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Abstract  

Bovine respiratory disease (BRD) continues to be the primary cause of morbidity and 

mortality in feedyard cattle.  Accurate identification of those animals that will not finish the 

production cycle normally following initial treatment for BRD would provide feedyard managers 

with opportunities to more effectively manage those animals. Our objectives were to assess the 

ability of different classification algorithms to accurately predict an individual calf’s outcome 

based on data available at first identification of and treatment for BRD and also to identify 

characteristics of calves where predictive models performed well as gauged by accuracy. 

Data from 23 feedyards in multiple geographic locations within the U.S. from 2000 to 

2009 representing over one million animals were analyzed to identify animals clinically 

diagnosed with BRD and treated with an antimicrobial.  These data were analyzed both as a 

single dataset and as multiple datasets based on individual feedyards and partitioned into 

training, testing, and validation datasets.  Classifiers were trained and optimized to identify 

calves that did not finish the production cycle with their cohort.  Following classifier training, 

accuracy was evaluated using validation data.  Analysis was also done to identify sub-groups of 

calves within populations where classifiers performed better compared to other sub-groups. 

Accuracy of individual classifiers varied by dataset.  The accuracy of the best performing 

classifier by dataset ranged from a low of 63% in one dataset up to 95% in a different dataset.  

Sub-groups of calves were identified within some datasets where accuracy of a classifiers were 

greater than 98%; however these accuracies must be interpreted in relation to the prevalence of 

the class of interest within those populations.  We found that by pairing the correct classifier with 

the data available, accurate predictions could be made that would provide feedlot managers with 

valuable information. 
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1.  Introduction 

Bovine respiratory disease continues to be the most important syndrome affecting post-weaned 

cattle and is associated with approximately 75% of the morbidity and 50% of the mortality in 

feedyards(Smith, 1998). The overall incidence of BRD has was reported as 14.4% in 1999 and  

16.2% in 2011 and the estimated cost of treating a single case of BRD has nearly doubled from 

$12.59 to $23.60 (USDA, 1999, 2013). Feedlots collect large amounts of individual and cohort 

level data; however, most of these data are used retrospectively in analysis of trends and to 

provide guidance for future management practices.  Data is frequently collected on individual 

animals at the time of health events such as treatment for BRD.  Previous authors have advocated 

the use of daily feedlot data in the prediction of overall outcomes (Babcock et al., 2013a). 

However, there is no literature that uses both individual and cohort level data to make predictions 

regarding an individual animal’s response to treatment.  The ability to use real-time information 

to predict an individual animal’s response at the time of respiratory disease treatment would 

provide tremendous advantages and offer the ability to tailor treatment programs for individual 

animals based on the estimated accuracies of the individual classifiers.   

 Using ‘smart’ sensors coupled with complex mathematical models to aid livestock 

production is not new (Berckmans, D., 2004) and the application of these technologies to the 

livestock industry has the potential to aid in the detection of ill animals (Wathes, C.M., 2008); 

however, most feedyards are not equipped with such monitoring capabilities.  Many feedyards 

do however, collect real-time information on animal treatments and this information could be 

combined with historical cohort and feedyard data, processed through predictive classification 

algorithms, and then used these prediction to provide real-time guidance to managers and 

treatment personnel regarding probabilistic outcomes for individual animals.  Our primary 



	 5

objective was to assess the ability of different classification algorithms to accurately predict an 

individual calf’s post-treatment outcome based on data available at first identification of and 

treatment for BRD. As many classification algorithms have complex mathematical models, no 

attempt was made to determine which variables were important to each classifier, only to 

determine if an algorithm could use the data provided to accurately predict our outcome of 

interest.  Our secondary objective was identification of calf characteristics or situations where 

predictive models performed well as gauged by accuracy.   

 

2.  Materials and Methods 

The research strategy involved evaluating of predictive ability of several classification 

algorithms and data management methodologies both within and across multiple feedyards; 

therefore, project goals were achieved through an iterative process using multiple datasets.  

Creation, revision, and evaluation of predictive algorithms based on existing and generated data 

from multiple sources were accomplished in a stepwise fashion (Fig 1).  Multiple datasets were 

used to create an independent series of classification algorithms (based on training and test data) 

and to allow comparison of predictive accuracy (validation data).   

2.1 Data source 

Individual and cohort-level data from 23 feedlots in multiple geographic locations throughout the 

US were collected on cattle that arrived from 2000 to 2009.  A population of cattle (or lot) that 

were purchased, managed and marketed in a similar fashion was defined as a cohort, although 

the entire cohort may or may not have been housed in the same pen throughout the production 

phase. Cohort-level data included demographic characteristics known about the population at 

feedyard arrival (e.g. arrival date, arrival weight).  Individual animal data were collected at the 
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time a calf was treated for any disease and included characteristics of the individual at that time 

point (e.g. treatment date, diagnosis, rectal temperature).   

2.2 Data preparation 

Individual and cohort data were combined into an original dataset containing 1,400,437 event 

records from 804,631 individual calves within 35,737 cohorts.   This dataset contained 27 unique 

variables and several combination, derived, and redundant variables.  The 27 variables consisted 

of cohort level data and individual information recorded when an animal was pulled for any 

event such as suspected illness.  Cohort level variables available within our dataset for most 

animals were date they arrived at the feedyard, total number of head within that cohort and 

average arrival weight (weight of all animals within the cohort divided by total head in that 

cohort). Some feedyards also recorded the gender of the lot (male, female, mix, or designated the 

lot as Holstein if they were dairy breeds) and the risk code assigned to that lot (high, medium, 

low) which represents the feedyard’s perceived risk of those animals developing respiratory 

disease.  Some variables such as individual animal weight, and rectal temperature at the time of 

treatment were not consistently recorded by all feedyards. The goal of this project was to develop 

and compare the accuracy of models for predicting our outcome of interest, animals that had 

been treated for BRD with an antimicrobial and did not finish (DNF) the production cycle with 

their cohort.  Our case definition for DNF was similar to previous work describing feedyard 

mortality (Babcock et al., 2013b) and included any animal that died following BRD treatment or 

any animal that was removed from the feeding phase prior to cohort harvest following initial 

treatment for BRD.  A binary variable (DNF) was created and populated with values of 0 and 1 

(finished the production cycle normally and did not finish normally, respectively).  Our study 

population dataset (SPD) was a subset of the original data and included all calves identified as 
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being treated for BRD with an antimicrobial.  This subset included 468,734 animals of the total 

1,400,437 events.  Calves could have been diagnosed and/or treated for other conditions prior to 

or after the initial diagnosis and treatment for BRD. In the SPD, 8.5% (39,699 / 468,734) of the 

calves did not finish the production cycle normally.   

2.3 Variable creation 

New variables were derived in an effort to capture predictive characteristics relative to an 

individual animal’s outcome of DNF and thereby enhance predictive models accuracy.  Cohort 

level variables were created that identified trends in the incidence of calves identified as diseased 

and treated within a cohort over the course of time on feed. For each day a cohort was in the 

feedyard, variables were created that calculated the daily incidence proportion of calves 

diagnosed and treated for BRD.  The daily incidence proportion of calves identified as ill for any 

reason within a lot was also calculated.  As changes in BRD morbidity over time can be 

important to understanding an outbreak, cumulative proportions of BRD incidence were 

calculated for the previous 2, 5, 15, 20, and 30 days for each day a cohort was in the feedyard.  

Cumulative proportion variables using the same structure were created representing the 

incidence of all disease within the cohort, not just BRD incidence. Temporal patterns of BRD 

within cohorts have been shown to be associated with cattle health and performance (Babcock et 

al., 2009); therefore, we were aiming to capture this information and make it available for the 

various predictive models. 

Variables were created using the previously created cohort incidence proportion 

variables, querying only those animals within those variables having rectal temperatures at the 

time of treatment greater than or equal to common industry breakpoints of 39.4, 39.7 and 40 

degrees Celsius.  Cohort level variables involving the proportion of animals within a lot meeting 
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certain criteria such as dying or having been identified as diseased for any reason were also 

created.  Previous studies have highlighted the poor diagnostic performance of using clinical 

signs of illness in combination with rectal temperature; therefore the goal of using incidence 

proportion variables at different temperature cutoffs was to capture any additional information 

that might increase the predictive ability of the various classifiers.  While the accuracy of rectal 

thermometers used at the various feedyards is not known, and these variations in accuracy could 

impact treatment decisions for individual animals, we these measurement inaccuracies to be 

equally spread across all feedyards and would impact all results equally.  Development of all 

algorithms was based on temperatures reported in Fahrenheit, final values reported in this 

manuscript were converted to Celsius. Table 1 displays cohort-level variables and specific 

definitions used to create each variable.   

To capture temporal information associated with changes in cohort-level incidence of 

BRD, variables were created calculating differences in incidence proportions from one time 

point to another.  Changes in the incidence of BRD over time have been associated with cattle 

health (Babcock et al., 2009). The change from the previous calendar day’s incidence proportion 

of BRD was calculated as well as changes in cumulative incidence proportions from the previous 

3, 5, 10, 15, 20, and 30 days.  Variables representing changes for incidence rates associated with 

diseases of all causes within a cohort, were also created.  

 Derived variables were also created using individual animal information.  The type(s) of 

antimicrobial calves received were classified into one of seven categories: cephalosporins, 

tetracyclines, fluoroquinolones, macrolides, mixed (animal was treated with more than one class 

of antimicrobial), ampicillins, or older drugs (e.g. penicillins).  A binary variable (0 = no, 1 = 

yes) was created for all animals indicating if they had received a non-steroidal anti-inflammatory 
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(NSAIDYN).   Variables capturing information relating to the time of year, month, and week 

when an animal was treated were also created.  Table 2 lists all individual animal level variables. 

The variable building process resulted in a dataset combining the original and the newly 

created variables. Each record in the final SPD dataset contained the 27 original variables, 126 

newly created cohort-level variables, and 13 newly created individual animal or event variables 

(Tables 1and 2).  Data were not consistent across feedyards and if data were not available to 

calculate one of the new variables, the resulting fields were treated as null or 0 depending on the 

variable structure.  

 Prior to predictive model building, a pair-wise correlation analysis was performed on all 

variables within the dataset using the linear correlation node within KNIME (Berthold, 2008). If 

the value of the correlation statistic between any two variables was |0.9| or higher, only one of 

the variables was selected and included in any subsequent predictive classifiers.  Variables 

identifying a specific feedyard or containing information pertaining to specific dates (i.e. year of 

feedlot entry, or treatment date) were not used when training classifiers.  The goal was to train 

classifiers that could be used on new data and not be tied to only the original datasets.  

2.4 Data partitioning  

The SPD dataset was randomly partitioned into training, testing and validation datasets 

representing 40%, 30%, and 30% of the full dataset, respectively.  Within each partitioned 

dataset, 23 subset datasets each representing only data from an individual feedyard were created.  

All training, testing and validation steps were performed 24 times, once using the dataset with all 

feedyards combined (COMBO) and once for each of the individual feedyard datasets (1 thru 23).  

The validation datasets were saved and evaluated with the final trained algorithms only once to 

evaluate classifier accuracy.    
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2.5 Classification algorithms 

All classification algorithms were implemented using The Waikato Environment for Knowledge 

Analysis (WEKA)(Hall, 2009) nodes available as extensions within KNIME.   

2.5.1 Decision Trees 

Decision tree classification is a learning process that recursively partitions a training dataset and 

is then used to determine the appropriate class for each example within a test dataset (Zhang, 

2012). Each node or branch within a tree splits the data into two or more categories usually based 

on a single attribute.  Each leaf of a node is then assigned to a class that represents the most 

appropriate target value and calculates a probability that an individual belongs to that node 

(Rokach, 2005). We evaluated two variations of decision trees classification algorithms, Random 

forests (RF) and Decision stump (DS).  Random forests build several individual classification 

trees using random samples of the data (i.e. bagging) and then vote for the most popular class 

(Breiman, 2001). Decision stump finds a single attribute that provides the best discrimination 

between the classes and then bases future predictions on this attribute (Iba, 1992). 

2.5.2 Bayesian networks 

In general, Bayesian classifiers estimate the conditional probability distributions of each attribute 

within the training dataset and then assign cases within the test datasets to the class with the 

highest posterior probability using Bayes’ Theorem (Sebastiani, 2005). We used bayesnet (BN) 

with a K2 search algorithm and Naïve bayes (NB) with all the default settings in our study.  

Bayesian network classifiers use directed acrylic graphs where each node in the graph represents 

a random variable and the edges represent probabilistic dependencies among those random 

variables.  Naïve bayes classifiers analyze the relationship between each variable and the class of 

interest to then determine a conditional probability for the relationship (Williams, 2006). 
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2.5.3 Meta-classifiers  

Boosting is a type of meta-learning that classifies subsets of the initial training dataset.  As each 

subset is used to train the classifier, the algorithm attempts to use information from the previous 

subset cases that were incorrectly classified (Vilalta, 2005). Multiboost (MB) and logitboost 

(LB) are algorithms that are constructed by multiplying the individual conditional probabilities 

from each feature to get the total probability of a class (Webb, 2000).  The class with the highest 

probability is then selected as the winner.  In our application, the base learner for MB was the 

random tree algorithm and DS was used as the base learner for LB.  The filtered classifier (FC) 

algorithm used a J48 tree algorithm after the data was passed through a discretization filter. 

2.5.4 Functions/Neural Networks 

The VotedPerceptron (VP) classifier is based on the perceptron algorithm as described by Feund 

and Schapire in 1999. Neural networks predict outcomes based on relationships between 

variables that may be complex and multidimensional and are well suited to our data structure, as 

they do not require a priori assumptions about the underlying data structure (Zhang, 2005).  The 

VP takes advantage of data that are linearly separable with large margins (Freund and Schapire, 

1999).  The VP classifier we used contained all of the default settings. 

2.5.6 Statistical methods 

Logistic regression models were developed and prediction equations were used to evaluate the 

test and validation datasets.  Only variables significantly associated (P < 0.05) with our outcome 

of interest (DNF) in a univariable screening were included when training our logistic classifiers.  

No further attempt was made to create a more parsimonious model as the goal was to evaluate 

logistic regression classification in a similar manner to the other classifiers we had trained.   

2.5.7 Classifier selection 
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Approximately 25 to 30 potential classifiers were trained using their default settings on the 

COMBO training dataset and initial accuracies were evaluated after classifying the test COMBO 

data. Classifiers with the lowest accuracies and or lowest sensitivity (Se) or specificity (Sp) 

values were eliminated.  To further eliminate classifiers providing similar information, pairwise 

correlation coefficients between predicted probabilities from each classifier were calculated 

using the linear correlation node in KNIME.  Classifiers with correlation statistics of > |0.5| were 

removed leaving twelve classification algorithms.  From these 12 algorithms, nine were selected 

that were representative algorithms belonging to one of five general groups of classifiers 

evaluated in this study (Decision trees, Bayesian Methods, Meta-classifiers, Functions/Neural 

Networks, and Statistical). Where possible, individual parameters for each of the nine classifiers 

were modified, retrained and evaluated using the COMBO test data.  The accuracy of the 

classifier was compared with those from the same classifier using different settings.  This 

procedure was repeated for each classifier until optimal accuracy for each classifier had been 

achieved using the test dataset. 

2.6 Sampling of rare events 

Determining the optimal training dataset distribution for the class of interest in respect to 

classifier performance can be challenging.  Previous research has determined that classifier 

performance varies based on the data structure and classifiers used; however, general 

conclusions favored balanced (equal number of events and non-events) training datasets to 

optimize the performance of classification algorithms (Japkowicz, 2000; Weiss, 2003).  Overall, 

calves meeting our case definition (DNF = 1) represented a low proportion (8.5%) of the total 

number of animals.  To evaluate the impact of an un-balanced training dataset on overall 

classifier accuracy, two different types of balanced training datasets were created; over-sampled 
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and under-sampled.  The over-sampled training dataset was created by selecting all of the calves 

in our dataset belonging to the minority class (DNF = 1) and creating exact duplicates of them 

until the distribution of DNF = 1 in the oversampled training data was approximately 50%, or 

equal to the distribution of our majority class (DNF = 0).  The under-sampled training dataset 

preserves all of the minority class rows and was created by randomly removing rows belonging 

to the majority class until there are an equal number of rows belonging to both the majority and 

minority classes within the final dataset (Japkowicz, 2000b). Each classification algorithm was 

created using the three different training datasets, and accuracy of each classification algorithm 

was determined with the same test data.  Analysis of the variance among dataset sampling 

techniques was performed on Area Under the receiver operating Curves (AUC) using the 

Kruskal-Wallis test allowing for multiple comparisons using Steel-Dewass methods in JMP 

(JMP, SAS Inc.) The sampling technique resulting in the highest AUCs was selected as the 

method to train all classifiers.  

2.7 Classifier accuracy 

Classifier accuracy was determined by allowing each algorithm to classify the validation 

datasets. Classifier predicted probabilities of DNF = 0 and 1 were created for each calf for each 

classifier.  Using these probabilities, receiver-operating characteristic curves (ROC) were created 

using the LOGISTIC procedure in SAS (SAS 9.3, SAS Institute. Inc.).  The ROC curve allows 

for evaluation of the trade-off between correctly identifying animals that meet the case-definition 

for DNF (DNF = 1) and falsely identifying DNF = 0 calves as DNF = 1 (false positives) for each 

classification algorithm (Gardner and Greiner, 2006). As the optimal cutoff varies based on the 

application of the diagnostic test (classifiers), we elected to identify the point on the ROC curve 

where Se and Sp are maximized by calculating Youden’s index (Youden, 1950) and using the 
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corresponding classifier generated probability as the cutoff between DNF = 1 and DNF = 0.  

Youden’s index (J) ranges between 0 and 1, with a value of 1 indicating a test with perfect 

sensitivity and specificity.  The Jmax is the point on the ROC curve that has the greatest vertical 

distance from the diagonal or chance line (Schisterman et al., 2005).  

Logisitic regression models for each classifier were fit in SAS using the LOGISTIC 

procedure with the animal’s true status (DNF) as the dependent variable and the predicted 

probabilities out of KNIME as the independent variable of interest. The OUTROC statement was 

included in the MODEL statement to output a dataset for each classifier with all distinct 

predicted probabilities and their corresponding sensitivity and specificity values.  Youden’s 

index (J) = Se + (Sp - 1) was calculated for each possible Se, Sp combination and the Jmax was 

identified along with its corresponding probability (P).  The probability P represents the cutoff 

that maximizes Se and Sp for an individual classifier.  Final predicted classification for each calf 

(predicted DNF = 1 or 0) was based on their predicted probability from that specific classifier in 

relation to P.  Calves with predicted probabilities greater than or equal to P were classified as 

DNF = 1 and all others were assigned DNF = 0.  Classifier diagnostic performance was then 

assessed using the final predicted DNF status to calculate true positives (TP), false positives 

(FP), true negatives (TN), false negatives (FN), Se, Sp, and accuracy =  

(TP+TN)/(TP+TN+FP+FN) for each classifier. 

2.8 Accuracy among sub-groups within populations 

Logistic regression models were employed to evaluate potential changes in classifier 

accuracy based on sub-groups within each dataset population. For each dataset the classifier that 

provided the highest overall accuracy after identifying the cutoff yielding the highest combined 

Se and Sp was selected.  A binary variable (CORR) for each calf within a classified dataset was 
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created and populated with a value of 1 if the classifier predicted DNF status agreed with the true 

value of DNF for that calf, otherwise the value was 0.  For example: if the Naïve Bayes classifier 

provided the highest overall accuracy for the COMBO dataset, then a CORR variable for each 

calf was created and populated with a value of 1 where that calf’s true status for DNF agreed 

with the Naïve Bayes prediction, otherwise the variable was populated with 0.  Independent 

variables of interest were gender, arrival weight (WTIN), rectal temperature at treatment 

(TEMP), days on feed at treatment (TDOF), and the interaction of all variables with TDOF.  

Gender was categorized into four categories representing all genders of calves in our population 

with gender information provided; males (MAL), females (FEM), mixed (MIX), and Holsteins 

(HOL). Arrival weight was categorized into five categories; less than 181kg (400lbs), 181 to 226 

kg (400 to 500 lbs), 227 to 272 kg (501 to 600 lbs), 273 to 318 (601 to 700 lbs) and greater than 

318 kg (700lbs).  Rectal temperature was also categorized into 4 categories; less than 39.1, 39.1 

to 39.4, 39.41 to 40 and greater than 40 degrees Celsius. Days on feed at treatment was 

categorized into animals less than 15 days on feed, 15 to 30 days on feed, 30 to 45 days on feed 

and greater than 45 days on feed.  The true status of each calf, DNF was also offered to each 

model as an independent variable of interest.  The dependent variable of interest was predictive 

model accuracy or agreement between the model prediction for DNF and true calf status 

(CORR).   

A multi-variable logistic regression model was fit using the GENMOD procedure in SAS 

with a binary distribution and logit link function. Manual backwards elimination was performed 

keeping only those variables associated to the outcome at a 5% significance level (P< 0.05). 

Main effects remained in the model regardless of significance if their corresponding interaction 

terms were significantly associated with the outcome.  Least squares means for each predictor 
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remaining in the model were calculated and then transformed back to probabilities using the 

formula: P = exp(logit)/(1+exp(logit).  Probabilities for a given predictor represented the 

agreement/accuracy of calves within that group of the population represented by that variable.   

The true status of the animals DNF if significant (P< 0.05) in the model represented the model 

adjusted positive predictive value (PPV) for each DNF category.  

3.  Results 

3.1 Descriptive statistics 

A total of 468,734 individual calves from 23 different feedyards representing multiple 

geographic locations in the United States were included in our study population.  The mean 

number of individual animals per feedyard meeting our case definition of having been treated 

with an antimicrobial for BRD was 20,379 (SE = 3168) with a median of 17,823.  The 

prevalence of DNF = 1 within the COMBO dataset was 8.5 % with a range among feedyards of 

0.5% to 14.5% and averaging 9.1% (SE = 0.7%) and a median of 9.9%.  

3.2 Comparison of dataset balancing techniques 

To determine the optimal training dataset balancing technique for our data, the AUC from each 

of the nine classifiers were analyzed using the native, under-sampled, and over-sampled test 

datasets.  Variance of the nine classifier AUCs was compared among datasets.  There were no 

differences (P > 0.05) between the native dataset and the over-sampled datasets as well as 

between the over-sampled and under-sampled datasets.  The AUC’s using under-sampled data 

were higher (P < 0.05) when compare to those using the native dataset (Fig. 2). The under-

sampled COMBO training dataset contained 15,821 animals in each DNF category and was used 

to perform all evaluations of classifier accuracy.   

3.3 Classification accuracy 
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The accuracy of the nine classification algorithms was evaluated using the validation data sets.  

Predictions were generated using the COMBO dataset and individual data sets for each feedyard.  

Accuracies were based on predictions from each classifier following the use of Youden’s index 

to determine the cutoff that maximizes Se and Sp.  Variation in accuracies of each classifier and 

each dataset are displayed in Fig 3.  Accuracies of the nine classifiers using the COMBO dataset 

ranged from 52% to 77% for BN and NB, respectively.  Classifier accuracy using dataset 23 

ranged from 6% (DS) to 79% (LB).  While classification of the dataset 23 using the DS 

algorithm resulted in a sensitivity of 99% (not displayed) the algorithm predicted almost every 

calf as DNF = 1 (4097/4156).  The prevalence of DNF = 1 in dataset 23 was 4.7% (197/4156).  

The FC algorithm achieved the highest accuracy of 95% when applied to dataset five; however 

the prevalence of DNF = 1 in this dataset was less than 1% (21/3957) (Table 3).  Of the 24 

datasets analyzed, six achieved accuracies greater than 80% using one of the nine classification 

algorithms with 50% (3/6) of those algorithms using classifiers with Bayesian network 

architecture.  Logistic regression was the highest performing classifier in only one dataset and 

overall accuracy was 73% in a population where the prevalence of DNF = 1 was high (14.5%).      

3.4 Sub-group analysis 

Logistic regression was employed to evaluate potential sub-groups within each dataset where 

classification accuracy was better than overall accuracy.  The classifiers with the highest overall 

accuracy by dataset were analyzed to identify these potential sub-groups.  For the COMBO 

dataset, the main effects of gender, WTIN, TEMP, TDOF and DNF were significantly associated 

(P < 0.05) with classifier accuracy as well as all interactions with TDOF (Table 4).  However, for 

dataset 15, DNF was the only effect associated (P < 0.05) with agreement.   Overall, TDOF or 

the interaction of WTIN and TDOF were associated (P < 0.05) with agreement/accuracy in 22 of 
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the 24 models.  Rectal temperature recorded at treatment was associated (P <  0.05) with 

agreement/accuracy in 16 of the 24 models.   

Prevalence of calves DNF = 1 in our study was low, 8.5% overall and varied by dataset.  

Sub-groups within dataset populations with model adjusted significant (P < 0.05) accuracies 

greater than 1-prevalence represent calves within that population where classifiers performed 

better than guessing all animals would finish the production cycle normally. Using the BN 

classifier on calves in dataset 1, the accuracy of predicting DNF for lightweight calves on arrival 

(less than 181 kg) that were 15 to 30 days on feed at their initial treatment for BRD was 95 ± 4 % 

while the overall prevalence in this population was 12%.  The prevalence of DNF = 1 in dataset 

five was less than 1%; however, accuracy using the FC algorithm was near 100% in all 

categories of gender, TEMP, WTIN, and TDOF (Table 5).  For calves in dataset 19 that were 

greater than 45 TDOF and had rectal temperatures greater than 40 °C the MB classifier was over 

97 ± 2 % accurate in identifying calves DNF = 1 (Table 5). 

4. Discussion 

Bovine respiratory disease continues to adversely impact cattle health with an estimated 

16.2% of all cattle placed in feedlots showing signs of respiratory disease at some point during 

the feeding period (USDA, 2013). Accurately predicting health outcomes is an important 

component in increasing performance within feedyards (Babcock et al., 2013a; Corbin and 

Griffin, 2006). Characteristics of cohorts and individual animals upon arrival and individual 

animal treatment records are frequently recorded.  These data have previously been analyzed for 

risk factors associated with developing BRD;(Babcock et al., 2009; Step et al., 2008) however, to 

our knowledge, using this information to make prognostic predictions for an individual animal at 

the time of first treatment for BRD has not been reported.  Others have also advocated the use of 
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mathematical modeling to aid in animal disease detection and predicting animal responses 

(Wathes, C.M., 2008). In this study we evaluated the ability of several classification algorithms 

to accurately predict calves within cohorts that would not finish the production cycle normally. 

Accuracy of classification algorithms was relatively low using combined data from all feedyards; 

however, when applied to datasets representing individual feedyards, accuracy of some 

classifiers improved.  This is not surprising given the inconsistency in data recorded among 

feedyards.  There were sub-groups of calves within individual datasets where classifier accuracy 

was quite good considering the prevalence of animals meeting our case definition was relative 

low in most datasets.    

When learning from imbalanced datasets, some classifiers can learn to provide adequate 

distinction between FPs and FNs while others simply learn to predict the majority class (Maloof, 

2003). Sampling techniques have been developed to minimize the impact of learning with 

imbalanced data by changing the distributions within the training sets (Maalouf and Trafalis, 

2011). Several methods have been proposed to handle imbalanced datasets and results differ 

based on the classification algorithm chosen;(Japkowicz, 2000b) however, with large datasets it 

is generally accepted that a balanced class distribution performs better than un-balanced (Weiss 

G.M., 2003). Two frequently used techniques involve under-sampling and over-sampling on the 

class of interest.  While sampling techniques may provide benefits in accuracy they can also 

introduce bias due to choice based sampling.  However, if this choice based sampling introduces 

bias that impacts a classifiers ability to accurately predict minority events, then overall accuracy 

should be negatively impacted when validation data (naturally imbalanced) is classified.  There 

were minor differences in classification accuracy from test to validation data (data not shown) 

indicating the choice based sampling method used to train classifiers was not introducing an 
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important source of bias.  In our study, following validation, only those classifiers with the 

highest within-dataset accuracies were used for subsequent sub-group analyses. 

Previous research has discovered that training classifiers on imbalanced data frequently 

produces classifiers that favor the majority class (Weiss G.M., 2003). In our study, the 

prevalence of calves that received treatment for BRD and then DNF was relatively low (8.5%) 

resulting in an imbalanced dataset. We evaluated the AUC for each of the classifiers using 3 

versions of the COMBO dataset (native, under-sampled, over-sampled). Area under the curve, 

unlike accuracy, provides a measurement of a classifiers abilities using all possible cutoffs in Se 

and Sp and has previously been used to distinguish among sampling methods (Maloof, 2003). 

While no difference was found in AUCs between the native and over-sampled datasets, we found 

AUC’s were significantly higher (P < 0.05) using the under-sampled data in relation to our native 

distribution.  Under-sampling and over-sampling techniques are both appropriate methods to 

balance the class distribution; however, some have noted that over-sampling can lead to over-

fitting due to making exact copies of the minority class records (Weiss, 2003). This potential of 

over-fitting was avoided by using under-sampled data to train all classifiers in our study.   

Area under the ROC curve does summarize the ROC curve and provides an overall 

method to discriminate among potential classifiers; however, it does not directly supply a 

classifiers predictive ability (accuracy) given a specific trade-off in Se and Sp (Greiner et al., 

2000). Given the imbalanced nature of datasets and the complex nature of BRD within 

feedyards, the cost of a FP is likely not the same as that of a FN.  The impact of predicting a calf 

would not finish the production cycle normally could involve changes in management 

procedures for that animal that minimize further expenses.  False positive calves represent those 

where significant economic loss could be realized due to lost potential while FN animals 
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managed normally could result in increased expenses of feed and treatments that will provide 

negative returns on investment. We attempted to minimize FPs and FNs by altering the decision 

threshold for each classifier by using the point on the ROC curve furthest from the line of chance 

(Fluss et al., 2005). While this decision threshold may not be the most appropriate for every 

situation (i.e. the cost difference in a FN in relation to FP), by selecting the same threshold across 

all classifiers we were able to compare predictive ability among classifiers using overall 

accuracy. 

We evaluated the accuracies of multiple classifiers to predict our outcome of interest 

(DNF = 1).  Accuracies varied by classifier within a dataset and among datasets.  Within 

datasets, the variation in classifier accuracies ranged from 15% up to 75%; however, in some 

datasets where variation in accuracy was relatively low (15%), the accuracy of the best classifier 

was only 63%, indicating in this dataset, classifiers lacked the appropriate training to provide 

useful predictions.  Accuracy of individual classifiers varied by greater than 49% considering all 

the datasets. Filtered classifier for example, achieved the highest overall accuracy of classifiers 

evaluated when using dataset five and was only 5% accurate using dataset 23.  Bayesian network 

and meta-classifiers each achieved the highest within dataset accuracies in 33% (8/24) of 

datasets but no one type of classifier outperformed all the others.  These large variations in 

accuracies within and among datasets as well as differences in individual classifier accuracies 

across datasets are likely due to differences in variables recorded at each feedyard (represented 

by different data available among datasets) as well as differences in management practices at 

each feedyard that were not represented within these data.  The complex epidemiology of BRD 

within feedlot production systems makes it highly plausible that management of BRD varies by 
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feedyard (Taylor et al., 2010). Differences in accuracies discovered here highlight the 

importance of pairing the classifier that works bests given the data available.   

Evaluating accuracy alone can lead to misleading results when the class of interest within 

the dataset is imbalanced (Chawla, 2005). In our study, the overall prevalence of DNF =1 in the 

COMBO dataset was 8.5% and ranged from < 1 % to 14.5 % in individual datasets.  As 

mentioned previously, the FC algorithm achieved an accuracy of 95% within one dataset (5) and 

appeared to be useful in identifying calves meeting our case definition.  However, further 

analysis reveals the prevalence of calves within dataset five of DNF = 1, was less than 1%.  A 

default strategy of guessing every calf in this population will finish the production cycle 

normally would have resulted in a predictive accuracy of greater than 99%. Therefore, in this 

population, to achieve performance better than guessing a classifier would need to be greater 

than 99% accurate.  

Overall accuracies of individual classifiers and for individual datasets within our study 

were relatively low; however, we identified sub-groups of calves within some datasets where 

classification accuracy was considered good (greater than 1- prevalence of DNF = 1).  The 

characteristics that we used to discriminate among sub-groups within dataset (gender, WTIN, 

TEMP, TDOF) would be known at time of first pull and could be used to guide selection of the 

appropriate classifier given characteristics of that specific animal. Using a Bayesnet algorithm on 

dataset 1, accuracies were greater than 1-prevalence for all categories of WTIN although they 

were modified by the TDOF.  This makes sense, as we would expect animals visually identified 

as suffering from BRD would express different clinical signs based on the amount of time they 

have been in the feedyard.  We also found that in some datasets using an animal’s TEMP and 

TDOF provided accuracies that were better than (1-prev of DNF =1) for that yard.  While these 
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four sub-groups provided insight into instances where classifiers performed well, there are likely 

other sub-groups that could be analyzed and included in sub-group analysis because several risk 

factors have previously been associated with the risk of developing BRD (Babcock et al., 

2010_ENREF_3; Cernicchiaro et al., 2012). By understanding sub-groups of cattle where 

classification algorithms are known to perform well, one could tailor classifier selection at the 

time of treatment based upon the characteristics of the population .  Further research is needed to 

more clearly define these populations and specific classifiers that would optimize prediction 

performance. 

5. Conclusion 

The objective of this study was to evaluate the ability of several different classification 

algorithms to identify individual calves that would not finish the production cycle normally. As 

with many real-world classification problems, these data with respect to our class of interest 

were highly imbalanced.  Under-sampling dataset balancing was performed prior to classifier 

training to give algorithms the best opportunity to learn the class of interest.  We compared the 

ability of these classifiers by using accuracy after adjusting the decision threshold for each 

classifier by maximizing Se and Sp in relation to each other and found it varied not only by 

classifier but also by the data analyzed.  We identified sub-groups within each population where 

specific classifiers performed well considering the prevalence of our class of interest. These sub-

groups of calves were based on demographic characteristics available at the time an animal was 

pulled and treated for BRD indicating there are specific characteristics that could be used to 

tailor classification accuracy.  

Information recorded among feedyards was not always consistent as was partially evident 

in the ranges of accuracy for individual classifiers among datasets.  The predictive accuracy of a 
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classifier is directly related to the data provided when training.  If information provided during 

training does not help distinguish the class of interest then results of classification using 

validation data will not be useful. Methodology used here has provided insight into the capability 

of predictive models to be used in a production setting and the importance of pairing the data 

available with the correct classifier can lead to accurate predictions of calves of interest.  Many 

feedyards do collect vast amounts of cohort and individual animal data and we have outlined one 

potential method of using that data in a real-time setting to make treatment decisions.  

Classification methods described could be used with currently available data allowing feedyards 

to more accurately tailor their treatment protocols based on the probability and animal would 

finish the production cycle normally or not. 
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List of Figures 

Fig 1.  Schematic flow of data refinement, partitioning and classification algorithm evaluation 

a Study Population dataset 

 

Fig 2.  Box and whisker plots of classifiera Area under the Receiver-operating characteristic 

Curve from three different versions of the full dataset each with different distributions of the 

classification variable of interest (percent of calves that did not finish feeding period within 

cohorts).  Native (raw, observed data; 8.5% rate of calves not finishing the production cycle 

normally; total n= 187,493), Over-sample (duplicates of calves within the minority class until 

distributions are balanced; 50% calves did not finish; total n= 374,986, Under-sample (removal 
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of records from the majority class until distributions are balanced; 50% calves did not finish; 

total n= 31,642).   

a BN = Bayesnet, DS = Decisionstump, FC = Filteredclassifier, LB = Lobitboost, LR = Logistic 

Regression, MB = Multiboost, NB = Naïve Bayes, RF = Random forest, VP = VotedPerceptron 

Datasets with different letter superscripts represent differences (P < 0.05) determined using 

Kruskal-Wallis analysis of variance accounting for multiple comparisons using the Steel-Dewass 

method.  

 

Fig 3.  Box and whiskers plots of accuracies for nine classification algorithmsa by datasetb.  

Boxes represent the 25th and 75th quartiles and whiskers span from minimum to maximum 

accuracy values.     

a BN = Bayesnet, DS = Decisionstump, FC = Filteredclassifier, LB = Lobitboost, LR = Logistic 

Regression, MB = Multiboost, NB = Naïve Bayes, RF = Random forest, VP = VotedPerceptron 

b COMBO represents combined dataset with all feedyards.  Individual numbers represent 

datasets containing one feedyard 
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Table 1.  Cohort animal level variables  

Variable Description 
arrivalmonth Month of lot arrival (1,2,3,4,5,6,7,8,9,10,11,12) 
arrivalquarter Quarter of the year of lot arrival (1,2,3,4) 
arrivalyear Year of lot arrival 

brdcasestothispoint 
Sum of animals diagnosed with BRD and administered an antimicrobial as of the previous 
treatdate 

distbrdcasestothispoint sum of distinct animals diagnosed with BRD and administered an antimicrobial as of the 
previous treatdate 

treatment failure #1 (txfailure#1) 1 = any animal requiring re-treatment for BRD or didnotfinish after receiving antimicrobial 
treatment for BRD 

treatment failure #2 (txfailure#2) 1 = any animal requiring treatment with an antimicrobial for any reason after an initial 
treatment for BRD or didnotfinish after receiving antimicrobial treatment for BRD 

treatment failure #3 (txfailure#3) 1 = any animal being pulled for any event after their initial antimicrobial treatment for 
BRD 

treatment failure #4 (txfailure#4) 1 = same as txfailure#3, but includes animals on the same event day 

1st treatment success rate #1     
(1ssttxsuccessrate_p1) 

((distbrdcasestothispoint -sum of  txfailure#1) / distbrdcasestothispoint ) * 100 

1st treatment success rate #2    
(1ssttxsuccessrate_p2) 

((distbrdcasestothispoint -sum of  txfailure#2) / distbrdcasestothispoint ) * 100 

1st treatment success rate #3    
(1ssttxsuccessrate_p3) 

((distbrdcasestothispoint -sum of  txfailure#3) / distbrdcasestothispoint ) * 100 

1st treatment success rate #4    
(1ssttxsuccessrate_p4) 

((distbrdcasestothispoint -sum of  txfailure#4) / distbrdcasestothispoint ) * 100 

propbrdcasestothispoint Proportion of BRD cases to this point = (brdcasestothispoint/headin)*100 
propdistcaestothispoint Proportion of distinct BRD cases to this point = (distbrdcasestothispoint/headin)*100 
propbrdcasestothispoint                   
(time and temperature cutoffs)  

(brdcasestothispoint/headin)* 100;   New variable created for each combination of day 
(2,3,5,10,15,20,30) and temperature cutoffs (≥ 103, ≥ 103.5, ≥ 104) 

propdistcaestothispoint                    (distbrdcasestothispoint/headin)* 100;  New variable created for each combination of day 
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(time and temperature cutoffs)  (2,3,5,10,15,20,30) and temperature cutoffs (≥ 103, ≥ 103.5, ≥ 104) 
deathstothispoint Sum of deaths to this point 
propdeathstothispoint Proportion of deaths to this point = (deathstothispoint / headin) * 100 
propdeathstothispoint                  
(time cutoffs) 

(deathstothispoint / headin) * 100     New variable created for each combination of the 
previous days (2,3,5,10,15,20,30)             

propdailybrdpulls Proportion of lot pulled for BRD on this event day = (Dailybrdpulls/headin) *100 
propdailyallpulls Proportion of lot pulled for any reason on this event day = (Dailyallpulls/headin) * 100 
deltapropdailybrdpulls Change in propdailybrdpulls from previous calendar day 
deltapropdailyallpulls Change in propdailyallpulls from previous calenday day 
deltapropdailybrdpulls                 
(time cutoffs) 

Change in propdailybrdpulls for the previous (2,3,4,10,15,20,30 days) 

deltapropdailyallpulls                   
(time cutoffs) 

Change in propdailyallpulls for the previous (2,3,4,10,15,20,30 days) 

dailyyardpopulation Total number of head on feed for that calendar day 

propryardbrdpulls 
Proportion of yard pulled for BRD on this event day 
(totalbrdpullsforyard/dailyyardpopulation)*100 

deltapropyardbrdpulls Change in propyardburdpulls from previous calendar day 
deltapropyardbrdpulls                      
(time cutoffs) 

Change in propyardburdpulls for the previous (2,3,4,10,15,20,30 days) 

Exponential moving averages 
(EMA) 

EMAs were calculated for the average daily BRD pulls for the lot for 3, 5,10,15,20, and 30 
days 

Moving average convergence 
divergence (MACD) 

MACDs were calculated for differences in all EMA combinations 
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Table 2.  Individual animal level variables and their origin 

Variable Description 
tagno Individual calf's tag number 
treatdate Date calf was treated 
eventno Running count of events per calf 
diag Diagnosis assigned to calf for this event 
dxcode Diagnosis code assigned to calf for this event 
dieddxcode Diagnosis code for calf's death 
antimicrobial 1 = antimicrobial was administered at this event, 0 = no antimicrobial administered 
deaddate Date animal died if known and recorded 
didnotfinish 1= calf did not finish production cycle, 0 = finished production cycle 
treatdof Days on feed at treatment for this animal  
wt Individual animal weight 
temp Rectal temperature 
overallclass Class of antibiotic administered (CEPH, TET, FLU, MAC, MIX, AMP, OLD) 
nsaidyn 1 = NSAID administered during this event, 0 = no NSAID administered 
brdabxyn 1 = calf diagnosed with BRD and administered an antimicrobial (denominator of CFR) 
treatnobrdabxyn Count of the times this calf has been diagnosed with BRD and treated with an antimicrobial 
abxtreatno Running total of the number of times calf treated with antimicrobial for any reason 
eventspriortobrdyn 1 = calf had events recorded prior to brdabxyn = 1, 0 = no events recorded prior to brdabxyn = 1 
nbreventspriortobrd Sum of eventspriortobrdyn 
pulldayofweek The day of the week for this event (M,Tu, We, Thr, F, Sa, Su) 
pullweekdayYN 1 = animal pulled on a weekday, 0 = pulled on a weekend 
pullonmondayYN 1 = animal pulled on a Monday, 0 = pulled any other day 
pullmonth Month of the year for this event (1,2,3,4,5,6,7,8,9,10,11,12) 
pullquarter Quarter of the year for this event (1,2,3,4) 
pullyear Year the calf was pulled 
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Table 3.  Diagnostic performance of classifiersa achieving the highest accuracy by dataset  

Dataset Classifier TPb FPb TNb FNb Sensitivity Specificity Accuracy Prev DNF=1c 

0 NB 3240 24345 104322 8714 27.1% 81.1% 76.5% 8.5% 
1 BN 315 1512 6234 770 29.0% 80.5% 74.2% 12.3% 
10 NB 155 1039 1768 170 47.7% 63.0% 61.4% 10.4% 
11 BN 7 33 994 102 6.4% 96.8% 88.1% 9.6% 
12 BN 73 275 2466 206 26.2% 90.0% 84.1% 9.2% 
16 NB 235 1786 4875 575 29.0% 73.2% 68.4% 10.8% 
18 NB 55 211 3192 388 12.4% 93.8% 84.4% 11.5% 
21 NB 297 1780 7474 655 31.2% 80.8% 76.1% 9.3% 
7 VP 103 745 4034 459 18.3% 84.4% 77.5% 10.5% 
17 VP 312 2033 6637 664 32.0% 76.6% 72.0% 10.1% 
4 LB 221 1149 1568 135 62.1% 57.7% 58.2% 11.6% 
5 FC 18 191 3745 3 85.7% 95.1% 95.1% 0.5% 
13 FC 329 2604 6900 407 44.7% 72.6% 70.6% 7.2% 
14 LB 68 578 2152 46 59.6% 78.8% 78.1% 4.0% 
15 LB 6 19 154 23 20.7% 89.0% 79.2% 0.6% 
19 MB 400 4576 15508 640 38.5% 77.2% 75.3% 4.9% 
22 LB 379 2772 4776 271 58.3% 63.3% 62.9% 7.9% 
23 LB 62 724 3235 135 31.5% 81.7% 79.3% 4.7% 
8 LR 109 394 1521 216 33.5% 79.4% 72.8% 14.5% 
2 DS 38 141 4997 603 5.9% 97.3% 87.1% 11.1% 
3 RF 337 2104 3824 329 50.6% 64.5% 63.1% 10.1% 
6 DS 90 291 1330 106 45.9% 82.0% 78.2% 10.8% 
9 DS 85 297 6364 725 10.5% 95.5% 86.3% 10.8% 
20 DS 257 1532 8453 707 26.7% 84.7% 79.6% 8.8% 

a BN = Bayesnet, DS = Decisionstump, FC = Filteredclassifier, LB = Lobitboost, LR = Logistic Regression, MB = Multiboost, NB = 
Naïve Bayes, RF = Random forest, VP = VotedPerceptron 
b TP = true positives, FP = false positive, TN = true negatives, FN = false negatives 
c Prevalence of calves within each dataset that did not finish (DNF) the production cycle normally
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Table 4.  Type 3 fixed effects results of logistic regression models evaluating the associations between algorithm accuracy and 

gendera, temperature category (temp_cat)b, arrival weight category (wtin_cat)c, days on feed at first treatment category (tdof_cat)d and 

selected interactions of gender, temp_cat, wtin_cat all with tdof_cat.  

Dataset FYYDNO 
Fixed effects offered to each model 

DNF gender temp_cat wtin_cat tdof_cat gender*tdof temp_cat*tdof_cat wtin_cat*tdof_cat 
COMBO < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01

1 NA - - < 0.01 0.03 0.04 - - 0.02
2 NA < 0.01 - - - < 0.01 - - -
3 NA < 0.01 0.04 - < 0.01 < 0.01 - - < 0.01
4 NA < 0.01 - < 0.01 < 0.01 < 0.01 - - -
5 NA - 0.01 0.01 < 0.01 < 0.01 - - -
6 NA < 0.01 0.01 < 0.01 0.80 0.94 - - < 0.01
7 NA < 0.01 < 0.01 - < 0.01 0.27 - - < 0.01
8 NA < 0.01 - < 0.01 - < 0.01 - - -
9 NA < 0.01 < 0.01 - < 0.01 0.08 - - < 0.01
10 NA < 0.01 - 0.02 < 0.01 < 0.01 - - < 0.01
11 NA - - < 0.01 - - - - -
12 NA < 0.01 < 0.01 0.04 - < 0.01 - - -
13 NA < 0.01 0.06 < 0.01 0.75 0.05 0.02 0.01 0.02
14 NA < 0.01 - < 0.01 < 0.01 < 0.01 - - 0.01
15 NA < 0.01 - - - - - - -
16 NA < 0.01 - - < 0.01 < 0.01 - - 0.02
17 NA < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 - - -
18 NA < 0.01 - - < 0.01 - - -
19 NA < 0.01 - 0.270 < 0.01 < 0.01 - < 0.01 -
20 NA < 0.01 - < 0.01 0.012 - - -
21 NA < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 - - -
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22 NA 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 - < 0.01
23 NA < 0.01 - < 0.01 < 0.01 < 0.01 - - -

  

(-) Indicates P > 0.05 

a Gender was categorized into: MAL = males, FEM = females, MIX = mix of males and females, HOL = Holstein 

b Rectal temperature (temp_cat) was categorized into: < 39.1, 39.1 to 39.4, 39.41 to 40, and > 40 degrees Celsius. 

c Arrival weight was categorized into 5 categories: < 181kg (400lbs), 181 to 226 kg (400 to 500 lbs), 227 to 272 kg (501 to 600 lbs), 

273 to 318 (601 to 700 lbs), and > 318 kg (700lbs).  

d Days on feed at treatment was categorized into animals less than 15 days on feed, 15 to 30 days on feed, 30 to 45 days on feed and 

greater than 45 days on feed. 
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Table 5.  Results of logistic regression models of associations between classifier accuracy and gendera, temperature category 

(temp_cat)b, arrival weight category (wtin_cat)c, days on feed at first treatment category (tdof_cat)d and known status of animal 

finishing the production cycle (DNF). 

                    

dataset Variable DNF gender temp_cat (°C) 
wtin_cat 

(lbs) tdof_cat n Agreement SE 
1 temp_cat 39.1 to 39.4 456 0.922 0.014 

1 temp_cat 39.41 to 40.0 2221 0.897 0.010 
1 wtin_cat 227 to 272 1843 0.886 0.009 
1 wtin_cat 273 to 318 2956 0.901 0.007 
1 wtin_cat >700 2992 0.909 0.007 
1 tdof_cat < 15 d 3535 0.902 0.012 
1 tdof_cat 15 to 30 d 2397 0.916 0.017 
1 wtin_cat*tdof_cat <181 < 15 d 38 0.926 0.041 
1 wtin_cat*tdof_cat <181 15 to 30 d 21 0.955 0.044 
1 wtin_cat*tdof_cat 181 to 226 < 15 d 328 0.886 0.018 
1 wtin_cat*tdof_cat 181 to 226 > 45 d 160 0.890 0.023 
1 wtin_cat*tdof_cat 227 to 272 15 to 30 d 564 0.891 0.013 
1 wtin_cat*tdof_cat 227 to 272 30 to 45 d 225 0.904 0.019 
1 wtin_cat*tdof_cat 227 to 272 > 45 d 314 0.891 0.017 
1 wtin_cat*tdof_cat 273 to 318 < 15 d 1278 0.900 0.009 
1 wtin_cat*tdof_cat 273 to 318 15 to 30 d 743 0.912 0.011 
1 wtin_cat*tdof_cat 273 to 318 30 to 45 d 315 0.902 0.017 
1 wtin_cat*tdof_cat 273 to 318 > 45 d 620 0.891 0.013 
1 wtin_cat*tdof_cat >318 < 15 d 1140 0.926 0.008 
1 wtin_cat*tdof_cat >318 15 to 30 d 741 0.925 0.010 
1 wtin_cat*tdof_cat >318 30 to 45 d 270 0.896 0.018 
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1 wtin_cat*tdof_cat       >318 > 45 d 841 0.883 0.012 

2 didnotfinish 0         5138 0.983 0.002 
5 gender HOL 122 0.970 0.018 
5 gender MIX 55 1.000 0.000 
5 temp_cat < 39.1 188 1.000 0.000 
5 temp_cat 39.1 to 39.4 175 1.000 0.000 
5 temp_cat 39.41 to 40.0 1381 1.000 0.000 
5 temp_cat > 40.0 2087 1.000 0.000 
5 wtin_cat <181 218 1.000 0.000 
5 wtin_cat 181 to 226 1276 1.000 0.000 
5 wtin_cat 227 to 272 1200 1.000 0.000 
5 wtin_cat 273 to 318 718 1.000 0.000 
5 wtin_cat >318 544 0.999 0.000 
5 tdof_cat < 15 days 1704 1.000 0.000 
5 tdof_cat 15 to 30 days 898 1.000 0.000 
5 tdof_cat 30 to 45 days 374 1.000 0.000 
5 tdof_cat         > 45 days 981 1.000 0.000 
6 didnotfinish 0 1621 0.930 0.012 
6 temp_cat 39.41 to 40.0 377 0.924 0.023 
6 wtin_cat*tdof_cat <181 < 15 d 13 0.905 0.079 
6 wtin_cat*tdof_cat       227 to 272 15 to 30 d 53 0.945 0.027 
7 didnotfinish 0 4779 0.927 0.026 
7 gender MIX 20 0.923 0.081 
7 wtin_cat*tdof_cat       <181 30 to 45 d 15 0.902 0.080 

8 didnofinish 0           0.861 0.012 
9 didnotfinish 0 6661 0.970 0.006 
9 wtin_cat*tdof_cat       <181 15 to 30 days 81 0.911 0.056 
11 temp_cat < 39.1 14 0.929 0.069 
11 temp_cat 39.1 to 39.4 22 0.955 0.044 



	 36

11 temp_cat     39.41 to 40.0     48 0.958 0.029 

12 didnotfinish 0         2741 0.936 0.007 
13 temp_cat*tdof_cat <102.5 15 to 30 days 93 0.928 0.035
13 temp_cat*tdof_cat 39.1 to 39.4 15 to 30 days 86 0.941 0.033
13 temp_cat*tdof_cat 39.1 to 39.4 > 45 days 167 0.937 0.025
13 temp_cat*tdof_cat 39.41 to 40.0 15 to 30 days 560 0.930 0.015
13 temp_cat*tdof_cat   39.41 to 40.0   30 to 45 days 348 0.935 0.019
14 didnotfinish 0 2730 0.983 35.754 
14 temp_cat < 39.1 74 0.966 68.032 
14 temp_cat 39.1 to 39.4 77 0.979 43.554 
14 temp_cat 39.41 to 40.0 356 0.970 61.386 
14 wtin_cat 227 to 272 189 0.999 5.021 
14 tdof_cat 30 to 45 days 388 1.000 1.543 
14 wtin_cat*tdof_cat       227 to 272 30 to 45 days 22 1.000 0.000 

18 didnotfinish 0         3403 0.950 0.006 

19 temp_cat*tdof_cat   ≥ 104   > 45 d 227 0.973 0.021 

20 didnotfinish 0         9985 0.952 0.004 
22 wtin_cat*tdof_cat >318 15 to 30 d 1522 0.924 0.008 
22 wtin_cat*tdof_cat       >318 30 to 45 d 749 0.936 0.009 

 

aGender was categorized into: MAL = males, FEM = females, MIX = mix of males and females, HOL = Holstein 
b Rectal temperature (temp_cat) was categorized into: < 39.1, 39.1 to 39.4, 39.41 to 40, and > 40 degrees Celsius. 
c Arrival weight was categorized into 5 categories: < 181kg (400lbs), 181 to 226 kg (400 to 500 lbs), 227 to 272 kg (501 to 600 lbs), 273 to 318 

(601 to 700 lbs), and > 318 kg (700lbs).  
d Days on feed at treatment was categorized into animals less than 15 days on feed, 15 to 30 days on feed, 30 to 45 days on feed and greater than 

45 days on feed.  
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