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Abstract

Society increasingly depends on networks for almost every aspect of daily life. Over

the past decade, network science has flourished tremendously in understanding, design-

ing, and utilizing networks. Particularly, network science has shed light on the role of the

underlying network topology on the dynamic behavior of complex systems, including cas-

cading failure in power-grids, financial contagions in trade market, synchronization, spread

of social opinion and trends, product adoption and market penetration, infectious disease

pandemics, outbreaks of computer worms, and gene mutations in biological networks. In

the last decade, most studies on complex networks have been confined to a single, often

homogeneous network. An extremely challenging aspect of studying these complex systems

is that the underlying networks are often heterogeneous, composite, and interdependent

with other networks. This challenging aspect has very recently introduced a new class of

networks in network science, which we refer to as multilayer and interconnected networks.

Multilayer networks are an abstract representation of interconnection among nodes rep-

resenting individuals or agents, where the interconnection has a multiple nature. For exam-

ple, while a disease can propagate among individuals through a physical contact network,

information can propagate among the same individuals through an online information-

dissemination network. Another example is viral information dissemination among users

of online social networks; one might disseminate information received from a Facebook con-

tact to his or her followers on Twitter. Interconnected networks are abstract representations

where two or more simple networks, possibly with different dynamics over them, are in-

terconnected to each other. For example, in zoonotic diseases, a virus can move from the

network of animals, with some transmission dynamics, to a human network, with possibly

very different dynamics. As communication systems are evolving more and more toward



integration with computing, sensing, and control systems, the theory of multilayer and in-

terconnected networks seems to be crucial to successful communication systems development

in cyber-physical infrastructures.

Among the most relevant dynamics over networks is epidemic spreading. Epidemic

spreading dynamics over simple networks exhibit a clear example where interaction between

non-complex dynamics at node level and the topology leads to a complex emergent behavior.

A substantial line of research during the past decade has been devoted to capturing the role

of the network on spreading dynamics, and mathematical tools such as spectral graph theory

have been greatly useful for this goal. For example, when the network is a simple graph, the

dominant eigenvalue and eigenvector of the adjacency matrix have been proven to be key

elements determining spreading dynamics features, including epidemic threshold, centrality

of nodes, localization of spreading sites, and behavior of the epidemic model close to the

threshold. More generally, for many other dynamics over a single network, dependency of

dynamics on spectral properties of the adjacency matrix, Laplacian matrix, or some other

graph-related matrix, is well-studied and rigorously established, and practical applications

have been successfully derived. In contrast, limited established results exist for dynamics

on multilayer and interconnected networks. Yet, an understanding of spreading processes

over these networks is very important to several realistic phenomena in modern integrated

and composite systems, including cascading failure in power grids, financial contagions in

trade market, synchronization, spread of social opinion and trends, product adoption and

market penetration, infectious disease pandemics, and outbreak in computer worms.

This dissertation focuses on spreading processes on multilayer and interconnected net-

works, organized in three parts. The first part develops a general framework for modeling

epidemic spreading in interconnected and multilayer networks. The second part solves two

fundamental problems: introducing the concept of an epidemic threshold curve in inter-

connected networks, and coexistence phenomena in competitive spreading over multilayer

networks. The third part of this dissertation develops an epidemic model incorporating



human behavior, where multi-layer network formulation enables modeling and analysis of

important features of human social networks, such as an information-dissemination net-

work, as well as contact adaptation. Finally, I conclude with some open research directions

in the topic of spreading processes over multilayer and interconnected networks, based on

the resulting developments of this dissertation.
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Abstract

Society increasingly depends on networks for almost every aspect of daily life. Over

the past decade, network science has flourished tremendously in understanding, design-
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underlying network topology on the dynamic behavior of complex systems, including cas-

cading failure in power-grids, financial contagions in trade market, synchronization, spread

of social opinion and trends, product adoption and market penetration, infectious disease

pandemics, outbreaks of computer worms, and gene mutations in biological networks. In

the last decade, most studies on complex networks have been confined to a single, often

homogeneous network. An extremely challenging aspect of studying these complex systems

is that the underlying networks are often heterogeneous, composite, and interdependent

with other networks. This challenging aspect has very recently introduced a new class of

networks in network science, which we refer to as multilayer and interconnected networks.

Multilayer networks are an abstract representation of interconnection among nodes rep-

resenting individuals or agents, where the interconnection has a multiple nature. For exam-

ple, while a disease can propagate among individuals through a physical contact network,

information can propagate among the same individuals through an online information-

dissemination network. Another example is viral information dissemination among users

of online social networks; one might disseminate information received from a Facebook con-

tact to his or her followers on Twitter. Interconnected networks are abstract representations

where two or more simple networks, possibly with different dynamics over them, are in-

terconnected to each other. For example, in zoonotic diseases, a virus can move from the

network of animals, with some transmission dynamics, to a human network, with possibly

very different dynamics. As communication systems are evolving more and more toward



integration with computing, sensing, and control systems, the theory of multilayer and in-

terconnected networks seems to be crucial to successful communication systems development

in cyber-physical infrastructures.

Among the most relevant dynamics over networks is epidemic spreading. Epidemic

spreading dynamics over simple networks exhibit a clear example where interaction between

non-complex dynamics at node level and the topology leads to a complex emergent behavior.

A substantial line of research during the past decade has been devoted to capturing the role

of the network on spreading dynamics, and mathematical tools such as spectral graph theory

have been greatly useful for this goal. For example, when the network is a simple graph, the

dominant eigenvalue and eigenvector of the adjacency matrix have been proven to be key

elements determining spreading dynamics features, including epidemic threshold, centrality

of nodes, localization of spreading sites, and behavior of the epidemic model close to the

threshold. More generally, for many other dynamics over a single network, dependency of

dynamics on spectral properties of the adjacency matrix, Laplacian matrix, or some other

graph-related matrix, is well-studied and rigorously established, and practical applications

have been successfully derived. In contrast, limited established results exist for dynamics

on multilayer and interconnected networks. Yet, an understanding of spreading processes

over these networks is very important to several realistic phenomena in modern integrated

and composite systems, including cascading failure in power grids, financial contagions in

trade market, synchronization, spread of social opinion and trends, product adoption and

market penetration, infectious disease pandemics, and outbreak in computer worms.

This dissertation focuses on spreading processes on multilayer and interconnected net-

works, organized in three parts. The first part develops a general framework for modeling

epidemic spreading in interconnected and multilayer networks. The second part solves two

fundamental problems: introducing the concept of an epidemic threshold curve in inter-

connected networks, and coexistence phenomena in competitive spreading over multilayer

networks. The third part of this dissertation develops an epidemic model incorporating



human behavior, where multi-layer network formulation enables modeling and analysis of

important features of human social networks, such as an information-dissemination net-

work, as well as contact adaptation. Finally, I conclude with some open research directions

in the topic of spreading processes over multilayer and interconnected networks, based on

the resulting developments of this dissertation.
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Chapter 1

Introduction

1.1 Background

A network representation describes pair-wise relationships/interconnections among compo-

nents of a system or members of a population of interest. Numerous biological, social,

economical, physical, and technological systems possess pair-wise dependencies among their

subsystems. Network science–in general–aims at studying such systems described as net-

works. Conventionally, network science has greatly benefited from graph theory as a rigorous

mathematical tool to address several problems regarding networks. In graph theory, each

member of a system is assigned to a node and links between node pairs denote relationship.

For example, a friendship network denotes each individual by a node, and connects a pair of

nodes if the corresponding individuals are friends. Another example is a telecom network,

where nodes are routers and links are lines capable of transmitting numerous bytes per

second.

1.1.1 Epidemic Spreading Process

One of the most relevant dynamics over networks is epidemic spreading. An epidemic model

describes how infections spread throughout a network. Epidemic spreading dynamics over
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simple networks is a clear example where interaction between non-complex dynamics at the

node level and the topology leads to a complex emergent behavior. Epidemics are critical

phenomena, not only from a biological viewpoint as caused by transmittable pathogens, but

also from a technological viewpoint as caused by malware propagation. Epidemic modeling

has a long history in biological systems, and recently such modeling has attracted substantial

attention in modeling propagation phenomena in networks [8–10]. Epidemic models have

been successful in providing insight and deep understanding of the epidemic process leading

to successful conclusions about prediction and prevention of epidemics. Epidemic models

have been used to study propagation of malware in the Internet [11–15] and to design delay

tolerant networks for routing purposes.

In most epidemic models, the population is divided into several different groups referred

to as compartments. Among the compartmental epidemic models, the susceptible- infected-

susceptible (SIS) and susceptible-infected-removed (SIR) models have been widely used.

In the SIS model, a susceptible node becomes infected with a given infection rate and an

infected node becomes susceptible with a given curing rate. Therefore, in the SIS model,

a node can become infected and susceptible several times. In the SIR model, a susceptible

node becomes infected with a given infection rate and an infected node is removed at a given

removing/recovery rate. Hence, in the SIR model, a node can only become infected once

and then is removed from the population. SIS and SIR models are the basis of most other

more complicated disease models. Aside from compartmental disease dynamics, contact

patterns among members of the population are also important.

Early compartmental epidemic models studied epidemic spreading in a well-mixed ho-

mogenous population [16] and predicted a threshold behavior, which was in agreement with

recorded epidemic data. In order to account for heterogeneity of contact patterns among

individuals within a population, Moreno et al. [17] considered a network with independent

heterogeneous node degree distribution, and Pastor-Satorras and Vespignani [18] studied

epidemic spreading over scale-free networks. The main observation is that the contact net-
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work plays a major role in the behavior of epidemic spreading. In the search for capturing the

role of a contact network in greater detail, individual-based epidemic models were proposed,

where the contact network is represented by a generic graph [19–22]. As a consequence,

graph theory obtained a central role in analysis of networked epidemic processes, attract-

ing broad attention from different communities of physics, computer science, engineering,

controls, and network science.

1.1.2 Multilayer and Interconnected Networks

In many realistic systems, interconnections are so complicated that conventional simple

networks cannot properly model the interconnections. Notions of multilayer and intercon-

nected networks are among emerging topics in network science which go beyond conventional

network representations [23,24].

Multilayer networks (Figure 1.1) are an abstract representation of interconnection among

nodes representing individuals or agents, where the interconnection has a multiple nature.

For example, while a disease can propagate among individuals through a physical contact

network, information can propagate among the same individuals through an on-line infor-

mation dissemination network. Another example is viral information dissemination among

users of online social networks; one might disseminate information received from a Facebook

contact to followers in Twitter.

In several large-scale systems, it is not possible to isolate a network completely: there

are often many interconnections with one or more networks. Interconnected networks (Fig-

ure 1.2) are abstract representations where two or more simple networks, possibly with

different and separate dynamics upon them, are interconnected to each other. For example,

in zoonotic diseases, a virus can move from an animals network, with some transmission

dynamics, to a human network, with possibly very different dynamics.

Studying multilayer and interconnected networks is an emerging topic in network sci-

ence, with numerous potential applications to realistic social, biological, and technological
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networked systems. In particular, as communication systems are evolving more and more to-

ward integration with computing, sensing, and control systems, the theory of multilayer and

interconnected networks seems to be crucial to successful design of cyber-physical systems.

Dynamical processes on these networks have become popular in recent years with di-

verse applications to cascading failure [25–28], diffusion [29, 30], synchronization [31], and

evolutionary games [32, 33]. In particular, the study of the spreading of epidemics in inter-

connected networks is a major challenge of complex networks, which has recently attracted

substantial attention [6, 34–40].

1.2 Motivation

A substantial line of research during the past decade has been devoted to capturing the role of

the network on spreading dynamics. Mathematical tools, such as spectral graph theory, have

been highly useful for this goal. For example, for an SIS epidemic process on a simple graph,

the dominant eigenvalue and eigenvector of the adjacency matrix prove to be key elements

to determine the spreading dynamics features, including epidemic threshold [19, 21, 22],

centrality of nodes, localization of spreading sites [41], and behavior of the epidemic model

close to the threshold [42]. In contrast, limited established results exist for dynamics on

multilayer and interconnected networks.

Several open problems on these types of networks are due to their inherent complexity.

Dynamics on a simple graph usually depend on the spectral properties of its adjacency

matrix, the Laplacian matrix, or some other graph-related matrices, which have been well-

studied and rigorously established, enabling successful applications in practice. Analyzing

dynamics on interconnected and multilayer networks is much more challenging. Researchers

have formulated some problems in multilayer and interconnected networks which can be

effectively analyzed through spectral properties of a “bigger matrix,” hence, making use of

rigorous mathematical tools of graph spectra. In the topic of multilayer and interconnected
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networks, however, numerous problems cannot be transformed to studying these “bigger

matrices.” Instead, very often, we can characterize solutions through spectral properties of

each layer/component separately, in addition to some function that represents the interre-

lation/interconnection.

The rationale for this dissertation is that epidemic-spreading dynamics over multilayer

and interconnected networks are very relevant in practice and exhibit behaviors that cannot

be attributed to single-networks characteristics. Our results are peculiar and different from

some results in the literature for the following three reasons: 1) our work focuses on intercon-

nected or multi-layer networks with arbitrary, generic structure, while most existing results

in the literature assume fully mixed population models or degree-distribution random net-

work models, which both have strong assumptions on the underlying network with limited

application to engineered networked systems; 2) our proposed problems on interconnected

or multilayer networks cannot be related to a larger, single-network problem, in contrast

with several results where the problems are in fact studying a single network in terms of

properties of its graph partitions; and 3) we focus on understanding the role of the topology

of the multilayer/interconnected networks, identifying key quantitative characteristics, ad-

vancing current state of the art where analytical results are limited, or expressive topological

interpretations are absent, due to technical challenges of analyzing these networks.

Understanding spreading processes over interconnected and multilayer networks is very

important to several realistic phenomena in modern integrated and composite systems, in-

cluding cascading failure in power-grids, financial contagions in the trade market, synchro-

nization, spread of social opinion and trends, product adoption and market penetration,

infectious disease pandemics, and outbreak of computer worms.
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1.3 Thesis Overview

This dissertation is divided into three main parts. Part I is devoted to epidemic modeling on

networks. Part II addresses fundamental SIS-type spreading problems in interconnected and

multilayer networks. Finally, in Part III, we study the application of multilayer networks

when incorporating human behavior into epidemic models.

Chapter 2 introduces networked epidemic models and formally defines multilayer and

interconnected networks. In this chapter we review the networked SIS epidemic model

and show how mean-field deterministic epidemic models have been successful in uncovering

several important dynamic properties of stochastic epidemic spreading processes over com-

plex networks. In particular, we study the impact of the network topology on spreading

dynamics.

The existing epidemic models are generalized to develop a class of models with multiple

compartments and multiple network layers in Chapter 3. We provide a detailed descrip-

tion of the stochastic process at the agent-level, where the agents interact through different

layers. The set of differential equations that describes the time evolution of the state oc-

cupancy probabilities has an exponentially-growing state-space size in terms of the number

of agents. Based on a mean-field type approximation, we develop a set of nonlinear differ-

ential equations that has linearly-growing state-space size. We find that the latter system,

referred to as the generalized epidemic mean-field (GEMF) model, has a simple structure

characterized by the elements of the adjacency matrices of the network layers and the Lapla-

cian matrices of the transition rate graphs. Finally, we present several examples of epidemic

models, including spreading of viruses and information on computer networks and spreading

of multiple pathogens in a host population.

Chapter 4 studies the spreading process of an SIS epidemic model in an interconnected

network of two generic graphs with generic interconnection and different epidemic-related

parameters. For a single arbitrary graph representing the contact network of the population

under consideration, the epidemic threshold turns out to be equal to the inverse of the
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spectral radius of the contact graph. Multiple degrees of freedom in this interconnected

network extend the concept of epidemic threshold value to that of threshold curve. To this

end, using bifurcation theory and spectral graph theory, we find the epidemic threshold

of one network as a function of the effective infection rate of the other coupled network

and adjacency matrices of each graph and their interconnection, and provide a quantitative

measure to distinguish between weak and strong interconnection topology.

Chapter 5 extends the SIS epidemic model for single-virus propagation over an arbitrary

graph to an SI1SI2S epidemic model of two exclusive, competitive viruses over a two-layer

network with generic structure, where network layers represent distinct transmission routes

of the viruses. We find analytical expressions determining extinction, coexistence, and

absolute dominance of the viruses after we introduce the concepts of survival threshold and

absolute-dominance threshold. The main outcome of our analysis is discovery and proof of a

region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We

show coexistence is impossible if network layers are identical, yet possible if network layers

are distinct. Not only do we rigorously prove a region of coexistence, but we can quantify

it via interrelation of central nodes across the network layers. Little to no overlapping of

the layers’ central nodes is the key determinant of coexistence. For example, we show both

analytically and numerically that positive correlation of network layers makes it difficult for

a virus to survive, while in a network with negatively correlated layers, survival is easier,

but total removal of the other virus is more difficult.

In Chapter 6, we add a new compartment to the classic SIS model to account for human

response to epidemic spread. In our model, each individual can be infected, susceptible, or

alert. Susceptible individuals can become alert with an alerting rate if infected individuals

exist among their neighbors. Due to a newly adopted cautious behavior, an individual in

the alert state is less probable to become infected. The problem is modeled as a continuous-

time Markov process on a generic graph and then formulated as a set of ordinary differential

equations. The model is then studied using results from spectral graph theory and center
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manifold theorem. We analytically show that our model exhibits two distinct thresholds

in the dynamics of epidemic spread. For effective infection rates below the first threshold,

infection dies out exponentially. For values larger than the second threshold, infection

persists in the steady state. Between the two thresholds, infection spreads at the first stage

but then dies out asymptotically as a result of increased alertness in the network. Finally,

simulations are provided to support our findings.

Built upon the SAIS model, Chapter 7 investigates how information dissemination can

help boost the resilience of the population against disease spread. The information dissem-

ination is realized through an additional network among individuals, which has the same

nodes but different links with respect to the contact network. Each link in the information

dissemination network is directed, which provides the health status of the source agent to

the end agent. We introduce an information dissemination metric, which is a quadratic

form of the adjacency matrix of the information dissemination network and the dominant

eigenvector of the adjacency matrix of the contact graph. By tools of perturbation theory,

we analytically show the effect of the information dissemination is explicitly related to the

information dissemination metric. It is proven that the spectral centrality of the nodes and

edges determines the optimal information dissemination network. Our results suggest that

monitoring the health status of a small subgroup of the agents and circulating the infor-

mation can greatly enhance the resilience of the network, with multiple potential areas of

application, from infectious disease mitigations to malware impact reduction.

Chapter 8 studies the propagation of infectious diseases in a population where individuals

change their physical contact neighborhood as a preventive response to sensing infection

(e.g., avoiding crowded locations like movie theater, etc.). In our modeling, each agent

i normally has a contact neighborhood set NA
i . However, once she becomes alert, she

switches her contacts to a new set NB
i . As a result, overall contact topology switches among

2N possible configurations. We show this state-dependent, locally switching network can be

formulated as a two-layer network. Bifurcation analysis of equilibrium infection probabilities
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finds the epidemic threshold determining the conditions for occurrence of epidemic outbreak.

We show the epidemic threshold of our adaptive contact network is the solution of a nonlinear

Perron-Frobenius (NPF) problem. This result is substantially different from the case of

independently time-varying contact networks, where the epidemic threshold corresponds to

the joint spectral radius of contact adjacency matrices. We develop a numerical method to

solve the NPF problem. Additionally, we develop explicit analytical results characterizing

the epidemic threshold in terms of spectral properties of the two contact layers and their

interrelation. Our results are both technically and practically important for studying viral

spreading over adaptive social networks. Particularly, we discover scenarios where preventive

contact change counter-intuitively worsens the virus spreading.

Finally, Chapter 9 summarizes and concludes this dissertation, providing open research

issues in the field of spreading processes on multilayer and interconnected networks.

1.4 Contributions

Below is summary of main contributions of this dissertation:

• Developed a generalized epidemic model GEMF (Chapter 3) capable of systematically

modeling a broad class of epidemic models on multilayer networks.

• Conceptualized the notion of epidemic threshold curve for interconnected networks

(Chapter 4) and proposed a structural index to quantify interconnection strength.

• Studied the competitive spreading process of two viruses on multilayer networks (Chap-

ter 5), finding conditions for coexistence and absolute dominance of viruses.

• Implemented a new component to the networked SIS epidemic model to incorporate

human response to epidemics, identifying the importance of alert behavior to control

and mitigate epidemics (Chapter 6).
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• Captured the potential role of an information dissemination network to promote

healthy behavior in social networks, with emphasis on its optimal design (Chapter

7).

• Showed the effect of contact network adaptation on progression of infectious disease in

social networks, characterizing possible scenarios where alertness counter-intuitively

amplifies the epidemics (Chapter 8).
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Networked Epidemic Modeling
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Chapter 2

Networked SIS Spreading Model

2.1 Introduction

Epidemic spreading, like many other processes (see, e.g., [43–45]) on complex networks, can

be modeled as a network of coupled stochastic agents. A common approach of existing

individual-based models is to consider Markovian interacting agents (i.e., dynamics of the

agents satisfy the Markov property [46,47]) while the interaction is represented by a generic

graph. This approach avoids random network models (e.g., Erdös-Réyni [48], Barábasi-

Albert [49], etc.), which may fail to properly represent many systems including engineered

networks [50]. The study of the dynamic behavior of epidemic spreading processes on graphs

is very challenging, even for simple scenarios, due to the stochastic nature of this behav-

ior. For example, the system governing state occupancy probabilities has an exponentially

growing space size in terms of the number of agents. Therefore, the problem soon becomes

intractable as the number of agents increases.

Through a mean-field closure approximation approach, size of the governing equations

reduces dramatically although at the expense of exactness. Mean-field epidemic models have

been used successfully in finding several interesting results for individual-based epidemic

spreading processes. For example, researchers have shown that the epidemic threshold in
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the SIS model is actually the inverse of the spectral radius of the adjacency matrix of the

contact graph [19, 21]. In particular, individual-based SIS epidemic models on arbitrary

networks predict the epidemic threshold is equal to (lower-bounded by) the inverse of the

spectral radius of the contact graph [19, 21, 22]. Moreover, The N-intertwined mean-field

approximated (NIMFA) model, also called microscopic Markov process approximation, first

proposed by Van Mieghem [21], has triggered a pervasive amount of research on epidemic

spreading on general networks, in different scenarios, and with different compartments [5,

6,41,51]. The key aspect of this class of models relies on use of the rigorous spectral graph

theory to determine the evolution of the epidemic.

2.2 Graph Theory

Graph theory (see [52,53]) is widely used for representing the contact topology in an epidemic

network, where each agent is a vertex and edges denote contact among agents. Let G =

{V,E} be a directed graph with a set of vertices V= {1, ..., N} and the set of edges E ⊂

V × V . An edge is an ordered pair (i, j) ∈ E, if agent i can potentially be directly infected

by agent j. Graph G is undirected if for any edge (i, j) ∈ E, edge (j, i) ∈ E. We assume

there is no self loop in the graph, i.e., (i, i) /∈ E, and the contact graph is undirected. A

path is referred by the sequence of its vertices. A path P of length k = |P| between i, j is

the ordered sequence (v0 = i, v1, ..., vk−1, vk = j) where (vp−1, vp) ∈ E for p = 1, ..., k. Such

a path can be interpreted as a walk from i to j consisting of steps (vp−1, vp). Graph G is

connected if any two vertices are connected with a path in G. A= [aij] ∈ RN×N denotes

the adjacency matrix of G, where aij = 1 if and only if (i, j) ∈ E, otherwise aij = 0. We

define d = [d1, d2, . . . , dN ]T as the node-degree vector, i.e., di =
∑N

j=1 aij is the degree of

node i. A graph is connected iff its associated adjacency matrix is irreducible, i.e., it cannot

be transformed into block upper-triangular form by permutations. The largest eigenvalue

of the adjacency matrix A is called spectral radius of A and is denoted by λ1(A). The
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dominant eigenvector of A is the eigenvector corresponding to λ1(A), denoted by v1(A). If

graph G is connected, A is a non-negative irreducible matrix. Therefore, according to the

Perron-Frobenius (PF) theorem, λ1(A) is real, positive, and single. Furthermore, dominant

eigenvector v1(A) is the only eigenvector with all strictly positive entries.

2.3 Networked SIS Model

Consider a network of N agents where the contact is determined by the adjacency matrix

A. Agent j is a neighbor of i, denoted by j ∈ Ni, if it can transmit the infection to agent

i. If j is a neighbor of i, then aij = 1; otherwise, aij = 0. In the SIS model, the state

xi(t) of an agent i at time t is a Bernoulli random variable, where xi(t) = 0 if agent i is

susceptible and xi(t) = 1 if it is infected. The curing process for infected agent i has an

exponential time distribution with average duration 1/δ, where δ ∈ R+ is called the curing

rate. Similarly, infection process for susceptible agent i in contact with infected agent j 6= i

has an exponential time distribution with average duration 1/β, where β ∈ R+ is called the

infection rate. Therefore, a susceptible agent effectively becomes infected at rate βYi(t),

where Yi(t) ,
∑N

j=1 aijxj(t) is the number of infected neighbors of agent i at time t. The

node-level description of the Markov process describing SIS model is

Pr(xi(t+ ∆t) = 1|xi(t) = 0, X(t)) = βYi(t)∆t+ o(∆t) (2.1)

Pr(xi(t+ ∆t) = 0|xi(t) = 1, X(t)) = δ∆t+ o(∆t) (2.2)

where

Yi(t) ,
∑

aijxj(t) (2.3)

is the number of infected neighbors, X(t) is the total network state, and ∆t is time step.

The ratio of the infection rate β over the curing δ is the effective infection rate τ , β
δ
. A

schematic of an SIS epidemic-spreading model over a graph is shown in Fig. 2.1.
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Figure 2.1: Schematics of a contact network, along with the agent-level stochastic transition
diagram for agent i according to the SIS epidemic-spreading model. Parameters β and δ
denote the infection rate and curing rate, respectively. Yi(t) is the number of the neighbors
of agent i that are infected at time t.

According to the node-level description of the SIS process, expected value E[xi] evolves

according to

d

dt
E[xi] = β

∑
aijE[(1− xi)xj]− δE[xi] (2.4)

= β
∑

aijE[xj]− β
∑

aijE[xixj]− δE[xi], (2.5)

for i ∈ {1, ..., N}. Unfortunately, this set of equations is not closed as evolution of marginal

probabilities E[xi] depends on the joint probability of pairs. Similarly, evolution of pair

probabilities E[xixj] depend on joint probabilities of triplets of the form E[xixjxk], and so

on. Therefore, the exact Markov equations describing the time evolution of probabilities

have state-space size 2N exponentially growing with N , which is both analytically and

numerically intractable.

A first-order closure approximation assumes xi and xj are uncorrelated, and therefore

E[xixj] = E[xi]E[xj]. By this approximation, a set of nonlinear differential equations are
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obtained that approximate the time evolution of infection probabilities as

ṗi = β(1− pi)
∑

aijpj − δpi, (2.6)

for i ∈ {1, ..., N}, where pi , E[xi]. Van Mieghem et al. [21] showed the response of this

system always upperbounds the actual probability of infection.

Bifurcation theory of the NIMFA model [21] concludes that the epidemic threshold τc is

the inverse of the spectral radius of adjacency matrix A = [aij]. Since this the derivation of

this result is fundamental to future derivations in this dissertation, we detail the procedure

here.

The disease-free state, i.e., p∗i = 0 for i ∈ {1, ..., N}, is always an equilibrium point of

(2.6). Using bifurcation theory, a second equilibrium point emerges for effective infection

rate τ > 1/λ1. The idea is that exactly at τc, p
∗
i = 0 for i ∈ {1, ..., N}; however, we should

have p∗i > 0 for τ > τc. The equilibrium points of (2.6) satisfy

p∗i
1− p∗i

= τ
∑

aijp
∗
j . (2.7)

Taking the (right) derivative with respect to τ , we have

1

(1− p∗i )2

dp∗i
dτ

=
∑

aijp
∗
j + τ

∑
aij
dp∗j
dτ

. (2.8)

Replacing for τ = τc and p∗i = 0, yields

dp∗i
dτ
|τ=τc = τc

∑
aij
dp∗j
dτ
|τ=τc , (2.9)

which in the collective form is

dP ∗

dτ
|τ=τc = τcA

dP ∗

dτ
|τ=τc , (2.10)
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where P ∗ , [p∗1, ..., p
∗
N ]T .

According to (2.10),
dP ∗

dτ
|τ=τc must be an eigenvector of the adjacency matrix of the

contact graph. Since only the dominant eigenvector has all positive entries, according to

the Perron-Frobenius theorem for irreducible matrices,
dP ∗

dτ
|τ=τc must be of the form

dP ∗

dτ
|τ=τc = cv1, (2.11)

where c is some constant to be determined and v1 is the normalized dominant eigenvector

of A corresponding to the largest eigenvalue λ1, i.e., Av1 = λ1v1 and ‖v1‖2 = vT1 v1 = 1.

According to (2.10), τcλ1 = 1, hence τc = 1/λ1.

Additionally, we can explicitly derive the value of c. Taking the derivative another time

from both sides of (2.8), we have

2

(1− p∗i )3
(
dp∗i
dτ

)2 +
1

(1− p∗i )2

d2p∗i
dτ 2

= 2
∑

aij
dp∗j
dτ

+ τ
∑

aij
d2p∗j
dτ 2

. (2.12)

At τ = τc, P
∗ = 0 and

dP ∗

dτ
|τ=τc = cx1 according to (2.11). Therefore, after replacing for τ ,

p∗i , and
dp∗i
dτ

we get

(I − τcA)
d2P ∗

dτ 2
|τ=τc + 2c2v

(2)
1 − 2cλ1v1 = 0, (2.13)

where v
(2)
1 , [v2

1,1, ..., v
2
1,N ] is the entry-wise square of eigenvector v1. Multiplying (2.13) by

vT1 from the right, the first terms becomes zero and we get

2c2vT1 v
(2)
1 − 2cλ1v

T
1 v1 = 0. (2.14)

Therefore, since v1 is normalized, we get

c =
λ1∑
v3

1,j

. (2.15)
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This expression for c has been reported in [42], and later used to address localization phe-

nomena in SIS spreading on graphs in [41].

2.4 Multilayer and Interconnected Networks Repre-

sentation

We define interconnected network G = ([Vs]
S
s=1, [Ess′ ]

S
s,s′=1) as the interconnection of S

coupled graphs Gs = (Vs, Ess), s ∈ {1, . . . , S}, where Ess′ ⊂ Vs × Vs′ denotes the coupling

between graphs Gs and Gs′ . Furthermore, we define G = (V, [El]
L
l=1) as a multilayer network

of L graph layers Gl = (V,El), l ∈ {1, . . . , L}. A simple graph G can be represented by

an adjacency matrix A = [aij] ∈ RN×N
≥0 , where aij represents the connection from node i

to node j. The definition of an adjacency matrix for an interconnected network G is fairly

straightforward. For S groups of networks of sizes N1, N2, ..., NS, we can label the nodes of

the first graph G1 from 1 to N1, the nodes of the second graph G2 from N1 + 1 to N1 +N2,

and so on. The collective adjacency matrix A can be defined as

A ,


A11 · · · A1S

...
. . .

...

AS1 · · · ASS

 ∈ RΣNs×ΣNs
≥0 , (2.16)

representing the connection between all of the nodes, where Ass′ = ATs′s for s, s′ ∈ {1, ..., L}.

A proper definition of an adjacency for multilayer networks is challenging. The most

promising definition so far is proposed by De Domenico et al. [54], adopting a three-

dimensional tensor as the adjacency tensor. Following this representation, we can denote

the adjacency tensor by

A , [A1;A2; · · · ;AL] ∈ RN×N×L
≥0 . (2.17)

The tonsorial approach to multilayer networks is convenient for representation purposes.
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However, rich tools of matrix theory are not directly applicable. De Domenico et al. [54]

have reformulated several concepts of matrix theory–relevant to network science–for tensors.

However, many times the difficulty of multilayer networks analysis is not due to an extra

dimension of the network data; rather, it is due to nonlinear, implicit interactions of the

network layers. The complexity of layer interactions makes the analysis of dynamics over

multilayer networks fundamentally much more challenging than that of single networks.

Another approach is to transform the problem under study into a problem on a “bigger

matrix,” allowing the use of matrix theory tools for interconnected and multilayer networks.

For interconnected networks, this “bigger matrix” is the collective adjacency matrix A

defined in (2.16). A multilayer network is more problematic. Some researchers have defined

a “supra-adjacency” matrix [55] as

A] ,



A1 I 0

I A2
. . .

. . . . . . I

0 I AL


∈ RLN×LN

≥0 . (2.18)

Unfortunately, this formulation is not suitable for multilayer networks according to our

definitions. The supra-adjacency matrix is the adjacency matrix of the multilayer network

in Figure 1.1, assuming the dotted lines are actual edges. Therefore, it indeed represents a

specifically structured interconnected network.

In this dissertation, we analyze spreading processes over multilayer networks in terms of

graph properties of individual network layers, in addition to layers’ interrelation character-

istics.
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Chapter 3

Generalized Epidemic Mean-Field

Model for Spreading Processes over

Multi-Layer Complex Networks

3.1 Introduction

In most existing individual-based epidemic models, the interaction is driven by a single

graph. However, studying epidemics in communication networks and cyber-physical systems

requires a more elaborate description of the interaction. Several researchers from computer

science, communication, networking, and control communities are working on describing

this complex interaction by using multiple interconnected networks [27, 28, 56]. Ultimately,

the study of the spreading of epidemics in interconnected networks is a major challenge of

complex networks [34–37,57].

In this chapter, we provide a novel and generalized formulation of the epidemic spread-

ing problem and a modeling solution. We consider a spreading process among a group of

agents that can be in M different compartments and where the agents interact through a

multi-layer network, which is explained in detail in Section 3.4. We follow a rigorous method-
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ology to develop a general epidemic spreading model. The modeling starts with a simple

agent-level description of the underlying stochastic process. The exact Markov equations,

which describe the time evolution of the state occupancy probabilities, are linear differential

equations, however, with exponentially growing state space size in terms of the number of

agents. Through a mean-field type approximation, the state space dramatically reduces.

The approximate system is a set of nonlinear ordinary differential equations that we call the

generalized epidemic mean-field (GEMF) model. We apply GEMF to interesting problems,

such as (a) the spread of infection in a population where the infection spreads through a

contact network while agents respond to the spreading by learning about the existence of

the infection through information dissemination networks, and (b) the bi-spreading of two

types of interacting viruses in a host population demanding different transmission routes for

the infection propagation.

The contribution of this study is two-fold. First, we propose a general epidemic-like

spreading Markov model with multi-compartment agent dynamics and a multi-layer inter-

action network. Second, we propose GEMF as a generalized epidemic mean-field model

suitable for a large class of individual-based spreading scenarios. GEMF is rigorously de-

rived from an agent-level description of the spreading process and is elegantly expressed (see

equation (3.26)) in terms of the adjacency matrix of each network layer and of the Lapla-

cian of the transition rate diagrams. In GEMF, there is no approximation of the network

topology; the only approximation is a mean-field type approximation of the dynamics of

the agents. The impact of this approximation is a function of the network topologies and

epidemic parameters. For complete development, we have also explicitly derived the exact

Markov equations in the Appendix.
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3.2 Motivating Examples

In this section, first we review some of the existing individual-based epidemic models, and at

the end, we discuss what generalizations are important to develop a general class of epidemic

models.

3.2.1 SIS Individual-based Model

In the Susceptible-Infected-Susceptible (SIS) model (cf., [20–22]), each agent can be either

‘susceptible’ or ‘infected.’ Hence, the number of compartments, denoted by M , in the SIS

model is M = 2. A susceptible agent can become infected if it is surrounded by infected

agents. The infection process of an agent with one infected neighbor is a Poisson process

with transition rate β. The infection processes are stochastically independent of each other.

Therefore, for a susceptible agent with more than one infected agent in its neighborhood,

the transition rate is the infection rate β times the number of the infected agents. The

neighborhood of each agent is determined by a graph Gc, which represents the contact

network. In addition to the infection process, there exists also a curing process. An infected

agent becomes susceptible with a curing rate δ. A schematic for the SIS model is shown in

Fig. 3.1.

3.2.2 SAIS Spreading Model

The Susceptible-Alert-Infected-Susceptible (SAIS) model was developed in [5] to incorporate

agent reactions to the spread of the virus. In the SAIS spreading model, each agent can be

either ‘susceptible,’ ‘infected,’ or ‘alert.’ Hence, the number of compartments in the SAIS

model is M = 3. The curing process in SAIS is the same as the curing process in the SIS

model, and is characterized by curing rate δ. The infection process of a susceptible agent is

also similar to that of the SIS model, which is determined by infection rate β and contact

graph Gc. However, in the SAIS model, a susceptible agent can become alert if it senses
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Figure 3.1: Schematic of a contact network along with the agent-level stochastic transition
diagram for agent i according to the SIS epidemic spreading model (explained in Section
3.2.1). The parameters β and δ denote the infection rate and curing rate, respectively. Yi(t)
is number of the neighbors of agent i that are infected at time t.

infected agents in its neighborhood. In the SAIS model, the alerting transition rate is κ

times the number of infected agents. An alert agent can also become infected by the process

similar to the infection process of a susceptible agent. However, the infection rate for alert

agents is lower due to increased security for computer networks or better hygiene in the

human population. The alert infection rate is denoted by βa < β. Fig. 3.2 is a schematic

for the SAIS spreading model.

3.2.3 Generalization of Epidemic Models

The SIS and SAIS models are good examples of how a simple compartmental model at

the node level along with a network topology can lead to very rich and complex dynamics.

While following the structure and underlying assumptions of these existing epidemic models,

we propose to develop a generalized individual-based spreading model where (a) the node

model has multiple compartments, and (b) the network topology has multiple layers. Both

generalizations are important. For example, many epidemic models can be created by adding
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Node i
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Figure 3.2: As in Fig. 3.1, the SAIS epidemic is sketched (see 3.2.2) on a contact network
Gc. In addition to the infection rate β and the curing rate δ, parameters βa and κ denote
the alerted infection rate and the alerting rate, respectively. Yi(t) is the number of neighbors
of agent i that are infected at time t.

new compartments to the basic SIS or SIR epidemic models. Also, for applications in cyber-

social and cyber-physical systems, more network layers need to be taken into account (see

Fig 3.3). For example, in the SAIS model, the agents can observe the infection status of their

neighbors in the contact network. However, a more realistic scenario is that agents learn

about the infection status of other agents through an infection information dissemination

network, represented by GiIDN , which can be very different from the contact network. We

can also take into account an alert information dissemination network among the agents,

represented by GaIDN . Through this network, agents can become alert if some of their

neighbors (determined by GaIDN) are alert. In this case, the network topology has three

layers. In Section 3.6.3, we develop an SAIS model with information dissemination.

Multi-layer epidemic modeling can also have applications in biological networks. Con-

sider the scenario where two pathogens are spreading through the host population. Infection

by one pathogen can effectively influence the infection process by the other pathogen. Since

the infection transmission routes may be different, the contact networks for each virus can

potentially be separate from each other. In Section 3.6.4, we develop an individual-based
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SIS bi-spreading model with separate contact networks for each pathogen.

The GEMF class of models developed in this study allows not only an arbitrary number

of compartments, but also accounts for multiple network layers.

3.3 Definitions

The network consists of N interacting agents, each of which can be in one of M states

(compartments). The stochastic transitions of an agent not only depend on its own state

but also on the states of the other agents. The group of agents is assumed to be jointly

Markovian, i.e., the collective system is a Markov process. The state of the collective

system, which we refer to as the network state, is actually the joint state of all the agents’

states. Assuming that all the agents can take values among M compartments, the size of

the network state space is MN . In the following section, the agent state and network state

are precisely defined.

3.3.1 Agent State and Network Markov State

One of the generalizations of GEMF concerns the compartment set, where each agent can

be in one compartment in the set S = {s1, s2, ..., sm, ..., sM}. For example, in the SIS model

for epidemic spread, M = 2 and S = {‘Susceptible’ ,‘Infected’}. From now on, without loss

of generality, each compartment is labeled with a number from 1 to M . The agent state

xi(t) of agent i at time t is xi(t) = em if the agent i is in compartment m at time t. Here,

em is the m−th standard unit vector in the RM Euclidean space, i.e., all entries of em are

zero except for the m−th entry, which is equal to one.

em , [0...0 1︸︷︷︸
m−th entry

0...0]T ∈ RM . (3.1)

The definition xi(t) = em illustrates that each entry of xi(t) is a Bernoulli random vari-
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able. Therefore, the expected value of xi(t) is in fact the compartment occupancy probability

vector, i.e.,

E[xi] = [Pr[xi = e1], ...,Pr[xi = eM ]]T . (3.2)

The above property is very important in future developments, particularly in (3.14), (3.17),

and (3.24-3.26).

There are other possibilities for defining the node state xi(t). For example, one might

define xi = m− 1 if node i is in compartment m. By this definition, xi takes values from 0

to M −1. This definition is particularly useful if M = 2. In this case, xi is a binary random

variable. Van Mieghem et al. [21] used this definition for the SIS N-Intertwined model.

As stated, the dynamics of an individual agent depend on the states of the other agents.

Therefore, the state of a single agent is not enough to describe the evolution of the agent

state. Instead, the joint state of all the agents follows a Markov process. Therefore, the

network state at time t, denoted by X(t), is the joint state of all the agents defined as [58]

X(t) =
N⊗
i=1

xi(t) = x1(t)⊗ x2(t)⊗ · · · ⊗ xN(t), (3.3)

where ⊗ is the Kronecker product.

By (3.3), X(t) is an MN×1 random vector with exactly one element equal to one and the

rest equal to zero. Therefore, the expected value of X(t) is the joint probability distribution

function of the network state. For example, for the SIS model, the first element of the

expectation of X(t) is the probability that all the agents are simultaneously susceptible.

One could define the network state as a MN×1 vector X , [xT1 , x
T
2 , · · · , xTN ]T . However,

in this case, the expectation of X(t) will only provide the marginal probability distribution

of the node states. As Section 3.5.1 shows, the information about marginal probabilities at

a given time is not enough to describe the evolution of the marginal probabilities, and the

joint probability distribution is required. Hence, we adopt definition (3.3) for the network

state.
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Figure 3.3: Network layers describe the different types of interactions among agents in
GEMF. The vertical dotted lines emphasize that all graphs have the same nodes, but the
edges are different.

3.3.2 Multi-Layer Network Topology

The other generalization in GEMF concerns the topology. In most epidemic models, the

interaction among the agents is represented by the contact network. However, as discussed

in Section 3.2.3, the types of interaction can be different in a complex network. For our

modeling purpose, we represent the topology by a multilayer network G = (V, [El]
L
l=1) con-

sisting of L layers of graphs Gl = (V,El), where V is the set of nodes denoting the agents,

and El is the set of edges that represent the interaction between each pair of individuals

in the l-th layer. These graphs have the same nodes, but the edges can be different. The

adjacency matrix corresponding to graph Gl is denoted by Al = [al,ij]N×N . If agent j can

influence agent i in the layer l, al,ij = 1 otherwise al,ij = 0. In Section 3.4.1, we define

precisely what ‘influence’ implies in our model. A representation of the network layering

structure is depicted in Fig. 3.3.
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3.4 Agent-Level Description of the Markov Spreading

Process

The network state X(t) follows a continuous-time Markov process. Knowing that the net-

work is in state X(t) at time t, what is the network state X(t + ∆t) at time t + ∆t? In a

network of interacting agents, this question can be very complicated. Instead, a more direct

approach is to describe the agent state xi(t+∆t) given the network state X(t) at time t. The

spreading process is fully described if the probability to record a transition from compart-

ment m to compartment n for agent i, conditioned on the network state X(t), is known for

all possible values of m, n, and i. Therefore, in this section, we focus on deducing an expres-

sion for Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)], which will be used later to develop the GEMF

model. The challenge in deducing an expression for Pr[xi(t + ∆t) = en|xi(t) = em, X(t)] is

that too many possibilities exist for the dependence of the transition m→ n of the individ-

ual agent i on the network state. Here are a few examples: the transition m → n happens

completely independently from the states of other agents; the transition m → n happens

if the number of other agents in compartment m are more than the number of agents in

compartment n; the transition m→ n happens if agents 1 and 2 are both in compartment

m and the rate of the transition is the logarithm of the number of agents in compartment

m. All of these examples are legitimate so far. However, we need to specify the transition

possibilities properly to develop a coherent and consistent epidemic spreading model.

3.4.1 Epidemic Spreading Process Modeling

The SIS model (see 3.2.1) gives very good insights into how to properly define the transition

possibilities to describe an epidemic spreading process. In the SIS model, there are two

transitions. The curing process, which is basically the transition from ‘infected ’ state to

‘susceptible,’ occurs independently of the states of other agents. Instead, the infection pro-

cess, which refers to transition from ‘susceptible’ state to ‘infected ’ state, happens through
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a different mechanism. A susceptible agent is in contact with some other agents, and during

the time interval (t, t + ∆t], the susceptible agent receives the infection from its infected

neighbor with some probability. The process of receiving the infection from one infected

neighbor is independent of the process of receiving the infection from another neighbor.

Indeed, all the infected neighbors compete to infect the susceptible agent. The susceptible

agent becomes infected when one of the neighbors succeeds transmitting the infection. Next,

since the transitions in the SIS epidemic model are very similar to the transitions in most

existing epidemic models, we impose a similar structure of independent competing processes

to the generalized spreading model.

Assumption 1. A transition m → n for agent i is the result of several stochastically

independent competing processes: the process m→ n for agent i that happens independently

of the states of other agents, and the process m→ n for agent i because of interaction with

agent j 6= i, for each j ∈ {1, ..., N}\{i}.

According to Assumption (1), the interaction of agent i with agent j 6= i is stochastically

independent of its interaction with agent k /∈ {i, j}. Next, define the auxiliary counting

process Tm→n(i,j) (t) corresponding to the interaction of agent i with agent j. For convenience

of notations, let Tm→n(i,i) (t) correspond to the transition for agent i occurring independently

of the states of other agents. According to Assumption 1, conditioned on the network state,

these counting processes are stochastically independent. The transition m → n occurs in

the time interval (t, t + ∆t] if any of these counting processes records an event. Therefore,

Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)] can be written as

Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)] =

Pr[∃j ∈ {1, ..., N} s.t. Tm→n(i,j) (t+ ∆t)− Tm→n(i,j) (t) 6= 0|X(t)]. (3.4)

Each of the counting processes Tm→n(i,j) (t) is a Poisson process with the rate λm→n(i,j) (t), to
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be determined. Therefore,

Pr[Tm→n(i,j) (t+ ∆t)− Tm→n(i,j) (t) 6= 0|X(t)] = λm→n(i,j) (t)∆t+ o(∆t). (3.5)

The sum of independent Poisson processes is also a Poisson process with aggregate rate

equal to the sum of the individual rates (see Th. 7.3.4 in [47]). Therefore,

Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)] = ∆t
N∑
j=1

λm→n(i,j) (t) + o(∆t). (3.6)

The remaining part of this section is to determine λm→n(i,j) (t) properly. For this end, we

define notions of nodal and edge-based transitions.

Nodal Transition

As discussed earlier in 3.2.1, the curing process in SIS model happens with rate δ regardless

of the infection status of other agents. Correspondingly, we call a process that occurs

independently of the states of other agents a nodal transition. In general, for the nodal

transition m → n, we can consider a rate1 δmn ≥ 0, which is actually the rate for the

counting process Tm→n(i,i) (t), i.e.,

λm→n(i,i) (t) = δmn. (3.7)

Edge-Based Transition

In the SIS model, a susceptible agent i becomes infected with rate β if it is in contact with

infected agent j. Correspondingly, we call a process that occurs as the result of interaction

between a pair of agents an edge-based transition. Edge-based transitions are different from

nodal transitions because they depend on the states of other agents. For example, in the

SIS model, the infection process is an edge-based transition, where, the contact network

1Here, δmn is a non-negative scalar that represents nodal transitions. It should not be confused with the
Kronecker delta symbol.
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graph determines the contact among agents. However, as described in Section 3.3.2, we

extend the concept of contact network to multi-layer networks. In our formulation, the

interactions among agents consist of L graph layers. Corresponding to each layer l, there is

one influencer compartment ql, i.e., transition m→ n can occur for agent i as the result that

a neighbor j in layer l, i.e., al,ij = 1 , is in ql. For example, in the SIS model, ‘infected ’ is the

influencer compartment for the contact network, i.e., q1 = 2. In general, the transition from

compartment m to n is characterized by the transition rate βl,mn ≥ 0 for layer l. Therefore,

the edge-based transition from m to n 6= m through interaction of agent i with agent j is

described by the rate

λm→n(i,j) (t) =
L∑
l=1

βl,mnal,ij1{xj(t)=eql}, (3.8)

where 1{·} is the indicator function.

It is possible that the influencer compartment of two distinct layers is the same. For

example, recall the extended SAIS model with three network layers proposed in Section 3.2.3.

For the contact network and the infection information dissemination network, ‘infected ’ is

the influencer compartment. However, for the alert information dissemination network,

‘alert ’ is the influencer compartment.

Assigning only one influencer compartment to a graph layer allows the elegant develop-

ment of the subsequent analysis. However, a more general possibility is that a transition

m→ n occurs if a neighbor j, i.e., al,ij = 1 , is in a subset of the compartments, say ql,1 or

ql,2. This case can be treated within the same structure of GEMF, and if so, we can count

the network layer twice, i.e., we assume that the first time, the graph has the influencer

compartment ql,1 and the second time, the graph has the influencer compartment ql,2. An

example of this case is in Section 3.6.4.
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3.4.2 Transition Rate Graphs

To make the subsequent developments systematic, we propose to use transition rate graphs

defined as follows. A nodal transition rate graph is graph with M nodes where each node

represents a compartment. A directed link (m,n) fromm to n represents the nodal transition

m → n weighted by the positive transition rate δmn > 0. Corresponding to the nodal

transition rate graph, the adjacency matrices of the nodal transition rates Aδ is

Aδ , [δmn]M×M . (3.9)

An edge-based transition rate graph, corresponding to the network layer l, is a graph

with M nodes where each node represents a compartment. A directed link (m,n) from m

to n represents the edge-based transition m → n weighted by the positive transition rate

βl,mn > 0 in network layer l with influencer compartment ql. Corresponding to the edge-

based transition rate graph, the adjacency matrices of the edge-based transition rates Aβl

are

Aβl , [βl,mn]M×M . (3.10)

For example, in both the SIS and SAIS model described in Section 3.2.1 and Section

3.2.2, only the curing process is a nodal transition. The nodal transition rate graphs for

the SIS and SAIS models are shown in Fig. 3.4 and Fig. 3.5, respectively. The schematic

of the nodal transition rate graph in general is drawn in the left hand side of Fig. 3.6. In

both the SIS and SAIS models, the contact network is the only network layer. Therefore,

they have one edge-based transition rate graph. The edge-based transition rate graphs for

the SIS and SAIS models are shown in Fig. 3.4 and Fig. 3.5, respectively. The schematic

of the transition rate graphs in general is drawn in the right hand side of Fig. 3.6.

In Section 3.5 (see (3.26), below), the Laplacian matrices (see, [53]) associated to the

transition rate graphs appears in the expression of GEMS.
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Figure 3.4: Transition rate graphs in the SIS model: a) nodal transition rate graph; nodes
represent the two compartments ‘ susceptible’ and ‘ infected’, directed link from I to S repre-
sents curing process (a nodal transition) weighted by the curing rate δ > 0, and b) edge-based
transition graph of the contact network layer Gc; directed link from S to I represents the in-
fection process (edge-based transition) weighted by the infection rate β > 0. For the contact
network, the influencer compartment is q1 = 2, i.e., ‘ infected’.
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Figure 3.5: Transition rate graphs in the SAIS model: a) nodal transition rate graph; nodes
represent the three compartments ‘ susceptible’, ‘ infected’, and ‘alert’, directed link from
I to S represents curing process (a nodal transition) weighted by the curing rate δ > 0,
and b) edge-based transition graph of the contact network layer Gc; directed link from S
to I represents the infection process (edge-based transition) weighted by the infection rate
β > 0, directed link from S to A represents the alerting process (edge-based transition)
weighted by the alerting rate κ > 0, directed link from A to I represents the alerted infection
process (edge-based transition) weighted by the alerted infection rate βa > 0. For the contact
network, the influencer compartment is q1 = 2, i.e., ‘ infected’.
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Figure 3.6: Transition rate graphs in GEMF: a) nodal transition rate graph; nodes repre-
sent compartments, directed link (m,n) represent nodal transition m → n weighted by the
transition rate δmn > 0, and b) edge-based transition graph of network layer Gl; directed link
(m,n) represent the edge-based transition m → n weighted by the transition rate βl,mn > 0
in network layer l. The inducer compartment of layer l is ql.

3.4.3 Agent-Level Markov Description of the Spreading Process

In Section 3.4.1, we developed the expressions for the nodal transition and edge-based

transitions. Substituting (3.7) and (3.8) into (3.6) yields

Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)] = δmn∆t+ ∆t
∑L

l=1
βl,mnyl,i(t) + o(∆t), (3.11)

for i = {1, ..., N} and m 6= n, where

yl,i(t) ,
N∑
j=1

al,ij1{xj(t)=eql} (3.12)

is the number of neighbors of agent i in Gl that are in the corresponding influencer com-

partment ql.

Equation (3.11) provides an agent-level description of the Markov process. It can be

35



used directly for Monte Carlo numerical simulation of the spreading process.

3.5 GEMF: Generalized Epidemic Mean-Field Model

The objective of this section is to derive the time evolution of the state occupancy proba-

bilities.

3.5.1 Exact Markov Differential Equation

In the previous section, the spreading model was described, and the corresponding Markov

process was derived in (3.11). The evolution of the state occupancy probabilities associated

with a Markov process follows a set of differential equations known as the Kolmogorov

differential equations. The derivation of the Kolmogorov differential equation of a Markov

process is fairly standard (see, [47, 59]) when the transition rates between the states of the

Markov process are known. However, the challenge here is that the network states are the

actual Markov states, and instead of the transition rates between the network states, we

have the agent-level description of the transitions in (3.11). Thus in this section, we derive

the differential equations directly from (3.11).

According to (3.11), the probability of remaining in the previous state is

Pr[xi(t+ ∆t) = em|xi(t) = em, X(t)] =

1−
∑
n 6=m

Pr[xi(t+ ∆t) = en|xi(t) = em, X(t)]. (3.13)
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Combining (3.2), (3.11), and (3.13) leads to

E[xi(t+ ∆t)|xi(t) = em, X(t)] =

δm1 +
∑L

l=1 βl,m1yl,i(t)

...

δm(m−1) +
∑L

l=1 βl,m(m−1)yl,i(t)

−δ̃mm −
∑L

l=1 β̃l,mmyl,i(t)

δm(m+1) +
∑L

l=1 βl,m(m+1)yl,i(t)

...

δmM +
∑L

l=1 βl,mMyl,i(t)



∆t+ em + ε(∆t), (3.14)

where δ̃mm ,
∑

n6=m δmn, β̃l,mm ,
∑

n6=m βl,mn, and ε(∆t) is a function of higher order terms

of ∆t satisfying the condition

uT ε(∆t) = 0, (3.15)

where u is the all ones vector with appropriate dimensions.

Next we define the generalized transition matrices Qδ ∈ RM×M and Qβl ∈ RM×M with

the elements

(Qδ)mn , −δmn, (Qβl)mn , −βl,mn, m 6= n (3.16)

(Qδ)mm ,
∑
n 6=m

δmn, (Qβl)mn ,
∑
n 6=m

βl,mn.

According to definitions (3.16), the matrices Qδ and Qβl are actually the Laplacian matrices

of transition rate graphs defined in Section 3.4.2.
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Using (3.14) and the definition (3.16), E[xi(t+ ∆t)|X(t)] is

E[xi(t+ ∆t)|X(t)] = −QT
δ xi(t)∆t

−
L∑
l=1

yl,i(t)Q
T
βl
xi(t)∆t

+ xi(t) + ε(∆t), (3.17)

where yl,i(t) is defined in (3.12). Computing the expected value of each side of (3.17), we

get

E[xi(t+ ∆t)] = −QT
δ E[xi(t)]∆t

−
L∑
l=1

QT
βl
E [yl,i(t)xi(t)] ∆t

+ E[xi(t)] + ε̄(∆t), (3.18)

where ε̄(∆t) = E[ε(∆t)] and we have used the formula for iterative expectation (see [60])

rule E[E[X|Y ]] = E[X] to find E[xi(t+ ∆t)]. Moving the E[xi(t)] term in (3.18) to the left

side and dividing both sides by ∆t yields

E[xi(t+ ∆t)]− E[xi(t)]

∆t
= −QT

δ E[xi(t)]−
L∑
l=1

QT
βl
E [yl,i(t)xi(t)] +

1

∆t
ε̄(∆t), (3.19)

Letting ∆t→ 0 in (3.19), we obtain

d

dt
E[xi(t)] = −QT

δ E[xi(t)]−
L∑
l=1

QT
βl
E [yl,i(t)xi(t)] . (3.20)
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Furthermore, according to (3.12), the term E [yl,i(t)xi(t)] in (3.20) can be written as

E [yl,i(t)xi(t)] =
N∑
j=1

al,ijE [(xj)qlxi(t)] . (3.21)

The term E [(xj)qlxi(t)] in 3.21 is actually embedded in E[xi(t) ⊗ xj(t)]. Therefore, the

evolution of E[xi(t)] depends on the E[xi(t) ⊗ xj(t)] term, which is the joint state of pairs

of nodes. This means that the marginal information about the compartmental occupancy

probabilities is not enough to fully describe the time evolutions of the marginal probabilities.

If we continue to derive the evolution law for E[xi(t) ⊗ xj(t)], it turns out that the time

derivative of E[xi(t) ⊗ xj(t)] depends on terms of the form E[xi(t) ⊗ xj(t) ⊗ xk(t)], which

are the joint states of triplets. This dependency of the evolution of expectation of K-node

groups upon expectation of (K + 1)-node groups continues until K reaches K = N . As a

result, any system describing the evolution of the expected value of the joint state of any

group of K < N nodes is not a closed system. When K = N , the expectation of the joint

state of all nodes E[x1(t)⊗ · · · ⊗ xN(t)], which according to definition (3.3) is actually the

expectation of the network state, satisfies a differential equation of the form

d

dt
E[X] = −QTE[X], (3.22)

where Q ∈ RMN×MN
is the infinitesimal generator (see [47, 59]) of the underlying Markov

process. The Kolmogorov differential equation (3.22), which we refer to as the exact Markov

model, is derived explicitly in the Appendix.

The exact Markov equation (3.22) fully describes the system. However, the above dif-

ferential equation has MN states. Therefore for large values of N , it is neither analytically

nor computationally tractable. The following section shows that through a mean-field type

approximation, a differential equation with MN states can be derived.
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3.5.2 GEMF: Generalized Epidemic Mean-Field Model

One way to reduce the MN state space size is to use closure approximation techniques. As

explained in the previous section, expectations of order K depend on expectation of order

K + 1. The goal of closure techniques is to approximate the expectations of order K + 1,

and express them in terms of expectations of order less than or equal to K. In this way,

a new set of differential equations is obtained that is closed and has the state space size

MK
(
N
K

)
, which is polynomially growing by N . The simplest approximation is the mean-

field type approximation [61]. In first order mean-field models [21], the states of nodes are

assumed to be independent random variables. It is also possible to consider higher order

mean-field approximations. Cator and Van Mieghem [62] used a second order mean-field

approximation and found more accurate performance of the model. Another approach is

called the moment closure technique, where the joint states of triplets are assumed to have a

specific distribution (usually normal or lognormal) [20,61]. In this way, the joint expectation

of triplets is expressed in terms of expectations of pairs. Taylor et al. [61] have compared

the performances of different approximations.

In this study, we use a first order mean-field type approximation. Using this approxi-

mation, the joint expected values are approximated in terms of marginal expected values.

Specifically, the term E [(xj)qlxi(t)] in (3.21) is approximated by

E [(xj)qlxi(t)] ' (E [(xj)ql ])E[xi(t)] . (3.23)

This approximation assumes independence among the random variables. Using the approx-

imation (3.23), we can describe the time evolution of the expected values through a set of

ordinary differential equations with MN states.

We can denote by vi(t), the expected value of xi at time t, i.e.,

vi(t) , E[xi(t)]. (3.24)
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Substituting E [yl,i(t)xi(t)] =
∑N

j=1 al,ij(vj(t))qlvi(t) in (3.20), from (3.21), (3.23), and (3.24),

yields

d

dt
vi(t) = −QT

δ vi(t)−
L∑
l=1

QT
βl

N∑
j=1

al,ij(vj(t))qlvi(t). (3.25)

Arranging the terms in (3.25) specifies our generalized epidemic mean-field model GEMF:

dvi
dt

= −QT
δ vi −

L∑
l=1

(
N∑
j=1

al,ijvj,ql)Q
T
βl
vi, i = {1, ..., N}. (3.26)

Having initially uTvi(t0) = 1, the sum of the probabilities is guaranteed to be 1 at any

time. The reason is that from (3.26) uTvi does not change over time because

d

dt
uTvi = −uTQT

δ vi −
L∑
l=1

(
N∑
j=1

al,ijvj,ql)u
TQT

βl
vi

= −(Qδu)Tvi −
L∑
l=1

(
N∑
j=1

al,ijvj,ql)(Qβlu)Tvi

= 0. (3.27)

The last conclusion is for the fact that Qδu = 0 and Qβlu = 0, since indeed Qδ and Qβl are

the graph Laplacians for which u is the eigenvector corresponding to a zero eigenvalue.

GEMF has a systematic procedure to develop different spreading mean-field models.

For any specific scenario, the compartment set, the network layers, and their corresponding

influencer compartments should be identified, and the transition rate graphs should be

drawn. Next, the individual-based mean-field model of the spreading scenario is found by

plugging the matrices Qδ and Qβl , obtained from the transition rate graphs, into GEMF

(3.26).
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3.5.3 Capabilities and Limitations of GEMF

GEMF can be used to describe a wide range of spreading scenarios in a systematic way.

In part, this is because in GEMF, there is no approximation of the underlying networks.

The only approximation belongs to the mean-field-type approximation (3.23) and how much

this results in deviation from exactness is outside the scope of this dissertation. However,

the available studies for the mean-field SIS model (see, [63,64]) can shed some light on this

problem. Concerning the SIS model, extensive numerical simulations have shown that for

sparser graphs, the mean-field model is less accurate, while for graphs with more mixing, the

mean-field model is closer to the exact process. For a homogeneous mixing contact network,

it has been proved that the mean-field model is asymptotically exact, i.e., as N → ∞.

Furthermore, the accuracy of the mean-field model very much depends on the range of the

epidemic parameters. For example, in the SIS spreading process, the mean-field model is

accurate for large values of the infection rate for any graph, while for infection rates close to

the epidemic threshold, there is considerable difference between the response of the mean-

field model and the exact model. Additionally, studies have shown that mean-field SIS

models fail to explain the existence of a stable, disease-free, absorbing state [65].

If the initial states are seeded according to an uncorrected distribution, i.e., at the

initial time equation (3.23) is actually exact, then the mean-field model performs fairly

accurately during the early stages of system response. The reason for this is that nodes

are poorly correlated at the early stage but become more and more correlated as time

goes on. Consequently, accuracy of the transient response of mean-field models has been

reported in [66] for the SIS spreading process. The steady-state solution of the mean-field

models is also important. For example, the steady-state solution of SIS model belongs to

the metastable state in the SIS epidemic process [21]. If accuracy is of greater concern, then

higher order closure techniques can be used. However, this will result in a much larger state

space size. Alternatively, GEMF has the smallest state space size to describe the spreading

process of the type considered in this chapter. Any further reduction of the state space
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essentially implies adopting approximation of the network structure.

One of the great benefits of the GEMF model is its analytical tractability. The SIS

mean-field model suggests that the epidemic threshold is the inverse of the spectral radius

of the contact network [21]. Finding relationships between spectral properties of underlying

network layers and the spreading process is a problem of great interest. In particular,

optimal design of some network layers given other network layers is very important from

a technological view point. For example, Sahneh and Scoglio [6] used a mean-field SAIS

model to find optimal topology of the information dissemination network given a contact

network to reduce the impact of an epidemic.

3.6 Case Studies

In this section, we show that GEMF can reproduce the N-Intertwined SIS model [21] and

the SIR model [51]. Furthermore, the section develops an SAIS model with information

dissemination and a model for a scenario where two pathogens are spreading in a host

population.

3.6.1 SIS N-Intertwined Model

The SIS model, explained in Section 3.2.1, has M = 2 number of compartments. The

epidemic parameters are the infection rate β and the curing rate δ. In this model, the

interaction is only through the contact graph, where ‘infected ’ is the influencer compartment.

Hence, L = 1 and q1 = 2. The transition rate graphs for the SIS model are shown in Fig.

3.4. The adjacency matrices corresponding to the nodal and edge-based transition rate

graphs follow from Fig. 3.4,

Aδ =

0 0

δ 0

 , Aβ =

0 β

0 0

 . (3.28)
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Therefore, GEMF (3.26) suggests the following set of differential equations

dvi
dt

= −QT
δ vi −

∑N

j=1
aijvj,2Q

T
β vi, (3.29)

for the evolution of the compartment probability vectors, where the Qδ and Qβ matrices,

corresponding to Aδ and Aβ respectively, are

Qδ =

 0 0

−δ δ

 , Qβ =

β −β

0 0

 . (3.30)

We can denote the probabilities of being susceptible by Si and being infected by Ii, i.e.,

vi = [Si, Ii]
T . Therefore, the evolution of these probabilities according to GEMF is described

as

[
Ṡi
İi

]
= −

 0 0

−δ δ


T [
Si
Ij

]
− (

N∑
j=1

aijIj)

β −β

0 0


T [
Si
Ij

]

=

[
δIi − βSi(

∑N
j=1 aijIj)

−δIi + βSi(
∑N

j=1 aijIj)

]
. (3.31)

Since Si + Ii = 1, the differential equation

dIi
dt

= −δIi + β(1− Ii)(
∑N

j=1
aijIj) (3.32)

is obtained for Ii and i ∈ {1, ..., N}, which is exactly the SIS N-Intertwined model in [21].

3.6.2 SIR N-Intertwined Model

Youssef and Scoglio [51] developed the SIR N-Intertwined model where each agent can

be either ‘susceptible,’ ‘infected,’ or ‘recovered ’. Therefore, the number of compartments

in this model is M = 3. In this model, a susceptible agent can become infected if it is
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Figure 3.7: Transition rate graphs in the SIR model: a) nodal transition rate graph; nodes
represent the two compartments ‘ susceptible’, ‘ infected’, and ‘ recovered’, directed link from
I to R represents curing process (a nodal transition) weighted by the curing rate δ > 0, and
b) edge-based transition graph of the contact network layer Gc; directed link from S to I
represents the infection process (edge-based transition) weighted by the infection rate β > 0.
For the contact network, the influencer compartment is q1 = 2, i.e., ‘ infected’.

surrounded by infected agents, and the infection process is characterized by the infection

rate β. Furthermore, an ‘infected ’ agent becomes ‘recovered ’ with rate δ. Unlike the SIS

model, a recovered agent does not become infected again in the SIR model. Similar to SIS,

there is only L = 1 graph layer and q1 = 2. The transition rate graphs, shown in Fig. 3.7,

illustrate that

Aδ =


0 0 0

0 0 δ

0 0 0

 , Aβ =


0 β 0

0 0 0

0 0 0

 . (3.33)

Therefore, GEMF (3.26) suggests the following set of differential equations

dvi
dt

= −QT
δ vi −

∑N

j=1
aijvj,2Q

T
β vi (3.34)

for the evolution of the compartment probability vectors, where the Q matrices are

Qδ =


0 0 0

0 δ −δ

0 0 0

 , Qβ =


β −β 0

0 0 0

0 0 0

 , (3.35)
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based on (3.33).

We can denote the probabilities of being susceptible, infected, and recovered by Si, Ii ,

and Ri, respectively; i.e., vi = [Si, Ii, Ri]
T . The evolution of these probabilities are then

described as


Ṡi

İi

Ṙi

 = −


0 0 0

0 δ −δ

0 0 0


T 

Si

Ii

Ri



− (
N∑
j=1

aijIj)


β −β 0

0 0 0

0 0 0


T 

Si

Ii

Ri



=


βSi(

∑N
j=1 aijIj)

−βSi(
∑N

j=1 aijIj)− δIi

δIi

 (3.36)

Since, Si + Ii +Ri = 1, the differential equation

dIi
dt

= −δIi + β(1− Ii −Ri)(
∑N

j=1
aijIj)

dRi

dt
= δIi (3.37)

is obtained for Ii and Ri, which is exactly the SIR N-Intertwined model in [51].

3.6.3 SAIS Model with Information Dissemination

Consider the SAIS model in Section 3.2.3, and assume that a susceptible agent becomes alert

not only if there are infected individuals in its neighborhood, but also if there are alert indi-

viduals in the neighborhood. Also, assume that the latter happens with rate α. Moreover,

assume that alert agents can go back to susceptible state with an un-alerting rate γ. The
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interaction is through the contact network G1, infection information dissemination network

G2, and the alert information dissemination network G3. For both the contact network and

the infection information dissemination network, ‘alert ’ is the influencer compartment. For

the alert information dissemination network, ‘alert ’ is the influencer compartment. Hence,

L = 3 and q1 = 2, q2 = 2, q3 = 3.

From Fig. 3.8,

Aδ =


0 0 0

δ 0 0

γ 0 0

 , Aβ1 =


0 β0 0

0 0 0

0 βa 0

 ,

Aβ2 =


0 0 κ

0 0 0

0 0 0

 , Aβ3 =


0 0 α

0 0 0

0 0 0

 . (3.38)

Therefore, GEMF (3.26) suggests the following set of differential equations

dvi
dt

= −QT
δ vi −

N∑
j=1

a1,ijvj,2Q
T
β1
vi (3.39)

−
N∑
j=1

a2,ijvj,2Q
T
β2
vi −

N∑
j=1

a2,ijvj,3Q
T
β3
vi
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for the evolution of the compartment probability vectors, where the Q matrices are

Qδ =


0 0 0

−δ δ 0

−γ 0 γ

 , Qβ2 =


β0 −β0 0

0 0 0

0 −βa βa

 ,

Qβ2 =


κ 0 −κ

0 0 0

0 0 0

 , Qβ3 =


α 0 −α

0 0 0

0 0 0

 , (3.40)

according to (3.38).

Sahneh and Scoglio [6] used a model very similar to (3.39), where there are only two

layers of graphs, namely, the contact network and the infection information dissemination

network, to assess the effectiveness of the information networks in reducing the impact of

an epidemic. A novel information dissemination metric is introduced that measures the

impact of information network on improving the resilience of the system against epidemic

spreading. The developed information dissemination metric leads to an analytical solution

for the optimal topology of the information network to minimize the impact of an epidemic.

3.6.4 Multiple Interacting Pathogen Spreading

The problem of multiple pathogen spreading has recently attracted substantial attention (see

e.g. [67–70]). Most models consider a full-cross immunity between pathogens, i.e., a node

infected by one type of pathogen cannot be infected with any other type of pathogen at the

same time. Beutel et al. [69] considered the case where the pathogens also have an interacting

effect on each other and spread on the same contact network. In the model introduced by

Marceau et al. [70], pathogens do not interact but each pathogen has a separate contact

network. In the following, we apply GEMF to develop an individual-based bi-spreading SIS

model for epidemic spreading of multiple interacting pathogens, very similar to [69], where
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Figure 3.8: Transition rate graphs in the SAIS model: a) nodal transition rate graph; nodes
represent the three compartments ‘ susceptible’, ‘ infected’, and ‘alert’, directed link from
I to S represents curing process weighted by the curing rate δ > 0, directed link from A to
S represents the un-alerting process weighted by the un-alerting rate γ > 0, and b) edge-
based transition graph of the contact network layer Gc; directed link from S to I represents
the infection process (edge-based transition) weighted by the infection rate β > 0, directed
link from A to I represents the alerted infection process (edge-based transition) weighted
by the alerted infection rate βa > 0. For the contact network, the influencer compartment
is q1 = 2, i.e., ‘ infected’. c) edge-based transition graph of the infection information dis-
semination network layer GiIDN ; directed link from S to A represents the alerting process
weighted by the alerting rate κ > 0, For the infection information dissemination network, the
influencer compartment is q1 = 2, i.e., ‘ infected’. d) edge-based transition graph of the alert
information dissemination network layer GaIDN ; directed link from S to A represents the
alerting process weighted by the alerting rate α > 0, For the alert information dissemination
network, the influencer compartment is q1 = 3, i.e., ‘alert’.
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each pathogen, as in [70], has a different contact network.

Consider a spreading scenario where two pathogens A and B are spreading among a

host population. The contact network for virus A is GA, while B spreads through GB.

The transition rates for the pathogens depend on each other. For example, the infection

process of a susceptible agent by pathogen A has different infection rate if it is already

infected by B versus being susceptible to B. In general, we assume the transition rates are

δA0, δA1, βA0, βA1, and δB0, δB1, βB0, βB1. For example, if an agent is infected by A but is not

infected by B, then it recovers by rate δA0. Where as, if it is also infected by B, disease A

gets cured by rate δA1. Similar arguments apply for other rate terms.

For this spreading scenario, M = 4 compartments can be defined to model the problem.

Agent i is in compartment 1 if it is susceptible to both A and B. It is 2 if it is susceptible

to A but infected by B. It is 3 if infected by A and susceptible to B. And finally, it is 4 if it

is infected by both A and B. The nodal and edge-based transitions are shown in Fig. 3.9.

It follows from Fig. 3.9,

Aδ =



0 0 0 0

δB0 0 0 0

δA0 0 0 0

0 δA1 δB1 0


, AβA =



0 0 βA0 0

0 0 0 βA1

0 0 0 0

0 0 0 0


,

AβB =



0 βB0 0 0

0 0 0 0

0 0 0 βB1

0 0 0 0


. (3.41)
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Figure 3.9: Transition rate graphs in the SIS-type interacting disease propagation: a) nodal
transition rate graph; nodes represent the four compartments ‘SASB’, ‘SAIB’, , ‘ IASB’, and
‘ IAIB’, directed links from IASB to SASB and from IAIB to SAIB represents curing process for
virus A weighed with curing rates δA0 and δA1, respectively, and the directed links from SAIB
to SASB and from IAIB to IASB represents curing process for virus B weighted by the curing
rates δB0 and δB1, respectively, and b) edge-based transition graph of the contact network
layer GA for virus A; directed link from SASB to IASB and from SAIB to IAIB represents
infection process for virus A weighed with infection rates βA0 and βA1, respectively. For
the contact network GA, the influencer compartment is qA = 3, 4, i.e., IASB and IAIB.
c) edge-based transition graph of the contact network layer GB for virus B; directed link
from SASB to SAIB and from IASB to IAIB represents infection process for virus B weighed
with infection rates βB0 and βB1, respectively. For the contact network GB, the influencer
compartment is qB = 2, 4, i.e., SAIB and IAIB.
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Therefore, GEMF (3.26) suggests the following set of differential equations

v̇i = −QT
δ vi −

N∑
j=1

aA,ij(vj,3 + vj,4)QT
βA
vi

−
N∑
j=1

aB,ij(vj,2 + vj,4)QT
βB
vi (3.42)

for the evolution of the compartment probability vectors

Qδ =



0 0 0 0

−δB0 δB0 0 0

−δA0 0 δA0 0

0 −δA1 −δB1 δA1 + δB1


,

QβA =



βA0 0 −βA0 0

0 βA1 0 −βA1

0 0 0 0

0 0 0 0


,

QβB =



βB0 −βB0 0 0

0 0 0 0

0 0 βB1 −βB1

0 0 0 0


. (3.43)

3.7 Conclusion

Inspired by existing individual-based epidemic models, we propose the generalized epidemic

mean-field (GEMF) model. While using the same common assumptions of most of the

existing individual-based epidemic models, GEMF is capable of modeling more complex
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scenarios with multiple compartment and multiple network layers. The set of differential

equations that fully describes the time evolution of the compartment occupancy probabil-

ities has MN equations. Even though the system is linear, it is both computationally and

analytically intractable, managed through a mean-field type approximation by a set of MN

nonlinear differential equations. The latter system, referred to as GEMF, has a simple struc-

ture. It is characterized by the Laplacian of the transition rate graphs and the elements of

the adjacency matrices of the network layers. A systematic procedure for developing the

model is proposed that culminates in the GEMF governing equations (3.26). The GEMF

model is rigorous, allows analytical tractability, and is simple to apply to many specific

spreading processes, as shown in the several examples presented in this study. We believe

that the GEMF framework has the potential to allow the development of many different

and novel individual-based epidemic models considering new compartments and multiple

complex interaction structures.

3.8 Appendix: Derivation of Exact Markov Equation

In this section, we explicitly derive the expression for Q in (3.22). The idea is to derive the

expression for E[X(t + ∆t)] as a function of E[X(t)]. For this, first we find the expression

for the conditional expectation E[X(t+∆t)|X(t)]. Then, the expression for E[X(t+∆t)] is

found by averaging out the conditional. For small values of ∆t, we can assume that only one

transition happens at each time step, i.e., starting at network state at time t, the network

state can only go to a new state at time t+ ∆t for which only the state of a single node has

been changed. Given the network state X(t) = eZ , state xi(t) = ezi of each agent i can be

determined and we have

eZ = ez1 ⊗ · · · ⊗ ezN . (3.44)
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Since only at most one single node can make a transition, the conditional expected value of

the network state at time t+ ∆t is

E[X(t+ ∆t)|X(t) = eZ ] =
∑N

i=1
ez1 ⊗ · · · ⊗ E[xi(t+ ∆t)|X(t) = eZ ]⊗ · · · ⊗ ezN , (3.45)

where from (3.17), the expression for E[xi(t+ ∆t)|X(t) = eZ ] is

E[xi(t+ ∆t)|X(t) = eZ ] = −QT
δ ezi∆t

−
L∑
l=1

N∑
j=1

al,ij1{zj=ql}Q
T
βl
ezi∆t

+ ezi(t) + ε(∆t). (3.46)

Averaging all of the possible network states yields the expected value of the network

state at time t+ ∆t

E[X(t+ ∆t)] =
MN∑
Z=1

E[X(t+ ∆t)|X(t) = eZ ] Pr[X(t) = eZ ]

=
MN∑
Z=1

(
∑N

i=1
ez1 ⊗ · · · ⊗ E[xi(t+ ∆t)|X(t) = eZ ]⊗ · · · ⊗ ezN ) Pr[X(t) = eZ ]. (3.47)

Substituting for E[xi(t+ ∆t)|X(t) = eZ ] from (3.46), E[X(t+ ∆t)] is deduced to be

E[X(t+ ∆t)] = −QT
δ E[X(t)]∆t−

L∑
l=1

QT
βl
E[X(t)]∆t+ E[X(t)] + o(∆t), (3.48)

where

Qδ =
∑N

i=1
IM×M ⊗ · · · ⊗Qδ ⊗ · · · ⊗ IM×M ,
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and Qβl is such that its Z−th column is

col(Qβl , Z) =
∑N

i=1
ez1 ⊗ · · · ⊗ (

N∑
j=1

al,ij1{zj=ql}Qβlezi)⊗ · · · ⊗ ezN . (3.49)

By letting ∆t→ 0 in (3.48), the time evolution of E[X] can be fully described by

d

dt
E[X] = −QTE[X], (3.50)

where Q is defined as

Q = Qδ +
L∑
l=1

Qβl . (3.51)

The differential equation (3.50) is the exact Markov equation.
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Part II

Problems in Interconnected

Multilayer Networks
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Chapter 4

Effect of Coupling on the Epidemic

Threshold in Interconnected Complex

Networks

4.1 Introduction

Understanding spreading processes in interconnected networks is a major challenge of com-

plex networks, which has recently attracted substantial attention [34–37]. A problem of spe-

cial interest is how interconnection of network influences robustness measures like epidemic

threshold. Dickison et al. [35] studied two interconnected networks following the standard

configuration model and interconnected with their own intranetwork, and identified and

quantitated strongly-coupled networks and weakly coupled networks. In strongly-coupled

epidemics, either the epidemic invades both networks or not spread at all. In contrast, in

weakly-coupled network systems, an intermediate scenario can happen where an epidemic

spreads in one network but does not invade the coupled network. Saumell-Mendiola et

al. [36] proposed heterogeneous mean-field approach to study epidemics on two intercon-

nected networks, and showed cases where small number of interconnection among two net-
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works exhibited endemic state. Results for epidemic threshold in interconnected networks

are limited to homogeneous mixing populations and degree distribution arguments, and

analysis of epidemics on interconnected network with no approximation on the underlying

network is missing in the literature.

The objective of this chapter is to study the epidemic threshold in interconnected

networks, with arbitrary topology. In particular, we study the spreading process of a

susceptible-infected-susceptible (SIS) type epidemic model in an interconnected network

of two generic graphs with a generic interconnection. In our model, the epidemic-related

parameters, i.e., infection rates and recovery rates, are different and independent from one

network to the other. This is crucial to our interconnected network problem formulation,

since a generalization of epidemic threshold to interconnected systems must be considerate

of multiple possible degrees of freedom (DOF) inherent in such networks. For example, in

for a zoonotic disease one may look for critical infection rate in human population, which

necessarily will be a function of infection rate in the animal population and interactions

between the two populations.

For two coupled networks, our idea is that the concept of epidemic threshold value ex-

tends to epidemic threshold curve. Taking into account multiple DOFs for interconnected

networks is critical for a more realistic and practical threshold concept, as numerous in-

frastructures function in a distributed manner. As a classic example, autonomous systems

forming the Internet are under the control of different administrative entities.

The main contribution of this study is introduction of epidemic threshold curve. Using

bifurcation theory and spectral graph theory, we find the epidemic threshold of one net-

work as a function of the effective infection rate of the other coupled network and adjacency

matrices of each graph and their interconnection, and provide a quantitative measure to dis-

tinguish weak and strong interconnection topologies. Importantly, we make use of spectral

analysis to analyze epidemic spreading in interconnected networks with generic arbitrary

topology.
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G1

G2

Figure 4.1: Schematics of the coupling between graphs G1 (in black) and G2 (in red) contact
networks. The blue links represent the coupling between the nodes of the two graphs. G1 and
G2 are not necessarily connected. However, the whole interconnected network is connected.

4.2 Modeling SIS Spreading in Interconnected Net-

works

Consider two groups of agents of sizes N1 and N2. In order to facilitate the subsequent

developments, we label the agents of the first graph G1 from 1 to N1, and the agents of the

second graph G2 from N1 + 1 to N1 +N2. The collective adjacency matrix A, defined as

A ,

A11 A12

A21 A22

 ∈ R(N1+N2)×(N1+N2) , (4.1)

represents the contact between all of the agents. Since the contact topology in this study

is undirected, A11 and A22 are symmetric matrices and A21 = AT12. According to definition

(4.1), agent i is connected to agent j iff (A)ij = 1. A schematic of the interconnected

contact network of the agents is represented in Fig. 4.1.

The SIS spreading model over a single graph described in Chapter 2 can be generalized
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in the following way. The curing rate for agents of graphs G1 and G2 are δ1 ∈ R+ and

δ2 ∈ R+, respectively. The infection rates β11, β12, β21, β22 ∈ R+ are such that a susceptible

agent of graph Gs receives the infection from an infected agent in Gs′ with the infection rate

βss′ , for s, s′ ∈ {1, 2}. Similar to the networked SIS model (2.6), the infection probabilities

of the agents evolve according to the following set of differential equations:

ṗi = (1− pi){β11

N1∑
j=1

aijpj + β12

N1+N2∑
j=N1+1

aijpj} − δ1pi, (4.2)

for i ∈ {1, ..., N1}, and

ṗi = (1− pi){β21

N1∑
j=1

aijpj + β22

N1+N2∑
j=N1+1

aijpj} − δ2pj, (4.3)

for i ∈ {N1 + 1, ..., N1 +N2}.

Since infection process is the result of interaction between a pair of agents, it is reasonable

to assume that β11, β12, β21, β22 are not completely independent of each other. In this study,

we make the following assumption:

Assumption 2. The following constraint exists among the infection rates

β11β22 = α2β12β21, (4.4)

where α ∈ R+ is a positive scalar accounting for heterogeneity of contacts within a single

network and across the two networks.

The motivation for the above assumption is that the infection rate in the SIS model (2.6)

can be considered as β = µπ where µ ∈ R+ is the rate that an infected agents transmits

the infection and π ∈ [0, 1] is the probability that a susceptible agent receives a transmitted

infection. Similarly, for β11, β12, β21, β22 in (4.2) and (4.3) we can consider β11 = µ1π1 and

β22 = µ2π2 within each network, and β12 = αµ1π2, β21 = αµ2π1 across the two networks.

Hence, (4.4) is justified. Furthermore, in order to facilitate the subsequent analysis, we
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Figure 4.2: Schematics of epidemic threshold curve.

define

τ11 ,
β11

δ1

, τ12 ,
β12

δ1

, τ21 ,
β21

δ2

, τ22 ,
β22

δ2

. (4.5)

4.3 Main Results

4.3.1 Problem Statement

Suppose that agents of graph G1 are connected to agents of graph G2, and the overall

contact among the agents is determined by A defined in (4.1). For given values (τ11, τ22),

either all nodes eventually become healthy, or there is an endemic state where all nodes

have positive infection probabilities due to connectivity of the interconnected network G.

We are interested in finding the epidemic threshold curve (τ11,c, τ22,c) which separates these

two regions. Comparing (2.6) and (4.2), it can be concluded that interconnection increases

the probability of infection. This conclusion is actually intuitive: when interconnected with

other agents, there is more possibility to receive the infection. Therefore, τ11,c < 1/λ1(A11),

τ22,c < 1/λ1(A22). Figure 4.2 shows an illustration of the epidemic threshold curve.

Our approach to find the epidemic threshold curve is to hold τ22 constant and then

to find a threshold value τ11,c such that for effective infection rate τ11 > τ11,c the steady-

state infection probabilities take positive values. Therefore, τ11,c becomes a function of
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τ22. In order for existence of such a threshold value, τ22 must be such that if there is no

interconnection, infection cannot survive in G2, i.e.,

τ22 <
1

λ1(A22)
. (4.6)

4.3.2 Equation for Epidemic Threshold

We use bifurcation theory to find the epidemic threshold. From (4.2) and (4.3), the equi-

librium points of the infection probabilities satisfy the following set of algebraic equations

p∗i
1− p∗i

= τ11

N1∑
j=1

aijp
∗
j + τ12

N1+N2∑
j=N1+1

aijp
∗
j , (4.7)

for i ∈ {1, ..., N1}, and

p∗i
1− p∗i

= τ21

N1∑
j=1

aijp
∗
j + τ22

N1+N2∑
j=N1+1

aijp
∗
j , (4.8)

for i ∈ {N1 + 1, ..., N1 +N2}.

Lemma 1. If the overall contact network is connected, the steady-state values of the infection

probabilities are either zero for all of the agents or absolutely positive for each agent.

Proof. The steady-state values for the infection satisfies (4.7) and (4.8). Therefore, p∗i = 0

for ∀i ∈ {1, ..., N1 + N2} is a solution for the steady-state infection probabilities. Suppose

there exists a node j such that p∗j > 0. According to (4.7) and (4.8), for any node i that is

a neighbor of node j, i.e., aij 6= 0, the steady-state infection probability is

p∗i =
τ11

∑N1

j=1 aijp
∗
j + τ12

∑N1+N2

j=N1+1 aijp
∗
j

1 + τ11

∑N1

j=1 aijp
∗
j + τ12

∑N1+N2

j=N1+1 aijp
∗
j

, (4.9)
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if i ∈ {1, ..., N1} and

p∗i =
τ21

∑N1

j=1 aijp
∗
j + τ22

∑N1+N2

j=N1+1 aijp
∗
j

1 + τ21

∑N1

j=1 aijp
∗
j + τ22

∑N1+N2

j=N1+1 aijp
∗
j

,

if i ∈ {N1 + 1, ..., N1 +N2}, which is positive because
∑N1

j=1 aijp
∗
j > 0 or

∑N1+N2

j=N1+1 aijp
∗
j > 0.

Same procedure applies to the neighbors of node i, and so on. Hence, if the overall contact

network is connected and at least one of the agents have nonzero infection probability, then

p∗i > 0 for all i ∈ {1, ..., N1 +N2}.

Before the epidemic threshold, origin is the only solution to (4.7) and (4.8). Epidemic

threshold is the critical value τ11,c such that a second equilibrium point starts leaving the

origin. A corollary of Lemma 1 is that the epidemic threshold τ11,c is such that p∗i = 0 and

∂p∗i
∂τ11

> 0 for every i ∈ {1, ..., N1 + N2}. Taking the right derivative of (4.7) and (4.8) with

respect to τ11 at τ11 = τ11,c and p∗i = 0 yields

∂p∗i
∂τ11

= τ11,c

N1∑
j=1

aij
∂p∗j
∂τ11

+ τ12

N1+N2∑
j=N1+1

aij
∂p∗j
∂τ11

, i ∈ {1, ..., N1}, (4.10)

∂p∗i
∂τ11

= τ21

N1∑
j=1

aij
∂p∗j
∂τ11

+ τ22

N1+N2∑
j=N1+1

aij
∂p∗j
∂τ11

, i ∈ {N1 + 1, ..., N1 +N2}. (4.11)

Defining V1 , [
∂p∗1
∂τ11

, ...,
∂p∗N1

∂τ11
]T and V2 , [

∂p∗N1+1

∂τ11
, ...,

∂p∗N1+N2

∂τ11
]T , the equations (4.10) and

(4.11) can be equivalently expressed in the collective form as

τ11,cA11 τ12A12

τ21A
T
12 τ22A22


 V1

V2

 =

 V1

V2

 . (4.12)

The critical value of the effective infection rates are those for which the above equation has

a positive solution.

According to Assumption 4.6, if V1 is positive then V2 = τ21(I − τ22A22)−1AT12V1 exists
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and is non-negative. Therefore, (4.12) is equivalently expressed as

HV1 = V1 (4.13)

where H is defined as

H , τ11,cA11 + τ21τ12A12(I − τ22A22)−1AT12. (4.14)

4.3.3 Effect of Coupling on Epidemic Threshold

The rest of the analysis is to find the threshold value τ11,c such that (4.13) has a positive

solution for V1. The following results facilitate the proof of Theorem 2, which is the main

result in this work.

Definition 1. A path from node i ∈ G1 to node j is of class (l1, ..., ls), with non-negative

integers l1, ..., ls, if it first take l1 steps in G1 then goes to G2 and take l2 steps in G2 then

goes back to G1 and takes l3 steps in G1 and so on until it takes the last ls steps to reach j.

It can be inferred from the above definition that a path of class (l1, ..., ls), has length

L = (s− 1)+ l1 + · · ·+ ls.

Lemma 2. The number of paths of length L from node i ∈ G1 to node j corresponding to

the class (l1, ..., ls) is:

• the (i, j)-th entry of Al111A12A
l2
12A21 · · ·A21A

ls
1 , if j ∈ {1, ..., N1},

• the (i, j −N1)-th entry of Al111A12A
l2
12A21 · · ·A12A

ls
2 , if j ∈ {N1 + 1, ..., N1 +N2},

where A0
11 = IN1×N1 and A0

22 = IN2×N2, by convention.

Proof. We use induction for the proof. For L = 1, the number of paths from node i to j

is equal to 1 if i is connected to j, and is zero otherwise. If j ∈ {1, ..., N1}, path of length
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L = 1 corresponds to the class (1). Therefore, the number of paths from node i to j is

equal to the (i, j)-th entry of A11. If j ∈ {N1 + 1, ..., N1 +N2}, then a path of length L = 1

corresponds to the class (0, 0). In this case, the number of paths from node i to j is equal

to the (i, j − N1)-th entry of A12 = A0
1A12A

0
2. Therefore for L = 1, the Lemma is correct.

Assume that for L = L0 the lemma statement is correct. Consider the first case where

j ∈ {1, ..., N1}. A path of length L = L0 + 1 from i to j is either of the class (l1, ..., ls + 1)

or (l1, ..., ls, 0). Such a path can be constructed from paths of length L0 from i to k of the

class (l1, ..., ls) then connected to node j from node k. If the path from i to j is of class

(l1, ..., ls + 1), then the number of such paths is

N1∑
k=1

(Al111A12A
l2
12A21 · · ·A21A

ls
1 )ik(A1)kj = Al111A12A

l2
12A21 · · ·A21A

ls+1
1 .

If the path from i to j is of class (l1, ..., ls, 0), then the number of such paths is

N1+N2∑
k=N1+1

(Al111A12A
l2
12A21 · · ·A21A

ls
1 )i(k−N1)(A12)(k−N1)j

= Al111A12A
l2
12A21 · · ·A21A

ls
1 A12 = Al111A12A

l2
12A21 · · ·A21A

ls
1 A12A

0
2.

Hence, the theorem statement is correct for L = L0+1 and j ∈ {1, ..., N1}. Similar procedure

can be followed to conclude the same result for j ∈ {N1 + 1, ..., N1 +N2}.

Theorem 1. The matrix HT defined as

HT , A11 + α2τ22A12(I − τ22A22)−1AT12. (4.15)

is irreducible if the overall coupled network is connected.

Proof. We show that

H̄T , A11 + A12A
T
12 +

N2−1∑
k=1

A12A
k
22A

T
12 (4.16)
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is irreducible. If H̄T is shown to be irreducible, thenA11+α2τ22A12A
T
12+α2τ22

∑N2−1
k=1 τ k22A12A

k
2A

T
12

is irreducible. And hence, HT = A11 + α2τ22A12A
T
12 + α2τ22

∑∞
k=1 τ

k
22A12A

k
2A

T
12 = A11 +

α2τ22A12(I − τ22A22)−1AT12 is irreducible and the proof is completed. If G1 is a connected

graph, then A11 and as consequence H̄T is irreducible. Assume that A11 does not represent

a connected graph. Therefore, there exists a pair i, j such that there is no path between

them in G1. However, since the whole interconnected network is connected, there exists a

path from i to j. Suppose, the path is of class (l1,1, l2,1, l1,2, l2,2, ...., l2,s, l1,s+1), i.e., it takes

l1,1 steps in G1 to reach vertex kout1 , then it leaves G1 and enters G2 and takes l2,1 steps in

G2, then enters G1 at vertex kin1 . This process goes on until it takes l1,s+1 steps in G1 from

kins to reach vertex j. Matrix H̄T is proved to be irreducible if we show that entry (koutu , kinu )

of H̄T is positive for u = 1, ..., s. Since, there is path from koutu to kinu which is of the class

(0, l2,u, 0), the (koutu , kinu )-th entry of A12A
l2,u
22 A

T
12 ≥ 1,because it is the number of such paths

according to Lemma 2. As a consequence, (koutu , kinu )-th entry of H̄T is positive and therefore

H̄T is irreducible. Hence, the proof is completed.

Theorem 2. The epidemic threshold τ11,c, for which the equation (4.12) has positive solution

for V1 and V2, is the inverse of the spectral radius of HT defined in (4.15), i.e.,

τ11,c =
1

λ1(HT )
, (4.17)

Proof. According to (4.4) and the definitions (4.5), we have

τ21τ12 = α2τ11,cτ22. (4.18)

Substituting for τ21τ12 in (4.14), equation (4.13) gets the form

τ11,cHTV1 = V1, (4.19)

where HT is defined in (4.15). In order for (4.19) to have solutions, τ11,c must be the inverse
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of one of the eigenvalues of HT . However, the corresponding eigenvector V1 must have

all positive entries. Since, according to Theorem 1, HT is an irreducible matrix, Perron–

Frobenius Theorem guarantees that such V1 exists and is equal to the dominant eigenvector

of HT . Therefore, τ11,c is equal to 1/λ1(HT ).

4.3.4 Quantitating the Interconnection Topology

Theorem 1 derives the value of the epidemic threshold τ11,c of G1 as a function of the effective

infection rate τ22 of G2 and adjacency matrices of each graph and their interconnection. If

τ22 = 0, then τ11,c = 1/λ1(A11), which is the known result in [21] for a single contact network.

Furthermore, for τ22 → λ1(A22), we claim that τ11,c → 0. The reason is, in this case, an

arbitrarily small value of τ11 will make the the probability of infection in G2 non-zero, and

therefore according to Lemma 1, the probability of infection in G1 also becomes positive.

Despite the extreme cases of τ22 = 0 and τ22 → λ1(A22), the value of τ11,c as function of τ22

can be qualitatively different depending on the interconnection topology.

The numerical simulations in Section 4.4 illustrates three possible curves of τ11,c as a

function of τ22, as shown in Fig. 4.3. Here, the blue curve belongs to the case of weak

interconnection between the two graphs. As can be seen, the decrease in the epidemic

threshold τ11,c is very slow for small values of τ22, while there is a quite sharp drop in the

values of τ11,c as τ22 → λ1(A22). In this case, the infection in G1 starts to grow mainly as

the result of receiving the infection from G2. For strong interconnection topology, shown by

the green curve, the value of τ11,c decreases quickly even for very small values of τ22. In this

case, the infection in G1 starts to grow most dominantly because of the increased effective

contact among nodes of G1. The red curve is an intermediate between the two spreading

modes.
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Theorem 3. The derivative dτ11,c
dτ22

at τ22 = 0 is

dτ11,c

dτ22

∣∣∣∣
τ22=0

=
α2
∥∥AT12x1

∥∥2

2

λ2
1(A11)

, (4.20)

where x1 is the eigenvector of A11 belonging to λ1(A11).

Proof. The matrix HT from (4.15) can be written as

HT , A11 + α2τ22A12A
T
12 + o(τ22).

Therefore, taking the derivative of (4.19) with respect to τ22 at τ22 = 0 yields

dτ11,c

dτ22

A11x1 +
1

λ1(A11)
(α2A12A

T
12)x1 + (

1

λ1(A11)
A11 − I)

dV1

dτ22

= 0. (4.21)

Multiplying (4.21) by xT1 from left, and considering that xT1A11x1 = λ1(A11) and xT1 ( 1
λ1(A11)

A11−

I) = 0 for A11 is symmetric and x1is the normalized eigenvector of A11, (4.21) becomes

λ1(A11)
dτ11,c

dτ22

+
α2

λ1(A11)
(AT12x1)T (AT12x1) = 0. (4.22)

Hence, dτ11,c
dτ22

is found to be (4.20).

Remark 1. According to (4.20) and the proceeding arguments, we can define interconnection

topology measure

Ω (G1, G2) ,
α2
∥∥AT12x1

∥∥2

2

λ1(A11)λ1(A22)
. (4.23)

to distinguish weak and strong coupling. When Ω (G1, G2) is small, the positive infection

probability in G1 is mostly due to external infections from G2 for τ11 right above the threshold

τ11,c. Moreover, when Ω (G1, G2) is large, the positive infection probability in G1 is mostly

due to the increased effective level of contact among agents of G1 for τ11 right above the

threshold τ11,c.
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4.4 Numerical Simulation Results

We have generated two graphs according to the small world random network model [71].

The first network G1 has N1 = 500 vertices with Watts and Strogatz parameters for mean

degree K1 = 10 and the rewiring probability β1 = 0.2, and the second network G2 has

N2 = 100 vertices with the mean degree K = 2 and the rewiring probability β2 = 0.1. All

the potential edges between G1 and G2 are active with some probability ω, to be chosen.

Therefore, increasing ω implies increasing the interconnection strength.

Fig. 4.3 shows τ̄c1 = λ1(A11)τ11,c as a function of τ̄2 = λ1(A22)τ22, for three different

values of ω = 0.01, 0.042, 0.2. As argued in Section , the blue curve with ω = 0.01 indicates

a weak interconnection between G1 and G2, while the green curve with ω = 0.2 determines

a strong coupling. The red curve in Fig. 4.3 belongs to an intermediate interconnection

strength, here ω = 0.042, which separates the strong coupling region from the weak coupling

region.

According to Fig. 4.3,a %50 reduction of the epidemic threshold is observed in G1for

(a) ω = 0.01 and τ̄2 = 0.925, (b) ω = 0.042 and τ̄2 = 0.5, (c) ω = 0.2 and τ̄2 = 0.05. We

have plotted the curves of p̄∗1 = 1
N1

∑N1

i=1 p
∗
i as a function of τ11λ1(A11). We have found the

equilibrium values of p∗i by solving the algebraic equations (4.7) and (4.8).

4.5 Conclusion

In this chapter, we study SIS epidemic spreading among two interconnected networks with

different size and epidemic-specific parameters. The main contribution of this work is devel-

oping the concept of epidemic threshold curve for interconnected networks. Importantly, we

employed spectral analysis to study epidemics over interconnected networks. In particular,

we found the value of the epidemic threshold τ11,c of first graph G1 as a function of the

effective infection rate τ22 of G2 and adjacency matrices of each graph and their intercon-

nection in Theorem 1. Furthermore, we proposed an interconnection measure Ω (G1, G2) to
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Figure 4.3: Normalized epidemic threshold τ̄c1 = λ1(A11)τ11,c of graph G1 as a function of
the normalized effective infection rate τ̄2 = λ1(A22)τ22 of graph G2. The interconnection in
(a) ω = 0.01, the blue curve, (b) ω = 0.042, red curve, and (c) ω = 0.2, green curve. A %50
reduction of the epideemic threshold is observed for the normalized effective infection rates
(a) τ̄2 = 0.925, (b) τ̄2 = 0.5, (c) τ̄2 = 0.05.
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Figure 4.4: The mean steady-state infection probability in G1 as a function of the normal-
ized effective infection rate of λ1(A11)τ11 for graph G1. Black curve corresponds to the case
where there is no interconnection. In this case, the epidemic threshold is τ11,c = 1/λ1(A11).
All the other curves correspond to the case where τ11,c = 1

2
× 1/λ1(A11). For (a) the blue

curve ω = 0.01 and τ̄2 = 0.925, (b) the red curve ω = 0.042 and τ̄2 = 0.5, (c) the green
curve ω = 0.2 and τ̄2 = 0.05.
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quantitate strongly coupled and weakly coupled networks. A very interesting property of

Ω (G1, G2) defined in (4.23) is that it is a purely topological measure and does not depend on

the epidemic-specific parameters. Our results have great implication to analyze and control

epidemics over interconnected networks.
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Chapter 5

Competitive Epidemic Spreading over

Arbitrary Multi-Layer Networks

5.1 Introduction

Multiple viral spreading within a single population involves very rich dynamics [72], attract-

ing substantial attention [34, 39, 73]. Applications of these types of models extend beyond

physiological viruses, as ‘virus’ may refer to products [74], memes [75,76], pathogens [77,78],

etc. Multiple virus propagation is a mathematically challenging problem. One source of com-

plexity for this problem are multiple interaction possibilities among viruses. For example,

viruses may be reinforcing [79], weakening [40], exclusive [67], or asymmetric [73, 80].

In competitive spreading scenario, if infected by one virus, a node (individual) cannot

be infected by the other virus. This type of models have implications in several applications

like product adoption (e.g., Apple vs. Android smart phones), virus-antidode propagation,

meme propagation, opposing opinions propagation, and etc. Newman [67] employed bound

percolation to study the spread of two SIR viruses in a host population through a single

contact network, where a virus takes over the network, then a second virus spreads through

the resulting residual network. The paper proved a coexistence threshold above the classi-
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cal epidemic threshold, indicating the possibility of coexistence in SIR model. Karrer and

Newman [72] extended the work to the more general case where both viruses spread simul-

taneously. Poletto et al. [78] studied propagation of two competitive SIR pathogens within a

host population, finding the impact of mobility patterns on domination of one strain versus

co-domination of both pathogens. For SIS epidemic spreading, Wang et al. [81] studied

competitive viruses and proved exclusive, competitive SIS viruses cannot coexist in scale-

free networks. For an arbitrary network, Prakash et al. [82] proved competitive SIS virus

cannot coexist. Beutel et al. [69] showed coexistence of viruses in case of the SIS viruses

with partial immunity, that is a node can be infected by both viruses simultaneously.

This problem becomes particularly much more complicated if the network through which

viruses propagate are distinct. Current knowledge of how hybridity of underlying topol-

ogy influences fate of the pathogens is very little and limited. These systems are usually

mathematically intractable, hindering conclusive results on spreading of multiple viruses

on multi-layer networks. Funk and Jansen [34] extended the bond-percolation analysis of

two competitive viruses to the case of a two-layer network, investigating effects of layer

overlapping. Granell et al. [40] studied the interplay between disease and information co-

propagation in a two-layer network consisting of one physical contact network spreading the

disease and a virtual overlay network propagating information to stop the disease. They

found a meta-critical point for the epidemic onset leading to disease suppression. Impor-

tantly, this critical point depends on awareness dynamics and the overlay network structure.

Wei et al. [38] studied SIS spreading of two competitive viruses on an arbitrary two-layer

network, deriving sufficient conditions for exponential die-out of both viruses. They intro-

duced a statistical tool, EigenPredict, to predict viral dominance of one competitive virus

over the other [39].

In this study, we address the problem of two competitive viruses propagating in a host

population where each virus has distinct contact network for propagation. In particular,

we study an SI1SI2S model as the simplest extension from SIS model for single virus
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propagation to competitive spreading of two viruses on a two-layer network. From topology

point of view, our study is comprehensive because our multilayer network is allowed to have

any arbitrary structure.

Our study is most relevant to [38] and [39]. Wei et al. conjectured in [38] and numerically

observed in [39] that “the meme whose first eigenvalue1 is larger tends to prevail eventually in

the composite networks.” We challenge this argument from two aspects: First, the definition

of viral dominance in [39] is related to comparison of fractions of nodes infected by each

virus. However, when comparing two viruses with two different contact networks, having

a larger eigenvalue is not a direct indicator of a higher final fraction of infected nodes. In

fact, it is possible to create two distinct network layers where a meme spreading in the

population with smaller eigenvalue takes over a much larger fraction of the population.

We find the definition of viral dominance presented in [39] cannot be corroborated with

eigenvalues without severe restriction to a specific family of networks.

Second, and of paramount interest in this study, first eigenvalues are graph properties2 of

each layer in isolation, with no information about layers interrelation, and thus cannot cap-

ture the joint influence of the network layers, unless some sort of symmetry or homogeneity

is assumed. In fact, the generation of one layer in their synthetic multi-layer network via

the Erdős Réyni model [39] dictated a homogeneity in their multilayer networks, creating a

biased platform for further observations of layer interrelations. Our work more accurately

characterizes the competitive spreading problem than presented by Wei et al. [39], as our

analytical results clearly express the effect of layers’ interrelation.

Multilayer networks generate interesting results for competitive viral spreading, as it

has generated interesting results in case of single virus (see [7, 83, 84], to name a few). The

main outcome of our analysis is discovery and proof of long-term coexistence of viruses

as an emergent phenomenon for SIS-type competitive spreading over multilayer networks,

1Wei et al. [39] defined first eigenvalue of a meme as βλ1−δ, where β is infection probability, δ is curing
probability, and λ1 is spectral radius of the underlying graph layer.

2A graph property is any property on a graph that is invariant under relabeling of nodes. Eigenvalues,
degree moments, graph diameter, etc. are examples of graph properties.
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which cannot be attributed to any single-layer contact network topology. We show when

the contact graphs of each virus are the same, i.e., the contact network is single-layer, either

both viruses die out or there is only one absolute winner. In other words, it is not possible

that both viruses survive in the long term over a single-layer contact network. Furthermore,

the winner virus is solely determined by epidemic-related parameters, irrespective of the

underlying contact topology. However, when the contact graphs are distinct, i.e., the con-

tact topology is a two-layer network, a new phenomenon emerges: it is possible that both

viruses coexist long-term. Furthermore, the fate of the viruses depends on epidemic-related

parameters, as well as the topology of the multilayer network. In particular, we show no or

little overlapping of central nodes across the layers is a key determinant of coexistence.

Our results are not limited to any homogeneity assumption or degree-distribution and

network-model arguments. We find analytical results determining extinction, coexistence,

and absolute dominance of the viruses by introducing concepts of survival threshold and

absolute-dominance threshold. We employ a novel multilayer network-generation framework

to obtain a set of networks so that individual layers have identical graph properties while

the interrelation of network layers varies. Therefore, any difference in outputs is purely

the result of interrelation. This makes ours a paradigmatic contribution to shed light on

topology hybridity in multilayer networks.

5.2 Competitive Spreading in Multi-Layer Networks

We study a continuous time SI1SI2S model of two competitive viruses propagating on a

two-layer network, initially proposed in discrete time3 [38].

3Wei et al. [38] referred to their model as SI1I2S. We prefer SI1SI2S as a better candidate to emphasize
impossibility of direct transition between I1 and I2 in this model.
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5.2.1 Multilayer Network Topology

Consider a population of size N among which two viruses propagate, acquiring distinct

transmission routes. For example, an air-borne pathogen and a blood-borne pathogen spread

within a population through different transmission routes. Represented mathematically, the

network topology is a multi-layer network because two link types are present; one type allows

transmission of virus 1 and the other type allows transmission of virus 2. We represent this

multilayer network as G(V,EA, EB), where V is the set of vertices (nodes) and EA and EB

are set of edges (links). By labeling vertices from 1 to N , adjacency matrices A , [aij]N×N

and B , [bij]N×N correspond to edge sets EA and EB, respectively, where aij = 1 if node

j can transmit virus 1 to node i, otherwise aij = 0 , and similarly bij = 1 if node j can

transmit virus 2 to node i, otherwise bij = 0. We assume the network layers are symmetric,

i.e., aij = aji and bij = bji. Corresponding to adjacency matrices A, we define dA as the

node degree vector, i.e., dA,i =
∑N

j=1 aij, λ1(A) as the largest eigenvalue (or spectral radius)

of A, and vA as the normalized dominant eigenvector, i.e., AvA = λ1(A)vA and vTAvA = 1.

We similarly define dB, λ1(B), and vB for adjacency matrix B.

Unlike simple, single-layer graphs, multilayer networks are rather new in network science.

We define simple graphs GA(V,EA) and GB(V,EB) to refer to each isolated layer of the

multilayer network G(V,EA, EB). This allows us to argue multilayer network G in terms of

simple graphs GA and GB properties and their interrelation. FIG. 5.1 shows a schematics

of the two-layer network.

5.2.2 SI1SI2S Model

The SI1SI2S model is an extension of continuous-time SIS spreading of a single virus on

a simple graph [21, 22] to modeling of competitive viruses on a two-layer network. In this

model, each node is either ‘Susceptible,’ ‘I1−Infected,’ or ‘I2−Infected ’ (i.e., infected by virus

1 or 2, respectively), while virus 1 spreads through EA edges and virus 2 spreads through

EB edges.
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GA

GB

Figure 5.1: Schematics of two-layer contact topology G(V,EA, EB), where a group of nodes
share two distinct interactions. In our SI1SI2S model, virus 1 transmits exclusively via
EA links (red) while virus 2 transmits only through EB links (black). Dotted vertical lines
reiterate individual nodes are the same in both layers of G.

In this competitive scenario the two viruses are exclusive: a node cannot be infected by

virus 1 and virus 2 simultaneously.

Consistent with SIS propagation on a single graph (cf. [21,22]), the infection and curing

processes for virus 1 and 2 are characterized by (β1, δ1) and (β2, δ2), respectively. To illus-

trate, the curing process for I1−infected node i is a Poisson process with curing rate δ1 > 0.

The infection process for susceptible node i effectively occurs at rate β1Yi(t), where Yi(t) is

the number of I1−infected neighbors of node i at time t in layer GA. Effective infection rate

of a virus, defined as the ratio of the infection rate over the curing rate, measures the ex-

pected number of attempts of an infected node to infect its neighbor before recovering [85],

thus quantifying contagiousness of a virus per contact. Curing and infection processes for

virus 2 are similarly described. FIG. 5.2 depicts a schematic of the SI1SI2S competitive

epidemic spreading model over a two-layer network.

The SI1SI2S model is essentially a coupled Markov process. For a network with arbitrary

structure, this model becomes mathematically intractable due to exponential explosion of its

Markov state space size [1]. To overcome this issue with coupled Markov processes, applying

closure techniques results in approximate models with much smaller state-space size, however

at the expense of accuracy. Specifically, a first-order mean-field type approximation [1]

suggests the following differential equations for the evolution of infection probabilities of
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β1Yit β2Zit

Figure 5.2: Schematics of a contact network with the node-level stochastic transition dia-
gram for node i, according to the SI1SI2S epidemic spreading model. Parameters β1 and δ1

denote virus 1 infection rate and curing rate, respectively, and Yi(t) is the number of node
i neighbors in layer GA infected by virus 1 at time t. Similarly, β2 and δ2 denote virus 2
infection rate and curing rate, respectively, and Zi(t) is the number of node i neighbors in
layer GB infected by virus 2 at time t.

virus 1 and 2, denoted by p1,i and p2,i for node i, respectively:

ṗ1,i = β1(1− p1,i − p2,i)
∑N

j=1
aijp1,j − δ1p1,i, (5.1)

ṗ2,i = β2(1− p1,i − p2,i)
∑N

j=1
bijp2,j − δ2p2,i, (5.2)

for i ∈ {1, ..., N}, with the state-space size of 2N . This model is an extension of NIMFA

model [21] for SIS spreading on simple graphs.

Our competitive virus propagation model (5.1-5.2) exhibits rich dynamical behavior

dependent on epidemic parameters and contact network multi-layer structure. Values of

effective infection rates τ1 ,
β1
δ1

and τ2 ,
β2
δ2

of virus 1 and 2 yields several possible outcomes

for SI1SI2S model (5.1-5.2). In particular, both viruses may extinct ultimately, or one

removes the other one, or both coexist.
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5.2.3 Problem Statement

Linearization of our SI1SI2S model (5.1-5.2) at the disease-free equilibrium (i.e., p∗1,i =

p∗2,i = 0, i ∈ {1, ..., N}) demonstrates the exponential extinction condition for both viruses.

When τ1 < 1/λ1(A) and τ2 < 1/λ1(B), any initial infections exponentially die out. In this

chapter, we refer to such critical value as no-spreading threshold because a virus with a

lower effective infection rate is too weak to spread in the population even in the absence of

any viral competition.

Wei et al. [38] detailed the no-spreading condition as: If τ1 < 1/λ1(A), virus 1 does

not spread and exponentially dies out. Importantly, exponential extinction of both viruses

occurs only if τ1 < 1/λ1(A) and τ2 < 1/λ1(B) simultaneously. Dynamical interplay be-

tween the competitive viruses does not affect the no-spreading thresholds τ 0
1 = 1/λ1(A)

and τ 0
2 = 1/λ1(B) for virus 1 and virus 2. These thresholds remain independent of viruses

competition characteristics and network layers interrelation. Exponential extinction is the

only analytical outcome in Wei [38]. If the effective infection rate of one of the viruses

is below its no-spreading threshold, the competitive spreading problem reduces to a single

virus propagation. Thus, we addresses the case where for both viruses τ1 > 1/λ1(A) and

τ2 > 1/λ1(B). In this case, the disease-free equilibrium is unstable and consequently at

least one of the two viruses persists.

Problem I: Assume the effective infection rates of each virus is larger than their no-

spreading threshold, i.e., τ1 > 1/λ1(A) and τ2 > 1/λ1(B):

1. Will both viruses survive (coexistence) or will one virus completely remove the other

(absolue dominance)?

2. Which characteristics of multi-layer network structure allow for coexistence or abso-

lute dominance?

This problem is essentially a two-virus problem. We are interested in predicting what

happens to the viruses for given values of the pair (τ1, τ2). Will both die out? Will one

dominate the other? Will both coexist? Our approach to answer these questions is to focus
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only on one virus instead of studying the two viruses at the same time. With no loss of

generality, we choose virus 1. In this approach, we consider virus 2 as an external factor

reducing the susceptibility of the population for virus 1. Therefore, instead of the initial

two-virus problem, we study the fate of virus 1 given virus 2 has the capability to infect the

population and its effective infection rate is τ2 > 1/λ1(B). We investigate whether virus 1

dies out, or it survives when competing with virus 2. In case it survives, it may coexist with

virus 2 or it may be the absolute winner, removing virus 2 completely from the population.

Formally, the two-virus problem boils down to studying fate of virus 1 given virus 2.

Problem II: Assume effective infection rate of virus 2 is τ2 and it is greater than virus

2 no-spreading threshold, i.e., τ2 > 1/λ1(B):

1. For which values of τ1, virus 1 will survive?

2. For which values of τ1, virus 1 survives and is the absolute winner, removing virus 2

completely?

Problem I and Problem II are equivalent. We address Problem II by introducing two

critical values for the effective infection rate, namely, survival threshold τc1 and absolute-

dominance threshold τ †1 . We then argue that absolute-dominance threshold of one virus

corresponds to the survival threshold of the other virus. This further simplifies the problem

to finding the survival threshold of virus 1.

These questions pertain to long-term behaviors of competitive spreading dynamics. To

address these questions, we perform a steady-state analysis of SI1SI2S model. Specifically,

bifurcation techniques are used to find two critical values, survival threshold and absolute-

dominance threshold, determining if a virus will survive and whether it can completely

remove the other virus. Significantly, we go beyond these threshold conditions and examine

interrelation of network layers. Using eigenvalue perturbation, we find interrelations of

dominant eigenvectors and node-degree vectors of network layers are critical determinants

in ultimate behaviors of competitive viral dynamics.
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5.3 Main Results

Dynamics of the competitive spreading SI1SI2S model is rather complicated and its math-

ematical analysis might look cumbersome. We have moved all the deductions and proofs to

the Appendix section and only report the final results. The mathematical tools that we use

in this study are equilibrium analysis, bifurcation theory, and eigenvalue perturbation.

5.3.1 Equilibrium Analysis and Threshold Equations

The SI1SI2S competitive virus propagation model (5.1-5.2) yields the equilibriums equa-

tions:

p∗1,i
1− p∗1,i − p∗2,i

= τ1

∑
aijp

∗
1,j, (5.3)

p∗2,i
1− p∗1,i − p∗2,i

= τ2

∑
bijp

∗
2,j, (5.4)

for i ∈ {1, ..., N}, where p∗1,i and p∗2,i are respectively virus 1 and virus 2 equilibrium infection

probabilities of node i. When τ1 > 1/λ1(A) and τ2 > 1/λ1(B), equilibrium equations (5.3-

5.4) suggest that the SI1SI2S competitive spreading model have at least the following

three equilibrium points:

1. Disease-free equilibrium (p∗1,i = 0, p∗2,i = 0) ∀i ∈ {1, ..., N} where all the nodes are

healthy,

2. Virus-2-absolute-dominance equilibrium (p∗1,i = 0, p∗2,i = yi > 0) ∀i ∈ {1, ..., N} where

nodes are only infected by virus 2,

3. Virus-1-absolute-dominance equilibrium (p∗1,i = zi > 0, p∗2,i = 0) ∀i ∈ {1, ..., N} where

nodes are only infected by virus 1,
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where zi and yi are steady-state infection probabilities in case of single-virus propagation

(see [21]), satisfying

zi
1− zi

= τ1

∑
aijzj, (5.5)

yi
1− yi

= τ2

∑
bijyj, (5.6)

for i ∈ {1, ..., N}.

The disease-free equilibrium (p∗1,i = 0, p∗2,i = 0) is always unstable for τ1 > 1/λ1(A)

and τ2 > 1/λ1(B). Each of the above three solutions to the equilibrium equation (5.3-5.4)

corresponds to the case that at least one of the viruses does not exist. In order to have

coexistence of the two viruses, equilibriums 2 and 3 should also be unstable, and a fourth

stable equilibrium should exist where (p∗1,i > 0, p∗2,i > 0) ∀i ∈ {1, ..., N}. We refer to this

equilibrium as coexistence equilibrium and show it only exists for multilayer contact network.

As explained in Problem Statements Section 5.2.3, we study this two-virus problem by

analysis of virus 1 behavior, considering virus 2 as an external factor. Definitions of survival

and absolute-dominance thresholds facilitate our analysis.

Definition: Given virus 2 effective infection rate τ2 > 1/λ1(B), the survival threshold

τ1c is the critical point such that virus 1 steady-state infection probability of each node is

zero for τ1 < τ1c and is positive for τ1 > τ1c, i.e.,

 pss1,i = 0, for τ1 < τ1c,

pss1,i > 0, for τ1 > τ1c,

Definition: Given virus 2 effective infection rate τ2 > 1/λ1(B), the absolute-dominance

threshold τ †1 is the critical point such that not only virus 1 survives but also it removes the

other virus. In other words, at absolute-dominance threshold virus 2 steady-state infection

probability of each node becomes zero for τ1 > τ †1 , i.e.,
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 pss2,i > 0 for τ1 < τ †1 ,

pss2,i = 0, for τ1 > τ †1 ,

for ∀i ∈ {1, ..., N}.

For τ2 ≤ 1/λ1(B), we survival and absolute-dominance conditions coincide and τ1c =

τ †1 = τ 0
1 = 1/λ1(A). It is important to clearly distinguish the difference between no-spreading

threshold and survival threshold. No-spreading threshold is the critical value of effective in-

fection rate for which a virus cannot spread in the population, regardless of any competition

with another virus. No-spreading threshold correspond to the transient dynamics of the

spreading. The survival threshold on the other hand corresponds to the long-term behavior

of a virus: whether it is going to eventually die-out or it will persist in the population.

Survival threshold τc1 is larger than the no-spreading threshold because competition with

another virus reduces the susceptibility of the population, hence making it more difficult to

survive. A virus which may initially spread in the population can die out eventually as the

other virus grows. For virus 1 this scenario occurs if τ1 > τ 0
1 = 1/λ1(A) and τ1 < τ1c.

Case of Single-Layer Network

If the two layers are identical, i.e., B = A, the survival threshold and the absolute-dominance

threshold coincide, indicating that a surviving virus is also the absolute winner. Stability

analysis of the equilibriums in case of identical network layers (see Appendix 5.5.1) proves

virus-2-absolute-dominance equilibrium (p∗1,i = 0, p∗2,i = yi > 0) is stable iff τ1 < τ2. Further-

more, virus-1-absolute-dominance equilibrium (p∗1,i = zi > 0, p∗2,i = 0) is stable iff τ2 < τ1.

Therefore, for τ1 6= τ2 exactly one of the absolute-dominance equilibrium points is stable and

the virus with larger effective infection rate is the sole survivor. According to the definitions

of survival and absolute-dominance thresholds, τ1c = τ †1 = τ2, denoting an abrupt transition

for competitive spreading over a single-layer network. This is consistent with the previous

result of [82]. FIG. 5.3 shows the sharp transition for the steady-state infection fractions in
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Figure 5.3: Phase transition of competitive spreading model SI1SI2S for a single-layer
network, i.e., B = A. Holding the effective infection rate of virus 2 constant at τ2 = 6 1

λ1(B)
=

6 1
λ1(A)

and varying τ1, (a) the steady-state infection fraction of virus 1, p̄ss1 = 1
N

∑
pss1,i,

and (b) the steady-state infection fraction of virus 2, p̄ss2 = 1
N

∑
pss2,i, exhibit abrupt phase

transition at τ1 = 6 1
λ1(A)

= τ2. Specifically, (a) p̄ss1 is zero for τ1 < τ2 and is positive

for τ1 > τ2, denoting survival threshold of virus 1, and (b) p̄ss2 is positive for τ1 < τ2

and becomes zero for τ1 > τ2, indicating absolute removal of virus 2 and thus the virus 1
absolute-dominance threshold.

the SI1SI2S model as a function of τ1, holding τ2 fixed at a given value.

Case of Multilayer Network

In contrast to the case of single-layer networks, survival threshold and absolute-dominance

threshold do not necessarily overlap for multilayer contact network. As a result, there is a

non-trivial region for (τ1, τ2) values that both viruses exist, which we refer to as coexistence

region. FIG. 5.4 shows the absolute-dominance and survival thresholds are distinct for a

two-layer network (see Section 5.3.5 for details of network generation).

Given τ2, plotting virus 1 steady-state infection fraction p̄ss1 = 1
N

∑N
j=1 p

ss
1,i as a function

of τ1 identifies the survival threshold τ1c at which p̄ss1 becomes positive. Interestingly, another

alternative to identify the absolute-dominance threshold is to also plot the infection fraction

of virus 1 in the absence of any competition with virus 2 (τ2 = 0). The two curves must

coincide for τ1 larger than the absolute-dominance threshold, because for τ1 > τ †1 virus 2
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Virus 1
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Figure 5.4: Illustration of survival and absolute-dominance thresholds for virus 1 on a mul-
tilayer contact network. Holding the effective infection rate of virus 2 constant at τ2 = 6 1

λ1(B)
,

(a) the steady-state infection fraction of virus 1, p̄ss1 = 1
N

∑
pss1,i, and (b) the steady-state

infection fraction of virus 2, p̄ss2 = 1
N

∑
pss2,i, exhibit phase transition at survival threshold τc1

and absolute-dominance threshold τ †1 , respectively. Specifically, (a) p̄ss1 is zero for τ1 < τc1
and becomes positive for τ1 > τc1, denoting survival threshold of virus 1, and (b) p̄ss2 is pos-
itive for τ1 < τ †1 and becomes zero for τ1 > τ †1 , indicating absolute removal of virus 2 and
thus the virus 1 absolute-dominance threshold. Additionally, it is interesting to observe that
p̄ss2 is constant when τ1 < τc1, while it reduces gradually as τ1 becomes larger than τc1.
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Figure 5.5: Steady-state infection fraction curve of virus 1 in the SI1SI2S competing
spreading model (red). While increasing τ1, steady-state infection fraction of virus 1 in the
the SI1SI2S model becomes nonzero at the survival threshold τ1c, while it coincides with that
of the SIS model (black curve) at the absolute-dominance threshold τ †1 . In this simulation,
the steady-state infection fraction of virus 1 (p̄ss1 ) is zero for τ1 ≤ τ1c ' 3 1

λ1(A)
, an extinction

region for virus 1. Interestingly, for τ1 > τ †1 ' 6.6 1
λ1(A)

, p̄ss1 for the competitive scenario (red

curve) is identical to the case of single-virus propagation (black curve), suggesting extinction
of virus 2, hence marking this region as the absolute-dominance range for virus 1. For
τ1 ∈ (τ1c, τ

†
1), virus 1 and virus 2 both persist in the population, marking this range for

coexistence region.

infection probabilities are zero. FIG. 5.5 illustrates for extinction, coexistence, and absolute-

dominance regions for virus 1.

Bifurcation analysis of the SI1SI2S equilibriums can determine the survival thresholds.

The coexistence scenario corresponds to a coexistence equilibrium for SI1SI2S model (5.1-

5.2) where (p∗1,i > 0, p∗2,i > 0) ∀i ∈ {1, ..., N}. Given τ2, virus 1 survival threshold is the

critical value that such coexistence equilibrium emerges. Exactly at the threshold value τ1c,

p∗1,i|τ1=τ1c = 0 and
dp∗1,i
dτ1
|τ1=τ1c > 0 for all i ∈ {1, ..., N}. Taking the derivative of equilibrium

equations (5.3) with respect to τ1, and defining

wi ,
dp∗1,i
dτ1

|τ1=τ1c , yi , p∗2,i|τ1=τ1c , (5.7)
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we find the survival threshold τ1c is the value for which nontrivial solution exists for wi > 0

in

wi = τ1c(1− yi)
∑

aijwj, (5.8)

where yi is the solution of (5.6). Equation (5.8) is an eigenvalue problem (see Appendix

5.5.2). Among all the possible solutions, only

τ1c =
1

λ1(diag{1−yi}A)
(5.9)

is acceptable; according to Perron-Frobenius Theorem, only the dominant eigenvector of the

matrix diag{1− yi}A has all positive entries, allowing wi =
dp∗1,i
dτ1
|τ1=τ1c > 0. Having wi > 0

at critical point τ1c denotes emergence of the coexistence equilibrium.

As discussed earlier, the survival threshold for virus 1 must be larger than the no spread-

ing threshold 1/λ1(A) as the result of reduced susceptibility due to competition with virus

2. Above formula for the survival threshold of virus1 has intuitive interpretations. The

expression in (5.9) demonstrates that the susceptibility is reduced by factor (1− yi), where

according to (5.6), yi is the steady-state infection probability of virus 2 in the absence of

virus 1 (τ1 = 0 ). Similar to the SIS epidemic threshold [21], the survival threshold (5.9)

is inverse of spectral radius of the adjacency matrix A, however, scaled by the reduced

susceptibility factor (1− yi) for each node.

By duality of expressions, virus 2 survival threshold is τ2c = 1/λ1(diag{1− zi}B), where

zi is the solution of (5.5) denoting virus 1 infection fraction in the absence of any competition

with virus 2 (τ2 = 0). The bifurcation analysis thus shows that if τ1 > τ1c and τ2 > τ2c, then

SI1SI2S model (5.1-5.2) has a coexistence equilibrium (p∗1,i > 0, p∗2,i > 0) ∀i ∈ {1, ..., N}.

In this case, all the other equilibriums of the system are unstable (see Appendix 5.5.2).

The bifurcation analysis for finding survival threshold for a two-layer network does not

apply to the case of single-layer network, where the transition is abrupt. Though, we can

show τ1c = τ2 and wi = cyi solve the Perron-Frobenius problem (5.8). However, further
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analysis shows c = 0, implying that coexistence equilibrium does not emerge in case of

single-layer networks.

The survival and absolute-dominance thresholds of virus 1 are functions of τ2, which we

denote by τ1c = Φ1(τ2) and τ †1 = Ψ1(τ2). Similarly, for virus 2 we can define survival and

absolute-dominance thresholds τ2c = Φ2(τ1) and τ †2 = Ψ2(τ1). Absolute-dominance threshold

of one virus is closely related to the survival threshold of the other virus. Specifically, virus 1

absolute-dominance condition τ1 > τ †1 is equivalent to virus 2 extinction condition τ2 < τ2c.

Therefore, for τ1 > 1/λ1(A) and τ2 > 1/λ1(B) :

Ψ1(τ2) = Φ−1
2 (τ2). (5.10)

FIG. 5.6 illustrate the survival and absolute-dominance threshold curves of the two viruses,

clarifying the above relationship graphically.

The threshold curves identify four regions in (τ1, τ2) plane where: both viruses die-out,

virus 1 survives only, virus 2 survives only, or both survive and coexist. FIG. 5.7 depicts a

typical phase diagram of SI1SI2S competitive spreading on two-layer contact networks.

The eigenvalue problem (5.8) gives a mathematical way to find the survival threshold

τ1c, depending on the value of τ2. Unfortunately, this implicit dependence hinders clear

understanding of the propagation interplay between virus 1 and virus 2. Particularly, the

role of the multilayer contact topology and layer interrelations on the competitive spreading

is not apparent. In the following section, we employ eigenvalue perturbation techniques to

unravel the multilayer network role.

5.3.2 Characterization of Threshold Curves

Complete analytical solution of survival threshold curves is not feasible. Instead, we quan-

titate interrelations of contact layers to formulate our analytical assertions. We describe

conditions for viral coexistence through attaining explicit analytical quantities giving con-
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Figure 5.6: Illustration of survival and absolute-dominance threshold curves in SI1SI2S
model. (a) Virus 1 survives if its effective infection rates is larger than the survival threshold,
i.e., τ1 > τc1 = Φ1(τ2). Similar argument holds for survival threshold curve of virus 2, as
depicted in (b). The absolute-dominance threshold curves can be obtained from the survival
curves shown in (a) and (b). Specifically, the region virus 1 is the absolute winner is where
virus 1 survives and virus 2 does not survive, as shown in (c). Likewise, the region virus 2
is the absolute winner is where virus 1 does not survive while virus 2 survives (d).
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I. Only 
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Figure 5.7: The SI1SI2S model with two-layer contact topology exhibits four possibilities:
extinction region N where both viruses die-out, absolute-dominance region I, where virus 1
survives and virus 2 dies out, absolute-dominance region II, where only virus 2 survives and
virus 1 dies out, and finally coexistence region III, where both viruses survive and persist in
the population.
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ditions for coexistence and absolute dominance of viruses. Our approach to this problem

finds explicit solutions to (5.9) for values of τ2 close to 1/λ1(B) and for very large values

of τ2 to quantitate the survival epidemic curves. Since we know solution to (5.6) and the

survival threshold value τ1c at both extreme values, we can employ eigenvalue perturbation

techniques to find explicit solutions for τ2 close to 1/λ1(B) and τ2 very large. Results for

τ2 close to 1/λ1(B) apply where competitive viruses are non-aggressive, whereas results for

very large τ2 corresponds to aggressive4 competition. There is no sharp phase-transition

between aggressive and non-aggressive competition. It qualitatively describes whether ef-

fective infection rates of the viruses are much larger than their respective no-spreading

threshold or they are just moderately above the no-spreading thresholds. Behavior of com-

petitive spreading processes is an interpolation of the extreme scenarios of non-aggressive

and aggressive propagation.

First, we perform perturbation analysis to find τc1 for values of τ2 close to 1/λ1(B). We

know at τ2 = 1/λ1(B), yi = 0 solves (5.6), thus τc1 = 1/λ1(A) is the survival threshold ac-

cording to (5.9). For values of τ2 close to 1/λ1(B), we use eigenvalue perturbation technique

and study sensitivity of threshold equation (5.8) respective to deviation in τ2 from 1/λ1(B).

As detailed in the Appendix 5.5.3, we find

dτ1c

dτ2

|τ2= 1
λ1(B)

=
λ1(B)

λ1(A)

∑
v2
A,ivB,i∑
v3
B,i

, (5.11)

expressing the dependency of virus 1 survival threshold (τ1c) to effective infection rate of

virus 2 (τ2) for values of τ2 close to 1/λ1(B). In the above equation, vA,i and vB,i are

the i-th element of normalized dominant eigenvectors vA and vB of A and B, respectively.

Among the terms in expression (5.11), λ1(B), λ1(A), and
∑
v3
B,i are all graph properties

of network layers in isolation, while
∑
v2
A,ivB,i determines the influence of interrelations

4In the context of infectious disease propagation, ‘highly contagious’ is a common terminology to describe
a virus with very large basic reproduction number. Since the cross-immunity assumption in our SI1SI2S
model fits better to product competition interpretations, we describe competition between highly contagious
viruses as ‘aggressive’.
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Figure 5.8: The survival regions diagram in SI1SI2S model for values of (τ1, τ2) close to
( 1
λ1(A)

, 1
λ1(B)

) (left) and for very large values of (τ1, τ2) (right). Regions N, I, II, and III are

as defined in FIG. 5.7. The red arrow shows the survival region of virus 1 (regions I and III)
and the green arrow shows the survival region of virus 2 (regions II and III). For aggressive
viruses scenario, axes have inversed values of (τ1, τ2) so that the origin represents infinitely
large values. Equations (5.11) and (5.13) analytically find the separating lines between the
survival regions in explicit expressions.

of the two layers. Significantly, if
∑
v2
A,ivB,i is small, expression (5.11) suggests virus 1

survival threshold is minimally influenced by virus 2 infection rate. This has very interesting

interpretations: when spectral central nodes of GA (those nodes with larger element in

dominant eigenvector of GA) are spectrally insignificant in GB, the virus 1 survival threshold

does not increase much by τ2. In other words, virus 2 does not compete over accessible

resources of virus 1, therefore, virus 1 is not affected much by the co-propagation. On

the other hand, if spectral central nodes of GA have high spectral centrality in GB, then∑
v2
A,ivB,i is maximal indicating considerable dependency of virus 1 survival threshold of

contagiousness of the other virus. From (5.11), the die-out threshold curve Φ1(τ2) can be

approximated close to (τ2, τ1) = ( 1
λ1(B)

, 1
λ1(A)

) as

Φ1(τ2) ' 1

λ1(A)
{1 +

∑
v2
A,ivB,i∑
v3
B,i

(λ1(B)τ2 − 1)}. (5.12)

Studying threshold equations (5.8)-(5.6) for τ2 → ∞, we find τ1c
τ2
|τ2→∞ is the inverse of
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the spectral radius of D−1
B A (see Appendix 5.5.3 for detailed derivation):

τ1c

τ2

|τ2→∞ =
1

λ1(D−1
B A)

=
1

λ1(D
−1/2
B AD

−1/2
B )

, (5.13)

expressing the dependency of virus 1 survival threshold (τ1c) on effective infection rate of

virus 2 (τ2) for large values of τ2. This expression (5.13) directly highlights the influence of

interrelations of the two layers. Significantly, if λ1(D−1
B A) is large, expression (5.11) suggests

that virus 1 survival threshold does not increase significantly by virus 2 infection rate.

Similar arguments about interpretation of (5.11) apply to aggressive competitive viruses

where τ1 and τ2 are relatively large. The main difference in case of aggressive competitive

spreading is that node degree is the determinant of centrality. From (5.13), the die-out

threshold curve Φ1(τ2) asymptotically becomes

Φ1(τ2) ' 1

λ1(D−1
B A)

τ2, (5.14)

for aggressive competitive propagation. FIG. 5.8 depicts survival threshold curves for non-

aggressive (left) and aggressive (right) competitive spreading.

We prove conditions for coexistence by showing there is overlapping between regions

where viruses survive.

Theorem 4. In SI1SI2S model (5.1-5.2) for competitive epidemics over multi-layer net-

works, if the two network layers GA and GB are identical, coexistence is impossible, i.e., a

virus with even a slightly larger effective infection rate dominates and completely removes the

other virus. Otherwise, if node-degree vectors of GA and GB are not parallel, i.e., dA ∦ dB,

or normalized dominant eigenvectors of GA and GB do not completely overlap, i.e., vA 6= vB

the multi-layer structure of the underlying topology allows a nontrivial coexistence region.

Proof. If GA = GB, we showed in Section 5.3.1 that survival and absolute-dominance thresh-

olds coincide. Therefore, the virus with even a slightly larger effective infection rate domi-
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nates and completely removes the other virus if the two network layers are identical.

To show possibility of coexistence for non-aggressive competitive viruses, we show the

survival regions overlap by proving

dτ1,c

dτ2

dτ2,c

dτ1

∣∣∣∣
(τ1,τ2)=( 1

λ1(A)
, 1
λ1(B)

)

< 1. (5.15)

Using expression (5.11) and its counterpart for dτ2,c
dτ1

, we need to show

(
∑
vB,iv

2
A,i)(

∑
vA,iv

2
B,i)

(
∑
v3
B,i)(

∑
v3
A,i)

< 1 (5.16)

As proved in Appendix 5.5.4, we find condition (5.15) is always true except for the special

case where dominant eigenvectors of GA and GB completely overlap, i.e., vA = vB.

In order to show possibility of coexistence for aggressive competitive viruses, we show

the survival regions overlap by proving

(
τ1c

τ2

∣∣∣∣
τ2→∞

)(
τ2c

τ1

∣∣∣∣
τ2→∞

)
< 1. (5.17)

Using expression (5.13) and its counterpart for τ2c
τ1
|τ2→∞, we need to show

[
1

λ1(D−1
B A)

] [
1

λ1(D−1
A B)

]
< 1 (5.18)

As proved in Appendix 5.5.4, we find that condition (5.17) is always true except for the

special case where node-degree vectors of GA and GB are parallel, i.e., dA = cdB.

When dominant eigenvectors of GA and GB are not identical, condition (5.15) indicates

non-aggressive viruses can coexist. When propagation of competitive viruses is aggressive,

condition (5.17) indicates viruses can coexist if node-degree vectors of GA and GB are not

parallel. However, the rare scenario where GA and GB are not identical and dA = cdB and
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vA = vB hold simultaneously demands further exploration.

The above theorem and equations (5.11) and (5.13) prove the importance of interrelation

of network layers. As will be discussed in the simulation section, one approach capturing

only the effect of interrelation is generating multilayer networks from two graphs GA and

GB through simple relabeling vertices of GB. We thus have a set of multilayer networks

whose layers have identical graph properties but correspondence of nodes in one layer to the

nodes of the other varies.

In the context of competitive spreading, whether memes, opinions, or products, the

population under study serves as the ‘resource’ for the competitive entities, relating nicely

to the concept of ‘competing species’ in ecology. Long-term study of competing species in

ecology centers on the ‘competitive exclusion principle’ [86]: Two species competing for the

same resources cannot coexist indefinitely under identical ecological factors. The species with

the slightest advantage or edge over another will dominate eventually. Our SI1SI2S model

also predicts when the network layers are identical, coexistence is not possible. Significantly,

different propagation routes break this ‘ecological symmetry,’ allowing coexistence. Not only

have we rigorously proved a coexistence region, we quantitated this ecological asymmetry

via interrelation of central nodes across the network layers. None or small overlapping of

central nodes of each layer is the key determinant of coexistence. Excitingly, this conclusion

nicely relates to ‘niche differentiation’ in ecology and yet is built upon network science rigor.

5.3.3 Standardized Threshold Diagram and a Global Approxi-

mate Formula

Exploring efficient characterization of threshold curves using extreme scenarios, we propose

a standardized threshold diagram, where threshold curves are plotted in a [0, 1]× [0, 1] plane

for (x, y) = ( 1
λ1(B)τ2

, 1
λ1(A)τ1

), axes scaled by layer spectral radius and inverted. Curves in

standardized threshold diagram start from origin and terminate at point (1, 1). From (5.11)
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and (5.13) the slopes of the survival curve of virus 1 at (0, 0) and (1, 1) are

m0 =
λ1(B)

λ1(A)
λ1(D−1

B A), (5.19)

m1 =

∑
v2
A,ivB,i∑
v3
B,i

, (5.20)

respectively. Importantly, these slopes help creating a parametric approximation for the

survival threshold curve τ1c = Φ1(τ2) for the full range of τ2. We use a quadratic Bezier

curve [87] as x
y

 = 2σ(1− σ)

a
b

+ σ2

1

1

 , (5.21)

connecting (x, y) = (0, 0) to (x, y) = (1, 1) for σ ∈ [0, 1], and satisfying the slope constraints

(5.19) and (5.20), if a and b are chosen as:

a =
1−m1

m0 −m1

, b =
m0(1−m1)

m0 −m1

. (5.22)

Therefore, the Bezier curve (5.21) approximates the standardized threshold curve dia-

gram for the whole range of τ1 > 1/λ1(A) and τ2 > 1/λ1(B) using only spectral information

of a set of matrices.

5.3.4 Multi-layer Network Index for Competitive Spreading

Proving coexistence is one of the key contributions of this study. According to (5.16), we

go further to define a topological index Γs(G) quantifying possibility of coexistence in a

multi-layer network G = (V,EA, EB) for the case of non-aggressive spreading as

Γs(G) = 1−
(
∑
vB,iv

2
A,i)(

∑
vA,iv

2
B,i)

(
∑
v3
B,i)(

∑
v3
A,i)

. (5.23)
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Values of Γs(G) vary from 0 (corresponding to the case where vA = vB) to 1. Values of

Γs(G) close to zero imply coexistence is rare and any survived virus is indeed the absolute

winner. Γs(G) closer to 1 indicates coexistence is very possible on G. Therefore, Γs(G) can

be used to discuss coexistence of non-aggressive competitive viruses.

Similar to non-aggressive competitive spreading, we can define a topological index Γl(G)

to quantify coexistence possibility in a multi-layer network G = (V,EA, EB) as

Γl(G) = 1−
[

1

λ1(D−1
B A)

] [
1

λ1(D−1
A B)

]
, (5.24)

according to (5.18).

Values of Γl(G) vary from 0 (corresponding to the case where dA = cdB) to 1. Values of

Γl(G) close to zero imply coexistence is rare and any survived virus is indeed the absolute

winner. Γl(G) closer to 1 indicates coexistence is very possible on G. Therefore, Γl(G) can

be used to discuss coexistence of aggressive competitive viruses.

5.3.5 Numerical Simulations

Multi-layer network generation: The objective of numerical simulations in this section

is not only to test our analytical formulae, but also to investigate our prediction of cross-

layer interrelation effect on competitive epidemics. This task demands a set of two-layer

networks for which isolated layers have identical graph properties but how these layers are

interrelated is different, hence capturing the pure effect of interrelation. Specifically, in the

following numerical simulations, the contact network GA through which virus 1 propagates

is a random geometric graph with N = 1000 nodes, where pairs at distance less than

rc =
√

3 log(N)
πN

connect to ensure connectivity. For the contact graph of virus 2 (GB),

we first generated a scale-free network according to the Barabási–Albert model. We then

used a randomized greedy algorithm to associate the nodes of this graph with the nodes of

GA, approaching a certain degree correlation coefficient ρ with GA, i.e., each iteration step
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permutates nodes when the degree correlation coefficient

ρ(G) =

∑
(dA,i − d̄A)(dB,i − d̄B)√∑

(dA,i − d̄A)2
√∑

(dB,i − d̄B)2
,

is closer to the desired value. Specifically, we obtained three different permutations where

the generated graphs are negatively (ρ = −0.47), neutrally (ρ = 0), and positively (ρ = 0.48)

correlated with GA. These three graphs have identical graph properties, yet they are distinct

respective to GA. FIG. 5.9 depicts a graph GA and three graphs of GB with N = 100 nodes

to improve conceptualization.

Steady-state infection fraction: When two viruses compete to spread, steady-state

infection fraction p̄ss1 = 1
N

∑
p1,i of virus 1 in the SI1SI2S model exhibits a threshold

behavior at τ1 = τ1c, for a given τ2. Interestingly, aside from the survival threshold τ1c, the

absolute-dominance threshold τ †1 appears in the figure when plotted against a single virus

case: p̄ss1 takes the same values as the single virus case for effective infection rates larger

than the absolute-dominance threshold τ †1 , as was shown in FIG. 5.5.

FIG. 5.10 illustrates the dependency of steady-state infection fraction curve on network

layer interrelation. When the contact network of virus 2 (GB) is positively correlated with

that of virus 1 (GA), it is more difficult for virus 1 to survive, making the survival threshold

τ1c relatively larger for positively correlated GB. Negatively correlated contact network

layers impede virus 1 from completely suppressing virus 2, making absolute-dominance

threshold τ †1 larger for negatively correlated GB.

Survival diagram: Allowing variation of τ2, the steady-state infection curve extends to

the steady-state infection surface. FIG. 5.11 plots steady-state infection fraction for virus 1

and virus 2 as a function of τ1 and τ2. White curves represent theoretical threshold curves

derived from the solution to (5.8), accurately separating the survival regions depicted in

FIG. 5.7.

FIG. 5.12 plots standardized threshold diagram where GB is negatively correlated with

GA (left) and GB is positively correlated with GA (right). Predictions from analytical
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Figure 5.9: Two-layer network generation for numerical simulations is generated here. The
contact network GA through which virus 1 propagates is a random geometric graph where
pairs of nodes with a distance less than rc are connected to each other. For visualization con-
venience, the number of nodes is N = 100, which is different from the actual N = 1000 used
for numerical simulation results. For the contact graph of virus 2 (GB), we first generated
a scale-free network according to the B-A model, associating the nodes of this graph with the
nodes of GA to achieve a certain degree correlation coefficient with GA. Specifically, we ob-
tained three different permutations such that the generated graphs are negatively, neutrally,
and positively correlated with GA. These three graphs are the same if isolated, and distinct
in their interrelation with GA. The high-degree nodes in the positively correlated GB (lower
right) have also high degree in GA (upper left), while the high-degree nodes in the negatively
correlated GB (upper right) have low degree size in GA. The uncorrelated GB (lower left)
shows no clear association.
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Figure 5.10: Comparison of steady-state infection fraction curves of virus 1 in the SI1SI2S
competitive spreading model. Survival threshold τ1c is larger for positively correlated GB,
indicating it is more difficult to survive positively correlated GB, while τ †1 is larger for nega-
tively correlated GB, indicating it is more difficult to completely suppress the other virus in
negatively correlated GB.
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Figure 5.11: Steady-state fraction of infection for virus 1 (left) and virus 2 (right) as a
function of τ1 and τ2. The white lines are theoretical threshold curves accurately separating
the survival regions.
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Figure 5.12: Standardized threshold diagram for case where GB is negatively correlated
with GA (left) and the case where GB is positively correlated with GA (right). Dashed lines
are the predictions from analytical approximation formula explicitly expressed in (5.21).
Standardized threshold diagram shows three survival regions: absolute-dominance region I,
where only virus 1 survives and virus 2 dies out, absolute-dominance region II, where only
virus 2 survives and virus 1 dies out, and finally, coexistence region III, where both viruses
survive and persist in the population.

approximation formula (5.21) find the threshold curves fairly accurately.

5.4 Discussion and Conclusion

Competitive multi-virus propagation shows very rich behaviors, beyond those of single-

virus propagation. This type of modeling is suitable for co-propagation of exclusive entities,

for example, opposing opinions about a subject, where people are for, against, or neutral;

spreading of a disease through physical contact and viral propagation of antidote providing

immunity to the disease, or marketing penetration of competitive products like Android

versus Apple smart phones. Aside from its potential applications, the problem of competitive

spreading over multilayer networks is technically challenging. In particular, compared to

single layer networks, science of multilayer networks is still in its infancy. There are yet

numerous unknowns about this complex problem.
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Physics of Competitive Spreading on Multilayer Networks

Definition of survival and absolute-dominance thresholds facilitate articulation of all pos-

sible outcomes for the fate of competing viruses. Specifically, survival threshold of a virus

determines the phase transition for that virus from extinction to existence in the competitive

environment, while the absolute-dominance threshold denotes the critical point where the

virus becomes the sole survivor/absolute winner. Our analytical results highlighted major

differences between a single-layer contact network, where both viruses spread through same

routes, and a multilayer contact network, where each virus has its own transmission route.

Significantly, we showed in case of a single network contact, the phase transition is abrupt,

while in case of the multilayer contact the phase transitions occurs continuously. The abrupt

transition occurs because coexistence is not possible for single-layer contact network and a

virus either completely dies out or its infection fraction jumps to the positive value of no

competition (refer back to FIG. 5.3). Our results show the coexistence of exclusive, compet-

itive viruses is an emergent phenomena due to multilayer structure of the underlying contact

network. When network layers are identical, SI1SI2S model does not have a coexistence

equilibrium point. This result exemplifies how promising it is to study phenomenology

of dynamic processes on networks with more complex topologies than static, single-layer

graphs. As an another example of coexistence, Antunovic et al. [88] demonstrated coexis-

tence of competing products when product adoption and network formation would occur

concurrently, demonstrating an emergent phenomena for preferential attachment-adoption

network model.

How interrelation of graph layers of a multilayer network influence dynamical characteris-

tics of processes is very intricate and still open. In case of the competitive spreading process,

the threshold equations (5.6) and (5.9) shows an implicit and complex dependency between

network layers. However, the eigenvalue perturbation techniques employed in (5.12) and

(5.14) help unravelling the implicit interdependencies of the graph layers. These formulae

elucidate that no or little overlapping of “central nodes” is a key determinant of coexistence
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phase. Interestingly, which nodes are central depends on the dynamical characteristics of

the viruses: when the effective infection rates are very large, the central nodes are mainly

those with highest node degrees, and when effective infection rates are close to no-spreading

thresholds, the central nodes are those with highest eigenvector centrality. How implication

of nodes centrality changes depending on the effective infection rates is a promising future

research direction.

The case of aggressive competitive spreading is very important from practical point of

view, as it describes the situation where both viruses are highly contagious if alone, and the

competition among the viruses to find available (susceptible) hosts is the limiting factor. The

survival threshold for aggressive competitive spreading, (5.14), has a very simple and elegant

expression. In particular, λ1(D−1
B A) is a new measure for multilayer network structures.

The normalized adjacency matrix D−1
A A, where each rows are divided by the degree of

its corresponding node, is well-known particularly in random walks over graphs. Matrix

D−1
B A is likewise a normalized adjacency matrix, where each row of A is however divided

by the degree of its corresponding node in layer B. Unlike, D−1
A A, the matrix D−1

B A is not

necessarily a row-stochastic matrix and henceforth does not posses well-known properties of

stochastic matrices. In this study, we have shown that λ1(D−1
B A)λ1(D−1

A B) > 1. Studying

the properties D−1
B A will further our understanding of competitive viruses, in particular in

the more appealing region of aggressive viruses.

Scalability to Multivirus Competitive Spreading

A critical challenge regarding modeling and analysis of mulitvirus spreading is its scalability

to higher number of viruses. Our competitive spreading model (5.1-5.2) for two viruses can

be extended to multiple virus competitive spreading. In this case, the node state space size is

M +1, i.e., each node is either susceptible or infected by one of the M viruses5. Considering

5In the general case of interacting multivirus problem, the problem setup is cumbersom because each
node state has 2M possibilities, as a node might be infected by multiple viruses simultanously. However,
in the special case of competitive spreading, problem setup is no longer problematic as a node can only be
infected by just one virus at any instance.
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each virus has its own transmission route, the contact network will be an M−layer network.

The M−virus competitive spreading dynamics can be expressed as the following:

ṗm,i = βm(1−
∑M

n=1
pn,i)

∑N

j=1
am,ijpm,j − δmpm,i, m ∈ {1, ...,M} (5.25)

where pm,i is the node i probability of infection by virus m, with infection rate βm and

recovery rate δm. am,ij is the adjacency matrix elements of layer m.

Analysis of a competitive spreading scenario with multiple viruses and multiple network

layers is technically challenging. This scalability issue directly emerges due to multilayer

network structure. If the contact network has a single layer, then coexistence is not possible

and the winner virus will be the one with largest effective infection rate. However, as

coexistence is possible for the multilayer network scenario, for a system of M competitive

viruses, the phase-space size is 2M ; each virus can either survive or die-out, and coexistence

is possible in a multilayer network. This exponential explosion of phase-space imposes

technical difficulties on the problem analysis. While this study develops novel analytical

results for competitive spreading of two SIS viruses on a two-layer network, it does not solve

the scalability issue upon extensions to multivirus-multilayer competitive spreading. Future

research to address the scalability issue is a great contribution in better understanding

spreading processes and machinery of dynamical processes over multilayer networks.

Conclusive Remarks

In this study, we study SI1SI2S model, the simplest extension of SIS model to competitive

spreading over a two-layer network, focusing on long-term behaviors in relation to multilayer

network topology. In brief, the major contributions of this study are: (a) identifying and

quantifying extinction, coexistence, and absolute dominance via defining survival thresholds

and absolute-dominance thresholds, (b) proving a region of coexistence and quantitating it

through overlapping of layers central nodes, (c) developing an explicit approximate formula

to globally find threshold values, and (d) proposing a novel multilayer network generation

103



scheme to capture influence of layers interrelation. We believe our methodology has great

potentials for application to broader classes of multi-pathogen spreading over multi-layer

and interconnected networks.

5.5 Appendix: Selected Proofs

5.5.1 Stability Analysis of Single-Layer Network

When τ1 > 1/λ1(A) and τ2 > 1/λ1(B), the disease-free equilibrium (p∗1,i = 0, p∗2,i = 0) ∀i ∈

{1, ..., N} is unstable. Stability of virus-2-absolute-dominance equilibrium (p∗1,i = 0, p∗2,i =

yi > 0) ∀i ∈ {1, ..., N} can be explored by linearizing (5.1) at this equilibrium. The linearized

system is

˙̂p1,i = β1(1− yi)
∑

aij p̂1,j − δ1p̂1,i (5.26)

which is stable if all the eigenvalues of τ1diag{1 − yi}A − I are negative. Rewriting (5.6)

for B = A as

yi = τ2(1− yi)
∑

aijyj (5.27)

suggests that zero is the largest eigenvalue of τ2diag{1 − yi}A − I. Therefore, for τ1 < τ2,

all the eigenvalues of τ1diag{1 − yi}A − I are negative, thus virus-2-absolute-dominance

equilibrium is stable. Similarly, virus-1-absolute-dominance equilibrium is stable if τ1 > τ2.

Therefore, for τ1 6= τ2, exactly only one of the absolute-dominance equilibriums is stable.

5.5.2 Derivation of Threshold Equation

Differentiating equilibrium equation (5.3) with respect to τ1 yields

dp∗1,i
dτ1

(1− p∗2,i) + p∗1,i
dp∗2,i
dτ1

(1− p∗1,i − p∗2,i)2
= τ1

∑
aij
dp∗1,j
dτ1

+
∑

aijp
∗
1,j. (5.28)
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At the survival threshold value τ1 = τ1c, p
∗
1,i = 0, and p∗2,i = yi from (5.6). Substituting

these values in (5.28),

1

(1− yi)
dp∗1,i
dτ1

∣∣∣∣
τ1=τ1c

= τ1c

∑
aij
dp∗1,j
dτ1

∣∣∣∣
τ1=τ1c

, (5.29)

Re-expressing the above equation, we get

dp∗1,i
dτ1

∣∣∣∣
τ1=τ1c

= τ1c(1− yi)
∑

aij
dp∗1,j
dτ1

∣∣∣∣
τ1=τ1c

(5.30)

which is equivalent to (5.8) according to definitions (5.7). Similar stability analysis tech-

nique of Section 5.5.1 proves virus-2-absolute-dominance equilibrium is unstable if τ1 > τ1c.

Therefore, if τ1 > τ1c and τ2 > τ2c, disease-free and absolute-dominance equilibriums are all

unstable and the system will go to the coexistence equilibrium.

5.5.3 Derivation of Eigenvalue Perturbation Formulae

Here, we detail the derivations of (5.11) and (5.13).

At τ2 = 1/λ1(B), (5.6) finds yi = 0 for all nodes. Equation (5.6) is indeed the steady-

state equation for infection probabilities in NIMFA model. Van Mieghem [21] found for SIS

model the derivative with respect to effective infection rate, suggesting

dyi
dτ2

|τ2= 1
λ1(B)

= cBvB,i, (5.31)

wi|τ2= 1
λ1(B)

= cAvA,i (5.32)

where

cA =
λ1(A)∑
v3
A,i

, cB =
λ1(B)∑
v3
B,i

, (5.33)

where vA and vB are the normalized dominant eigenvectors of A and B, respectively.
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Differentiating (5.8) with respect to τ2 yields

dwi
dτ2

=
dτ1c

dτ2

(1− yi)
∑

aijwj

+ τ1c(−
dyi
dτ2

)
∑

aijwj

+ τ1c(1− yi)
∑

aij
dwj
dτ2

. (5.34)

Inserting τ1c = 1/λ1(A), wi = cAvA,i, yi = 0, and dyi/dτ2 = cBvB,i into the above equation

changes it to

(I − 1

λ1(A)
A)
dw

dτ2

= (
dτ1c

dτ2

)λ1(A)cAvA − cBcA(vB ◦ vA) (5.35)

in the collective form, where the Hadamard product ◦ acts entry-wise. Multiplying both

sides by vTA from the left yields:

dτ1c

dτ2

|τ2= 1
λ1(B)

=
1

λ1(A)
cBv

T
A(vB ◦ vA)

=
λ1(B)

λ1(A)

∑
v2
A,ivB,i∑
v3
B,i

, (5.36)

obtaining (5.11). Finding
dτ1c

dτ2

at τ2 = 1/λ1(B) obtains the dependence of τ1c on τ2 close to

1/λ1(B).

Replacing for 1− yi =
τ−1

2

τ−1
2 +

∑
bijyj

from (5.6) into (5.8) yields

wi = (
τ1c

τ2

)(
1

τ−1
2 +

∑
bijyj

)
∑

aijwj. (5.37)

When effective infection rate τ2 is enormous τ−1
2 → 0 and yi → 1, suggesting

wi = (
τ1c

τ2

|τ2→∞)
1

dB,i

∑
aijwj, (5.38)

where dB,i is the B−degree of node i. Therefore, τ1c
τ2
|τ2→∞ is the inverse of the spectral
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radius of D−1
B A, proving (5.13) for large values of τ2.

5.5.4 Coexistence Proofs

Coexistent region non-aggressive competitive viruses:

To investigate the coexistence region for non-aggressive viruses we show that (5.15) is

true. From (5.11), we find

dτ1c

dτ2

dτ2c

dτ1

|(τ1,τ2)=( 1
λ1(A)

, 1
λ1(B)

) =
(
∑
vB,iv

2
A,i)(

∑
vA,iv

2
B,i)

(
∑
v3
B,i)(

∑
v3
A,i)

(5.39)

Proposition 1. (Hölder’s inequality [89]) For p, q > 0 satisfying
1

p
+

1

q
= 1, the following

is always true
n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

for x, y ∈ Rn. The equality happens iff x = y.

Selecting p = 3, q = 3/2, we apply the Hölder’s inequality to get

∑
vB,iv

2
A,i ≤

(∑
v3
B,i

)1/3 (∑
(v2
A,i)

3/2
)1/ 3

2

=
(∑

v3
B,i

)1/3 (∑
v3
A,i

)2/3

, (5.40)

and similarly for p = 3/2, q = 3, we obtain

∑
vA,iv

2
B,i ≤

(∑
v3
B,i

)2/3 (∑
v3
A,i

)1/3

, (5.41)

and the equality happens iff vA = vB. Multiplying sides of (5.40) and (5.41) yields

(
∑

vB,iv
2
A,i)(

∑
vA,iv

2
B,i) ≤ (

∑
v3
B,i)(

∑
v3
A,i), (5.42)
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proving (5.15) is true if vA 6= vB.

Coexistent region for aggressive competitive viruses:

To investigate the coexistence region for non-aggressive viruses we shown that (5.15) is

true. Substituting from (5.13) yields

(
τ1c

τ2

|τ2→∞
)(

τ2c

τ1

|τ1→∞
)

=
1

λ1(D−1
B A)

.
1

λ1(D−1
A B)

=
1

λ1(D−1
B A⊗D−1

A B)

=
1

λ1[(D−1
B ⊗D

−1
A )(A⊗B)]

=
1

λ1[(DB ⊗DA)−1(A⊗B)]
, (5.43)

according to properties of Kronecker product (see, [90]).

The degree diagonal matrix of (A⊗B) is (DA⊗DB). Therefore, (DB⊗DA) is a diagonal

permutation of the degree diagonal matrix of (A ⊗ B). According to Lemma 1, presented

in the following, λ1[(DB ⊗DA)−1(A⊗B)] ≥ 1; thus,

(
τ1c

τ2

|τ2→∞
)(

τ2c

τ1

|τ1→∞
)
≤ 1, (5.44)

and equality holds only if DB ⊗DA = DA ⊗DB, which holds only if the ratio of B−degree

and A−degree of each node is the same for all nodes.

Lemma 3. If H = π(DC)−1C, where π(DC) is a diagonal permutation of degree diagonal

matrix of symmetric matrix C, then λ1(H) ≥ 1. Furthermore, equality holds only if π(DC) =

Dc.
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Proof. The largest eigenvalue maximizes Rayleigh quotient, therefore,

λ1(H) = λ1(π(DC)−1C) = λ1(π(DC)−1/2Cπ(DC)−1/2)

= max
x

xTπ(DC)−1/2Cπ(DC)−1/2x

xTx

≥ 1TC1

1Tπ(DC)1
=

∑
dC,i∑
dC ,πi

= 1,

where dC ,πi is the degree of node i map. Therefore, λ1(H) ≥ 1. Equality holds only if

x = π(DC)1/21 is the dominant eigenvector of π(DC)−1/2Cπ(DC)−1/2, i.e., π(DC)−1/2C1 =

π(DC)1/21, which only holds if dC ,πi = dC,i.

5.5.5 Steady-State Numerical Solution

Given τ2 > 1/λ1(B), (5.8) and (5.6) numerically find τ1,c. We now define xi ,
yi

1−yi , given

the recursive iteration law:

xi(k + 1) = τ2

∑
bij

xj(k)

1 + xj(k)
(5.45)

to prove they converge exponentially, numerically solving (5.6) as
xi(k)

1 + xi(k)
→ yi. The

main advantage of finding equilibrium values using recursive law (5.45) instead of solving

the ordinary differential equations of the model is recursive law (5.45) does not require

incremental time increase, making computations drastically faster.

Furthermore, the steady-state infection probabilities in (5.3)-(5.4) can be found via the

recursive iteration law:

x1,i(k + 1) = τ1

∑
aij

x1,j(k)

1 + x1,j(k) + x2,j(k)
, (5.46)

x2,i(k + 1) = τ2

∑
bij

x2,j(k)

1 + x1,j(k) + x2,j(k)
, (5.47)
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for which
x1,j(k)

1 + x1,j(k) + x2,j(k)
→ p∗1,i and

x2,j(k)

1 + x1,j(k) + x2,j(k)
→ p∗2,i as k →∞.
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Part III

Modeling Behaviors in Social

Epidemic Networks
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Chapter 6

Epidemic Spread in Social Networks

6.1 Introduction

Modeling human reactions to the spread of infectious disease is an important topic in current

epidemiology [91], and has recently attracted a substantial attention [92–98]. The challenges

in this topic concern not only how to model human reactions to the presence of epidemics,

but also how these reactions affect the spread of the disease itself. In general, human

response to an epidemic spread can be categorized in three main types: (1) Change in the

system state. For example, in a vaccination scenario individuals go directly from susceptible

state to recovered without going through infected state. (2) Change in system parameters

as the result of an adopted cautious behavior. For example, as in [97], individuals might

choose to use masks, therefore, have a smaller infection rate parameter. (3) Change in the

contact topology. For example, due to the perception of a serious danger, individuals reduce

or change their contacts with other people who can potentially be infectious [92].

A good review on the existing results studying the interaction of the epidemic spreading

and the human behavior can be found in [92]. Poletti et al. [99] developed a population-

based model where susceptible individuals could choose between two behaviors in response

to presence of infection. Funk et al. [94] showed that awareness of individuals about the
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presence of a disease can help reducing the size of the epidemic outbreak. In their paper,

awareness and disease have interconnected dynamics. Theodorakopoulos et al. [98] formu-

lated the problem so that individuals could make decision based on the perception of the

epidemic size. Perra et al. [100] considered the case where individuals go to a ‘feared ’ state

when they sense infection. Since most of the existing results are for population-based mod-

els, they are suitable for a society of well-mixed individuals. To the best of the authors’

knowledge, individual-based results have not been reported for this problem so far.

The contribution of this chapter is two-fold: (1) Unlike most of the previous results, no

homogeneity assumption is made on the contact network, and the human-disease interac-

tion in this study is modeled on a generic contact graph. (2) We show through analytical

approaches that two distinct critical values exist for the effective infection rate. The two are

explicitly computed. The existence of two distinct thresholds is reported for the first time

in this study, providing a fundamental progress on previous results.

6.2 Model Development

In this chapter, we have built our modeling based on the NIMFA model. Specifically, we

add a new compartment to the classic SIS model for epidemic spread modeling to propose

a susceptible-alert-infected-susceptible (SAIS) model.

The contact topology in this formulation is considered as a generic graph. Each node

is allowed to be in one of the three states ‘susceptible’, ‘infected’, and ‘alert’. For each

agent i ∈ {1, ..., N}, let the random variable xi(t) = e1 if the agent i is susceptible at time

t, xi(t) = e2 if alert, and xi(t) = e3 if infected, where e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , and

e3 = [0, 1, 0]T are the standard unit vectors of R3. There are four stochastic transitions in

the SAIS model:

1. A susceptible agent becomes infected by the infection rate β times the number of its
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infected neighbors, i.e.,

Pr[xi(t+ ∆t) = e3|xi(t) = e1, X(t)] = βYi(t)∆t+ o(∆t), (6.1)

for i ∈ {1, ..., N} and Yi(t) ,
∑N

j=1 aij1{xj(t)=e1}.

2. An infected agent recovers back to the susceptible state by the curing rate δ, i.e.,

P (xi(t+ ∆t) = e1|xi(t) = e3, X(t)) = δ∆t+ o(∆t). (6.2)

3. A susceptible agent might go to the alert state if surrounded by infected individuals.

Specifically, a susceptible node becomes alert with the alerting rate κ ∈ R+ times the

number of infected neighbors, i.e.,

P (xi(t+ ∆t) = e2|xi(t) = e1, X(t)) = κYi(t)∆t+ o(∆t). (6.3)

4. An alert agent can get infected in a process similar to a susceptible agent but with a

smaller infection rate 0 < βa < β, i.e.,

P (xi(t+ ∆t) = e3|xi(t) = e2, X(t)) = βaYi(t)∆t+ o(∆t). (6.4)

In above equations, Pr[·] denotes probability, X(t) , {xi(t), i = 1, ..., N} is the joint

state of the network, ∆t > 0 is a time step, and the indicator function 1{X} is one if X is

true and zero otherwise. A function f(∆t) is said to be o(∆t) if lim∆t→0
f(∆t)

∆t
= 0.

The stochastic compartmental transitions of a node in SAIS model are depicted in Fig.

6.1.

A common approach for studying a continuous-time Markov process is to derive the cor-

responding Kolmogorov forward (backward) differential equations (see [47]). As can be seen
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Figure 6.1: Schematics of agent-level stochastic transitions in the SAIS model. Parameters
β, δ, βa, and κ denote the infection rate, curing rate, alert infection rate, and alerting rate,
respectively. Yi(t) is the number of the neighbors of agent i that are infected at time t.

from the above equations, the conditional transition probabilities of a node are expressed in

terms of the current state of its neighboring nodes. Therefore, each state of the Kolmogorov

differential equations corresponding to the Markov process will be the probability of being in

a specific joint state. In this case, we will end up with a set of first order ordinary differential

equations of the order 3N . Hence, the analysis will become dramatically complicated as the

network size grows. Using a first-order mean-field approximation, as described in [1] (see

Chapter 3), we get a system of nonlinear differential equations with 2N states. Specifically,

let pi and qi denote the probabilities of agent i to be infected and alert, respectively. The

SAIS spreading model is obtained as

ṗi = β(1− pi − qi)
N∑
j=1

aijpj + βaqi

N∑
j=1

aijpj − δpi, (6.5)

q̇i = κ(1− pi − qi)
N∑
j=1

aijpj − βaqi
N∑
j=1

aijpj, (6.6)

for i ∈ {1, ..., N}.
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6.3 Analysis of SAIS Spreading Model

In this section, the SAIS spreading model (6.5) and (6.6) derived in the previous section is

analyzed.

6.3.1 Comparison between SAIS and SIS

As a first step, we compare the SAIS model and the SIS model with respect to the infection

probabilities. Specifically, we are interested in comparing pi(t), the response of (6.5) and

(6.6), with infection probability p′i(t) in the N-intertwined SIS model (see Chapter 2), which

is the solution of the system

ṗ′i = β(1− p′i)
N∑
j=1

aijp
′
j − δp′i. (6.7)

The following theorem shows that alertness decreases the probability of infection for each

individual.

Theorem 5. Starting with the same initial conditions pi(t0) = p′i(t0), i = {1, ..., N}, the

infection probabilities of individuals in SIS model (6.7) always dominate those of the SAIS

model (6.5) and (6.6), i.e.,

pi(t) ≤ p′i(t), i = {1, ..., N} ∀t ∈ [t0,∞). (6.8)

Proof. Rewrite the equation (6.5) as

ṗi = β(1− pi)
N∑
j=1

aijpj − δpi − (β − βa)qi
N∑
j=1

aijpj. (6.9)

Starting with the same initial conditions pi(t0) = p′i(t0) for i ∈ {1, ..., N}, it is concluded
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that

pi(t0) = p′i(t0)⇒ ṗi(t0) ≤ ṗ′i(t0), (6.10)

since (β − βa)qi(t0)
∑N

j=1 aijpj(t0) is a non-negative term having βa < β by definition. Ac-

cording to (6.10), there exists tf > t0 so that

pi(t) ≤ p′i(t), i ∈ {1, ..., N} ∀t ∈ [t0, tf ]. (6.11)

The theorem is proved if we show that inequality (6.11) holds for every tf ∈ (t0,∞). Assume

that there exists t1 > t0, so that (6.11) holds for tf = t1 but it is not true for any tf > t1.

Obviously, at t = t1,

∃i ∈ {1, ..., N} s.t. pi(t1) = p′i(t1) and ṗi(t1) > ṗ′i(t1). (6.12)

In the subsequent arguments, it is shown that no such t1 exists. From (6.9), ṗi(t1) is found

to satisfy

ṗi(t1) = β(1− pi(t1))
N∑
j=1

aijpj(t1)

− (β − βa)qi(t1)
N∑
j=1

aijpj(t1)− δpi(t1)

≤ β(1− pi(t1))
N∑
j=1

aijpj(t1)− δpi(t1)

= β(1− p′i(t1))
N∑
j=1

aijpj(t1)− δp′i(t1), (6.13)

according to (6.12) and the fact that (β − βa)qi(t1)
∑N

j=1 aijpj(t1) is a non-negative term.

Based on (6.11), ∀j ∈ {1, ..., N} we have pj(t1) ≤ p′j(t1). Therefore, the inequality (6.13) is
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further simplified as

ṗi(t1) ≤ β(1− p′i(t1))
N∑
j=1

aijp
′
j(t1)− δp′i(t1) = ṗ′i(t1). (6.14)

Having ṗi(t1) ≤ ṗ′i(t1) contradicts (6.12). Hence, no such t1 exists so that (6.12) is true. As

a result, the inequality (6.11) holds for every tf ∈ (t0,∞). This completes the proof.

6.3.2 Exponential Epidemic Die-Out

Theorem 6. Consider the SAIS spreading model (6.5) and (6.6). Assume that the effective

infection rate satisfies

τ =
β

δ
<

1

λ1(A)
. (6.15)

Then, initial infections will die out exponentially.

Proof. The solution of pi(t) was proved in Theorem 5 to be upper-bounded by p′i(t). Ac-

cording to earlier results in Section 2.3, the NIMFA model (6.7) is exponentially stable if

(6.15) is satisfied. As a consequence, pi(t) in (6.9) is also exponentially stable if (6.15) is

satisfied.

6.3.3 Asymptotically Epidemic Die-Out

According to (6.6),

qei =
1− pi
1 + βa

κ

, i ∈ {1, ..., N}, (6.16)

is an equilibrium for (6.6). To facilitate the subsequent analysis, define a new state ri as

ri , qi − qei = qi −
1− pi
1 + βa

κ

. (6.17)
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Substituting qi = ri + 1

1+βa
κ

− pi
1+βa

κ

from (6.17) in (6.5) and (6.6), the derivatives ṗi and ṙi

in the new coordinate are derived as

ṗi = {β
βa
κ

1 + βa
κ

+ βa
1

1 + βa
κ

}
N∑
j=1

aijpj

− {β +
β + βa

1 + βa
κ

}pi
N∑
j=1

aijpj

− (β − βa)ri
N∑
j=1

aijpj − δpi, (6.18)

ṙi = −κ(1 +
βa
κ

)ri

N∑
j=1

aijpj. (6.19)

To facilitate the subsequent analysis, define

p , [p1, ..., pN ]T ∈ RN , r , [r1, ..., rN ]T ∈ RN . (6.20)

According to (6.18) and (6.19) and the definitions (6.20), the followings are true

ṗ = (βeffA− δI)p + g1(p, r), (6.21)

ṙ = 0r + g2(p, r), (6.22)

where 0 is a matrix or vector of appropriate dimensions,

βeff , β
βa
κ

1 + βa
κ

+ βa
1

1 + βa
κ

, (6.23)

and

gk(·) , [gk,1(·), ..., gk,N(·)]T , (6.24)
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for k ∈ {1, 2} with

g1,i(p, r) , −{β +
β + βa

1 + βa
κ

}pi
N∑
j=1

aijpj

− (β − βa)ri
N∑
j=1

aijpj, (6.25)

g2,i(p, r) , −κ(1 +
βa
κ

)ri

N∑
j=1

aijpj. (6.26)

If we linearize the system (6.21) and (6.22) at the origin, the resulting system has N zero

eigenvalues. Therefore, linearization technique fails to investigate the stability properties of

(6.21) and (6.22). In the following arguments, we show that center manifold theory can be

employed here.

The eigenvalues of matrix (βeffA − δI) are βeffλi − δ, i ∈ {1, ...N}, where λi’s are the

eigenvalues of the adjacency matrix A. Therefore, assuming that

βeff
δ

<
1

λ1(A)
, (6.27)

the matrix (βeffA − δI) is Hurwitz (i.e., a matrix that all of its eigenvalues have negative

real parts). In addition, the two nonlinear functions g1 and g2 defined in (6.24) satisfy

gk(0,0) = 0, ∇gk(0,0) = 0, (6.28)

for k ∈ {1, 2}, where ∇ is the gradient operator. The center manifold theorem (see [101]

for more details) suggests that there exists a function H(·) : RN → RN where the dynamics

(6.21) and (6.22) can be determined by

˙̂r = g2(H(r̂), r̂). (6.29)
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Differential equation (6.29) can be written in terms of its entries as

˙̂ri = −κ(1 +
βa
κ

)r̂i

N∑
j=1

aijhj(r̂), (6.30)

for i ∈ {1, ..., N}, where hi(·) is the i-th component of H(·) , [h1(·), ..., hN(·)]T .

Remark 2. Usually, it is not feasible to find hi(·) explicitly. However, we know that each

function hi(·) is necessarily non-negative since the probability pi is non-negative.

Lemma 4. The trajectories of (6.30) will asymptotically converge to the set defined by

Ω = {r̂ ∈ RN |r̂i
N∑
j=1

aijhj(r̂) = 0, i = 1, ..., N}. (6.31)

Proof. Define a continuously differentiable function V as

V ,
1

2
r̂T r̂. (6.32)

Taking the derivative of V with respect to time, we have

V̇ =
N∑
i=1

r̂i ˙̂ri = −κ(1 +
βa
κ

)
N∑
i=1

(
r̂2
i

N∑
j=1

aijhj(r̂)

)
. (6.33)

It can be seen that the time derivative V̇ is negative semi-definite according to Remark

2. According to the LaSalle’s invariance theorem (see [101]) the trajectories of (6.30) will

asymptotically converge to the set V̇ ≡ 0, i.e., Ω in (6.31).

Theorem 7. Consider the SAIS spreading model (6.5) and (6.6). Assume that the effective

infection rate satisfies (6.27) where βeff is defined in (6.23). Small initial infections die out

asymptotically as t→∞.

Proof. Since the effective infection rate satisfies (6.27), the matrix (βeffA− δI) is Hurwitz.
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According to the property (6.28) of g1(p, r), the system

ṗ = (βeffA− δI)p + g1(p,0),

which is system (6.21) with r = 0, is exponentially stable. In addition, according to Lemma

4, r̂i
∑N

j=1 aijhj(r̂) → ∞ as t → ∞. Therefore, the term ri
∑N

j=1 aijpj in (6.18) can be

considered as a vanishing disturbance for (6.21). Therefore, pi → 0 asymptotically as

t→∞.

Remark 3. From Theorem 6, the first epidemic threshold is

τc1 =
1

λ1(A)
, (6.34)

which is equal to the epidemic threshold in the N-intertwined SIS epidemic model. If the

infection rate βa is such that
βa
δ
<

1

λ1(A)
, (6.35)

the ratio
βeff
δ

can be larger or smaller than 1
λ1(A)

, depending on the value of β. Therefore,

if (6.35) holds, Theorem 7 suggests that there exists another epidemic threshold τc2. Using

the definition of βeff in (6.23), the condition (6.27) in Theorem 7 can be expressed as

βeff
δ

=
β

δ

βa
κ

1 + βa
κ

+
βa
δ

1

1 + βa
κ

≤ 1

λ1(A)
, (6.36)

which is equivalent to
β

δ
≤ 1

λ1(A)
+

κ

βa
(

1

λ1(A)
− βa

δ
). (6.37)

From (6.37), the second epidemic threshold τc2 is

τc2 = τc1 +
κ

βa
(

1

λ1(A)
− βa

δ
). (6.38)
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Notice that, according to (6.35), τc2 > τc1.

6.3.4 Epidemic Persistence in the Steady-State

The steady-state is studied by letting the time derivatives ṗi and q̇i equal to zero, namely,

0 = β(1− pssi − qssi )yssi + βaq
ss
i y

ss
i − δpssi , (6.39)

0 = κ(1− pssi − qssi )yssi − βaqssi yssi , (6.40)

where yssi ,
∑N

j=1 aijp
ss
j .

From (6.40), it is inferred that

qssi

N∑
j=1

aijp
ss
j =

1− pssi
1 + βa

κ

N∑
j=1

aijp
ss
j . (6.41)

Now, substitute for qssi
∑N

j=1 aijp
ss
j terms in (6.39) using (6.41) to get

(
β

βa
κ

1 + βa
κ

+ βa
1

1 + βa
κ

)
(1− pssi )

N∑
j=1

aijp
ss
j − δpssi = 0. (6.42)

Theorem 8. Consider the SAIS spreading model (6.5) and (6.6). The steady-state values

of the infection probability of each individual in the SAIS model is similar to those of the

NIMFA model (2.6) with an effective infection rate βeff .

Proof. Based on the definition of βeff in (6.23), the equation (6.42) is simplified to

βeff (1− pssi )
N∑
j=1

aijp
ss
j − δpssi = 0,

which can be expressed as

βeff
δ

N∑
j=1

aijp
ss
j =

pssi
1− pssi

. (6.43)
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Comparing (6.43) with (2.7), it is observed that the steady-state values of the infection

probabilities in an SAIS epidemic network is equal to those of a SIS epidemic network with

effective infection rate βeff .

6.4 Simulation Results

In order to examine the analytical results developed for the SAIS spreading model, three

examples are provided in this section. In all of the simulations, the curing rate is fixed at

δ = 1 so that the dimensionless time t̄ = δt is the same as the simulation time.

Example 1. We consider an arbitrary contact graph with 11 nodes and 16 links. For this

network, the spectral radius is found to be λ1(A) = 3.1385. For the simulation purpose,

three nodes are initialized in the infected state while others are all susceptible. In Fig. 6.2,

three trajectories of the total infection fraction p̄(t) = 1
N

∑N
i=1 pi(t) are plotted. For all the

three, κ = 0.1 and βa = 0.1. The trajectories (a) and (b) correspond to the NIMFA model

2.6 and the SAIS spreading model (6.5) and (6.6), respectively, with β = 2. Trajectory (c)

is the solution of the SIS model with the infection rate βeff defined in (6.23). As is expected

from Theorem 5, the infected fraction in SIS model always dominates the SAIS model. In

addition, as proved in Theorem 8, the steady-state infection fraction in the SAIS is equal to

that of the SIS model with the effective infection rate βeff . In Fig. 6.2, it can be observed

that the infection probabilities in the SAIS model spread similar to the SIS model at the first

stage. Then, the size of the epidemics is reduced due to increased alertness in the network.

Example 2. In this example, for the same network in the previous example, (1) the steady-

state value of the infected fraction and (2) the maximum value of the infected fraction are

plotted as a function of the effective infection rate τ = β/δ. The simulation parameters are

chosen as κ = 1, βa = 0.1. Since βa/δ = 0.1 < 1/λ1(A) = 0.3186, there exists two distinct

thresholds τc1 and τc2 presented in (6.34) and (6.38), respectively, as discussed in Remark

3. Simulation results for this example are shown in Fig. 6.3. As is observed in Fig. 6.3,
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Figure 6.2: The infected population fraction in Example 1. (a) SIS model. (b) SAIS model.
(c) SIS model with reduced infection rate βeff .
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Figure 6.3: The maximum infected fraction and the steady-state value for the infected
fraction in Example 2.

the steady-state values of the infected fraction p̄ is zero before the second epidemic threshold

τc2. In addition, the maximum of the infected fraction is equal to the initial infected fraction

before τc1, because before τc1, the epidemics dies out exponentially; as stated in Theorem 6.

Between the two thresholds, maxt p̄(t) is greater than p̄(0) but steady-state value p̄ss = 0.

Therefore, in this region the epidemic spreads at the first stage but then completely dies out

as a result of increased alertness. After the second threshold, p̄ss < maxt p̄(t), i.e., alertness

reduced the infection size.

Example 3. Consider an epidemic network where the contact graph is an Erdos-Reyni

random graph with N = 320 nodes and connection probability p = 0.2. The initial infected
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Figure 6.4: The infected population fraction in Example 3. (a) SIS model. (b) SAIS model
with βa = 0.02. (c) SAIS model with βa = 0.01.

population is %2 of the whole population. The simulation parameters are β = 0.03, κ = 0.05.

Three trajectories (a), (b), and (c) are presented in Fig. 6.4 corresponding to βa = β,

βa = 0.02, βa = 0.01. For the sake of evaluating the model development in Section 6.2, a

Monte-Carlo simulation is also provided for each trajectory, shown in Fig. 6.4 in blue. As

can be seen, there is a reasonable agreement between the proposed model (6.5) and (6.6) and

the actual SAIS Markov process. It can be observed that lowering βa reduces the steady state

infection probability. For a sufficiently small value of βa infection is mitigated totally at the

steady state.
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Chapter 7

Optimal Information Dissemination

in Epidemic Networks

7.1 Introduction

In this study, built upon the SAIS model [5], we investigate how information dissemination

can help boosting the resilience of the agent population against the spreading. The role of

information about the infection on the behavior of individuals has attracted a substantial

attention [94,96,102]. Information dissemination policies can potentially be used to promote

the public health. In our formulation, the information dissemination is realized through an

additional network among agents, which has the same nodes (agents) but different links

with respect to the contact network. Each link in the information dissemination network

is a directed link which provides the health status of the source agent to the end agent.

The contributions of this study are: (1) Unlike most of the existing results in the literature,

the contact network and the information dissemination network are generic graphs. (2) An

information dissemination metric is introduced which is explicitly related to the effect of the

information dissemination on the resilience of the epidemic network. The metric has a simple

and elegant expression. It is a quadratic form of the adjacency matrix of the information
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dissemination network and the dominant eigenvector of the adjacency matrix of the contact

graph. (3) Given the contact network and some design constraint, the optimal topology of

the information dissemination network is found. It is proven that the spectral centrality

of the nodes and edges determines the optimal information dissemination network. Up to

the authors’ knowledge these results for epidemic networks are reported for the first time

in this study, providing a fundamental progress w.r.t. the literature. Additionally, these

results have the potential to be applied to mitigate epidemics in several different complex

systems, from human and animal infectious diseases, to malware propagation in computer

and sensor networks.

7.2 Model Development

This study proposes an extension to the SAIS model developed in [5] (see Chapter 6),

promoting the alerting process using an information dissemination mechanism. Specifically,

an information dissemination mechanism is developed so that the health information of

some agents in the population is provided to some other agents. We denote the adjacency

matrix of the information dissemination network by matrix B = [bij]N×N . The entry bij is

such that if the information of the agent j is provided to agent i, bij = 1, otherwise, bij = 0.

The information dissemination network is a directed network which is not required to be

connected. The transition from the susceptible to the alert state (6.3) in the original SAIS

model is modified to be

P (xi(t+ ∆t) = e2|xi(t) = e1, X(t)) = (κYi(t) + kZi(t))∆t+ o(∆t), (7.1)

where Zi(t) ,
∑N

j=1 bij1{xj(t)=e1} is the number of infected agents whose health status is

provided to agent i through the information dissemination network. The coefficient k > 0

determines the rate that susceptible agents become alert when they learn about existence

of infection through the information dissemination network. The stochastic compartmental
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Figure 7.1: Compartmental transition graph according to the SAIS model with information
dissemination. Yi and Zi are the number of infected neighbors of agent i in contact network
and information dissemination network, respectively.

transitions of a node are depicted in Fig. 7.1. An illustrative schematics of the contact

network and the information dissemination network is shown in 7.2.

Let pi, and qi denote the probabilities of agent i to be infected and alert, respectively.

Using the same procedures as in [5], the SAIS model with information dissemination is

obtained as:

ṗi = β(1− pi − qi)
N∑
j=1

aijpj + βaqi

N∑
j=1

aijpj − δpi, (7.2)

q̇i = (1− pi − qi){κ
N∑
j=1

aijpj + k
N∑
j=1

bijpj} − βaqi
N∑
j=1

aijpj, (7.3)

for i ∈ {1, ..., N}.

7.3 Analysis of the SAIS Model with Information Dis-

semination

In this section, the dynamic system (7.2) and (7.3) derived in the previous section is an-

alyzed. First, we review the basic results for the case where there is no information dis-
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Figure 7.2: Contact network (blue links) and the information dissemination network (red
directed links).

semination. Throughout this study, the alerted infection rate βa is assumed to satisfy the

following assumption to ensure that the cautious behavior is strong enough to mitigate the

infection.

Assumption 3. The infection rate is βa satisfies

0 <
βa
δ
<

1

λ1

. (7.4)

7.3.1 Case of No Information Dissemination

When there is not information, k = 0 in the dynamical system (7.2) and (7.3). The equations

(7.2) and (7.3) with k = 0 are actually the original SAIS model developed and studied

in [5]. It was shown in [5] that the SAIS model with no information dissemination exhibits

two distinct thresholds in the dynamics of epidemic spread. Below the first threshold τc1 ,

infection dies out exponentially. Beyond the second threshold τc2(0), infection persists in

the steady state. Between the two thresholds, infection spreads at the first stage but then
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dies out asymptotically as the result of increased alertness in the network. It was shown

that the first threshold τc1 does not depend on behavioral parameters, while the second

threshold τc2(0) is directly influenced by the behavioral parameters. More discussion about

the second threshold and its practical importance are available in [3].The main results of

the analysis are provided in the following.

Theorem 9. Consider the SAIS epidemic spread model (7.2) and (7.3) with no information

dissemination (i.e. k = 0). Under the Assumption 3,

• initial infections will die out exponentially if the effective infection rate τ , β/δ sat-

isfies

τ < τc1 ,
1

λ1

, (7.5)

• initial infections die out asymptotically if

τc1 < τ < τc2(0) ,
1

λ1

+
κ

βa
(

1

λ1

− βa
δ

), (7.6)

• infection probabilities will reach to nonzero steady-state values if

τ > τc2(0).

Proof. See [5] for the proof.

7.3.2 SAIS with Information Dissemination

Theorem 10. For the SAIS model with information dissemination (7.2-7.3), under the

Assumption 3, initial infection with will die out if the effective infection rate is less than

τc1 = λ−1
1 . Furthermore, there exists a second threshold τc2(k), such that if τc1 < τ <

τc2(k), initial infection dies out asymptotically. In addition, the second threshold τc2(k) is a

monotonically increasing function of k.
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Proof. If τ < τc1 , the infection probability dies out exponentially according to Theorem

9 for the SAIS model. It is straightforward to show that the infection probability of the

SAIS model (7.2-7.3) with no information dissemination is never less than the case with

information dissemination. Therefore, the infection probability in the SAIS model with

information dissemination also dies out exponentially. Similar argument can be made for

the asymptotically die out.

If the effective infection rate is very strong, i.e., τ → ∞, all of the agents will be

infected in the steady state. Therefore, there must be a second threshold τc2(k) such that

for τ < τc2(k) infection dies out and for τ > τc2(k) infection persist in the steady state.

Also, the information dissemination contributes positively to reducing the infection size.

Therefore, τc2(k) should increase monotonically by k.

Lemma 5. If the contact network is connected, the steady-state values of the infection

probabilities are either zero for all of the agents or absolutely positive for all the agents.

Proof. The idea of the proof is inspired from [21]. The steady-state values for the infection

and alertness probabilities, denoted by p∗i and q∗i , satisfies

β(1− p∗i − q∗i )
N∑
j=1

aijp
∗
j + βaq

∗
i

N∑
j=1

aijp
∗
j − δp∗i = 0. (7.7)

According to (7.7), p∗i = 0, for ∀i ∈ {1, ..., N} is a solution for the steady-state infection

probabilities. Suppose there exists a node j such that p∗j > 0. For any node i that is a

neighbor of node j, i.e., aij 6=0, the probability of infection is

p∗i =
β(1− q∗i )

∑N
j=1 aijp

∗
j + βaq

∗
i

∑N
j=1 aijp

∗
j

β
∑N

j=1 aijp
∗
j + δ

. (7.8)

The steady-state value p∗i is positive because
∑N

j=1 aijp
∗
j ≥ aijp

∗
j > 0, 0 ≤ q∗i ≤ 1, and

β, βa > 0. Same procedure can be applied to the neighbors of node i, and so on. Hence,

if the contact network is connected and at least one of the agents have nonzero infection

132



probability, then p∗i > 0, for all i ∈ {1, ..., N}.

After the second threshold, i.e., τ > τc2(k), the the steady-state values p∗i start to obtain

positive values. Therefore, the value for τc2(k) can be determined by studying the solution

of the steady-state values. At the steady-state, according to (7.3),

(1− p∗i ){κ
N∑
j=1

aijp
∗
j + k

N∑
j=1

bijp
∗
j} − q∗i {κ

N∑
j=1

aijp
∗
j + k

N∑
j=1

bijp
∗
j} − βaq∗i

N∑
j=1

aijp
∗
j = 0. (7.9)

Therefore, if the values of p∗i are positive, then

q∗i = (1− p∗i )fi(p∗, k̄),

where k̄ , k
βa

and p∗ , [p∗1, ..., p
∗
N ]T , and fi(p

∗, k̄) is defined as

fi(p
∗, k̄) ,

κ
βa

∑N
j=1 aijp

∗
j + k̄

∑N
j=1 bijp

∗
j

(1 + κ
βa

)
∑N

j=1 aijp
∗
j + k̄

∑N
j=1 bijp

∗
j

. (7.10)

Also, to facilitate the subsequent analysis, we make the convention that fi(0, k̄) is some

positive real number.

Substituting for q∗i in (7.7) and dividing the both sides by δ,

τ(1− p∗i )
N∑
j=1

aijp
∗
j − (τ − βa

δ
)(1− p∗i )fi(p∗, k̄)

N∑
j=1

aijp
∗
j − p∗i = 0, (7.11)

for i ∈ {1, ..., N}, where τ = β/δ. The above equation gives the steady-state value of the

infection probabilities.

Theorem 11. Second threshold τc2 is such that the set of equations

τc2

N∑
j=1

aijwj − (τc2 −
βa
δ

)fi(w, k̄)
N∑
j=1

aijwj − wi = 0, (7.12)
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where w = [w1, ..., wN ]T , has a nontrivial solution with all wi > 0.

Proof. Define τ̃ , τ − τc2 . Close to the second threshold, i.e., as τ̃ → 0+, p∗i = τ̃
∂p∗i
∂τ
|τ=τc2

+

o(τ̃). Therefore, fi(p
∗, k̄)→ fi(

∂p∗

∂τ
|τ=τc2

, k̄). Letting τ → τ+
c2

in (7.11),

τc2

N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

− (τc2 −
βa
δ

)fi(
∂p∗

∂τ
|τ=τc2

, k̄)
N∑
j=1

aij
∂p∗j
∂τ
|τ=τc2

− ∂p∗i
∂τ
|τ=τc2

= 0. (7.13)

Since τc2 is the second threshold,
∂p∗i
∂τ
|τ=τc2

must be positive for every i ∈ {1, ..., N}. Hence,

τc2 is such that the set of algebraic equations (7.12) has positive solutions.

Remark 4. The set of algebraic equations (7.12) is a nonlinear eigenvalue-type problem.

If w is a solution then αw is also a solution for any α > 0, because fi(αw, k̄) = fi(w, k̄).

The trivial solution w = 0 always satisfies (7.12). However, we are interested in non-trivial

solutions and specifically the ones with all positive entries.

Remark 5. The second threshold τc2 is a function of k̄. For k̄ = 0, fi(w, k̄) is

fi(w, 0) =

κ
βa

1 + κ
βa

. (7.14)

Therefore, for k̄ = 0, the set of algebraic equations (7.12) becomes

(τc2
1

1 + κ
βa

− βa
δ

κ
βa

1 + κ
βa

)
N∑
j=1

aijwj − wi = 0, (7.15)

which can be expressed in the collective form,

(τc2
1

1 + κ
βa

− βa
δ

κ
βa

1 + κ
βa

)Aw = w. (7.16)

The above equation has nontrivial solution if (τc2
1

1+ κ
βa

− βa
δ

κ
βa

1+ κ
βa

)−1 is an eigenvalue of A.

In this case, w is the corresponding eigenvector. However, all the elements of w are strictly
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positive only if w is the eigenvector of A corresponding to the largest eigenvalue, i.e., w = v1.

Letting (τc2
1

1+ κ
βa

− βa
δ

κ
βa

1+ κ
βa

) = λ−1
1 , the second threshold τc2(0) is found to be

τc2(0) =
1

λ1

+
κ

βa
(

1

λ1

− βa
δ

), (7.17)

which is actually equal to the second threshold for SAIS model with no information dissem-

ination defined in (7.6).

7.4 Optimal Information Dissemination

7.4.1 Information Dissemination Metric

In general, it is very difficult, if not impossible, to find analytic solution to the set of

algebraic equations (7.12). The epidemic threshold τc2 is a function of k̄. We propose to

use perturbation theory to find approximate solutions for the second threshold. As shown

in Remark 5, for k̄ = 0, τc2(0) = 1
λ1

+ κ
βa

( 1
λ1
− βa

δ
) and w = v1. Taking the partial derivative

from both sides of (7.12) at k̄ = 0 yields

∂τc2
∂k̄

N∑
j=1

aijv1,j + τc2(0)
N∑
j=1

aij
∂wj
∂k̄
− ∂τc2

∂k̄
fi(v1, 0)

N∑
j=1

aijv1,j

− (τc2(0)− βa
δ

)
∂fi
∂k̄

(v1, 0)
N∑
j=1

aijv1,j − (τc2(0)− βa
δ

)fi(v1, 0)
N∑
j=1

aij
∂wj
∂k̄
− ∂wi

∂k̄
= 0. (7.18)
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In the above equation, the expression for τc2(0) is known from (7.6). The expression for

∂fi
∂k̄

(v1, 0) can also be obtained from (7.10) as

∂fi
∂k̄

(v1, 0) =
∂

∂k̄

κ
βa

∑N
j=1 aijwj + k̄

∑N
j=1 bijwj

(1 + κ
βa

)
∑N

j=1 aijwj + k̄
∑N

j=1 bijwj
|w=v1,
k̄=0

=
∂

∂k̄
{

κ
βa

1 + κ
βa

+

k̄(1 + κ
βa

)−1
∑N

j=1 bijwj

(1 + κ
βa

)
∑N

j=1 aijwj + k̄
∑N

j=1 bijwj
}|w=v1,

k̄=0

=

∑N
j=1 bijv1,j

(1 + κ
βa

)2
∑N

j=1 aijv1,j

. (7.19)

Substituting for τc2(0) and ∂fi
∂k̄

(v1, 0) in (7.18) leads to

∂τc2
∂k̄

1

1 + κ
βa

N∑
j=1

aijv1,j −
1

1 + κ
βa

(
1

λ1

− βa
δ

)
N∑
j=1

bijv1,j +
1

λ1

N∑
j=1

aij
∂wj
∂k̄
− ∂wi

∂k̄
= 0. (7.20)

In the collective form,

∂τc2
∂k̄

1

1 + κ
βa

λ1v1 −
1

1 + κ
βa

(
1

λ1

− βa
δ

)Bv1 + (
1

λ1

A− I)
∂w

∂k̄
= 0. (7.21)

Theorem 12. The second threshold τc2(k̄) for which the set of equations (7.12) has positive

solutions for wi is

τc2(k̄) =
1

λ1

+
κ

βa
(

1

λ1

− βa
δ

) (7.22)

+ k̄
vT1 Bv1

λ1

(
1

λ1

− βa
δ

) + o(k̄).

Proof. Multiplying vT1 from right to the both sides of (7.21) yields

∂τc2
∂k̄

1

1 + κ
βa

λ1v
T
1 v1 −

1

1 + κ
βa

(
1

λ1

− βa
δ

)vT1 Bv1 + vT1 (
1

λ1

A− I)
∂w

∂k̄
= 0. (7.23)
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Since v1 is the eigenvector of matrixA corresponding to λ1 andA is symmetric, vT1 ( 1
λ1
A−I) =

0. Furthermore, v1 is normalized so vT1 v1 = 1. Substituting in the above equation,
∂τc2
∂k̄

is

obtained as
∂τc2
∂k̄
|k̄=0 =

vT1 Bv1

λ1

(
1

λ1

− βa
δ

). (7.24)

Therefore, τc2(k̄) can be expressed as

τc2(k̄) = τc2(0) +
∂τc2
∂k

(0)k̄ + o(k̄)

=
1

λ1

+
κ

βa
(

1

λ1

− βa
δ

)

+
k

βa

vT1 Bv1

λ1

(
1

λ1

− βa
δ

) + o(k̄). (7.25)

Remark 6. The expression (7.25) provides an elegant expression for the value of second

threshold τc2(k̄). However, this expression is only useful for small values of k̄. As a conse-

quence, all the subsequent analysis and result are valid for small values of k̄.

Remark 7. As a special case, assume that the information dissemination network is the

same as the contact network, i.e., B = A. This case is similar to the case where there is no

information dissemination, but the alerting rate is κ+ k. In this case,

vT1 Bv1

λ1

=
vT1 Av1

λ1

=
λ1v

T
1 v1

λ1

= vT1 v1 = 1.

From (7.22), τc2(k̄) = 1
λ1

+ κ+k
βa

( 1
λ1
− βa

δ
) + o(k̄).

Remark 8. From (7.22), it is observed that if the information dissemination network is

designed such that

φ(A,B) ,
vT1 Bv1

λ1

(7.26)

is maximized, the value for τc2(k̄) is bigger. Therefore, the resilience of the network against
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the spreading process is enhanced. We refer to the metric φ(A,B) as the information dissem-

ination metric. The information dissemination metric φ(A,B) can be easily computed from

(7.26) once the spectral radius λ1 and the dominant eigenvector v1 of the contact network A

are found.

7.4.2 Optimal Topology of the Information Dissemination Net-

work

From both application and theoretical aspects, a very interesting problem is to find the

optimal topology of the information dissemination network. The optimal information dis-

semination network generates the maximal value for the second threshold τc2, discussed

in Theorem 10 and Theorem 11. Based the arguments in Remark 8, for small values of k̄,

the optimal information dissemination network is associated with finding the best adjacency

matrix B such that for a given A and some design constraints, the information dissemination

metric φ(A,B) defined in (7.26) is maximized.

If there is no constraint on the B matrix, then the maximal value for φ(A,B) is obtained

for the case where the information dissemination network is a complete graph, i.e., B =

11T − I. In this case, the value of the information dissemination metric is

φ∗ = φ(A,11T − I) = λ−1
1 {(1Tv1)2 − 1}. (7.27)

The above value is the maximal effect that can be expected from the information dis-

semination network. The worst case trivially is the case where there is no information

dissemination, i.e., φ(A,0) = 0. In this section, we consider two types of constraint on the

information dissemination network.

Constraint on the Degree Distribution

Assume that each agent i can only receive the health status of di other agents.

138



Theorem 13. Given the degree distribution d = (d1, ..., dN), the optimal topology of the

information dissemination network is such that each agent receives the health status of the

di agents that have the largest element in the eigenvector v1 with respect to other agents.

Proof. From (7.26), the information dissemination metric can be expressed as

φ(A,B) =
N∑
i=1

N∑
j=1

bijv1,iv1,j. (7.28)

If the degree di of agent i is fixed, the following set of constraints should be imposed on B:

N∑
j=1

bij = di, i ∈ {1, ..., N}. (7.29)

The optimal choice of bij’s in this case is such that
∑N

j=1 bijv1,j is maximized for each node

i with the constraint
∑N

j=1 bij = di. Therefore, the optimal solution is to set bij = 1 for the

di agents that have the largest value of v1,j.

Remark 9. As can be seen, the elements of the dominant eigenvector v1 of the contact

network provides a measure of centrality for the nodes in the information dissemination

network.

Remark 10. Consider the case where di are actually the degree of the nodes in the contact

network, i.e., di =
∑N

j=1 aij. It is interesting to note that the optimal topology for the

information dissemination network is very different from the contact network. In other

words, it is of more benefit to know the health information of the nodes with high eigenvector

centrality rather that the health information of the nodes in immediate contact.

Constraint on Number of Links

Consider the case where the number of the links in the information dissemination network

is given and fixed.
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Theorem 14. Given the number of the links L, the optimal topology of the information

dissemination network is such that bij = 1 for the first L pairs (i, j) with highest value of

v1,iv1,j and bij = 0 for the rest.

Proof. Let EB be the set of directed links in the information dissemination network. The

information dissemination metric (7.26) can be expressed as

φ(A,B) =
N∑
j=1

1{(i,j)∈EB}v1,iv1,j. (7.30)

Given the number of the links L, the constraint is
∑N

j=1 1{(i,j)∈EB} = L. Therefore, the

optimal solution is to set (i, j) ∈ EB for the first L pairs (i, j) with highest value of v1,iv1,j.

Having (i, j) ∈ EB is equivalent to bij = 1.

Remark 11. As can be seen the product v1,iv1,j provides a measure of centrality for the

links in the information dissemination network. The eigenvector centrality measure of links,

v1,iv1,j, is symmetric with respect to i and j. Therefore, if L is an even number, the optimal

dissemination network is undirected.

7.5 Conclusion and Future Work

This chapter studied the impact of information dissemination network on enhancing the

resilience of a population against epidemic spreading. In particular, our modeling and anal-

ysis was to answer this question: “given a contact network, through which infection spreads,

what is the optimal information dissemination network which boosts the system resilience

the most?” We found elegant expressions and solutions to the optimal information dissem-

ination problem. However, results reported here are only valid for small values of alerting

rate since a perturbation method was used to solve (7.12). It is a very promising research

work to look for possible analytical or numerical solutions for the optimal information dis-

semination problem for wider range of the alerting rate. This problem has multiple potential
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areas of applications, from infectious diseases mitigation to malware impact reduction.
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Chapter 8

Epidemic Spreading in

State-Dependent Locally-Adaptive

Networks

8.1 Introduction

Control of infectious disease spreading in social networks is very critical for public health pur-

poses, and mitigation strategies include vaccination, quarantine, and preventive behaviors.

Incorporating individuals’ preventive behaviors into epidemic models has recently attracted

substantial attention [92, 103]. Individuals tend to respond to emergence of an epidemic

by (1) adopting hygiene/pharmaceutical actions [5,94,95,99,100,104], e.g., wearing masks,

following more hygiene, and taking vaccinations, or by (2) reducing or changing contacts to

avoid infection [51,105–112].

Recently, Sahneh et al. [5] proposed a model to implement self-initiated preventive re-

sponse to infections. The key idea is to introduce an ‘Alert ’ state where individuals can still

become infected, however, they adopt some preventive measures. Alert individuals adopt

hygienic behavior modeled by a reduction in their infection rate [5]. This model was later
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used to show importance of individuals’ responsiveness to perceived infection [3], suggesting

an optimization framework for investments on social awareness [113]. Built upon this model,

authors investigated the effect of information dissemination on social alertness promotion,

increasing the resilience of the population to infectious disease propagation [6]. In this chap-

ter, we study the SAIS model where alert individuals adopt the preventive behavioral type

2, i.e., they change the contact network.

While various problems about dynamics on networks, such as synchronization and vi-

ral spreading, and dynamics of networks, such as rewiring processes, have been studied

separately, synergistic development of models considering both dynamics has begun and

provided some initial contributions. Gross et al. [107] is one of the first contributions on the

topic of dynamic coevolving networks, where infected individuals rewire their links from in-

fected individuals toward susceptible ones forming two loosely connected clusters. Marceau

et al. [108] improved the compartmental formalism of this model to simultaneously track the

evolution of the spreading process and the contact network structure. Risau-Gusman [109]

showed simple rewiring of susceptible individuals from infected neighbors to other randomly

chosen nodes can completely suppress the epidemic spreading.

Some models consider the reduction of contact on a weighted network as reduction

of the weights of the contact links [51]. Other approaches consider a rewiring process,

where individuals change their neighbors in an unweighted direct network when sensing

infection. Such rewiring of local contacts can have a strong effect on the dynamics of

the disease, which in turn influences the rewiring process. Thus, a complicated mutual

interaction between a time-varying network topology and the dynamics of the nodes emerges.

Guo et al. [114] studied an SIS epidemic model where contact between susceptible and

infected nodes is removed at some rate. They showed the epidemic threshold increases as a

function of the link removal rate, while the network topology exhibits binomial-like degree

distribution, assortative mixing, and modularity. A thorough review of relevant results in

this field can be found in [106]. It has been observed that adaptation of a contact network
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does not always help in suppressing the infection. For example, previous models consider

scenarios where individuals act as vectors for transmitting the infection to their new contacts.

Meloni et al. [112] considered self-initiated behavioral changes for the mobility patterns of

individuals. When travelers decide to avoid locations with high levels of infection and travel

through locations with low levels of infections, this behavioral change may facilitate disease

spreading.

We study a case where individuals myopically change their contact neighborhood when

moving to the alert state as a response to sensing infection. We refer to this model as SAIS-

LAC, where LAC stands for ‘locally adaptive contact.’ In particular, each individual i has

the myopic neighborhoodNA
i at normal time. However, once she becomes alert, she switches

her neighbor set to NB
i . In the SAIS-LAC model, the transition to the alert state happens to

susceptible individuals as a function of the infection state of the neighborhood NA
i , while the

new neighbor set NB
i is predetermined and the infection state of these new neighbors is not

influencing the switching. As a result, overall contact topology switches among 2N possible

configurations. We show this state-dependent, locally switching network can be formulated

as a two-layer network G = (V,EA, EB), where V is the node set, and EA and EB are the

edge sets of susceptible and alert nodes, respectively. Employing the bifurcation theory, we

show the epidemic threshold in this model is the solution of a nonlinear Perron-Frobenius

(NPF) problem [115]. Finally, we provide analytical results to characterize solutions of the

epidemic threshold in terms of the spectral quantities of two auxiliary graphs GA = (V,EA)

and GB = (V,EB), corresponding to the two extreme cases of no switching contact and fully

switched contact, respectively. The contribution of our work is two-fold. First, we propose

a spectral study of a spreading scenario for an adaptive contact network. To the best of the

authors’ knowledge, this contribution is novel for the emerging research field of multilayer

networks [55]. Second, we show that when NB
i is a subset of NA

i , alertness always helps in

reducing the infection impact. Additionally, according to our simple model, it is possible

that contact change may worsen the spreading scenario. While the possible negative impact
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of contact adaptation has been detected in previous research [112], the importance of our

result is that in our model, switching individuals do not act as vectors for transmitting

the disease and this counterintuitive observation is purely the consequence of topological

complexities of the underlying adaptive hybrid contact. Therefore, our results complement

and advance existing results on epidemic spreading over social networks.

8.2 Model Development

In this chapter, we model and study an SIS-type spreading on an adaptive contact network.

The contact network is not fixed through time and is indeed a function of the states of the

individuals. In general, the contact among a pair of individuals can depend on the joint

state of two. For example, when an individual learns he is in risk of receiving infection

from an infected individual, the tendency is to remove contact with that infected individual

and possibly make a new contact with another healthy one. The adaptive contact network

scheme in this study is technically simpler: if an individual becomes alert about existence

of infection, he switches his myopic neighborhood to another set of nodes. This can reflect

the case where people tend to avoid particular locations, and as a result change their neigh-

borhood. In our formulation, we only consider two, fixed myopic neighborhoods for each

individual. In practice, people vary the level of contact based on the perceived severity of

infection risk/cost. Therefore, more realistic modeling would be to consider several choices

of myopic neighborhood, depending on level of alertness.

8.2.1 Locally Switching Contact Network

In a networked SIS model [21, 22], each individual is a node of a graph and the (i, j)

represents the contact between individuals i and j. Specifically, if j can potentially infect

i, then aij > 0, otherwise aij = 0. According to this definition, existence of a contact

between two individuals is independent of their states. A key concept in developing the
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switching contact of this chapter is state-dependent contact, where the contact between a

pair of individuals depends on the individuals’ states. Specifically, we let aij denote the

contact between susceptible individual i and infected individual j, and we let bij denote

the contact between alert individual i and infected individual j. Generally, we can denote

contact between susceptible-susceptible pairs, susceptible-alert pairs, and so on. However,

since we are only interested in contacts capable of virus transmission, this chapter only

models susceptible-infected and alert-infected contacts. In this interpretation, if j is not

infected, aij does not have any physical meaning.

Remark 12. In this view, susceptible node i receives infection from infected node j with rate

βaij; with component β adjusting for the potency of infection globally, and component aij

incorporating heterogeneity of infection process between pairs. When an individual becomes

alert, here the rate of infection changes from the normal value of βaij. In the case of hygienic

behavior, the β component changes to βa < β [5]. Therefore, as in the original SAIS model

in [5], an alert node i receives the infection from infected node j at rate βaaij. In order

to model contact change, the aij component is changed to bij. Therefore, in the SAIS-LAC

model, an alert node i receives the infection from infected node j at rate βbij.

Remark 13. Our contact switching scheme can also be viewed from another perspective.

A very common approach for modeling switching networks is to relate network switching

dynamics to an exogenous Markov chain process. In our proposed scheme, network switching

corresponds not to an exogenous Markov process but instead to the epidemic spreading process

on top, which is itself a Markov process. In particular, upon transition of an individual to

alert state or to susceptible, her contact neighborhood switches. In this view, the overall

contact topology is a directed graph switching among 2N possible configurations.

We show that our switching contact network can be effectively modeled as a two-layer

network G = (V,EA, EB), where V is the node set, and EA and EB are the edge sets of

susceptible and alert nodes, respectively. Therefore, (i, j) ∈ EA iff aij > 0, and (i, j) ∈ EB

iff bij > 0. The layers of G are two auxiliary graphs GA = (V,EA) and GB = (V,EB),
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corresponding to the two extreme cases of no switching contact and fully switched contact,

respectively. In Section 8.4.2, we show it is possible to characterize the behavior of the

SAIS-LAC model using spectral properties of GA and GB, and their interrelation.

8.2.2 SAIS-LAC Markov Model

Consider a population of N individuals, where each individual is either ‘Susceptible,’ ‘In-

fected,’ or ‘Alert.’ For each individual i ∈ {1, ..., N}, let the random variable xi(t) = e1 if

the individual i is susceptible at time t, xi(t) = e2 if alert, and xi(t) = e3 if infected, where

e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , and e3 = [0, 0, 1]T are the standard unit vectors of R3. There

are four stochastic transitions in the SAIS model with switching contact:

1. A susceptible individual becomes infected by the infection rate β times the number of

its infected A−neighbors, i.e.,

Pr[xi(t+ ∆t) = e3|xi(t) = e1, X(t)] = βYi(t)∆t+ o(∆t), (8.1)

for i ∈ {1, ..., N} and Yi(t) ,
∑N

j=1 aij1{xj(t)=e3}.

2. An infected individual recovers back to the susceptible state by the curing rate δ, i.e.,

P (xi(t+ ∆t) = e1|xi(t) = e3, X(t)) = δ∆t+ o(∆t). (8.2)

3. A susceptible individual might go to the alert state if surrounded by infected individu-

als. Specifically, a susceptible node becomes alert with the alerting rate κ ∈ R+ times

the number of infected A−neighbors, i.e.,

P (xi(t+ ∆t) = e2|xi(t) = e1, X(t)) = κYi(t)∆t+ o(∆t). (8.3)

4. An alert individual switches her myopic contact, and becomes infected with rate β

147



Node i
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Neighbors 
of node i, if 
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Figure 8.1: Schematics of the SAIS-LAC model. Black edges correspond to neighborhood
NA
i of a susceptible agent i, while red edges represent the neighborhood NB

i of an alert agent
i. Here, β, δ, and k are the infection rate, curing rate, and alerting rate, respectively. Yi(t)
is the number of infected neighbors of i in NA

i at time t, and Zi(t) is the number of infected
neighbors of i in NB

i at time t.

times the number of infected B−neighbors, i.e.,

P (xi(t+ ∆t) = e3|xi(t) = e2, X(t)) = βZi(t)∆t+ o(∆t), (8.4)

for i ∈ {1, ..., N} and Zi(t) ,
∑N

j=1 bij1{xj(t)=e3}.

In the above equations, Pr[·] denotes probability, X(t) , {xi(t), i = 1, ..., N} is the joint

state of the network, ∆t > 0 is a time step, and the indicator function 1{X} is one if X is

true and is zero otherwise. A function f(∆t) is said to be o(∆t) if lim∆t→0
f(∆t)

∆t
= 0.

Fig. 8.1 depicts a schematic of the networked dynamics of the SAIS-LAC model.
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8.2.3 Mean-Field SAIS-LAC Model

According to node-level description of the stochastic transitions in Section 8.2.2, the joint

network state X(t) is a Markov process. However, this Markov process is both analyti-

cally and numerically intractable due to its exponential state space size of 3N . A common

approach to overcome this issue is to use closure techniques. In particular, a first-order,

mean-field-type approximation derives a set of nonlinear differential equations of size 2N ,

describing the time evolution of state occupancy probabilities. Recently, Sahneh et al. [1]

have introduced a class of epidemic models on multilayer graphs, finding a general expression

for the corresponding first-order, mean-filed model. Interestingly, the node-level stochastic

transition of the SAIS-LAC model explained in 8.2.2 is equivalent to a spreading process over

a two-layer network G = (V,EA, EB). Thus, we find the first-order mean-field-type approx-

imate model according to the generalized epidemic mean-field model (GEMF) developed

in [1], as

ṗi = −δpi + β(1− qi − pi)
N∑
j=1

aijpj + βqi

N∑
j=1

bijpj, (8.5)

q̇i = κ(1− qi − pi)
N∑
j=1

aijpj − βqi
N∑
j=1

bijpj, (8.6)

for i ∈ {1, ..., N}, where pi is the probability that individual i is ‘Infected,’ and qi is the

probability that she is ‘Alert.’

8.3 Epidemic Threshold Equation

Given the contact topology, the value of the effective infection rate τ , β
δ

determines the

dynamical behavior of the epidemic spreading process in SIS model [22]. For small values

of τ , initial infections die out exponentially, while for large values of the effective infection

rate τ , small initial infections invade the population and persist for a “long” time. The

149



mean-field SIS epidemic model shows a threshold phenomena [21]: a critical value τc of the

effective infection rate exists such that for any effective infection rate τ < τc initial infections

die out; while for effective infection rate τ > τc, initial infections converge to an endemic

(i.e. ∀i p∗i > 0) equilibrium.

The epidemic threshold value τc is a measure of robustness of a population against

epidemic spreading. The objective of our analysis in this chapter is to derive and study the

epidemic threshold in our SAIS-LAC model.

8.3.1 Analysis of Equilibrium State

In the subsequent analysis, we repeatedly make use of the two auxiliary graphs GA = (V,EA)

and GB = (V,EB), corresponding to the two extreme cases of no switching contact and

fully switched contact, respectively. In order to avoid unnecessary complexities, we make

the following assumption:

Assumption 4. GA and GB are undirected connected graphs.

According to (8.5), the equilibrium infection probabilities p∗i satisfy

p∗i = β
(1− q∗i )

∑N
j=1 aijp

∗
j + q∗i

∑N
j=1 bijp

∗
j

δ + β
∑N

j=1 aijp
∗
j

. (8.7)

If the contact graphs GA and GB are connected, the equilibrium value of the infection

probability p∗i is either zero for all individuals, or strictly positive for all individuals. From

(8.6), the equilibrium value q∗i is not definite if the population is disease free. However, if

the infection probabilities are nonzero, then q∗i becomes

q∗i =
κ̄
∑N

j=1 aijp
∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

(1− p∗i ). (8.8)
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where κ̄ is the relative alerting rate defined as

κ̄ ,
κ

β
. (8.9)

According to (8.5), and substituting for q∗i from (8.7), we get the following equation for p∗i :

− δp∗i + β(1− p∗i )
N∑
j=1

aijp
∗
j

+ β
κ̄
∑N

j=1 aijp
∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

(1− p∗i )(
N∑
j=1

bijp
∗
j −

N∑
j=1

aijp
∗
j) = 0. (8.10)

Rearranging the terms, we have

p∗i
1− p∗i

= τ{
(κ̄+ 1)

∑N
j=1 bijp

∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

}
N∑
j=1

aijp
∗
j , (8.11)

with effective infection rate τ defined as

τ , β/δ. (8.12)

8.3.2 Derivation of Epidemic Threshold Equation

We can find the epidemic threshold by studying the location of the equilibrium points. For

τ < τc, the disease-free state is the equilibrium. However, for τ > τc, another equilibrium

point P ∗ , [p∗1, ..., p
∗
N ]T also exists in the positive orthant, i.e., p∗i > 0 for all i ∈ {1, ..., N}.

Therefore, the threshold value of τc is such that p∗i |τ=τc = 0 for all i ∈ {1, ..., N}; however,

dp∗i
dτ
|τ=τc > 0 for all i ∈ {1, ..., N} is a solution. Taking a right derivative of both sides of

(8.11) with respect to τ yields
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1

(1− p∗i )2

d

dτ
p∗i = {

(κ̄+ 1)
∑N

j=1 bijp
∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

}
N∑
j=1

aijp
∗
j

+ τ
d

dτ

[
{

(κ̄+ 1)
∑N

j=1 bijp
∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

}
N∑
j=1

aijp
∗
j

]
. (8.13)

Since we are only interested in the derivative at τ = τc, for which p∗i |τ=τc = 0, we can

directly use the definition of derivative to compute the last term. Specifically, according to

the derivative definition, if f(x) is (right) differentiable at x = 0 and f(a) = 0, then

d

dx
{f(x)g(x)}|x=a = f ′(a) lim

x→a
g(x). (8.14)

Therefore, the derivative wi , d
dτ
p∗i |τ=τc satisfies

wi = τc{
(κ̄+ 1)

∑N
j=1 bijwj

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj
}

N∑
j=1

aijwj, (8.15)

where we have used

lim
τ→τ+c

{
(κ̄+ 1)

∑N
j=1 bijp

∗
j

κ̄
∑N

j=1 aijp
∗
j +

∑N
j=1 bijp

∗
j

} = {
(κ̄+ 1)(

∑N
j=1 bijp

∗′
j |τ=τc)

κ̄
∑N

j=1 aijp
∗′
j |τ=τc +

∑N
j=1 bijp

∗′
j |τ=τc

}. (8.16)

Theorem 15. The threshold value τc for the SAIS-LAC model (8.5-8.6) is such that the

equation (8.15) has a nontrivial solution W , [w1, ..., wN ]T with wi > 0 for all i ∈ {1, ..., N}.

Proof. The value of τc that solves (8.15) is the critical value for which p∗i = 0; however,

dp∗i /dτ > 0, denoting a second-order phase transition at τ = τc. Therefore, τc is the

epidemic threshold for SAIS-LAC model (8.5-8.6).

Remark 14. For the SIS model, the epidemic threshold is the critical value τc such that

wi = τc
∑N

j=1 aijwj has a nontrivial positive solution for wi (let κ̄ = 0 in (8.15)). In the
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collective form, W = τcAW is a Perron-Frobenius problem, suggesting that τc = 1/λ1(A)

for the SIS model. For the SAIS-LAC model, the epidemic threshold condition reduces to

solving the nonlinear Perron-Frobenius (NPF) problem (8.15).

8.4 Solution to Threshold Equation

8.4.1 Exact Numerical Solution

The threshold equation (8.15) is an NPF problem, perhaps with no analytical solution. The

solution W discussed in Theorem 15 is in fact an extension of the Perron-Frobenius problem

for nonlinear maps. Hence, we seek numerical solution for (8.15) through application of a

nonlinear map iteration. Specifically, we can define the update law

Wk+1 ,
F (Wk)

‖F (Wk)‖2

, (8.17)

where

F (W )i , {
∑N

j=1 bijwj

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj
}

N∑
j=1

aijwj, (8.18)

and the initial state W0 ∈ SN−1
>0 , {x ∈ RN st ‖x‖2 = 1, ∀i xi > 0}. The following theorem

gives a numerical solution to the threshold equation (8.15).

Theorem 16. For the update law (8.17) Wk → ζ as k → ∞, given the initial state W0 ∈

SN−1
>0 . Moreover, W = ζ and τc = 1

(κ̄+1)ζTF (ζ)
solves the NPF problem (8.15).

Proof. Suppose τc and ζ = [ζ1, · · · , ζN ]T ∈ RN solve the threshold equation (8.15). Define

the auxiliary matrix Q , [Qij] ∈ RN×N , where

Qij , {
∑N

j=1 bijζj

κ̄
∑N

j=1 aijζj +
∑N

j=1 bijζj
}aij. (8.19)

Therefore, µ1 , 1
(κ̄+1)τc

and ζ are an eigenvalue and the corresponding eigenvector of matrix
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Q. Moreover, τc and ζ are the dominant eigenvalue and the corresponding eigenvector

of matrix Q, because Q is in fact an irreducible non-negative matrix and ζ has strictly

positive elements. Matrix Q is irreducible because it has the form Q = DA, where A is the

adjacency matrix and D is a diagonal matrix with positive diagonal entries. Therefore, since

A is irreducible, so is Q. According to the Perron–Frobenius theorem, there is only a single

eigenvector with all positive entries, so it should be ζ. In order to prove the convergence,

we show that all eigenvalues of the Jacobian matrix

J ,
d

dW

F (W )

‖F (W )‖2

∣∣∣∣
W=ζ

(8.20)

lie inside the unit circle, i.e., have a magnitudes less than one. Since ζ is an eigenvalue of

Q, F (ζ) = µ1ζ. Therefore, the Jacobian matrix can be computed as

J =
1

‖F (W )‖2

dF (W )

dW

− 1

‖F (W )‖3
2

F (W )F (W )T
dF (W )

dW

∣∣∣∣∣
W=ζ

=
1

µ1

H − 1

µ1

ζζTH =
1

µ1

(I − ζζT )H (8.21)

where the matrix H is

H ,
dF (W )

dW

∣∣∣∣
W=ζ

. (8.22)

After some rather tedious calculations, we find ∂F (W )i
∂wj

as

∂F (W )i
∂wj

= {
∑N

j=1 bijwj

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj
}aij+(

bij∑N
j=1 bijwj

− κ̄aij + bij

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj

)
×

N∑
j=1

{
∑N

j=1 bijwj

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj
}aijwj

(8.23)
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Hence,

Hij = Qij + µ1ζi

(
bij∑N

j=1 bijζj
− κ̄aij + bij

κ̄
∑N

j=1 aijζj +
∑N

j=1 bijζj

)
.

We claim that µ1 and ζ are also eigenvalue and eigenvector of H , [Hij] ∈ RN×N because

(Hζ)i = (Qζ)i

+ µ1ζi

N∑
j=1

(
bij∑N

j=1 bijζj
− κ̄aij + bij

κ̄
∑N

j=1 aijζj +
∑N

j=1 bijζj

)
ζj

= (Qζ)i

+ µ1ζi

(∑N
j=1 bijζj∑N
j=1 bijζj

−
κ̄
∑N

j=1 aijζj +
∑N

j=1 bijζj

κ̄
∑N

j=1 aijζj +
∑N

j=1 bijζj

)

= (Qζ)i + 0 = µ1ζi.

Using definition of Q and the fact that µ1 and ζ are its eigenvalue and eigenvector, we can

further simplify Hij as

Hij = µ1ζi

(
κaij

κ
∑N

j=1 aijζj
+

bij∑N
j=1 bijζj

− κaij + bij

κ
∑N

j=1 aij +
∑N

j=1 bijζj

)
. (8.24)

Therefore, H is a non-negative matrix. Furthermore, it is irreducible if A and B are also

irreducible. Since H is a non-negative, irreducible matrix, and ζ is a positive vector, µ1 is

the largest eigenvalue of H. Therefore, H can be expressed as

H = µ1ζη
T + H̃, (8.25)

where ηT H̃ = 0, H̃ζ = 0, ηT ζ = 1, and all the eigenvalues of H̃ have a magnitude less than
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µ1. Therefore, the Jacobian matrix J (8.21) becomes

J =
1

µ1

(I − ζζT )(µ1ζη
T + H̃) (8.26)

=
1

µ1

(I − ζζT )µ1ζη
T +

1

µ1

(I − ζζT )H̃

= ζηT − ζηT +
1

µ1

(I − ζζT )H̃ =
1

µ1

(I − ζζT )H̃

Eigenvalues of Jacobian matrix J are the eigenvalues of H̃ divided by µ1. In fact, if ri is an

eigenvector of H̃, then (I − ζζT )ri is an eigenvalue of J . Since, all eigenvalues of H̃ have

a magnitude less than µ1, all the eigenvalues of J lie inside the unit circle. This proves

the local convergence of the iteration method. If the initial W0 lies in SN−1
>0 , the iteration

method converges to the fixed point W = ζ. Starting from W0 on SN−1
>0 , the iteration law

always keeps Wk on on SN−1
>0 . Therefore, since there is only a single equilibrium point on

SN−1
>0 , which is locally exponentially stable, any initial values of W0 on SN−1

>0 will converge

to ζ.

8.4.2 Approximate Analytical Solution

In the previous section, we showed a power iteration method can solve the threshold equation

(8.15) numerically. However, finding analytical solutions is much more challenging. In this

section, we propose to use perturbation methods to get approximate analytical solutions.

The idea is that we know the exact solution of the threshold equation (8.15) in two specific

cases: 1) for κ̄ = 0, the epidemic threshold is τc|κ̄=0 = 1
λ1(A)

and W |κ̄=0 = V is a solution,

where V , [v1, ..., vN ]T > 0 is the dominant eigenvector of matrix A; and 2) for κ̄→∞, the

epidemic threshold is τc|κ̄→∞ = 1
λ1(B)

and W |κ̄=0 = U is a solution, where U , [u1, ..., uN ]T >

0 is the dominant eigenvector of matrix B. Thus, perturbation techniques approximate the

threshold value for small and large values of relative alerting rate κ̄.
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Case I: Slow Alerting Process

For small values of κ̄, we can find the solution to the threshold equation (8.15) by pertur-

bation at κ̄ = 0. Taking the right derivative of threshold equation (8.15) with respect to κ̄

at κ̄ = 0 and W = V , yields

dwi
dκ̄

=
dτc
dκ̄

∑N

j=1
aijvj +

1

λ1(A)

∑N

j=1
aij
dwj
dκ̄

+
1

λ1(A)
{1−

∑N
j=1 aijvj∑N
j=1 bijvj

}
∑N

j=1
aijvj

= λ1(A)
dτc
dκ̄
− λ1(A)v2

i∑N
j=1 bijvj

+ vi +
1

λ1(A)

N∑
j=1

aij
dwj
dκ̄

(8.27)

Theorem 17. The value of the epidemic threshold solving (8.15) has the form

τc =
1

λ1(A)
(1 + κ̄(Ψ(A,B)− 1)) + o(κ̄), (8.28)

where Ψ(A,B) is

Ψ(A,B) ,
N∑
j=1

v2
i

∑N
j=1 aijvj∑N
j=1 bijvj

(8.29)

Proof. The collective form of (8.27) is

dW

dκ̄
= λ1(A)

dτc
dκ̄

V + (I −D0)V +
1

λ1(A)
A
dW

dκ̄
, (8.30)

where D0 is the diagonal matrix

D0 , diag{
∑N

j=1 aijvj∑N
j=1 bijvj

}. (8.31)

Therefore, the following is also true:

(I − 1

λ1(A)
A)
dW

dκ̄
= λ1(A)

dτc
dκ̄

V −D0V + V. (8.32)
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Multiplying both sides by V T from the right gives

0 = λ1(A)
dτc
dκ̄
− V TD0V + 1, (8.33)

because A is symmetric and V is the normalized dominant eigenvector of A. From (8.33),

we get
dτc
dκ̄

=
1

λ1(A)
(Ψ(A,B)− 1),

because V TD0V = Ψ(A,B) according to (8.29). Formula (8.28) is the first-order Taylor

expansion of τc at κ̄ = 0.

Case II: Fast Alertness Process

For large values of κ̄, we can find the solution to the threshold equation (8.15) by pertur-

bation at s = 0, where s , κ̄−1.

The threshold equation in (8.15) in terms of the new parameter s, is

wi = τc{
κ̄−1

κ̄−1

(κ̄+ 1)
∑N

j=1 bijwj

κ̄
∑N

j=1 aijwj +
∑N

j=1 bijwj
}

= τc{
(1 + s)

∑N
j=1 bijwj∑N

j=1 aijwj + s
∑N

j=1 bijwj
}

N∑
j=1

aijwj

= τc{
(s+ 1)

∑N
j=1 aijwj

s
∑N

j=1 bijwj +
∑N

j=1 aijwj
}

N∑
j=1

bijwj. (8.34)

Theorem 18. The value of the epidemic threshold solving (8.15) has the form of

τc =
1

λ1(B)
(1 + κ̄−1(Ψ(B,A)− 1)) + o(κ̄−1), (8.35)

where Ψ(A,B) is defined in (8.29).

Proof. As can be seen, (8.34) has exactly the form of the threshold equation (8.15), where
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A and B matrices have changed roles, and κ̄ is replaced by s. Therefore, similar to the

proof of Theorem 17, the threshold can be found around s = 0, as by switching A and B

matrices and replacing κ̄ by s = κ̄−1. The result is (8.35), which is in fact the first-order

Taylor expansion of τc at s = 0.

8.4.3 Discussion of Possible Solutions

We developed the algebraic equation for the value of the epidemic threshold (8.15) in the case

of the SAIS model with adaptive contact network. This equation is a nonlinear eigenvalue-

type algebraic equation and possibly, no explicit closed-form solution exists for it. In Section

8.4.1, we developed a numerical iteration method that proved to solve the epidemic threshold

equation. Then, in Section 8.4.2, we derived analytical results for extreme cases with κ̄

very small or very large. In this section, we investigate how the analytical expressions

(8.28) and (8.35) help to characterize and understand the dependency of the threshold

value on κ̄. In particular, we are interested to realize how the epidemic threshold moves

from τc(0) = 1/λ1(A) for small values of κ̄ to τc(∞) = 1/λ1(B).

To reflect more realistic scenarios, we only consider cases where λ1(B) < λ1(A), that

is the alert contact network is more resilient than the normal contact graph GA. If, as

in many practical cases, B is a subgraph of A or its link weights are lower, then we have∑N
j=1 aijvj >

∑N
j=1 bijvj and

∑N
j=1 aijuj >

∑N
j=1 bijuj; therefore, according to the definition

(8.29), Ψ(A,B) > 1 and Ψ(B,A) < 1. This is the simplest case where the value of the

epidemic threshold increases monotonically by κ̄. Such a scenario has been simulated in

Section 8.5 and shown in Fig. 8.3 by the blue curve. An interesting and important scenario

is when Ψ(A,B) < 1. In this case, the value of the epidemic threshold decreases for small

values of κ̄, i.e., and the alerting process worsens the infection spreading. The green curve in

Fig. 8.3 depicts such a scenario. Another counterintuitive scenario is when Ψ(B,A) > 1. In

this case, there is an optimal alerting rate κ̄ for which the adaptive network is most resilient

with respect to spreading infection. The red curve in Fig. 8.3 corresponds to this case.
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8.5 Numerical Simulation

In this section, we perform a numerical study to evaluate the results of this chapter. We con-

sider a simple contact graph for GA illustrated in Fig. 8.2. Given this graph, we synthesize

three contact graphs GB1 , GB2 , and GB3 , such that

• The spectral radius of these graphs are all equal to 2
3

of the spectral radius of GA,

i.e., λ1(Bi) = 2
3
λ1(A). In this way, the contact switching is towards a more resilient

network, and comparing the three cases is reasonable.

• For the graph GB1 , Ψ(A,B1) < 1, i.e., our analytical result in (8.28) predicts that

for small values of κ̄ there is a decrease in the epidemic threshold, even though the

threshold increases for larger values of κ̄. In this case, we expect an undershoot in

τc(κ̄) as a function of κ̄.

• For the graph GB2 , Ψ(A,B2) > 1 and Ψ(B2, A) > 1, i.e., there is a value for κ̄ for

which τc(κ̄) is maximum.

• Graph GB3 is constructed by decreasing link weights and removing links from A. As

discussed in the previous section, we expect to see a monotonic increase in the epidemic

threshold as normalized alerting rate κ̄ increases.

The further the effective infection rate τ is from the epidemic threshold, the larger the

size of the final infection fraction. For the case of GB1 , as shown in Fig. 8.4, we have

simulated the time evolution of the infection fraction for τ = 1.4/λ1(A), which is still less

than 1/λ1(B1) = 1.5/λ1(A). By increasing the normalized alerting rate κ̄ from zero, we

observed that for a small value κ̄ = 0.7, the initial infection invades the population more

severely. However, by increasing κ̄, the size of the infection fraction decreases and finally

goes to zero for large enough κ̄.

We repeat the simulation for graph GB2 in two scenarios. For τ = 1.4/λ1(A), shown

in Fig. 8.5, we observe that increasing the alerting rate suppresses the infection. A very
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Figure 8.2: Schematics of contact graph GA of susceptible agents for numerical simulations.
Nodes represent individuals and links represent contact.
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Figure 8.3: Epidemic threshold τc(κ̄) as a function of normalized alerting rate κ̄, for dif-
ferent contact graphs GBi of alert agents. All three graphs have the same spectral radius
and λ1(A)/λ1(Bi) = 1.5. Graph GB1 is synthesized such that Ψ(A,B1) < 1. As can be
seen (green curve), τc(κ̄) initially decreases and then increases as κ̄ increases. Graph GB2

is synthesized such that both Ψ(A,B2) > 1 and Ψ(B2, A) > 1. In this case (red curve), τc(κ̄)
is maximal around κ̄ ≈ 2. Topology of graph GB3 is similar to GA with reduced weights and
some removed links. In this case, epidemic threshold τc(κ̄) (blue curve) increases monoton-
ically by normalized alerting rate κ̄.
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Figure 8.4: Evolution of the fraction of infected individuals in the population with GB1 at
τ = 1.4/λ1(A) for different values of κ̄. The black curve represents the case where there is
no alertness process (κ̄ = 0). It can be seen (red curve) that for κ̄ = 0.7, the infection size
grows. However, by increasing κ̄ further, we observe (blue and green curves) that infection
size diminishes.

interesting observation is when τ = 1.65/λ1(A). In this case, the effective infection rate

τ is even larger than 1/λ1(B1) = 1.5/λ1(A). Therefore, for very large values of κ̄, initial

infections do not die out completely. However, as predicted in Fig. 8.3, for κ̄ close to 3, the

threshold value is 1.75/λ1(A). As a result, by increasing κ̄ from zero, we observe in Fig. 8.6

that the infection size diminishes and is fully suppressed for κ̄ = 3, but later on, for larger

values of κ̄, the infection size increases.

8.6 Conclusion

We extend the susceptible-infected-susceptible (SIS) epidemic model on a fixed static graph

to the case where individuals myopically change their contact neighborhood as a response

to sensing infection. In our model, the contact topology switches among 2N possible con-

figurations. The state-dependent switching contact network leads to very rich dynamics for

the epidemic-spreading process. We show how the locally switching topology of the contact

network is different from fixed, static graphs and can lead to counterintuitive conclusions.
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Figure 8.5: Evolution of the fraction of infected individuals in the population with GB2 at
τ = 1.4/λ1(A) for different values of κ̄. The black curve represents the case where there is
no alertness process (κ̄ = 0). It can be seen that by increasing κ̄, infection size diminishes.
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Figure 8.6: Evolution of the fraction of infected individuals in the population with GB2 at
τ = 1.65/λ1(A) for different values of κ̄. The black curve represents the case where there
is no alertness process (κ̄ = 0). It can be seen (red curve) that by increasing κ̄ from zero,
infection size diminishes and is fully suppressed for κ̄ = 3, but later on, for larger values of
κ̄, infection size increases.
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In particular, it is possible that local switching towards a supposedly more resilient network

(i.e., having smaller spectral radius) can in fact worsen the spreading scenario. It is very

important to highlight the difference of the underlying mechanism for such counterintuitive

behavior with other formerly reported results. In most existing scenarios, an individual may

transmit the infection upon switching to a new individual. However, in our model, such a

scenario does not occur because those who switch do not carry infection. This signifies the

importance of analysis of adaptive networks. Finally, even though we were able to char-

acterize the complex behavior of the spreading scenario of this study in terms of spectral

quantities of the two extreme cases, non-switching graph GA, and fully-switched graph GB,

there are yet several unknowns regarding this problem which demand future research.
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Chapter 9

Conclusion

This dissertation studies epidemic spreading processes over multilayer and interconnected

networks. Multilayer and interconnected networks are relatively new mathematical objects,

with behaviors very different from conventional single networks. This demands a fresh

bottom-up approach for analysis to avoid being biased by previous established results for

single networks. In this dissertation, I have avoided problem formulations which basically

reduce to a larger, but single, network problem. Additionally, I have tried to avoid naive ex-

tension of single-network concepts to interconnected and multilayer networks. For example,

while it is possible to generalize the concept of epidemic threshold value from single network

to multilayer/interconnected networks, Chapter 4 takes into account multiple degrees of

freedom in such networks by proposing a threshold curve instead of a single value.

Analysis of spreading processes on multilayer networks is much more challenging than

on single-layer networks. Similar to simple networks, bifurcation analysis finds conditions

for epidemic outbreak. However, the outbreak condition for the case of a single network

is the solution of an eigenvalue problem, thus isolating the role of contact topology with

clear structural characterization of an epidemic threshold. In contrast to single networks,

the conditions for an epidemic threshold in multilayer networks suffer from an implicit,

mixed effect of network layers and epidemic parameters. For example, for the competitive
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spreading of two viruses in Chapter 5, the critical value of infection rate of one virus depends

implicitly on the other virus infection rate, as well as its associated network layer. As

another example, the epidemic threshold condition for the SAIS model with an information

dissemination network in Chapter 7 is a nonlinear Perron–Frobenius (NPF) problem, for

which no explicit analytical solution exists. Even though the NPF equations are numerically

solvable, structural implications of the multilayer network topology are absent. In this

dissertation, we have developed techniques based on eigenvalue perturbation to overcome

this issue. While eigenvalue perturbation still does not exactly find the threshold values, it

does facilitate characterizing the solutions with respect to structural properties of multilayer

networks. For example, in the competitive spreading problem, we detected that overlapping

of central nodes across network layers determines conditions for coexistence of competing

viruses. I expect this methodology can be applied to much broader problems on multi-layer

networks.

An important message of our results in Chapter 5 is that individual layers’ graph proper-

ties do not possess enough information to characterize the spreading dynamics in multilayer

networks, and some interrelation metrics are needed. This dissertation introduces several

such interrelation metrics. This is particularly important because conventional metrics for

single networks (e.g., average node degree, spectral radius, average clustering coefficient) are

graph properties, and hence by definition do not depend on node relabeling. In contrast,

for interconnected and multilayer networks, node labels matter, as it is very important

which node in one layer corresponds to which node in another layer. Interrelation met-

rics complement the set of conventional network metrics to better describe multilayer and

interconnected networks.

It is important to acknowledge that most of the developments are based on first-order

mean-field approximations of the stochastic epidemic processes. Therefore, all possible

limitations of the mean-field approximation for epidemic processes on single networks, also

apply to multilayer and interconnected networks. As discussed in Chapter 3, mean-field
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approximate models can exhibit considerable deviation from the true epidemic progression

for sparse, structured networks and for epidemic parameters close to critical values. Despite

this limitation, mean-field models are strong, tractable tools to study an intricate, complex

process. In particular, network structural results from mean-field models are very compatible

with the true spreading process.

Future Research Directions

From a design perspective, a very important problem is the optimal design of an intercon-

nection strategy in interconnected networks, i.e., finding the optimal level of interconnection

that maximizes network resilience with respect to malware propagation and cascade failure,

while satisfying required safety and traffic demand constraints. An optimal interconnection

design problem can have important implications in several applications, such as transporta-

tion and communication networks, where traffic flow among nodes has inherent possibilities

of propagating infections/malware. Therefore, it is important to design an interconnection

in such a way that not only satisfies traffic demands, but also minimizes chances of malware

propagation. Our results in Chapter 4 can provide essential tools to formulate this problem.

Our results for competitive spreading over multilayer networks in Chapter 5 leaves the

door open for several important research directions. Not only is the final status of competi-

tors important, but so is the time evolution of the competition. Transient dynamics study

of the competitive processes provides informative data regarding the competition. However,

the study of transient dynamics is technically challenging, as it is not even well-understood

for single-virus propagation on a single virus. Transient dynamics is more tractable when

the competition is very aggressive, i.e., both viruses have high infection rates. Two dynam-

ics are involved in an aggressive competitive spreading process: 1) a fast dynamics where a

susceptible node becomes infected, and 2) a slow dynamics where an infected node recovers

and then gets infected again, but this time with the other virus. Therefore, application of

nonlinear dynamic systems tools to separate these two dynamics reduces the complexity

of the problem, allowing for analytical tractability. Interestingly, the assumption of very
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aggressive viruses is realistic in many practical applications of competition. For example,

in viral marketing, competitive companies put their maximum effort into spreading their

products. Similar characteristics can be observed in an active defense against malicious

attacks in computer networks.

Another critical problem regarding competitive spreading processes over multilayer net-

works is scalability to a higher number of viruses. One great analytical challenge is that for

a system of m competitive viruses, the phase space has 2m states; as each virus can either

survive or succumb. This exponential explosion of phase space imposes technical difficulties

on the problem analysis. One possibility might be to tackle the multivirus problem by induc-

tion method, i.e., analyzing an m-virus problem from an (m−1)-virus problem. This line of

research contributes importantly to the current understanding of the competitive spreading

process, with a potentially broader impact on other dynamics on multilayer networks with

more than two layers.

In conclusion, studying dynamic processes over multilayer and interconnected networks

is a promising research direction, with numerous challenges and opportunities both in theory

and application.
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S. Gómez, and A. Arenas, “Mathematical formulation of multilayer networks,” Phys-

ical Review X, vol. 3, no. 4, p. 041022, 2013.

[55] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,

“Multilayer networks,” arXiv:1309.7233, 2014.
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