
A MODEL-DRIVEN DEVELOPMENT AND VERIFICATION APPROACH

FOR MEDICAL DEVICES

by

Jakub Jedryszek

B.S., Wroclaw University of Technology, Poland, 2012

B.A., Wroclaw University of Economics, Poland, 2012

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
John Hatcliff

Abstract

Medical devices are safety-critical systems whose failure may put human life in danger.

They are becoming more advanced and thus more complex. This leads to bigger and more

complicated code-bases that are hard to maintain and verify. Model-driven development

provides high-level and abstract description of the system in the form of models that omit

details, which are not relevant during the design phase. This allows for certain types of

verification and hazard analysis to be performed on the models. These models can then be

translated into code. However, errors that do not exist in the models may be introduced

during the implementation phase. Automated translation from verified models to code may

prevent to some extent.

This thesis proposes approach for model-driven development and verification of medi-

cal devices. Models are created in AADL (Architecture Analysis & Design Language), a

language for software and hardware architecture modeling. AADL models are translated

to SPARK Ada, contract-based programming language, which is suitable for software veri-

fication. Generated code base is further extended by developers to implement internals of

specific devices. Created programs can be verified using SPARK tools.

A PCA (Patient Controlled Analgesia) pump medical device is used to illustrate the

primary artifacts and process steps. The foundation for this work is "Integrated Clinical

Environment Patient-Controlled Analgesia Infusion Pump System Requirements" document

and AADL Models created by Brian Larson. In addition to proposed model-driven devel-

opment approach, a PCA pump prototype was created using the BeagleBoard-xM device as

a platform. Some components of PCA pump prototype were verified by SPARK tools and

Bakar Kiasan.

Table of Contents

Table of Contents iii

List of Figures vii

List of Tables xi

Acknowledgements xii

Dedication xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Technologies . 3

1.3 Contribution . 4

1.4 Organization . 5

2 Background 6

2.1 Integrated Clinical Environment . 6

2.2 Medical Device Coordination Framework . 8

2.3 AADL . 9

2.3.1 OSATE . 12

2.4 BLESS . 13

2.5 SPARK Ada . 14

2.5.1 GNAT Compiler . 19

iii

2.5.2 GNAT Programming Studio (GPS) 20

2.5.3 Ravenscar Tasking Subset . 21

2.6 SPARK Ada Verification . 27

2.6.1 SPARK Examiner . 29

2.6.2 SPARK Simplifier . 34

2.6.3 ZombieScope . 34

2.6.4 ViCToR . 35

2.6.5 Proof Checker . 35

2.6.6 SPARKSimp Utility . 35

2.6.7 Proof Obligation Summarizer (POGS) 36

2.6.8 AUnit . 36

2.6.9 Sireum Bakar . 37

2.6.10 GNATprove . 40

2.7 AADL/BLESS to SPARK Ada code generation 41

2.7.1 Ocarina . 41

2.7.2 RAMSES . 42

3 PCA Pump 43

3.1 PCA Pump Requirements Document . 46

3.2 PCA Pump AADL/BLESS Models . 49

3.3 BeagleBoard-xM . 51

4 AADL/BLESS to SPARK Ada Translation 53

4.1 AADL/BLESS to SPARK Ada mapping . 53

4.1.1 Data Types Mapping . 54

4.1.2 AADL Ports Mapping . 63

4.1.3 Thread to Task Mapping . 66

iv

4.1.4 Subprograms Mapping . 66

4.1.5 Feature Groups Mapping . 67

4.1.6 AADL Package to SPARK Ada Package Mapping 69

4.1.7 AADL Property Set to SPARK Ada Package Mapping 70

4.1.8 BLESS Mapping . 71

4.2 Port-based Communication . 74

4.2.1 Threads Communication . 74

4.2.2 Systems Communication . 82

4.3 Towards an Automatic Translator . 88

5 PCA Pump Prototype Implementation and Code Generation 90

5.1 Running SPARK Ada Programs on BeagleBoard-xM 90

5.1.1 Odometer . 93

5.1.2 Multitasking Applications . 95

5.1.3 Controlling PCA Pump Actuator . 101

5.2 Implementation Based on Requirements Document and AADL Models . . . 106

5.3 Code Translation from AADL/BLESS Models 109

6 Verification 110

6.1 Verification of Implemented PCA Pump Prototype 111

6.2 Monitoring Dosed Amount . 112

6.3 Verification of Generated Code . 126

6.4 AUnit Tests . 129

6.5 GNATprove . 131

6.6 Assessment . 138

7 Summary 139

v

8 Future Work 141

Bibliography 144

A Terms and Acronyms 149

B PCA pump prototype - simple, implemented, working pump 151

C PCA pump prototype verification - POGS report 163

D Rate controller thread from PCA pump AADL models 177

E Simplified PCA pump AADL models 181

F Simplified PCA pump - translated from simplified AADL models 190

G AUnit tests for PCA pump dose monitor module 215

vi

List of Figures

2.1 ICE Closed Loop Control . 7

2.2 MDCF architecture and example app virtual machine (lower right) 9

2.3 AADL Application Software Components . 10

2.4 AADL model of simple thermometer . 11

2.5 AADL model of simple thermometer . 11

2.6 Developer responsibility in Ada.1 . 15

2.7 Sample SPARK procedure with code contracts 16

2.8 Sample SPARK 2014 procedure and Code Contracts 18

2.9 Sample tasks . 22

2.10 Sample tasks with protected object . 23

2.11 Sample tasks with protected object body . 24

2.12 Sample tasks with atomic type . 26

2.13 Relationship of the Examiner and Proof Tools.2 28

2.14 Run SPARK Make . 31

2.15 Examiner Properties . 32

2.16 Bakar Kiasan report . 39

3.1 Patient Controlled Analgesia (PCA) pump 43

3.2 Alaris Pump . 44

3.3 Standard Process Control Loop. 45

3.4 PCA Pump system . 46

3.5 Open PCA Pump concept . 47

vii

3.6 Open PCA Pump AADL model . 50

3.7 BeagleBoard-xM . 51

3.8 An example of PWM duty cycles . 52

4.1 AADL Base_Types package . 55

4.2 Mapping of Base_Types for SPARK 2014 . 56

4.3 Nested packages in SPARK Ada . 68

4.4 Child packages in SPARK Ada . 68

4.5 Sample AADL package with system . 69

4.6 Translation of sample AADL package from Figure 4.5 - package specification 70

4.7 Translation of sample AADL package from Figure 4.5 - package body 73

4.8 Example of port communication between threads 74

4.9 Example of two way port communication between threads in different packages 78

4.10 AADL model of two way port communication threads in different packages . 79

4.11 Two way port communication translated to SPARK Ada: package Pkg1TwoWay . 80

4.12 Two way port communication translated to SPARK Ada: package Pkg2TwoWay . 81

4.13 Example of port communication between systems 82

4.14 AADL model of port communication between systems: package Panel 83

4.15 AADL model of port communication between systems: package Pump 84

4.16 AADL model of port communication between systems: package Main 84

4.17 Port communication translated to SPARK Ada: package Panel 86

4.18 Port communication translated to SPARK Ada: package Pump 87

5.1 "Hello World" in Ada . 91

5.2 Edit Project Properties . 91

5.3 Project Main files . 92

5.4 SPARK 2005 code: Odometer . 94

viii

5.5 Main procedure for Odometer package . 95

5.6 SPARK 2014 code: Odometer . 96

5.7 Simple multitasking application in Ada . 97

5.8 Multitasking Odometer specification . 99

5.9 Multitasking Odometer body . 100

5.10 Turning pin on and off in bash . 102

5.11 Turning pin on and off in Java . 104

5.12 Simple pump in Ada: package specification 104

5.13 Simple pump in Ada: package body . 105

6.1 Applied Verification strategy . 111

6.2 Summary of POGS report for PCA Pump prototype 113

6.3 Dose monitor module specification . 114

6.4 POGS report . 115

6.5 Bakar Kiasan verification report . 116

6.6 Configuration file for Bakar Kiasan . 117

6.7 Bakar Kiasan verification report, second run 117

6.8 Bakar Kiasan verification report, third run 118

6.9 Bakar Kiasan verification report, fourth run 119

6.10 Sum function for summing all elements of array 120

6.11 Bakar Kiasan verification report, fifth run 121

6.12 Postconditions added to Move_Dosed procedure 121

6.13 Third POGS report . 123

6.14 Undischarged Verification Condition from increase_dosed.siv file 124

6.15 Undischarged Verification Condition from move_dosed.siv file 124

6.16 Undischarged Verification Condition from read_dosed.siv file 125

ix

6.17 Undischarged Verification Condition from sum.siv file 125

6.18 Dead path in Move_Dosed procedure . 126

6.19 Dose monitoring module after changes: package specification 127

6.20 Dose monitoring module after changes: package body 128

6.21 Undischarged Verification Condition from sum.siv file 129

6.22 Flow errors returned by Examiner for Pca_Operation package body 129

6.23 AUnit tests for Move_Dosed procedure . 130

6.24 Sequential module for dose monitoring in SPARK 2014: package specification 131

6.25 Sequential module for dose monitoring in SPARK 2014: package body 132

6.26 GNATprove settings . 133

6.27 GNATprove verification summary of module for dose monitoring in SPARK

2014 . 134

6.28 Sequential module for dose monitoring in SPARK 2014 without variable re-

finement: package specification . 135

6.29 Sequential module for dose monitoring in SPARK 2014 without variable re-

finement: package body . 136

6.30 GNATprove verification summary of module for dose monitoring in SPARK

2014 without variable refinement . 137

x

List of Tables

2.1 Fundamental SPARK annotations . 17

2.2 Sample SPARK 2005 to 2014 mapping. 19

4.1 Base AADL types to SPARK mapping. 56

4.2 AADL enumeration types to SPARK mapping. 60

4.3 AADL types to SPARK mapping: Subtypes. 61

4.4 AADL arrays to SPARK Ada mapping . 62

4.5 AADL struct to SPARK Ada record mapping 63

4.6 AADL to SPARK Ada ports mapping. 64

4.7 AADL threads to SPARK Ada tasks mapping. 66

4.8 AADL subprograms to SPARK Ada subprograms mapping. 67

4.9 AADL property set to SPARK Ada package mapping 71

4.10 BLESS to SPARK contracts mapping . 71

4.11 Translation of AADL threads communication to SPARK Ada 75

4.12 AADL threads communication to SPARK Ada tasks communication transla-

tion (multiple packages) . 76

xi

Acknowledgments

"Showing gratitude is one of the simplest yet most powerful things humans can do for each other."

— Randy Pausch, Last Lecture

I would like to say thank you to all people, who helped me pursue Master of Science

program in Computer Science at Kansas State University. Many thanks to Dr. Andrew Rys

who encourage me to apply for Graduate School, and was always helpful with an advice.

I wish to thank, my major professor, Dr. John Hatcliff who admitted me to SAnToS

Laboratory research group, and enabled me to be involved in research. I met there many

passionate people and great researchers. Furthermore, without Dr. Hatcliff’s guidance, this

thesis will not be accomplished. Thanks to Dr. Robby, who was always helping me in

my research, giving valuable suggestions and ideas. Thank you to Jason Belt for sharing

his knowledge and experience with me, which played significant role in my research career.

Thanks to Brian Larson, whose work, was inspiration of my Master thesis. Many thanks to

Dr. Eugene Vasserman for serving on my committee and for his valuable suggestions about

this work. A special thanks for Venkatesh Prasad Ranganath. Conversations with him and

his suggestions played significant role in accomplishing this thesis.

xii

Dedication

For my family, mentors, friends and all people

who inspired me directly or indirectly

in things I do.

xiii

1

Introduction

“Life is a journey, not a destination.”

– Ralph Waldo Emerson

Software is present in all aspects of our lives, from the simple program in alarm clocks

to iPads, through cars, refrigerators and computers. Furthermore, our lives are getting

more and more dependent on software. Usually when we think about software, we think

about applications for PC or smart phone, e.g. calculator, word processor or stock market

application. In this case, rapid development and smooth operation is a key. However,

there is also another, very important class of software: safety-critical systems. This class

comprised of software for airplanes, medical devices, satellites, and rockets. Safety-critical

systems are usually real-time - their correctness depends not only on logic, but also upon

the time constraints (hard and soft deadlines in which operations has to be accomplished).

Software Engineering for real-time safety-critical systems is very different than creating

business applications. In both types of software we want to ensure correctness and security.

However, in each of them, to a different extent. In the case of the aforementioned word

processor, software assurance is not critical. When it crashes, it can be restarted. In worst

case scenario, some work might be lost. Airplane software errors may put human lives in

danger or even cause death. Thus for safety-critical systems, the security and correctness

1

are crucial. Behind these reasons, different software design methodology, different properties

of programming languages and verification tools are needed.

Part of safety-critical systems design and development is their verification. The goal of

software verification is to assure that software satisfies requirements. Furthermore, during

verification process some potential issues might be detected by discovering possible program

states and execution paths.

1.1 Motivation

Nowadays, medical devices work rather independently. This leads to many accidents, which

could have been avoided by their interoperability. For example, over-dose of a drug (e.g.

morphine) delivered by the patient-controlled analgesia (PCA) pump after surgery can lead

to low blood oxygenation or even lack of pulse [OG11]. That can lead to patient’s death.

The PCA pump does not monitor an oxygen level, but oxygen monitoring device does. If

these two devices are organized in centralized system, which implements safety interlock

mechanism to shutdown the pump when low blood oxygenation1 is detected, accident can

be avoided.

In order to communicate, devices have to use compatible interfaces and protocols. There

is a concept of "Integrated Clinical Environment" (ICE). It is captured in the standard

ASTM F2761, which describes a functional architecture for inter operable systems [HKL+12].

The "Laboratory for Specification, Analysis, and Transformation of Software" (SAnToS

Laboratory) created "Medical Device Coordination Framework" (MDCF) [HKL+12], which

is prototype implementation of ICE. The MDCF vision for ICE is to have requirements

documents and conforming software and hardware models. This will enable different medical

devices, created by different vendors, to be connected and work under supervision of a

centralized system.
1Blood oxygenation is also referred as SpO2

2

In last decades, model-driven development [SVC06] became standard for safety critical

systems design. It provides higher level of abstraction, which enables to focus on business

problems instead of technology. Models captures domain knowledge and systems analysis,

disregarding implementation details, is possible. Additionally, software validation and veri-

fication can be executed at design-time. The model-driven development approach proposed

in this thesis is a response for the need to create code from models. The PCA pump proto-

type created in this thesis is as an example of a medical device, which ultimately will work

under MDCF.

1.2 Technologies

AADL (Architecture Analysis & Design Language) [FG13] is a modeling language for rep-

resenting hardware and software. It is used for real-time, safety critical and embedded

systems [FWH]. AADL allows for the description of both software and hardware parts of a

system. It is used to describe architecture, but AADL allows to add behavioral extensions

through annex languages. BLESS (Behavior Language for Embedded Systems with Soft-

ware) [LCH13] is an AADL annex sub language defining behavior of components. The goal

of BLESS is to automatically check the correctness of AADL models.

Ada is one of the most popular programming languages (along with C/C++) targeted at

embedded and real-time systems. SPARK Ada [Bar13] is a subset of Ada, designed for the

development of safety and security critical systems. This subset is designed to facilitate static

analysis and program verification, which allows to reason about and prove correctness of

programs and their entities. There are also SPARK tools for software verification, including

tools provided by Altran UK and AdaCore (the developers of SPARK) as well as research

groups such as SAnToS Laboratory at Kansas State University.

3

1.3 Contribution

This thesis demonstrates mapping of AADL/BLESS models to code in SPARK Ada. Addi-

tionally it presents current possibilities and limitations of SPARK Ada language, Ravenscar

profile and SPARK verification tools. The main contributions of this thesis are as follows:

• Review of "Open Patient-Controlled Analgesia Infusion Pump System Requirements"

[LH14, LHC13].

• Identification and analysis of PCA pump and Infusion pumps properties and internals

required for implementation.

• Cross-compilation and testing of SPARKAda 2005 and 2014 programs on BeagleBoard-

xM platform.

• Implementation of PCA pump based on [LH14] and AADL/BLESS models.

• AADL/BLESS to SPARK Ada translation schemes.

• Translation of simplified PCA Pump models (based on created translation schemes).

• Design requirements for AADL/BLESS to SPARK Ada translator.

• Practical demonstration of SPARK 2005 and SPARK 2014 verification tools: its ca-

pabilities and limitations:

– SPARK Examiner

– SPARKSimp

– Proof Obligation Summarizer (POGS)

– Bakar Kiasan

– GNATprove

4

1.4 Organization

This thesis is organized as follows:

• Chapter 2 is background that gives details about ICE, MDCF, Model-Driven Devel-

opment, AADL, BLESS, SPARK Ada and its verification tools.

• Chapter 3 describes Patient-Controlled Analgesia (PCA) pump.

• Chapter 4 presents mappings from AADL/BLESS to SPARK Ada.

• Chapter 5 describes the implementation of PCA Pump Prototype. Faced issues and

design decisions made.

• Chapter 6 describes verification of implemented PCA Pump Prototype and code trans-

lated from simplified version of AADL models.

• Chapter 7 summarizes all work which has been done in this thesis.

• Chapter 8 is the future work that can be done in this topic.

5

2

Background

“Experience is not what happens to you;

it’s what you do with what happens to you.”

– Aldous Huxley

This chapter is a brief introduction of all technologies and tools used in this thesis. They

are: AADL modeling language, BLESS (AADL annex language), SPARK Ada programming

language and its verification tools. There is also an overview of the context in which this

work has been done: Integrated Clinical Environment (ICE) standard and PCA pump (ICE

compliant device). This is followed by main topic of the thesis: code generation from AADL

and analysis of existing AADL translators (Ocarina, RAMSES).

2.1 Integrated Clinical Environment

The concept of the "Integrated Clinical Environment" (ICE) was initiated and championed

by Dr. Julian Goldman from Center for Integration of Medicine & Innovative Technology.1

The main idea is to create a platform for integrating medical devices in a local area network.

ICE will enable clinicians and software system to make decisions based not only on output
1http://www.cimit.org/

6

from one device, but from different devices working together in network. Moreover, ICE

comprises components that may be implemented by different vendors. Such components are

medical devices and applications to supervise them. The purpose of ICE is to solve current

issues with medical devices, which usually operate independently and requires more human

attention and control through checking output of every device manually and then making

decisions. ICE propose a concept of Medical Application Platform [HKL+12] that assure

medical devices interoperability and provides execution environment for clinical applications.

Different devices can exchange data and centralized system can make decisions (based on

this data) automatically. For example when PCA pump infuse some drug to patient’s vein

and Pulse Oximeter detects low oxygen level, ICE can coordinate PCA pump shutdown.

Figure 2.1 presents high-level overview of one particular application of an ICE system.

Medical devices (PCA Pump, Respiratory Rate Monitor and Pulse Oximeter) are connected

to the system, which monitors or controls them. There is communication between devices

and ICE in order to exchange data. ICE can make decisions (such as PCA Pump shutdown)

based on them.

Figure 2.1: ICE Closed Loop Control

7

2.2 Medical Device Coordination Framework

Medical Device Coordination Framework (MDCF) [HKL+12], jointly developed by SAn-

ToS Laboratory (Kansas State University) and University of Pennsylvania is prototype

implementation of ICE. It is an open, experimental platform to bring together academic

researchers, industry vendors, and government regulators. This project is a response to a

request from Food and Drug Administration (FDA) to build a prototype of ICE. There

is a vision of different medical devices, created by different vendors, connected and work-

ing under centralized system. MDCF is designed to illustrate by example issues related to

functional concepts, safety, security, verification and certification.

The following comprise the goals of the MDCF project:

• Open source infrastructure

• Meet performance requirements of realistic clinical scenarios

• Provide middleware with reliability, real-time, security

• Provide an effective app programming model and development environment with in-

tegrated verification/validation support and construction of regulatory artifacts

• Support evaluation of device interfacing concepts

• Illustrate how to support real and mock devices

• Illustrate envisioned regulatory oversight and 3rd party certification

Currently, MDCF use only mock devices, which are Java desktop applications. PCA

Pump Prototype, developed in this thesis, aims to be the realistic hardware device targeted

specifically for the MDCF.

MDCF uses a publish-subscribe architecture for communication between components:

apps and devices. Figure 2.2 presents MDCF structure. Devices, such as PCA pump, are

8

connected to Message Bus, which along with Device Manager and Device Database ensures

communication with Application Manager [HKL+12].

Figure 2.2: MDCF architecture and example app virtual machine (lower right)

2.3 AADL

AADL stands for Architecture Analysis & Design Language. It is used to model embedded

and real-time systems. AADL allows for description of both software and hardware parts

of a system. It can be used not only for design phase of software development process, but

also for analysis, verification, and code generation.

AADL has its roots in DARPA2 funded research. The first version (1.0) was approved in
2http://www.darpa.mil

9

2004 under technical leadership of Peter Feiler.3 AADL is develop by SAE AADL standard

committee.4 AADL version 2.0 was published in January 2009. The most recent version

(2.15) was published in September 2012.6

AADL is a language for Model-Based Engineering [FG13]. It can be represented in

textual and graphical form. There are tools, like plug-in for OSATE (see Section 2.3.1) that

enable transformation of textual representation into graphical or XML.

Figure 2.3: AADL Ap-
plication Software Compo-
nents

AADL contains entities for modeling software and hard-

ware components, and allows to create interactions and de-

pendencies between them.

AADL Execution Platform Components and Devices:

• Processor / Virtual Processor - Provides thread schedul-

ing and execution services

• Memory - provides storage for data and source code

• Bus / Virtual Bus - provides physical/logical connectiv-

ity between execution platform components

• Device - interface to external environment

Application Software Components of AADL (Figure 2.3):

• System - hierarchical organization of components

• Process - protected address space

• Thread group - logical organization of threads

• Thread - a schedulable unit of concurrent execution

• Data - potentially sharable data

• Subprogram - callable unit of sequential code

3http://wiki.sei.cmu.edu/aadl/index.php/The_Story_of_AADL/
4https://wiki.sei.cmu.edu/aadl/index.php/Main_Page
5https://wiki.sei.cmu.edu/aadl/images/d/d2/AADL_V2.1_Syntax_Card.pdf
6https://wiki.sei.cmu.edu/aadl/index.php/Standardization

10

Figure 2.4: AADL model of simple thermometer

An example AADL model is shown in graphical representation, in the Figure 2.4. Its

textual representation is presented in the Figure 2.5.

package Thermometer
public
with Base_Types;

system patient_thermometer
end patient_thermometer;
system implementation patient_thermometer.impl
subcomponents

thermomether : device thermometer_device.impl;
opi : device operator_interface.impl;

connections
tdn : port thermomether.temp -> opi.display;

end patient_thermometer.impl;

device operator_interface
features

display : in data port Base_Types::Integer;
end operator_interface;
device implementation operator_interface.impl
end operator_interface.impl;

device thermometer_device
features

temp : out data port Base_Types::Integer;
end thermometer_device;
device implementation thermometer_device.impl
end thermometer_device.impl;

end Thermometer;

Figure 2.5: AADL model of simple thermometer

There are several tools for AADL model support, such as: OSATE (see Section 2.3.1),

STOOD (AADL design tool),7 ADELE (graphical editor),8 Cheddar (real time scheduling
7http://www.ellidiss.com/products/stood
8https://wiki.sei.cmu.edu/aadl/index.php/Adele

11

tool),9 AADLInspector (model processing framework),10 or Ocarina (see Section 2.7.1).

AADL focuses on architectural modeling, but it can be extended via the following meth-

ods:

• user-defined properties: user can extend the set of applicable properties and add their

own to specify their own requirements

• language annexes (the core language is enhanced by annex languages that enrich the

architecture description. For now, the following annexes have been defined):

– Behavior annex: add components behavior with state machines (e.g. BLESS, see

Section 2.4)

– Error-model annex: specifies fault and propagation concerns

– ARINC653 annex: defines modeling patterns for modeling avionics systems

– Data-Model annex: describes the modeling of specific data types and structures

with AADL

More details about AADL can be found in Peter Feiler’s book "Model-Based Engineering

with AADL" [FG13].

AADL is used as a modeling language in this thesis.

2.3.1 OSATE

Open Source AADL Tool Environment (OSATE) is a set of plug-ins on top of the Eclipse

platform. It provides a tool set for front-end processing of AADL models. OSATE is devel-

oped mainly by SEI (Software Engineering Institute - Carnegie Mellon University).11 The

latest available version of OSATE at the time when this thesis was published is OSATE2.12

9http://beru.univ-brest.fr/ singhoff/cheddar
10http://www.ellidiss.com/products/aadl-inspector
11http://www.aadl.info/aadl/currentsite/tool/osate.html
12https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

12

OSATE relies on EMF,13 UML2 and Xtext.14 It comprises, e.g., an AADL project

wizard, AADL Navigator, and AADL syntax analyzer. OSATE enables the conversion of

AADL in textual representation into its standardized graphical representation. There are

also plug-ins for OSATE, such as the BLESS15 and OCARINA16 plug-ins.

OSATE has been used to develop AADL models for this thesis and work with already

existing models.

2.4 BLESS

BLESS (Behavior Language for Embedded Systems with Software) is AADL annex sub-

language defining behavior of components for AADL [LCH13]. BLESS comes with a veri-

fication framework that enables a developer to build proofs of AADL models of embedded

electronic systems with software.

BLESS annex subclauses can be added to AADL models transparently without interfer-

ing with other uses of AADL. It includes a verification-condition (VC) generation framework

and an accompanying proof tool that enables engineers to prove VCs via proof scripts build

from system axioms and rules from a user-customizable rule library [LCH13].

BLESS contains three AADL annex sub-languages:

• Assertion - assertions can be attached individually to AADL features (e.g. ports)

• subBLESS - can be attached only to subprograms; it has only value transformations

and Assertions without time expressions

• BLESS - it can be attached to AADL thread, device or system components; it contains

states, transitions, timeouts, actions, events and Assertions with time expressions
13http://www.eclipse.org/modeling/emf/
14http://www.eclipse.org/Xtext/
15http://bless.santoslab.org/node/5
16http://libre.adacore.com/tools/ocarina/

13

The BLESS tool framework is implemented as a publicly available open source plug-in

for OSATE (mentioned in Section 2.3.1). It includes an editor for BLESS specifications and

an environment operating the BLESS proof engine [LCH13].

In the work for this thesis, subset of BLESS is translated into SPARK contracts and

assertions. Detailed overview of supported features can be found in Section 4.1.8.

2.5 SPARK Ada

The Ada programming language was originally designed to meet the US Department of

Defense Requirements for programming military applications. Since its first version (Ada

83) it has evolved through multiple versions: Ada 95, Ada 2005 and Ada 2012 (released in

December 10, 2012).17 Ada is actively used in many real-world projects in critical appli-

cation domains,18 e.g. Aviation (Boeing19), Railway Transportation, Commercial Rockets,

Satellites and even Banking. One of the main goals of Ada is to ensure software correctness

and safety. Ada includes features that eliminate common errors involving pointers, array

bounds violations and unprincipled control flow, in comparison to other programming lan-

guages (see Figure 2.6). This is achieved not only by language capabilities, but also by tools

for testing and verification.

SPARK is a programming language and static verification technology designed specifi-

cally for the development of high integrity software. It is a "safe" subset of Ada, designed

to be amenable to state analysis and formal methods, by collection of analysis and verifica-

tion tools. Some Ada constructs are excluded from SPARK to make static analysis feasible

[IEC+06]. SPARK 2005 does not include constructs such as pointers, dynamic memory

allocation or recursion [IEC+06]. Verification tools (see Section 2.6) produce Verification
17http://www.ada2012.org
18http://www.seas.gwu.edu/~mfeldman/ada-project-summary.html
19http://archive.adaic.com/projects/atwork/boeing.html

14

Conditions (VCs) to check program correctness. Sample Verification Condition contains

checks for:

• array index out of range

• type range violation

• division by zero

• numerical overflow

Figure 2.6: Developer responsibility in Ada.20

SPARK is used not only for research, but also in industry: aerospace (e.g., EuroFighter

Typhoon aircraft,21 The Lockheed Martin C130J22 and standard DO-178B23), security (e.g.,
20http://www.slideshare.net/AdaCore/ada-2012
21http://www.eurofighter.com/
22http://www.lockheedmartin.com/us/products/c130/c-130j-variants/c-130j-30.html
23http://www.adacore.com/gnatpro-safety-critical/avionics/do178b/

15

MULTi-application Operating System24), air traffic management (e.g., iFACTS system25)

[Bar13]. In practice, because the features of SPARK are limited and because the use of

SPARK can be labor intensive, the embedded critical components are written in SPARK

while the non-critical components are written in Ada [Cha00].

First version of SPARK was based on Ada 83. The second version (SPARK 95) - on Ada

95. SPARK 2005 is based on Ada 2005. It is a subset of Ada 2005 with annotations. The

annotation language support flow analysis and formal verification. Annotations are encoded

in Ada comments (via the prefix --#). This approach allows every SPARK 2005 program to

be a valid Ada 2005 program. SPARK annotations contains code contracts (see Table 2.1),

which are analyzed by verification tools, but ignored by Ada compiler.

procedure Increment (X : in out Integer);
--# derives X from X;
--# pre X < Integer’Last;
--# post X = X~ + 1;

Figure 2.7: Sample SPARK procedure with code contracts

Figure 2.7 presents simple procedure with code contracts. It increments variable given as

parameter by 1. The derives clause specify variable dependency. Its future value depends on

its current value. There is precondition saying that the value has to be lower than maximum

value of Integer type, to avoid overflow. There is also post condition, which states that the

value of variable (given as parameter) after the procedure execution has to be equal to its

previous value incremented by 1 (’~’ attached to variable means value of this variable, before

procedure execution).

SPARK 201426 (based on Ada 2012) is under development. There is partial tool support

(in GNAT Programming Studio), but some language features (such as tasking) are still not
24http://www.cardwerk.com/smartcards/MULTOS/
25http://www.adacore.com/customers/uks-next-generation-atc-system/
26http://www.spark-2014.org

16

supported. Ada 2012 contains code contracts, which was inspired by previous versions of

SPARK. Thus SPARK 2014 is just a subset of Ada 2012 [DEL+14]. Some of Ada 2012

features are not allowed in SPARK, e.g.:

• Access types (pointers)

• Exceptions

• Aliasing between variables

• The goto statement

• Concurrency features of Ada (Tasking) - it’s part of SPARK 2014 road-map to include

support for tasking in the future, although likely not this year

• Side effects in expressions and functions

Table 2.1 presents fundamental SPARK 2005 annotations and their equivalents in SPARK

2014 (Ada 2012).

Table 2.1: Fundamental SPARK annotations

SPARK 2005 SPARK 2014 Description

--# global Global

list of used global variables within subprogram

--# derives Depends

describe dependencies between variables

--# own Abstract_State

declare variables defined in package body

--# initializes initializes

indicates variables, which are initialized

Continued on next page

17

Table 2.1 – continued from previous page
SPARK 2005 SPARK 2014 Description

--# inherit

not needed allows to access entities of other packages

--# pre Pre

pre condition

--# post Post

post condition

--# assert Assert

assertion

A sample mapping from SPARK 2005 to 2014 is shown in the Table 2.2. A complete

mapping can be found in SPARK 2014 documentation27 [AL14a].

The previous example (Figure 2.7), translated to SPARK 2014 syntax, is presented in

the Figure 2.8.

procedure Increment (X : in out Integer)
with Depends => (X => X),

Pre => (X < Integer’Last),
Post => (X = X’Old + 1);

Figure 2.8: Sample SPARK 2014 procedure and Code Contracts

It is possible to mix SPARK 2014 with Ada 2012. However, only the part which is

SPARK 2014 compliant can be verified by SPARK 2014 tools. SPARK 2014 does not

contains Examiner like SPARK 2005. Instead, proofs are made by GNATprove (see Section

6.5).
27http://docs.adacore.com/spark2014-docs/html/lrm/mapping-spec.html

18

Table 2.2: Sample SPARK 2005 to 2014 mapping.

SPARK 2005 SPARK 2014

--# global in out X, Y; with Global => (In_Out => (X, Y));

--# derives X from Y &
--# Y from X;

Depends => (X => Y,
Y => X);

--# pre Y /= 0 and
--# X > Integer’First;

with Pre => Y /= 0 and
X > Integer’First;

--# post X = Y~ and Y = X~; with Post => (X = Y’Old and Y = X’Old);

The most popular IDE for SPARK Ada is GNAT Programming Studio28 (see Section

2.5.2). There is also Ada plug-in for Eclipse - GNATbench29 created by AdaCore.

SPARK Ada is target language for code generation from AADL/BLESS models in this

thesis.

2.5.1 GNAT Compiler

The GNAT compiler is an Ada compiler created by AdaCore30. It is part of GNU Compiler

Collection (GCC). The GNU Compiler Collection includes front ends for C, C++, Objective-

C, Fortran, Java, Ada, and Go. It is one of the most popular compiler systems and is

included in all Linux distributions. GCC is open source, published on GNU General Public

License. GCC is divided into a front end and a back end. This architecture enables compiler

developers to create new front ends for some language and reuse existing back ends (or vice

versa).
28http://libre.adacore.com/tools/gps
29https://www.adacore.com/gnatpro/toolsuite/gnatbench/
30http://www.adacore.com

19

GNAT supports Ada 2012, Ada 2005, Ada 95 and Ada 83. The front-end and run-time

are written in Ada. To make compilation easier, GNAT provides gnatmake tool. It takes as an

argument project file (.gpr) or main program file (file, which contains main procedure) and

builds entire program automatically. gnatmake invokes GCC to perform the actual compilation.

It check all dependencies contained in .ali files. Each invocation of GCC produces object

files (.o) and Ada Library Information files (.ali). Once compilation is done, gnatmake invokes

gnatbind tool to check consistency and generate a main program. Then gnatlink performs

linking using binding output and all object files.

GNAT compiler is available for all most popular platforms: Windows, Linux and MacOS.

AdaCore, released also GNAT cross-compiler for ARM devices. Currently, cross-compilation

can only be performed on a 32-bit Linux platform.

GNAT compiler and GNAT cross-compiler has been used to compile SPARK Ada pro-

grams created for this thesis.

2.5.2 GNAT Programming Studio (GPS)

GNAT Programming Studio (GPS) is an Integrated Development Environment (IDE) for

Ada. It allows to easily manage and compile Ada projects, providing Graphical User Inter-

face as front end for underlaying tools, which have command line interface. Additionally,

it enables to create plug-ins using Python and PyGTK.31 GPS has a plug-ins for SPARK

Ada. There is also Sireum Bakar (see Section 2.6.9) plug-in for GPS (developed by SAnToS

Laboratory).

There are two versions of GPS: free (GPL) and commercial (Pro). There are version for

all most popular platforms: Windows, Linux and MacOS.

GPS has been used for creating and editing all SPARK Ada programs created in this

thesis.
31http://docs.adacore.com/gps-docs/users_guide/_build/html/extending.html

20

2.5.3 Ravenscar Tasking Subset

The Ravenscar Profile provides a subset of the tasking facilities of Ada95 and Ada 2005

suitable for the construction of high-integrity concurrent programs [Tea12]. RavenSPARK is

SPARK subset of the Ravenscar Profile. Burns, Dobbing, and Vardanega gives the following

Ravenscar profile description:

The Ravenscar Profile is a subset of Ada tasking model, restricted to meet

the real-time requirements for safety critical applications such as determinism,

schedulability analysis and memory-boundedness, as well as being suitable for

mapping to a small and efficient run-time system that supports task synchroniza-

tion and communication. The concurrency model promoted by the Ravenscar

Profile is consistent with the use of tools that allow the static properties of pro-

grams to be verified. Potential verification techniques include information flow

analysis, schedulability analysis, execution-order analysis and model checking.

These techniques allow analysis of a system to be performed throughout its de-

velopment life cycle, thus avoiding the common problem of finding only during

system integration and testing that the design fails to meet its non-functional

requirements [BDV04].

Ravenscar profile is available in SPARK 2005, but not yet in SPARK 201432 [AL14a]. The

default SPARK 2005 profile (sequential) does not enable tasking. In other words, SPARK

2005 tools cannot analyze and reason about concurrent programs if Ravenscar profile flag

(-profile=ravenscar) is not provided.

To create a task, the task type has to be declared and task variable of this type has to

be defined. Ravenscar does not allows dynamic task creation. Thus, all tasks have to exist

for the full lifetime of the program [AW01]. Tasks can be declared only in packages, not
32http://docs.adacore.com/spark2014-docs/html/lrm/tasks-and-synchronization.html

21

in subprograms or in other tasks [Bar13]. The priority of each task has to be specified by

pragma Priority. The range of available priority values is specified in the System package. The

default range is 1 to 63. A lower value indicates lower priority. Figure 2.9 shows sample

package with two tasks. Declared tasks have to be implemented in the package body.

package Some_Pkg
--# own task t1 : Task1;
--# task t2 : Task2;
is

task type Task1
is

pragma Priority(10);
end Task1;

task type Task2
is

pragma Priority(9);
end Task2;

end Some_Pkg;

package body Some_Pkg
is

t1 : Task1;
t2 : Task2;

task body Task1
is
begin

loop
-- implementation;

end loop;
end Task1;

task body Task2
is
begin

loop
-- implementation;

end loop;
end Task2;

end Some_Pkg;

Figure 2.9: Sample tasks

There are two ways to access a variable in different tasks:

• The variable has to be a protected object.

• The variable has to be an atomic type.

22

A protected object encapsulates a variable in such a way that it is accessible only through

protected subprograms. This mechanism uses locking to ensure atomicity. Protected type

declaration is similar to task: both a specification and a body has to be defined. Figure

2.10 shows sample tasks with protected type Integer_Store, which enables to share an Integer

variable between tasks. A protected type has to be declared before tasks that will use it.

Otherwise, it will be not visible for them. A protected type body also has to be defined in

package body (Figure 2.11).

package Some_Pkg
--# own protected Shared_Var : Integer_Store (Priority => 11);
--# task t1 : Task1;
--# task t2 : Task2;
is

protected type Integer_Store
is

pragma Priority (11);

function Get return Integer;
--# global in Integer_Store;

procedure Put(X : in Integer);
--# global out Integer_Store;
--# derives Integer_Store from X;

private
TheStoredData : Integer := 0;

end Integer_Store;

task type Task1
--# global out Shared_Var;

is
pragma Priority(10);

end Task1;

task type Task2
--# global in Shared_Var;

is
pragma Priority(9);

end Task2;

end Some_Pkg;

Figure 2.10: Sample tasks with protected object

In example given in figures 2.10 and 2.11, Task1 is writing to Shared_Var and Task2 is reading

Shared_Var. The highest priority is assigned to the protected object to ensure atomicity during

operations on it. The lowest priority is assigned to Task2, which is reading Shared_Var. Reading

23

package body Some_Pkg
is

Shared_Var : Integer_Store;
t1 : Task1;
t2 : Task2;

protected body Integer_Store is
function Get return Integer
--# global in TheStoredData;
is
begin

return TheStoredData;
end Get;

procedure Put(X : in Integer)
--# global out TheStoredData;
--# derives TheStoredData from X;
is
begin

TheStoredData := X;
end Put;

end Integer_Store;

task body Task1
is
begin

loop
Shared_Var.Put(5);

end loop;
end Task1;

task body Task2
is

Local_Var : Integer;
begin

loop
Local_Var := Shared_Var.Get;

end loop;
end Task2;

end Some_Pkg;

Figure 2.11: Sample tasks with protected object body

is usually less expensive operation than writing. Thus, to avoid starvation, Task1 has higher

priority than Task2. Notice, that Shared_Var is declared in the package body, but refined in

package specification.

Protected variables may not be used in proof contexts. Thus, if we try to use pro-

tected variable in proofs (pre- or postcondition), then SPARK Examiner returns semantic er-

ror: Semantic Error 940 - Variable is a protected own variable. Protected variables may not be used in proof

contexts. Formal reasoning about interactions and especially temporal properties requires

24

other techniques such as model checking and lies outside the scope of SPARK [Bar13]. To

preserve the opportunity to use pre- and postconditions, atomic types have to be used.

To declare atomic type, pragma Atomic has to be used. However, there is restriction that

pragma Atomic cannot be applied to a predefined type such as Integer. Thus, a custom type

has to be defined. It can be just rename of Integer (e.g., Int32 in the Figure 2.12). Then

pragma Atomic can be applied on this type. Figure 2.12 presents the previous example using

atomic types instead of protected objects.

It is important to mention, that pragma Atomic does not guaranty atomicity. In most cases,

atomic types should not be used for tasking. Instead, protected types should be used. When

an object is declared as atomic, it just means that it will be read from or written to memory

atomically. The compiler will not generate atomic instructions or memory barriers when

accessing to that object. pragma Atomic force compiler only to:

• check if architecture guarantees atomic memory loads and stores,

• disallow some compiler optimizations, like reordering or suppressing redundant ac-

cesses to the object

Another important thing in tasking is Time library: Ada.Real_Time. It allows to run task

periodically, using delay until statement, which suspends task until specified time. To use

delay in the task, it has to be declared in declare annotation: --# declare delay; [Bar13].

Details about tasking in SPARK are well described in Chapter 8 of [Bar13]. The "Guide

for the use of the Ada Ravenscar profile in high integrity systems" [BDV04] and the official

Ravenscar Profile documentation (which includes examples) [Tea12] is another good source.

The limitations of Tasking in SPARK are reviewed in [AW01].

Ravenscar profile has been used for multitasking applications (including PCA Pump

Prototype) created in this thesis.

25

package Some_Pkg
--# own Shared_Var;
--# task t1 : Task1;
--# task t2 : Task2;
--# initializes Shared_Var;
is

type Int32 is new Integer;

task type Task1
--# global out Shared_Var;

is
pragma Priority(10);

end Task1;

task type Task2
--# global in Shared_Var;

is
pragma Priority(9);

end Task2;

end Some_Pkg;

package body Some_Pkg
is

Shared_Var : Int32 := 0;
t1 : Task1;
t2 : Task2;

task body Task1
is
begin

loop
Shared_Var := 5;

end loop;
end Task1;

task body Task2
is

Local_Var : Integer;
begin

loop
Local_Var := Integer(Shared_Var);

end loop;
end Task2;

end Some_Pkg;

Figure 2.12: Sample tasks with atomic type

26

2.6 SPARK Ada Verification

The goal of software verification is to assure that software satisfies specification and require-

ments, and to prove the lack of errors. There are two primary types of verification:

• dynamic - performed during the execution of software, e.g. unit tests (by comparison

of expected and actual states)

• static - achieved by formal methods, flow analysis, mathematical calculations and

logical evaluations (based on formal rendering of specification)

Dynamic verification starts with a set of possible test cases, simulates the system on

each input, and observes the behavior. In general, it does not cover all possible executions.

On the other hand, static verification establishes that program conforms to a particular

class of properties for all possible execution sequences. Static and dynamic verification

can be mixed, e.g. by generating test cases with static verification tools and then proving

correctness with unit tests during runtime [DRH07].

Techniques for Static Verification:

• Formal verification: prove mathematically that the program is correct - this can be

difficult for large programs.

• Correctness by construction: follow a well-defined methodology for constructing pro-

grams via formal refinement of code from specifications.

• Model checking: enumerate all possible executions and states, and check each state

for correctness.

33http://docs.adacore.com/sparkdocsdocs/Examiner_UM.htm

27

Figure 2.13: Relationship of the Examiner and Proof Tools.33

SPARK includes a development and verification tool-set with the following components:

• SPARKMake - generates index file (.idx) and meta file (.smf)

• Examiner - checks syntax, generates Verification Conditions (VCs) and Dead Path

Conjectures (DPCs), and discharges (proves) some of them (some might be impossible

to discharge)

• Simplifier - simplifies VCs (not discharged by Examiner) and tries to discharge them

after simplification process in similar fashion like Examiner

28

• ZombieScope - finds dead paths

• ViCToR - translates VCs and DPCs to format acceptable by SMT solver and proves

correctness using specified SMT solver

• SPARKSimp - runs Simplifier or/and ZombieScope

• POGS - produces verification report

• Proof Checker - discharges VCs or DPCs not discharged by Examiner and Simplifier

by carrying out tool-assisted manual proof steps

Relationships between tools and verification flow is presented in the Figure 2.13. SPARK

proof tools use FDL as the modeling language.

2.6.1 SPARK Examiner

The main SPARK verification tool is Examiner. It supports several levels of analysis:

• checking of SPARK language syntactic and static semantic rules

• data flow analysis

• data and information flow analysis

• formal program verification via generation of verification conditions

• proof of absence of run-time errors

• dead path analysis

There is an option to make the Examiner perform syntax checks only. Using this option

on a source file does not require access to any other units on which the file depends, so files

29

can be syntax checked on an individual basis. This allows any syntax errors to be corrected

before the file is included in a complex examination [Tea11b].

Examiner can perform data and information analysis of Ravenscar programs in exactly

the same manner as for sequential programs [Tea12]. Unfortunately it does not allow pro-

tected objects in proof annotations (pre- and post-conditions) as mentioned in Section 2.5.3.

When some parts of the system are written in full Ada (with non-valid SPARK con-

structs), then Examiner returns error. Ada parts can be excluded from Examiner analysis

using --# hide annotation. Then, only a warning is returned by Examiner: 10 - The body of

subprogram Main is hidden - hidden text is ignored by the Examiner.

Examiner use SPARK index file (.idx) - generated by SPARKMake tool - to locate files nec-

essary for verification [Bar13].

Examiner can be used with the spark command and appropriate flags described in Ex-

aminer Manual [Tea11b].

To use Examiner in GNAT Programming Studio:

• Run SPARK Make: right click on project / SPARK / SPARK Make (Figure 2.14)

• Set SPARK index file (to spark.idx generated by SPARKMake) (Figure 2.15)

• (optionally) set configuration file (e.g. Standard.ads)

• Choose appropriate version of SPARK (95 or 2005)

• Choose mode: Sequential (for single tasking programs) or Ravenscar (for multitasking

programs)

To generate verification conditions (VCs), the -vcg switch has to be used. It can be set

in GNAT Programming Studio (Project / Edit project properties / Switches / Examiner

/ Generate VCs). In addition to verification conditions, Examiner can check dead path

conjectures (DPCs), i.e. paths through the code that can never be executed regardless of

30

Figure 2.14: Run SPARK Make

input. To generate dead path conjectures, the -dpc switch has to be used. It can be also set

in GNAT Programming Studio (Project / Edit project properties / Switches / Examiner /

Generate DPCs).

Examiner has been used to check syntax and semantics during PCA Pump Prototype

development and in verification process described in Chapter 6.

Flow analysis

There are two types of flow analysis:

• Data flow analysis:

– Checks input/output behavior of parameters and variables.

– Checks initialization of variables.

– Checks that changed and imported variables are used later (possibly as output

variables).

• Information flow analysis - verifies interdependencies between variables.

31

Figure 2.15: Examiner Properties

In data flow analysis, Examiner checks if input parameters are not modified, but used

at least once (in at least one branch of program). In the same factor, output parameters

cannot be read (before initialization) and has to be initialized (in all branches of program).

Input/output parameters has to be both read and write (changed). In similar way, Ex-

aminer verify the global variables (specified in annotations). Functions can use only input

parameters and can only read global variables. Therefore functions do not have side effects.

Global variables defined in package body (thus private) has to be declared by --# own

annotation in package specification. If variable is also initialized, --# initializes annotation

has to be used. In Ada, to use package in another package, with clause has to be used. In

SPARK Ada, additionally --# inherits annotation has to be specified.

In information flow analysis, dependencies between variables are analyzed. These de-

pendencies are specified by --# derives annotation.

32

Verification conditions

Verification conditions is a set of generated hypothesis, if proven to be true can be concluded

that they hold. To generate verification conditions, two kinds of annotations are relevant

for Examiner:

• preconditions: --# pre

• postconditions: --# post

The notions of pre- and postconditions are based on Hoare logic [HLL+]. More precisely,

in the Hoare triple below:

{P}C{Q} (2.1)

C is a program that starts in a state satisfying precondition P. Program terminates in

state satisfying postcondition Q. Thus P and Q are assertions, and C is a command (action)

performed between them.

Additionally, assertions (--# assert) and checks (--# check) can be specified in procedure

body. Then additional verification conditions are generated.

SPARK functions do not have side effects (as stated in 2.6.1), thus only preconditions

are relevant. However, there is annotation --# return, which specifies function return value.

Verification Conditions (VCs) are generated depending on commands appearing in the

subprogram along path segments. VC generation is performed backwards, in other words:

we start from post-conditions and consider what must holds before. Flow analysis is well

described in chapter 11 of [Bar13].

If preconditions are not present, then the formula expresses that the post-condition holds

always.

33

2.6.2 SPARK Simplifier

Simplifier, simplifies and manipulates Verification Conditions (VCs), generated by Exam-

iner, using a number of rules (often referred as rewrite rules). It can also discharge (prove

correctness) of those VCs, which are not proved by Examiner [Tea11c]. It takes as input .vcg

files, .fdl files for its data declarations and - if available - proof-rule files (.rls, .rlu). Then it

generates .siv files (simplified VCs) and .slg files (which contain details about simplification

that has been made).

SPARK Simplifier has been used in verification process described in Chapter 6.

2.6.3 ZombieScope

ZombieScope is a SPARK tool that analyze SPARK code to find dead paths, i.e. paths

through the code that can never be executed. A program that contains dead paths may not

necessarily be incorrect, but a dead path is an indication of a potential code issue.

ZombieScope reads .dpc files generated by the Examiner. In order to generate dead path

conjectures, -dpc flag has to be used or ’Generate DPCs’ option has to be checked in Examiner

options, in GPS. It reads also .fdl files for its data declarations and the .rls file for proof-

rules if present. ZombieScope generates two output files: .sdp file (dead path summary) and

.zlg file (details about underlying contradiction search performed). ZombieScope is invoked

by SPARKSimp by default and the summary file generated by POGS includes information

about the dead path analysis.

ZombieScope has been used for dead paths analysis in verification process described in

Chapter 6.

34

2.6.4 ViCToR

ViCToR is a tool to translate Verification Conditions (VCs), generated by the Examiner, into

SMT-LIB (file format used to communicate with SMT solvers) [Tea]. SMT (Satisfiability

Modulo Theories) solver is a tool for verification and proving the correctness of programs.

ViCToR is integrated with SPARKSimp and POGS. To invoke ViCToR from SPARKSimp,

flag -victor has to be used.

ViCToR has been used in verification process described in Chapter 6.

2.6.5 Proof Checker

Proof Checker is advanced verification tool, which require considerable experience in verifi-

cation of SPARK programs. It is interactive program, which enables the user to direct the

Checker to explore the use of various strategies and rules on the condition to be proved.

Proof Checker can keep a log of the progress of a proof in plg file. It also records the proof

steps applied in a .cmd file. More details about Proof Checker can be found in chapter 12 of

[Bar13].

Proof Checker was not used in this thesis. Instead Bakar Kiasan (see section 2.6.9) has

been used.

2.6.6 SPARKSimp Utility

SPARKSimp is a simple "make" style tool for the SPARK analysis tools. Currently, it

supports the Simplifier, ZombieScope and ViCToR. It applies the Simplifier (and ViCToR,

if requested) to all .vcg files and ZombieScope to all .dpc files that it finds in a directory tree

[Tea10].

SPARKSimp has been used to invoke Simplifier, ZombieScope and ViCToR in verification

performed in this thesis (see Chapter 6).

35

2.6.7 Proof Obligation Summarizer (POGS)

The Proof ObliGation Summarizer tool (POGS) reads and understands the structure of

the verification conditions (.vcg files), their simplified version (.siv files), and dead path

conjectures (.dpc files). It reports the status of proofs and dead path analyses in a human-

readable, text form [Tea11a].

POGS has been used to generate reports for verification performed in this thesis (see

Chapter 6).

2.6.8 AUnit

AUnit is a unit test framework for the Ada language. It can be also applied to test SPARK

Ada programs. It was inspired by Java JUnit (created by Kent Beck, Erich Gamma) and

C++ CppUnit (created by M. Feathers, J. Lacoste, E. Sommerlade, B. Lepilleur, B. Bakker,

S. Robbins) unit test frameworks [Ada14]. Similar to these related frameworks, it enables

simple test cases execution, fixtures, suites, and provides reporting [Fal14].

GNAT Programming Studio can generate test cases skeleton for all subprograms. It can

be generated using Tools -> GNATtest -> Generate unit test setup. This generator creates

a new project with AUnit tests. The project for which tests are generated is referenced

in new generated test project. In order to run tests, the test project has to be opened

in GNAT Programming Studio. The project is created in [project_dir]/gnattest/harness/test_[

proj_name].gpr. It generates an empty (not implemented) test for each subprogram in project.

To add/edit/remove tests or rename names, three files have to be edited:

• [some_package]-test_data-tests.ads

• [some_package]-test_data-tests.adb

• [some_package]-test_data-tests-suite.adb

36

Each test has to be declared in [some_package]-test_data-tests.ads and implemented in [

some_package]-test_data-tests.adb. Then, it has to be added to test suite in [some_package]-test_data-

tests-suite.adb file.

Tests can be also created manually. Then, the AUnit distribution has to be referenced

in project file, and all test cases (and suits) have to be implemented by hand.

AUnit has been used to create unit test for isolated module of created PCA Pump

Prototype (see Section 6.4).

2.6.9 Sireum Bakar

Sireum34 is a long-term research project conducted by SAnToS Laboratory at Kansas State

University. Its goal is to develop an over-arching software analysis platform that incorporates

various static analysis techniques such as a data-flow framework, model checking, symbolic

execution, abstract interpretation, and deductive reasoning techniques (e.g., using weakest

precondition calculation). It can be used to build various kinds of software static analyzers

for different kinds of properties.

It uses the Pilar language [SC12] as an intermediate representation. Any language which

can be translated to Pilar can be analyzed by Sireum. For now, there are translators for

SPARK and Java.

Bakar is a toolset for analyzing SPARK Ada programs (Bakar means "spark" in Indone-

sian). Sireum Bakar currently includes:

• Kiasan - functional behaviors verification tool

• Alir - information flow analysis tool

The Sireum distribution is available for Windows (32-bit, 64-bit), Linux (32-bit, 64-bit)

and MacOS (64-bit). It can be downloaded from http://www.sireum.org/.
34http://www.sireum.org/

37

Bakar Kiasan

Bakar Kiasan [BHR+11] is a fully automated tool for verifying functional behaviors of

SPARK programs specified as software contracts. Kiasan use symbolic execution technique

(Kiasan means "symbolic" in Indonesian). It provides various helpful feedback including

generation of counter example for contract refutation, test cases for an evidence of con-

tract satisfaction, verification reports, visual graphs illustrating pre/post states of SPARK

procedures/functions, etc. It is much easier to understand than, e.g., analysis of .vcg files

generated by SPARK Examiner.

There exists a Kiasan Plug-in for GNAT Programming Studio (GPS). Version 1, for

GPS 5, supports SPARK 2005. Version 2, for GPS 6, which supports SPARK 2014, is under

development. Both plug-ins are created by author of this thesis in Python and PyGTK.

There is also plug-in for Eclipse, but only for SPARK 2005 programs.

Bakar Kiasan does not support the Ravenscar profile. Thus, it can be used only for

sequential programs verification. Figure 2.16 presents sample Kiasan analysis result. The

Kiasan window in GPS has two parts: (i) a list of units (packages and subprograms), and (ii)

analysis cases with pre- and post states. Every unit has the following associated statistics:

• T# - Test cases (expected behavior),

• E# - Exception cases (unexpected behavior),

• Instruction coverage - amount of code that will be executed in execution paths gener-

ated by Kiasan analysis,

• Branch coverage - number of branches discovered by Kiasan analysis (0% branch cov-

erage in the case of 100% instruction coverage means that there are no branches in

the analyzed unit), and

• Time in which analysis was performed.

38

After double clicking on some unit, code that is executed during execution of this unit

is highlighted. Additionally below the list of units, there is a combo box which contains all

test cases associated with the selected (by double clicking) unit. Once some case is selected,

code coverage equivalent to this test case is highlighted. Additionally, below the combo box,

there are generated execution cases - one for each execution path. The pre-state is listed

on the left hand side while the post state is listed on the right hand side. Variables with

red font color, in the post-state, are those that are changed as the result of unit execution.

Newly created variables (during unit execution) are marked in blue, but there are no such

variables in the example presented in Figure 2.16.

Figure 2.16: Bakar Kiasan report

Bakar Kiasan is useful especially for solving verification issues. It can generate counter

examples that give developers greater intuition about problems in the code.

Bakar Kiasan has been used in verification of PCA Pump module (see Section 6.2).

39

Bakar Alir

Alir is an information flow analysis tool for reasoning about SPARK’s derive clauses/in-

formation flow (Alir means "flow" in Indonesian). Alir visualizes information flows to

ease engineers in understanding information dependencies crucial for specifying and ver-

ifying SPARK’s derive clauses. It provides various configurable intra-procedural and inter-

procedural analyses. The inter-procedural analyses are control flow analysis, reaching defi-

nition analysis and data dependence analysis. The inter-procedural analyses in Alir include

building the System Dependence Graph (SDG), slicing and chopping on SDG [Thi11].

Bakar Alir has not been used in this thesis, but can potentially be used in the future, to

enrich verification process.

2.6.10 GNATprove

GNATprove35 is a formal verification tool for SPARK 2014 programs, whose input is auto-

matically constructed using GNAT compiler as a front-end. GNATprove interprets SPARK

Ada annotations exactly like they are interpreted at run time during tests. It can prove

that subprograms respect their contracts, expressed as preconditions and postconditions in

the syntax of Ada 2012. The tool automatically discovers the subset of subprograms which

can be formally analyzed. GNATprove is currently available for Linux x86, Windows x86

and Linux x86-64.

GNATprove consists of two distinct analyses, flow analysis and proof. Flow analysis

checks the correctness of aspects related to data flow (Global, Depends, Abstract_State, Initializes,

and refinement versions of these), and verifies the initialization of variables. Proof verifies

the absence of runtime errors and the correctness of assertions such as Pre and Post aspects.

Using the switch --mode=<mode>, whose possible values are flow, prove and all, only one or both
35http://www.open-do.org/projects/hi-lite/gnatprove/

40

of these analyses can be performed (all is the default) [AL14b]. GNATprove use Alt-Ergo

prover for verification.

GNATprove has been used to verify isolated module of created PCA Pump Prototype,

which has been translated to SPARK 2014 (see Section 6.5).

2.7 AADL/BLESS to SPARK Ada code generation

The ultimate goal of the long term research of which this thesis is part is to build an AADL

(with BLESS) to SPARK Ada translation. AADL has been used to prototype and fully

develop embedded systems for the past 5-7 years [CB09]. Related work in code generation

from AADL, but for Java programming language has been done in [PHR]. There are also

already existing tools, which performs code generation based on AADL:

• Ocarina

• Ramses

2.7.1 Ocarina

Ocarina [LZPH09] is a tool suite that contains plug-ins for code generation, model checking

and analysis. The code generation plug-in generates code from an AADL architecture model

to an Ada or C application running on top of PolyORB framework. In this context, PolyORB

acts as both the distribution middleware and execution runtime on all targets supported by

PolyORB. Ocarina is written in Ada.

There is plug-in for OSATE (see Section 2.3.1) that supports code generation. Example

AADL models, suitable for being an input of Ocarina are available on github repository:

https://github.com/yoogx/polyorb-hi-ada/tree/master/examples/aadlv2.

41

Since mid-2009, Telecom ParisTech is no longer involved in Ocarina, and is developing

another AADL tool-chain, based on Eclipse, codenamed RAMSES [CBGP12].

Ocarina has been used as inspirational tool for code generation from AADL models.

2.7.2 RAMSES

RAMSES (Refinement of AADL Models for Synthesis of Embedded Systems) [CBGP12] is

a model transformation and code generation tool written in Java. Code generation module

produces C code, but does not generate Ada. The approach for code generation is to

transform AADL models using a rule-based transformation framework and generate code

from transformed (simplified) models. Simplified AADL models contain behavior annex

subclauses. RAMSES can be used as OSATE plug-in or standalone application.

RAMSES was initial point of interest, because of its code generation module. However,

it has not been used due to its limitation to generate C code only.

42

3

PCA Pump

“Take risks: if you win, you will be happy; if you lose, you will be wise.”

– Unknown

Figure 3.1: Patient Controlled Analge-
sia (PCA) pump

A Patient Controlled Analgesia (PCA)

pump1 is a medical device that allows a patient

to self-administer small doses of narcotics (usu-

ally Morphine, Dilaudid, Demerol, or Fentanyl).

PCA pumps are commonly used after surgery

to provide a more effective method of pain con-

trol than periodic injections of narcotics adminis-

tered by a clinician. A continuous infusion mode

of the pump (called a basal rate) permits the

patient to receive a continuous infusion of pain

medication. There is no need for a clinician to

administer it. A patient can also request addi-

tional boluses, but only in specified intervals to
1http://ppahs.org/2012/05/30/patient-controlled-analgesia-pca-pumps-the-basics/

43

avoid infusion. In addition to basal and patient bolus, clinician can also request a bolus

called clinician bolus or square bolus.

Figure 3.1 shows LifeCare PCA pump. On the left hand side, there is drug reservoir.

On the right - clinician panel, which allows to control the pump. Figure 3.2 shows PCA

Pump, made by company Alaris.

Figure 3.2: Alaris Pump

A PCA pump is safety-critical device which works

in standard process control loop, proposed by Leve-

son in [Lev12], depicted in the Figure 3.3. The con-

troller obtains information about (observes) the pro-

cess state from measured variables (feedback) and

uses this information to initiate action by manipu-

lating controlled variables to keep the process oper-

ating within predefined limits or set points (the goal)

despite disturbances to the process, such as different

air pressure or device position (gravity impact). In general, the maintenance of any open-

system hierarchy (either biological or man-made) will require a set of processes in which

there is communication of information for regulation or control [Lev12].

The PCA pump actuator is a motor that pumps a drug to the patient’s vein. The

controlled process is dosing the drug. Sensors measure amount of dosed drug. They might

be used to double-check if ordered (by controller) that the amount of drug was appropriately

delivered. Sometimes there might be some disturbances caused by mechanical issues and

environmental conditions. The controller issues appropriate actions based on information

from sensors and clinician or patient’s commands. A high level overview of PCA Pump is

depicted in the Figure 3.4.

One of the problems of using PCA pumps, is that there is inadequate monitoring of

patient’s blood oxygenation. Nursing staff on general medical units typically track blood

44

Figure 3.3: Standard Process Control Loop.

oxygenation (SpO2), heart rate and other vital signs every four hours, which is not enough

[OG11]. There should be a way to monitor levels continuously. Additionally, it can be hard

to tell if a person’s breathing rate is dangerously low in certain circumstances. There are

cases where lack of monitoring carbon dioxide level caused death.2

Another problem is not adequate resistance to human errors. For example, there is a

case when nurse used a 5 mg/mL morphine cassette because a 1 mg/mL cassette was not

available, but she programmed PCA Pump like for 1 mg/mL concentration. This caused

over infusion that in addition to lack of pulse monitoring resulted in patient’s death.3

As mentioned in chapter 2, one way to address these problems is through medical devices

interoperability. An integrated system can receive input from monitoring devices and disable

the pump. In addition, less human error-prone device is needed. It can be assured by using

more than one system for their detection.
2http://abcnews.go.com/Health/parents-warn-pca-pumps-daughters-death/story?id=16796805
3http://webmm.ahrq.gov/case.aspx?caseID=291

45

Figure 3.4: PCA Pump system

3.1 PCA Pump Requirements Document

Requirements of "Open Source PCA Pump" [LHC13], on which the work in this thesis

is based, are captured in "Open Patient-Controlled Analgesia Infusion Pump System Re-

quirements" document [LH14] created by Brian Larson. The requirements are a rigorously

defined set of capabilities, which Open PCA Pump should have, based on consultations

with domain experts, FDA, and Brian Larson’s expertise gained while he was working in

the medical device industry.

The conceptual model of Open PCA pump is depicted in the Figure 3.5. As mentioned

earlier, the pump is connected to ICE so it may be integrated with ICE apps and displays.

The interface must provide prescription and patient information, current status to be dis-

played remotely on a supervisor user interface, and a means to stop infusing upon human

46

command, or request from ICE app (based on data from monitoring devices). Such an

ICE app could monitor a patient’s blood oxygenation and pulse rate, stopping the pump if

depressed respiratory function is indicated [LH14].

Figure 3.5: Open PCA Pump concept

Additionally, it cooperates with Drug Library, which contains information about drugs

and their properties (like concentration). Data needed for pump operation, are captured on

electronic prescription, which contains:

• Patient’s name

• Drug name

• Drug code

• Drug concentration

47

• Initial volume of drug in the vial

• Basal flow rate - the rate of continuous infusion

• Volume to be infused (VTBI) on patient’s request

• Maximum amount of drug allowed per hour

• Minimum time between patient boluses

• Date, in which prescription has been filled

• Prescribing physician’s name

• Pharmacist name

Pain medication is prescribed by a licensed physician, which is dispensed by the hospital’s

pharmacy. The drug is placed into a vial labeled with the name of the drug, its concentration,

the prescription, and the intended patient. A clinician loads the drug into the pump,

and attaches it to the patient. The pump infuses a prescribed basal flow rate which may

be augmented by a patient-requested bolus or a clinician-requested bolus. This allows

additional pain medication in response to patient need within safe limits [LH14].

The prescription captures all data needed for basal infusion and patient requested boluses

(referred as bolus). In addition to that, Open PCA Pump allows Clinician Requested Bolus

(refereed as square bolus). In order to do that, clinician has to enter the time (through PCA

Pump panel) in which additional dose, equal to VTBI (Volume To Be Infused) specified in

prescription, will be infused.

There can occur situations in which the maximum drug amount infused may exceed the

allowed limit. E.g. when clinician issues too many square boluses. In such case, pump is

switched to Keep Vein Open (KVO) mode, which has 1 ml/hr drug rate. KVO is standard

mode used in infusion pumps to prevent the vein from closing. Pump switches to KVO

rate also when ICE interface requests it. It may happen e.g. if patient’s oxygen level is

low. To recover from KVO state, pump has to be restarted by clinician in order to continue

48

operation. In Summary, Open PCA Pump has following modes:

• Stopped

• Basal rate

• Patient’s bolus (bolus)

• Clinician bolus (square bolus)

• Keep Vein Open (KVO)

There are also other scenarios, which are captured by Requirements Document [LH14],

like scanner to enable automatic entry of patient’s and prescription data, occlusion detection,

hardware errors alarms etc. Detailed overview of Open PCA Pump Requirements can be

found in [LH14].

3.2 PCA Pump AADL/BLESS Models

In addition to PCA Pump Requirements Document [LH14], Brian Larson created an AADL

model with formal behavioral specifications written in his BLESS framework. The graphical

representation of the AADL model is depicted in the Figure 3.6.

The AADL model captures the internal architecture of the device, while BLESS spec-

ifications capture its behavior. In Appendix D, thread Rate_Controller from the PCA_Operation

component with BLESS assertions in thread declaration and BLESS behavioral description

in thread implementation, is presented. The thread declaration contains input and output

ports. Some of them have BLESS assertions attached. These assertions are defined using

the BLESS annex in the thread implementation. In addition to assertions, states and transi-

tions defined in thread implementation can potentially be translated into a working SPARK

Ada program. Presence of timing properties in states and transitions makes translation

extremely difficult, thus there are omitted in this thesis and only assertions are considered.

49

Figure 3.6: Open PCA Pump AADL model

50

3.3 BeagleBoard-xM

Figure 3.7: BeagleBoard-xM

For research on the MDCF project,

BeagleBoard-xM (an open-source hardware

single-board computer produced by Texas

Instruments), has been chosen as hardware

platform for PCA pump prototyping.

BeagleBoard-xM (presented in the Fig-

ure 3.7) is an embedded device with an

AM37x 1GHz ARM processor (Cortex-A8

compatible). It has 512 MB RAM, 4 USB

2.0 ports, HDMI port, 28 General-purpose

input/output (GPIO) ports and Linux Op-

erating System (on microSD card). More-

over, there is PWM support, which enables

control of pump actuator.

Pulse-width modulation (PWM) is a technique for controlling analog circuits with a

processor’s digital outputs. The average value of voltage (and current) fed to the electrical

load is controlled by turning the switch between supply and load on and off at a fast pace.

The longer the switch is on compared to the off periods, the higher the power supplied to the

load. Proportion of on and off periods is called the duty cycle and is expressed in percent.

100% means all the time on, 0% - all the time off. Figure 3.8 shows 10%, 30%, 50% and

90% duty cycles.

There is no existing SPARK Ada compiler running on ARM system. Hence, to compile

SPARK Ada program for ARM device, cross-compiler is needed. There is GNAT compiler

[Hor09] created by AdaCore, but there was no cross-compiler for ARM. However, AdaCore

51

Figure 3.8: An example of PWM duty cycles

was actively developing cross-compiler. They had a working version in 2013, but tested

only on their target Android-based device. This version was not working on BeagleBoard-

xM platform with Angstrom Linux (configuration used in this thesis). Cooperation with

AdaCore, involved bundling and testing a cross-compiler for ARM to produce code for the

BeagleBoard-xM, resulted in working cross-compiler. For now, the GNAT cross-compiler

works only on Linux 32-bit operating system (as a platform in which cross-compilation has

to be performed).

In addition to USB ports, BeagleBoard-xM has also a serial port and an Ethernet port.

It allows to copy programs compiled on Linux, using all three types of ports.

52

4

AADL/BLESS to SPARK Ada

Translation

“Don’t complain; just work harder.”

– Randy Pausch

This chapter presents created AADL/BLESS to SPARK Ada translation schemes (4.1),

proposed port communication (4.2) and discusses design of an automatic translator, which

can be created based on translation schemes (4.3).

4.1 AADL/BLESS to SPARK Ada mapping

Mapping of AADL models to SPARK Ada is driven by "Architecture Analysis & Design

Language (AADL) V2 Programming Language Annex Document" [SCD14]. This document

was discussed during AADL User Days in Valencia (February 2013)1 and in Jacksonville,

FL (April 2013).2 Ocarina tool suite (based on older AADL annex documents [HZPK08])
1http://www.aadl.info/aadl/downloads/committee/feb2013/presentations/13_02_04-AADL-

Code%20Generation.pdf
2https://wiki.sei.cmu.edu/aadl/images/8/8a/Constraint_Annex_April22.v3.pdf

53

and its examples3 were also helpful in understanding of AADL to Ada translation. Mapping

of BLESS assertions was created in consultation with Brian Larson (BLESS creator).

4.1.1 Data Types Mapping

One of core AADL packages is Base_Types. It defines fundamental data types for AADL. Its

definition, without floating and text types, is shown in the Figure 4.1. Every data type

has a set of AADL properties (properties are used to define characteristics of an AADL

component).

In Ada 2012, and thus SPARK 2014, there is package Interfaces, which allows for easy

mapping of AADL Base_Types package. The mapping proposed in Annex Document [SCD14]

is presented in the Figure 4.2.

The target language for this thesis is SPARK 2005. The SPARK 2014 has been evaluated

by thesis author, but determined that, at the time when this thesis was written SPARK

2014 tools were not mature enough and multitasking facilities were not yet included in the

language. Types: Float, Character and String are also not part of this thesis, because of the

limitations of SPARK 2005 verification tools limitation. Thus, only Integer, Enumeration, Boolean

and Record types are taken into account in mappings.

Each type is translated into simple type definition and protected type. Then it can be

used in multitasking programs with the Ravenscar Profile (see section 2.5.3). For every

protected type only setter (Put) and getter (Get) subprograms are defined. The type can be

extended by the developer during the development phase. Protected objects can be also

removed if they are not needed. The default value for priority, for each generated type

is 10. It can be changed during development phase to align with system goals. Types:

Integer, Boolean and Natural are already defined in SPARK Ada, thus only protected objects are

generated for them. AADL Base_Types mapping to SPARK 2005 is presented in the Table 4.1.
3https://github.com/yoogx/polyorb-hi-ada/tree/master/examples/aadlv2

54

package Base_Types
public

with Data_Model;

data Boolean
properties

Data_Model::Data_Representation => Boolean;
end Boolean;
data Integer
properties

Data_Model::Data_Representation => Integer;
end Integer;
data Natural extends Integer
properties

Data_Model::Integer_Range => 0 .. Max_Target_Integer;
end Natural;
data Integer_8 extends Integer
properties

Data_Model::Number_Representation => Signed;
Source_Data_Size => 1 Bytes;

end Integer_8;
data Integer_16 extends Integer
properties

Data_Model::Number_Representation => Signed;
Source_Data_Size => 2 Bytes;

end Integer_16;
data Integer_32 extends Integer
properties

Data_Model::Number_Representation => Signed;
Source_Data_Size => 4 Bytes;

end Integer_32;
data Integer_64 extends Integer
properties

Data_Model::Number_Representation => Signed;
Source_Data_Size => 8 Bytes;

end Integer_64;
data Unsigned_8 extends Integer
properties

Data_Model::Number_Representation => Unsigned;
Source_Data_Size => 1 Bytes;

end Unsigned_8;
data Unsigned_16 extends Integer
properties

Data_Model::Number_Representation => Unsigned;
Source_Data_Size => 2 Bytes;

end Unsigned_16;
data Unsigned_32 extends Integer
properties

Data_Model::Number_Representation => Unsigned;
Source_Data_Size => 4 Bytes;

end Unsigned_32;
data Unsigned_64 extends Integer
properties

Data_Model::Number_Representation => Unsigned;
Source_Data_Size => 8 Bytes;

end Unsigned_64;
end Base_Types;

Figure 4.1: AADL Base_Types package

55

with Interfaces;

package Base_Types is

type AADL_Boolean is new Standard.Boolean;

type AADL_Integer is new Standard.Integer;

type AADL_Natural is new Standard.Integer;

type Integer_8 is new Interfaces.Integer_8;

type Integer_16 is new Interfaces.Integer_16;

type Integer_32 is new Interfaces.Integer_32;

type Integer_64 is new Interfaces.Integer_64;

type Unsigned_8 is new Interfaces.Unsigned_8;

type Unsigned_16 is new Interfaces.Unsigned_16;

type Unsigned_32 is new Interfaces.Unsigned_32;

type Unsigned_64 is new Interfaces.Unsigned_64;

end Base_Types;

Figure 4.2: Mapping of Base_Types for SPARK 2014

Table 4.1: Base AADL types to SPARK mapping.

AADL SPARK Ada

data Integer
properties

Data_Model::Data_Representation
=> Integer;

end Integer;

protected type Integer_Store
is

pragma Priority (10);

function Get return Integer;
--# global in Integer_Store;

procedure Put(X : in Integer);
--# global out Integer_Store;
--# derives Integer_Store from X;

private
TheStoredData : Integer := 0;

end Integer_Store;

Continued on next page

56

Table 4.1 – continued from previous page
AADL SPARK Ada

data Integer_16 extends Integer
properties

Data_Model::
Number_Representation =>
Signed;

Source_Data_Size => 2 Bytes;
end Integer_16;

type Integer_16 is new Integer range -2**(2*8-1) .. 2**(2*8-1-1);

protected type Integer_16_Store
is

pragma Priority (10);

function Get return Integer_16;
--# global in Integer_16_Store;

procedure Put(X : in Integer_16);
--# global out Integer_16_Store;
--# derives Integer_16_Store from X;

private
TheStoredData : Integer_16 := 0;

end Integer_16_Store;

protected body Integer_16_Store is
function Get return Integer_16
--# global in TheStoredData;
is
begin

return TheStoredData;
end Get;

procedure Put(X : in Integer_16)
--# global out TheStoredData;
--# derives TheStoredData from X;

is
begin

TheStoredData := X;
end Put;

end Integer_16_Store;

Continued on next page

57

Table 4.1 – continued from previous page
AADL SPARK Ada

data Unsigned_16 extends Integer
properties

Data_Model::
Number_Representation =>
Unsigned;

Source_Data_Size => 2 Bytes;
end Unsigned_16;

type Unsigned_16 is new Integer range 0 .. 2**(2*8-1);

protected type Unsigned_16_Store is pragma Priority (10);
function Get return Unsigned_16;

--# global in Unsigned_16_Store;
procedure Put(X : in Unsigned_16);
--# global out Unsigned_16_Store;
--# derives Unsigned_16_Store from X;

private
TheStoredData : Unsigned_16 := 0;

end Unsigned_16_Store;

protected body Unsigned_16_Store is
function Get return Unsigned_16
--# global in TheStoredData;
is begin

return TheStoredData;
end Get;

procedure Put(X : in Unsigned_16)
--# global out TheStoredData;
--# derives TheStoredData from X;

is begin
TheStoredData := X;

end Put;
end Unsigned_16_Store;

data Type_With_Range
properties

Data_Model::
Data_Representation =>
Integer;
Data_Model::Base_Type => (
classifier (Base_Types::
Unsigned_16));
Data_Model::Integer_Range => 0
.. 1000;

end Type_With_Range;

type Type_With_Range is new Integer range 0 .. 1000;

protected type Type_With_Range_Store is pragma Priority (10);
function Get return Type_With_Range;

--# global in Type_With_Range_Store;
procedure Put(X : in Type_With_Range);
--# global out Type_With_Range_Store;
--# derives Type_With_Range_Store from X;

private
TheStoredData : Type_With_Range := 0;

end Unsigned_16_Store;

protected body Type_With_Range_Store is
function Get return Type_With_Range
--# global in TheStoredData;
is begin

return TheStoredData;
end Get;

procedure Put(X : in Type_With_Range)
--# global out TheStoredData;
--# derives TheStoredData from X;

is begin
TheStoredData := X;

end Put;
end Type_With_Range_Store;

58

Type range is defined using AADL properties: Data_Model::Number_Representation, Source_Data_Size

and Data_Model::Integer_Range. When Data_Model::Integer_Range property is not specified, then range

is calculated. In case of Integer representation, the range starts from negative value, for

Unsigned - from 0. The maximum value for Integer is calculated using the formula 4.1.

Integer_[Number_Of_Bytes * 8]_Max = 2Number_Of_Bytes∗8−1 − 1 (4.1)

The minimum value formula for Integer (4.2) and maximum value for Unsigned (4.3) use

similar strategy.

Integer_[Number_Of_Bytes * 8]_Min = −2Number_Of_Bytes∗8−1 (4.2)

Unsigned_[Number_Of_Bytes * 8]_Max = 2Number_Of_Bytes∗8 − 1 (4.3)

Mapping for enumeration types, presented in the Table 4.2, is straightforward. In addi-

tion to simple types, protected types are generated.

59

Table 4.2: AADL enumeration types to SPARK mapping.

AADL SPARK Ada

data Enum_Type
properties

Data_Model::Data_Representation => Enum;
Data_Model::Enumerators => ("Enumerator1", "
Enumerator2", "Enumerator3");

end Enum_Type;

type Enum_Type is (Enumerator1, Enumerator2,
Enumerator3);

protected type Enum_Type_Store
is

pragma Priority (10);

function Get return Enum_Type;
--# global in Enum_Type_Store;

procedure Put(X : in Enum_Type);
--# global out Enum_Type_Store;
--# derives Enum_Type_Store from X;

private
TheStoredData : Enum_Type := Enum_Type’First;

end Enum_Type_Store;

protected body Enum_Type_Store is
function Get return Enum_Type
--# global in TheStoredData;
is
begin

return TheStoredData;
end Get;

procedure Put(X : in Enum_Type)
--# global out TheStoredData;
--# derives TheStoredData from X;

is
begin

TheStoredData := X;
end Put;

end Enum_Type_Store;

Sometimes it is pragmatic to define a type that has exactly the same range as an already

existing type, especially when it is used for some specific calculations, e.g., measuring speed.

Let’s say, that Unsigned_16 was used. Then, during development of next car model, when a

larger number of bits are required to hold anticipated values, it becomes not enough. In

case when e.g., Speed_Type is not defined, there are two possible resolutions. First: change

definition (range) of Unsigned_16. That is bad choice, especially because its name specify the

range. Another reason: it might be used not only for measuring the Speed, but maybe also

for fuel level, which range is still fine. Second option is to change Unsigned_16 to e.g. Unsigned_32

60

everywhere in Speed Control Module (and maybe also in some external modules). When

Speed_Type is defined and used everywhere for speed units, then only definition of Speed_Type has

to be changed. To define type, which is an extension to already existing type in AADL,

extends clause has to be used. To create, new type, which is based on existing type Data_Model

::Base_Type property has to be used. There are two ways to define type based on some other

type in SPARK Ada:

• subtype - it is compatible with its parent, in other words: parent type variable can be

assigned to it, if its value is in the subtype range

• derived type - it is incompatible with its parent (parent type variable cannot be as-

signed to it), but inherits its primitive operations

Translation of AADL type created by extension of existing type to SPARK Ada subtype

and AADL type created using Data_Model::Base_Type property to SPARK Ada derived type is

shown in the Table 4.3.

Table 4.3: AADL types to SPARK mapping: Subtypes.

AADL SPARK Ada

data Speed_Type extends Base_Types::Integer
end Speed_Type;

subtype Speed_Type is Base_Types.Integer;

data Speed_Type
properties

Data_Model::Base_Type => (classifier(Base_Types
::Unsigned_16));

end Speed_Type;

type Speed_Type is new Base_Types.Unsigned_16;

61

AADL array type can be defined using property Data_Model::Data_Representation. In addition

to that, size for array has to be specified by Data_Model::Dimension property. Sample mapping

of array of 10 integers is shown in the Table 4.4.

Table 4.4: AADL arrays to SPARK Ada mapping

AADL SPARK Ada

data Some_Array
properties

Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier(

Base_Types::Integer_32));
Data_Model::Dimension => (10);

end Some_Array;

subtype Some_Array_Index is Integer range 1 ..
10;

type Some_Array is array (Some_Array_Index) of
Base_Types.Integer_32;

protected type Some_Array_Store
is

pragma Priority (10);

function Get(Ind : in Integer) return
Base_Types.Integer_32;
--# global in Some_Array_Store;

procedure Put(Ind : in Integer; Val : in
Base_Types.Integer_32);
--# global in out Some_Array_Store;
--# derives Some_Array_Store from

Some_Array_Store, Ind, Val;
private

TheStoredData : Some_Array := Some_Array’(
others => 0);

end Some_Array_Store;

protected body Some_Array_Store
is

function Get(Ind : in Integer) return
Base_Types.Integer_32
--# global in TheStoredData;
is
begin

return TheStoredData(Ind);
end Get;

procedure Put(Ind : in Integer; Val : in
Base_Types.Integer_32)

--# global in out TheStoredData;
--# derives TheStoredData from

TheStoredData, Ind, Val;
is
begin

TheStoredData(Ind) := Val;
end Put;

end Some_Array_Store;

62

AADL v2 allows to create struct data types, using Data_Model::Data_Representation => Struct.

AADL Struct is mapped to SPARK Ada record type. The mapping is presented in the

Table 4.5.

Table 4.5: AADL struct to SPARK Ada record mapping

AADL SPARK Ada

data Some_Record_Type
properties

Data_Model::Data_Representation => Struct;
Data_Model::Element_Names => ("Field1", "Field2
", "Field3");
Data_Model::Base_Type =>
(

classifier(Base_Types::Integer_32),
classifier(Base_Types::Boolean),
classifier(Base_Types::Unsigned_32)

);
end Some_Record_Type;

type Some_Record_Type is record
Field1 : Integer_32;
Field2 : Boolean;
Field3 : Unsigned_32;

end record;

Data types translations are created based on Brian Larson’s AADL/BLESS models of

PCA Pump. They are syntacticly verified with SPARK Examiner. During development of

types mapping, SPARK Examiner was helpful also for detecting inconsistencies in AADL

models, e.g., it detected redundancy in enumerators. Both Alarm_Type and Warning_Type contained

No_Alarm enumerator, which was a bug. All enumerators, for all types have to be unique. Thus,

Warning_Type should have No_Warning enumerator instead.

4.1.2 AADL Ports Mapping

The proposed ports mapping shown in the Table 4.6 is based on AADL runtime services

from Annex 2 to "Programming Language Annex Document" [SCD14]. Additionally, the

mapping contains SPARK 2005 contracts, i.e., global and derives annotations to denote global

variables usage and variable dependencies. Data types used by ports has to be defined

63

earlier, to be visible. Moreover, for port communication, protected types are used, to enable

concurrency. Simple types are denoted as Port_Type, while their protected equivalents as

Port_Type_Store. Proposed mapping assume single-process application. In order to create

distributed system, middle-ware layer has to be created to assure ports communication.

Table 4.6: AADL to SPARK Ada ports mapping.

AADL SPARK Ada

Port_Name :
in data port Port_Type;

-- spec (.ads):
--# own protected Port_Name : Port_Type_Store(Priority => 10)

procedure Receive_Port_Name;
--# global out Port_Name;

-- body (.adb):
Port_Name : Port_Type_Store;

procedure Receive_Port_Name
is
begin

-- TODO: implement receiving Port_Name value
-- e.g.:
-- Port_Name.Put(Some_Pkg.Get_Port_Name)

end Receive_Port_Name;

Port_Name :
out data port Port_Type;

-- spec (.ads)
--# own protected Port_Name : Port_Type_Store(Priority => 10)

procedure Get_Port_Name(Port_Name_Out : out Port_Type);
--# global in Port_Name;
--# derives Port_Name_Out from Port_Name;

-- body (.adb):
Port_Name : Port_Type_Store;

procedure Get_Port_Name(Port_Name_Out : out Port_Type)
is
begin

Port_Name_Out := Port_Name.Get;
end Get_Port_Name;

Continued on next page

64

Table 4.6 – continued from previous page
AADL SPARK Ada

Port_Name :
in event port;

-- spec (.ads)
procedure Put_Port_Name;

-- body (.adb):
procedure Put_Port_Name
is
begin

-- TODO: implement event handler
end Put_Port_Name;

Port_Name :
out event port;

-- spec (.ads)
procedure Send_Port_Name;

-- body (.adb):

procedure Send_Port_Name
is
begin

-- TODO: implement sending event
-- e.g.:
-- Some_Pkg.Put_Port_Name;

end Send_Port_Name;

Port_Name :
in event data port Port_Type;

-- spec (.ads)
procedure Put_Port_Name(Port_Name_In : Port_Type);

-- body (.adb):
procedure Put_Port_Name (Port_Name_In : Port_Type)
is
begin

-- TODO: implement data event handler
end Put_Port_Name;

Port_Name :
out event data port Port_Type;

-- spec (.ads)
procedure Send_Port_Name;

-- body (.adb):
procedure Send_Port_Name
is
begin

-- TODO: implement sending event data
-- e.g.:
-- Some_Pkg.Put_Port_Name(Port_Name);

end Send_Port_Name;

65

4.1.3 Thread to Task Mapping

AADL Threads to SPARK Ada tasks mapping proposed in this thesis is presented in the

Table 4.7. Communication between threads is described in Section 4.2.1.

Table 4.7: AADL threads to SPARK Ada tasks mapping.

AADL SPARK Ada

package Some_Pkg
thread Some_Thread

features
Some_Port : out data port Port_Type;

end Some_Thread;

thread implementation Some_Thread.imp
end Some_Thread.imp;

end Some_Pkg;

package Some_Pkg
is

task type Some_Thread
--# global out Some_Port;
is

pragma Priority(10);
end Some_Thread;

end Some_Pkg;

package body Some_Pkg
is

st : Some_Thread;

task body Some_Thread
is
begin

loop
-- implementation

end loop;
end Some_Thread;

end Some_Pkg;

4.1.4 Subprograms Mapping

The mapping of subprograms is also straightforward. However, mapping proposed in this

thesis is different than the mapping proposed in "AADL Code Generation Annex" [SCD14].

Flexibility realized by translating appropriate AADL properties is not needed in approach

presented in this thesis. Thus renames clause is not needed, because it is taken form subpro-

gram name in AADL model. The Source_Language property is also not needed, because only one

language in targeted (SPARK Ada). For now, the body of subprogram is empty, because

behavior (implementation) is not supported by proposed translator. Subprogram mapping

66

should be revised and consulted with AADL committee members, in order to understand

their design decisions.

Table 4.8: AADL subprograms to SPARK Ada subprograms mapping.

AADL SPARK Ada

subprogram sp
features

e : in parameter T;
s : out parameter T;

end sp;

procedure sp(e : in T; s : out T);

procedure sp(e : in T; s : out T) is
begin

--# implementation
end sp;

4.1.5 Feature Groups Mapping

In SPARK Ada there are nested packages and child packages. Sample nested packages are

shown in the Figure 4.3. Equivalent child packages are shown in the Figure 4.4. The name of

a child package consists of the parent unit’s name followed by the child package’s identifier,

separated by a period (dot) ’.’. Calling convention is the same for child and nested packages

(e.g. P.N in figures 4.3 and 4.4). However, there is a difference between nested packages and

child packages. In nested package, declarations become visible as they are introduced, in

textual order. For example, in the Figure 4.3 spec N cannot refer to M in any way. In case

of child packages, with certain exceptions, all the functionality of the parent is available to

a child and parent can access all its child packages. More precisely: all public and private

declarations of the parent package are visible to all child packages. Private child package

can be accessed only from parent’s body.

67

package P is
D: Integer;

-- a nested package:
package N is

X: Integer;
private

Foo: Integer;
end N;

E: Integer;
private

-- nested package in private section:
package M is

Y: Integer;
private

Bar: Integer;
end M;

end P;

Figure 4.3: Nested packages in SPARK Ada

package P is
D: Integer;
E: Integer;

end P;

package P.N is -- a child package
X: Integer;

private
Foo: Integer;

end P.N;

private package P.M is -- a child private package
Y: Integer;

private
Bar: Integer;

end P.M;

Figure 4.4: Child packages in SPARK Ada

68

The thesis author identified a possible approach to create child package and encapsulate

one feature group in it. However, SPARK Ada does not allow to access a child package’s

private part from its parent. Thus, the proposed approach would require to expose feature

group internal variables as public, which is undesirable. Thus, a feature group is translated

with prefix Feature_Group_Name_*. Feature group mapping is presented in Section 4.1.6, in figures

4.5, 4.6 and 4.7. In essence, the feature group is "flatten", i.e., the encapsulation feature of

feature groups is removed and elements of feature groups are uniquely identified by using

the feature group name as a prefix.

4.1.6 AADL Package to SPARK Ada Package Mapping

Figure 4.5 presents a sample AADL package with a system component. It contains all the

categories of ports described in Section 4.1.2 as well as one feature group with two ports as

example of feature group mapping.

package Some_Pkg
public
with Base_Types;

feature group Some_Features
features

Some_Out_Port: out data port Base_Types::Integer;
Some_In_Port: in data port Base_Types::Integer;

end Some_Features;

system Some_System
features

Some_Feature_Group : feature group Some_Features;

In_Data_Port : in data port Base_Types::Integer;
Out_Data_Port : out data port Base_Types::Integer;
In_Event_Port : in event port;
Out_Event_Port : out event port;
In_Event_Data_Port : in event data port Base_Types::Integer;
Out_Event_Data_Port : out event data port Base_Types::Integer;

end Some_System;

end Some_Pkg;

Figure 4.5: Sample AADL package with system

For now, only single process SPARK Ada application is considered. Thus, ports are

69

exposed only on the system level. Communication between threads in process will be re-

alized by protected objects and only SPARK annotations and data types will be needed

as described in Section 4.1.3. Based on the ports mapping presented in Section 4.1.2, the

translation to a SPARK Ada package is shown in the Figure 4.6 and Figure 4.7.

package Some_Pkg
--# own Some_Features_Some_Out_Port : Integer;
--# Some_Features_Some_In_Port : Integer;
--# In_Data_Port : Integer;
--# Out_Data_Port : Integer;
--# initializes Some_Features_Some_Out_Port,
--# Some_Features_Some_In_Port,
--# In_Data_Port,
--# Out_Data_Port;
is

function Some_Features_Get_Some_Out_Port return Integer;
--# global in Some_Features_Some_Out_Port;

procedure Some_Features_Receive_Some_In_Port;
--# global out Some_Features_Some_In_Port;

procedure Receive_In_Data_Port;
--# global out In_Data_Port;

function Get_Out_Data_Port return Integer;
--# global in Out_Data_Port;

procedure Put_In_Event_Port;

procedure Send_Out_Event_Port;

procedure Put_In_Event_Data_Port(In_Event_Data_Port_In : Integer);

procedure Send_Out_Event_Data_Port;
end Some_Pkg;

Figure 4.6: Translation of sample AADL package from Figure 4.5 - package specification

4.1.7 AADL Property Set to SPARK Ada Package Mapping

In the AADL property set, new properties, types and constants can be defined. There is no

equivalent construct in SPARK Ada. Thus property set is mapped to SPARK Ada package.

In this thesis, only properties of type constant aadlinteger are considered. There are issues

with using non-constant types in SPARK Ada package (e.g. when using them in some type

definition). Table 4.9 shows sample property set mapping to SPARK Ada package.

70

Table 4.9: AADL property set to SPARK Ada package mapping

AADL SPARK Ada

property set Some_Properties
is

Some_Property1 : constant aadlinteger => 10
applies to (all);

Some_Property2 : constant aadlinteger => 27
applies to (all);

Some_Property3 : constant aadlinteger =>
Some_Properties::Some_Property1 applies to (
all);

end Some_Properties;

package Some_Properties
is

Some_Property1 : constant Integer := 10;
Some_Property2 : constant Integer := 27;
Some_Property3 : constant Integer :=

Some_Property1;
end Some_Properties;

In AADL, all declarations must have an applies to clause, which indicates the model el-

ement(s) to which a property is assigned. It is ignored in the target of the translation.

However, future version of the translator might use it, e.g., for automatic generation of with

clauses or could be translated to comments (to inform developer about modeling assump-

tions).

4.1.8 BLESS Mapping

In cooperation with Brian Larson, translations for BLESS assertions, invariant, pre- and

postconditions were created. Table 4.10 presents their mapping to SPARK Ada. Generated

(translated) code may not be complete. In such situations, developer effort to implement

missing parts will be required, e.g., when assertion is specified in AADL/BLESS model, but

not defined, it has to be implemented in SPARK Ada.

Table 4.10: BLESS to SPARK contracts mapping

AADL/BLESS SPARK Ada

BLESS::Assertion=>"<<COND1()>>" --# assert COND1;

Continued on next page

71

Table 4.10 – continued from previous page
AADL/BLESS SPARK Ada

thread Some_Thread
features

Some_Port : out event port
{BLESS::Assertion => "<<(Var1 < Var2 and COND2()

)>>";};
end Some_Thread;

task body Some_Thread
is
begin

loop
--# assert (Var1 < Var2 and COND2);

end loop;
end Some_Thread;

thread implementation Some_Thread.imp
annex BLESS
{**

invariant <<(Some_Var < Other_Var)>>
**};
end Some_Thread.imp;

task body Some_Thread
is
begin

loop
--# assert (Some_Var < Other_Var);

end loop;
end Some_Thread;

thread implementation Some_Thread.imp
annex BLESS
{**

assert
<<State1 : :COND1() or COND2()>>
<<Var : :=

(State1()) -> 0,
(State2()) -> -1,
(State3()) -> 9

>>
**};
end Some_Thread.imp;

task body Some_Thread
is
begin

loop
--# assert (COND1 or COND2)
--# -> State1();
--# assert (Var = 0) -> State1 and
--# (Var = -1) -> State2 and
--# (Var = 9) -> State3;

end loop;
end Some_Thread;

subprogram Some_Subprogram
features

param : out parameter Base_Types::Integer;
annex subBless
{**

pre <<(param > 0)>>
post <<(param = 0)>>

**};
end Some_Subprogram;

procedure Some_Subprogram(Param : in out Integer)
;

--# pre Param > 0;
--# post Param = 0;

72

package body Some_Pkg
is

Some_Features_Some_Out_Port : Integer := 0;
Some_Features_Some_In_Port : Integer := 0;
In_Data_Port : Integer := 0;
Out_Data_Port : Integer := 0;

function Some_Features_Get_Some_Out_Port return Integer
is
begin

return Some_Features_Some_Out_Port;
end Some_Features_Get_Some_Out_Port;

procedure Some_Features_Receive_Some_In_Port
is
begin

-- implementation
end Some_Features_Receive_Some_In_Port;

procedure Receive_In_Data_Port
is
begin

-- implementation
end Receive_In_Data_Port;

function Get_Out_Data_Port return Integer
is
begin

return Out_Data_Port;
end Get_Out_Data_Port;

procedure Put_In_Event_Port
is
begin

-- implementation
end Put_In_Event_Port;

procedure Send_Out_Event_Port
is
begin

-- implementation
end Send_Out_Event_Port;

procedure Put_In_Event_Data_Port(In_Event_Data_Port_In : Integer)
is
begin

-- implementation
end Put_In_Event_Data_Port;

procedure Send_Out_Event_Data_Port
is
begin

-- implementation
end Send_Out_Event_Data_Port;

end Some_Pkg;

Figure 4.7: Translation of sample AADL package from Figure 4.5 - package body

73

4.2 Port-based Communication

Communication between AADL components is realized by ports. AADL ports can be de-

clared in subprograms, threads, processes, systems and other entities. In this Section,

communication between threads in a single-process SPARK Ada application (4.2.1) and

concepts of communication between two systems (4.2.2) are presented.

4.2.1 Threads Communication

Figure 4.8: Example of port com-
munication between threads

An example of communication between threads in a

single process is depicted in Figure 4.8. There are

two threads (some_thread and other_thread) in one process.

The AADL model and its translation to SPARK Ada

are presented in the Table 4.11. The connection be-

tween threads has to be specified in the process im-

plementation. Based on the mappings from Section

4.1, a protected object is defined, but subprograms

are not, because communication takes place only in-

ternally. Thus, subprograms are not necessary. The result of translation consists of two

tasks and a private global protected object, which enables communication between them.

Additionally, both tasks have global annotations (one with out mode, other with in mode),

which indicate the use of a protected object in their bodies.

Threads can be also placed in different packages. The same example of two threads

within one process, but in different packages is presented in the Table 4.12. In this case,

subprograms present in mapping table, in Section 4.2 are also present in resulted translation.

Moreover, body of procedure Receive_Some_Port is implemented as a result of defined connection

between threads in the process implementation, in AADL model.

74

Table 4.11: Translation of AADL threads communication to SPARK Ada

AADL SPARK Ada

package Some_Pkg
public
with Base_Types;

process Some_Proc
end Some_Proc;

process implementation Some_Proc.imp
subcomponents

some_thread: thread Some_Thread.imp;
other_thread: thread Other_Thread.imp;

connections
connection: port some_thread.Some_Port ->
other_thread.Some_Port;

end Some_Proc.imp;

thread Some_Thread
features

Some_Port : out data port Base_Types::
Integer;

end Some_Thread;

thread implementation Some_Thread.imp
end Some_Thread.imp;

thread Other_Thread
features

Some_Port : in data port Base_Types::Integer
;

end Other_Thread;

thread implementation Other_Thread.imp
end Other_Thread.imp;

end Some_Pkg;

with Base_Types;
--# inherit Base_Types;
package Some_Pkg
--# own task st : Some_Thread;
--# task ot : Other_Thread;
--# protected Some_Port : Base_Types.

Integer_Store (Priority => 10);
is

private
task type Some_Thread
--# global out Some_Port;
is

pragma Priority (10);
end Some_Thread;

task type Other_Thread
--# global in Some_Port;
is

pragma Priority (10);
end Other_Thread;

end Some_Pkg;

package body Some_Pkg
is

st : Some_Thread;
ot : Other_Thread;
Some_Port : Base_Types.Integer_Store;

task body Some_Thread is begin
loop

-- implementation
end loop;

end Some_Thread;

task body Other_Thread is begin
loop

-- implementation
end loop;

end Other_Thread;
end Some_Pkg;

75

Table 4.12: AADL threads communication to SPARK Ada tasks communication transla-
tion (multiple packages)

AADL SPARK Ada

package Pkg1
public
with Base_Types, Pkg2;

process Some_Proc
end Some_Proc;

process implementation
Some_Proc.imp

subcomponents
some_thread: thread
Some_Thread.imp;
other_thread: thread Pkg2::
Other_Thread.imp;

connections
connection: port some_thread.
Some_Port -> other_thread.
Some_Port;

end Some_Proc.imp;

thread Some_Thread
features

Some_Port : out data port
Base_Types::Integer;

end Some_Thread;

thread implementation
Some_Thread.imp

end Some_Thread.imp;

with Base_Types;
--# inherit Base_Types;
package Pkg1
--# own task st : Some_Thread;
--# protected Some_Port : Base_Types.Integer_Store (Priority =>

10);
is

procedure Get_Some_Port(Some_Port_Out : out Integer);
--# global in Some_Port;
--# derives Some_Port_Out from Some_Port;

private
task type Some_Thread
--# global out Some_Port;
is

pragma Priority (10);
end Some_Thread;

end Pkg1;

package body Pkg1
is

st : Some_Thread;
Some_Port : Base_Types.Integer_Store;

procedure Get_Some_Port(Some_Port_Out : out Integer)
is
begin

Some_Port_Out := Some_Port.Get;
end Get_Some_Port;

task body Some_Thread
is
begin

loop
-- implementation

end loop;
end Some_Thread;

end Pkg1;

Continued on next page

76

Table 4.12 – continued from previous page
AADL SPARK Ada

package Pkg2
public
with Base_Types;

thread Other_Thread
features

Some_Port : in data port
Base_Types::Integer;

end Other_Thread;

thread implementation
Other_Thread.imp

end Other_Thread.imp;
end Pkg2;

with Base_Types;
with Pkg1;
--# inherit Base_Types,
--# Pkg1;
package Pkg2
--# own task ot : Other_Thread;
--# protected Some_Port : Base_Types.Integer_Store(Priority =>

10);
is

procedure Receive_Some_Port;
--# global out Some_Port;
--# in Pkg1.Some_Port;

private
task type Other_Thread
--# global in Some_Port;
is

pragma Priority (10);
end Other_Thread;

end Pkg2;

package body Pkg2
is

ot : Other_Thread;
Some_Port : Base_Types.Integer_Store;

procedure Receive_Some_Port
is

Temp : Integer;
begin

Pkg1.Get_Some_Port(Temp);
Some_Port.Put(Temp);

end Receive_Some_Port;

task body Other_Thread
is
begin

loop
-- implementation

end loop;
end Other_Thread;

end Pkg2;

77

In the given example, communication is one way: from Pkg1 package to Pkg2 package. Thus,

Pkg1 package does not need to know that Pkg2 package exists. In other words: it does not

need to "with" it. However, if two way communication is needed (between Pkg1 to Pkg2), then

Pkg1 package has to "with" Pkg2 package. Note that no "with" is needed in the first example

(Table 4.11), where communication between threads take place in the same package. A

modified model of second example, with communication from Pkg2 to Pkg1, is depicted in the

Figure 4.9 and presented in the Figure 4.10.

Figure 4.9: Example of two way port communication between threads in different packages

This model, translated to SPARK Ada is presented in the Figure 4.11 and Figure 4.12. It

will not compile. GNAT compiler returns circular unit dependency error. Additionally verifica-

tion with SPARK Examiner returns error: Semantic Error 135 - The package Pkg2TwoWay is undeclared

or not visible, or there is a circularity in the list of inherited packages. Now, the problem is that

two-way communication is allowed in AADL, but not in SPARK, nor even in Ada. Finding

an appropriate solution requires further investigation, which is omitted in this thesis.

78

package Pkg1TwoWay
public
with Base_Types,

Pkg2TwoWay;

process Some_Proc
end Some_Proc;

process implementation Some_Proc.imp
subcomponents

some_thread: thread Some_Thread.imp;
other_thread: thread Pkg2TwoWay::Other_Thread.imp;

connections
connection: port some_thread.Some_Port -> other_thread.Some_Port;
connection2: port some_thread.Other_Port -> other_thread.Other_Port;

end Some_Proc.imp;

thread Some_Thread
features

Some_Port : out data port Base_Types::Integer;
Other_Port : in data port Base_Types::Integer;

end Some_Thread;

thread implementation Some_Thread.imp
end Some_Thread.imp;

end Pkg1TwoWay;

package Pkg2TwoWay
public
with Base_Types;

thread Other_Thread
features

Some_Port : in data port Base_Types::Integer;
Other_Port : out data port Base_Types::Integer;

end Other_Thread;

thread implementation Other_Thread.imp
end Other_Thread.imp;

end Pkg2TwoWay;

Figure 4.10: AADL model of two way port communication threads in different packages

79

with Base_Types;
with Pkg2TwoWay;
--# inherit Base_Types,
--# Pkg2TwoWay;
package Pkg1TwoWay
--# own task st : Some_Thread;
--# protected Some_Port : Base_Types.Integer_Store (Priority => 10);
--# protected Other_Port : Base_Types.Integer_Store (Priority => 10);
is

procedure Get_Some_Port(Some_Port_Out : out Integer);
--# global in Some_Port;
--# derives Some_Port_Out from Some_Port;

procedure Receive_Other_Port;
--# global out Other_Port;
--# in Pkg2TwoWay.Other_Port;

private
task type Some_Thread
--# global out Some_Port;
is

pragma Priority (10);
end Some_Thread;

end Pkg1TwoWay;

package body Pkg1TwoWay
is

st : Some_Thread;
Some_Port : Base_Types.Integer_Store;
Other_Port : Base_Types.Integer_Store;

procedure Get_Some_Port(Some_Port_Out : out Integer)
is
begin

Some_Port_Out := Some_Port.Get;
end Get_Some_Port;

procedure Receive_Other_Port
is

Temp : Integer;
begin

Pkg2TwoWay.Get_Other_Port(Temp);
Other_Port.Put(Temp);

end Receive_Other_Port;

task body Some_Thread
is
begin

loop
-- implementation
null;

end loop;
end Some_Thread;

end Pkg1TwoWay;

Figure 4.11: Two way port communication translated to SPARK Ada: package Pkg1TwoWay

80

with Base_Types;
with Pkg1TwoWay;
--# inherit Base_Types,
--# Pkg1TwoWay;
package Pkg2TwoWay
--# own task ot : Other_Thread;
--# protected Some_Port : Base_Types.Integer_Store (Priority => 10);
--# protected Other_Port : Base_Types.Integer_Store (Priority => 10);
is

procedure Receive_Some_Port;
--# global out Some_Port;
--# in Pkg1TwoWay.Some_Port;

procedure Get_Other_Port(Other_Port_Out : out Integer);
--# global in Other_Port;
--# derives Other_Port_Out from Other_Port;

private
task type Other_Thread
--# global in Some_Port;
is

pragma Priority (10);
end Other_Thread;

end Pkg2TwoWay;

package body Pkg2TwoWay
is

ot : Other_Thread;
Some_Port : Base_Types.Integer_Store;
Other_Port : Base_Types.Integer_Store;

procedure Receive_Some_Port
is

Temp : Integer;
begin

Pkg1TwoWay.Get_Some_Port(Temp);
Some_Port.Put(Temp);

end Receive_Some_Port;

procedure Get_Other_Port(Other_Port_Out : out Integer)
is
begin

Other_Port_Out := Other_Port.Get;
end Get_Other_Port;

task body Other_Thread
is
begin

loop
-- implementation
null;

end loop;
end Other_Thread;

end Pkg2TwoWay;

Figure 4.12: Two way port communication translated to SPARK Ada: package Pkg2TwoWay

81

4.2.2 Systems Communication

This Section provides a proposal for handling communication between different systems.

An AADL system consists of process(es), and process consists of threads. Ports would be

exposed by a package if they are specified in system entity. Communication between two

systems can be described by another system. Figure 4.13 presents communication between

two systems: panel and pump. AADL model of this system comprises 3 packages: Main, Panel

and Pump. They are presented in the figures 4.14, 4.15 and 4.16. The Panel package has one

thread Panel_Thread with two out ports: event port and event data port. Both ports are exposed

by the process panel_process and then by system panel. Pump package has similar structure, but

two in ports. Both are also exposed by process (pump_process) and system (pump). Connections

between these two packages are defined in Main package.

Figure 4.13: Example of port communication between systems

82

package Panel
public
with Base_Types;

thread Panel_Thread
features

Start_Button_Pressed: out event port;
Flow_Rate: out event data port Base_Types::Integer;

end Panel_Thread;

thread implementation Panel_Thread.imp
end Panel_Thread.imp;

process panel_process
features

Start_Button_Pressed: out event port;
Flow_Rate: out event data port Base_Types::Integer;

end panel_process;

process implementation panel_process.imp
subcomponents

panel_thread: thread Panel_Thread.imp;
connections

sbp: port panel_thread.Start_Button_Pressed->Start_Button_Pressed;
fr: port panel_thread.Flow_Rate->Flow_Rate;

end panel_process.imp;

system panel
features

Start_Button_Pressed: out event port;
Flow_Rate: out event data port Base_Types::Integer;

end panel;

system implementation panel.imp
subcomponents

panel_process: process panel_process.imp;
connections

sbp: port panel_process.Start_Button_Pressed->Start_Button_Pressed;
fr: port panel_process.Flow_Rate->Flow_Rate;

end panel.imp;

end Panel;

Figure 4.14: AADL model of port communication between systems: package Panel

83

package Pump
public
with Base_Types;

thread Rate_Controller
features

Start_Button_Pressed: in event port;
Flow_Rate: in event data port Base_Types::Integer;

end Rate_Controller;
thread implementation Rate_Controller.imp
end Rate_Controller.imp;

process pump_process
features

Start_Button_Pressed : in event port;
Flow_Rate: in event data port Base_Types::Integer;

end pump_process;
process implementation pump_process.imp

subcomponents
Rate_Controller: thread Rate_Controller.imp;

connections
sbp: port Start_Button_Pressed->Rate_Controller.Start_Button_Pressed;
fr: port Flow_Rate->Rate_Controller.Flow_Rate;

end pump_process.imp;

system pump
features

Start_Button_Pressed : in event port;
Flow_Rate: in event data port Base_Types::Integer;

end pump;
system implementation pump.imp

subcomponents
pump_process : process pump_process.imp;

connections
sbp: port Start_Button_Pressed->pump_process.Start_Button_Pressed;
fr: port Flow_Rate->pump_process.Flow_Rate;

end pump.imp;
end Pump;

Figure 4.15: AADL model of port communication between systems: package Pump

package Main
public
with Pump, Panel;

system main
end main;
system implementation main.imp

subcomponents
panel: system Panel::panel.imp;
pump: system Pump::pump.imp;

connections
sbp2sbp: port panel.Start_Button_Pressed->pump.Start_Button_Pressed;
fr2fr: port panel.Flow_Rate->pump.Flow_Rate;

end main.imp;
end Main;

Figure 4.16: AADL model of port communication between systems: package Main

84

Based on mappings from Section 4.1, conforming SPARK Ada code is presented in the

figures 4.17 and 4.18. There are two packages: Panel and Pump. Main package is omitted.

Both contain procedures representing port interfaces, according to ports mapping from

Section 4.1.2. There is mocked port communication between event data ports. Each package

has local variable, which are updated in case of event action. Additionally, procedures

responsible for port communication consist appropriate annotations (i.e., global and derives).

Translator should generate this code in case when connection between ports is specified

in AADL model. Both packages consist of empty thread declarations and bodies, which

conforms to translations from Section 4.1.3. However, in this case, both packages will work

in different systems, thus different processes. To enable communication between different

systems, deployment methodology and the middle-ware layer has to be created. It will be

used to enable not only system to system communication, but also communication with

devices. This requires significant effort and was not needed for PCA Pump Prototype

created in this thesis, thus it is considered as part of future work described in chapter 8.

85

with Pump;
with Base_Types;
--# inherit Pump,
--# Base_Types;
package Panel
--# own task pt : Panel_Thread;
--# protected Flow_Rate : Base_Types.Integer_Store (Priority => 10);
is

procedure Send_Start_Button_Pressed;

procedure Send_Flow_Rate;
--# global in Flow_Rate;
--# out Pump.Flow_Rate;

private
task type Panel_Thread
--# global in out Flow_Rate;
is

pragma Priority (10);
end Panel_Thread;

end Panel;

package body Panel
is

pt : Panel_Thread;
Flow_Rate : Base_Types.Integer_Store;

procedure Send_Start_Button_Pressed
is begin

Pump.Put_Start_Button_Pressed;
end Send_Start_Button_Pressed;

procedure Send_Flow_Rate
is

Flow_Rate_Temp : Integer;
begin

Flow_Rate_Temp := Flow_Rate.Get;
Pump.Put_Flow_Rate(Flow_Rate_Temp);

end Send_Flow_Rate;

task body Panel_Thread
is begin

loop
-- implementation

end loop;
end Panel_Thread;

end Panel;

Figure 4.17: Port communication translated to SPARK Ada: package Panel

86

with Base_Types;
--# inherit Base_Types;
package Pump
--# own task rc : Rate_Controller;
--# protected Flow_Rate : Base_Types.Integer_Store (Priority => 10);
is

procedure Put_Start_Button_Pressed;

procedure Put_Flow_Rate(Flow_Rate_In : Integer);
--# global out Flow_Rate;
--# derives Flow_Rate from Flow_Rate_In;

private
task type Rate_Controller
--# global in out Flow_Rate;
is

pragma Priority (10);
end Rate_Controller;

end Pump;

package body Pump
is

rc : Rate_Controller;
Flow_Rate : Base_Types.Integer_Store;

procedure Put_Start_Button_Pressed
is
begin

-- TODO: implement event handler
end Put_Start_Button_Pressed;

procedure Put_Flow_Rate(Flow_Rate_In : Integer)
is
begin

Flow_Rate.Put(Flow_Rate_In);
end Put_Flow_Rate;

task body Rate_Controller
is
begin

loop
-- implementation

end loop;
end Rate_Controller;

end Pump;

Figure 4.18: Port communication translated to SPARK Ada: package Pump

87

4.3 Towards an Automatic Translator

The ultimate goal is to create translator, which performs translations described in 4.1 and

4.2 automatically. An automatic translator should enable either translation of entire model

or parts of the model. An initial implementation strategy might focus on supporting only a

subset of AADL entities: the system, process, thread, subprogram and port communication.

The following functions should be supported:

• data types translation (as described in Section 4.1.1)

• threads to tasks translation (as described in 4.1.3)

• single ports translation (based on Section 4.1.2)

• subprogram to procedure/function translation (based on Section 4.1.4)

• single package translation with system, which contains ports and feature groups (as

described in Section 4.1.6)

• property set mapping to SPARK Ada package (like in Section 4.1.7)

A possible second step would be to introduce BLESS support, specifically, add supported

BLESS constructs described in Section 4.1.8:

• assertions for threads

• pre- and postconditions for subprograms

The recommended way to create translator is to parse AADL models, create Abstract

Syntax Tree (AST), and emit code using the Visitor pattern. A parser and AST can be

generated using ANTLR4 (Another Tool for Language Recognition) and its grammar devel-

opment environment ANTLRWorks.5 ANTLR 4 (with ANTLRWorks 2) enables automatic
4http://www.antlr.org/
5http://tunnelvisionlabs.com/products/demo/antlrworks

88

AST creation and handles left recursion, which makes parser development much easier and

faster. Another tool, Xtext6 can be also used (instead of ANTLR) for parser and AST

generator. For emitting code, StringTemplate7 (template engine for generating code) can

be used.

Development should be performed incrementally – starting from the translation for the

simplest constructs, like data types or single ports, and ending with port communication

and BLESS support. First step, would be AADL grammar development. It is recommended

to initially specify only the part of required AADL subset and then extend it incrementally.

During translator development, unit testing and Test Driven Development is recommended.

Translation schemes can be used as input and expected output of particular test cases. This

will help to ensure correctness of translator while working on new features support.

Additionally, the automatic translator should work in two modes:

• Ravenscar: as described above, with protected objects and multiple tasks

• Sequential: single-threaded application, without notion of tasks and protected objects

6http://www.eclipse.org/Xtext/index.html
7http://www.stringtemplate.org/

89

5

PCA Pump Prototype Implementation

and Code Generation

“Imagination is more important than knowledge.

Knowledge is limited. Imagination encircles the world.”

– Albert Einstein

This chapter describes running SPARK Ada programs on BeagleBoard-xM platform

(3.3), implementation details of PCA pump prototype (5.2)) and code generation from

simplified AADL/BLESS models of PCA pump (5.3). All programs presented in this section

work the same on an Intel processor (PC or MacBook) and on the BeagleBoard-xM (ARM

device).

5.1 Running SPARK Ada Programs on BeagleBoard-xM

To run SPARK Ada program on BeagleBoard-xM, it has to be cross-compiled. As an IDE for

SPARK Ada development, GNAT Programming Studio (GPS) is used (see Section 2.5.2).

To create a "Hello, World!" application, a new Ada project has been created (choosing

90

Project/New... from the menu). Then main.adb file, with procedure Main printing "Hello,

World!" in standard output, has been added. The code is presented in the Figure 5.1. It is

valid Ada 2005 and Ada 2012 code.

with Ada.Text_IO;
use Ada.Text_IO;

procedure Main
is
begin

Put_Line("Hello, World!");
end Main;

Figure 5.1: "Hello World" in Ada

The main file has to be always specified in project file (.gpr) in order to compile and

link the application, which can be runnable. This can be done in Project/Edit Project

Properties (Figure 5.2), tab: Main files (Figure 5.3) or directly in project file (.gpr).

Figure 5.2: Edit Project Properties

91

Figure 5.3: Project Main files

To enable cross-compilation, for the current version of cross-compiler, the environmental

variable ENV_PREFIX has to be set to a directory that contains /lib and /usr directories. The

/usr directory should also contain /usr/lib and /usr/include subdirectories. After these directo-

ries are copied into /home/super/angstrom-arm directory, the ENV_PREFIX is exported with following

command: export ENV_PREFIX=/home/super/angstrom-arm. The entire project can be compiled and

linked with following command: arm-linux-gnueabi-gnatmake -d -Phelloworld.gpr (where helloworld.gpr

is GNAT Programming Studio project file). Additional flags can be specified in the com-

mand line or directly in the project file (manually or through GNAT Programming Studio

Interface).

A more complex example, which takes advantage of SPARK contracts is presented in

Section 5.1.1.

92

5.1.1 Odometer

The Odometer example is a simple SPARK Ada program, which implements the basic

functions of standard odometer. Figure 5.4 shows Odometer in SPARK 2005.

There are 4 subprograms (2 procedures and 2 functions), which are globally available

(through other packages and program units):

• Zero_Trip procedure - reset Odometer to 0

• Read_Trip function - returns current distance

• Read_Total function - returns total distance traveled

• Inc procedure - increment total and current distance by 1

The given program contains code contracts. Though it does not matter in compilation

phase, it is used to illustrate how SPARK verification tools can be applied.

Annotation global means that subprogram uses some global variable. This information

helps developer to avoid undesired side effects. The global annotation has three possible

postfixes: (1) in, (2) out and (3) in out, which means that particular variable is read, write

and read/write respectively. Annotation derives says that some variable value depends on

other variables, e.g., in procedure Inc variable Trip is dependent on its current value (before

procedure call). Annotations pre and post define pre- and postconditions of procedure. We

can see that in the Zero_Trip procedure, the postcondition requires that variable Trip is equal

to 0. In procedure Inc, postconditions require that variables Trip and Total are incremented by

1 (tilde appended at the end of variable name is the value of variable when the procedure is

called). Annotation own exposes private variables for use in specifications for public methods.

Annotation initializes announce required initialization of the given variables.

In order to test Odometer package at runtime, a Main procedure has been created. It is

presented in the Figure 5.5.

93

package Odometer
--# own
--# Trip, -- number of meters so far on this trip (can be reset to 0).
--# Total -- total meters traveled of vehicle since the last factory-reset.
--# : Natural; -- has range 0 .. Integer’Last.
--# initializes Trip,
--# Total;
is

procedure Zero_Trip; -- sets Trip to 0 and clears all saved Trip marks.
--# global out Trip;
--# derives Trip from ;
--# post Trip = 0;

function Read_Trip return Natural; -- returns value of Trip.
--# global in Trip;
--# return Trip;

function Read_Total return Natural; -- returns value of Total
--# global in Total;
--# return Total;

procedure Inc; -- increments each of Trip and Total by 1.
--# global in out Trip, Total;
--# derives Trip from Trip & Total from Total;
--# pre Trip < Integer’Last and Total < Integer’Last;
--# post Trip = Trip~ + 1 and Total = Total~ + 1;

end Odometer;

package body Odometer is
Trip : Natural := 0;
Total : Natural := 0;

procedure Zero_Trip is
begin

Trip := 0;
end Zero_Trip;

function Read_Trip return Natural is
begin

return Trip;
end Read_Trip;

function Read_Total return Natural is
begin

return Total;
end Read_Total;

procedure Inc is
begin

Trip := Trip + 1;
Total := Total + 1;

end Inc;
end Odometer;

Figure 5.4: SPARK 2005 code: Odometer

94

with Ada.Text_IO;
with Odometer;

procedure Main
is
begin

Ada.Text_IO.Put_Line("Trip: " & Natural’Image(Odometer.Read_Trip));
Ada.Text_IO.Put_Line("Total: " & Natural’Image(Odometer.Read_Total));

Odometer.Inc;

Ada.Text_IO.Put_Line("Trip: " & Natural’Image(Odometer.Read_Trip));
Ada.Text_IO.Put_Line("Total: " & Natural’Image(Odometer.Read_Total));

Odometer.Zero_Trip;

Ada.Text_IO.Put_Line("Trip: " & Natural’Image(Odometer.Read_Trip));
Ada.Text_IO.Put_Line("Total: " & Natural’Image(Odometer.Read_Total));

Odometer.Inc;

Ada.Text_IO.Put_Line("Trip: " & Natural’Image(Odometer.Read_Trip));
Ada.Text_IO.Put_Line("Total: " & Natural’Image(Odometer.Read_Total));

end Main;

Figure 5.5: Main procedure for Odometer package

Odometer in SPARK 2005 works fine on the BeagleBoard-xM using the cross compilation

techniques introduced in the previous section. In order to test a SPARK 2014 version of the

program, SPARK 2005 annotations have been converted into Ada 2012 contracts. Figure

5.6 presents Odometer in SPARK 2014.

Odometer example was created to check possible limitations and issues related to differ-

ent platform (ARM-based). No limitations were found.

5.1.2 Multitasking Applications

In Ada World, concurrency is referred as tasking, and the task is the same construct as

the thread in other programming languages. In Section 5.1.1, a single-tasking application

was tested. This section presents a simple Ada a multitasking application and multitasking

version of Odometer in SPARK 2005 from Section 5.1.1. Both applications compile correctly

and work as expected on BeagleBoard-xM platform.

95

package Odometer
with Abstract_State => (Trip_State, Total_State)
is

function Trip_State return Integer with Convention => Ghost, Global => (Input => Trip_State);
function Total_State return Integer with Convention => Ghost, Global => (Input => Total_State);
procedure Zero_Trip with Global => (Output => (Trip_State)), Depends => (Trip_State => null), Post =>
Trip_State = 0;

function Read_Trip return Natural with Global => (Input => Trip_State),
Post => Read_Trip’Result = Trip_State;

function Read_Total return Natural with Global => (Input => Total_State),
Post => Read_Total’Result = Total_State;

procedure Inc with Global => (In_Out => (Trip_State, Total_State)),
Depends => (Trip_State => Trip_State, Total_State => Total_State),
Pre => Trip_State < Integer’Last and Total_State < Integer’Last,
Post => Trip_State = Trip_State’Old + 1 and Total_State = Total_State’Old + 1;

end Odometer;

package body Odometer
with Refined_State => (Trip_State => (Trip), Total_State => (Total))
is

Trip : Natural;
Total : Natural;

function Trip_State return Integer
with Refined_Global => (Input => Trip) is begin
return Trip;

end Trip_State;

function Total_State return Integer
with Refined_Global => (Input => Total) is begin
return Total;

end Total_State;

procedure Zero_Trip
with Refined_Global => (Output => Trip), Refined_Depends => (Trip => null) is begin
Trip := 0;

end Zero_Trip;

function Read_Trip return Natural
with Refined_Global => (Input => Trip) is begin
return Trip;

end Read_Trip;

function Read_Total return Natural
with Refined_Global => (Input => Total) is begin
return Total;

end Read_Total;

procedure Inc
with Refined_Global => (In_Out => (Trip, Total)), Refined_Depends => (Trip => Trip, Total => Total)

is begin
Trip := Trip + 1;
Total := Total + 1;

end Inc;
end Odometer;

Figure 5.6: SPARK 2014 code: Odometer

96

Ada Multitasking Application

Figure 5.7 presents a simple Ada 2005 multitasking application that prints numbers in

different time intervals. It is also valid code for Ada 2012. There are 3 tasks:

• Main task

• S (type: Seconds) - simple counter printing numbers form 1 to 10 in every second

• T (type: Tenth_Seconds) - simple counter printing numbers from 0.1 to 10 in every 0.1

second

with Ada.Text_IO;
use Ada.Text_IO;
with Ada.Float_Text_IO;

procedure Main is
task type Seconds is
end Seconds;

task type Tenth_Seconds is
end Tenth_Seconds;

S : Seconds;
T : Tenth_Seconds;

task body Seconds is
begin

for I in 1..10 loop
delay Standard.Duration(1);
Put_Line(Integer’Image(I));

end loop;
end Seconds;

task body Tenth_Seconds is
begin

for I in 1..100 loop
delay 0.1;
Ada.Float_Text_IO.Put(Float(I)/Float(10), AFT=>2, EXP=>0);
Put_Line("");

end loop;
end Tenth_Seconds;

begin
Put_Line("Started");

end Main;

Figure 5.7: Simple multitasking application in Ada

97

The program works as expected on BleagleBoard-xM. This is not a valid SPARK program

though. As mentioned in Section 2.5.3, tasks can be declared only in packages. Not in

subprograms or in other tasks [Bar13].

SPARK Ada multitasking application

As mentioned in Section 2.5.3, in SPARK 2005 multitasking is possible with Ravenscar

Profile. Default profile - sequential - does not enable tasking. In other words, SPARK 2005

tools cannot analyze and reason about programs if Ravenscar profile flag is not provided. In

SPARK 2014 - for now tasking is not possible. It’s part of SPARK 2014 road map to include

support for tasking in the future. Thus, only the SPARK 2005 application was tested.

The tested, multitasking application is an extended version of Odometer (presented in

the Figure 5.4). It has additional variable Speed, procedure Set_Speed and new task: Drive.

Thus, in total it has two tasks:

• Main

• Drive

The Drive task increase Total and Trip variables by Speed (m/s) in every second. Extended

Odometer is presented in Figure 5.8 and 5.9.

There are two ways to access protected variable in task body:

• It has to be protected object

• It has to be atomic type

Protected variables may not be used in proof contexts. Thus, if we try to use protected

variable in proofs (pre- or postcondition), then we get semantic error: Trip is a protected own

variable. To preserve pre- and postconditions from original Odometer, atomic types (Distance

and Meters_Per_Second) has been used. The capability to specify pre- and postconditions has

been preserved, but now the application is not thread safe.

98

--# inherit Ada.Real_Time;
package Odometer
--# own Trip : Distance;
--# Total : Distance;
--# Speed : Meters_Per_Second;
--# task d : Drive;
--# initializes Trip,
--# Total,
--# Speed;
is

type Distance is range Natural’First .. Natural’Last;
pragma Atomic (Distance);

type Meters_Per_Second is range Natural’First .. Natural’Last;
pragma Atomic(Meters_Per_Second);

procedure Zero_Trip; -- sets Trip to 0 and clears all saved Trip marks.
--# global out Trip;
--# derives Trip from ;
--# post Trip = 0;

function Read_Trip return Distance; -- returns value of Trip.
--# global in Trip;
--# return Trip;

function Read_Total return Distance; -- returns value of Total
--# global in Total;
--# return Total;

procedure Inc; -- increments each of Trip and Total by 1.
--# global in out Trip, Total;
--# derives Trip from Trip & Total from Total;
--# pre Trip < Distance’Last and Total < Distance’Last;
--# post Trip = Trip~ + 1 and Total = Total~ + 1;

procedure Set_Speed(New_Speed : Meters_Per_Second);
--# global out Speed;
--# derives Speed from New_Speed;
--# post Speed = New_Speed;

private
task type Drive
--# global in Speed;
--# in out Trip;
--# in out Total;
--# in Ada.Real_Time.ClockTime;
is

pragma Priority(10);
end Drive;

end Odometer;

Figure 5.8: Multitasking Odometer specification

99

with Ada.Real_Time;
use type Ada.Real_Time.Time;
package body Odometer is

Trip : Distance := 0;
Total : Distance := 0;
Speed : Meters_Per_Second := 0;
d : Drive;

procedure Zero_Trip is
begin

Trip := 0;
end Zero_Trip;

function Read_Trip return Distance is
begin

return Trip;
end Read_Trip;

function Read_Total return Distance is
begin

return Total;
end Read_Total;

procedure Inc is
begin

Trip := Trip + 1;
Total := Total + 1;

end Inc;

procedure Set_Speed(New_Speed : Meters_Per_Second)
is
begin

Speed := New_Speed;
end Set_Speed;

task body Drive
is

Release_Time : Ada.Real_Time.Time;
Period : constant Integer := 1000; -- update in every second

begin
loop

Release_Time := Ada.Real_Time.Clock + Ada.Real_Time.Milliseconds(Period);
delay until Release_Time;
-- each time round, increase Trip and Total
for I in Meters_Per_Second range 0 .. Speed loop

Inc;
end loop;

end loop;
end Drive;

end Odometer;

Figure 5.9: Multitasking Odometer body

100

5.1.3 Controlling PCA Pump Actuator

PCA pump prototype created as part of this thesis interacts with external device (physical

pump) through General-purpose input/output (GPIO) pin. To control the pump, Pulse

width modulation (described in 3.3) is used. BeagleBoard-xM has 28 GPIO pins. Three of

them are PWM enable (pin 4 - mapped as GPIO_144, pin 6 - GPIO_146 and pin 10 - GPIO_145). All of

these pins allow to control external device by specifying frequency and duty cycle. However

it requires PWM driver.1 PWM can be also simulated manually. To run the pump, pin has

to be turned on and off with specified frequency. In order to do that, a sleep function can

be used.

GPIO ports interact with the BeagleBoard platform through memory maps. This means

that turning particular pin on or off is achieved by writing values into a memory segment

associated with the pin. Memory segment is further mapped into file system. Memory maps

are synchronized via continuous refresh loops.

Pin, used for controlling PCA pump, is the pin 14 (mapped as GPIO_162). It is mapped into

directory /sys/class/gpio/gpio162/. To turn pin on, file /sys/class/gpio/gpio162/value has to contain

’1’. To turn it off - ’0’. Pump is also connected to ground (GND). For that purpose pin

28 is used. Figure 5.10 shows simple bash script, which turns pin on and off every second.

Before the pin can be used, it has to be opened by writing pin mapping number (in this

case: 162 for pin 14) into /sys/class/gpio/export file. When communication is over, connection

should be closed with writing the same value to file /sys/class/gpio/unexport. Setting ’high’ (1)

for 1 second and ’low’ (0) also for 1 second gives 50% duty cycle.

Initial tests of interaction with pump actuator has been made in bash and Java, because

it does not require cross-compilation. The bash script runs natively on Angstrom Linux.

The Java application runs on the JVM distribution for Angstrom.

1http://beagleboard.org/project/PWM+driver+for+Beagle+Board/

101

#!/bin/sh

if [$# = 0]
then

GPIO=162
else

GPIO=$1
fi

cleanup() {
echo $GPIO > /sys/class/gpio/unexport
exit

}

trap cleanup SIGINT

echo $GPIO > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio$GPIO/direction

while ["1" = "1"]; do
echo "1" > /sys/class/gpio/gpio$GPIO/value
sleep 1
echo "0" > /sys/class/gpio/gpio$GPIO/value
sleep 1

done

cleanup

Figure 5.10: Turning pin on and off in bash

102

BeagleBoard-xM with Linux Angstrom allows to install software packages using package

manager opkg.2 Packages feeds can be found on http://feeds.angstrom-distribution.org/feeds and set

in .conf files in /etc/opkg directory. In this thesis version 2012.01 of Angstrom (with Linux

3.0.14+) has been used and the following feeds:

• base-feed.conf: src/gz base http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/armv7a/base

• beagleboard-feed.conf: src/gz beagleboard http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc

/armv7a/beagleboard

• debug-feed.conf: src/gz debug http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/armv7a/

debug

• gstreamer-feed.conf: src/gz gstreamer http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/

armv7a/gstreamer

• noarch-feed.conf: src/gz no-arch http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/armv7a

/all

• perl-feed.conf: src/gz perl http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/armv7a/perl

• python-feed.conf: src/gz python http://feeds.angstrom-distribution.org/feeds/v2012.05/ipk/eglibc/armv7a

/python

Once, feeds are set, it is recommended to update list of available packages with command:

opkg update. To update all installed packages, following command has to be used: opkg upgrade.

To install Java runtime-environment (JVM), the following command can be used: opkg install

openjdk-6-java. Java Development Kit, which contains Java compiler and allows to compile

Java programs on BeagleBoard, can be installed with: opkg install openjdk-6-jdk.

A program similar to the bash script presented in Figure 5.10, but working for 20 seconds

and terminating, written in Java, is presented in Figure 5.11.
2http://wiki.openwrt.org/doc/techref/opkg

103

import java.io.*;

public class PcaMain {
public static void main(String[] args) throws IOException, InterruptedException {

final String GPIO = "162";
final String BASE_DIR = "/sys/class/gpio";
WriteToFile(BASE_DIR+"/export", GPIO);
WriteToFile(BASE_DIR+"/gpio"+GPIO+"/direction", "out");
for(int i=0; i<10; ++i) {

WriteToFile(BASE_DIR+"/gpio"+GPIO+"/value", "1");
Thread.sleep(1000);

WriteToFile(BASE_DIR+"/gpio"+GPIO+"/value", "0");
Thread.sleep(1000);

}
WriteToFile(BASE_DIR+"/unexport", GPIO);

}

public static void WriteToFile(String filename, String content) throws IOException {
File file = new File(filename);
if (!file.exists()) {

file.createNewFile();
}
PrintWriter writer = new PrintWriter(filename, "UTF-8");
writer.println(content);
writer.close();

}
}

Figure 5.11: Turning pin on and off in Java

The extended program from Figure 5.11, with procedures to start and stop the pump,

written in Ada, is presented in Figure 5.12 and 5.13.

with Ada.Real_Time; use type Ada.Real_Time.Time;
package Pca_Pump is

procedure Start_Pump;
procedure Stop_Pump;
procedure Run_Pump(N: in Integer);
procedure Write_Signal(Signal: in Integer);

end Pca_Pump;

Figure 5.12: Simple pump in Ada: package specification

104

with Ada.Strings.Unbounded; use type Ada.Strings.Unbounded;
with Ada.Text_IO.Unbounded_IO; use type Ada.Text_IO;
package body Pca_Pump is

procedure Start_Pump is
F : Ada.Text_IO.File_Type; Data : Unbounded_String := To_Unbounded_String("pumping");
File_Export : Ada.Text_IO.File_Type;
File_Direction : Ada.Text_IO.File_Type;

begin
Create(File_Export, Ada.Text_IO.Out_File, "/sys/class/gpio/export");
Put_Line(File_Export, "162");
Close(File_Export);
Create(File_Direction, Ada.Text_IO.Out_File, "/sys/class/gpio/gpio162/direction");
Put_Line(File_Direction, "out");
Close(File_Direction);
Create(F, Ada.Text_IO.Out_File, "/home/root/pump_status.txt");
Unbounded_IO.Put_Line(F, Data); Put_Line("Pumping...");
Close(F);

end Start_Pump;

procedure Stop_Pump is
F : Ada.Text_IO.File_Type; Data : Unbounded_String := To_Unbounded_String("IDLE");
File_Unexport : Ada.Text_IO.File_Type;

begin
Create(File_Unexport, Ada.Text_IO.Out_File, "/sys/class/gpio/unexport");
Put_Line(File_Unexport, "162");
Close(File_Unexport);
Create(F, Ada.Text_IO.Out_File, "/home/root/pump_status.txt");
Unbounded_IO.Put_Line(F, Data); Put_Line("Stopped");
Close(F);

end Stop_Pump;

procedure Run_Pump(N: in Integer) is
Interval: constant Ada.Real_Time.Time_Span := Ada.Real_Time.Milliseconds(100);
Next_Time: Ada.Real_Time.Time;

begin
Next_Time := Ada.Real_Time.Clock;
Start_Pump;
for I in Integer range 1 .. N*1000 loop

Next_Time := Next_Time + Interval; Write_Signal(1); delay until Next_Time;
Next_Time := Next_Time + Interval; Write_Signal(0); delay until Next_Time;

end loop;
Stop_Pump;

end Run_Pump;

procedure Write_Signal(Signal : in Integer) is
Filename : String := "/sys/class/gpio/gpio162/value";
File : Ada.Text_IO.File_Type; Data : Unbounded_String;

begin
Ada.Text_IO.Open (File => File, Mode => Ada.Text_IO.Out_File, Name => Filename);
if Signal = 1 then Data := To_Unbounded_String("1");
else Data := To_Unbounded_String("0");
end if;
Unbounded_IO.Put_Line(File, Data);
Ada.Text_IO.Close(File);

end Write_Signal;
end Pca_Pump;

Figure 5.13: Simple pump in Ada: package body

105

5.2 Implementation Based on Requirements Document

and AADL Models

In order to confirm that implementation of PCA Pump, specified in Requirements Doc-

ument, is feasible on BeagleBoard-xM, a simple PCA pump prototype has been created.

The implemented prototype is multitasking application (using Ravenscar profile) running

on BeagleBoard-xM. The base for implementation was Pca_Operation package. Only two AADL

threads are implemented: Rate_Controler and Max_Drug_Per_Hour_Watcher. Thus, the pump has three

tasks in total:

• main task - interface for controlling and monitoring the pump

• Rate_Controller - control the speed of infusion rate

• Max_Drug_Per_Hour_Watcher - control over infusion

The first step was to translate types required by operation module. Strings and float

types were skipped to keep verification simple (using only integer types and its subtypes).

Besides that, all types from following packages are translated:

• Base_Types

• Bless_Types

• Ice_Types

• Pca_Types

The Open PCA pump, according to requirements document [LH14], has 5 operational

modes:

• Stopped: F = 0ml/hr

• Keep Vein Open (KVO): F = 0.1ml/hr

• Basal infusion: F = FBasal

106

• Patient bolus: F = FBasal + FBolus

• Clinician bolus: F = FBasal + FSquareBolus (square bolus is calculated value: VTBI

divided by the duration chosen by the clinician)

The requirements document does not specify implementation details. One of implemen-

tation decisions, which had to be made, was to decide how basal infusion will work. One

solution was to run actuator continuously on speed calculated based on current flow rate.

Another solution was to dose drug in 0.1 ml increments. This is how CADD-Prizm Ambula-

tory Infusion Pump [Med10] works, and this implementation was chosen. It allows for easier

bolus monitoring and calculations. The pump engine controller is in a separate module. It

is written in Ada, so it will not be verified with SPARK tools. Using increments, instead of

continuous speed allows to issue requests of 0.1 ml dose to the engine module, and it is its

responsibility to deliver requested amount of dose. Performing calculations based on speed

changes would be much more complicated. For monitoring, amount of drug dosed in last

hour (to guard against over infusion), array with size = (60 * 60) has been created. Its

elements represents all seconds of last hour. Last element is incremented once request to

the engine is issued. This is done in Rate_Controller task. Max_Drug_Per_Hour_Watcher checks dosed

amount by summing all elements. It also shifts the array in every second, so doses older

than 1 hour are not take into account anymore.

To avoid using floating point types, internal calculations are in micro liters: 1 micro liter

(µl) = 0.001 ml, thus 1 ml = 1000µl.

In real-world applications that use SPARK, the embedded critical components are writ-

ten in SPARK while the non-critical components are written in Ada. Components written

in Ada should be hidden for SPARK Examiner with --# hide annotation or being separated

entities on which SPARK tools are not run. Pca_Engine package is separated entity, which con-

trol the pump actuator. It uses Ada features not present in SPARK, thus it is not verified

by SPARK tools.

107

The implemented PCA pump prototype is a console Ada application with a textual

interface, which has following functionalities:

• Entering prescription, which comprises of following parameters:

– Basal flow rate

– Volume to be infused (VTBI) during patient or clinician bolus

– Maximum dose of drug allowed per hour

– Minimum time between patient’s boluses

• Starting the pump

• Stopping the pump

• Monitoring drug dosed in last hour: when maximum allowed dose is exceeded, it

switches pump state to KVO rate

• Performing patient bolus:

– if bolus request too soon (faster than minimum time between bolus) then it is

ignored

– if bolus is requested during clinician bolus, then clinician bolus is paused and

patient bolus starts; once patient bolus is done, pump switches back to clinician

bolus

• Performing clinician bolus (time has to be specified):

– bolus requested during previously requested (not finished) clinician bolus is ig-

nored

– bolus requested during patient bolus is performed right after patient bolus is done

The code of implemented PCA Pump Prototype, along with mapped types, is attached

in Appendix B.

108

5.3 Code Translation from AADL/BLESS Models

The original AADL/BLESS models were simplified and truncated to demonstrate sam-

ple translation. Finally only PCA_Operation module with 3 threads (Max_Drug_Per_Hour_Watcher,

Rate_Controller, Patient_Bolus_Checker), types definitions (Base_Types, PCA_Types, ICE_Types, Bless_Types

) and property set PCA_Properties were used as the source for code translation. Simplified

AADL/BLESS models can be found in Appendix E. The translation was performed based

on translation schemes from chapter 4. Appendix F contains translated PCA pump code.

Raw, translated code cannot be verified with SPARK tools, because it contains unimple-

mented parts. One example is the code resulting from translation from BLESS assertions,

which are defined but not implemented in models. Once these missing parts will be imple-

mented, code can be verified.

109

6

Verification

“It had long since come to my attention that people of accomplishment rarely sat

back and let things happen to them. They went out and happened to things.”

– Leonardo da Vinci

The goal of verification process presented in this chapter is to check for run-time errors

and show by example how to fix them with the SPARK verification tools. In the future,

the same strategy can be used for verification of requirements specified by BLESS annexes

in AADL models. As a reminder to the reader, the SPARK 2005 has been identified (as

opposed to SPARK 2014, which is still under development) as the most appropriate and

capable for the development and verification needs of this thesis work (at the time when

this thesis has been written).

The strategy for Software Verification using SPARK 2005 tools is as follows [Bar13].

First, Examiner generates Verification Conditions (VCs) and Dead Path Conjectures (DPCs).

Some VCs that can be discharged by simple rewriting are also simplify and discharged by

Examiner. Next, SPARKSimp runs Simplifier to simplify and discharge some (or all) VCs

that were not discharged by Examiner. SPARKSimp also runs ZombieScope to analyze

DPCs and ViCToR to discharge VCs (not discharged by Examiner nor Simplifier) with

110

SMT Solver technology. To provide a summary of verification results, a POGS report is

generated. To this standard SPARK 2005 tool chain, Bakar Kiasan symbolic execution

tools (developed by the Kansas State University SAnToS research group) has been added.

Specifically, when not all Verification Conditions are discharged, analysis continues with

Bakar Kiasan. After fixes are made with Kiasan help, Examiner and SPARKSimp tools are

run again to confirm correctness. This approach is presented in the Figure 6.1. Detailed

overview of SPARK verification tools can be found in chapter 12 of SPARK book [Bar13].

Figure 6.1: Applied Verification strategy

6.1 Verification of Implemented PCA Pump Prototype

During PCA Pump Prototype implementation, program syntax was regularly checked with

SPARK Examiner. The complete, manually implemented prototype, which can be found

in Appendix B, was verified with the strategy given at the beginning of this chapter (ex-

cluding Bakar Kiasan, which does not handle Ravenscar programs). Thus SPARK Exam-

iner, SPARKSimp (Simplifier, ZombieScope and ViCToR) and POGS were used. Package

Pca_Engine was excluded from verification, using --# hide annotation, because it contains Ada

code, which is non-valid SPARK. The result of this analysis, in the form of a POGS report

111

summary, is presented in the Figure 6.2. The full report can be found in Appendix C.

The POGS report shows that 30% (90) of VCs were discharged by Examiner and 61%

(183) by Simplifier. There are 29 undischarged VCs. All of them are caused by possible

overflows and array index out of bounds. In addition to VCs, DPCs were generated and

32 dead paths were found. Some undischarged VCs and dead paths come from procedures

responsible for maximum dose monitoring. As mentioned in chapter 2.6.9, Bakar Kiasan

does not support Ravenscar profile. For the demonstration purpose, sequential module for

dose monitoring has been created in order to analyze undischarged VCs. Verification process

of this module is described in Section 6.2.

6.2 Monitoring Dosed Amount

This section is a case study of verifying the SPARKmodule responsible for tracking the dosed

amount of drug. The module was created in the sequential SPARK 2005 profile, based on

implemented PCA prototype presented in Appendix B. The isolated module implementation

is presented in the Figure 6.3.

Verification strategy is based on Figure 6.1. First, the program is verified with Examiner,

SPARKSimp (Simplifier, ZombieScope and Victor). A Verification report is generated by

POGS. In case of any unfinished verification steps, verification is continued with Bakar

Kiasan, which gives more user friendly experience that POGS report and generated VC files.

It may be preferable to use Bakar Kiasan first, but in this thesis SPARK 2005 verification

tools created by AdaCore and Altran were used first to indicate not verified code.

First verification report generated by POGS is presented in the Figure 6.4. It indicates

presence of three undischarged (not proved) VCs.

Next, according to verification strategy, instead of VC analysis Bakar Kiasan was run to

find out why program is not fully verified. Kiasan report is presented in the Figure 6.5.

112

Summary:

Proof strategies used by subprograms

Total subprograms with at least one VC proved by examiner: 15
Total subprograms with at least one VC proved by simplifier: 20
Total subprograms with at least one VC proved by contradiction: 0
Total subprograms with at least one VC proved with user proof rule: 0
Total subprograms with at least one VC proved by Victor: 0
Total subprograms with at least one VC proved by Riposte: 0
Total subprograms with at least one VC proved using checker: 0
Total subprograms with at least one VC discharged by review: 0

Maximum extent of strategies used for fully proved subprograms:

Total subprograms with proof completed by examiner: 0
Total subprograms with proof completed by simplifier: 14
Total subprograms with proof completed with user defined rules: 0
Total subprograms with proof completed by Victor: 0
Total subprograms with proof completed by Riposte: 0
Total subprograms with proof completed by checker: 0
Total subprograms with VCs discharged by review: 0

Overall subprogram summary:

Total subprograms fully proved: 14
Total subprograms with at least one undischarged VC: 8 <<<
Total subprograms with at least one false VC: 0

Total subprograms for which VCs have been generated: 22

ZombieScope Summary:

Total subprograms for which DPCs have been generated: 22
Total number subprograms with dead paths found: 3
Total number of dead paths found: 32

VC summary:

Note: (User) denotes where the Simplifier has proved VCs using one or

more user-defined proof rules.

Total VCs by type:

Total Examiner Simplifier Undisc.
Assert/Post 93 80 12 1
Precondition 12 0 12 0
Check stmnt. 0 0 0 0
Runtime check 187 0 159 28
Refinem. VCs 10 10 0 0
Inherit. VCs 0 0 0 0
==
Totals: 302 90 183 29 <<<
%Totals: 30% 61% 10%

===================== End of Semantic Analysis Summary ========================

Figure 6.2: Summary of POGS report for PCA Pump prototype

113

package Pca_Pump
--# own Dosed;
--# Dose_Volume;
--# initializes Dosed,
--# Dose_Volume;
is

subtype Integer_Array_Index is Integer range 1 .. 60*60;
type Integer_Array is array (Integer_Array_Index) of Integer;

procedure Increase_Dosed;
--# global in out Dosed;
--# in Dose_Volume;
--# derives Dosed from Dosed, Dose_Volume;

function Read_Dosed return Integer;
--# global in Dosed;

procedure Move_Dosed;
--# global in out Dosed;
--# derives Dosed from Dosed;

end Pca_Pump;

package body Pca_Pump
is

Dosed : Integer_Array := Integer_Array’(others => 0);
Dose_Volume : Integer := 1;

procedure Increase_Dosed
is
begin

Dosed(Integer_Array_Index’Last) := Dosed(Integer_Array_Index’Last) + Dose_Volume;
end Increase_Dosed;

function Read_Dosed return Integer
is

Result : Integer := 0;
begin

for I in Integer_Array_Index loop
--# assert I > 1 -> Result >= Dosed(I-1);
Result := Result + Dosed(I);

end loop;
return Result;

end Read_Dosed;

procedure Move_Dosed
is
begin

for I in Integer_Array_Index range 1 .. Integer_Array_Index’Last-1 loop
--# assert I > 1 -> Dosed(I-1) = Dosed(I);
Dosed(I) := Dosed(I+1);

end loop;
Dosed(Integer_Array_Index’Last) := 0;

end Move_Dosed;

end Pca_Pump;

Figure 6.3: Dose monitor module specification

114

Summary:

Proof strategies used by subprograms

Total subprograms with at least one VC proved by examiner: 2
Total subprograms with at least one VC proved by simplifier: 2
Total subprograms with at least one VC proved by contradiction: 0
Total subprograms with at least one VC proved with user proof rule: 0
Total subprograms with at least one VC proved by Victor: 0
Total subprograms with at least one VC proved by Riposte: 0
Total subprograms with at least one VC proved using checker: 0
Total subprograms with at least one VC discharged by review: 0

Maximum extent of strategies used for fully proved subprograms:

Total subprograms with proof completed by examiner: 0
Total subprograms with proof completed by simplifier: 1
Total subprograms with proof completed with user defined rules: 0
Total subprograms with proof completed by Victor: 0
Total subprograms with proof completed by Riposte: 0
Total subprograms with proof completed by checker: 0
Total subprograms with VCs discharged by review: 0

Overall subprogram summary:

Total subprograms fully proved: 1
Total subprograms with at least one undischarged VC: 2 <<<
Total subprograms with at least one false VC: 0

Total subprograms for which VCs have been generated: 3

ZombieScope Summary:

Total subprograms for which DPCs have been generated: 3
Total number subprograms with dead paths found: 1
Total number of dead paths found: 1

VC summary:

Note: (User) denotes where the Simplifier has proved VCs using one or

more user-defined proof rules.

Total VCs by type:

Total Examiner Simplifier Undisc.
Assert/Post 8 3 4 1
Precondition 0 0 0 0
Check stmnt. 0 0 0 0
Runtime check 7 0 5 2
Refinem. VCs 0 0 0 0
Inherit. VCs 0 0 0 0
==
Totals: 15 3 9 3 <<<
%Totals: 20% 60% 20%

===================== End of Semantic Analysis Summary ========================

Figure 6.4: POGS report

115

Figure 6.5: Bakar Kiasan verification report

The first issue we can notice is problem with data types’ ranges indicated by Excep-

tion cases, e.g., Read_Dosed:0 Range violation (LOWER) at Pca_Pump.Read_Dosed:[14,15] (presented in Fig-

ure 6.5). To solve it (in SPARK 2005) configuration file Standard.ads (presented in Figure

6.6), which specifies Integer type range, was created. This is information for verification

tools, which may helps in verification. The Kiasan verification report generated after that is

presented in Figure 6.7. The number of errors is reduced, but now there is possible overflow

116

package Standard is

type Integer is range -2**31 .. 2**31-1;

end Standard;

Figure 6.6: Configuration file for Bakar Kiasan

violation indicated, e.g., by Exception case 0 for Increase_Dosed procedure: Arithmetic overflow

violation (LOWER) at Pca_Pump.Increase_Dosed: [9,90] (presented in Figure 6.7).

Figure 6.7: Bakar Kiasan verification report, second run

From functional perspective, negative values are not needed it this case, thus new type

Drug_Volume type was created. Integer_Array type was renamed to Doses_Array and its type was

changed to Drug_Volume. Result of Kiasan analysis after this change is presented in Figure 6.8.

117

Figure 6.8: Bakar Kiasan verification report, third run

This change eliminated lower overflow, because now negative value cannot be added to

any array element. Only upper overflow in Increase_Dosed procedure error was left. The fix for

this is the introduction of precondition for Increase_Dosed: --# pre Read_Dosed(Dosed) <= Drug_Volume’

Last - Dose_Volume;. Addition of this contract caused semantic error (detected by Examiner):

The identifier Read_Dosed is either undeclared or not visible at this point. This error is caused by the

definition of Increase_Dosed procedure before Read_Dosed procedure. To fix, this Read_Dosed proce-

dure was moved before Increase_Dosed. However, after that Examiner returned different error:

Binary operator is not declared for types Drug_Volume and Dose_Volume__type. To make the operator visi-

ble, Dose_Volume type has to be declared in --# own annotation: --# Dose_Volume : Drug_Volume;. After

these fixes, Kiasan analysis has be run again. The result is depicted in the Figure 6.9.

118

Figure 6.9: Bakar Kiasan verification report, fourth run

There were no error cases in the Move_Dosed and the Increase_Dosed procedures. The error case

in Read_Dosed is shown in Figure 6.9. It is ConstraintError: the value being assigned to Result is too small

. This error is not very informative. After investigation and talks with the Kiasan Developer,

it was determined that there is a bug in Kiasan v1 (for SPARK 2005). More precisely: in

handling overflows. For the purpose of verification, Drug_Volume type range was changed to

0−(215−1). This will give range up to around 1000000, which is sufficient even if calculations

are made in micro liters (as it is in case of PCA pump prototype implementation). 1000000

micro liters is 1000 ml, which is 1 liter. This is an extreme amount of drug in case of PCA

pump, according to Requirements Document [LH14]. The bug with type ranges is fixed in

Kiasan v2 (for SPARK 2014).

119

Another problem was the size of Dosed array (3600 elements). Kiasan allows the developer

to configure the array bound and loop bound. Both had to be increased (from default

10). Another thing was computational complexity. For 3600 elements, state space grows

exponentially and it takes a lot of time to analyze it. Thus, for verification purposes, array

size was changed to 60 elements along with change to array bounds and loop bounds, also

to 60.

After rerunning Kiasan, there is valid test case for Read_Dose, but there are also 59 Ex-

ception cases: Range violation (UPPER), which means possible overflow. One way of fix this

problem, was to add an --# assume annotation to loop in function body, stating that every

sum operation in the loop will not cause overflow, but Kiasan v1 does not support assume

annotations. Another way was to add precondition that ensures, that the sum of elements

is lower than Drug_Volume’Last. SPARK does not provide simple library for summing an array

(like the Contracts language for Java provides). Thus, this function had to be implemented.

Its implementation is the same as Read_Dosed. It sums all elements of array. The Sum function

specification and body is presented in the Figure 6.10. After rerunning Kiasan, only valid

test cases were found, which is depicted in the Figure 6.11.

-- pca_pump.ads
function Sum(Arr : Doses_Array) return Drug_Volume;

-- pca_pump.adb
function Sum(Arr : Doses_Array) return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
--# assert true;
Result := Result + Arr(I);

end loop;

return Result;
end Sum;

Figure 6.10: Sum function for summing all elements of array

120

Figure 6.11: Bakar Kiasan verification report, fifth run

The last thing which was improved by code contracts is checking if Move_Dosed procedure

works as expected. In that purpose three postconditions were added (Figure 6.12). First

checks if the last element is equal to 0. Second and third checks two possible scenarios:

• before running procedure, the first element is equal to 0: amount of dosed drug in last

hour will not change after Dosed procedure execution

• the first element is greater than 0: after Dosed procedure execution, the amount of

drug dosed in last hour will decrease, because first element value will no longer be in

last hour range

--# post Dosed(Doses_Array_Index’Last) = 0
--# and (Dosed~(Doses_Array_Index’First)=0 -> Read_Dosed(Dosed~) = Read_Dosed(Dosed))
--# and (Dosed~(Doses_Array_Index’First)>0 -> Read_Dosed(Dosed~) > Read_Dosed(Dosed));

Figure 6.12: Postconditions added to Move_Dosed procedure

121

After adding these postconditions Kiasan generates 2 test cases to check both mentioned

scenarios. There is no error cases, which means that procedure works as expected.

Another way to validate such requirements is to create AUnit tests. In Section 6.4, there

is an overview of unit tests created to test behavior described above. Furthermore, symbolic

execution technique (used by Kiasan) allows to generate AUnit tests automatically, and this

feature is under development in Kiasan v2.

To validate changes made, while working with Kiasan, SPARK Examiner and SPARK-

Simp were rerun again. POGS report is presented in the Figure 6.13.

There are 4 undischarged VCs, but total number of generated VCs is 19. In previous

run there were only 15. Thus, there are 4 new VCs, and 2 of them are undischarged. The

reason is introduction of Sum function used by all subprograms. This can be confirmed by

examining all undischarged VCs: 1st VC in increase_dosed.siv file (Figure 6.14), 9th VC in

move_dosed.siv file (Figure 6.15), 3rd VC in read_dosed.vcg file (Figure 6.16) and 3rd VC in sum.vcg

file (Figure 6.17). They derived form the subprograms: Increase_Dosed, Move_Dosed, Read_Dosed and

Sum respectively.

In Move_Dosed procedure, the SPARK tools cannot prove the implications in post conditions.

Fortunately, it is already proved by Bakar Kiasan. The problem in Increase_Dosed, Read_Dosed

and Sum is the same. The SPARK tools cannot verify, that adding Result and some element of

Dosed array will not cause overflow. Bakar Kiasan can prove correctness of Increase_Dosed and

Read_Dosed. However only, with assumption that Sum is correct. Four exception cases indicating

possible overflow are generated. Thus, the only way to discharge the verification obligation

of this module is to assume that the proof function Sum is correct.

In procedure Move_Dosed, there is one dead path found. POGS report gives only information

where dead path exists, but not in which circumstances. The information about conditions,

in which dead path occurs is stored in .dpc file. The file path to concrete file is given in the

POGS report just before summary table for procedure Move_Dosed. In this case it is move_dosed.dpc

122

VCs for procedure_increase_dosed :

| # | From | To | Proved By | Dead Path | Status |
|---
| 1 | start | rtc check @ 20 | Undischarged | Unchecked | UU |
| 2 | start | assert @ finish | Examiner | Live | EL |

VCs for procedure_move_dosed :

| # | From | To | Proved By | Dead Path | Status |
|---
| 1 | start | rtc check @ 37 | Inference | Unchecked | IU |
| 2 | start | rtc check @ 37 | Inference | Unchecked | IU |
| 3 | start | assert @ 38 | Inference | Live | IL |
| 4 | 38 | assert @ 38 | Inference | Live | IL |
| 5 | 38 | rtc check @ 39 | Inference | Unchecked | IU |
| 6 | start | rtc check @ 41 | Inference | Unchecked | IU |
| 7 | 38 | rtc check @ 41 | Inference | Unchecked | IU |
| 8 | start | assert @ finish | Inference | Dead | ID |
| 9 | 38 | assert @ finish | Undischarged | Live | UL |

VCs for function_read_dosed :

| # | From | To | Proved By | Dead Path | Status |
|---
| 1 | start | assert @ 28 | Inference | Live | IL |
| 2 | 28 | assert @ 28 | Inference | Live | IL |
| 3 | 28 | rtc check @ 29 | Undischarged | Unchecked | UU |
| 4 | 28 | assert @ finish | Inference | Live | IL |

VCs for function_sum :

| # | From | To | Proved By | Dead Path | Status |
|---
| 1 | start | assert @ 11 | Inference | Live | IL |
| 2 | 11 | assert @ 11 | Inference | Live | IL |
| 3 | 11 | rtc check @ 12 | Undischarged | Unchecked | UU |
| 4 | 11 | assert @ finish | Inference | Live | IL |

===
Summary:

Total VCs by type:

Total Examiner Simplifier Undisc.
Assert/Post 11 1 9 1
Precondition 0 0 0 0
Check stmnt. 0 0 0 0
Runtime check 8 0 5 3
Refinem. VCs 0 0 0 0
Inherit. VCs 0 0 0 0
==
Totals: 19 1 14 4 <<<
%Totals: 5% 74% 21%

Figure 6.13: Third POGS report

123

procedure_increase_dosed_1.
H1: read_dosed(dosed) <= 32767 - dose_volume .
H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 60 -> 0 <= element(

dosed, [i___1]) and element(dosed, [i___1]) <= 32767) .
H3: dose_volume >= 0 .
H4: dose_volume <= 32767 .
H5: integer__size >= 0 .
H6: drug_volume__size >= 0 .
H7: drug_volume__base__first <= drug_volume__base__last .
H8: doses_array_index__size >= 0 .
H9: drug_volume__base__first <= 0 .
H10: drug_volume__base__last >= 32767 .

->
C1: element(dosed, [60]) + dose_volume <= 32767 .

Figure 6.14: Undischarged Verification Condition from increase_dosed.siv file

procedure_move_dosed_9.
H1: element(dosed, [58]) = element(dosed, [59]) .
H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 60 -> 0 <= element(

dosed, [i___1]) and element(dosed, [i___1]) <= 32767) .
H3: element(dosed, [60]) >= 0 .
H4: element(dosed, [60]) <= 32767 .
H5: integer__size >= 0 .
H6: drug_volume__size >= 0 .
H7: drug_volume__base__first <= drug_volume__base__last .
H8: doses_array_index__size >= 0 .
H9: drug_volume__base__first <= 0 .
H10: drug_volume__base__last >= 32767 .

->
C1: element(dosed~, [1]) = 0 -> read_dosed(dosed~) = read_dosed(update(

update(dosed, [59], element(dosed, [60])), [60], 0)) .
C2: element(dosed~, [1]) > 0 -> read_dosed(dosed~) > read_dosed(update(

update(dosed, [59], element(dosed, [60])), [60], 0)) .

Figure 6.15: Undischarged Verification Condition from move_dosed.siv file

file. Figure 6.13 presents truncated POGS report, but as an example, full POGS report of

implemented PCA prototype can be found in Appendix C (e.g. see line 50, which contains

DPC analysis for Start_Pumping procedure).

The relevant fragment, which applies to the found dead path is presented in Figure 6.18.

It is a list of hypothesis, in which hypothesis 10 (H10) states that number of elements in

Doses_Array is 1 or less. In this case (or more precisely: in this path), for loop will not be

visited. Doses_Array has always 60 elements, thus this path is impossible (dead). It does not

mean something bad, because dead path indicate possible issues. In this case it is not issue.

124

function_read_dosed_3.
H1: loop__1__i > 1 -> result >= element(dosed, [loop__1__i - 1]) .
H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 60 -> 0 <= element(

dosed, [i___1]) and element(dosed, [i___1]) <= 32767) .
H3: sum(dosed) <= 32767 .
H4: loop__1__i >= 1 .
H5: loop__1__i <= 60 .
H6: result >= 0 .
H7: result <= 32767 .
H8: integer__size >= 0 .
H9: drug_volume__size >= 0 .
H10: drug_volume__base__first <= drug_volume__base__last .
H11: doses_array_index__size >= 0 .
H12: drug_volume__base__first <= 0 .
H13: drug_volume__base__last >= 32767 .

->
C1: result + element(dosed, [loop__1__i]) <= 32767 .

Figure 6.16: Undischarged Verification Condition from read_dosed.siv file

function_sum_3.
H1: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 60 -> 0 <= element(arr,

[i___1]) and element(arr, [i___1]) <= 32767) .
H2: loop__1__i >= 1 .
H3: loop__1__i <= 60 .
H4: result >= 0 .
H5: result <= 32767 .
H6: integer__size >= 0 .
H7: drug_volume__size >= 0 .
H8: drug_volume__base__first <= drug_volume__base__last .
H9: doses_array_index__size >= 0 .
H10: drug_volume__base__first <= 0 .
H11: drug_volume__base__last >= 32767 .

->
C1: result + element(arr, [loop__1__i]) <= 32767 .

Figure 6.17: Undischarged Verification Condition from sum.siv file

It is expected behavior. The complete code of the module for dose monitoring, after changes

described above, is presented in Figures 6.19 and 6.20.

Code contracts (pre- and postconditions), added during this example verification process,

cannot be applied to PCA Pump Prototype implementation, which use RavenSPARK, be-

cause they contains protected objects, and - as mentioned in chapter 2.6 - protected objects

cannot be used in proof annotations (pre- and postconditions). However, code fixes made

in this section can be applied. This shows how code implemented based on translation from

AADL/BLESS can be processed by SPARK tools to ensure absence of runtime exceptions.

125

procedure_move_dosed_8.
H1: for_all(i___1: integer, ((i___1 >= doses_array_index__first) and (

i___1 <= doses_array_index__last)) -> ((element(
dosed, [i___1]) >= drug_volume__first) and (element(
dosed, [i___1]) <= drug_volume__last))) .

H2: doses_array_index__last - 1 >= integer__first .
H3: doses_array_index__last - 1 <= integer__last .
H4: doses_array_index__last - 1 >= integer__base__first .
H5: doses_array_index__last - 1 <= integer__base__last .
H6: doses_array_index__first >= integer__first .
H7: doses_array_index__first <= integer__last .
H8: (doses_array_index__first <= doses_array_index__last - 1) -> ((

doses_array_index__last - 1 >= doses_array_index__first) and (
doses_array_index__last - 1 <= doses_array_index__last)) .

H9: (doses_array_index__first <= doses_array_index__last - 1) -> ((
doses_array_index__first >= doses_array_index__first) and (
doses_array_index__first <= doses_array_index__last)) .

H10: not (doses_array_index__first <= doses_array_index__last - 1) .
H11: 0 >= drug_volume__first .
H12: 0 <= drug_volume__last .
H13: doses_array_index__last >= doses_array_index__first .
H14: doses_array_index__last <= doses_array_index__last .

->
C1: false .

Figure 6.18: Dead path in Move_Dosed procedure

6.3 Verification of Generated Code

This section presents how SPARK 2005 tools can help with verification and further imple-

mentation of automatically generated code from AADL models.

Code translated from simplified PCA Pump AADL models is presented in Appendix F.

Verification with Examiner of package Pca_Operation specification returns syntax error: Neither

KNOWN_DISCRIMINANT_PART nor TASK_TYPE_ANNOTATION can start with reserved word "IS". This means that dis-

criminants or task annotation are expected here. In order to pass Examiner syntax check,

at least one annotation has to be declared. For demonstration purposes, Ada.Real_Time.ClockTime

is used, which announce usage of ClockTime variable from Ada.Real_Time library. The complete

task declaration is presented in the Figure 6.21.

Once annotation is added, Pca_Operation package specification passes Examiner syntax

check. Verification of package body returns errors, which are caused by non-implemented

assertions (translated from BLESS). When all such incomplete assertions are removed, only

126

package Pca_Pump
--# own Dosed : Doses_Array;
--# Dose_Volume : Drug_Volume;
--# initializes Dosed,
--# Dose_Volume;
is

type Drug_Volume is range 0 .. 2**15-1;

subtype Doses_Array_Index is Positive range 1 .. 60;
type Doses_Array is array (Doses_Array_Index) of Drug_Volume;

function Sum(Arr : Doses_Array) return Drug_Volume;

function Read_Dosed return Drug_Volume;
--# global in Dosed;
--# pre Sum(Dosed) <= Drug_Volume’Last;

procedure Increase_Dosed;
--# global in out Dosed;
--# in Dose_Volume;
--# derives Dosed from Dosed, Dose_Volume;
--# pre Read_Dosed(Dosed) <= Drug_Volume’Last - Dose_Volume;

procedure Move_Dosed;
--# global in out Dosed;
--# derives Dosed from Dosed;
--# post Dosed(Doses_Array_Index’Last) = 0
--# and (Dosed~(Doses_Array_Index’First)=0 -> Read_Dosed(Dosed~) = Read_Dosed(Dosed))
--# and (Dosed~(Doses_Array_Index’First)>0 -> Read_Dosed(Dosed~) > Read_Dosed(Dosed));

end Pca_Pump;

Figure 6.19: Dose monitoring module after changes: package specification

127

package body Pca_Pump
is

Dosed : Doses_Array := Doses_Array’(others => 0);
Dose_Volume : Drug_Volume := 1;

function Sum(Arr : Doses_Array) return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
--# assert true;
Result := Result + Arr(I);

end loop;
return Result;

end Sum;

procedure Increase_Dosed
is
begin

Dosed(Doses_Array_Index’Last) := Dosed(Doses_Array_Index’Last) + Dose_Volume;
end Increase_Dosed;

function Read_Dosed return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
--# assert I > 1 -> Result >= Dosed(I-1);
Result := Result + Dosed(I);

end loop;
return Result;

end Read_Dosed;

procedure Move_Dosed
is
begin

for I in Doses_Array_Index range Doses_Array_Index’First .. Doses_Array_Index’Last-1 loop
--# assert I > 1 -> Dosed(I-1) = Dosed(I);
Dosed(I) := Dosed(I+1);

end loop;
Dosed(Doses_Array_Index’Last) := 0;

end Move_Dosed;

end Pca_Pump;

Figure 6.20: Dose monitoring module after changes: package body

128

task type Patient_Bolus_Checker
--# global in Ada.Real_Time.ClockTime;
--# derives null from Ada.Real_Time.ClockTime;
is

pragma Priority(10);
end Patient_Bolus_Checker;

Figure 6.21: Undischarged Verification Condition from sum.siv file

pca_operation.adb:53:9: Flow Error 30 - The variable Bolus_Duration_In is imported but neither referenced nor
exported.

pca_operation.adb:72:9: Flow Error 30 - The variable Rx_In is imported but neither referenced nor exported.
pca_operation.adb:82:9: Flow Error 30 - The variable Infusion_Flow_Rate is imported but neither referenced

nor exported.
pca_operation.adb:92:9: Flow Error 32 - The variable Infusion_Flow_Rate is neither imported nor defined.
pca_operation.adb:92:9: Flow Error 31 - The variable Infusion_Flow_Rate is exported but not (internally)

defined.
pca_operation.adb:92:9: Flow Error 32 - The variable System_Status is neither imported nor defined.
pca_operation.adb:92:9: Flow Error 31 - The variable System_Status is exported but not (internally) defined.
pca_operation.adb:92:9: Warning 400 - Variable la is declared but not used.
pca_operation.adb:101:9: Flow Error 35 - Importation of the initial value of variable Ada.Real_Time.ClockTime

is ineffective.

Figure 6.22: Flow errors returned by Examiner for Pca_Operation package body

flow errors (presented in the Figure 6.22) are found by Examiner.

This is a nice indication of what has to be implemented in particular parts of the program.

It is recommended to not use VC and DPC generation until there are some syntax errors.

When all errors are fixed, program can be initially verified as described in previous sections.

6.4 AUnit Tests

To prove expected behavior of Move_Dosed in Dose monitoring module, presented in Section 6.2,

instead of test cases generation, AUnit tests can be created manually. Verification tools can

confirm that created unit tests are valid cases or not. To check both behaviors of Move_Dosed

procedure, two tests have been created:

• Test_Move_Dosed_First_Element_Zero - first element is 0, then after execution of the procedure

dosed amount of drug should be not changed

129

procedure Test_Move_Dosed_First_Element_Zero (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);
Pre_Sum : Pca_Pump.Drug_Volume := 0;
Post_Sum : Pca_Pump.Drug_Volume := 0;

begin
-- Arrange
Pre_Sum := Pca_Pump.Read_Dosed;

-- Act
Pca_Pump.Move_Dosed;
Post_Sum := Pca_Pump.Read_Dosed;

-- Assert
AUnit.Assertions.Assert

(Post_Sum = Pre_Sum,
"Total dose changed: " & Pca_Pump.Drug_Volume’Image(Pre_Sum) & " /= " & Pca_Pump.Drug_Volume’Image(
Post_Sum));

end Test_Move_Dosed_First_Element_Zero;

procedure Test_Move_Dosed_First_Element_Not_Zero (Gnattest_T : in out Test) is
pragma Unreferenced (Gnattest_T);
Pre_Sum : Pca_Pump.Drug_Volume := 0;
Post_Sum : Pca_Pump.Drug_Volume := 0;

begin
-- Arrange
Pca_Pump.Increase_Dosed;
for I in Pca_Pump.Doses_Array_Index range 1 .. Pca_Pump.Doses_Array_Index’Last-1 loop

Pca_Pump.Move_Dosed;
end loop;
Pre_Sum := Pca_Pump.Read_Dosed;

-- Act
Pca_Pump.Move_Dosed;
Post_Sum := Pca_Pump.Read_Dosed;

-- Assert
AUnit.Assertions.Assert

(Post_Sum < Pre_Sum,
"Total dose changed: " & Pca_Pump.Drug_Volume’Image(Pre_Sum) & " should be greater than " & Pca_Pump.
Drug_Volume’Image(Post_Sum));

end Test_Move_Dosed_First_Element_Not_Zero;

Figure 6.23: AUnit tests for Move_Dosed procedure

• Test_Move_Dosed_First_Element_Not_Zero - first element is greater than 0, then after execution

of the procedure dosed amount of drug should be smaller than before

Both test cases are presented in the Figure 6.23. All AUnit tests can be found in

Appendix G.

130

package Pca_Pump
with SPARK_Mode,

Abstract_State => (Dosed_State, Dose_Volume_State),
Initializes => (Dosed_State, Dose_Volume_State)

is
type Drug_Volume is range 0 .. 2**15-1;

subtype Doses_Array_Index is Integer range 1 .. 60;
type Doses_Array is array (Doses_Array_Index) of Drug_Volume;

function Dosed_State return Doses_Array
with Convention => Ghost,
Global => (Input => Dosed_State);

function Dose_Volume_State return Drug_Volume
with Convention => Ghost,
Global => (Input => Dose_Volume_State);

function Sum(Arr : Doses_Array) return Drug_Volume
with Convention => Ghost;

function Read_Dosed return Drug_Volume
with Global => (Input => (Dosed_State)),
Pre => Sum(Dosed_State) <= Drug_Volume’Last;

procedure Increase_Dosed
with Global => (Input => Dose_Volume_State, In_Out => Dosed_State),
Depends => (Dosed_State => (Dosed_State, Dose_Volume_State)),
Pre => Read_Dosed <= Drug_Volume’Last - Dose_Volume_State;

pragma Unevaluated_Use_Of_Old (Allow);

procedure Move_Dosed
with Global => (In_Out => Dosed_State),
Depends => (Dosed_State => Dosed_State),
Post => (Dosed_State (Doses_Array_Index’Last) = 0),
Contract_Cases => (Dosed_State(Doses_Array_Index’First) = 0 => Read_Dosed’Old = Read_Dosed,

Dosed_State(Doses_Array_Index’First) > 0 => Read_Dosed’Old > Read_Dosed);

end Pca_Pump;

Figure 6.24: Sequential module for dose monitoring in SPARK 2014: package specification

6.5 GNATprove

The sequential module for monitoring dosed amount verification presented in Section 6.2

has been converted to SPARK 2014. For conversion, "SPARK 2005 to 2014" translator

(created by AdaCore) has been used. Translated code is presented in Figures 6.24 and 6.25.

In SPARK 2014, the Standard.ads file with type ranges is not necessary, because it is

handled by language. SPARK 2014 introduces notion of ghost functions. They are used

to declare functions that are needed only in annotations. Proof function Sum is defined as

131

package body Pca_Pump
with SPARK_Mode, Refined_State => (Dosed_State => Dosed, Dose_Volume_State => Dose_Volume)
is

Dosed : Doses_Array := Doses_Array’(others => 0);
Dose_Volume : Drug_Volume := 1;

function Dosed_State return Doses_Array
with Refined_Global => (Input => Dosed)

is begin
return Dosed;

end Dosed_State;
function Dose_Volume_State return Drug_Volume

with Refined_Global => (Input => Dose_Volume)
is begin

return Dose_Volume;
end Dose_Volume_State;

function Sum(Arr : Doses_Array) return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
pragma Loop_Invariant (true);
Result := Result + Arr(I);

end loop;
return Result;

end Sum;

procedure Increase_Dosed
with Refined_Global => (Input => Dose_Volume, In_Out => Dosed),
Refined_Depends => (Dosed => (Dosed, Dose_Volume))

is begin
Dosed(Doses_Array_Index’Last) := Dosed(Doses_Array_Index’Last) + Dose_Volume;

end Increase_Dosed;

function Read_Dosed return Drug_Volume
with Refined_Global => (Input => (Dosed))

is
Result : Drug_Volume := 0;

begin
for I in Doses_Array_Index loop

pragma Loop_Invariant (if I > 1 then Result >= Dosed (I-1));
Result := Result + Dosed(I);

end loop;
return Result;

end Read_Dosed;

procedure Move_Dosed
with Refined_Global => (In_Out => (Dosed)),
Refined_Depends => (Dosed => Dosed)

is begin
for I in Doses_Array_Index range 1 .. Doses_Array_Index’Last-1 loop

pragma Loop_Invariant (if I > 1 then Dosed (I-1) = Dosed (I));
Dosed(I) := Dosed(I+1);

end loop;
Dosed(Doses_Array_Index’Last) := 0;

end Move_Dosed;
end Pca_Pump;

Figure 6.25: Sequential module for dose monitoring in SPARK 2014: package body

132

ghost function. In order to use private, global variables in package specification, abstract

refinement and ghost functions (Dosed_State and Dose_Volume_State) have been used. The Pragma

Unevaluated_Use_Of_Old is used to avoid the error: prefix of attribute "Old" that is potentially unevaluated

must denote an entity.

Above code has been verified with GNATprove tool. Data and information flow analysis

did not return any warnings nor errors. Proof analysis was performed with the following

parameters:

• Proof strategy: One proof per path

• Prover timeout: 60

• Do not treat warnings as errors: --warnings=continue flag

• Report checks proved

All above parameters gives following command: gnatprove -P\%PP --ide-progress-bar -U --proof=

per_path --timeout=60 --warnings=continue --report=all (where \%PP is path of verified project file .gpr).

Proof analysis can be run from GPS (menu: SPARK 2014 / Prove All). There is GUI

for options customization (see Figure 6.26).

Figure 6.26: GNATprove settings

133

analyzing Pca_Pump, 1 checks
analyzing Pca_Pump.Dosed_State, 0 checks
analyzing Pca_Pump.Dose_Volume_State, 0 checks
analyzing Pca_Pump.Sum, 3 checks
analyzing Pca_Pump.Read_Dosed, 4 checks
analyzing Pca_Pump.Increase_Dosed, 3 checks
analyzing Pca_Pump.Move_Dosed, 12 checks
pca_pump.adb:5:39: info: length check proved
pca_pump.adb:27:10: info: loop invariant initialization proved
pca_pump.adb:27:10: info: loop invariant preservation proved
pca_pump.adb:28:27: warning: overflow check might fail
pca_pump.adb:38:70: warning: overflow check might fail
pca_pump.adb:47:10: info: loop invariant initialization proved
pca_pump.adb:47:10: info: loop invariant preservation proved
pca_pump.adb:47:65: info: index check proved
pca_pump.adb:48:27: warning: overflow check might fail
pca_pump.adb:59:10: info: loop invariant initialization proved
pca_pump.adb:59:10: info: loop invariant preservation proved
pca_pump.adb:59:55: info: index check proved
pca_pump.ads:29:17: info: precondition proved
pca_pump.ads:29:48: info: overflow check proved
pca_pump.ads:36:14: warning: postcondition might fail, requires Dosed_State (Doses_Array_Index’Last) = 0
pca_pump.ads:37:6: info: disjoint contract cases proved
pca_pump.ads:37:6: info: complete contract cases proved
pca_pump.ads:37:66: warning: contract case might fail
pca_pump.ads:37:69: info: precondition proved
pca_pump.ads:37:86: info: precondition proved
pca_pump.ads:38:66: warning: contract case might fail
pca_pump.ads:38:69: info: precondition proved
pca_pump.ads:38:86: info: precondition proved

Figure 6.27: GNATprove verification summary of module for dose monitoring in SPARK
2014

Summary of proof analysis is presented in the Figure 6.27. Proof analysis returned three

warnings: overflow check might fail and one warning: contract case might fail. It indicates the same

problem like in verification with SPARK 2005 tools: potential for overflow. Additionally,

there is a warning (postcondition might fail) caused by tools limitations, which are not able to

infer dependency between ghost function Dosed_State and array Dosed. If state refinement is not

used (i.e. refined variables are defined in package specification), and actual array is used

in the postcondition (instead of ghost function), this warning does not occur. The same

program without abstract state is presented in the figures 6.28 and 6.29. Its verification

summary is shown in the Figure 6.30.

134

package Pca_Pump_No_Refinement
with SPARK_Mode

is
type Drug_Volume is range 0 .. 2**15-1;

subtype Doses_Array_Index is Integer range 1 .. 60;
type Doses_Array is array (Doses_Array_Index) of Drug_Volume;

Dosed : Doses_Array := Doses_Array’(others => 0);
Dose_Volume : Drug_Volume := 1;

function Sum(Arr : Doses_Array) return Drug_Volume
with Convention => Ghost;

function Read_Dosed return Drug_Volume
with Global => (Input => (Dosed)),
Pre => Sum(Dosed) <= Drug_Volume’Last;

procedure Increase_Dosed
with Global => (Input => Dose_Volume, In_Out => Dosed),
Depends => (Dosed => (Dosed, Dose_Volume)),
Pre => Read_Dosed <= Drug_Volume’Last - Dose_Volume;

pragma Unevaluated_Use_Of_Old (Allow);

procedure Move_Dosed
with Global => (In_Out => Dosed),
Depends => (Dosed => Dosed),
Post => (Dosed(Doses_Array_Index’Last) = 0),
Contract_Cases => (Dosed(Doses_Array_Index’First) = 0 => Read_Dosed’Old = Read_Dosed,

Dosed(Doses_Array_Index’First) > 0 => Read_Dosed’Old > Read_Dosed);
end Pca_Pump_No_Refinement;

Figure 6.28: Sequential module for dose monitoring in SPARK 2014 without variable
refinement: package specification

135

package body Pca_Pump_No_Refinement
with SPARK_Mode

is
function Sum(Arr : Doses_Array) return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
pragma Loop_Invariant (true);
Result := Result + Arr(I);

end loop;
return Result;

end Sum;

procedure Increase_Dosed
is
begin

Dosed(Doses_Array_Index’Last) := Dosed(Doses_Array_Index’Last) + Dose_Volume;
end Increase_Dosed;

function Read_Dosed return Drug_Volume
is

Result : Drug_Volume := 0;
begin

for I in Doses_Array_Index loop
pragma Loop_Invariant (if I > 1 then Result >= Dosed (I-1));
Result := Result + Dosed(I);

end loop;
return Result;

end Read_Dosed;

procedure Move_Dosed
is
begin

for I in Doses_Array_Index range 1 .. Doses_Array_Index’Last-1 loop
pragma Loop_Invariant (if I > 1 then Dosed (I-1) = Dosed (I));
Dosed(I) := Dosed(I+1);

end loop;
Dosed(Doses_Array_Index’Last) := 0;

end Move_Dosed;
end Pca_Pump_No_Refinement;

Figure 6.29: Sequential module for dose monitoring in SPARK 2014 without variable
refinement: package body

136

analyzing Pca_Pump_No_Refinement, 1 checks
analyzing Pca_Pump_No_Refinement.Sum, 3 checks
analyzing Pca_Pump_No_Refinement.Read_Dosed, 4 checks
analyzing Pca_Pump_No_Refinement.Increase_Dosed, 3 checks
analyzing Pca_Pump_No_Refinement.Move_Dosed, 12 checks
pca_pump_no_refinement.adb:9:10: info: loop invariant initialization proved
pca_pump_no_refinement.adb:9:10: info: loop invariant preservation proved
pca_pump_no_refinement.adb:10:27: warning: overflow check might fail
pca_pump_no_refinement.adb:18:70: warning: overflow check might fail
pca_pump_no_refinement.adb:26:10: info: loop invariant initialization proved
pca_pump_no_refinement.adb:26:10: info: loop invariant preservation proved
pca_pump_no_refinement.adb:26:65: info: index check proved
pca_pump_no_refinement.adb:27:27: warning: overflow check might fail
pca_pump_no_refinement.adb:36:10: info: loop invariant initialization proved
pca_pump_no_refinement.adb:36:10: info: loop invariant preservation proved
pca_pump_no_refinement.adb:36:55: info: index check proved
pca_pump_no_refinement.ads:9:39: info: length check proved
pca_pump_no_refinement.ads:22:17: info: precondition proved
pca_pump_no_refinement.ads:22:48: info: overflow check proved
pca_pump_no_refinement.ads:29:14: info: postcondition proved
pca_pump_no_refinement.ads:30:6: info: disjoint contract cases proved
pca_pump_no_refinement.ads:30:6: info: complete contract cases proved
pca_pump_no_refinement.ads:30:60: warning: contract case might fail
pca_pump_no_refinement.ads:30:63: info: precondition proved
pca_pump_no_refinement.ads:30:80: info: precondition proved
pca_pump_no_refinement.ads:31:60: warning: contract case might fail
pca_pump_no_refinement.ads:31:63: info: precondition proved
pca_pump_no_refinement.ads:31:80: info: precondition proved

Figure 6.30: GNATprove verification summary of module for dose monitoring in SPARK
2014 without variable refinement

137

6.6 Assessment

The verification approach presented in this chapter allowed to detect potential run-time

exceptions (e.g., overflow). In the future, this approach can be used also for the verification

of requirements specified by BLESS annexes in AADL models. The SPARK Examiner was

helpful not only for the verification, but also during the implementation, in flow errors de-

tection, which indicates when package implementation does not conform to its specification.

In the demonstrated example (of the translated PCA Pump from AADL models) this means

just lack of the implementation, and was a suggestion for the developer regarding parts of

the system that are not complete.

Bakar Kiasan was used extensively in resolving possible run-time errors. Test cases

generated by this tool gave very intuitive overview of faced problems. As a complementary

to test cases generation, the AUnit tests were created manually to cross-check the obtained

results.

The presented verification approach might be also helpful in verifying systems that use

the run time assertions. The verification can detect assertions that can potentially fail. This

should lead to tweaking the code, to avoid undesired behavior or handling assertions fails.

138

7

Summary

“Success is determined not by whether or not you face obstacles, but by your reaction

to them. And if you look at these obstacles as a containing fence, they become your

excuse for failure. If you look at them as a hurdle, each one strengthens you for

the next.”

– Ben Carson

In this thesis PCA Pump prototype, in SPARK 2005 with Ravenscar profile, has been

created. It runs on BeagleBoard-xM platform and control physical device. Furthermore,

AADL/BLESS to SPARK Ada translation is proposed. Based on that sample translation

from simplified AADL models of PCA pump has been performed. At the end, example

verification (targeting absence of runtime exceptions) of created PCA Pump Prototype,

isolated module for dose monitoring and translated code has been shown.

All work done in this thesis targets SPARK 2005. SPARK 2014 and its tools (such

as GNATprove) were not completed at the time, when this thesis was written. However,

an example verification (of dose monitoring module, which has been translated to SPARK

2014) was presented.

The biggest challenge during PCA pump development was the SPARK limitations. There

139

are many common libraries, which cannot be verified by SPARK tools. Thus it is required

to isolate some functionalities or implement them in different way. Another issue was lack

of resources and SPARK code samples - especially realistic medical devices code examples,

which are keep secretly as intellectual property by companies. Available resources are usually

small examples used in research or reference manuals, which were created a number of years

ago. Although still valid, these have not been updated or expanded for years.

Furthermore, BLESS and SPARK are still under development. Thus, it was very hard

to take advantage of all desirable capabilities (most of features are not yet implemented).

An example may be lack of support for pre- and post conditions in RavenSPARK.

In addition to that, community working with above technologies is very small. On

StackOverflow1 there is 728 question related to Ada2 and only 3 to SPARK.3 In the same

time, C# has 673,721 questions4 and Java - 682,308.5

Proposed mapping from AADL to SPARK Ada is not consulted with industry engineers.

Thus, it would be first thing to do, in order to continue this research. A lot of work can be

done in this topic, as is described in Chapter 8.

1http://stackoverflow.com
2http://stackoverflow.com/questions/tagged/ada
3http://stackoverflow.com/questions/tagged/spark-ada
4http://stackoverflow.com/questions/tagged/c%23
5http://stackoverflow.com/questions/tagged/java

140

8

Future Work

“If you fail to plan, you plan to fail.”

– Benjamin Franklin

The following are possible extensions for work done in this thesis:

• The most important thing, which would be extremely helpful to proceed with work

done in this thesis, would be to review it by some industry expert and experienced

engineer. Especially, how particular functionalities (like monitoring external sensors or

controlling pump actuator) are implemented, and how looks communication between

components modeled in AADL.

• Creation of automatic translator described in Section 4.3 would be good validation

of created translation schemes. It may reveal some issues not present for manual

translation.

• Currently AADL thread properties are not taken into account in thread to task map-

ping, in Section 4.1.3. Properties like priority or period could be mapped pretty

straightforward to SPARK Ada. For now, former is hard-coded as 10 and latter sim-

ply skipped, which requires developer to handle it. However, given properties that are

141

modeled and analyzed in AADL models, should be translated automatically to main-

tain synchronization between models and the code. AADL properties are described in

[FG13], in the Appendix A.

• Data types translation presented in Section 4.1.1, in addition to straightforward type

mapping, includes protected types. However, all protected types have the same set of

subprograms (Put and Get). It is worth to consider introduction of generics, which will

allow to specify generic protected type and then reuse it for all types.

• In feature groups translation (Section 4.1.5), idea of child or nested packages was

abandoned. However, it would be good to reconsider it for the purposeof providing

encapsulation for grouped features. It may be useful to introduce getter functions in

parent package or some other technique that would allow for better separation and

decomposition.

• AADL property set mapping in Section 4.1.7 handles only aadlinteger type. Thus, it

requires extension for handling other more complex constructs.

• Current translation schemes cause creation of pretty big packages, which will become

bigger after adding implementation. Thus, some decomposition is desired. The fol-

lowing techniques can be considered:

– partitioning of packages

– taking advantage of child packages

– separation of threads to different packages (e.g. one thread per child package and

all common functionalities in parent package)

– simple package separation

• The mappings for BLESS are limited only to a small subset. Development of transla-

tions for BLESS state machines (states and transitions) would be good addition. this

142

would support behavior translation. A good point to start is the Rate_Controller thread,

which can be found in PCA_Operation_Threads package in original AADL models created by

Brian Larson. The semantics of BLESS contain notions of time that make translation

to SPARK difficult. This problem occurs in state machine models. Finding solutions

for that is needed. Maybe even, by changing BLESS semantics.

• When this thesis was written, SPARK 2014 did not support multitasking. However,

there were plans to introduce it into SPARK 2014 following an approach similar to

SPARK 2005. Once multitasking support is present, translations for SPARK 2014 will

be possible.

• There is an issue with two way communication between SPARK packages caused by

circular dependency. It is described in Section 4.2.1.

• The port communication presented in Section 4.2 captures only 1:1 connections be-

tween ports of the same type and opposite direction. In AADL there are also inter-

port connections and one-to-many or many-to-one connections. [FG13] They should

be taken into AADL subset for medical devices modeling and translation.

• The created PCA pump prototype contains only basic functionalities. Some parame-

ters (like drug concentration) are ignored. The next step is its development should be

to include funcionality that has been omitted. In addition to that, interaction with ex-

ternal modules such as sensors for monitoring drug flow or communication with ICE

through Ethernet port is desired. This requires creation of communication channel

between BeagleBoard (SPARK Ada application) and these systems.

143

Bibliography

[Ada14] AdaCore. Aunit cookbook. URL: http://docs.adacore.com/aunit-docs/

aunit.html, Mars 2014.

[AL14a] AdaCore and Altran UK Ltd. Spark 2014 reference manual. URL: http://docs.

adacore.com/spark2014-docs/html/lrm, 2011-2014.

[AL14b] AdaCore and Altran UK Ltd. Spark 2014 toolset user’s guide. URL: http:

//docs.adacore.com/spark2014-docs/html/ug, 2011-2014.

[AW01] Neil Audsley and Andy Wellings. Issues with using ravenscar and the ada dis-

tributed systems annex for high-integrity systems. In IRTAW ’00 Proceedings

of the 10th international workshop on Real-time Ada workshop, pages 33 – 39.

ACM New York, NY, USA, 2001.

[Bar13] John Barnes. SPARK - The Proven Approach to High Integrity Software. Altran,

2013.

[BDV04] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of the ada

ravenscar profile in high integrity systems. ACM SIGAda Ada Letters, 24(2):1–

74, Juin 2004.

[BHR+11] Jason Belt, John Hatcliff, Robby, Patrice Chalin, David Hardin, and Xianghua

Deng. Bakar kiasan: Flexibe contract checking for critical systems using symbolic

execution. In NASA Formal Methods, pages 58–72. Springer Berlin Heidelberg,

2011.

144

http://docs.adacore.com/aunit-docs/aunit.html
http://docs.adacore.com/aunit-docs/aunit.html
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/lrm
http://docs.adacore.com/spark2014-docs/html/ug
http://docs.adacore.com/spark2014-docs/html/ug

[CB09] Mohamed Yassin Chkouri and Marius Bozga. Prototypying of distributed embed-

ded systems using aadl. In ACESMB 2009, Second International Workshop on

Model Based Architecting and Construction of Embedded Systems, pages 65–79.

Springer Berlin Heidelberg, 2009.

[CBGP12] Fabien Cadoret, Etienne Borde, Sébastien Gardoll, and Laurent Pautet. De-

sign patterns for rule-based refinement of safety critical embedded systems mod-

els. In International Conference on Engineering of Complex Computer Systems

(ICECCS’12), pages 67 – 76, Paris (France), 2012. IEEE.

[Cha00] Roderick Chapman. Industrial experience with spark. ACM SIGAda Ada Letters

- special issue on presentations from SIGAda 2000, XX(4):64–68, Décembre 2000.

[DEL+14] Claire Dross, Pavlos Efstathopoulos, David Lesens, David Mentre, and Yannick

Moy. Rail, space security: Three case studies for spark 2014. In ERTS 2014:

Embedded Real Time Software and Systems, 2014.

[DRH07] Xianghua Deng, Robby, and John Hatcliff. Kiasan/kunit: Automatic test case

generation and analysis feedback for open object-oriented systems. In Proceed-

ings of the Testing: Academic and Industrial Conference Practice and Research

Techniques - MUTATION, pages 3–12. IEEE Computer Society Washington,

DC, 2007.

[Fal14] Ed Falis. Aunit tutorials. URL: http://libre.adacore.com/tools/aunit,

Mars 2014.

[FG13] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL.

Addison-Wesley, 2013.

[FWH] P. Feiler, L. Wrage, and J. Hansson. System architecture virtual integration: A

case study. In Embedded Real-time Software and Systems Conference.

145

http://libre.adacore.com/tools/aunit

[HKL+12] John Hatcliff, Andrew King, Insup Lee, Alasdair MacDonald, Anura Fernando,

Michael Robkin, Eugene Vasserman, Sandy Weininger, and Julian M. Goldman.

Rationale and architecture principles for medical application platforms. In Pro-

ceedings of the 2012 International Conference on Cyber-Physical Systems, pages

3 – 12. IEEE, 2012.

[HLL+] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew

Parkinson. Behavioral interface specification languages. In ACM Computing

Surveys (CSUR).

[Hor09] Bartłomiej Horn. Ada’05 compiler for arm based systems. thesis, Technical

University of Lodz, Poland, 2009.

[HZPK08] Jérôme Hugues, Bechir Zalila, Laurent Pautet, and Fabrice Kordon. From the

prototype to the final embedded system using the ocarina aadl tool suite. ACM

Transactions on Embedded Computing Systems, 7(4):237–250, Juilliet 2008.

[IEC+06] Andrew Ireland, Bill J. Ellis, Andrew Cook, Roderick Chapman, and Janet

Barnes. An integrated approach to high integrity software verification. Jour-

nal of Automated Reasoning, 36(4):379–410, Avril 2006.

[LCH13] Brian R. Larson, Patrice Chalin, and John Hatcliff. Bless: Formal specification

and verification of behaviors for embedded systems with software. In NASA

Formal Methods, pages 276–290. Springer Berlin Heidelberg, 2013.

[Lev12] Nancy G. Leveson. Engineering a Safer World. The MIT Press, 2012.

[LH14] Brian R. Larson and John Hatlicff. Open patient-controlled analgesia infu-

sion pump system requirements draft 0.11. URL: http://santoslab.org/pub/

open-pca-pump/artifacts/Open-PCA-Pump-Requirements.pdf, Juin 2014.

146

http://santoslab.org/pub/open-pca-pump/artifacts/Open-PCA-Pump-Requirements.pdf
http://santoslab.org/pub/open-pca-pump/artifacts/Open-PCA-Pump-Requirements.pdf

[LHC13] Brian R. Larson, John Hatcliff, and Patrice Chalin. Open source patient-

controlled analgesic pump requirements documentation. In Software Engineering

in Health Care (SEHC), 2013 5th International Workshop, pages 28–34. Institute

of Electrical and Electronics Engineers (IEEE), 2013.

[LZPH09] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérôme Hugues. Ocarina : An

environment for aadl models analysis and automatic code generation for high

integrity applications. In Reliable Software Technologies – Ada-Europe 2009,

pages 237–250. Springer Berlin Heidelberg, 2009.

[Med10] Smiths Medical. Cadd-prizm ambulatory infusion pump model 6100 and model

6101 - technical manual. URL: http://www.smiths-medical.com/upload/

products/pdf/cadd_prizm_vip_system/in19824.pdf, Novembre 2010.

[OG11] Frank J. Overdyk and Jesse J. Guerra. Improving outcomes in med-surg pa-

tients with opioid-induced respiratory depression. American Nurse Today, 6(11),

Novembre 2011.

[PHR] Sam Procted, John Hatcliff, and Robby. Towards an aadl-based definition of

app architecture for medical application platforms. In Proceedings of the 2014

Software Engineering in Health-care (SEHC) Workshop at the International Sym-

posium on Foundations of Health Information Engineering and Systems (FHIES

2014).

[SC12] Loren Segal and Patrice Chalin. A comparison of intermediate verification lan-

guages: Boogie and sireum/pilar. In Verified Software: Theories, Tools, Experi-

ments, pages 130–145. Springer, 2012.

[SCD14] SAE AS-2C Architecture Description Language Subcommittee, Embedded Com-

puting Systems Committee, and Aerospace Avionics Systems Division. Aerospace

147

http://www.smiths-medical.com/upload/products/pdf/cadd_prizm_vip_system/in19824.pdf
http://www.smiths-medical.com/upload/products/pdf/cadd_prizm_vip_system/in19824.pdf

standard - architecture analysis & design language (aadl) v2 programming lan-

guage annex document draft 0.9, Avril 2014.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software

Development: Technology, Engineering, Management. Wiley, 2006.

[Tea] SPARK Team. Victor wrapper user manual. URL: http://docs.adacore.com/

sparkdocs-docs/VictorWrapper_UM.htm.

[Tea10] SPARK Team. Sparksimp utility user manual. URL: http://docs.adacore.

com/sparkdocs-docs/SPARKSimp_UM.htm, Novembre 2010.

[Tea11a] SPARK Team. Pogs user manual. URL: http://docs.adacore.com/

sparkdocs-docs/Pogs_UM.htm, Septembre 2011.

[Tea11b] SPARK Team. Spark examiner user manual. URL: http://docs.adacore.com/

sparkdocs-docs/Examiner_UM.htm, Décembre 2011.

[Tea11c] SPARK Team. Spark simplifier user manual. URL: http://docs.adacore.com/

sparkdocs-docs/Simplifier_UM.htm, Juin 2011.

[Tea12] SPARK Team. The spark ravenscar profile. URL: http://docs.adacore.com/

sparkdocs-docs/Examiner_Ravenscar.htm, 2012.

[Thi11] Hariharan Thiagarajan. Dependence analysis for inferring information flow prop-

erties in spark ada programs. thesis, Kansas State University, 2011.

148

http://docs.adacore.com/sparkdocs-docs/VictorWrapper_UM.htm
http://docs.adacore.com/sparkdocs-docs/VictorWrapper_UM.htm
http://docs.adacore.com/sparkdocs-docs/SPARKSimp_UM.htm
http://docs.adacore.com/sparkdocs-docs/SPARKSimp_UM.htm
http://docs.adacore.com/sparkdocs-docs/Pogs_UM.htm
http://docs.adacore.com/sparkdocs-docs/Pogs_UM.htm
http://docs.adacore.com/sparkdocs-docs/Examiner_UM.htm
http://docs.adacore.com/sparkdocs-docs/Examiner_UM.htm
http://docs.adacore.com/sparkdocs-docs/Simplifier_UM.htm
http://docs.adacore.com/sparkdocs-docs/Simplifier_UM.htm
http://docs.adacore.com/sparkdocs-docs/Examiner_Ravenscar.htm
http://docs.adacore.com/sparkdocs-docs/Examiner_Ravenscar.htm

Appendix A

Terms and Acronyms

• AADL - Architecture Analysis & Design Language

• BLESS - Behavioral Language for Embedded Systems with Software

• ICE - Integrated Clinical Environment

• MDCF - Medical Device Coordination Framework

• PCA - Patient-Controlled Analgesia (pump)

• FDA - Food and Drug Administration

• GPS - GNAT Programming Studio

• GCC - GNU Compiler Collection

• GUI - Graphical user interface

• VC - Verification Condition

• DPC - Dead Path Conjecture

• POGS - Proof Obligation Summarizer

149

• VTBI - Volume to be infused

• KVO - Keep Vein Open

• SAnToS Laboratory - Laboratory for Specification, Analysis, and Transformation

of Software

150

Appendix B

PCA pump prototype - simple,

implemented, working pump

This appendix contains implemented, simple version of PCA Pump, created based on 3.1

and AADL models created by Brian Larson. Data types used by this pump are the same

like translated from AADL models presented in appendix F.

1 with Base_Types;
2 with Pca_Types;
3 with Ice_Types;
4 --# inherit Ada.Real_Time,
5 --# Ada.Synchronous_Task_Control,
6 --# Base_Types,
7 --# Pca_Types,
8 --# Ice_Types,
9 --# Pca_Engine;

10 package Pca_Operation
11 --# own protected Operate (suspendable);
12 --# protected Fluid_Pulses : Integer_Array_Store(Priority => 10);
13 --# protected Prescription : Pca_Types.Prescription_Store(Priority => 10);
14 --# protected State : Pca_Types.Status_Type_Store(Priority => 10);
15 --# protected Clinician_Bolus_Paused : Base_Types.Boolean_Store(Priority => 10);
16 --# protected Clinician_Bolus_Duration : Ice_Types.Minute_Store(Priority => 10);
17 --# task rc : Rate_Controller;
18 --# task mdphw : Max_Drug_Per_Hour_Watcher;
19 --# Last_Patient_Bolus;
20 --# initializes Last_Patient_Bolus;
21 is
22
23 subtype Integer_Array_Index is Integer range 1 .. 60*60;
24 type Integer_Array is array (Integer_Array_Index) of Integer;
25
26 protected type Integer_Array_Store
27 is

151

28 pragma Priority (10);
29
30 function Get(Ind : in Integer) return Integer;
31 --# global in Integer_Array_Store;
32
33 procedure Put(Ind : in Integer; Val : in Integer);
34 --# global in out Integer_Array_Store;
35 --# derives Integer_Array_Store from Integer_Array_Store, Ind, Val;
36
37 procedure Inc(Ind : in Integer);
38 --# global in out Integer_Array_Store;
39 --# derives Integer_Array_Store from Integer_Array_Store, Ind;
40
41 function Sum return Integer;
42 --# global in Integer_Array_Store;
43
44 procedure Pulse;
45 --# global in out Integer_Array_Store;
46 --# derives Integer_Array_Store from Integer_Array_Store;
47 private
48 TheStoredData : Integer_Array := Integer_Array’(others => 0);
49 end Integer_Array_Store;
50
51 function Get_Volume_Infused return Integer; -- microliters
52 --# global in Fluid_Pulses;
53
54 function Get_State return Pca_Types.Status_Type;
55 --# global in State;
56
57 procedure Panel_Set_Basal_Flow_Rate(Flow_Rate : Pca_Types.Flow_Rate);
58 --# global in out Prescription;
59
60 function Panel_Get_Basal_Flow_Rate return Pca_Types.Flow_Rate;
61 --# global in Prescription;
62
63 procedure Panel_Set_Vtbi(Vtbi : Pca_Types.Drug_Volume);
64 --# global in out Prescription;
65
66 function Panel_Get_Vtbi return Pca_Types.Drug_Volume;
67 --# global in Prescription;
68
69 procedure Panel_Set_Max_Drug_Per_Hour(Max_Drug_Per_Hour : Pca_Types.Drug_Volume);
70 --# global in out Prescription;
71
72 function Panel_Get_Max_Drug_Per_Hour return Pca_Types.Drug_Volume;
73 --# global in Prescription;
74
75 procedure Panel_Set_Minimum_Time_Between_Bolus(Minimum_Time_Between_Bolus : Ice_Types.Minute);
76 --# global in out Prescription;
77
78 function Panel_Get_Minimum_Time_Between_Bolus return Ice_Types.Minute;
79 --# global in Prescription;
80
81 procedure StartPump;
82 --# global out Operate;
83 --# out State;
84 --# derives Operate from &
85 --# State from ;
86
87 procedure StopPump;
88 --# global out Operate;
89 --# out State;
90 --# derives Operate from &
91 --# State from ;
92

152

93 procedure PatientBolus;
94 --# global in out State;
95 --# in out Last_Patient_Bolus;
96 --# in out Clinician_Bolus_Paused;
97 --# in Prescription;
98 --# in Ada.Real_Time.ClockTime;
99 --# derives State from State, Last_Patient_Bolus, Prescription, Ada.Real_Time.ClockTime &

100 --# Last_Patient_Bolus from Last_Patient_Bolus, Prescription, Ada.Real_Time.ClockTime &
101 --# Clinician_Bolus_Paused from Clinician_Bolus_Paused, State, Last_Patient_Bolus, Prescription,

Ada.Real_Time.ClockTime;
102
103 procedure ClinicianBolus(Cb_Duration : in Ice_Types.Minute);
104 --# global in out State;
105 --# in out Clinician_Bolus_Duration;
106 --# in out Clinician_Bolus_Paused;
107 --# pre Cb_Duration <= 6 * 60; -- from Requirements 4.3.5
108
109
110 private
111 task type Rate_Controller
112 --# global out Operate;
113 --# in out Fluid_Pulses;
114 --# in out Clinician_Bolus_Paused;
115 --# in Prescription;
116 --# in out State;
117 --# in Ada.Real_Time.ClockTime;
118 --# in Clinician_Bolus_Duration;
119 --# derives Operate from &
120 --# Fluid_Pulses from Fluid_Pulses, State, Clinician_Bolus_Paused, Ada.Real_Time.ClockTime,

Prescription, Clinician_Bolus_Duration &
121 --# Clinician_Bolus_Paused from State, Clinician_Bolus_Paused, Ada.Real_Time.ClockTime,

Prescription, Clinician_Bolus_Duration &
122 --# State from State, Prescription, Ada.Real_Time.ClockTime, Clinician_Bolus_Duration,

Clinician_Bolus_Paused;
123 --# declare suspends => Operate;
124 is
125 pragma Priority (9);
126 end Rate_Controller;
127
128 task type Max_Drug_Per_Hour_Watcher
129 --# global in out Fluid_Pulses;
130 --# in Prescription;
131 --# in out State;
132 --# in Ada.Real_Time.ClockTime;
133 --# derives Fluid_Pulses from Fluid_Pulses &
134 --# State from Prescription, Fluid_Pulses, State &
135 --# null from Ada.Real_Time.ClockTime;
136 is
137 pragma Priority (9);
138 end Max_Drug_Per_Hour_Watcher;
139
140 end Pca_Operation;
141
142 with Ada.Synchronous_Task_Control,
143 Ada.Real_Time,
144 Base_Types,
145 Pca_Types,
146 Pca_Engine;
147 use type Ada.Real_Time.Time;
148 use type Pca_Types.Status_Type;
149
150 package body Pca_Operation
151 is
152 Operate : Ada.Synchronous_Task_Control.Suspension_Object;
153 rc : Rate_Controller;

153

154 mdphw : Max_Drug_Per_Hour_Watcher;
155
156 Fluid_Pulses : Integer_Array_Store;
157
158 State : Pca_Types.Status_Type_Store;
159
160 Prescription : Pca_Types.Prescription_Store;
161
162 Fluid_Pulse_Volume : constant Natural := 100; -- in microliters
163
164 Kvo_Rate : constant Pca_Types.Flow_Rate := 1; -- in mililiters
165
166 Bolus_Flow_Rate : constant Pca_Types.Flow_Rate := 100; -- in mililiters
167
168 Last_Patient_Bolus : Ada.Real_Time.Time := Ada.Real_Time.Time_First;
169
170 Clinician_Bolus_Duration : Ice_Types.Minute_Store;
171
172 Clinician_Bolus_Paused : Base_Types.Boolean_Store;
173
174 protected body Integer_Array_Store
175 is
176 function Get(Ind : in Integer) return Integer
177 --# global in TheStoredData;
178 is
179 begin
180 return TheStoredData(Ind);
181 end Get;
182
183
184 procedure Put(Ind : in Integer; Val : in Integer)
185 --# global in out TheStoredData;
186 --# derives TheStoredData from TheStoredData, Ind, Val;
187 is
188 begin
189 TheStoredData(Ind) := Val;
190 end Put;
191
192 procedure Inc(Ind : in Integer)
193 --# global in out TheStoredData;
194 --# derives TheStoredData from TheStoredData, Ind;
195 is
196 begin
197 TheStoredData(Ind) := TheStoredData(Ind) + Fluid_Pulse_Volume;
198 end Inc;
199
200 function Sum return Integer
201 --# global in TheStoredData;
202 is
203 Result : Integer := 0;
204 begin
205 for I in Integer_Array_Index loop
206 --# assert I > 1 -> Result >= TheStoredData(I-1);
207 Result := Result + TheStoredData(I);
208 end loop;
209 return Result;
210 end Sum;
211
212 procedure Pulse
213 --# global in out TheStoredData;
214 --# derives TheStoredData from TheStoredData;
215 is
216 begin
217 for I in Integer_Array_Index range 1 .. Integer_Array_Index’Last-1 loop
218 --# assert I > 1 -> TheStoredData(I-1) = TheStoredData(I);

154

219 TheStoredData(I) := TheStoredData(I+1);
220 end loop;
221 TheStoredData(Integer_Array_Index’Last) := 0;
222 end Pulse;
223
224 end Integer_Array_Store;
225
226 function Get_Time_Between_Activations(Flow_Rate : in Pca_Types.Flow_Rate) return Natural
227 is
228 Result : Natural;
229 Flow_Rate_In_Microliters : Natural;
230 Activations_Per_Hour : Natural;
231 begin
232 Flow_Rate_In_Microliters := Natural(Flow_Rate) * 1000; -- convert mL to uL
233 Activations_Per_Hour := Flow_Rate_In_Microliters / Fluid_Pulse_Volume;
234
235 -- miliseconds between activations
236 Result := ((60 * 60) * 1000) / Activations_Per_Hour;
237 return Result;
238 end Get_Time_Between_Activations;
239
240
241 function Get_Volume_Infused return Integer
242 is
243 begin
244 return Fluid_Pulses.Sum;
245 end Get_Volume_Infused;
246
247 function Get_State return Pca_Types.Status_Type
248 is
249 Current_State : Pca_Types.Status_Type;
250 begin
251 Current_State := State.Get;
252 return Current_State;
253 end Get_State;
254
255 procedure Panel_Set_Basal_Flow_Rate(Flow_Rate : Pca_Types.Flow_Rate)
256 is
257 begin
258 Prescription.Set_Basal_Flow_Rate(Flow_Rate);
259 end Panel_Set_Basal_Flow_Rate;
260
261 function Panel_Get_Basal_Flow_Rate return Pca_Types.Flow_Rate
262 is
263 begin
264 return Prescription.Get_Basal_Flow_Rate;
265 end Panel_Get_Basal_Flow_Rate;
266
267 procedure Panel_Set_Vtbi(Vtbi : Pca_Types.Drug_Volume)
268 is
269 begin
270 Prescription.Set_Vtbi(Vtbi);
271 end Panel_Set_Vtbi;
272
273 function Panel_Get_Vtbi return Pca_Types.Drug_Volume
274 is
275 begin
276 return Prescription.Get_Vtbi;
277 end Panel_Get_Vtbi;
278
279 procedure Panel_Set_Max_Drug_Per_Hour(Max_Drug_Per_Hour : Pca_Types.Drug_Volume)
280 is
281 begin
282 Prescription.Set_Max_Drug_Per_Hour(Max_Drug_Per_Hour);
283 end Panel_Set_Max_Drug_Per_Hour;

155

284
285 function Panel_Get_Max_Drug_Per_Hour return Pca_Types.Drug_Volume
286 is
287 begin
288 return Prescription.Get_Max_Drug_Per_Hour;
289 end Panel_Get_Max_Drug_Per_Hour;
290
291 procedure Panel_Set_Minimum_Time_Between_Bolus(Minimum_Time_Between_Bolus : Ice_Types.Minute)
292 is
293 begin
294 Prescription.Set_Minimum_Time_Between_Bolus(Minimum_Time_Between_Bolus);
295 end Panel_Set_Minimum_Time_Between_Bolus;
296
297 function Panel_Get_Minimum_Time_Between_Bolus return Ice_Types.Minute
298 is
299 begin
300 return Prescription.Get_Minimum_Time_Between_Bolus;
301 end Panel_Get_Minimum_Time_Between_Bolus;
302
303 procedure StartPump
304 is
305 begin
306 Ada.Synchronous_Task_Control.Set_True (Operate);
307 State.Put(Pca_Types.Basal);
308 end StartPump;
309
310 procedure StopPump
311 is
312 begin
313 Ada.Synchronous_Task_Control.Set_False (Operate);
314 State.put(Pca_Types.Stopped);
315 end StopPump;
316
317 procedure PatientBolus
318 is
319 Minimum_Time_Between_Bolus : Ice_Types.Minute;
320 Time_Now : Ada.Real_Time.Time;
321 Current_State : Pca_Types.Status_Type;
322 begin
323 Minimum_Time_Between_Bolus := Prescription.Get_Minimum_Time_Between_Bolus;
324 Time_Now := Ada.Real_Time.Clock;
325 if Last_Patient_Bolus + Ada.Real_Time.Milliseconds(Natural(Minimum_Time_Between_Bolus)*(60*1000)) <=

Time_Now then
326 Last_Patient_Bolus := Time_Now;
327 Current_State := State.Get;
328 if Current_State = Pca_Types.Square_Bolus then
329 Clinician_Bolus_Paused.Put(True);
330 end if;
331 State.Put(Pca_Types.Bolus);
332 end if;
333 end PatientBolus;
334
335 procedure ClinicianBolus(Cb_Duration : in Ice_Types.Minute)
336 is
337 Current_State : Pca_Types.Status_Type;
338 begin
339 Current_State := State.Get;
340 if Current_State = Pca_Types.Basal then
341 Clinician_Bolus_Duration.Put(Cb_Duration);
342 State.Put(Pca_Types.Square_Bolus);
343 elsif Current_State = Pca_Types.Bolus then
344 Clinician_Bolus_Duration.Put(Cb_Duration);
345 Clinician_Bolus_Paused.Put(True);
346 end if;
347 end ClinicianBolus;

156

348
349
350 task body Rate_Controller
351 is
352 --Release_Time : Ada.Real_Time.Time;
353 Now : Ada.Real_Time.Time;
354 Period : Natural;
355 Last_Basal_Pulse : Ada.Real_Time.Time := Ada.Real_Time.Time_First; -- Ada.Real_Time.Clock - Ada.

Real_Time.Milliseconds(1000 * 60 * 60);
356 Last_Kvo_Pulse : Ada.Real_Time.Time := Ada.Real_Time.Time_First; -- Ada.Real_Time.Clock - Ada.

Real_Time.Milliseconds(1000 * 60 * 60);
357 Last_Patient_Bolus_Pulse : Ada.Real_Time.Time := Ada.Real_Time.Time_First; -- Ada.Real_Time.Clock -

Ada.Real_Time.Milliseconds(1000 * 60 * 60);
358 Last_Clinician_Bolus_Pulse : Ada.Real_Time.Time := Ada.Real_Time.Time_First; -- Ada.Real_Time.Clock -

Ada.Real_Time.Milliseconds(1000 * 60 * 60);
359 Patient_Bolus_Volume_Left : Natural := 0;
360 Clinicaian_Bolus_Vtbi : Pca_Types.Drug_Volume;
361 Clinician_Bolus_Volume_Left : Natural := 0;
362 Current_State : Pca_Types.Status_Type;
363 Flow_Rate : Pca_Types.Flow_Rate;
364 Drug_Volume : Pca_Types.Drug_Volume;
365 Clinician_Bolus_Paused_Temp : Boolean;
366 Clinician_Bolus_Duration_Temp : Ice_Types.Minute;
367 begin
368 loop
369 Ada.Synchronous_Task_Control.Suspend_Until_True (Operate); -- wait until user allows Pump to

operate
370 Ada.Synchronous_Task_Control.Set_True (Operate); -- Keep the task running, the previous call will

have set Operate to False.
371
372 Now := Ada.Real_Time.Clock;
373 Current_State := State.Get;
374
375 --# assert true;
376
377 case Current_State is
378 when Pca_Types.Stopped =>
379 null;
380 when Pca_Types.KVO =>
381 Period := Get_Time_Between_Activations(Kvo_Rate);
382 if Last_Kvo_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
383 Last_Kvo_Pulse := Now;
384 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
385 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
386 end if;
387 when Pca_Types.Basal =>
388 Flow_Rate := Prescription.Get_Basal_Flow_Rate;
389 Period := Get_Time_Between_Activations(Flow_Rate);
390 if Last_Basal_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
391 Last_Basal_Pulse := Now;
392 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
393 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
394 end if;
395 when Pca_Types.Bolus =>
396 -- basal
397 Flow_Rate := Prescription.Get_Basal_Flow_Rate;
398 Period := Get_Time_Between_Activations(Flow_Rate);
399 if Last_Basal_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
400 Last_Basal_Pulse := Now;
401 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
402 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
403 end if;
404
405 -- patient
406 Period := Get_Time_Between_Activations(Bolus_Flow_Rate);

157

407 if Last_Patient_Bolus_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
408 Last_Patient_Bolus_Pulse := Now;
409
410 if Patient_Bolus_Volume_Left = 0 then
411 Drug_Volume := Prescription.Get_Vtbi;
412 Patient_Bolus_Volume_Left := Natural(Drug_Volume);
413 Patient_Bolus_Volume_Left := Patient_Bolus_Volume_Left * 1000; -- convert to

microliters
414 end if;
415
416 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
417 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
418
419 Patient_Bolus_Volume_Left := Patient_Bolus_Volume_Left - 100;
420 if Patient_Bolus_Volume_Left = 0 then
421 Clinician_Bolus_Paused_Temp := Clinician_Bolus_Paused.Get;
422 if Clinician_Bolus_Paused_Temp then
423 State.Put(Pca_Types.Square_Bolus);
424 Clinician_Bolus_Paused.Put(False);
425 else
426 State.Put(Pca_Types.Basal);
427 end if;
428 end if;
429 end if;
430 when Pca_Types.Square_Bolus =>
431 -- basal
432 Flow_Rate := Prescription.Get_Basal_Flow_Rate;
433 Period := Get_Time_Between_Activations(Flow_Rate);
434 if Last_Basal_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
435 Last_Basal_Pulse := Now;
436 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
437 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
438 end if;
439
440 -- clinician
441 Clinician_Bolus_Duration_Temp := Clinician_Bolus_Duration.Get;
442 Clinicaian_Bolus_Vtbi := Prescription.Get_Vtbi;
443 Period := Get_Time_Between_Activations(Pca_Types.Flow_Rate(Natural(Clinicaian_Bolus_Vtbi) *

(60/Natural(Clinician_Bolus_Duration_Temp))));
444 if Last_Clinician_Bolus_Pulse + Ada.Real_Time.Milliseconds(Period) <= Now then
445 Last_Clinician_Bolus_Pulse := Now;
446
447 if Clinician_Bolus_Volume_Left = 0 then
448 Clinicaian_Bolus_Vtbi := Prescription.Get_Vtbi;
449 Clinician_Bolus_Volume_Left := Natural(Clinicaian_Bolus_Vtbi) * 1000; -- in

microliters
450 end if;
451
452 Fluid_Pulses.Inc(Integer_Array_Index’Last); -- each time round, update the volume infused
453 Pca_Engine.Run_Pumping(100); -- and pump 0.1 ml
454
455 Clinician_Bolus_Volume_Left := Clinician_Bolus_Volume_Left - 100;
456 if Clinician_Bolus_Volume_Left = 0 then
457 State.Put(Pca_Types.Basal);
458 end if;
459 end if;
460 end case;
461 end loop;
462 end Rate_Controller;
463
464 task body Max_Drug_Per_Hour_Watcher is
465 Release_Time : Ada.Real_Time.Time;
466 Period : constant Integer := 1000; -- update in every second
467 Volume_Infused : Integer;
468 Max_Drug_Per_Hour : Pca_Types.Drug_Volume;

158

469 begin
470 loop
471 --# assert true;
472
473 Release_Time := Ada.Real_Time.Clock; -- must be simple assignment
474 Release_Time := Release_Time + Ada.Real_Time.Milliseconds(Period);
475 delay until Release_Time;
476 Fluid_Pulses.Pulse; -- each time round, update the volume infused moving window
477 Max_Drug_Per_Hour := Prescription.Get_Max_Drug_Per_Hour;
478 Volume_Infused := Get_Volume_Infused;
479 if Volume_Infused > (Integer(Max_Drug_Per_Hour)*1000) then -- convert to microliters
480 State.Put(Pca_Types.KVO);
481 end if;
482 end loop;
483 end Max_Drug_Per_Hour_Watcher;
484 end Pca_Operation;

Listing B.1: Pca_Operation package

1 with Ada.Real_Time;
2 use type Ada.Real_Time.Time;
3 --# inherit Ada.Real_Time;
4 package Pca_Engine
5 is
6 procedure Start_Pumping;
7
8 procedure Stop_Pumping;
9

10 procedure Run_Pumping(Microliters : in Natural);
11 --# global in Ada.Real_Time.ClockTime;
12 --# derives null from Microliters, Ada.Real_Time.ClockTime;
13 --# pre Microliters > 0;
14
15 end Pca_Engine;
16
17 with Ada.Strings.Unbounded;
18 use Ada.Strings.Unbounded;
19 with Ada.Text_IO.Unbounded_IO;
20 use Ada.Text_IO;
21
22 package body Pca_Engine
23 --# hide Pca_Engine
24 is
25 GPIO_Path : constant String := "/sys/class/gpio/";
26 Status_File_Path : constant String := "/home/root/pump_status.txt";
27
28 GPIO_Export_File_Path : constant String := GPIO_Path & "export";
29 GPIO_Unexport_File_Path : constant String := GPIO_Path & "unexport";
30 GPIO162_Direction_File_Path : constant String := GPIO_Path & "gpio162/direction";
31 GPIO162_Value_File_Path : constant String := GPIO_Path & "gpio162/value";
32
33 procedure Start_Pumping
34 is
35 F : Ada.Text_IO.File_Type;
36 Data : Unbounded_String := To_Unbounded_String("pumping");
37 File_Export : Ada.Text_IO.File_Type;
38 File_Direction : Ada.Text_IO.File_Type;
39 begin
40 Create(File_Export, Ada.Text_IO.Out_File, GPIO_Export_File_Path);
41 Put_Line(File_Export, "162");
42 Close(File_Export);
43
44 Create(File_Direction, Ada.Text_IO.Out_File, GPIO162_Direction_File_Path);

159

45 Put_Line(File_Direction, "out");
46 Close(File_Direction);
47
48 Create(F, Ada.Text_IO.Out_File, Status_File_Path);
49 Unbounded_IO.Put_Line(F, Data);
50 Put_Line("Pumping...");
51 Close(F);
52 end Start_Pumping;
53
54
55 procedure Stop_Pumping is
56 F : Ada.Text_IO.File_Type;
57 Data : Unbounded_String := To_Unbounded_String("IDLE");
58 File_Unexport : Ada.Text_IO.File_Type;
59 begin
60 Create(File_Unexport, Ada.Text_IO.Out_File, GPIO_Unexport_File_Path);
61 Put_Line(File_Unexport, "162");
62 Close(File_Unexport);
63
64 Create(F, Ada.Text_IO.Out_File, Status_File_Path);
65 Unbounded_IO.Put_Line(F, Data);
66 Put_Line("Idle...");
67 Close(F);
68 end Stop_Pumping;
69
70 procedure Write_Signal(Signal : in Integer) is
71 File : Ada.Text_IO.File_Type;
72 Data : Unbounded_String;
73 begin
74 Ada.Text_IO.Open (File => File,
75 Mode => Ada.Text_IO.Out_File,
76 Name => GPIO162_Value_File_Path);
77 if Signal = 1 then
78 Data := To_Unbounded_String("1");
79 else
80 Data := To_Unbounded_String("0");
81 end if;
82 Unbounded_IO.Put_Line(File, Data);
83 Ada.Text_IO.Close(File);
84 end Write_Signal;
85
86 procedure Run_Pumping(Microliters : in Natural)
87 is
88 Interval_High: constant Ada.Real_Time.Time_Span := Ada.Real_Time.Microseconds(9000);
89 Interval_Low: constant Ada.Real_Time.Time_Span := Ada.Real_Time.Microseconds(1000);
90 Next_Time: Ada.Real_Time.Time;
91 begin
92 Next_Time := Ada.Real_Time.Clock;
93 Start_Pumping;
94 for I in Integer range 1 .. (15*Microliters) loop
95 Next_Time := Next_Time + Interval_High;
96 Write_Signal(1);
97 delay until Next_Time;
98 Next_Time := Next_Time + Interval_Low;
99 Write_Signal(0);

100 delay until Next_Time;
101 end loop;
102 Stop_Pumping;
103 end Run_Pumping;
104
105 end Pca_Engine;

Listing B.2: Pca_Engine package

160

1 with Pca_Operation;
2 with Pca_Types;
3 with Ice_Types;
4 with Ada.Text_IO;
5 with Ada.Float_Text_IO;
6 --# inherit Pca_Operation,
7 --# Ada.Real_Time,
8 --# Pca_Types,
9 --# Ice_Types;

10 --# main_program;
11 procedure Main
12 is
13 pragma Priority (10);
14 Input : String(1..10) := (others => ’ ’);
15 Input_Last : Integer;
16 Option : Integer;
17 use Ada.Text_IO;
18 begin
19
20 Put_Line("Menu: ");
21 Put_Line("0 - Enter prescription");
22 Put_Line("1 - Start PCA Pump");
23 Put_Line("2 - Stop PCA Pump");
24 Put_Line("3 - Display Volume Infused");
25 Put_Line("4 - Display Prescription");
26 Put_Line("5 - Set Basal Flow Rate");
27 Put_Line("6 - Patient bolus");
28 Put_Line("7 - Clinician bolus");
29 Put_Line("8 - Display Current State");
30 loop
31 Input := (others => ’ ’);
32 Get_Line(Input, Input_Last);
33 Option := Integer’Value(Input);
34 case Option is
35 when 0 =>
36 Put_Line("Enter Basal Flow Rate (ml/hr): ");
37 Input := (others => ’ ’);
38 Get_Line(Input, Input_Last);
39 Pca_Operation.Panel_Set_Basal_Flow_Rate(Pca_Types.Flow_Rate(Integer’Value(Input)));
40 Put_Line("Enter Volume to be infused during patient bolus (ml): ");
41 Input := (others => ’ ’);
42 Get_Line(Input, Input_Last);
43 Pca_Operation.Panel_Set_Vtbi(Pca_Types.Drug_Volume(Integer’Value(Input)));
44 Put_Line("Enter Max Drug Per Hour (ml): ");
45 Input := (others => ’ ’);
46 Get_Line(Input, Input_Last);
47 Pca_Operation.Panel_Set_Max_Drug_Per_Hour(Pca_Types.Drug_Volume(Integer’Value(Input)));
48 Put_Line("Enter Minimum Time Between Boluses (min.): ");
49 Input := (others => ’ ’);
50 Get_Line(Input, Input_Last);
51 Pca_Operation.Panel_Set_Minimum_Time_Between_Bolus(Ice_Types.Minute(Integer’Value(Input)));
52 when 1 =>
53 Pca_Operation.StartPump;
54 Put_Line("Pump Started");
55 when 2 =>
56 Pca_Operation.StopPump;
57 Put_Line("Pump Stopped");
58 when 3 =>
59 Put("Volume Infused (ml):");
60 Ada.Float_Text_IO.Put(Float(Pca_Operation.Get_Volume_Infused) / Float(1000), AFT=>2, EXP=>0);
61 Put_Line("");
62 when 4 =>
63 Put_Line("Current Basal Flow Rate (ml/hr): " & Integer’Image(Integer(Pca_Operation.

Panel_Get_Basal_Flow_Rate)));

161

64 Put_Line("Current Volume to be Infused (ml): " & Integer’Image(Integer(Pca_Operation.
Panel_Get_Vtbi)));

65 Put_Line("Current Max Drug Per Hour (ml): " & Integer’Image(Integer(Pca_Operation.
Panel_Get_Max_Drug_Per_Hour)));

66 Put_Line("Current minimum time between bolus (min): " & Integer’Image(Integer(Pca_Operation.
Panel_Get_Minimum_Time_Between_Bolus)));

67 when 5 =>
68 Put_Line("Enter Basal Flow Rate (ml/hr): ");
69 Input := (others => ’ ’);
70 Get_Line(Input, Input_Last);
71 Pca_Operation.Panel_Set_Basal_Flow_Rate(Pca_Types.Flow_Rate(Integer’Value(Input)));
72 when 6 =>
73 Pca_Operation.PatientBolus;
74 when 7 =>
75 Put_Line("Enter Duration (min): ");
76 Input := (others => ’ ’);
77 Get_Line(Input, Input_Last);
78 Pca_Operation.ClinicianBolus(Ice_Types.Minute’Value(Input));
79 when 8 =>
80 case Pca_Operation.Get_State is
81 when Pca_Types.Stopped =>
82 Put_Line("Stopped");
83 when Pca_Types.Bolus =>
84 Put_Line("Bolus");
85 when Pca_Types.Basal =>
86 Put_Line("Basal");
87 when Pca_Types.KVO =>
88 Put_Line("KVO");
89 when Pca_Types.Square_Bolus =>
90 Put_Line("Square Bolus");
91 end case;
92 when others => exit;
93 end case;
94 end loop;
95 Put_Line("Program end");
96 end Main;

Listing B.3: Main procedure

162

Appendix C

PCA pump prototype verification -

POGS report

1 ---
2 Semantic Analysis Summary
3 POGS GPL 2012
4 Copyright (C) 2012 Altran Praxis Limited, Bath, U.K.
5 ---
6
7 Summary of:
8
9 Verification Condition files (.vcg)

10 Simplified Verification Condition files (.siv)
11 Victor result files (.vct)
12 Riposte result files (.rsm)
13 Proof Logs (.plg)
14 Dead Path Conjecture files (.dpc)
15 Summary Dead Path files (.sdp)
16
17 "status" column keys:
18 1st character:
19 ’-’ - No VC
20 ’S’ - No SIV
21 ’U’ - Undischarged
22 ’E’ - Proved by Examiner
23 ’I’ - Proved by Simplifier by Inference
24 ’X’ - Proved by Simplifier by Contradiction
25 ’P’ - Proved by Simplifier using User Defined Proof Rules
26 ’V’ - Proved by Victor
27 ’O’ - Proved by Riposte
28 ’C’ - Proved by Checker
29 ’R’ - Proved by Review
30 ’F’ - VC is False
31 2nd character:
32 ’-’ - No DPC
33 ’S’ - No SDP
34 ’U’ - Unchecked

163

35 ’D’ - Dead path
36 ’L’ - Live path
37
38 in the directory:
39 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar
40
41 Summary produced: 25-JUL-2014 14:16:50.13
42
43 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/clinicianbolus.vcg
44 procedure Pca_Operation.ClinicianBolus
45
46 VCs generated 25-JUL-2014 14:16:24
47
48 VCs simplified 25-JUL-2014 14:16:28
49
50 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/clinicianbolus.dpc
51 DPCs generated 25-JUL-2014 14:16:24
52
53 DPC ZombieScoped 25-JUL-2014 14:16:2
54
55 VCs for procedure_clinicianbolus :
56 ---
57 | # | From | To | Proved By | Dead Path | Status |
58 |---
59 | 1 | start | rtc check @ 198 | Inference | Unchecked | IU |
60 | 2 | start | rtc check @ 200 | Inference | Unchecked | IU |
61 | 3 | start | rtc check @ 201 | Inference | Unchecked | IU |
62 | 4 | start | rtc check @ 203 | Inference | Unchecked | IU |
63 | 5 | start | assert @ finish | Examiner | Live | EL |
64 | 6 | start | assert @ finish | Examiner | Live | EL |
65 | 7 | start | assert @ finish | Examiner | Live | EL |
66 ---
67
68
69 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_state.vcg
70 function Pca_Operation.Get_State
71
72 VCs generated 25-JUL-2014 14:16:24
73
74 VCs simplified 25-JUL-2014 14:16:28
75
76 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_state.dpc
77 DPCs generated 25-JUL-2014 14:16:24
78
79 DPC ZombieScoped 25-JUL-2014 14:16:2
80
81 VCs for function_get_state :
82 ---
83 | # | From | To | Proved By | Dead Path | Status |
84 |---
85 | 1 | start | rtc check @ 110 | Inference | Unchecked | IU |
86 | 2 | start | assert @ finish | Inference | Live | IL |
87 ---
88
89
90 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_time_between_activations.vcg
91 function Pca_Operation.Get_Time_Between_Activations
92
93 VCs generated 25-JUL-2014 14:16:24
94
95 VCs simplified 25-JUL-2014 14:16:28
96
97 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_time_between_activations.dpc
98 DPCs generated 25-JUL-2014 14:16:24
99

164

100 DPC ZombieScoped 25-JUL-2014 14:16:2
101
102 VCs for function_get_time_between_activations :
103 ---
104 | # | From | To | Proved By | Dead Path | Status |
105 |---
106 | 1 | start | rtc check @ 91 | Undischarged | Unchecked | UU |
107 | 2 | start | rtc check @ 92 | Inference | Unchecked | IU |
108 | 3 | start | rtc check @ 95 | Undischarged | Unchecked | UU |
109 | 4 | start | assert @ finish | Inference | Live | IL |
110 ---
111
112
113 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_volume_infused.vcg
114 function Pca_Operation.Get_Volume_Infused
115
116 VCs generated 25-JUL-2014 14:16:24
117
118 VCs simplified 25-JUL-2014 14:16:29
119
120 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_volume_infused.dpc
121 DPCs generated 25-JUL-2014 14:16:24
122
123 DPC ZombieScoped 25-JUL-2014 14:16:2
124
125 VCs for function_get_volume_infused :
126 ---
127 | # | From | To | Proved By | Dead Path | Status |
128 |---
129 | 1 | start | assert @ finish | Inference | Live | IL |
130 ---
131
132
133 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/get.vcg
134 function Pca_Operation.Integer_Array_Store.Get
135
136 VCs generated 25-JUL-2014 14:16:24
137
138 VCs simplified 25-JUL-2014 14:16:29
139
140 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/get.dpc
141 DPCs generated 25-JUL-2014 14:16:24
142
143 DPC ZombieScoped 25-JUL-2014 14:16:2
144
145 VCs for function_get :
146 ---
147 | # | From | To | Proved By | Dead Path | Status |
148 |---
149 | 1 | start | rtc check @ 39 | Undischarged | Unchecked | UU |
150 | 2 | start | assert @ finish | Inference | Live | IL |
151 | 3 | | refinement | Examiner | No DPC | E- |
152 | 4 | | refinement | Examiner | No DPC | E- |
153 ---
154
155
156 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/inc.vcg
157 procedure Pca_Operation.Integer_Array_Store.Inc
158
159 VCs generated 25-JUL-2014 14:16:24
160
161 VCs simplified 25-JUL-2014 14:16:29
162
163 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/inc.dpc
164 DPCs generated 25-JUL-2014 14:16:24

165

165
166 DPC ZombieScoped 25-JUL-2014 14:16:2
167
168 VCs for procedure_inc :
169 ---
170 | # | From | To | Proved By | Dead Path | Status |
171 |---
172 | 1 | start | rtc check @ 56 | Undischarged | Unchecked | UU |
173 | 2 | start | assert @ finish | Examiner | Live | EL |
174 | 3 | | refinement | Examiner | No DPC | E- |
175 | 4 | | refinement | Examiner | No DPC | E- |
176 ---
177
178
179 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/pulse.vcg
180 procedure Pca_Operation.Integer_Array_Store.Pulse
181
182 VCs generated 25-JUL-2014 14:16:24
183
184 VCs simplified 25-JUL-2014 14:16:29
185
186 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/pulse.dpc
187 DPCs generated 25-JUL-2014 14:16:24
188
189 DPC ZombieScoped 25-JUL-2014 14:16:2
190
191 VCs for procedure_pulse :
192 ---
193 | # | From | To | Proved By | Dead Path | Status |
194 |---
195 | 1 | start | rtc check @ 76 | Inference | Unchecked | IU |
196 | 2 | start | rtc check @ 76 | Inference | Unchecked | IU |
197 | 3 | start | assert @ 77 | Inference | Live | IL |
198 | 4 | 77 | assert @ 77 | Inference | Live | IL |
199 | 5 | 77 | rtc check @ 78 | Inference | Unchecked | IU |
200 | 6 | start | rtc check @ 80 | Inference | Unchecked | IU |
201 | 7 | 77 | rtc check @ 80 | Inference | Unchecked | IU |
202 | 8 | start | assert @ finish | Examiner | Dead | ED |
203 | 9 | 77 | assert @ finish | Examiner | Live | EL |
204 | 10 | | refinement | Examiner | No DPC | E- |
205 | 11 | | refinement | Examiner | No DPC | E- |
206 ---
207
208
209 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/put.vcg
210 procedure Pca_Operation.Integer_Array_Store.Put
211
212 VCs generated 25-JUL-2014 14:16:24
213
214 VCs simplified 25-JUL-2014 14:16:29
215
216 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/put.dpc
217 DPCs generated 25-JUL-2014 14:16:24
218
219 DPC ZombieScoped 25-JUL-2014 14:16:2
220
221 VCs for procedure_put :
222 ---
223 | # | From | To | Proved By | Dead Path | Status |
224 |---
225 | 1 | start | rtc check @ 48 | Undischarged | Unchecked | UU |
226 | 2 | start | assert @ finish | Examiner | Live | EL |
227 | 3 | | refinement | Examiner | No DPC | E- |
228 | 4 | | refinement | Examiner | No DPC | E- |
229 ---

166

230
231
232 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/sum.vcg
233 function Pca_Operation.Integer_Array_Store.Sum
234
235 VCs generated 25-JUL-2014 14:16:24
236
237 VCs simplified 25-JUL-2014 14:16:30
238
239 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/sum.dpc
240 DPCs generated 25-JUL-2014 14:16:24
241
242 DPC ZombieScoped 25-JUL-2014 14:16:3
243
244 VCs for function_sum :
245 ---
246 | # | From | To | Proved By | Dead Path | Status |
247 |---
248 | 1 | start | assert @ 65 | Inference | Live | IL |
249 | 2 | 65 | assert @ 65 | Undischarged | Live | UL |
250 | 3 | 65 | rtc check @ 66 | Undischarged | Unchecked | UU |
251 | 4 | 65 | assert @ finish | Inference | Live | IL |
252 | 5 | | refinement | Examiner | No DPC | E- |
253 | 6 | | refinement | Examiner | No DPC | E- |
254 ---
255
256
257 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/max_drug_per_hour_watcher.vcg
258 task_type Pca_Operation.Max_Drug_Per_Hour_Watcher
259
260 VCs generated 25-JUL-2014 14:16:25
261
262 VCs simplified 25-JUL-2014 14:16:30
263
264 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/max_drug_per_hour_watcher.dpc
265 DPCs generated 25-JUL-2014 14:16:25
266
267 DPC ZombieScoped 25-JUL-2014 14:16:3
268
269 VCs for task_type_max_drug_per_hour_watcher :
270 ---
271 | # | From | To | Proved By | Dead Path | Status |
272 |---
273 | 1 | start | assert @ 330 | Examiner | Live | EL |
274 | 2 | 330 | assert @ 330 | Examiner | Live | EL |
275 | 3 | 330 | assert @ 330 | Examiner | Live | EL |
276 | 4 | 330 | rtc check @ 332 | Inference | Unchecked | IU |
277 | 5 | 330 | rtc check @ 333 | Inference | Unchecked | IU |
278 | 6 | 330 | rtc check @ 333 | Undischarged | Unchecked | UU |
279 | 7 | 330 | rtc check @ 336 | Inference | Unchecked | IU |
280 | 8 | 330 | rtc check @ 337 | Inference | Unchecked | IU |
281 | 9 | 330 | rtc check @ 338 | Inference | Unchecked | IU |
282 | 10 | 330 | rtc check @ 339 | Inference | Unchecked | IU |
283 | 11 | 330 | assert @ finish | Examiner | Dead | ED |
284 | 12 | 330 | assert @ finish | Examiner | Dead | ED |
285 ---
286
287
288 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_basal_flow_rate.vcg
289 function Pca_Operation.Panel_Get_Basal_Flow_Rate
290
291 VCs generated 25-JUL-2014 14:16:24
292
293 VCs simplified 25-JUL-2014 14:16:30
294

167

295 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_basal_flow_rate.dpc
296 DPCs generated 25-JUL-2014 14:16:24
297
298 DPC ZombieScoped 25-JUL-2014 14:16:3
299
300 VCs for function_panel_get_basal_flow_rate :
301 ---
302 | # | From | To | Proved By | Dead Path | Status |
303 |---
304 | 1 | start | assert @ finish | Inference | Live | IL |
305 ---
306
307
308 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_max_drug_per_hour.vcg
309 function Pca_Operation.Panel_Get_Max_Drug_Per_Hour
310
311 VCs generated 25-JUL-2014 14:16:24
312
313 VCs simplified 25-JUL-2014 14:16:30
314
315 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_max_drug_per_hour.dpc
316 DPCs generated 25-JUL-2014 14:16:24
317
318 DPC ZombieScoped 25-JUL-2014 14:16:3
319
320 VCs for function_panel_get_max_drug_per_hour :
321 ---
322 | # | From | To | Proved By | Dead Path | Status |
323 |---
324 | 1 | start | assert @ finish | Inference | Live | IL |
325 ---
326
327
328 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/

panel_get_minimum_time_between_bolus.vcg
329 function Pca_Operation.Panel_Get_Minimum_Time_Between_Bolus
330
331 VCs generated 25-JUL-2014 14:16:24
332
333 VCs simplified 25-JUL-2014 14:16:31
334
335 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/

panel_get_minimum_time_between_bolus.dpc
336 DPCs generated 25-JUL-2014 14:16:24
337
338 DPC ZombieScoped 25-JUL-2014 14:16:3
339
340 VCs for function_panel_get_minimum_time_between_bolus :
341 ---
342 | # | From | To | Proved By | Dead Path | Status |
343 |---
344 | 1 | start | assert @ finish | Inference | Live | IL |
345 ---
346
347
348 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_vtbi.vcg
349 function Pca_Operation.Panel_Get_Vtbi
350
351 VCs generated 25-JUL-2014 14:16:24
352
353 VCs simplified 25-JUL-2014 14:16:31
354
355 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_get_vtbi.dpc
356 DPCs generated 25-JUL-2014 14:16:24
357

168

358 DPC ZombieScoped 25-JUL-2014 14:16:3
359
360 VCs for function_panel_get_vtbi :
361 ---
362 | # | From | To | Proved By | Dead Path | Status |
363 |---
364 | 1 | start | assert @ finish | Inference | Live | IL |
365 ---
366
367
368 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_basal_flow_rate.vcg
369 procedure Pca_Operation.Panel_Set_Basal_Flow_Rate
370
371 VCs generated 25-JUL-2014 14:16:24
372
373 VCs simplified 25-JUL-2014 14:16:31
374
375 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_basal_flow_rate.dpc
376 DPCs generated 25-JUL-2014 14:16:24
377
378 DPC ZombieScoped 25-JUL-2014 14:16:3
379
380 VCs for procedure_panel_set_basal_flow_rate :
381 ---
382 | # | From | To | Proved By | Dead Path | Status |
383 |---
384 | 1 | start | rtc check @ 117 | Inference | Unchecked | IU |
385 | 2 | start | assert @ finish | Examiner | Live | EL |
386 ---
387
388
389 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_max_drug_per_hour.vcg
390 procedure Pca_Operation.Panel_Set_Max_Drug_Per_Hour
391
392 VCs generated 25-JUL-2014 14:16:24
393
394 VCs simplified 25-JUL-2014 14:16:31
395
396 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_max_drug_per_hour.dpc
397 DPCs generated 25-JUL-2014 14:16:24
398
399 DPC ZombieScoped 25-JUL-2014 14:16:3
400
401 VCs for procedure_panel_set_max_drug_per_hour :
402 ---
403 | # | From | To | Proved By | Dead Path | Status |
404 |---
405 | 1 | start | rtc check @ 141 | Inference | Unchecked | IU |
406 | 2 | start | assert @ finish | Examiner | Live | EL |
407 ---
408
409
410 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/

panel_set_minimum_time_between_bolus.vcg
411 procedure Pca_Operation.Panel_Set_Minimum_Time_Between_Bolus
412
413 VCs generated 25-JUL-2014 14:16:24
414
415 VCs simplified 25-JUL-2014 14:16:31
416
417 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/

panel_set_minimum_time_between_bolus.dpc
418 DPCs generated 25-JUL-2014 14:16:24
419
420 DPC ZombieScoped 25-JUL-2014 14:16:3

169

421
422 VCs for procedure_panel_set_minimum_time_between_bolus :
423 ---
424 | # | From | To | Proved By | Dead Path | Status |
425 |---
426 | 1 | start | rtc check @ 153 | Inference | Unchecked | IU |
427 | 2 | start | assert @ finish | Examiner | Live | EL |
428 ---
429
430
431 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_vtbi.vcg
432 procedure Pca_Operation.Panel_Set_Vtbi
433
434 VCs generated 25-JUL-2014 14:16:24
435
436 VCs simplified 25-JUL-2014 14:16:31
437
438 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/panel_set_vtbi.dpc
439 DPCs generated 25-JUL-2014 14:16:24
440
441 DPC ZombieScoped 25-JUL-2014 14:16:3
442
443 VCs for procedure_panel_set_vtbi :
444 ---
445 | # | From | To | Proved By | Dead Path | Status |
446 |---
447 | 1 | start | rtc check @ 129 | Inference | Unchecked | IU |
448 | 2 | start | assert @ finish | Examiner | Live | EL |
449 ---
450
451
452 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/patientbolus.vcg
453 procedure Pca_Operation.PatientBolus
454
455 VCs generated 25-JUL-2014 14:16:24
456
457 VCs simplified 25-JUL-2014 14:16:32
458
459 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/patientbolus.dpc
460 DPCs generated 25-JUL-2014 14:16:24
461
462 DPC ZombieScoped 25-JUL-2014 14:16:3
463
464 VCs for procedure_patientbolus :
465 ---
466 | # | From | To | Proved By | Dead Path | Status |
467 |---
468 | 1 | start | rtc check @ 182 | Inference | Unchecked | IU |
469 | 2 | start | rtc check @ 183 | Inference | Unchecked | IU |
470 | 3 | start | rtc check @ 184 | Inference | Unchecked | IU |
471 | 4 | start | rtc check @ 184 | Undischarged | Unchecked | UU |
472 | 5 | start | rtc check @ 185 | Inference | Unchecked | IU |
473 | 6 | start | rtc check @ 186 | Inference | Unchecked | IU |
474 | 7 | start | rtc check @ 190 | Inference | Unchecked | IU |
475 | 8 | start | rtc check @ 190 | Inference | Unchecked | IU |
476 | 9 | start | assert @ finish | Examiner | Live | EL |
477 | 10 | start | assert @ finish | Examiner | Live | EL |
478 | 11 | start | assert @ finish | Examiner | Live | EL |
479 ---
480
481
482 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/rate_controller.vcg
483 task_type Pca_Operation.Rate_Controller
484
485 VCs generated 25-JUL-2014 14:16:24

170

486
487 VCs simplified 25-JUL-2014 14:16:39
488
489 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/rate_controller.dpc
490 DPCs generated 25-JUL-2014 14:16:24
491
492 DPC ZombieScoped 25-JUL-2014 14:16:3
493
494 VCs for task_type_rate_controller :
495 ---
496 | # | From | To | Proved By | Dead Path | Status |
497 |---
498 | 1 | start | rtc check @ 231 | Inference | Unchecked | IU |
499 | 2 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
500 | 3 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
501 | 4 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
502 | 5 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
503 | 6 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
504 | 7 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
505 | 8 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
506 | 9 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
507 | 10 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
508 | 11 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
509 | 12 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
510 | 13 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
511 | 14 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
512 | 15 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
513 | 16 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
514 | 17 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
515 | 18 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
516 | 19 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
517 | 20 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
518 | 21 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
519 | 22 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
520 | 23 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
521 | 24 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
522 | 25 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
523 | 26 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
524 | 27 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
525 | 28 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
526 | 29 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
527 | 30 | 234 | rtc check @ 231 | Inference | Unchecked | IU |
528 | 31 | start | rtc check @ 232 | Inference | Unchecked | IU |
529 | 32 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
530 | 33 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
531 | 34 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
532 | 35 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
533 | 36 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
534 | 37 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
535 | 38 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
536 | 39 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
537 | 40 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
538 | 41 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
539 | 42 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
540 | 43 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
541 | 44 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
542 | 45 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
543 | 46 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
544 | 47 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
545 | 48 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
546 | 49 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
547 | 50 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
548 | 51 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
549 | 52 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
550 | 53 | 234 | rtc check @ 232 | Inference | Unchecked | IU |

171

551 | 54 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
552 | 55 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
553 | 56 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
554 | 57 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
555 | 58 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
556 | 59 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
557 | 60 | 234 | rtc check @ 232 | Inference | Unchecked | IU |
558 | 61 | start | assert @ 234 | Examiner | Live | EL |
559 | 62 | 234 | assert @ 234 | Examiner | Live | EL |
560 | 63 | 234 | assert @ 234 | Examiner | Live | EL |
561 | 64 | 234 | assert @ 234 | Examiner | Live | EL |
562 | 65 | 234 | assert @ 234 | Examiner | Live | EL |
563 | 66 | 234 | assert @ 234 | Examiner | Live | EL |
564 | 67 | 234 | assert @ 234 | Examiner | Live | EL |
565 | 68 | 234 | assert @ 234 | Examiner | Live | EL |
566 | 69 | 234 | assert @ 234 | Examiner | Live | EL |
567 | 70 | 234 | assert @ 234 | Examiner | Live | EL |
568 | 71 | 234 | assert @ 234 | Examiner | Live | EL |
569 | 72 | 234 | assert @ 234 | Examiner | Live | EL |
570 | 73 | 234 | assert @ 234 | Examiner | Live | EL |
571 | 74 | 234 | assert @ 234 | Examiner | Live | EL |
572 | 75 | 234 | assert @ 234 | Examiner | Live | EL |
573 | 76 | 234 | assert @ 234 | Examiner | Live | EL |
574 | 77 | 234 | assert @ 234 | Examiner | Live | EL |
575 | 78 | 234 | assert @ 234 | Examiner | Live | EL |
576 | 79 | 234 | assert @ 234 | Examiner | Live | EL |
577 | 80 | 234 | assert @ 234 | Examiner | Live | EL |
578 | 81 | 234 | assert @ 234 | Examiner | Live | EL |
579 | 82 | 234 | assert @ 234 | Examiner | Live | EL |
580 | 83 | 234 | assert @ 234 | Examiner | Live | EL |
581 | 84 | 234 | assert @ 234 | Examiner | Live | EL |
582 | 85 | 234 | assert @ 234 | Examiner | Live | EL |
583 | 86 | 234 | assert @ 234 | Examiner | Live | EL |
584 | 87 | 234 | assert @ 234 | Examiner | Live | EL |
585 | 88 | 234 | assert @ 234 | Examiner | Live | EL |
586 | 89 | 234 | assert @ 234 | Examiner | Live | EL |
587 | 90 | 234 | assert @ 234 | Examiner | Live | EL |
588 | 91 | 234 | rtc check @ 240 | Inference | Unchecked | IU |
589 | 92 | 234 | rtc check @ 240 | Inference | Unchecked | IU |
590 | 93 | 234 | rtc check @ 241 | Inference | Unchecked | IU |
591 | 94 | 234 | rtc check @ 241 | Undischarged | Unchecked | UU |
592 | 95 | 234 | rtc check @ 242 | Inference | Unchecked | IU |
593 | 96 | 234 | rtc check @ 243 | Inference | Unchecked | IU |
594 | 97 | 234 | pre check @ 244 | Inference | Unchecked | IU |
595 | 98 | 234 | rtc check @ 247 | Inference | Unchecked | IU |
596 | 99 | 234 | rtc check @ 248 | Inference | Unchecked | IU |
597 | 100 | 234 | rtc check @ 248 | Inference | Unchecked | IU |
598 | 101 | 234 | rtc check @ 249 | Inference | Unchecked | IU |
599 | 102 | 234 | rtc check @ 249 | Undischarged | Unchecked | UU |
600 | 103 | 234 | rtc check @ 250 | Inference | Unchecked | IU |
601 | 104 | 234 | rtc check @ 251 | Inference | Unchecked | IU |
602 | 105 | 234 | pre check @ 252 | Inference | Unchecked | IU |
603 | 106 | 234 | rtc check @ 256 | Inference | Unchecked | IU |
604 | 107 | 234 | rtc check @ 257 | Inference | Unchecked | IU |
605 | 108 | 234 | rtc check @ 257 | Inference | Unchecked | IU |
606 | 109 | 234 | rtc check @ 258 | Inference | Unchecked | IU |
607 | 110 | 234 | rtc check @ 258 | Undischarged | Unchecked | UU |
608 | 111 | 234 | rtc check @ 259 | Inference | Unchecked | IU |
609 | 112 | 234 | rtc check @ 260 | Inference | Unchecked | IU |
610 | 113 | 234 | pre check @ 261 | Inference | Unchecked | IU |
611 | 114 | 234 | rtc check @ 265 | Inference | Unchecked | IU |
612 | 115 | 234 | rtc check @ 265 | Inference | Unchecked | IU |
613 | 116 | 234 | rtc check @ 265 | Inference | Unchecked | IU |
614 | 117 | 234 | rtc check @ 265 | Inference | Unchecked | IU |
615 | 118 | 234 | rtc check @ 266 | Inference | Unchecked | IU |

172

616 | 119 | 234 | rtc check @ 266 | Inference | Unchecked | IU |
617 | 120 | 234 | rtc check @ 266 | Undischarged | Unchecked | UU |
618 | 121 | 234 | rtc check @ 266 | Undischarged | Unchecked | UU |
619 | 122 | 234 | rtc check @ 267 | Inference | Unchecked | IU |
620 | 123 | 234 | rtc check @ 267 | Inference | Unchecked | IU |
621 | 124 | 234 | rtc check @ 270 | Inference | Unchecked | IU |
622 | 125 | 234 | rtc check @ 270 | Inference | Unchecked | IU |
623 | 126 | 234 | rtc check @ 271 | Undischarged | Unchecked | UU |
624 | 127 | 234 | rtc check @ 271 | Undischarged | Unchecked | UU |
625 | 128 | 234 | rtc check @ 272 | Inference | Unchecked | IU |
626 | 129 | 234 | rtc check @ 272 | Inference | Unchecked | IU |
627 | 130 | 234 | rtc check @ 275 | Inference | Unchecked | IU |
628 | 131 | 234 | rtc check @ 275 | Inference | Unchecked | IU |
629 | 132 | 234 | rtc check @ 275 | Inference | Unchecked | IU |
630 | 133 | 234 | rtc check @ 275 | Inference | Unchecked | IU |
631 | 134 | 234 | pre check @ 276 | Inference | Unchecked | IU |
632 | 135 | 234 | pre check @ 276 | Inference | Unchecked | IU |
633 | 136 | 234 | pre check @ 276 | Inference | Unchecked | IU |
634 | 137 | 234 | pre check @ 276 | Inference | Unchecked | IU |
635 | 138 | 234 | rtc check @ 278 | Undischarged | Unchecked | UU |
636 | 139 | 234 | rtc check @ 278 | Undischarged | Unchecked | UU |
637 | 140 | 234 | rtc check @ 278 | Undischarged | Unchecked | UU |
638 | 141 | 234 | rtc check @ 278 | Undischarged | Unchecked | UU |
639 | 142 | 234 | rtc check @ 282 | Inference | Unchecked | IU |
640 | 143 | 234 | rtc check @ 282 | Inference | Unchecked | IU |
641 | 144 | 234 | rtc check @ 282 | Inference | Unchecked | IU |
642 | 145 | 234 | rtc check @ 282 | Inference | Unchecked | IU |
643 | 146 | 234 | rtc check @ 285 | Inference | Unchecked | IU |
644 | 147 | 234 | rtc check @ 285 | Inference | Unchecked | IU |
645 | 148 | 234 | rtc check @ 285 | Inference | Unchecked | IU |
646 | 149 | 234 | rtc check @ 285 | Inference | Unchecked | IU |
647 | 150 | 234 | rtc check @ 291 | Inference | Unchecked | IU |
648 | 151 | 234 | rtc check @ 292 | Inference | Unchecked | IU |
649 | 152 | 234 | rtc check @ 292 | Inference | Unchecked | IU |
650 | 153 | 234 | rtc check @ 293 | Inference | Unchecked | IU |
651 | 154 | 234 | rtc check @ 293 | Undischarged | Unchecked | UU |
652 | 155 | 234 | rtc check @ 294 | Inference | Unchecked | IU |
653 | 156 | 234 | rtc check @ 295 | Inference | Unchecked | IU |
654 | 157 | 234 | pre check @ 296 | Inference | Unchecked | IU |
655 | 158 | 234 | rtc check @ 300 | Inference | Unchecked | IU |
656 | 159 | 234 | rtc check @ 300 | Inference | Unchecked | IU |
657 | 160 | 234 | rtc check @ 301 | Inference | Unchecked | IU |
658 | 161 | 234 | rtc check @ 301 | Inference | Unchecked | IU |
659 | 162 | 234 | rtc check @ 302 | Undischarged | Unchecked | UU |
660 | 163 | 234 | rtc check @ 302 | Undischarged | Unchecked | UU |
661 | 164 | 234 | rtc check @ 302 | Inference | Unchecked | IU |
662 | 165 | 234 | rtc check @ 302 | Inference | Unchecked | IU |
663 | 166 | 234 | rtc check @ 303 | Inference | Unchecked | IU |
664 | 167 | 234 | rtc check @ 303 | Inference | Unchecked | IU |
665 | 168 | 234 | rtc check @ 303 | Undischarged | Unchecked | UU |
666 | 169 | 234 | rtc check @ 303 | Undischarged | Unchecked | UU |
667 | 170 | 234 | rtc check @ 304 | Inference | Unchecked | IU |
668 | 171 | 234 | rtc check @ 304 | Inference | Unchecked | IU |
669 | 172 | 234 | rtc check @ 307 | Inference | Unchecked | IU |
670 | 173 | 234 | rtc check @ 307 | Inference | Unchecked | IU |
671 | 174 | 234 | rtc check @ 308 | Inference | Unchecked | IU |
672 | 175 | 234 | rtc check @ 308 | Inference | Unchecked | IU |
673 | 176 | 234 | rtc check @ 311 | Inference | Unchecked | IU |
674 | 177 | 234 | rtc check @ 311 | Inference | Unchecked | IU |
675 | 178 | 234 | rtc check @ 311 | Inference | Unchecked | IU |
676 | 179 | 234 | rtc check @ 311 | Inference | Unchecked | IU |
677 | 180 | 234 | pre check @ 312 | Inference | Unchecked | IU |
678 | 181 | 234 | pre check @ 312 | Inference | Unchecked | IU |
679 | 182 | 234 | pre check @ 312 | Inference | Unchecked | IU |
680 | 183 | 234 | pre check @ 312 | Inference | Unchecked | IU |

173

681 | 184 | 234 | rtc check @ 314 | Undischarged | Unchecked | UU |
682 | 185 | 234 | rtc check @ 314 | Undischarged | Unchecked | UU |
683 | 186 | 234 | rtc check @ 314 | Undischarged | Unchecked | UU |
684 | 187 | 234 | rtc check @ 314 | Undischarged | Unchecked | UU |
685 | 188 | 234 | rtc check @ 316 | Inference | Unchecked | IU |
686 | 189 | 234 | rtc check @ 316 | Inference | Unchecked | IU |
687 | 190 | 234 | rtc check @ 316 | Inference | Unchecked | IU |
688 | 191 | 234 | rtc check @ 316 | Inference | Unchecked | IU |
689 | 192 | 234 | assert @ finish | Examiner | Dead | ED |
690 | 193 | 234 | assert @ finish | Examiner | Dead | ED |
691 | 194 | 234 | assert @ finish | Examiner | Dead | ED |
692 | 195 | 234 | assert @ finish | Examiner | Dead | ED |
693 | 196 | 234 | assert @ finish | Examiner | Dead | ED |
694 | 197 | 234 | assert @ finish | Examiner | Dead | ED |
695 | 198 | 234 | assert @ finish | Examiner | Dead | ED |
696 | 199 | 234 | assert @ finish | Examiner | Dead | ED |
697 | 200 | 234 | assert @ finish | Examiner | Dead | ED |
698 | 201 | 234 | assert @ finish | Examiner | Dead | ED |
699 | 202 | 234 | assert @ finish | Examiner | Dead | ED |
700 | 203 | 234 | assert @ finish | Examiner | Dead | ED |
701 | 204 | 234 | assert @ finish | Examiner | Dead | ED |
702 | 205 | 234 | assert @ finish | Examiner | Dead | ED |
703 | 206 | 234 | assert @ finish | Examiner | Dead | ED |
704 | 207 | 234 | assert @ finish | Examiner | Dead | ED |
705 | 208 | 234 | assert @ finish | Examiner | Dead | ED |
706 | 209 | 234 | assert @ finish | Examiner | Dead | ED |
707 | 210 | 234 | assert @ finish | Examiner | Dead | ED |
708 | 211 | 234 | assert @ finish | Examiner | Dead | ED |
709 | 212 | 234 | assert @ finish | Examiner | Dead | ED |
710 | 213 | 234 | assert @ finish | Examiner | Dead | ED |
711 | 214 | 234 | assert @ finish | Examiner | Dead | ED |
712 | 215 | 234 | assert @ finish | Examiner | Dead | ED |
713 | 216 | 234 | assert @ finish | Examiner | Dead | ED |
714 | 217 | 234 | assert @ finish | Examiner | Dead | ED |
715 | 218 | 234 | assert @ finish | Examiner | Dead | ED |
716 | 219 | 234 | assert @ finish | Examiner | Dead | ED |
717 | 220 | 234 | assert @ finish | Examiner | Dead | ED |
718 ---
719
720
721 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/startpump.vcg
722 procedure Pca_Operation.StartPump
723
724 VCs generated 25-JUL-2014 14:16:24
725
726 VCs simplified 25-JUL-2014 14:16:46
727
728 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/startpump.dpc
729 DPCs generated 25-JUL-2014 14:16:24
730
731 DPC ZombieScoped 25-JUL-2014 14:16:4
732
733 VCs for procedure_startpump :
734 ---
735 | # | From | To | Proved By | Dead Path | Status |
736 |---
737 | 1 | start | rtc check @ 166 | Inference | Unchecked | IU |
738 | 2 | start | assert @ finish | Examiner | Live | EL |
739 ---
740
741
742 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/stoppump.vcg
743 procedure Pca_Operation.StopPump
744
745 VCs generated 25-JUL-2014 14:16:24

174

746
747 VCs simplified 25-JUL-2014 14:16:46
748
749 File /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/stoppump.dpc
750 DPCs generated 25-JUL-2014 14:16:24
751
752 DPC ZombieScoped 25-JUL-2014 14:16:4
753
754 VCs for procedure_stoppump :
755 ---
756 | # | From | To | Proved By | Dead Path | Status |
757 |---
758 | 1 | start | rtc check @ 173 | Inference | Unchecked | IU |
759 | 2 | start | assert @ finish | Examiner | Live | EL |
760 ---
761
762
763 ===
764 Summary:
765
766 The following subprograms have undischarged VCs (excluding those proved false):
767
768 2 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/get_time_between_activations.

vcg
769 1 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/get.vcg
770 1 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/inc.vcg
771 1 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/put.vcg
772 2 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/integer_array_store/sum.vcg
773 1 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/max_drug_per_hour_watcher.vcg
774 1 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/patientbolus.vcg
775 20 /Users/jj/aadl-medical/pca-pump-beagleboard/pca_ravenscar/pca_operation/rate_controller.vcg
776
777 Proof strategies used by subprograms
778 ---
779 Total subprograms with at least one VC proved by examiner: 15
780 Total subprograms with at least one VC proved by simplifier: 20
781 Total subprograms with at least one VC proved by contradiction: 0
782 Total subprograms with at least one VC proved with user proof rule: 0
783 Total subprograms with at least one VC proved by Victor: 0
784 Total subprograms with at least one VC proved by Riposte: 0
785 Total subprograms with at least one VC proved using checker: 0
786 Total subprograms with at least one VC discharged by review: 0
787
788 Maximum extent of strategies used for fully proved subprograms:
789 ---
790 Total subprograms with proof completed by examiner: 0
791 Total subprograms with proof completed by simplifier: 14
792 Total subprograms with proof completed with user defined rules: 0
793 Total subprograms with proof completed by Victor: 0
794 Total subprograms with proof completed by Riposte: 0
795 Total subprograms with proof completed by checker: 0
796 Total subprograms with VCs discharged by review: 0
797
798 Overall subprogram summary:
799 ---
800 Total subprograms fully proved: 14
801 Total subprograms with at least one undischarged VC: 8 <<<
802 Total subprograms with at least one false VC: 0
803 -----
804 Total subprograms for which VCs have been generated: 22
805
806
807 ZombieScope Summary:
808 ---
809 Total subprograms for which DPCs have been generated: 22

175

810 Total number subprograms with dead paths found: 3
811 Total number of dead paths found: 32
812
813
814 VC summary:
815 ---
816 Note: (User) denotes where the Simplifier has proved VCs using one or
817 more user-defined proof rules.
818
819 Total VCs by type:
820 ------------------
821 Total Examiner Simplifier Undisc.
822 Assert/Post 93 80 12 1
823 Precondition 12 0 12 0
824 Check stmnt. 0 0 0 0
825 Runtime check 187 0 159 28
826 Refinem. VCs 10 10 0 0
827 Inherit. VCs 0 0 0 0
828 ==
829 Totals: 302 90 183 29 <<<
830 %Totals: 30% 61% 10%
831
832 ===================== End of Semantic Analysis Summary ========================

Listing C.1: POGS report for PCA Pump prototype

176

Appendix D

Rate controller thread from PCA pump

AADL models

This appendix presents Rate_Controller thread from PCA_Operation module, from AADL/BLESS

models of PCA pump, created by Brian Larson.

1 thread Rate_Controller
2 features
3 Infusion_Flow_Rate: out data port PCA_Types::Flow_Rate
4 {BLESS::Assertion => "<<:=PUMP_RATE()>>";};
5 System_Status: out event data port PCA_Types::Status_Type;
6 Begin_Infusion: in event port
7 {BLESS::Assertion => "<<Rx_APPROVED()>>";};
8 Begin_Priming: in event port;
9 End_Priming: in event port;

10 Halt_Infusion: in event port;
11 Square_Bolus_Rate: in data port PCA_Types::Flow_Rate
12 {BLESS::Assertion => "<<:=SQUARE_BOLUS_RATE>>";};
13 Patient_Bolus_Rate: in data port PCA_Types::Flow_Rate
14 {BLESS::Assertion => "<<:=PATIENT_BOLUS_RATE>>";};
15 Basal_Rate: in data port PCA_Types::Flow_Rate
16 {BLESS::Assertion => "<<:=BASAL_RATE>>";};
17 VTBI: in data port PCA_Types::Drug_Volume
18 {BLESS::Assertion => "<<:=VTBI>>";};
19 HW_Detected_Failure: in event port;
20 Stop_Pump_Completely: in event port;
21 Pump_At_KVO_Rate: in event port;
22 Alarm : in event data port PCA_Types::Alarm_Type;
23 Warning : in event data port PCA_Types::Warning_Type;
24 Patient_Request_Not_Too_Soon: in event port
25 {BLESS::Assertion => "<<:=PATIENT_REQUEST_NOT_TOO_SOON(now)>>";};
26 Door_Open: in data port Base_Types::Boolean;
27 Pause_Infusion: in event port;
28 Resume_Infusion: in event port;
29 CP_Clinician_Request_Bolus: in event port;

177

30 CP_Bolus_Duration: in event data port ICE_Types::Minute;
31 Near_Max_Drug_Per_Hour: in event port --near maximum drug infused in any hour
32 {BLESS::Assertion => "<<PATIENT_NEAR_MAX_DRUG_PER_HOUR()>>";};
33 Over_Max_Drug_Per_Hour: in event port --over maximum drug infused in any hour
34 {BLESS::Assertion => "<<PATIENT_OVER_MAX_DRUG_PER_HOUR()>>";};
35 ICE_Stop_Pump: in event port;
36 properties
37 Thread_Properties::Dispatch_Protocol => Aperiodic;
38 end Rate_Controller;
39
40 thread implementation Rate_Controller.imp
41 annex BLESS
42 {**
43 assert
44 <<HALT : :(la=SafetyPumpStop) or (la=StopButton) or (la=EndPriming)>> --pump at 0 if stop button, or safety

architecture says, or done priming
45 <<KVO_RATE : :(la=KVOcommand) or (la=KVOalarm) or (la=TooMuchJuice)>> --pump at KVO rate when commanded,

some alarms, or excedded hourly limit
46 <<PB_RATE : :la=PatientButton>> --patient button pressed, and allowed
47 <<CCB_RATE : :(la=StartSquareBolus) or (la=ResumeSquareBolus)>> --clinician-commanded bolus start or

resumption after patient bolus
48 <<PRIME_RATE : :la=StartPriming>> --priming pump
49 <<BASAL_RATE : :(la=StartButton) or (la=ResumeBasal) or (la=SquareBolusDone)>> --regular infusion
50 <<PUMP_RATE : :=
51 (HALT()) -> 0, --no flow
52 (KVO_RATE()) -> PCA_Properties::KVO_Rate, --KVO rate
53 (PB_RATE()) -> Patient_Bolus_Rate, --maximum infusion upon patient request
54 (CCB_RATE()) -> Square_Bolus_Rate, --square bolus rate=VTBI/duration, from data port
55 (PRIME_RATE()) -> PCA_Properties::Prime_Rate, --pump priming
56 (BASAL_RATE()) -> Basal_Rate --basal rate, from data port
57 >>
58 invariant <<true>>
59 variables
60 --time of last action
61 tla :BLESS_Types::Time := 0;
62 la : --last action
63 enumeration (
64 SafetyStopPump, --safety architecture found a problem
65 StopButton, --clinician pressed stop button
66 KVOcommand, --from control panel (clinician) or ICE (app) to pump Keep-vein-open rate
67 KVOalarm, --some alarms should pump at KVO rate
68 TooMuchJuice, --exceeded max drug per hour, pump at KVO until prescription and patient are re-

authenticated
69 PatientButton, --patient requested drug
70 ResumeSquareBolus,--infusion of VTBI finished, resume clinician-commanded bolus
71 ResumeBasal, --infusion of VTBI finished, resume basal-rate
72 StartSquareBolus, --begin clinician-commanded bolus
73 SquareBolusDone, --infusion of VTBI finished
74 StartPriming, --begin pump/line priming, pressed "prime" button
75 EndPriming, --end priming, pressed "prime" button again, or time-out
76 StartButton --start pumping at basal rate
77);
78 pb_duration :BLESS_Types::Time --patient button duration = VTBI/Patient_Bolus_Rate
79 <<PB_DURATION : :pb_duration=(VTBI/Patient_Bolus_Rate)>>;
80 states
81 PowerOn : initial state; --power-on
82 WaitForRx : complete state; --wait for valid prescription
83 CheckPBR : state --check Patient_Bolus_Rate is positive
84 <<Rx_APPROVED()>>;
85 RxApproved : complete state --prescription verified
86 <<Rx_APPROVED() and PB_DURATION()>>;
87 Priming : complete state --priming the pump, 1 ml in 6 sec
88 <<(la=StartPriming) and (Infusion_Flow_Rate@now = PCA_Properties::Prime_Rate) and PB_DURATION()>>;
89 WaitForStart : complete state --wait for clinician to press ’start’ button
90 <<HALT() and (Infusion_Flow_Rate@now=0) and PB_DURATION()>>;

178

91 PumpBasalRate : complete state --pumping at basal rate
92 <<((la=StartButton) or (la=ResumeBasal)) and (Infusion_Flow_Rate@now=Basal_Rate@now) and PB_DURATION()>>;
93 PumpPatientButtonVTBI : complete state --pumping patient-requested bolus
94 <<(la=PatientButton) and PB_DURATION()
95 and (Infusion_Flow_Rate@now=Patient_Bolus_Rate)>>;
96 PumpCCBRate : complete state --pumping at clinician-commanded bolus rate
97 <<((la=StartSquareBolus) or (la=ResumeSquareBolus)) and (Infusion_Flow_Rate@now=Square_Bolus_Rate@now)

and PB_DURATION()>>;
98 PumpKVORate : complete state --pumping at keep-vein-open rate
99 <<((la=KVOcommand) or (la=KVOalarm) or (la=TooMuchJuice)) and PB_DURATION()

100 and (Infusion_Flow_Rate@now=PCA_Properties::KVO_Rate)>>;
101 PumpingSuspended : complete state --clinician pressed ’stop’ button
102 <<((la=StopButton) or (la=SafetyStopPump)) and (Infusion_Flow_Rate@now=0)>>;
103 Crash : final state; --abnormal termination
104 Done : final state --normal termination
105 <<Infusion_Flow_Rate@now=0>>;
106 transitions
107 --wait for valid prescription
108 go : PowerOn-[true]->WaitForRx{};
109 --prescription validated
110 rxo : WaitForRx-[on dispatch Begin_Infusion]-> CheckPBR{};
111 pbr0 : CheckPBR-[Patient_Bolus_Rate<=0]->Crash{}; --bad Patient_Bolus_Rate
112 pbrok : CheckPBR-[Patient_Bolus_Rate>0]->RxApproved
113 {<<Rx_APPROVED() and (Patient_Bolus_Rate>0)>> --likely will change from logic variable to predicate

Rx_APPROVED()
114 pb_duration := VTBI/Patient_Bolus_Rate --calculate patient bolus duration
115 --note division without knowing divsor is non-zero; should generate additional proof obligations for

assignment using division
116 <<Rx_APPROVED() and PB_DURATION()>>};
117 --clinician press ’prime’ button
118 rxpri : RxApproved-[on dispatch Begin_Priming]-> Priming
119 {
120 la :=StartPriming
121 <<Begin_Priming@now and Rx_APPROVED() and (la = StartPriming) and PB_DURATION()>>
122 ;
123 Infusion_Flow_Rate!(PCA_Properties::Prime_Rate) --infuse at prime rate
124 <<(la = StartPriming) and Rx_APPROVED() and PB_DURATION() and
125 (Infusion_Flow_Rate@now=PCA_Properties::Prime_Rate)>>
126 };
127 --priming done, wait for start
128 prd: Priming-[on dispatch End_Priming or timeout (Begin_Priming) PCA_Properties::Prime_Time sec]->

WaitForStart
129 {
130 la:=EndPriming
131 <<HALT() and PB_DURATION()>> --and Begin_Priming timed out
132 ;
133 Infusion_Flow_Rate!(0) --stop priming flow
134 <<HALT() and (Infusion_Flow_Rate@now=0) and PB_DURATION()>>
135 };
136 --prime again
137 pri: WaitForStart-[on dispatch Begin_Priming]-> Priming
138 {
139 la:=StartPriming
140 <<Begin_Priming@now and PB_DURATION() and PRIME_RATE()>>
141 ;
142 Infusion_Flow_Rate!(PCA_Properties::Prime_Rate) --infuse at prime rate
143 <<PRIME_RATE() and PB_DURATION() and
144 (Infusion_Flow_Rate@now=PCA_Properties::Prime_Rate)>>
145 };
146 --clinician press ’start’ button after priming
147 sap: WaitForStart-[on dispatch Begin_Infusion]-> PumpBasalRate --start after priming
148 {
149 la:=StartButton
150 <<(la=StartButton) and Begin_Infusion@now and PB_DURATION()>>
151 ;

179

152 Infusion_Flow_Rate!(Basal_Rate) --infuse at basal rate
153 <<(la=StartButton) and (Infusion_Flow_Rate@now=Basal_Rate@now) and PB_DURATION()>>
154 };
155 --Patient_Request_Bolus during basal rate infusion
156 pump_basal_rate:
157 PumpBasalRate-[on dispatch Patient_Request_Not_Too_Soon]-> PumpPatientButtonVTBI
158 {
159 la := PatientButton
160 <<(la=PatientButton) and Patient_Request_Bolus@now and PB_DURATION()>>
161 ;
162 Infusion_Flow_Rate!(Patient_Bolus_Rate) --infuse at patient button rate
163 <<(la=PatientButton) and PB_DURATION()
164 and (Infusion_Flow_Rate@now=Patient_Bolus_Rate)>>
165 }; --end of pump_basal_rate
166 --VTBI delivered
167 vtbi_delivered:
168 PumpPatientButtonVTBI -[on dispatch timeout (Infusion_Flow_Rate) pb_duration ms]-> PumpBasalRate
169 {
170 la:=ResumeBasal
171 ;
172 <<(la=ResumeBasal) and PB_DURATION()>> --and timeout of patient button duration
173 Infusion_Flow_Rate!(Basal_Rate) --infuse at basal rate
174 <<(la=ResumeBasal) and (Infusion_Flow_Rate@now=Basal_Rate@now) and PB_DURATION()>>
175 }; --end of vtbi_delivered
176 **};
177 end Rate_Controller.imp;

Listing D.1: Rate_Controller thread

180

Appendix E

Simplified PCA pump AADL models

This appendix contains simplified AADL/BLESS models. They were created based on
AADL/BLESS models of PCA pump, created by Brian Larson.

1 property set BLESS_Properties is
2 with AADL_Project;
3
4 Supported_Operators : list of aadlstring applies to (data);
5 Supported_Relations : list of aadlstring applies to (data);
6 Radix : AADL_Project::Size_Units applies to (data);
7 end BLESS_Properties;

Listing E.1: BLESS_Properties property set

1 property set BLESS is
2 Assertion : aadlstring applies to (all);
3 Typed : aadlstring applies to (all);
4 Invariant : aadlstring applies to (all);
5 end BLESS;

Listing E.2: BLESS property set

1 property set PCA_Properties is
2 with PCA_Types;
3
4 Drug_Library_Size : constant aadlinteger => 500;
5 Fault_Log_Size : constant aadlinteger => 150;
6 Event_Log_Size : constant aadlinteger => 1500;
7 KVO_Rate_Constant : constant aadlinteger => 1;
8 KVO_Rate : constant aadlinteger => PCA_Properties::KVO_Rate_Constant;
9 Max_Rate : constant aadlinteger => 10;

10 end PCA_Properties;

Listing E.3: PCA_Properties property set

181

1 package BLESS_Types public
2 with Base_Types, BLESS_Properties, Data_Model, Memory_Properties, BLESS;
3
4 data Integer extends Base_Types::Integer
5 properties --operators and relation symbols defined for Integer
6 BLESS::Typed => "integer";
7 BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "mod", "rem", "**");
8 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
9 end Integer;

10
11 data Natural extends Base_Types::Natural
12 properties --operators and relation symbols defined for Natural
13 BLESS::Typed => "natural";
14 BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "mod", "rem", "**");
15 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
16 end Natural;
17
18 data Real extends Base_Types::Float
19 properties --operators and relation symbols defined for Float
20 BLESS::Typed => "real";
21 BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "**");
22 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
23 end Real;
24
25 data String extends Base_Types::String
26 properties --operators and relation symbols defined for String
27 BLESS::Typed => "string";
28 BLESS_Properties::Supported_Operators => ("+", "-"); --just concatenation
29 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
30 end String;
31
32 data Fixed_Point
33 properties --operators and relation symbols defined for fixed-point arithmetic
34 BLESS::Typed => "fixed";
35 BLESS_Properties::Supported_Operators => ("+", "*", "-", "/", "**");
36 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
37 Data_Model::Data_Representation => Integer;
38 end Fixed_Point;
39
40 data Time extends Base_Types::Integer_64 --in milliseconds
41 properties --operators and relation symbols defined for Time
42 --don’t have a way to say that Time may be multiplied or divided by scalar
43 --but not another Time
44 BLESS::Typed => "integer";
45 BLESS_Properties::Supported_Operators => ("+", "*", "-", "/");
46 BLESS_Properties::Supported_Relations => ("=", "!=", "<", "<=", ">=", ">");
47 end Time;
48
49 end BLESS_Types;

Listing E.4: BLESS_Types package

182

1 package ICE_Types
2 public
3 with Data_Model;
4 with Base_Types;
5 data Milliliter
6 properties
7 Data_Model::Data_Representation => Integer;
8 Data_Model::Base_Type => (classifier (Base_Types::Unsigned_16)); --two bytes for 0-1000 ml
9 Data_Model::Integer_Range => 0 .. 1000;

10 Data_Model::Measurement_Unit => "ml";
11 end Milliliter;
12
13 data Milliliter_Per_Hour
14 properties
15 Data_Model::Data_Representation => Integer;
16 Data_Model::Base_Type => (classifier (Base_Types::Unsigned_16)); --two bytes for 0-1000 ml/hr
17 Data_Model::Integer_Range => 0 .. 1000;
18 Data_Model::Measurement_Unit => "ml_per_hr";
19 end Milliliter_Per_Hour;
20
21 data Microliter_Per_Hour
22 properties
23 Data_Model::Data_Representation => Integer;
24 Data_Model::Base_Type => (classifier (Base_Types::Unsigned_16)); --two bytes for 0-1000 ul/hr
25 Data_Model::Integer_Range => 0 .. 1000;
26 Data_Model::Measurement_Unit => "ul_per_hr";
27 end Microliter_Per_Hour;
28
29 data Minute
30 properties
31 Data_Model::Data_Representation => Integer;
32 Data_Model::Base_Type => (classifier (Base_Types::Unsigned_16)); --two bytes for 0-1000 minutes
33 Data_Model::Integer_Range => 0 .. 1000;
34 Data_Model::Measurement_Unit => "min";
35 end Minute;
36
37 data Alarm_Signal --according to IEC 60601-1-8/FDIS AAA.201.8 ALARM SIGNAL inactivation states
38 properties
39 Data_Model::Data_Representation => Enum;
40 Data_Model::Enumerators => ("On", "Alarm_Off", "Alarm_Paused", "Audio_Off", "Audio_Paused");
41 end Alarm_Signal;
42
43 data Percent
44 properties
45 Data_Model::Data_Representation => Integer;
46 Data_Model::Base_Type => (classifier (Base_Types::Unsigned_8)); --one byte for 0-100 percent
47 Data_Model::Integer_Range => 0 .. 100;
48 end Percent;
49
50 data Minute_Count extends Base_Types::Integer
51 end Minute_Count;
52
53 data Second_Count extends Base_Types::Integer
54 end Second_Count;
55
56 end ICE_Types;

Listing E.5: ICE_Types package

183

1 package PCA_Types
2 public
3 with Base_Types, Data_Model, PCA_Properties, ICE_Types, BLESS_Types, BLESS;
4
5 data Alarm_Type
6 properties
7 BLESS::Typed=>"enumeration (
8 No_Alarm,
9 Pump_Overheated,

10 Defective_Battery,
11 Low_Battery,
12 POST_Failure,
13 RAM_Failure,
14 ROM_failure,
15 CPU_Failure,
16 Thread_Monitor_Failure,
17 Air_In_Line,
18 Upstream_Occlusion,
19 Downstream_Occlusion,
20 Empty_Reservoir,
21 Basal_Overinfusion,
22 Bolus_Overinfusion,
23 Square_Bolus_Overinfusion)";
24 Data_Model::Data_Representation => Enum;
25 Data_Model::Enumerators => (
26 "No_Alarm",
27 "Pump_Overheated",
28 "Defective_Battery",
29 "Low_Battery",
30 "POST_Failure",
31 "RAM_Failure",
32 "ROM_failure",
33 "CPU_Failure",
34 "Thread_Monitor_Failure",
35 "Air_In_Line",
36 "Upstream_Occlusion",
37 "Downstream_Occlusion",
38 "Empty_Reservoir",
39 "Basal_Overinfusion",
40 "Bolus_Overinfusion",
41 "Square_Bolus_Overinfusion");
42 end Alarm_Type;
43
44 data Warning_Type
45 properties
46 BLESS::Typed=>
47 "enumeration (No_Warning,
48 Over_Max_Drug_Per_Hour,
49 Soft_Limit,
50 Low_Reservoir,
51 Priming_Failure,
52 Basal_Underinfusion,
53 Bolus_Underinfusion,
54 Square_Bolus_Underinfusion,
55 Input_Needed,
56 Long_Pause,
57 Drug_Not_In_Library,
58 Hard_Limit_Violated,
59 Voltage_OOR)";
60 Data_Model::Data_Representation => Enum;
61 Data_Model::Enumerators => (
62 "No_Warning",
63 "Over_Max_Drug_Per_Hour",
64 "Soft_Limit",
65 "Low_Reservoir",

184

66 "Priming_Failure",
67 "Basal_Underinfusion",
68 "Bolus_Underinfusion",
69 "Square_Bolus_Underinfusion",
70 "Input_Needed",
71 "Long_Pause",
72 "Drug_Not_In_Library",
73 "Hard_Limit_Violated",
74 "Voltage_OOR");
75 end Warning_Type;
76
77 data Status_Type
78 properties
79 BLESS::Typed=>"enumeration (Stopped,Bolus,Basal,KVO,Square_Bolus)";
80 Data_Model::Data_Representation => Enum;
81 Data_Model::Enumerators => ("Stopped","Bolus","Basal","KVO","Square_Bolus");
82 end Status_Type;
83
84 data Flow_Rate --dose rate
85 properties
86 BLESS::Typed=>"integer";
87 Data_Model::Base_Type => (classifier(Base_Types::Integer_16));
88 Data_Model::Measurement_Unit => "ml/hr";
89 end Flow_Rate;
90
91 data Drug_Volume --volume of VTBI
92 properties
93 BLESS::Typed=>"integer";
94 Data_Model::Base_Type => (classifier(Base_Types::Integer_16));
95 Data_Model::Measurement_Unit => "ml";
96 end Drug_Volume;
97
98 data Drug_Weight --string representing what drug, conectration, and volume is in the reservoir
99 properties

100 BLESS::Typed=>"integer";
101 Data_Model::Base_Type => (classifier(Base_Types::Integer_16));
102 Data_Model::Measurement_Unit => "mg";
103 end Drug_Weight;
104
105 data Drug_Concentration --string representing what drug, conectration, and volume is in the reservoir
106 properties
107 BLESS::Typed=>"integer";
108 Data_Model::Base_Type => (classifier(Base_Types::Integer));
109 Data_Model::Measurement_Unit => "mg/l";
110 end Drug_Concentration;
111
112 data Drug_Record --holds pharmacy data for a drug that may be used with the pump
113 properties
114 BLESS::Typed =>
115 "record (
116 Amount : PCA_Types::Drug_Weight; --The weight of the drug dissolved in the diluent (mg)
117 Concentration : PCA_Types::Drug_Concentration; --Drug concentration; as prescribed
118 Vtbi_Lower_Soft : PCA_Types::Drug_Volume; --Lower soft limit of drug volume to be infused
119 Vtbi_Lower_Hard : PCA_Types::Drug_Volume; --Lower hard limit of drug volume to be infused
120 Vtbi_Typical : PCA_Types::Drug_Volume; --Typical drug volume to be infused
121 Vtbi_Upper_Soft : PCA_Types::Drug_Volume; --Upper soft limit of drug volume to be infused
122 Vtbi_Upper_Hard : PCA_Types::Drug_Volume; --Upper hard limit of drug volume to be infused
123 Basal_Rate_Lower_Soft : PCA_Types::Flow_Rate; --Lower soft limit of basal drug dose rate
124 Basal_Rate_Lower_Hard : PCA_Types::Flow_Rate; --Lower hard limit of basal drug dose rate
125 Basal_Rate_Typical : PCA_Types::Flow_Rate; --Typical basal drug dose rate
126 Basal_Rate_Upper_Soft : PCA_Types::Flow_Rate; --Upper soft limit of basal drug dose rate
127 Basal_Rate_Upper_Hard : PCA_Types::Flow_Rate; --Upper hard limit of basal drug dose rate
128 Bolus_Typical : PCA_Types::Drug_Volume; --Typical Value of Bolus Volume
129 Square_Bolus_rate_typical : PCA_Types::Flow_Rate; --Typical duration of clinician commanded

bolus

185

130)";
131 Data_Model::Data_Representation => Struct;
132 Data_Model::Element_Names =>
133 ("Amount", --The weight of the drug dissolved in the diluent (mg)
134 "Concentration", --Drug concentration; as prescribed
135 "Vtbi_Lower_Soft", --Lower soft limit of drug volume to be infused
136 "Vtbi_Lower_Hard", --Lower hard limit of drug volume to be infused
137 "Vtbi_Typical", --Typical drug volume to be infused
138 "Vtbi_Upper_Soft", --Upper soft limit of drug volume to be infused
139 "Vtbi_Upper_Hard", --Upper hard limit of drug volume to be infused
140 "Basal_Rate_Lower_Soft", --Lower soft limit of basal drug dose rate
141 "Basal_Rate_Lower_Hard", --Lower hard limit of basal drug dose rate
142 "Basal_Rate_Typical", --Typical basal drug dose rate
143 "Basal_Rate_Upper_Soft", --Upper soft limit of basal drug dose rate
144 "Basal_Rate_Upper_Hard", --Upper hard limit of basal drug dose rate
145 "Bolus_Typical", --Typical Value of Bolus Volume
146 "Square_Bolus_Rate_Typical" --Typical rate of clinician commanded bolus
147);
148 Data_Model::Base_Type =>
149 (classifier(Drug_Weight), --amount
150 classifier(Drug_Concentration), --concentration
151 classifier(Drug_Volume), --vtbi_lower_soft
152 classifier(Drug_Volume), --vtbi_lower_hard
153 classifier(Drug_Volume), --vtbi_typical
154 classifier(Drug_Volume), --vtbi_upper_soft
155 classifier(Drug_Volume), --vtbi_upper_hard
156 classifier(Flow_Rate), --basal_rate_lower_soft
157 classifier(Flow_Rate), --basal_rate_lower_hard
158 classifier(Flow_Rate), --basal_rate_typical
159 classifier(Flow_Rate), --basal_rate_upper_soft
160 classifier(Flow_Rate), --basal_rate_upper_hard
161 classifier(Drug_Volume), --bolus_typical
162 classifier(Flow_Rate) --ssquare_bolus_rate_typical
163);
164 end Drug_Record;
165
166
167 data Drug_Library --holds drug records for all drugs approved by the hospital pharmacy
168 properties
169 BLESS::Typed => "array [PCA_Properties::Drug_Library_Size] of PCA_Types::Drug_Record";
170 Data_Model::Data_Representation => Array;
171 Data_Model::Base_Type => (classifier(Drug_Record));
172 Data_Model::Dimension => (PCA_Properties::Drug_Library_Size);
173 end Drug_Library;
174
175 data Prescription
176 properties
177 BLESS::Typed =>
178 "record (
179 Concentration : Drug_Concentration;
180 Initial_Volume : Drug_Volume;
181 Basal_Flow_Rate : Flow_Rate;
182 Vtbi : Drug_Volume;
183 Max_Drug_Per_Hour : Drug_Volume;
184 Minimum_Time_Between_Bolus : ICE_Types::Minute;
185)";
186 Data_Model::Data_Representation => Struct;
187 Data_Model::Element_Names =>
188 ("Concentration",
189 "Initial_Volume",
190 "Basal_Flow_Rate",
191 "Vtbi",
192 "Max_Drug_Per_Hour",
193 "Minimum_Time_Between_Bolus"
194);

186

195 Data_Model::Base_Type =>
196 (classifier(Drug_Concentration), --concentration
197 classifier(Drug_Volume), --initial volume
198 classifier(Flow_Rate), --basal flow rate
199 classifier(Drug_Volume), --VTBI
200 classifier(Drug_Volume), --maximum drug allowed per hour
201 classifier(ICE_Types::Minute) --min time between bolus doses
202);
203 end Prescription;
204
205 data Fault_Record --record of fault for log
206 properties
207 BLESS::Typed => "record (Alarm:Alarm_Type; Warning:Warning_Type; Occurrence_Time:BLESS_Types::Time;)";
208 Data_Model::Data_Representation => Struct;
209 Data_Model::Element_Names => ("Alarm","Warning","Occurrence_Time");
210 Data_Model::Base_Type => (classifier(Alarm_Type),classifier(Warning_Type),classifier(BLESS_Types::Time))

;
211 end Fault_Record;
212
213 data Fault_Log --holds records of faults
214 properties
215 BLESS::Typed => "array [PCA_Properties::Fault_Log_Size] of PCA_Types::Fault_Record";
216 Data_Model::Data_Representation => Array;
217 Data_Model::Base_Type => (classifier(Fault_Record));
218 Data_Model::Dimension => (PCA_Properties::Fault_Log_Size);
219 end Fault_Log;
220
221 data Event_Record --record of event for log
222 properties
223 BLESS::Typed => "record (Time : BLESS_Types::Time)";
224 Data_Model::Data_Representation => Struct;
225 Data_Model::Element_Names => ("Time");
226 Data_Model::Base_Type => (classifier(BLESS_Types::Time));
227 end Event_Record;
228
229 data Event_Log --holds records of events
230 properties
231 BLESS::Typed => "array [PCA_Properties::Event_Log_Size] of PCA_Types::Event_Record";
232 Data_Model::Data_Representation => Array;
233 Data_Model::Base_Type => (classifier(Event_Record));
234 Data_Model::Dimension => (PCA_Properties::Event_Log_Size);
235 end Event_Log;
236
237 data Infusion_Type --used for over- and under-infusion alarms
238 properties
239 BLESS::Typed=>"enumeration(Bolus_Infusion, Square_Infusion, Basal_Infusion, KVO_Infusion)";
240 Data_Model::Data_Representation => Enum;
241 Data_Model::Enumerators => ("Bolus_Infusion","Square_Infusion","Basal_Infusion","KVO_Infusion");
242 end Infusion_Type;
243
244 data Pump_Fault_Type
245 properties
246 BLESS::Typed=>"enumeration(Prime_Failure, Pump_Hot, Bubble, Upstream_Occlusion_Fault,

Downstream_Occlusion_Fault, Overinfusion, Underinfusion)";
247 Data_Model::Data_Representation => Enum;
248 Data_Model::Enumerators => ("Prime_Failure","Pump_Hot","Bubble","Upstream_Occlusion_Fault","

Downstream_Occlusion_Fault","Overinfusion","Underinfusion");
249 end Pump_Fault_Type;
250
251 end PCA_Types;

Listing E.6: PCA_Types package

187

1 package PCA_Operation
2 public
3 with PCA_Properties, Base_Types, BLESS, BLESS_Types, ICE_Types, PCA_Types;
4
5 system operation
6 features
7 Start_Button_Pressed: in event port;
8 Stop_Button_Pressed: in event port;
9 Patient_Request_Bolus: in event port;

10 Clinician_Request_Bolus: in event port;
11 Bolus_Duration: in event data port ICE_Types::Minute;
12 Infusion_Flow_Rate: out data port PCA_Types::Flow_Rate;
13 System_Status: out data port PCA_Types::Status_Type;
14 Rx: in event data port PCA_Types::Prescription;
15 end operation;
16
17 system implementation operation.imp
18 subcomponents
19 operation_process: process operation_process.imp;
20 connections
21 start: port Start_Button_Pressed -> operation_process.Start_Button_Pressed;
22 stop: port Stop_Button_Pressed -> operation_process.Stop_Button_Pressed;
23 pbp: port Patient_Request_Bolus -> operation_process.Patient_Request_Bolus;
24 crb: port Clinician_Request_Bolus -> operation_process.Clinician_Request_Bolus;
25 bd: port Bolus_Duration -> operation_process.Bolus_Duration;
26 pfr: port operation_process.Infusion_Flow_Rate -> Infusion_Flow_Rate;
27 stat: port operation_process.System_Status -> System_Status;
28 rxo: port Rx->operation_process.Rx;
29 end operation.imp;
30
31 process operation_process
32 features
33 Start_Button_Pressed: in event port;
34 Stop_Button_Pressed: in event port;
35 Patient_Request_Bolus: in event port;
36 Clinician_Request_Bolus: in event port;
37 Bolus_Duration: in event data port ICE_Types::Minute;
38 Infusion_Flow_Rate: out data port PCA_Types::Flow_Rate;
39 System_Status: out data port PCA_Types::Status_Type;
40 Rx: in event data port PCA_Types::Prescription;
41 end operation_process;
42
43 process implementation operation_process.imp
44 subcomponents
45 Max_Drug_Per_Hour_Watcher : thread Max_Drug_Per_Hour_Watcher.imp;
46 Rate_Controller : thread Rate_Controller.imp;
47 Patient_Bolus_Checker : thread Patient_Bolus_Checker.imp;
48 connections
49 start: port Start_Button_Pressed -> Rate_Controller.Start_Button_Pressed;
50 stop: port Stop_Button_Pressed -> Rate_Controller.Stop_Button_Pressed;
51 pb: port Patient_Request_Bolus -> Patient_Bolus_Checker.Patient_Request_Bolus;
52 crb: port Clinician_Request_Bolus -> Rate_Controller.Clinician_Request_Bolus;
53 bd: port Bolus_Duration -> Rate_Controller.Bolus_Duration;
54 pfr: port Rate_Controller.Infusion_Flow_Rate -> Infusion_Flow_Rate;
55 ss: port Rate_Controller.System_Status -> System_Status;
56 rxrc: port Rx->Rate_Controller.Rx;
57 end operation_process.imp;
58
59 thread Max_Drug_Per_Hour_Watcher
60 features
61 Infusion_Flow_Rate: in data port PCA_Types::Flow_Rate
62 {BLESS::Assertion => "<<:=PUMP_RATE()>>";};
63 Max_Drug_Per_Hour: in data port PCA_Types::Drug_Volume
64 {BLESS::Assertion => "<<:=MAX_DRUG_PER_HOUR>>";};
65 end Max_Drug_Per_Hour_Watcher;

188

66
67 thread implementation Max_Drug_Per_Hour_Watcher.imp
68 end Max_Drug_Per_Hour_Watcher.imp;
69
70 thread Rate_Controller
71 features
72 Start_Button_Pressed: in event port;
73 Stop_Button_Pressed: in event port;
74 Rx: in event data port PCA_Types::Prescription
75 {BLESS::Assertion => "<<:=Rx_APPROVED()>>";};
76 Clinician_Request_Bolus: in event port;
77 Bolus_Duration: in event data port ICE_Types::Minute;
78 Infusion_Flow_Rate: out data port PCA_Types::Flow_Rate
79 {BLESS::Assertion => "<<:=PUMP_RATE()>>";};
80 System_Status: out event data port PCA_Types::Status_Type;
81 end Rate_Controller;
82
83 thread implementation Rate_Controller.imp
84 annex BLESS
85 {**
86 assert
87 <<HALT : :(la=StopButton) >> --pump at 0 if stop button
88 <<KVO_RATE : :(la=TooMuchJuice)>> --pump at KVO rate when commanded, some alarms, or

excedded hourly limit
89 <<PB_RATE : :la=PatientButton>> --patient button pressed, and allowed
90 <<CCB_RATE : :(la=StartSquareBolus) or (la=ResumeSquareBolus)>> --clinician-commanded bolus start or

resumption after patient bolus
91 <<BASAL_RATE : :(la=StartButton) or (la=ResumeBasal) or (la=SquareBolusDone)>> --regular infusion
92 <<PUMP_RATE : :=
93 (HALT()) -> 0, --no flow
94 (KVO_RATE()) -> PCA_Properties::KVO_Rate, --KVO rate
95 (PB_RATE()) -> Patient_Bolus_Rate, --maximum infusion upon patient request
96 (CCB_RATE()) -> Square_Bolus_Rate, --square bolus rate=VTBI/duration, from data port
97 (BASAL_RATE()) -> Basal_Rate --basal rate, from data port
98 >>
99 invariant <<true>>

100 variables
101 la : --last action
102 enumeration (
103 StopButton, --clinician pressed stop button
104 TooMuchJuice, --exceeded max drug per hour, pump at KVO until prescription and patient are re-

authenticated
105 PatientButton, --patient requested drug
106 ResumeSquareBolus, --infusion of VTBI finished, resume clinician-commanded bolus
107 ResumeBasal, --infusion of VTBI finished, resume basal-rate
108 StartSquareBolus, --begin clinician-commanded bolus
109 SquareBolusDone, --infusion of VTBI finished
110 StartButton --start pumping at basal rate
111);
112 **};
113 end Rate_Controller.imp;
114
115 thread Patient_Bolus_Checker
116 features
117 Patient_Request_Bolus: in event port;
118 end Patient_Bolus_Checker;
119
120 thread implementation Patient_Bolus_Checker.imp
121 end Patient_Bolus_Checker.imp;
122
123 end PCA_Operation;

Listing E.7: PCA_Operation package

189

Appendix F

Simplified PCA pump - translated from

simplified AADL models

This appendinx presents PCA pump prototype, which was created by direct translation

from simplified AADL/BLESS models presented in appendix E.

1 package Base_Types
2 is
3 protected type Boolean_Store
4 is
5 pragma Priority (10);
6
7 function Get return Boolean;
8 --# global in Boolean_Store;
9

10 procedure Put(X : in Boolean);
11 --# global out Boolean_Store;
12 --# derives Boolean_Store from X;
13 private
14 TheStoredData : Boolean := False;
15 end Boolean_Store;
16
17 protected type Integer_Store
18 is
19 pragma Priority (10);
20
21 function Get return Integer;
22 --# global in Integer_Store;
23
24 procedure Put(X : in Integer);
25 --# global out Integer_Store;
26 --# derives Integer_Store from X;
27 private
28 TheStoredData : Integer := 0;
29 end Integer_Store;

190

30
31 protected type Natural_Store
32 is
33 pragma Priority (10);
34
35 function Get return Natural;
36 --# global in Natural_Store;
37
38 procedure Put(X : in Natural);
39 --# global out Natural_Store;
40 --# derives Natural_Store from X;
41 private
42 TheStoredData : Natural := 0;
43 end Natural_Store;
44
45 type Integer_8 is new Integer range -2**(1*8-1) .. 2**(1*8-1)-1;
46
47 protected type Integer_8_Store
48 is
49 pragma Priority (10);
50
51 function Get return Integer_8;
52 --# global in Integer_8_Store;
53
54 procedure Put(X : in Integer_8);
55 --# global out Integer_8_Store;
56 --# derives Integer_8_Store from X;
57 private
58 TheStoredData : Integer_8 := 0;
59 end Integer_8_Store;
60
61 type Integer_16 is new Integer range -2**(2*8-1) .. 2**(2*8-1)-1;
62
63 protected type Integer_16_Store
64 is
65 pragma Priority (10);
66
67 function Get return Integer_16;
68 --# global in Integer_16_Store;
69
70 procedure Put(X : in Integer_16);
71 --# global out Integer_16_Store;
72 --# derives Integer_16_Store from X;
73 private
74 TheStoredData : Integer_16 := 0;
75 end Integer_16_Store;
76
77 type Integer_32 is new Integer range -2**(4*8-1) .. 2**(4*8-1)-1;
78
79 protected type Integer_32_Store
80 is
81 pragma Priority (10);
82
83 function Get return Integer_32;
84 --# global in Integer_32_Store;
85
86 procedure Put(X : in Integer_32);
87 --# global out Integer_32_Store;
88 --# derives Integer_32_Store from X;
89 private
90 TheStoredData : Integer_32 := 0;
91 end Integer_32_Store;
92
93 type Integer_64 is range -2**(8*8-1) .. 2**(8*8-1)-1; -- with new Integer gnat compiler error: value not

in range of type "Standard.Integer"

191

94
95 protected type Integer_64_Store
96 is
97 pragma Priority (10);
98
99 function Get return Integer_64;

100 --# global in Integer_64_Store;
101
102 procedure Put(X : in Integer_64);
103 --# global out Integer_64_Store;
104 --# derives Integer_64_Store from X;
105 private
106 TheStoredData : Integer_64 := 0;
107 end Integer_64_Store;
108
109 type Unsigned_8 is new Integer range 0 .. 2**(1*8)-1;
110
111 protected type Unsigned_8_Store
112 is
113 pragma Priority (10);
114
115 function Get return Unsigned_8;
116 --# global in Unsigned_8_Store;
117
118 procedure Put(X : in Unsigned_8);
119 --# global out Unsigned_8_Store;
120 --# derives Unsigned_8_Store from X;
121 private
122 TheStoredData : Unsigned_8 := 0;
123 end Unsigned_8_Store;
124
125 type Unsigned_16 is new Integer range 0 .. 2**(2*8)-1;
126
127 protected type Unsigned_16_Store
128 is
129 pragma Priority (10);
130
131 function Get return Unsigned_16;
132 --# global in Unsigned_16_Store;
133
134 procedure Put(X : in Unsigned_16);
135 --# global out Unsigned_16_Store;
136 --# derives Unsigned_16_Store from X;
137 private
138 TheStoredData : Unsigned_16 := 0;
139 end Unsigned_16_Store;
140
141 type Unsigned_32 is range 0 .. 2**(4*8)-1; -- with new Integer gnat compiler error: value not in range of

type "Standard.Integer"
142
143 protected type Unsigned_32_Store
144 is
145 pragma Priority (10);
146
147 function Get return Unsigned_32;
148 --# global in Unsigned_32_Store;
149
150 procedure Put(X : in Unsigned_32);
151 --# global out Unsigned_32_Store;
152 --# derives Unsigned_32_Store from X;
153 private
154 TheStoredData : Unsigned_32 := 0;
155 end Unsigned_32_Store;
156

192

157 --type Unsigned_64 is range 0 .. 2**64-1; -- gnat compiler error: integer type definition bounds out of
range

158
159 end Base_Types;
160
161 package body Base_Types
162 is
163 protected body Boolean_Store is
164 function Get return Boolean
165 --# global in TheStoredData;
166 is
167 begin
168 return TheStoredData;
169 end Get;
170
171 procedure Put(X : in Boolean)
172 --# global out TheStoredData;
173 --# derives TheStoredData from X;
174 is
175 begin
176 TheStoredData := X;
177 end Put;
178 end Boolean_Store;
179
180 protected body Integer_Store is
181 function Get return Integer
182 --# global in TheStoredData;
183 is
184 begin
185 return TheStoredData;
186 end Get;
187
188 procedure Put(X : in Integer)
189 --# global out TheStoredData;
190 --# derives TheStoredData from X;
191 is
192 begin
193 TheStoredData := X;
194 end Put;
195 end Integer_Store;
196
197 protected body Natural_Store is
198 function Get return Natural
199 --# global in TheStoredData;
200 is
201 begin
202 return TheStoredData;
203 end Get;
204
205 procedure Put(X : in Natural)
206 --# global out TheStoredData;
207 --# derives TheStoredData from X;
208 is
209 begin
210 TheStoredData := X;
211 end Put;
212 end Natural_Store;
213
214 protected body Integer_8_Store is
215 function Get return Integer_8
216 --# global in TheStoredData;
217 is
218 begin
219 return TheStoredData;
220 end Get;

193

221
222 procedure Put(X : in Integer_8)
223 --# global out TheStoredData;
224 --# derives TheStoredData from X;
225 is
226 begin
227 TheStoredData := X;
228 end Put;
229 end Integer_8_Store;
230
231 protected body Integer_16_Store is
232 function Get return Integer_16
233 --# global in TheStoredData;
234 is
235 begin
236 return TheStoredData;
237 end Get;
238
239 procedure Put(X : in Integer_16)
240 --# global out TheStoredData;
241 --# derives TheStoredData from X;
242 is
243 begin
244 TheStoredData := X;
245 end Put;
246 end Integer_16_Store;
247
248 protected body Integer_32_Store is
249 function Get return Integer_32
250 --# global in TheStoredData;
251 is
252 begin
253 return TheStoredData;
254 end Get;
255
256 procedure Put(X : in Integer_32)
257 --# global out TheStoredData;
258 --# derives TheStoredData from X;
259 is
260 begin
261 TheStoredData := X;
262 end Put;
263 end Integer_32_Store;
264
265 protected body Integer_64_Store is
266 function Get return Integer_64
267 --# global in TheStoredData;
268 is
269 begin
270 return TheStoredData;
271 end Get;
272
273 procedure Put(X : in Integer_64)
274 --# global out TheStoredData;
275 --# derives TheStoredData from X;
276 is
277 begin
278 TheStoredData := X;
279 end Put;
280 end Integer_64_Store;
281
282 protected body Unsigned_8_Store is
283 function Get return Unsigned_8
284 --# global in TheStoredData;
285 is

194

286 begin
287 return TheStoredData;
288 end Get;
289
290 procedure Put(X : in Unsigned_8)
291 --# global out TheStoredData;
292 --# derives TheStoredData from X;
293 is
294 begin
295 TheStoredData := X;
296 end Put;
297 end Unsigned_8_Store;
298
299 protected body Unsigned_16_Store is
300 function Get return Unsigned_16
301 --# global in TheStoredData;
302 is
303 begin
304 return TheStoredData;
305 end Get;
306
307 procedure Put(X : in Unsigned_16)
308 --# global out TheStoredData;
309 --# derives TheStoredData from X;
310 is
311 begin
312 TheStoredData := X;
313 end Put;
314 end Unsigned_16_Store;
315
316 protected body Unsigned_32_Store is
317 function Get return Unsigned_32
318 --# global in TheStoredData;
319 is
320 begin
321 return TheStoredData;
322 end Get;
323
324 procedure Put(X : in Unsigned_32)
325 --# global out TheStoredData;
326 --# derives TheStoredData from X;
327 is
328 begin
329 TheStoredData := X;
330 end Put;
331 end Unsigned_32_Store;
332
333 end Base_Types;

Listing F.1: Base_Types package

195

1 with Base_Types;
2 --# inherit Base_Types;
3 package Bless_Types
4 is
5 subtype Fixed_Point is Integer;
6 protected type Fixed_Point_Store
7 is
8 pragma Priority (10);
9 function Get return Fixed_Point;

10 --# global in Fixed_Point_Store;
11 procedure Put(X : in Fixed_Point);
12 --# global out Fixed_Point_Store;
13 --# derives Fixed_Point_Store from X;
14 private
15 TheStoredData : Fixed_Point := 0;
16 end Fixed_Point_Store;
17
18 subtype Time is Base_Types.Integer_64;
19 protected type Time_Store
20 is
21 pragma Priority (10);
22 function Get return Time;
23 --# global in Time_Store;
24 procedure Put(X : in Time);
25 --# global out Time_Store;
26 --# derives Time_Store from X;
27 private
28 TheStoredData : Time := 0;
29 end Time_Store;
30 end Bless_Types;
31
32 package body Bless_Types
33 is
34 protected body Fixed_Point_Store is
35 function Get return Fixed_Point
36 --# global in TheStoredData;
37 is begin
38 return TheStoredData;
39 end Get;
40 procedure Put(X : in Fixed_Point)
41 --# global out TheStoredData;
42 --# derives TheStoredData from X;
43 is begin
44 TheStoredData := X;
45 end Put;
46 end Fixed_Point_Store;
47
48 protected body Time_Store is
49 function Get return Time
50 --# global in TheStoredData;
51 is begin
52 return TheStoredData;
53 end Get;
54 procedure Put(X : in Time)
55 --# global out TheStoredData;
56 --# derives TheStoredData from X;
57 is begin
58 TheStoredData := X;
59 end Put;
60 end Time_Store;
61 end Bless_Types;

Listing F.2: Bless_Types package

196

1 with Base_Types;
2 --# inherit Base_Types;
3 package Ice_Types
4 is
5 subtype Milliliter is Base_Types.Unsigned_16 range 0 .. 1000;
6
7 protected type Milliliter_Store
8 is
9 pragma Priority (10);

10
11 function Get return Milliliter;
12 --# global in Milliliter_Store;
13
14 procedure Put(X : in Milliliter);
15 --# global out Milliliter_Store;
16 --# derives Milliliter_Store from X;
17 private
18 TheStoredData : Milliliter := 0;
19 end Milliliter_Store;
20
21
22 subtype Milliliter_Per_Hour is Base_Types.Unsigned_16 range 0 .. 1000;
23
24 protected type Milliliter_Per_Hour_Store
25 is
26 pragma Priority (10);
27
28 function Get return Milliliter_Per_Hour;
29 --# global in Milliliter_Per_Hour_Store;
30
31 procedure Put(X : in Milliliter_Per_Hour);
32 --# global out Milliliter_Per_Hour_Store;
33 --# derives Milliliter_Per_Hour_Store from X;
34 private
35 TheStoredData : Milliliter_Per_Hour := 0;
36 end Milliliter_Per_Hour_Store;
37
38
39 subtype Microliter_Per_Hour is Base_Types.Unsigned_16 range 0 .. 1000;
40
41 protected type Microliter_Per_Hour_Store
42 is
43 pragma Priority (10);
44
45 function Get return Microliter_Per_Hour;
46 --# global in Microliter_Per_Hour_Store;
47
48 procedure Put(X : in Microliter_Per_Hour);
49 --# global out Microliter_Per_Hour_Store;
50 --# derives Microliter_Per_Hour_Store from X;
51 private
52 TheStoredData : Microliter_Per_Hour := 0;
53 end Microliter_Per_Hour_Store;
54
55
56 subtype Minute is Base_Types.Unsigned_16 range 0 .. 1000;
57
58 protected type Minute_Store
59 is
60 pragma Priority (10);
61
62 function Get return Minute;
63 --# global in Minute_Store;
64
65 procedure Put(X : in Minute);

197

66 --# global out Minute_Store;
67 --# derives Minute_Store from X;
68 private
69 TheStoredData : Minute := 0;
70 end Minute_Store;
71
72
73 type Alarm_Signal is (On, Alarm_Off, Alarm_Paused, Audio_Off, Audio_Paused);
74
75 protected type Alarm_Signal_Store
76 is
77 pragma Priority (10);
78
79 function Get return Alarm_Signal;
80 --# global in Alarm_Signal_Store;
81
82 procedure Put(X : in Alarm_Signal);
83 --# global out Alarm_Signal_Store;
84 --# derives Alarm_Signal_Store from X;
85 private
86 TheStoredData : Alarm_Signal := Alarm_Signal’First;
87 end Alarm_Signal_Store;
88
89
90 subtype Percent is Base_Types.Unsigned_8 range 0 .. 100;
91
92 protected type Percent_Store
93 is
94 pragma Priority (10);
95
96 function Get return Percent;
97 --# global in Percent_Store;
98
99 procedure Put(X : in Percent);

100 --# global out Percent_Store;
101 --# derives Percent_Store from X;
102 private
103 TheStoredData : Percent := 0;
104 end Percent_Store;
105
106
107 type Minute_Count is new Integer;
108
109 protected type Minute_Count_Store
110 is
111 pragma Priority (10);
112
113 function Get return Minute_Count;
114 --# global in Minute_Count_Store;
115
116 procedure Put(X : in Minute_Count);
117 --# global out Minute_Count_Store;
118 --# derives Minute_Count_Store from X;
119 private
120 TheStoredData : Minute_Count := 0;
121 end Minute_Count_Store;
122
123
124 type Second_Count is new Integer;
125
126 protected type Second_Count_Store
127 is
128 pragma Priority (10);
129
130 function Get return Second_Count;

198

131 --# global in Second_Count_Store;
132
133 procedure Put(X : in Second_Count);
134 --# global out Second_Count_Store;
135 --# derives Second_Count_Store from X;
136 private
137 TheStoredData : Second_Count := 0;
138 end Second_Count_Store;
139 end Ice_Types;
140
141 package body Ice_Types
142 is
143 protected body Milliliter_Store is
144 function Get return Milliliter
145 --# global in TheStoredData;
146 is
147 begin
148 return TheStoredData;
149 end Get;
150
151 procedure Put(X : in Milliliter)
152 --# global out TheStoredData;
153 --# derives TheStoredData from X;
154 is
155 begin
156 TheStoredData := X;
157 end Put;
158 end Milliliter_Store;
159
160 protected body Milliliter_Per_Hour_Store is
161 function Get return Milliliter_Per_Hour
162 --# global in TheStoredData;
163 is
164 begin
165 return TheStoredData;
166 end Get;
167
168 procedure Put(X : in Milliliter_Per_Hour)
169 --# global out TheStoredData;
170 --# derives TheStoredData from X;
171 is
172 begin
173 TheStoredData := X;
174 end Put;
175 end Milliliter_Per_Hour_Store;
176
177 protected body Microliter_Per_Hour_Store is
178 function Get return Microliter_Per_Hour
179 --# global in TheStoredData;
180 is
181 begin
182 return TheStoredData;
183 end Get;
184
185 procedure Put(X : in Microliter_Per_Hour)
186 --# global out TheStoredData;
187 --# derives TheStoredData from X;
188 is
189 begin
190 TheStoredData := X;
191 end Put;
192 end Microliter_Per_Hour_Store;
193
194 protected body Minute_Store is
195 function Get return Minute

199

196 --# global in TheStoredData;
197 is
198 begin
199 return TheStoredData;
200 end Get;
201
202 procedure Put(X : in Minute)
203 --# global out TheStoredData;
204 --# derives TheStoredData from X;
205 is
206 begin
207 TheStoredData := X;
208 end Put;
209 end Minute_Store;
210
211 protected body Alarm_Signal_Store is
212 function Get return Alarm_Signal
213 --# global in TheStoredData;
214 is
215 begin
216 return TheStoredData;
217 end Get;
218
219 procedure Put(X : in Alarm_Signal)
220 --# global out TheStoredData;
221 --# derives TheStoredData from X;
222 is
223 begin
224 TheStoredData := X;
225 end Put;
226 end Alarm_Signal_Store;
227
228 protected body Percent_Store is
229 function Get return Percent
230 --# global in TheStoredData;
231 is
232 begin
233 return TheStoredData;
234 end Get;
235
236 procedure Put(X : in Percent)
237 --# global out TheStoredData;
238 --# derives TheStoredData from X;
239 is
240 begin
241 TheStoredData := X;
242 end Put;
243 end Percent_Store;
244
245 protected body Minute_Count_Store is
246 function Get return Minute_Count
247 --# global in TheStoredData;
248 is
249 begin
250 return TheStoredData;
251 end Get;
252
253 procedure Put(X : in Minute_Count)
254 --# global out TheStoredData;
255 --# derives TheStoredData from X;
256 is
257 begin
258 TheStoredData := X;
259 end Put;
260 end Minute_Count_Store;

200

261
262 protected body Second_Count_Store is
263 function Get return Second_Count
264 --# global in TheStoredData;
265 is
266 begin
267 return TheStoredData;
268 end Get;
269
270 procedure Put(X : in Second_Count)
271 --# global out TheStoredData;
272 --# derives TheStoredData from X;
273 is
274 begin
275 TheStoredData := X;
276 end Put;
277 end Second_Count_Store;
278
279 end Ice_Types;

Listing F.3: Ice_Types package

1 with Base_Types;
2 with Bless_Types;
3 with Ice_Types;
4 with Pca_Properties;
5 --# inherit Base_Types,
6 --# Bless_Types,
7 --# Ice_Types,
8 --# Pca_Properties;
9 package Pca_Types

10 is
11 type Alarm_Type is (
12 No_Alarm,
13 Pump_Overheated,
14 Defective_Battery,
15 Low_Battery,
16 POST_Failure,
17 RAM_Failure,
18 ROM_failure,
19 CPU_Failure,
20 Thread_Monitor_Failure,
21 Air_In_Line,
22 Upstream_Occlusion,
23 Downstream_Occlusion,
24 Empty_Reservoir,
25 Basal_Overinfusion,
26 Bolus_Overinfusion,
27 Square_Bolus_Overinfusion
28);
29
30 protected type Alarm_Type_Store
31 is
32 pragma Priority (10);
33
34 function Get return Alarm_Type;
35 --# global in Alarm_Type_Store;
36
37 procedure Put(X : in Alarm_Type);
38 --# global out Alarm_Type_Store;
39 --# derives Alarm_Type_Store from X;
40 private
41 TheStoredData : Alarm_Type := Alarm_Type’First;

201

42 end Alarm_Type_Store;
43
44
45 type Warning_Type is (No_Warning,
46 Over_Max_Drug_Per_Hour,
47 Soft_Limit,
48 Low_Reservoir,
49 Priming_Failure,
50 Basal_Underinfusion,
51 Bolus_Underinfusion,
52 Square_Bolus_Underinfusion,
53 Input_Needed,
54 Long_Pause,
55 Drug_Not_In_Library,
56 Hard_Limit_Violated,
57 Voltage_OOR
58);
59
60 protected type Warning_Type_Store
61 is
62 pragma Priority (10);
63
64 function Get return Warning_Type;
65 --# global in Warning_Type_Store;
66
67 procedure Put(X : in Warning_Type);
68 --# global out Warning_Type_Store;
69 --# derives Warning_Type_Store from X;
70 private
71 TheStoredData : Warning_Type := Warning_Type’First;
72 end Warning_Type_Store;
73
74
75 type Status_Type is (Stopped, Bolus, Basal, KVO, Square_Bolus);
76
77 protected type Status_Type_Store
78 is
79 pragma Priority (10);
80
81 function Get return Status_Type;
82 --# global in Status_Type_Store;
83
84 procedure Put(X : in Status_Type);
85 --# global out Status_Type_Store;
86 --# derives Status_Type_Store from X;
87 private
88 TheStoredData : Status_Type := Status_Type’First;
89 end Status_Type_Store;
90
91
92 subtype Flow_Rate is Base_Types.Integer_16;
93
94 protected type Flow_Rate_Store
95 is
96 pragma Priority (10);
97
98 function Get return Flow_Rate;
99 --# global in Flow_Rate_Store;

100
101 procedure Put(X : in Flow_Rate);
102 --# global out Flow_Rate_Store;
103 --# derives Flow_Rate_Store from X;
104 private
105 TheStoredData : Flow_Rate := 0;
106 end Flow_Rate_Store;

202

107
108
109 subtype Drug_Volume is Base_Types.Integer_16;
110
111 protected type Drug_Volume_Store
112 is
113 pragma Priority (10);
114
115 function Get return Drug_Volume;
116 --# global in Drug_Volume_Store;
117
118 procedure Put(X : in Drug_Volume);
119 --# global out Drug_Volume_Store;
120 --# derives Drug_Volume_Store from X;
121 private
122 TheStoredData : Drug_Volume := 0;
123 end Drug_Volume_Store;
124
125
126 subtype Drug_Weight is Base_Types.Integer_16;
127
128 protected type Drug_Weight_Store
129 is
130 pragma Priority (10);
131
132 function Get return Drug_Weight;
133 --# global in Drug_Weight_Store;
134
135 procedure Put(X : in Drug_Weight);
136 --# global out Drug_Weight_Store;
137 --# derives Drug_Weight_Store from X;
138 private
139 TheStoredData : Drug_Weight := 0;
140 end Drug_Weight_Store;
141
142
143 type Drug_Concentration is new Integer;
144
145 protected type Drug_Concentration_Store
146 is
147 pragma Priority (10);
148
149 function Get return Drug_Concentration;
150 --# global in Drug_Concentration_Store;
151
152 procedure Put(X : in Drug_Concentration);
153 --# global out Drug_Concentration_Store;
154 --# derives Drug_Concentration_Store from X;
155 private
156 TheStoredData : Drug_Concentration := 0;
157 end Drug_Concentration_Store;
158
159
160 type Drug_Record is record
161 Amount : Drug_Weight;
162 Concentration : Drug_Concentration;
163 Vtbi_Lower_Soft : Drug_Volume;
164 Vtbi_Lower_Hard : Drug_Volume;
165 Vtbi_Typical : Drug_Volume;
166 Vtbi_Upper_Soft : Drug_Volume;
167 Vtbi_Upper_Hard : Drug_Volume;
168 Basal_Rate_Lower_Soft : Flow_Rate;
169 Basal_Rate_Lower_Hard : Flow_Rate;
170 Basal_Rate_Typical : Flow_Rate;
171 Basal_Rate_Upper_Soft : Flow_Rate;

203

172 Basal_Rate_Upper_Hard : Flow_Rate;
173 Bolus_Typical : Drug_Volume;
174 Bolus_Time_Typical : Ice_Types.Minute;
175 end record;
176
177 protected type Drug_Record_Store
178 is
179 pragma Priority (10);
180
181 function Get return Drug_Record;
182 --# global in Drug_Record_Store;
183
184 procedure Put(X : in Drug_Record);
185 --# global out Drug_Record_Store;
186 --# derives Drug_Record_Store from X;
187 private
188 TheStoredData : Drug_Record :=
189 Drug_Record’(Amount => Drug_Weight’First,
190 Concentration => Drug_Concentration’First,
191 Vtbi_Lower_Soft => Drug_Volume’First,
192 Vtbi_Lower_Hard => Drug_Volume’First,
193 Vtbi_Typical => Drug_Volume’First,
194 Vtbi_Upper_Soft => Drug_Volume’First,
195 Vtbi_Upper_Hard => Drug_Volume’First,
196 Basal_Rate_Lower_Soft => Flow_Rate’First,
197 Basal_Rate_Lower_Hard => Flow_Rate’First,
198 Basal_Rate_Typical => Flow_Rate’First,
199 Basal_Rate_Upper_Soft => Flow_Rate’First,
200 Basal_Rate_Upper_Hard => Flow_Rate’First,
201 Bolus_Typical => Drug_Volume’First,
202 Bolus_Time_Typical => Ice_Types.Minute’First
203);
204 end Drug_Record_Store;
205
206
207 subtype Drug_Library_Index is Integer range 1 .. Pca_Properties.Drug_Library_Size;
208 type Drug_Library is array (Drug_Library_Index) of Drug_Record;
209
210 protected type Drug_Library_Store
211 is
212 pragma Priority (10);
213
214 function Get(Ind : in Integer) return Drug_Record;
215 --# global in Drug_Library_Store;
216
217 procedure Put(Ind : in Integer; Val : in Drug_Record);
218 --# global in out Drug_Library_Store;
219 --# derives Drug_Library_Store from Drug_Library_Store, Ind, Val;
220 private
221 TheStoredData : Drug_Library := Drug_Library’(others =>
222 Drug_Record’(Amount => Drug_Weight’First,
223 Concentration => Drug_Concentration’First,
224 Vtbi_Lower_Soft => Drug_Volume’First,
225 Vtbi_Lower_Hard => Drug_Volume’First,
226 Vtbi_Typical => Drug_Volume’First,
227 Vtbi_Upper_Soft => Drug_Volume’First,
228 Vtbi_Upper_Hard => Drug_Volume’First,
229 Basal_Rate_Lower_Soft => Flow_Rate’First,
230 Basal_Rate_Lower_Hard => Flow_Rate’First,
231 Basal_Rate_Typical => Flow_Rate’First,
232 Basal_Rate_Upper_Soft => Flow_Rate’First,
233 Basal_Rate_Upper_Hard => Flow_Rate’First,
234 Bolus_Typical => Drug_Volume’First,
235 Bolus_Time_Typical => Ice_Types.Minute’First
236));

204

237 end Drug_Library_Store;
238
239 type Prescription is record
240 Concentration : Drug_Concentration;
241 Initial_Volume : Drug_Volume;
242 Basal_Flow_Rate : Flow_Rate;
243 Vtbi : Drug_Volume;
244 Max_Drug_Per_Hour : Drug_Volume;
245 Minimum_Time_Between_Bolus : Ice_Types.Minute;
246 end record;
247
248 protected type Prescription_Store
249 is
250 pragma Priority (10);
251
252 function Get return Prescription;
253 --# global in Prescription_Store;
254
255 procedure Put(Prescription_In : in Prescription);
256 --# global out Prescription_Store;
257 --# derives Prescription_Store from Prescription_In;
258
259 private
260 TheStoredData : Prescription :=
261 Prescription’(Concentration => 0,
262 Initial_Volume => 0,
263 Basal_Flow_Rate => 0,
264 Vtbi => 0,
265 Max_Drug_Per_Hour => 0,
266 Minimum_Time_Between_Bolus => 0
267);
268
269 end Prescription_Store;
270
271 type Fault_Record is record
272 Alarm : Alarm_Type;
273 Warning : Warning_Type;
274 Time : Bless_Types.Time;
275 end record;
276
277 protected type Fault_Record_Store
278 is
279 pragma Priority (10);
280
281 function Get return Fault_Record;
282 --# global in Fault_Record_Store;
283
284 procedure Put(X : in Fault_Record);
285 --# global out Fault_Record_Store;
286 --# derives Fault_Record_Store from X;
287 private
288 TheStoredData : Fault_Record := Fault_Record’(Alarm => Alarm_Type’First,
289 Warning => Warning_Type’First,
290 Time => Bless_Types.Time’First
291);
292 end Fault_Record_Store;
293
294
295 subtype Fault_Log_Index is Integer range 1 .. Pca_Properties.Fault_Log_Size;
296 type Fault_Log is array (Fault_Log_Index) of Fault_Record;
297
298 protected type Fault_Log_Store
299 is
300 pragma Priority (10);
301

205

302 function Get(Ind : in Integer) return Fault_Record;
303 --# global in Fault_Log_Store;
304
305 procedure Put(Ind : in Integer; Val : in Fault_Record);
306 --# global in out Fault_Log_Store;
307 --# derives Fault_Log_Store from Fault_Log_Store, Ind, Val;
308 private
309 TheStoredData : Fault_Log := Fault_Log’(others =>
310 Fault_Record’(Alarm => Alarm_Type’First,
311 Warning => Warning_Type’First,
312 Time => Bless_Types.Time’First
313));
314 end Fault_Log_Store;
315
316
317 type Event_Record is record
318 Time : Bless_Types.Time;
319 end record;
320
321 protected type Event_Record_Store
322 is
323 pragma Priority (10);
324
325 function Get return Event_Record;
326 --# global in Event_Record_Store;
327
328 procedure Put(X : in Event_Record);
329 --# global out Event_Record_Store;
330 --# derives Event_Record_Store from X;
331 private
332 TheStoredData : Event_Record := Event_Record’(Time => Bless_Types.Time’First);
333 end Event_Record_Store;
334
335
336 subtype Event_Log_Index is Integer range 1 .. Pca_Properties.Event_Log_Size;
337 type Event_Log is array (Event_Log_Index) of Event_Record;
338
339 protected type Event_Log_Store
340 is
341 pragma Priority (10);
342
343 function Get(Ind : in Integer) return Event_Record;
344 --# global in Event_Log_Store;
345
346 procedure Put(Ind : in Integer; Val : in Event_Record);
347 --# global in out Event_Log_Store;
348 --# derives Event_Log_Store from Event_Log_Store, Ind, Val;
349 private
350 TheStoredData : Event_Log := Event_Log’(others => Event_Record’(Time => Bless_Types.Time’First));
351 end Event_Log_Store;
352
353
354 type Infusion_Type is (Bolus_Infusion, Square_Infusion, Basal_Infusion, KVO_Infusion);
355
356 protected type Infusion_Type_Store
357 is
358 pragma Priority (10);
359
360 function Get return Infusion_Type;
361 --# global in Infusion_Type_Store;
362
363 procedure Put(X : in Infusion_Type);
364 --# global out Infusion_Type_Store;
365 --# derives Infusion_Type_Store from X;
366 private

206

367 TheStoredData : Infusion_Type := Infusion_Type’First;
368 end Infusion_Type_Store;
369
370
371 type Pump_Fault_Type is (Prime_Failure, Pump_Hot, Bubble, Upstream_Occlusion_Fault,

Downstream_Occlusion_Fault, Overinfusion, Underinfusion);
372
373 protected type Pump_Fault_Type_Store
374 is
375 pragma Priority (10);
376
377 function Get return Pump_Fault_Type;
378 --# global in Pump_Fault_Type_Store;
379
380 procedure Put(X : in Pump_Fault_Type);
381 --# global out Pump_Fault_Type_Store;
382 --# derives Pump_Fault_Type_Store from X;
383 private
384 TheStoredData : Pump_Fault_Type := Pump_Fault_Type’First;
385 end Pump_Fault_Type_Store;
386
387 end Pca_Types;
388
389 package body Pca_Types
390 is
391 protected body Alarm_Type_Store is
392 function Get return Alarm_Type
393 --# global in TheStoredData;
394 is
395 begin
396 return TheStoredData;
397 end Get;
398
399 procedure Put(X : in Alarm_Type)
400 --# global out TheStoredData;
401 --# derives TheStoredData from X;
402 is
403 begin
404 TheStoredData := X;
405 end Put;
406 end Alarm_Type_Store;
407
408 protected body Warning_Type_Store is
409 function Get return Warning_Type
410 --# global in TheStoredData;
411 is
412 begin
413 return TheStoredData;
414 end Get;
415
416 procedure Put(X : in Warning_Type)
417 --# global out TheStoredData;
418 --# derives TheStoredData from X;
419 is
420 begin
421 TheStoredData := X;
422 end Put;
423 end Warning_Type_Store;
424
425 protected body Status_Type_Store is
426 function Get return Status_Type
427 --# global in TheStoredData;
428 is
429 begin
430 return TheStoredData;

207

431 end Get;
432
433 procedure Put(X : in Status_Type)
434 --# global out TheStoredData;
435 --# derives TheStoredData from X;
436 is
437 begin
438 TheStoredData := X;
439 end Put;
440 end Status_Type_Store;
441
442 protected body Flow_Rate_Store is
443 function Get return Flow_Rate
444 --# global in TheStoredData;
445 is
446 begin
447 return TheStoredData;
448 end Get;
449
450 procedure Put(X : in Flow_Rate)
451 --# global out TheStoredData;
452 --# derives TheStoredData from X;
453 is
454 begin
455 TheStoredData := X;
456 end Put;
457 end Flow_Rate_Store;
458
459 protected body Drug_Volume_Store is
460 function Get return Drug_Volume
461 --# global in TheStoredData;
462 is
463 begin
464 return TheStoredData;
465 end Get;
466
467 procedure Put(X : in Drug_Volume)
468 --# global out TheStoredData;
469 --# derives TheStoredData from X;
470 is
471 begin
472 TheStoredData := X;
473 end Put;
474 end Drug_Volume_Store;
475
476 protected body Drug_Weight_Store is
477 function Get return Drug_Weight
478 --# global in TheStoredData;
479 is
480 begin
481 return TheStoredData;
482 end Get;
483
484 procedure Put(X : in Drug_Weight)
485 --# global out TheStoredData;
486 --# derives TheStoredData from X;
487 is
488 begin
489 TheStoredData := X;
490 end Put;
491 end Drug_Weight_Store;
492
493 protected body Drug_Concentration_Store is
494 function Get return Drug_Concentration
495 --# global in TheStoredData;

208

496 is
497 begin
498 return TheStoredData;
499 end Get;
500
501 procedure Put(X : in Drug_Concentration)
502 --# global out TheStoredData;
503 --# derives TheStoredData from X;
504 is
505 begin
506 TheStoredData := X;
507 end Put;
508 end Drug_Concentration_Store;
509
510 protected body Drug_Record_Store is
511 function Get return Drug_Record
512 --# global in TheStoredData;
513 is
514 begin
515 return TheStoredData;
516 end Get;
517
518 procedure Put(X : in Drug_Record)
519 --# global out TheStoredData;
520 --# derives TheStoredData from X;
521 is
522 begin
523 TheStoredData := X;
524 end Put;
525 end Drug_Record_Store;
526
527 protected body Drug_Library_Store is
528 function Get(Ind : in Integer) return Drug_Record
529 --# global in TheStoredData;
530 is
531 begin
532 return TheStoredData(Ind);
533 end Get;
534
535 procedure Put(Ind : in Integer; Val : in Drug_Record)
536 --# global in out TheStoredData;
537 --# derives TheStoredData from TheStoredData, Ind, Val;
538 is
539 begin
540 TheStoredData(Ind) := Val;
541 end Put;
542 end Drug_Library_Store;
543
544 protected body Prescription_Store
545 is
546 function Get return Prescription
547 --# global in TheStoredData;
548 is
549 begin
550 return TheStoredData;
551 end Get;
552
553 procedure Put(Prescription_In : in Prescription)
554 --# global out TheStoredData;
555 --# derives TheStoredData from Prescription_In;
556 is
557 begin
558 TheStoredData := Prescription_In;
559 end Put;
560 end Prescription_Store;

209

561
562 protected body Fault_Record_Store is
563 function Get return Fault_Record
564 --# global in TheStoredData;
565 is
566 begin
567 return TheStoredData;
568 end Get;
569
570 procedure Put(X : in Fault_Record)
571 --# global out TheStoredData;
572 --# derives TheStoredData from X;
573 is
574 begin
575 TheStoredData := X;
576 end Put;
577 end Fault_Record_Store;
578
579 protected body Fault_Log_Store is
580 function Get(Ind : in Integer) return Fault_Record
581 --# global in TheStoredData;
582 is
583 begin
584 return TheStoredData(Ind);
585 end Get;
586
587 procedure Put(Ind : in Integer; Val : in Fault_Record)
588 --# global in out TheStoredData;
589 --# derives TheStoredData from TheStoredData, Ind, Val;
590 is
591 begin
592 TheStoredData(Ind) := Val;
593 end Put;
594 end Fault_Log_Store;
595
596 protected body Event_Record_Store is
597 function Get return Event_Record
598 --# global in TheStoredData;
599 is
600 begin
601 return TheStoredData;
602 end Get;
603
604 procedure Put(X : in Event_Record)
605 --# global out TheStoredData;
606 --# derives TheStoredData from X;
607 is
608 begin
609 TheStoredData := X;
610 end Put;
611 end Event_Record_Store;
612
613 protected body Event_Log_Store is
614 function Get(Ind : in Integer) return Event_Record
615 --# global in TheStoredData;
616 is
617 begin
618 return TheStoredData(Ind);
619 end Get;
620
621 procedure Put(Ind : in Integer; Val : in Event_Record)
622 --# global in out TheStoredData;
623 --# derives TheStoredData from TheStoredData, Ind, Val;
624 is
625 begin

210

626 TheStoredData(Ind) := Val;
627 end Put;
628 end Event_Log_Store;
629
630 protected body Infusion_Type_Store is
631 function Get return Infusion_Type
632 --# global in TheStoredData;
633 is
634 begin
635 return TheStoredData;
636 end Get;
637
638 procedure Put(X : in Infusion_Type)
639 --# global out TheStoredData;
640 --# derives TheStoredData from X;
641 is
642 begin
643 TheStoredData := X;
644 end Put;
645 end Infusion_Type_Store;
646
647 protected body Pump_Fault_Type_Store is
648 function Get return Pump_Fault_Type
649 --# global in TheStoredData;
650 is
651 begin
652 return TheStoredData;
653 end Get;
654
655 procedure Put(X : in Pump_Fault_Type)
656 --# global out TheStoredData;
657 --# derives TheStoredData from X;
658 is
659 begin
660 TheStoredData := X;
661 end Put;
662 end Pump_Fault_Type_Store;
663
664 end Pca_Types;

Listing F.4: Pca_Types package

1 package Pca_Properties
2 is
3 Drug_Library_Size : constant Integer := 500;
4 Fault_Log_Size : constant Integer := 150;
5 Event_Log_Size : constant Integer := 1500;
6 KVO_Rate_Constant : constant Integer := 1;
7 KVO_Rate : constant Integer := KVO_Rate_Constant;
8 Max_Rate : constant Integer := 10;
9 end Pca_Properties;

Listing F.5: Pca_Properties package

211

1 with Pca_Properties,
2 Base_Types,
3 Bless_Types,
4 Ice_Types,
5 Pca_Types;
6 --# inherit Pca_Properties,
7 --# Base_Types,
8 --# Bless_Types,
9 --# Ice_Types,

10 --# Pca_Types;
11 package Pca_Operation
12 --# own protected Infusion_Flow_Rate : PCA_Types.Flow_Rate_Store (Priority=>10);
13 --# protected System_Status : Pca_Types.Status_Type_Store (Priority=>10);
14 --# task mdphw : Max_Drug_Per_Hour_Watcher;
15 --# task rc : Rate_Controller;
16 --# task pbc : Patient_Bolus_Checker;
17 is
18 procedure Put_Start_Button_Pressed;
19
20 procedure Put_Stop_Button_Pressed;
21
22 procedure Put_Patient_Request_Bolus;
23
24 procedure Put_Clinician_Request_Bolus;
25
26 procedure Put_Bolus_Duration (Bolus_Duration_In : Ice_Types.Minute);
27
28 procedure Get_Infusion_Flow_Rate (Infusion_Flow_Rate_Out : out Pca_Types.Flow_Rate);
29 --# global in Infusion_Flow_Rate;
30 --# derives Infusion_Flow_Rate_Out from Infusion_Flow_Rate;
31
32 procedure Get_System_Status (System_Status_Out : out Pca_Types.Status_Type);
33 --# global in System_Status;
34 --# derives System_Status_Out from System_Status;
35
36 procedure Put_Rx (Rx_In : Pca_Types.Prescription);
37
38
39 task type Max_Drug_Per_Hour_Watcher
40 --# global in Infusion_Flow_Rate;
41 is
42 pragma Priority(10);
43 end Max_Drug_Per_Hour_Watcher;
44
45 task type Rate_Controller
46 --# global out Infusion_Flow_Rate;
47 --# out System_Status;
48 is
49 pragma Priority(10);
50 end Rate_Controller;
51
52 task type Patient_Bolus_Checker
53 is
54 pragma Priority(10);
55 end Patient_Bolus_Checker;
56
57 end Pca_Operation;
58
59 package body Pca_Operation
60 is
61 type la_type is (
62 StopButton,
63 TooMuchJuice,
64 PatientButton,
65 ResumeSquareBolus,

212

66 ResumeBasal,
67 StartSquareBolus,
68 SquareBolusDone,
69 StartButton);
70
71 Infusion_Flow_Rate : PCA_Types.Flow_Rate_Store;
72 System_Status : Pca_Types.Status_Type_Store;
73
74 mdphw : Max_Drug_Per_Hour_Watcher;
75 rc : Rate_Controller;
76 pbc : Patient_Bolus_Checker;
77
78 procedure Put_Start_Button_Pressed
79 is
80 begin
81 -- TODO: implement event handler
82 null;
83 end Put_Start_Button_Pressed;
84
85 procedure Put_Stop_Button_Pressed
86 is
87 begin
88 -- TODO: implement event handler
89 null;
90 end Put_Stop_Button_Pressed;
91
92 procedure Put_Patient_Request_Bolus
93 is
94 begin
95 -- TODO: implement event handler
96 null;
97 end Put_Patient_Request_Bolus;
98
99 procedure Put_Clinician_Request_Bolus

100 is
101 begin
102 -- TODO: implement event handler
103 null;
104 end Put_Clinician_Request_Bolus;
105
106 procedure Put_Bolus_Duration (Bolus_Duration_In : ICE_Types.Minute)
107 is
108 begin
109 -- TODO: implement data event handler
110 end Put_Bolus_Duration;
111
112 procedure Get_Infusion_Flow_Rate (Infusion_Flow_Rate_Out : out Pca_Types.Flow_Rate)
113 is
114 begin
115 Infusion_Flow_Rate_Out := Infusion_Flow_Rate.Get;
116 end Get_Infusion_Flow_Rate;
117
118 procedure Get_System_Status (System_Status_Out : out Pca_Types.Status_Type)
119 is
120 begin
121 System_Status_Out := System_Status.Get;
122 end Get_System_Status;
123
124 procedure Put_Rx (Rx_In : Pca_Types.Prescription)
125 is
126 begin
127 -- TODO: implement data event handler
128 end Put_Rx;
129
130

213

131 task body Max_Drug_Per_Hour_Watcher
132 is
133 begin
134 loop
135 --# assert PUMP_RATE;
136 null;
137 end loop;
138 end Max_Drug_Per_Hour_Watcher;
139
140 task body Rate_Controller
141 is
142 la : la_type;
143 begin
144 loop
145 --# assert true;
146 --# assert Rx_APPROVED;
147 --# assert PUMP_RATE;
148 --# assert (la=StopButton) -> HALT;
149 --# assert (la=TooMuchJuice) -> KVO_RATE;
150 --# assert (la=PatientButton) -> PB_RATE;
151 --# assert ((la=StartSquareBolus) or (la=ResumeSquareBolus)) -> CCB_RATE;
152 --# assert ((la=StartButton) or (la=ResumeBasal) or (la=SquareBolusDone)) -> BASAL_RATE;
153 --# assert (PUMP_RATE = 0) -> HALT;
154 --# assert (PUMP_RATE = Pca_Properties.KVO_Rate) -> KVO_RATE;
155 --# assert (PUMP_RATE = Patient_Bolus_Rate) -> PB_RATE;
156 --# assert (PUMP_RATE = Square_Bolus_Rate) -> CCB_RRATE;
157 --# assert (PUMP_RATE = Basal_Rate) -> BASAL_RATE;
158 null;
159 end loop;
160 end Rate_Controller;
161
162 task body Patient_Bolus_Checker
163 is
164 begin
165 loop
166 --# assert true;
167 null;
168 end loop;
169 end Patient_Bolus_Checker;
170
171 end Pca_Operation;

Listing F.6: Pca_Operation package

214

Appendix G

AUnit tests for PCA pump dose monitor

module

This appendix presents AUnit tests for isolated, sequential module for PCA pump dose

monitoring.

1 with AUnit.Test_Fixtures;
2
3 package Pca_Pump.Test_Data is
4
5 type Test is new AUnit.Test_Fixtures.Test_Fixture
6 with null record;
7
8 procedure Set_Up (Gnattest_T : in out Test);
9 procedure Tear_Down (Gnattest_T : in out Test);

10
11 end Pca_Pump.Test_Data;
12
13 package body Pca_Pump.Test_Data is
14
15 procedure Set_Up (Gnattest_T : in out Test) is
16 pragma Unreferenced (Gnattest_T);
17 begin
18 null;
19 end Set_Up;
20
21 procedure Tear_Down (Gnattest_T : in out Test) is
22 pragma Unreferenced (Gnattest_T);
23 begin
24 null;
25 end Tear_Down;
26
27 end Pca_Pump.Test_Data;

Listing G.1: Package Pca_Pump.Test_Data

215

1 with Gnattest_Generated;
2
3 package Pca_Pump.Test_Data.Tests is
4
5 type Test is new GNATtest_Generated.GNATtest_Standard.Pca_Pump.Test_Data.Test
6 with null record;
7
8 procedure Test_Sum_Zero (Gnattest_T : in out Test);
9

10 procedure Test_Sum_100 (Gnattest_T : in out Test);
11
12 procedure Test_Read_Dosed_Zero (Gnattest_T : in out Test);
13
14 procedure Test_Increase_Dosed_By_1 (Gnattest_T : in out Test);
15
16 procedure Test_Move_Dosed_First_Element_Zero (Gnattest_T : in out Test);
17
18 procedure Test_Move_Dosed_First_Element_Not_Zero (Gnattest_T : in out Test);
19
20 end Pca_Pump.Test_Data.Tests;
21
22 with AUnit.Assertions; use AUnit.Assertions;
23 with Pca_Pump;
24
25 package body Pca_Pump.Test_Data.Tests is
26
27 procedure Test_Sum_Zero (Gnattest_T : in out Test) is
28 pragma Unreferenced (Gnattest_T);
29 Arr : Pca_Pump.Doses_Array := Pca_Pump.Doses_Array’(others => 0);
30 Result : Pca_Pump.Drug_Volume := 0;
31 begin
32 -- Arrange
33
34 -- Act
35 Result := Pca_Pump.Sum(Arr);
36
37 -- Assert
38 AUnit.Assertions.Assert
39 (Result = 0,
40 "Sum function result is incorrect.");
41 end Test_Sum_Zero;
42
43 procedure Test_Sum_100 (Gnattest_T : in out Test) is
44 pragma Unreferenced (Gnattest_T);
45 Arr : Pca_Pump.Doses_Array := Pca_Pump.Doses_Array’(others => 0);
46 Result : Pca_Pump.Drug_Volume := 0;
47 begin
48 -- Arrange
49 Arr(Pca_Pump.Doses_Array_Index’First) := 51;
50 Arr(Pca_Pump.Doses_Array_Index’Last) := 49;
51
52 -- Act
53 Result := Pca_Pump.Sum(Arr);
54
55 -- Assert
56 AUnit.Assertions.Assert
57 (Result = 100,
58 "Sum function result is incorrect:" & Pca_Pump.Drug_Volume’Image(Result) & " /= 100");
59 end Test_Sum_100;
60
61
62 procedure Test_Read_Dosed_Zero (Gnattest_T : in out Test) is
63 pragma Unreferenced (Gnattest_T);
64 Result : Pca_Pump.Drug_Volume;
65 Expected : Pca_Pump.Drug_Volume;

216

66 begin
67 -- Arrange
68 Expected := 0;
69
70 -- Act
71 Result := Pca_Pump.Read_Dosed;
72
73 -- Assert
74 AUnit.Assertions.Assert
75 (Expected = Result,
76 "Readed dose incorrect: " & Pca_Pump.Drug_Volume’Image(Expected) & " /= " & Pca_Pump.Drug_Volume’

Image(Result));
77
78 end Test_Read_Dosed_Zero;
79
80 procedure Test_Increase_Dosed_By_1 (Gnattest_T : in out Test) is
81 pragma Unreferenced (Gnattest_T);
82 Pre_Sum : Pca_Pump.Drug_Volume := 0;
83 Post_Sum : Pca_Pump.Drug_Volume := 0;
84 begin
85 -- Arrange
86 Pre_Sum := Pca_Pump.Read_Dosed;
87
88 -- Act
89 Pca_Pump.Increase_Dosed;
90 Post_Sum := Pca_Pump.Read_Dosed;
91
92 -- Assert
93 AUnit.Assertions.Assert
94 (Post_Sum = Pre_Sum + 1,
95 "Total dose not increased properly: " & Pca_Pump.Drug_Volume’Image(Post_Sum) & " /= " & Pca_Pump.

Drug_Volume’Image(Pre_Sum+1));
96 end Test_Increase_Dosed_By_1;
97
98 procedure Test_Move_Dosed_First_Element_Zero (Gnattest_T : in out Test) is
99 pragma Unreferenced (Gnattest_T);

100 Pre_Sum : Pca_Pump.Drug_Volume := 0;
101 Post_Sum : Pca_Pump.Drug_Volume := 0;
102 begin
103 -- Arrange
104 Pre_Sum := Pca_Pump.Read_Dosed;
105
106 -- Act
107 Pca_Pump.Move_Dosed;
108 Post_Sum := Pca_Pump.Read_Dosed;
109
110 -- Assert
111 AUnit.Assertions.Assert
112 (Post_Sum = Pre_Sum,
113 "Total dose changed: " & Pca_Pump.Drug_Volume’Image(Pre_Sum) & " /= " & Pca_Pump.Drug_Volume’Image

(Post_Sum));
114 end Test_Move_Dosed_First_Element_Zero;
115
116 procedure Test_Move_Dosed_First_Element_Not_Zero (Gnattest_T : in out Test) is
117 pragma Unreferenced (Gnattest_T);
118 Pre_Sum : Pca_Pump.Drug_Volume := 0;
119 Post_Sum : Pca_Pump.Drug_Volume := 0;
120 begin
121 -- Arrange
122 Pca_Pump.Increase_Dosed;
123 for I in Pca_Pump.Doses_Array_Index range 1 .. Pca_Pump.Doses_Array_Index’Last-1 loop
124 Pca_Pump.Move_Dosed;
125 end loop;
126 Pre_Sum := Pca_Pump.Read_Dosed;
127

217

128 -- Act
129 Pca_Pump.Move_Dosed;
130 Post_Sum := Pca_Pump.Read_Dosed;
131
132 -- Assert
133 AUnit.Assertions.Assert
134 (Post_Sum < Pre_Sum,
135 "Total dose changed: " & Pca_Pump.Drug_Volume’Image(Pre_Sum) & " should be greater than " &

Pca_Pump.Drug_Volume’Image(Post_Sum));
136 end Test_Move_Dosed_First_Element_Not_Zero;
137
138 end Pca_Pump.Test_Data.Tests;

Listing G.2: Package Pca_Pump.Test_Data.Tests

218

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Technologies
	Contribution
	Organization

	Background
	Integrated Clinical Environment
	Medical Device Coordination Framework
	AADL
	OSATE

	BLESS
	SPARK Ada
	GNAT Compiler
	GNAT Programming Studio (GPS)
	Ravenscar Tasking Subset

	SPARK Ada Verification
	SPARK Examiner
	SPARK Simplifier
	ZombieScope
	ViCToR
	Proof Checker
	SPARKSimp Utility
	Proof Obligation Summarizer (POGS)
	AUnit
	Sireum Bakar
	GNATprove

	AADL/BLESS to SPARK Ada code generation
	Ocarina
	RAMSES

	PCA Pump
	PCA Pump Requirements Document
	PCA Pump AADL/BLESS Models
	BeagleBoard-xM

	AADL/BLESS to SPARK Ada Translation
	AADL/BLESS to SPARK Ada mapping
	Data Types Mapping
	AADL Ports Mapping
	Thread to Task Mapping
	Subprograms Mapping
	Feature Groups Mapping
	AADL Package to SPARK Ada Package Mapping
	AADL Property Set to SPARK Ada Package Mapping
	BLESS Mapping

	Port-based Communication
	Threads Communication
	Systems Communication

	Towards an Automatic Translator

	PCA Pump Prototype Implementation and Code Generation
	Running SPARK Ada Programs on BeagleBoard-xM
	Odometer
	Multitasking Applications
	Controlling PCA Pump Actuator

	Implementation Based on Requirements Document and AADL Models
	Code Translation from AADL/BLESS Models

	Verification
	Verification of Implemented PCA Pump Prototype
	Monitoring Dosed Amount
	Verification of Generated Code
	AUnit Tests
	GNATprove
	Assessment

	Summary
	Future Work
	Bibliography
	Terms and Acronyms
	PCA pump prototype - simple, implemented, working pump
	PCA pump prototype verification - POGS report
	Rate controller thread from PCA pump AADL models
	Simplified PCA pump AADL models
	Simplified PCA pump - translated from simplified AADL models
	AUnit tests for PCA pump dose monitor module

