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As the volume of collected data continues to increase in the environmental sciences, so too does the need
for effective means for accessing those data. We have developed an Open Modeling Interface (OpenMI)
data component that retrieves input data for model components from environmental information sys-
tems and delivers output data to those systems. The adoption of standards for both model component
inputeoutput interfaces and web services make it possible for the component to be reconfigured for use
with different linked models and various online systems. The data component employs three techniques
tailored to the unique design of the OpenMI that enable efficient operation: caching, prefetching, and
buffering, making it capable of scaling to large numbers of simultaneous simulations executing on a
computational grid. We present the design of the component, an evaluation of its performance, and a
case study demonstrating how it can be incorporated into modeling studies.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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Hardware required: Architecture independent
Required software: Windows/Linux
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1. Introduction

The rate at which data are being captured, created, and stored, is
continuing to accelerate in the environmental sciences. The po-
tential impact of these data on scientific discovery can only be
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(J. Peterson), steward@ksu.

r Ltd. This is an open access article
realized if these data can be effectively utilized. This presents new
challenges for data management and has inspired a number of
initiatives for environmental information systems and cyberin-
frastructure to meet this need (Horsburgh et al., 2009; Demir and
Krajewski, 2013; Pettit et al., 2013; Mason et al., 2014; DataONE).
These systems provide capabilities for organizing, storing, manip-
ulating, and accessing data. Access to data is provided by web
portals or desktop applications that enable scientists to search,
analyze, and visualize data, as well as through machine interfaces,
such as web services, that enable software systems to access these
data.

This creates new opportunities for closer integration between
simulation models and environmental information systems.
Models can consume data directly from these systems and publish
data to them. The often time-consuming tasks performed by a
scientist to collect data from a myriad of sources, convert and
transform the data, and assemble them into a set of model-specific
input files (or databases), are no longer necessary. It is similarly no
longer necessary to aggregate model output files, convert and
transform them, and upload the final data sets.

In grid environments, in which computational resources consist
of large clusters of machines, such integration is equally compel-
ling. The greater scale at which these tasks must be performed,
alongwith the additional tasks of deployingmodel input files to the
compute resources and collecting the output files, typically requires
a combination of manual tasks and ad-hoc automation techniques
such as scripting. The development and maintenance of such
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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scripts for both processing themodel-specific input and output files
and for communicating with online services can involve a sub-
stantial effort. By enabling models to exchange data sets directly
with environmental information systems the scientist is freed of
these tasks. This also simplifies the complexity of the provisioning
of models when executed an in automated fashion as part of
workflow systems (Deelman et al., 2009) and service-oriented ar-
chitectures (Nativi et al., 2013; Goodall et al., 2013).

In the context of component-based modeling and simulation in
which compositions of models (and models themselves) are
assembled from software components with standard inputeoutput
interfaces, the opportunities for integration with cyberinfras-
tructure are even greater because the data access capabilities can be
encapsulated into data components that can be composed with
other components. It is advantageous to separate data access
functionality from the implementations of the models because it
allows for more efficient operation (e.g. avoiding duplicate data
retrieval by different components) and minimizes the software
complexity of the model components. Through the adoption of
standards, in both model component inputeoutput interfaces (see
Jagers (2010) for a review) and web service application program-
ming interfaces, general-purpose data components can facilitate
the exchange of data between model components and environ-
mental information systems. Such components complement other
software tools that support data access to these systems (such as
the desktop applications ONEDrive for DataONE and CUAHSI-HIS’s
HydroGet).

We have developed a distributed data component that conforms
to the Open Modeling Interface (OpenMI) (Gregersen et al., 2007),
which both provides model components with input data retrieved
from standards-based web services and delivers model output data
to such services on each time step. By operating on a time step
basis, the data component enables model components to consume
dynamically-changing input data, such as measurement data from
sensor networks, and to distribute output data in real-time. This
also supports computational steering scenarios in which model
output is monitored and inputs are manipulated as necessary as a
simulation is being performed. The data component employs three
techniques tailored to the unique design of the OpenMI that enable
efficient operation: caching, buffering, and prefetching. This work
unifies our previous efforts (Bulatewicz and Andresen, 2011, 2012)
and includes improvements to the software design that achieve a
significant increase in scalability. It also provides an integral part of
an interdisciplinary modeling study in which we are integrating
models of groundwater, economic decision making, and crop pro-
duction to investigate the impact of policy on irrigated agricultural
systems. The following sections position this work within the
context of existing research and introduce the aspects of the
OpenMI relevant to understanding the design and implementation
of the data component. We then present the design of the data
component in Section 2, an evaluation of its performance in Section
3, and a demonstration of how it may be incorporated into an in-
tegrated modeling study in Section 4.

1.1. Related work

This work lies at the intersection of component-basedmodeling,
web services, and grid computing. The synergy between web ser-
vices and modeling and simulation was recognized quickly as web
standards emerged (Chandrasekaran et al., 2002). Web services can
provide a means for both remotely controlling the execution of
computer models running on servers or computational grids
(Castronova et al., 2013a; Goodall et al., 2011; Horak et al., 2008;
Pullen et al., 2005) and enabling desktop or grid-based models to
exchange input and output data with online services. In the latter
case an online service may be composed of a suite of Internet ap-
plications and/or a collection of databases.

One class of online services that is well-suited for exchanging
data with computer models is workflow management systems
which are frameworks to setup, execute, and monitor scientific
workflows, such as Taverna (Hull et al., 2006), VisTrails (Callahan
et al., 2006), and Kepler (Altintas et al., 2004). Such systems could
provide workflows that pre-process or post-process model data
or conduct simulations whose input or output data is utilized by
models. Another class of online services is data-centric and
provides data storage (e.g. archiving) and retrieval (e.g. public
access or sharing within or across institutions). Examples include
the Integrated Rule-Oriented Data System (iRODS) (Rajasekar
et al., 2006) which is a file-based distributed data storage sys-
tem, the Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System
(HIS) (Maidment, 2008; Tarboton et al., 2009) which facilitates
the management of hydrologic data, DataONE (DataONE) which
provides cyberinfrastructure for persistent Earth observation
data, and Globus Online (Globus Online, 2013a) which provides
online managed data storage based on GridFTP (Globus Toolkit,
2013b).

Web services provide a means for these online application and
data services to achieve interoperability with one another and with
client applications running on desktop computers and compute
clusters. Standards for web services and the data encodings they
use make it possible for independent applications to interpret
exchanged data in a meaningful way. In the context of environ-
mental modeling in which data is spatial-temporal in nature, the
standards published by the Open Geospatial Consortium (OGC) for
location-based information and services are of particular relevance.
For example, the Web Feature Service (WFS) Standard (Vretanos,
2010) defines how geospatial data may be accessed from a web
service and utilizes the Geographic Markup Language (GML)
(Portele, 2007) Standard. Within the domain of hydrology, the
CUAHSI HIS WaterOneFlow web service Application Programming
Interface (Horsburgh et al., 2009) defines how time series hydro-
logical observations data may be accessed and utilizes the Water
Markup Language (WaterML) encoding standard (Zaslavsky et al.,
2007).

The fundamental data model upon which these services and
encodings are based (consisting of quantities, times, and locations)
is generally compatible with the data model employed by the
OpenMI for the exchange of data between components, making
interoperability between services and components possible
(Castronova et al., 2013b). Several OpenMI components have been
developed that retrieve time series data from WFS web services
(OpenMI Association, 2010). In a related work, Castronova et al.
(2013b) enabled a desktop application to retrieve input data from
WaterOneFlow web services and store them in a local database
which could then be accessed by model components via a general-
purpose data-access component.

Our work complements these efforts in twoways. First, our data
component is not only capable of retrieving data fromweb services
but delivering data to them as well. Second, the data component is
not limited to use on desktop computers but may also be used on
high-performance compute clusters. The prototype implementa-
tion is compatible with WaterOneFlow web services and is being
extended to support additional standards. In our previous work
(Bulatewicz and Andresen, 2011, 2012) we developed independent
components for retrieving data from web services and delivering
data to them. This work unifies our earlier efforts into a single
component and includes fundamental changes to the software
design to scale to significantly higher numbers of simultaneously
executing simulations.
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1.2. The Open Modeling Interface

The Open Modeling Interface (OpenMI) Standard (Gregersen
et al., 2007) defines how software components may exchange
spatial-temporal data with one another and coordinate their
execution. Components that possess the capabilities defined by the
interface can be linked together and exchange data, typically on
each time step, as they carry out simulations. These capabilities are
implemented as functions (specifically, object methods and prop-
erties) within the source code of a component that either provide
descriptive information about the component (such as its inputs
and outputs) or support its execution (such as performing initiali-
zation or exchanging data).

Each input and output is formalized as an exchange item that
describes the properties of a variable (referred to as a quantity by
the OpenMI) such as its name, units, and spatial distribution. The
way in which a variable is spatially distributed is formalized as an
element set that is composed of a list of elements each of which has a
textual identifier, spatial shape (point, line, or polygon) and
geographic coordinates. When configuring a linked model, called a
composition, a scientist uses a visual software tool (the OpenMI
Configuration Editor application e OmiEd) to choose a set of
components and assign each input exchange item of a component
to an output exchange item of another component. These assign-
ments are called links and there may be multiple links between two
components and these links may be in the same or opposite di-
rections. At runtime a component requests data from other com-
ponents along each input link, typically before performing each
time step. The request is made by calling the GetValues function of
each linked component specifying a date and time (or range) at
which the data is needed, as illustrated in Fig. 1. The GetValues
function returns a list of real numbers called a value setwhere each
number represents the state of the variable at a different spatial
location for the requested point or span of time. As such, each call to
GetValues may be considered to be a request for the state of a
variable for a list of spatial locations at a point or span of time and
the response to be the list of numbers returned.

Although the GetValues function allows a value set to be
requested that corresponds to either an instantaneous point in time
or to a span of time, in this work we only consider the prior case, as
the added complexity of the latter is outside the scope of this work.
Value sets may only contain numeric values (categorical values are
Fig. 1. Lists of real numbers called value sets are exchanged between model
components.
not supported) as this is consistent with version 1 of the OpenMI
Standard, which this work is based upon.

In addition to facilitating the exchange of data between com-
ponents, the GetValues function provides implicit coordinated
execution of components at runtime. The execution of a linked
model is initiated when one of the components begins executing.
On each time step the component invokes GetValues on each
component linked to it to obtain all the necessary input value sets
for the time step, pausing its execution during each invocation.
When GetValues is invoked on a component, it executes as many
time steps as necessary to advance to the requested point in
simulation time and returns a value set corresponding to that time.
Thus a component only executes time steps on-demand in response
to the invocation of its GetValues function by another component
and may itself invoke GetValues on other components prior to
performing each of its time steps. In this way components take
turns executing and pull data from one another until the initiating
component’s simulation is completed.

Components are typically model programs that consume input
data and produce simulated output data, but they can serve other
purposes as well. Examples include data conversion or trans-
formation, data visualization, access to databases, and access to
online data services as in the case of our data component.
2. Methods

2.1. Overview

The purpose of the data component is to serve as an intermediary between
online data services and model components, by providing models with input data
retrieved from web services and delivering model output data to web services. The
design of the data component was guided by the following requirements:

1. To be general-purpose
2. To minimize the runtime of a simulation
3. To be scalable

Our design balances these three competing objectives making the data
component broadly applicable and suitable for use on both desktop computers and
compute clusters.

The first requirement of the data component is that it is general-purpose such
that its inputs and outputs can be defined, and redefined, by a scientist as necessary
for different sets of model components. The input and output exchange items of the
data component reflect the quantities exposed by a web service: any quantities that
a web service can provide or accept can be configured as exchange items of the data
component. This is possible because the OpenMI defines the way in which data is
exchanged between software components and web service standards define the
way inwhich data is exchangedwith online services. Together these standardsmake
it possible for the data component to serve as a data relay between model com-
ponents and web services.

The data component is configured (via a file) by specifying the list of input and
output quantities that a web service can provide and accept, along with the element
set definition of each and the web service URL and type. These quantities become
available as input and output exchange items when the data component is added to
a composition in the OmiEd application and can be linked to model components in
the same way that links are added between model components.

The second requirement of the data component is that it minimizes its impact
on the runtime of a simulation, ideally causing no increase. If a data component was
to call a web service after each request received from a model component to either
obtain input data or send output data, the simulation would be paused during the
web service call (due to the synchronous execution of components) and increase the
runtime of a simulation. This increase in runtime can be reduced or eliminated by
decoupling the calls to the web services from the requests made by the model
components. In order to decouple the web service calls from the model component
requests, the data componentmust have the ability to temporarily storemodel input
and output data in a data store. Rather than the data component call a web service in
response to each request for input data from a model component, it first checks to
see if the data is already available in the data store (by matching the variable,
element set, and instantaneous timestamp). If it is, then it can be returned to the
model component immediately, and if not, it can then be requested from a web
service. There are two cases in which the data may already be available in the data
store: (1) the data was previously requested by a model component, and (2) the data
was retrieved from aweb service ahead-of-time.We refer to the prior as caching and
the latter as prefetching and these techniques can reduce, and in some cases



Fig. 2. System overview. Arrows indicate the movement of data.
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eliminate, the increase in runtime due to the web service calls. In addition to
minimizing the runtime, caching also minimizes the amount of data downloaded
from the web services because each input is only retrieved once. The data store is
shared among all simulations executing across a compute cluster to maximize the
reusability of the cached data. With respect to sending output data, rather than call a
web service in response to each request from a model component, the data
component immediately stores the output data in the data store and sends it at a
later time. We refer to this as buffering and it eliminates the increase in runtime
otherwise due to sending output data to web services.

The third requirement of the data component is that it is scalable such thatmany
simulations, each containing an instance of the data component, may execute
concurrently across a compute cluster with minimal impact to the runtime of the
simulations. To these ends we employed two strategies: (1) maximize network ef-
ficiency when sending data to web services, and (2) separate the data component
software into two tiers.

Network utilization is inefficient when the amount of data being sent is small
enough that the network latency is comparable to the transmission time of the data
(i.e. the duration of time and amount of data exchanged at the network transport
layer for establishing the connection and for sending the data are similar). To ensure
that the network bandwidth is used efficiently when sending model output data to
web services, the data component sends a sufficient amount of data in each web
service call. With respect to retrieving data, which consists of values that each
represent a variable at a point in time for a location, the data component could
request groups of values in each web service call for spans along any of these three
dimensions in each web service call. At one extreme it could make a web service call
for each individual value, and at the other extreme it could make a single web
service call to obtain all the input values required for a complete simulation. In the
prior case the network utilization may be inefficient due to the small data size of a
single value, and in the latter case the execution of a simulation would be delayed
until the data is retrieved and may require storing a large amount of data for the
lifetime of the simulation (in addition it would prohibit both real-time online data
access during the simulation and the ability to utilize multi-threaded and multi-
hosted web services). Efficient network utilization can be balanced with real-time
data access by requesting groups of values in each web service call (essentially
coalescing what would otherwise be multiple requests into a single request). Values
could be grouped by time, variable, and/or location, depending on the capabilities of
aweb service. In addition, grouping by timewould require the data component to be
capable of predicting the simulation times at which model components will request
data and grouping by variable would only be possible in cases in which the data
component is providing multiple quantities to one or more model components that
are sourced from a single web service and requested for the same points in simu-
lation time. We designed the data component such that requests are grouped by
location (when supported by theweb service) and left grouping by time and variable
to be addressed in future work due to the additional complexity.

The data component software is organized into two tiers that separate the
management of the data store and communication with web services from the in-
teractions between the components within a composition. This is a more scalable
design than our previous work (in which there was a single tier) because the
management of the data store requires considerable computer resources (memory,
processor, and network) yet accessing the data for providing input data to model
components and collecting output data requires few resources. Without separating
them, the resource demands of the data store are imposed on each data component
thus increasing the resource demands of every simulation. By separating them, the
amount of resources dedicated to the management of the data store can bemanaged
separately from those required by the individual simulations. The number of data
managers that manage the data store can be increased or decreased independently
from, and as necessary to support, the number of simultaneous simulations.

An overview of the system is illustrated in Fig. 2. Compositions of linked com-
ponents perform simulations on the nodes of a cluster. Each composition includes a
data component (labeled DC in the figure) whose input and/or output exchange
items are linked to model components. Model components request input from data
components (by invoking GetValues) for a variable at a specific time and element set
in the same way as from other model components. The data component in turn
requests the input data from a data manager which may obtain the data from the
data store or retrieve it from a web service to fulfill the request. Each time a model
component produces output data (in response to a GetValues request from another
model component) the data component is notified. When notified, the data
component obtains a copy of the output data (by invoking GetValues on the model
component) and sends them to a data manager which stores the data for eventual
delivery to a web service.
2.2. The data store

Data managers are responsible for both communicating with web services and
managing the storage of model input and output data in the data store. We
implemented a set of software modules that provide the functionality to commu-
nicate with web services and utilized an existing software for the data store func-
tionality. The data store is a key-value store, which is a non-relational database in
which related data is aggregated together and stored as an entry that is accessed via
a unique identifier. We chose to utilize a key-value store because storing data in this
way achieves high performance when scaling horizontally (i.e. increasing the
number of compute nodes to allow for higher capacity) because the data can be
efficiently sharded and replicated across compute nodes (i.e. each node stores a
subset and/or copy of the entries).

The data operations that may be performed on a key-value store include
inserting entries, accessing entries, and removing entries, typically referred to as put,
get, and remove. These operations require a unique key to be associated with each
entry when inserted into the store and subsequently used to locate the entry for
access or removal. Locating an entry based on its key is very efficient, while iterating
or searching through all the entries is not, thus the way in which data is aggregated
into entries dictates the way in which it may be efficiently accessed and thus the
overall performance of a key-value store. The structure of the data exchanged both
between components and between the data component and web services is a value
set that consists of a list of real numbers representing the state of a variable at a point
in time over a set of locations. As the value set is the unit of aggregation of data
exchanged, storing each value set as an entry in the key-value store aligns with the
way in which the data is accessed by the data component.

Aggregating data as value sets is not the only possibility, as it would also be
possible to aggregate data into larger units such as groups of value sets, or into
smaller units such as the individual values that make up a value set (as in Bulatewicz
and Andresen (2011)). Storing individual values as entries in the key-value store
simplifies the process of assembling value sets ad-hoc from entries in the key-value
store as they are requested by model components (to avoid the need to call a web
service to obtain them) thus maximizing the reusability and the effectiveness of the
cache and resulting in no storage of duplicate data. This also results in higher
memory usage per entry as each entry incurs a constant overhead (approximately
260 B) that is approximately the data size of a single value. This means that 50% of
memory usage is overhead, and greater processor and network usage results as each
entry must be inserted and removed from the key-value store individually. Storing
value sets as entries in the key-value store (as in Bulatewicz and Andresen (2012))
minimizes overhead in terms ofmemory, processor, and network, but introduces the
possibility of storing duplicate data in the key-value store in the case that the values
stored in two value sets intersect. It also requires a more complex process to
assemble value sets ad-hoc (see Section 2.3.1). In our earlier work we found that the
overhead of storing individual values as entries limited the scalability of the system
and thus in this work we designed the data component to store value sets as entries
in the key-value store.

Each entry in the key-value store is a variably-sized object consisting of a vari-
able identifier (string), timestamp (string), element set identifier (string), scenario
identifier (string), a delivery flag (boolean), array of values (double precision), and
value count (long), that are serialized into an array of bytes. The keys used to access
the entries in the store are strings formed by the concatenation of the entry’s var-
iable identifier, element set identifier, timestamp, and scenario identifier, for
example: TemperatureSewardCounty2013-01-01T12:00:00S01. Using keys of this
form guarantees uniqueness and makes it possible to efficiently look up a value set
from the key-value store for a specific variable, instantaneous point in time, and
element set, for a particular scenario identifier. The scenario identifier provides a



T. Bulatewicz et al. / Environmental Modelling & Software 57 (2014) 138e151142
way to partition, version, and identify value sets that are created by different linked
models or instances thereof. For example, when executing several instances of a
linked model, each instance may be assigned a unique scenario identifier so that the
input and output value sets of each are distinct. The delivery flag indicates whether
the value set is pending delivery to a web service.

When a value set is delivered to a web service, additional information must be
provided that indicates the locations the values represent. This information is not
stored inside the entries in the key-value store because all the value sets for a
particular element set would result in the storage of duplicate data. As element sets
are static during a simulation run there is typically a high ratio of value sets to
element sets, so the entries only store the element set identifier and the actual
element set information is stored separately in the data store. In this way a data store
can look up the complete element set information for any value set before delivering
it to a web service.

A number of different key-value store database systems could be utilized as the
data store, such as Memcached (Memcached, 2013) or Cassandra (Cassandra, 2013).
We chose to utilize the Hazelcast distributed data platform (Ozturk, 2010) because in
our previous work we found it to be highly efficient and require minimal configu-
ration. Hazelcast is a clustering, scalable, in-memory data platform that is imple-
mented in Java and distributed as a shared library that we compiled into the data
manager program. When the data manager is started it creates an instance of the
Hazelcast platform peer that runs as a set of threads inside the data manager pro-
cess. Instances within different data manager processes dynamically form a cluster
by discovering one another via multicast and communicating via TCP/IP. Instances
thus join and leave the cluster as data manager processes are started and stopped.
Each instance has a local memory that is logically organized into one or more global
hashmap data structures whose entries are distributed across the instances of a
cluster and it is these distributed hashmaps that make up the data store. The
instance running within a data manager is self-contained and the software modules
within the data manager may only put, get, and remove entries (i.e. value sets) to
and from the data store as illustrated in Fig. 3.

The instances balance the entries in the data store such that they are evenly
distributed among the instances executing on a cluster and each instance has
approximately the same number of entries in its local memory. For each entry stored
in an instance there are copies of the entry stored in a different instance somewhere
in the cluster in case an instance fails (the number of copies is configurable in
Hazelcast). When instances leave a cluster its entries aremigrated to and distributed
among the remaining instances. Each instance optionally persists the entries of its
local memory to a file between executions.

The Hazelcast platform supports native clients that may access the data store
managed by the cluster of instances. A client connects to an instance and that
instance executes put, get, and remove operations on the data store on behalf of
the client. As clients do not participate in the storage or management of the
entries in the data store, they require few computer resources and many clients
may connect to a single instance. The native client shared library is compiled into
the data component and runs as a set of threads inside the process in which the
data component is running, similar to how the instances run within the data
Fig. 3. Interactions between software modules. Arr
manager processes. Similarly, the data component’s engine (which implements
the OpenMI and handles the configuration file) has limited interaction with the
client and may only instruct the client to connect and disconnect with an
instance and put, get, or remove entries. The client is otherwise isolated from the
engine and the client threads maintain a direct and persistent network connec-
tion to the instance threads. The data component communicates with the data
manager through the Hazelcast client-instance connection using two request
queues managed by the instance. The component inserts both requests to
retrieve value sets from web services and requests to store value sets in the data
store into these queues and the data manager and its software modules process
the requests.

2.3. Providing input data to models

2.3.1. Caching
During the execution of a composition, several model components within a

single composition may request identical value sets from a data component. In
addition, model components which are independently executing compositions on
different cluster nodes may request the same value sets from different data com-
ponents. In both cases it is advantageous for the data components to cache the value
sets that they retrieve from the web services and to share those value sets across all
the data components that are executing simultaneously in different compositions
across a cluster. It is also advantageous for the cached value sets to be persisted
between executions as the same value sets may be needed on subsequent execu-
tions of a composition.

When GetValues is invoked by a model component on a data component, the
data component checks to see if the requested value set exists in the data store by
creating the appropriate key and then performing a get operation on the data store
using the key. If the data component successfully retrieves the value set from the
data store then it is returned to the model component and the execution of the
composition continues. If the value set is not in the data store then the data
component inserts the key into the request queue. After the insertion is completed,
the data component periodically checks the data store until the value set is available
(during which the execution of the composition is paused). The data component
relies on the retrieval module inside the data manager to obtain the requested value
set from a web service and insert it into the data store.

The retrieval module waits for a request to be inserted into the request queue.
When a request is inserted by a data component, it is removed by the data manager
provided that the amount of data in the local data store has not reached the
maximum limit (as configured in the data component). The request queue may only
hold a single request at a time and causes data components towait if they attempt to
insert a request when there is already a request in the queue. This prevents the data
manager from becoming overwhelmed with requests. The data store is checked for
the requested value set in case it was already retrieved while the data component
was waiting to insert the request. If it is not, the retrieval module attempts to
assemble the requested value set from other value sets that are already in the data
store, as explained below.
ows indicate the direction of data movement.
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The element set of a requested value set may intersect with the element sets of
other value sets in the data store. As such, it may be possible to assemble the
requested value set by extracting the necessary values from other value sets already
in the data store whose element sets intersect with the element set of the requested
value set. This maximizes the reusability of the cached data and minimizes the
number of web service calls.

The following algorithm is utilized by the retrieval module to assemble value
sets in such a way as to minimize the number of get operations performed on the
data store. Each element of each element set is compared to the requested element
set to determine whether the elements in the requested element set exist in other
element sets. If all the elements in the requested element set can be found in other
element sets, then the value set map is checked for each source element set to see if
a value set for the requested time exists. If it does then the required values are
collected from it. If all the values in the requested value set are found then the
assembled value set is inserted as a new entry into the data store. This requires one
get operation per source element set. In the case of a requested value set whose
element set is a subset of another element set whose data is in the value set map, it
would require one get operation to obtain the necessary data to assemble the value
set. The maximum number of get operations that may be necessary is equal to the
size of the value set being requested, which occurs in the case that each value is
sourced from a different element set. The amount of time required for assembly
varies considerably according to the size of the element set, the degree of overlap
with existing element sets, the number of value sets in the cache, and the number of
data stores that they are spread across.

If a value set cannot be assembled from the values already in the data store, a
web service call task is created for the request and added to a thread pool. Each task
generates the appropriate web service request XML, calls the web service, and then
parses the response into a value set that is inserted into the data store, as shown in
Fig. 4. Multiple web service calls are issued simultaneously in a pipelined fashion to
take advantage of multi-core and multi-host web services. The retrieval module
limits the number of simultaneous web service calls to the number of connected
data components. This limit is necessary because data components may request
value sets ahead-of-time (prefetch) which could result in the creation of so many
threads that the system resources become exhausted.

2.3.2. Prefetching
The simulation of physical processes (especially those for which the OpenMIwas

initially designed) typically involves the calculation of output quantities over a
simulation time period. A component typically steps forward through simulation
time requesting value sets from the data component on each step. To avoid causing a
model component to wait for a value set while the data component is retrieving it
from a web service, the data component retrieves value sets before they are
requested, a technique called prefetching.

This notion of prefetching data stands somewhat in contrast to the pull-based
execution style of the OpenMI in which computation is only performed as needed.
Although the pull-based execution style is efficient in that computation is only
performed on demand, the concept of prefetching could be broadly applied tomodel
components in general as a means to reduce simulation runtime through parallel
execution. Models could precompute results, perhaps based on estimated or antic-
ipated inputs, while other components are executing and the results immediately
returned when requested if the estimation was close enough.

Throughout the execution of a composition the components are at approxi-
mately the same point in simulation time. This is because each component typically
requires input data from the other components that reflect its current simulation
time, causing those components to advance to the same point in simulation time. For
this reason, all components should be prefetched to the same future point in
simulation time.

Prefetching relies on knowledge of what data will be needed before it is
requested. It is not possible for the data component to obtain this information
directly frommodel components, as the OpenMI does not support this functionality.
Fig. 4. Sequence diagram of interactions invol
The data component predicts what value sets will be requested in the future by
observing what value sets have been requested in the past. Components that use a
fixed-length time step request data from the data component at fixed intervals
making it possible to identify these components and determine the length of their
time steps. In such cases the data component can accurately predict the value sets
that will be requested in the future. It is more difficult for the data component to
predict the data needs of components that use a variable-length time step and is not
addressed in this work. The data component prefetches all links to a common future
point in simulation time (number of Julian days) given by: t¼min{pþ i,e} where p is
the earliest time to which all links have been prefetched, i is the longest request
interval (i.e. longest time step) across all links, and e is the ending time of the
composition. When prefetching data, it is possible that the requests by the actively
executing model component are delayed due to requests made by the waiting
components, but that delayed time is accounted for when/if those components use
that data.
2.4. Delivering output data to web services

The input exchange items of the data component may be linked to one or more
model components within a composition. At initialization, the data component
registers to be notified via a DataChanged event whenever a model component
produces an output value set along any of its input links, which is typically raised
after each time step. When the data component receives this notification it invokes
the GetValues function on the model component to obtain a copy of the value set as
shown in Fig. 5.

The data component instructs the Hazelcast client to insert the value set into a
data queue within the Hazelcast instance that the client is connected to. This queue
can only hold a single value set at a time so if a value set is in the queue, then
additional insert attempts will wait until the value set is removed, causing the data
component to wait, and in turn causing the model component to wait. The queue
serves as a gate to prevent too much data from being inserted into the data store,
which would be possible if the client inserted value sets directly into the data store.
Whenever a value set is added to the queue, the data manager checks if there is
available space in the local data store and if somoves the value set into the data store
and sets a flag within the value set that indicates it is pending delivery to a web
service. The amount of memory dedicated to the local data store is configurable via
the data store configuration file and must be equivalent among all connected data
stores (as required by Hazelcast).

The delivery module periodically searches for value sets pending delivery and if
there is a sufficient amount of data to be sent such that network resources will be
utilized efficiently, then the value sets are sent to the web service. The amount of
data that is sent in each web service call is configured in the data store as a number
of bytes, called the delivery size. The data component estimates the number of value
sets to include in each web service call by estimating the size of an encoded value set
(as XML) via a constant per-value multiplier specific to each web service.

The periodic search performed by the delivery module is efficient in that only a
single pass through the entries in the local data store is necessary. During this pass,
entries that are pending delivery are copied into a priority queue ordered by creation
date. If the encoded size of the value sets in the queue is greater than the delivery
size then a thread pool task is created that serializes the value sets into the
appropriate XML encoding and calls the web service. The delivery module ensures
that it delivers at least as many entries as it collects before allowing the data
manager to shut down to ensure that all managers cooperate fairly in the delivery of
data.

The delivery size provides a means for both the regulation of network efficiency
and the control of the delay between the collection of a value set and its delivery to a
web service. The delivery manager attempts to remove enough value sets from the
buffer tomeet the delivery size before sending them in a single web service call. This
may cause entries to remain in the buffer for extended periods of time. This may be
acceptable in cases inwhich the data is being archived, but in cases where the data is
ved in providing data from web services.



Fig. 5. Sequence diagram of interactions involved in delivering data to web services.

Fig. 6. The composition used in the performance study. Arrows indicate the direction
of data transfer between the components.
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consumed as the simulation is being carried out it may be necessary tominimize the
duration that an entry may reside in the buffer before it is delivered, at the expense
of efficient network utilization. By setting the delivery size to zero, value sets are
sent individually as quickly as possible. Note that the delivery module does not
attempt to send more value sets than necessary to meet the delivery size because
this would require additional parameterization of a maximum, since data may be
inserted into the data store at a rate that is faster than the delivery module is able to
remove it, preventing the delivery of data.

The amount of memory available to the data store is finite and once exhausted
the operation of the data store will pause, since it relies on the ability to store data.
The effectiveness of the cache increases with the amount of data in the cache, so it is
beneficial to allow the data store to be filled as much as possible without impeding
the basic operation of the data store. For these reasons a thread within the data
manager periodically checks the local buffer and if the data size is greater than 90%
of the maximum size, then an eviction is performed. The least accessed 15% of the
entries are removed from the buffer that (1) have been sent, or (2) been accessed at
least once, or (3) have been downloaded and cached. This prevents cached data,
which may or may not be used in the future, from preventing data retrieval from
web services or collection from components. In the case that the data store is mostly
full of unsent data, downloaded data is purged leaving only the unsent data and if no
memory is available, a request will remain in the data queue blocking data com-
ponents from adding more data requests. As data is delivered to the web services,
sent data will be purged and data components will again be able to insert requests
into the data queue.

The data component does not provide a means to update the data in the cache,
for example, by re-downloading value sets at a prescribed interval because the
intended use case is the retrieval of reference data that do not change or do so
infrequently. Scenarios in which the data changes frequently would be managed by
the user, for example, by disabling persistence so that the cache is empty at the start
of each simulation run resulting in new data being downloaded, or by changing the
size of the cache to indirectly control the frequency at which data are re-
downloaded, since data are expired when the available memory becomes low
causing them to be re-downloaded the next time they are requested.

2.5. Adding support for web services

The initial implementation supports WaterOneFlow web services and a simple
REST web service used in the performance study. The data manager may be
extended to support additional web services through the creation of adapter classes
that serve as intermediaries between the fetch/delivery modules and the web ser-
vices. An adapter class conforms to the ServiceAdapter interface defined by the data
manager that consists of two primary methods that are responsible for sending a set
of value sets to a web service and retrieving a value set from a web service. We
envision the development of a complete plugin architecture in which web service
adapters can be developed independently and loaded into the data manager at
runtime.

3. Performance study

To evaluate the scalability and efficiency of the data component
we measured a set of performance metrics for varying numbers of
linked models simultaneously executing across a compute cluster.

3.1. Baseline configuration

We created a composition that includes a data component
linked to two model components such that the data component
provides input to a consumer component and collects output from a
producer component as illustrated in Fig. 6. The producer and
consumer components serve as placeholders for model compo-
nents and although they are capable of accepting and providing
exchange items and advancing through simulation time, they do
not perform any calculations but rather pause for 1 s on each time
step, which we refer to as the time step calculation time. They
discard the data they receive as input and produce constant-valued
data as output. We configured the components to advance their
simulation time by one day on each time step and configured the
composition for a time horizon of 7 months, thus each component
performs 212 time steps in each simulation. We empirically
determined that using a higher number of time steps does not
impact the performance results. We configured the data compo-
nent to deliver the output from the producer component to a web
service hosted within the compute cluster and provide input to the
consumer from the service. The data component thus provides 212
value sets to the consumer component and collects 212 value sets
from the producer component during the execution of a single
instance of the composition, which we refer to as a simulation.

For the purpose of the performance study, in which a large
number of simulations were necessary and consumed a significant
amount of time, it was advantageous to use a small element set. It
was also important that it be of a reasonable size that an envi-
ronmental model may use in practice. For these reasons the com-
ponents exchange value sets that correspond to an element set of
1000 elements, which allowed us to run the necessary number of
experimental simulations within the necessary timeframe while
also be representative of some environmental models, such as
regional watershed models that operate at coarse resolutions for
which elements represent polygons.

We used a fixed pause duration to minimize fluctuations in the
number of data components waiting on the request queue of the
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data managers. This allows for more accurate performance mea-
surement because it avoids arbitrary delays due to the queue being
empty at times and very long at other times that may result when
the request frequency of model components is variable. The greater
the variance in the request frequency the greater the variance in the
number of data components waiting on the request queue and thus
regular request frequencies result in minimum runtimes.

A simulation begins when the trigger invokes GetValues on the
consumer component for its starting simulation time. The con-
sumer component in turn calls GetValues on both the producer
component (which advances its time) and data component which
return the requested value sets to the consumer component which
then advances its time. The generation of the value set by the
producer raises a DataChanged event which causes the data
component to call GetValues on the producer component to obtain
the new data. The trigger repeatedly invokes GetValues on the
consumer until the simulation time of the consumer reaches the
configured end time. We refer to the duration of time that an
instance of the composition spends executing as the simulation
runtime. As the components perform time steps sequentially and
pause for 1 s on each step the simulation runtime of the baseline
configurationwould be 424 s if the data component and exchanges
between the components incur zero time.

3.2. Execution environment

We executed the simulations on an onsite Linux-based Beowulf
compute cluster for the performance study. To limit variability in
the results due to differences between the hardware specifications
of the compute nodes we utilized a single class of machines that
had dual 8-core Intel Xeon E5-2690 processors with 64 GB of
memory and were connected via gigabit Ethernet. Of the 133 nodes
and 2066 cores in the cluster, this machine class accounted for 34
nodes and 544 cores. A virtualizedWindows-based server with a 4-
core 2.7 GHz processor and 8 GB of memory hosted the web ser-
vices andwas connected to the compute nodes via gigabit Ethernet.

Access to the cluster nodes is provided via a job scheduler (Sun
Grid Engine) to which requests are made for resources (number of
processor cores, amount of memory, and maximum runtime) and
when they become available a set of scripts provision the nodes as
necessary and then execute a set of simulations. The job scheduler
executed each set of simulations on multiple nodes utilizing an
average of approximately 5 cores on each node. We configured the
job scheduler to reserve one core for each data manager and one
core for every 4 simulations. Scheduling several simulations on
each core made it possible to execute a greater number of simu-
lations than there were cores. We verified that collocating several
simulations on a single core did not affect the performance results
in our experimental configuration (probably because the producer
and consumer components require few computer resources).

The components are implemented in the C# programming
language based on the OpenMI 1.4 software development kit and
were executed using the OmiEd application (via the command
line). We chose version 1.4 of the OpenMI because the model
components in our case study rely on libraries based on this version
(Bulatewicz et al., 2013; Castronova and Goodall, 2010) althoughwe
are actively developing an implementation of the data component
for version 2.0 of the OpenMI as well. The data manager is imple-
mented in the Java programming language because this is the
language that Hazelcast is implemented in. The web service is
implemented in the PHP programming language and is hosted by
the Apache HTTP server. We developed a custom REST-based web
service and minimal XML data encoding to avoid any bias that a
more complex encoding may have on the results. The web service
parses the XML in each request and returns constant-valued data in
its response. We configured the data manager such that the backup
feature of Hazelcast was disabled so that this feature would not
affect our performance measurements.

The delivery size that maximizes throughput when data is sent
from the data store to the web service is dependent on several
factors including network latency, available bandwidth, and soft-
ware performance. We conducted a series of measurements to
empirically determine an appropriate delivery size for our experi-
mental configuration. We found that the maximum throughput
between a benchmark application and theweb service was 47MB/s
when at least 50 MB of data was sent. As the XML serialization of a
1000-element value set requires 49 KB, the data store would have
to send 1498 value sets in each web service call to achieve
maximum throughput. If value sets were collected at a rate of 1 per
second then they would be delivered every 25 min. To increase the
rate at which value sets were delivered to the web service while
still maintaining good network efficiency we decided to use a de-
livery size of 11 MB which achieves 50% of the maximum network
throughput.

3.3. Scalability

To verify that the design of the data component and data
manager is efficient and capable of high performance when there
are large numbers of data components we measured the average
simulation runtime for varying numbers of simulations and data
managers. Each simulation used a unique scenario identifier so that
its input and output value sets were distinct. The results are pre-
sented in Fig. 7 (top). For a given number of data managers, the
average simulation runtime increased as the number of simulations
increased. This is because the data component pauses a simulation
while it is waiting for the data manager to process its requests.
When all simulations were supported by a single data manager the
rate at which the average simulation runtime increased was most
closely described by the function 0.0003 � (n1.5) where n is the
number of simulations (R2 ¼ 0.996). In the case of 4 data managers
the rate at which the runtime increased was most closely described
by the function 0.4� e0.001�n (R2 ¼ 0.994). Based on these functions
we expect the average simulation runtime to increase at a greater
rate when there are more than 1000 simulations.

The number of data managers supporting the simulations had a
varying impact on the average simulation runtime. Increasing the
number of data managers from 1 to 4 significantly reduced the
average simulation runtime, while increasing further to 8 only
resulted in a small reduction for higher numbers of simulations.
Increasing the number of data managers further to 16 slightly
increased the average simulation runtime due to the additional
overhead incurred by the management of the distributed data
store. We therefore estimate that the ideal ratio for our experi-
mental configuration was approximately 1 data manager per 250
simulations.

The duration of time between when a value set is collected by a
data component and when it is delivered to the web service, the
delivery time, is a function of (1) the rate at which value sets are
collected by the data components connected to a data manager, (2)
the size of the value sets, and (3) the delivery size that the data
manager is configured to use. For our experimental configuration
the size of a value set with 1000 elements encoded in XML was
49 KB and the delivery size was 11 MB, so the data manager only
sent data to the web service when it found 230 unsent value sets in
its local data store. For low numbers of simulations the rate at
which value sets were collected and added to the data store was
low, resulting in the data manager delaying the sending of the data,
as shown in Fig. 7 (bottom-left). Higher numbers of data managers
amplified this effect, further reducing the rate at which value sets



Fig. 7. Scalability results.
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were added to each data manager and further increasing the de-
livery time. For high numbers of simulations, the delivery time was
low due to the faster rate at which value sets were collected by data
components and added to the data store, which ensured there was
always a sufficient number of unsent value sets. In this case the
delivery time increased slightly as the number of simulations
increased because greater numbers of value sets in the data store
increased the search time for locating unsent value sets.

The average number of operations per second (put, get, and
remove) performed by Hazelcast on the hashmap that stores the
value sets increased with the number of compositions as shown in
Fig. 7 (bottom-right). The maximum number of operations per
second reached in our experimental configuration was approxi-
mately 50,000 when a single data manager was used and was
significantly less for greater numbers of data managers.

3.4. Caching

Caching ismost effectivewhen the input value sets neededby the
simulations are in the data store prior to when they are requested,
and the time required to retrieve a value set from a web service is
significant. It is least effective when the needed value sets are not in
the data store or when they may be quickly retrieved from the web
services. To demonstrate these two extremes we compared the
baseline scenario, inwhich cachinghas little effect,with an alternate
scenario in which caching is highly effective. In the latter case one
simulation executedbefore the others topopulate the data store and
the web service waited 3 s before responding to each request for a
value set.Wemeasured the performance of both scenarioswith and
without caching (simulations used either a common scenario
identifier so that they requested identical data or distinct identifiers
so that they requested different data, respectively) in a 16-
simulation 1-data manager configuration.

The average simulation runtime for the alternate scenario in the
“no caching” case was approximately 2.5 times higher than in the
baseline scenario due to the additional 3 s delay incurred by each of
the 212 web service requests, as shown in Fig. 8. For the baseline
scenario the average simulation runtime was similar in both the
“caching” and “no caching” cases because the retrieval time (i.e. the
time spent generating a request, calling a web service, and pro-
cessing a response) was very low. For the alternate scenario,
however, the average simulation runtime in the “caching” case was
59.8% lower than in the “no caching” case because the retrieval time
was higher (approximately 3 s). In both scenarios the amount of
data retrieved from theweb service in the “caching” case was 93.8%
lower than in the “no caching” case because the simulations
requested identical input data and thus only 1/16th the amount of
data was retrieved from the web service. In general, the amount by
which the average simulation runtime can be reduced is the per-
centage of the runtime that is due to the retrieval of the data. The
amount by which the data transfer can be reduced is a function of
the size of the value set the number retrieved.

These two scenarios represent the extremes but in practice it
would probably be the case that a portion of the value sets exist in
the cache and a portion are retrieved from theweb services. In such
a case, the performance trend would be linear (provided that the
value set sizes and web service retrieval times remain consistent).
For example, if exactly half the value sets were in the cache, then
the amount of data transferred and the duration of time spent
retrieving data would be half that of the extreme case in which
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there is no overlap and all data must be retrieved from the web
services.

3.5. Prefetching

Prefetching is most effective when there is sufficient time dur-
ing the components’ time step calculations to retrieve data from the
web services. It is least effective when time step calculation times
are short compared to the retrieval time. To demonstrate this we
compared the baseline scenario, for which prefetching has a small
impact, to an alternate scenario in which prefetching has a large
impact. In the latter case we configured the time step calculation
time to be the same as the web service response time (i.e. the time
between receiving a request and sending a response), allowing the
retrieval of value sets to take placewhile the components (producer
and consumer) are calculating their time steps. We measured the
performance of both scenarios with and without prefetching
enabled in 16- and 256-simulation configurations with a single
data manager.

As shown in Fig. 9, prefetching reduced the average simulation
runtime in all cases because some portion of the data retrieval
could be performed during the time step calculation rather than
waiting until each time step was calculated before requesting the
data. In the baseline scenario with 16 simulations, prefetching
resulted in a small decrease in the average simulation runtime
(3.4%) because the retrieval time was small and hence only a small
amount of time was saved by performing the retrieval during the
time step calculation. In the alternate scenario with 16 simulations,
prefetching resulted in a large decrease in the runtime (43.0%)
Fig. 9. Prefetch
because the retrieval time was high (due to the increased web
service response time) and thus a significant amount of time was
saved by performing the retrieval during the time step calculation.
In the case of 256 simulations, the reduction in the average simu-
lation runtime was less in both scenarios due to the number of
prefetch failures that were a result of the data component’s prior-
itization of requests for data over requests for prefetching data.

The reduction in the average simulation runtime possible by
prefetching is thus a function of the relative difference between the
retrieval time and the length of time between subsequent requests
made to the data component (i.e. the sum of the calculation times
of all components for a time step). In cases in which the retrieval
time is less than the total amount of time the components spend
calculating a time step, the runtime of the simulation is not affected
by the web service calls and is masked by the time step calculation
time (assuming the data manager does not reject the prefetch re-
quests). For example, in cases in which a model is performing an
intensive and time-consuming computation on each time step,
such as calculating an analytic solution, and data retrieval is rela-
tively quick, such as when retrieving data of generally small
element set sizes from a web service located within on-premise
network. Prefetching is less effective when models compute time
steps quickly, such as statistical regression model, or when
retrieving data takes a relatively long time, such as when retrieving
data from servers located overseas or when data consists of large
element sets. In general, the amount by which the average simu-
lation runtime can be reduced is the percentage of the runtime that
is due to the retrieval of the data (i.e. the retrieval time). In cases in
which the retrieval time is greater than the time spent calculating
ing results.
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time steps, the average simulation runtime will increase propor-
tionally according on the relative difference between them.

4. Case study: a groundwater sustainability challenge

To demonstrate how the data component may be incorporated
into a modeling study we present how we are utilizing it in an
ongoing case study to provide input data from an online database to
the components of a linked model executing on a desktop com-
puter. Whereas the performance study demonstrated the efficiency
of the data component, this section focuses on how it can be
applied in practice.

4.1. Study area

The communities of western Kansas in the Central Plains of the
United States have relied upon the availability of groundwater for
irrigated agriculture for 50 years (Fig. 10). The rate at which water is
extracted from the Ogallala Aquifer underlying the region has
exceeded the rate at which it naturally recharges, resulting in a
gradual decline in the volume of water stored in the aquifer. In
some areas it is no longer possible to extract water from the aquifer
due to the decreased saturated thickness, a trend that will continue
to spread throughout the region unless agricultural practices
transition to sustainable rates of water consumption. As this tran-
sition impacts the closely intertwined economy and ecology of the
region it is essential that it be guided by multidisciplinary inte-
grated assessment.

We consider the relevant natural and human processes in this
system to be (1) the movement and volume of groundwater, (2) the
choice of crop planted, and (3) the growth of the plants. Building on
previous experience in integrated modeling for irrigated agricul-
ture (Bulatewicz et al., 2010, 2013) we have developed three new
model components that simulate these processes and have created
a prototype linked model integrating them.

4.2. Model components

The crop choice component is an iterative PositiveMathematical
Programming (PMP) model (Howitt, 1995) that simulates farmers’
allocation of arable land to different crops. The model operates on
an annual time step, with each execution predicting farmers
choices in a single growing season. In addition to harvested crop
prices and crop-specific costs of production, the model accepts as
inputs the current depth to water and saturated thickness of the
aquifer. Depth to water affects water extraction costs, while satu-
rated thickness affects the pumping rate of wells, which in turn
creates an upper bound on the annual extraction of irrigationwater.
The model simulates land allocations as the solution to a con-
strained optimization problem that represents farmers profit-
Fig. 10. Conceptualization of an irrigated agricultural system.
maximizing a mix of land uses, given price conditions, water
extraction costs, and the constraints on water and land availability.
It operates over a set of (independent) polygons of variable size
(determined by the resolution of available calibration data). The
component accepts inputs for saturated thickness and depth-to-
water and provides outputs of acres planted for various combina-
tions of crop (wheat, corn, sorghum, soybeans, alfalfa) and irriga-
tion practice (irrigated or non-irrigated). Details on the model
development, calibration, and data sources are in Clark (2008) and
Garay et al. (July 2010). The model is implemented in MATLAB and
interoperability with the OpenMI is provided by the Simple Script
Wrapper (Bulatewicz et al., 2013).

The groundwater model provides the groundwater elevation
(head) as a function of space and time. For this application, we have
developed an OpenMI component for the Hydrologic Response
Function (HRF) approach from Steward et al. (2009). Briefly, the
aquifer is treated as a sloping base with rectangular cells used to
gather pumped water-use within cells that contain uniform aquifer
properties (Steward, 2007). Our OpenMI code fully implements the
HRF equations and enables the drawdown associated with pump-
ing to be communicated with neighboring cells. This approach was
chosen as it has been shown to accurately reproduce the cones of
depression formed by groups of wells in the study area (Steward
et al., 2009), and the code executes much faster than other ap-
proaches based upon the Analytic Element Method (Steward et al.,
2008) and finite gridded domain approaches (Steward and Allen,
2013). We also incorporated the groundwater added to the
domain through leakage from surface water identified by Ahring
and Steward (2012). This was accomplished by adding recharge to
cells that coincide with rivers and adjusting the recharge rates until
groundwater surfaces matched observations (see Steward et al.
(2009) for a discussion of these recharge volumes). The compo-
nent accepts inputs for irrigatedwater-use and provides outputs for
saturated thickness and depth to water. The model is implemented
in Scilab (INRIA) and interoperability with the OpenMI is provided
by the Simple Script Wrapper.

The crop production component provides crop yield and irri-
gated water use data as simulated by the Erosion-Productivity
Impact Calculator (EPIC) model (Williams, 1995). EPIC is a
process-based generalized crop model that simulates daily crop
growth by predicting plant biomass through the simulation of
carbon fixation by photosynthesis, maintenance respiration, and
growth respiration. In a previous effort we calibrated themodel and
created awrapper component that executed the original executable
program on-demand (Bulatewicz et al., 2009). In this work we took
an alternative approach to model reuse in which we executed the
original program for all combinations (2500) of the relevant model
inputs (soil, crop, management, weather) and embedded the
simulated output data in a component that provides them to other
components. The component operates over a set of (independent)
polygons of variable size and accepts inputs for soil type and pre-
cipitation and provides outputs for yield and water-use. It is
implemented in C# using the Simple Model Wrapper (Castronova
and Goodall, 2010).

4.3. Linked model design

We defined an element set consisting of 125 grid cells (10,000m
by 1000 m) overlying Seward County in southwestern Kansas (note
that the crop choice model internally aggregated the cells to a
single homogeneous unit). This set was used for all 13 links in the
composition (Fig. 11). The components operate on an annual time
stepwhere each year of the simulation period begins when the crop
production component requests the crop acreages from the crop
choice component and the precipitation and soil type from the data



Fig. 12. The data component configuration file (partial).

Fig. 11. Component linkages. Data is transferred in the direction of the arrows.
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component. The data component retrieves the data from an online
database and provides it to the crop production component. The
crop choice component requests the saturated thickness and depth
to water from the groundwater component (for the previous year),
which in turn requests the water-use from the crop production
component (also for the previous year). After receiving the
response, the groundwater component calculates the saturated
thickness and depth to water and provides them to the crop choice
component, which in turn calculates the crop acreages and pro-
vides them to the crop production component. The crop production
component then calculates the crop yield and irrigated water-use.

4.4. Using the data component

To create the linkedmodel we began by adding the 3models to a
new composition using the OmiEd application and then added the
appropriate links between them. We then configured the data
component by (1) defining the necessary output exchange items,
and (2) specifying the information about the web service from
which they should be retrieved. The exchange items and web ser-
vice information are defined within the data component’s config-
uration file as shown in Fig. 12. The format of the configuration file
is based on that of the Simple Model Wrapper and was extended to
include web service information. The element set and variable of
each exchange item (as well as the units information, not shown in
the figure) is listed in the configuration file as well as the type, URL,
and list of quantities provided and accepted by each web service.
The variable ID specified in each output exchange itemmust appear
in the list of RetrievableQuantities for one of the web services and
each input item must appear in the DeliverableQuantities After
creating the configuration file we added the data component to the
composition and added links from each of its output exchange
items to the appropriate input of the crop production component.

The URL specified in the configuration file is that of a CUAHSI HIS
WaterOneFlow web service that was hosted on a virtualized server
(running Windows) that we setup on the cluster network and was
publicly accessible via the Internet. The web service (implemented
in PHP) connected to a MySQL database that was also hosted on the
server and used the Observations Data Model (Horsburgh et al.,
2008), which is a relational data model for the storage and
retrieval of time series hydrologic observations and associated
metadata. The data component provides interoperability between
the ODM/WaterOneFlow web service and the OpenMI by mapping
their respective data models to one another in a similar way as
Castronova et al. (2013b) (e.g. mapping quantities to variables and
sites to elements). Thus, the IDs of the elements within the element
sets of the input and output exchange items specified in the
configuration file must exist as sites in the database (mapped to
SiteCode) and the variable IDs of the exchange items must exist as
variables in the database (mapped to VariableName). The Water-
OneFlow web service returns data as time series whereas ex-
changes between OpenMI components are space series, requiring
the data component to make a separate web service call for each
element on each time step.

The output of the linked model simulation for 3 indicators is
shown in Fig. 13. The county-wide total crop yield and irrigated
water use varied from year to year according to the weather while
the saturated thickness of the aquifer decreased at a constant rate.
The data component was executed on a desktop computer (along
with a data manager) and communicated with the web service via
the Internet over a distance of 2266 km. The first time the simu-
lationwas executed, the data component retrieved 111.9 MB of data
and spent 14.8 m retrieving data (which was 42.2% of the total
simulation time) over the course of the 100 time steps. On subse-
quent executions, the data component retrieved all data from the
data manager and the web service was not called.

5. Conclusions

We have presented the design of a general-purpose data
component for the OpenMI, evaluated its performance, and
demonstrated its application in a modeling study. The data
component can mitigate data management challenges in modeling
and simulation by serving as a bridge between model components
and online services minimizing the reliance on data files and ad-
hoc scripting. We adapted three techniques to the unique design
of the OpenMI to enable efficient operation: caching, prefetching,
and buffering, making it suitable for use on both desktop com-
puters and high-performance compute clusters.

The data component is added to a composition and linked to
model components in sameway that model components are linked
to one another. The scientist configures, and re-configures the data
component for the input and output exchange items necessary for
any given set of model components based on the data available via
web services. It relies on a data manager program that communi-
cates with web services and manages a distributed data store



Fig. 13. Output from the linked model for 3 indicators.
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shared across all the data managers executing on a compute cluster.
The data retrieved fromweb services is cached in the data store and
the data collected from model components is buffered in the data
store before being delivered to web services.

We evaluated the performance of the data component in terms
of scalability and the effectiveness of caching and prefetching in
minimizing the simulation runtime. The results are summarized in
Table 1. The increase in simulation runtime incurred by the data
component (as compared to using local data files) ranged from
0.14 s for 16 simulations to 3.78 s for 1000 simulations for each time
step. The data transferred to and from the web service was 131 KB
per time step for a value set of 1000 values.

Caching can have a significant impact on the runtime of simu-
lation in some cases and little or no impact in other cases. We
demonstrated this via two configurations which resulted in a 1%e
29% reduction in the average simulation runtime. This range only
serves as an example of possible performance, as the actual impact
is a direct result of the retrieval time and the number of times
model components request identical data.

Prefetching can also have a significant impact on the runtime of
a simulation, but through different means than caching. Prefetch-
ing is only effective when the time step processing time of a model
component is comparable to the retrieval time thus making it
possible to overlap the model execution with the retrieval of data.
We demonstrated this via two configurations in which the runtime
was reduced by only 3% when there was no overlap and 43% when
Table 1
Summary of performance study results.

Technique Improvement Dimension Cost per time step

Caching 1%e29% Time 0.14 se3.78 s
Prefetching 3%e43% Data 131 KB
Bufferinga 5%e33%

a Estimated.
therewas full overlap. In addition, prefetching is less effectivewhen
a data manager is under high utilization.

Buffering always reduces the runtime of a simulation where the
reduction is directly proportional to the web service response time.
Although the impact of buffering on the simulation runtime cannot
be measured empirically (because buffering is inherent in the
design of the data manager) its impact can be estimated by adding
the time spent sending the data on each time step. For the exper-
imental configuration, in which the model components spend 2 s
processing each time step, if the time spent sending data on each
time step was 0.1 s then the reduction in runtime due to buffering
would be 5% whereas if the time spent sending data was 1.0 s then
the reduction would be 33%.

Based on the results of the performance study, it can be expected
that the simulation runtime will increase as the number of simu-
lations is increased, and that buffering always results in improved
runtimes while caching and prefetching may result in improve-
ments depending upon the situation. Overall, the runtime overhead
of the data component is primarily determined by the web service
response time and to a lesserdegree the time stepprocessing timeof
the model components and the value set size (as the data transfer
size and parsing time are influenced by it). As the web service
response time increases, the runtime increase incurred by the data
component becomes larger while at the same time the benefit of
buffering and the potential benefit of caching and prefetching in-
crease as well. In general, the percentage of the runtime that is due
to the web service calls is equivalent to the reduction that would be
achieved in cases in which caching and prefetching are effective.

We therefore conclude that the design of the data component
meets the three requirements identified in Section 2. Standards for
web services make it possible for the component to be configured
and reconfigured as necessary to meet the needs of different linked
model configurations and different web services. The increase in
simulation runtime incurred by the data component (as compared
to using local data files) is reasonable and in some cases can be
eliminated by caching and prefetching data. The overall perfor-
mance of the data component is reasonable for large numbers of
simultaneous simulations.

As the importance of data availability, interoperability, and
transparency continue to rise, so too does the need for software
tools that facilitate these. General-purpose tools that intelligently
and efficiently provision, collect, and deliver data will become an
essential part of OpenMI linked models on desktop computers and
compute clusters alike and this work provides a starting point for
such tools.
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