discrete Applied Mathematics,

123(1-3):227–256, 2002.

131

[9] Thomas L. Casavant and Jon G Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEESE, 14(2), February 1988.

[10] S. Ceri, M. Houtsma, A. Keler, and P. Samarati. A classification of update methods

for replicated databases. Technical Report CS-TR-91-1392, Stanford University, May

1994.

[11] Georgios Chalkiadakis and Craig Boutilier. Sequential decision making in repeated

coalition formation under uncertainty. In Lin Padgham, David C. Parkes, Jörg P.

Müller, and Simon Parsons, editors, AAMAS (1), pages 347–354. IFAAMAS, 2008.

[12] Archie Chapman, Rosa Anna Micillo, Ramachandra Kota, and Nick Jennings. Decen-

tralised dynamic task allocation: A practical game?theoretic approach. In The Eighth

International Conference on Autonomous Agents and Multiagent Systems (AAMAS

’09), pages 915–922, May 2009.

[13] V. Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Opera-

tions Research, 4(3):233–235, 1979.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms. The MIT Press, 2nd edition, 2001.

[15] Silvia Silva da Costa Botelho and Rachid Alami. M+: A scheme for multi-robot

cooperation through negotiated task allocation and achievement. In ICRA, page 1234,

1999.

[16] Silvia Silva da Costa Botelho and Rachid Alami. M+: A scheme for multi-robot

cooperation through negotiated task allocation and achievement. In ICRA, page 1234,

1999.

[17] S.A. DeLoach and M. Miller. A goal model for adaptive complex systems. International

Journal of Computational Intelligence: Theory and Practice, 16(1):5(2), 2010.

132

[18] Scott A. DeLoach, Walamitien H. Oyenan, and Eric T. Matson. A capabilities-

based model for adaptive organizations. Autonomous Agents and Multi-Agent Systems,

16(1):13–56, 2008.

[19] M Bernardine Dias. TraderBots: A New Paradigm for Robust and Efficient Multirobot

Coordination in Dynamic Environments. PhD thesis, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, January 2004.

[20] Sally M. El-Ghamrawy, Ali I. El-Desouky, and Ahmed I. Saleh. Distributed task allo-

cation in multi-agent system based on decision support module. 2010.

[21] J. Ferber. Multi-agent Systems: Introduction to Distributed Artificial Intelligence. Ad-

dison Wesley, 1999.

[22] Donald Francis Ferguson. The application of microeconomics to the design of resource

allocation and control algorithms, 1989.

[23] L. R. Foulds. Combinatorial Optimization for Undergraduates. Springer Verlag, New

York, 1984.

[24] L.R. Foulds. Combinatorial optimization for undergraduates. Undergraduate texts in

mathematics. Springer-Verlag, 1984.

[25] Thomas L.C. French, S. and White D.J. Operational research techniques. E. Arnold,

1986.

[26] Vijay K. Garg, Ph.D. Elements of distributed computing. John Wiley & Sons, Inc.,

New York, NY, USA, 2002.

[27] Brian P. Gerkey and Maja J. Mataric. Multi-robot task allocation: analyzing the

complexity and optimality of key architectures. In ICRA, pages 3862–3868. IEEE,

2003.

133

[28] Brian P. Gerkey and Maja J. Mataric. A formal analysis and taxonomy of task alloca-

tion in multi-robot systems. I. J. Robotic Res, 23(9):939–954, 2004.

[29] D. M. Gordon. interaction patterns and task allocation in ant colonies. Information

Processing in Social Insects, C. Detrain, J. L. Deneubourg, and J. M. Pasteels, Eds.

Basel, Switzerland: Birkhauser Verlag, page 5167, 1999.

[30] N. R. Jennings. On agent-based software engineering. Artificial Intelligence,

117(2000):277–296, 2000.

[31] url = http://macr.cis.ksu.edu/cros Kansas State University MACR Lab, title = CROS:

The Cooperative Robotic Organization Simulator.

[32] Jane W. S. Liu. Real-Time Systems. Prentice Hall, New Jersy, USA, 2000.

[33] Thomas W. Malone. What is coordination theory? In Proceedings of the National

Science Foundation Coordination Theory Workshop, February 1988.

[34] Multiagent and Cooperative Reasoning Laboratory. Human - robot teams @ONLINE,

2011.

[35] L. E. Parker. ALLIANCE: An architecture for fault tolerant multi-robot cooperation.

IEEE Transactions on Robotics and Automation, 14(2):220–240, April 23 1998. Pub-

lisher: IEEE Robotics and Automation Society.

[36] L. E. Parker and F. Tang. Building multirobot coalitions through automated task

solution synthesis. In Proceedings of the IEEE, Vol. 94, No. 7. (21 2006),, July 2006.

[37] K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in distributed hard

real-time systems. In Proceedings of the 4th International Conference on Distributed

Computing Systems, pages 96–107, 1984.

[38] I. Rhee. Optimal fault-tolerant resource allocation in distributed systems. (Proc. 7th

IEEE Symp. on) Parallel and Distributed Processing, pages 460–469, 1995.

134

[39] L. C. Thomas S. French, R. Hartley and D.J. White. Operational Research Techniques.

Edward Arnold, 1986.

[40] Sariel Sanem and Balch Tucker. A Distributed Multi-Robot Cooperation Framework

for Real Time Task Achievement, chapter 19, pages 187–196. Springer Verlag, 2006.

http://www2.itu.edu.tr/s̃ariel/publications.php.

[41] Sanem Sariel. An Integrated Planning, Scheduling and Execution Framework for Multi-

Robot Cooperation and Coordination. PhD thesis, Istanbul Technical University, Insti-

tute of Science and Technology, Istanbul, Turkey, June 2007.

[42] Sanem Sariel, Tucker Balch, and Nadia Erdoğan. Incremental multi-robot task

selection for resource constrained and interrelated tasks. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 2314–2319, 2007.

http://www2.itu.edu.tr/s̃ariel/publications/IROS Sariel 2007.pdf.

[43] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in

discrete mathematics and optimization. Wiley, 1998.

[44] Jonathan R. Senning. Operating systems and computer architecture, 2000.

[45] Onn Shehory and Sarit Kraus. Task allocation via coalition formation among au-

tonomous agents. In IJCAI (1), pages 655–661, 1995.

[46] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition forma-

tion. Artificial Intelligence, 101(1-2):165–200, May 1998.

[47] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems - Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[48] Peter Stone and Manuela M. Veloso. Multiagent systems: A survey from a machine

learning perspective. Auton. Robots, 8(3), 2000.

135

[49] F. Tang and L. E. Parker. Layering coalition formation with task allocation. In The

Eighth International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS ’09), May 2006.

[50] Johannes van der Horst and Jason Noble. Distributed and centralized task allocation:

When and where to use them. In SASO Workshops, pages 1–8. IEEE Computer Society,

2010.

[51] L. Vig and J. A. Adams. A Framework for Multi-Robot Coalition Formation. In Bhanu

Prasad, editor, IICAI 2005, Pune, India, December 2005.

[52] Lovekesh Vig and Julie Adams. Issues in multi-robot coalition formation. In Lynne

Parker, Frank Schneider, and Alan Schultz, editors, Multi-Robot Systems. From Swarms

to Intelligent Automata Volume III, pages 15–26. Springer Netherlands, 2005.

[53] Michael Wilkes. Operational Research: Analysis and Applications. McGraw-Hill, 1989.

[54] Michael Woolridge and Michael J. Wooldridge. Introduction to Multiagent Systems.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

[55] J. Wu. Distributed System Design. CRC Press, 1999.

[56] K. Zhang, E. Collins, and D. Shi. Centralized and distributed task allocation in multi-

robot teams via a stochastic clustering auction. ACM Transactions on Autonomous

and Adaptive Systems (to appear).

[57] Robert Zlot and Anthony Stentz. Market-based multirobot coordination for complex

tasks. I. J. Robotic Res, 25(1):73–101, 2006.

136

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Overview of Research Approach
	Problem Description, Abstraction, and Models
	Distributed Systems
	Framework Design
	Evaluation

	Assumptions
	Summary

	Problem Formulation
	Task Allocation Problem
	Tasks
	Problem Description
	Single Agent Task Allocation Problem
	Multiple Agent Task Allocation Problem

	Mission, Tasks and Agent Representations
	Problem Statement
	Summary

	Background
	Mathematical Background
	Sets and Combinations
	Operations Research
	OR Models

	Combinatorial Optimization
	The Fundamental Algorithm

	Linear Programming
	Solution Techniques for Combinatorial Optimization Problems

	Set Partition and Set Coverage

	Computer Science Background
	Distributed Systems
	Election Algorithms and Mutual Exclusion
	Data Replication
	Concurrency Control
	Replica Management

	Agents, MultiAgent Systems, and OMAS
	Agents
	Multi-Agent Systems
	Organization MAS

	OMACS
	Conclusion

	DTAACS-OK
	DTAACS-OK Components
	A General Overview of Mission Execution

	Distributed Transaction Component
	Distributed Transaction Component
	Transaction Generator
	Transaction Manager
	Distributed Knowledge Systems
	Replica Control
	Transaction Atomicity

	Distributed Organization Knowledge Component
	Task Set Selection Module
	Organization Information Module

	Distributed Task Allocation Component
	Allocation Algorithms
	WorkInMission Algorithm
	AllocateTasks Algorithm
	GetBestAgent Algorithm

	Utility Function and Assignment Policies
	Utility Criteria Entities

	Agent's Local Information Component
	Summary

	Coalitions in DTAACS-OK
	Motivation and Problem Illustration
	The Site Clearing Problem
	Tasks Taxonomy

	Coalitions in DTAACS-OK
	Problem Statement
	Coalition Algorithms
	A General Overview of Candidate Coalitions Generation
	GetBestCoalition Algorithm
	MainCoalitionFormation Algorithm
	CoalitionsForTask Algorithm
	FilterCandidateAgents Algorithm

	Summary

	DTAACS-OK Empirical Evaluations
	DTAACS-OK for HuRT-IED
	Motivation
	Mission and Task specification
	General Scenario Description
	Scenario Evaluation based on the SOs types

	Particular Scenario Specification

	DTAACS-OK for Collaborative Assembling Objects
	Motivation
	Mission and Task specification
	General Scenario Description
	Particular Scenario Specification

	DTAACS-OK versus DEMiRF-CF
	Motivation
	General Scenario Description
	Particular Scenario Specification

	Summary

	Related Work
	Market-Based Approaches
	M+
	TraderBots
	Incremental Multi-Robot Task Selection

	Markov Decision Problem
	Decentralized Dynamic Task Allocation
	Modeling Task Allocation Using a Decision Theoretical Model

	Other Approaches
	Alliance
	Distributed Task Allocation in MAS based on Decision Support Module

	Coalition Formation and Task Allocation
	Task Allocation via Coalition Formation
	Multi-Robot Coalition Formation
	Bayesian Model-Based Coalition Formation Approach
	Building Coalitions Through Automated Task Solution Synthesis

	Discussion And Conclusion
	Prevailing and Relevant Solutions
	DTAACS-OK: The Framework
	DTAACS-OK solution to the SAT-AP and MAT-AP

	Future Work
	Identical Organization Knowledge
	Coalitions

	Conclusion
	Summary

	Bibliography

